WorldWideScience

Sample records for multi electrode profiling

  1. An Investigation of Groundwater Flow on a Coastal Barrier using Multi Electrode Profiling

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Christensen, Steen; Rasmussen, Keld Rømer

    2008-01-01

    Preliminary geophysical and hydrogeological investigations indicate that multi-electrode profiling (MEP) can be used to monitor groundwater salinity on a coastal barrier where a shallow thin aquifer discharges to the North Sea. A monitoring system including five groups of piezometers and five MEP...... groundwater modeling we hope to be able to quantify how time varying recharge, tides, and storms hitting the barrier affect groundwater flow and discharge to the sea. At the conference we will present monitoring results from the winter and spring 2008....

  2. Proposed method for reconstructing velocity profiles using a multi-electrode electromagnetic flow meter

    International Nuclear Information System (INIS)

    Kollár, László E; Lucas, Gary P; Zhang, Zhichao

    2014-01-01

    An analytical method is developed for the reconstruction of velocity profiles using measured potential distributions obtained around the boundary of a multi-electrode electromagnetic flow meter (EMFM). The method is based on the discrete Fourier transform (DFT), and is implemented in Matlab. The method assumes the velocity profile in a section of a pipe as a superposition of polynomials up to sixth order. Each polynomial component is defined along a specific direction in the plane of the pipe section. For a potential distribution obtained in a uniform magnetic field, this direction is not unique for quadratic and higher-order components; thus, multiple possible solutions exist for the reconstructed velocity profile. A procedure for choosing the optimum velocity profile is proposed. It is applicable for single-phase or two-phase flows, and requires measurement of the potential distribution in a non-uniform magnetic field. The potential distribution in this non-uniform magnetic field is also calculated for the possible solutions using weight values. Then, the velocity profile with the calculated potential distribution which is closest to the measured one provides the optimum solution. The reliability of the method is first demonstrated by reconstructing an artificial velocity profile defined by polynomial functions. Next, velocity profiles in different two-phase flows, based on results from the literature, are used to define the input velocity fields. In all cases, COMSOL Multiphysics is used to model the physical specifications of the EMFM and to simulate the measurements; thus, COMSOL simulations produce the potential distributions on the internal circumference of the flow pipe. These potential distributions serve as inputs for the analytical method. The reconstructed velocity profiles show satisfactory agreement with the input velocity profiles. The method described in this paper is most suitable for stratified flows and is not applicable to axisymmetric flows in

  3. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  4. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  5. Modeling of Changing Electrode Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, Geoffrey Allen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1980-12-01

    A model for simulating the transient behavior of solid electrodes undergoing deposition or dissolution has been developed. The model accounts for ohmic drop, charge transfer overpotential, and mass transport limitations. The finite difference method, coupled with successive overrelaxation, was used as the basis of the solution technique. An algorithm was devised to overcome the computational instabilities associated with the calculations of the secondary and tertiary current distributions. Simulations were performed on several model electrode profiles: the sinusoid, the rounded corner, and the notch. Quantitative copper deposition data were obtained in a contoured rotating cylinder system, Sinusoidal cross-sections, machined on stainless steel cylinders, were used as model geometries, Kinetic parameters for use in the simulation were determined from polarization curves obtained on copper rotating cylinders, These parameters, along with other physical property and geometric data, were incorporated in simulations of growing sinusoidal profiles. The copper distributions on the sinusoidal cross-sections were measured and found to compare favorably with the simulated results. At low Wagner numbers the formation of a slight depression at the profile peak was predicted by the simulation and observed on the profile. At higher Wagner numbers, the simulated and experimental results showed that the formation of a depression was suppressed. This phenomenon was shown to result from the competition between ohmic drop and electrode curvature.

  6. Offset-electrode profile acquisition strategy for electrical resistivity tomography

    Science.gov (United States)

    Robbins, Austin R.; Plattner, Alain

    2018-04-01

    We present an electrode layout strategy that allows electrical resistivity profiles to image the third dimension close to the profile plane. This "offset-electrode profile" approach involves laterally displacing electrodes away from the profile line in an alternating fashion and then inverting the resulting data using three-dimensional electrical resistivity tomography software. In our synthetic and field surveys, the offset-electrode method succeeds in revealing three-dimensional structures in the vicinity of the profile plane, which we could not achieve using three-dimensional inversions of linear profiles. We confirm and explain the limits of linear electrode profiles through a discussion of the three-dimensional sensitivity patterns: For a homogeneous starting model together with a linear electrode layout, all sensitivities remain symmetric with respect to the profile plane through each inversion step. This limitation can be overcome with offset-electrode layouts by breaking the symmetry pattern among the sensitivities. Thanks to freely available powerful three-dimensional resistivity tomography software and cheap modern computing power, the requirement for full three-dimensional calculations does not create a significant burden and renders the offset-electrode approach a cost-effective method. By offsetting the electrodes in an alternating pattern, as opposed to laying the profile out in a U-shape, we minimize shortening the profile length.

  7. Multi-component intermetallic electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  8. Multi-Electrode Impedance Method for Detection of Regional Ventilation

    International Nuclear Information System (INIS)

    Furuya, Norio; Sakamoto, Katsuyuki

    2013-01-01

    By means of computer simulation and experiment, we investigated the feasibility of simultaneously measuring the transfer impedance changes in the right apex, left apex, right base and left base of the lungs using the multi-electrode impedance method. To obtain the transfer impedance in each region, while suppressing the effects of other regions, changing the amplitude and polarity of the applied current must localize the high sensitivity areas in the interest region. Twelve current and eight voltage electrodes were equidistantly arranged on the anterior and posterior chest walls. The amplitudes and polarities of the currents that were simultaneously applied to the current electrodes, and which provided the appropriate sensitivity distribution, were theoretically obtained. The effects of the localized sensitivity distribution were verified by comparing the simulation results of the investigated method with the results of the conventional four-electrode method. From the results of the computer simulation, we developed a multi-electrode impedance pneumography and applied it to healthy adult volunteers who were both in sitting position and in left decubitus. We found that the measurement results were physiologically reasonable.

  9. Symplicity multi-electrode radiofrequency renal denervation system feasibility study.

    Science.gov (United States)

    Whitbourn, Robert; Harding, Scott A; Walton, Antony

    2015-05-01

    The aim of this study was to test the safety and performance of the Symplicity™ multi-electrode radio-frequency renal denervation system which was designed to reduce procedure time during renal denervation. The multi-electrode radiofrequency renal denervation system feasibility study is a prospective, non-randomised, open label, feasibility study that enrolled 50 subjects with hypertension. The study utilises a new renal denervation catheter which contains an array of four electrodes mounted in a helical configuration at 90 degrees from each other to deliver radiofrequency energy simultaneously to all four renal artery quadrants for 60 seconds. The protocol specified one renal denervation treatment towards the distal end of each main renal artery with radiofrequency energy delivered for 60 seconds per treatment. Total treatment time for both renal arteries was two minutes. The 12-month change in office systolic blood pressure (SBP) and 24-hour SBP was -19.2±25.2 mmHg, prenal artery stenosis or hypertensive emergencies occurred. The Symplicity multi-electrode radiofrequency renal denervation system was associated with a significant reduction in SBP at 12 months and minimal complications whilst it also reduced procedure time. NCT01699529.

  10. The characterization of beam profile by modification of electrode shape

    International Nuclear Information System (INIS)

    Lee, Chan Young; Lee, Jae Sang

    2010-01-01

    Ion sources have been used for variety of industrial application over the past few decades and our research group has been studied about high current and large dimension ion source to meet the requirement from beam user. For a mass production in industry, a wide beam divergence and a beam profile of a broadly Gaussian shape is very needed. Generally, the production process like roll-to-roll or in-line system is need one-meter in diameter, ±5% in uniformity. Therefore it is difficult to apply with present system like 0.3-meter in diameter, ±20% in uniformity and needed new type ion source. In this study, it is approached with modification of electrode grid shape without fabrication of new type ion source. We modified from parallel type to hemispherical type electrode grid to secure large dimension ion beam and were discussed with respect to beam profile calculated with IGUN code simulation. Also, we identified beam profile before and after modification of electrode grid system(cathode, Acelldecel grid) with measurement of faraday cup

  11. Conformally encapsulated multi-electrode arrays with seamless insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tabada, Phillipe J.; Shah, Kedar G.; Tolosa, Vanessa; Pannu, Satinderall S.; Tooker, Angela; Delima, Terri; Sheth, Heeral; Felix, Sarah

    2016-11-22

    Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.

  12. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  13. Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces

    Science.gov (United States)

    Kim, Tae Gyo

    Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord

  14. Automatic monitoring of radial injection tracer tests using a novel multi-electrode resistivity system

    International Nuclear Information System (INIS)

    Ward, R.S.; Sen, M.A.; Williams, G.M.; Jackson, P.D.

    1990-01-01

    A radial injection tracer test has been carried out in an unconfined fluvial sand and gravel aquifer underlain by low permeability clay. Sodium chloride has been used as an electrolyte tracer and breakthrough has been monitored using a newly developed automatic resistivity system (RESCAN) incorporating six fully penetrating resistivity probes each having 80 electrodes spaced at 5 cm intervals along their length. Each electrode is individually addressable under computer control to either carry current or measure potential. Any four electrodes can be selected in the traditional Wenner configuration to measure formation resistivity. Rapid measurement of changes in resistivity allows a very detailed picture of tracer migration to be obtained. The resistivity probes were placed at 1 and 2 m radii from the central fully-screened tracer injection well along three limbs at 120 degrees. Resistivity measurements were compared with adjacent multi-level samplers. An 8 x 8 m grid of 140 surface electrodes centred on the central well was also installed. The resistivity profiles measured prior to tracer injection were used to infer lithology, particularly layering. Detailed breakthrough curves were obtained at 77 positions along each of the six probes and compared with adjacent multi-level sampler breakthrough curves. The results showed that the aquifer was extremely heterogeneous even on this small scale. Because the system operates automatically without the need to extract and analyse large numbers of water samples, it opens up the possibility of carrying out lots of small scale injection tests within a larger domain likely to be invaded by a tracer or pollution plume. Such detailed information for determining aquifer properties can provide the data set necessary for characterisation of the aquifer to predict dispersion parameters appropriate to the large scale. (Author) (6 refs., 9 figs., 2 tabs.)

  15. Correction of electrode modelling errors in multi-frequency EIT imaging.

    Science.gov (United States)

    Jehl, Markus; Holder, David

    2016-06-01

    The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-linear multi-frequency EIT applications. To address this issue, we augmented the conductivity Jacobian matrix with a Jacobian matrix with respect to electrode movement. Using this new algorithm, simulated ischaemic and haemorrhagic strokes in a realistic head model were reconstructed for varying degrees of electrode position errors. The simultaneous recovery of conductivity spectra and electrode positions removed most artefacts caused by inaccurately modelled electrodes. Reconstructions were stable for electrode position errors of up to 1.5 mm standard deviation along both surface dimensions. We conclude that this method can be used for electrode model correction in multi-frequency EIT.

  16. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    International Nuclear Information System (INIS)

    Cai, Yu; Sha, Shuang

    2016-01-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/ N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers. (paper)

  17. Robust, highly customizable, and economical multi-channel electrode for chronic multi-unit recording in behaving animals.

    Science.gov (United States)

    Tateyama, Yukina; Oyama, Kei; Shiraishi, Masaru; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2017-12-01

    Multi-unit recording has been one of the most widely used techniques to investigate the correlation between multiple neuronal activities and behavior. However, a common problem of currently used multi-channel electrodes is their physical weakness. In this study, we developed a novel multi-channel electrode with sufficient physical strength to penetrate a thickened dura mater. This electrode consists of low-cost materials and is easily fabricated, and it enables recording without removing dura mater, thereby reducing the risk of inflammation, infection, or brain herniation. The low-cost multi-channel electrode developed in this study would be a useful tool for chronic recording in behaving animals. Copyright © 2017. Published by Elsevier B.V.

  18. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    International Nuclear Information System (INIS)

    Lu, Yi-Yu; Huang, Yu-Jie; Cheng, Kuo-Sheng; Huang, Ji-Jer

    2013-01-01

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization. (paper)

  19. Multi-wavelength Ocean Profiling and Atmospheric Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build and demonstrate the world's first multi-wavelength ocean-profiling high spectral resolution lidar (HSRL). The lidar will provide profiles of...

  20. Built-in test of electrode degradation of multi-electrode array biosensors

    NARCIS (Netherlands)

    Liu, H.Y.; Dumas, N.; Richardson, A.; Heal, R.; Kerkhoff, Hans G.

    2006-01-01

    Micro-electrode array (MEA) is a widely used platform in biosensor systems, which provide a technology in communicating with micro chemical and biological world. This paper addresses hte topic of testing micro electrode degradation for MEAs, which is a common encountered damage during its

  1. An automated online positioning system and simulation environment for multi-electrodes in extracellular recordings

    DEFF Research Database (Denmark)

    Franke, Felix; Natora, Michal; Meier, Philipp

    2010-01-01

    to tissue drifts and other sources of variability in the recording setup, the position of the electrodes with respect to the recorded neurons can change causing low recording quality. The contributions of this work are threefold. We introduce a quality measure for the recording position of the electrode...... which should be maximized during recordings and is especially suitable for the use of multi-electrodes. An automated positioning system based on this quality measure is proposed. The system is able to find favorable recording positions and adapts the electrode position smoothly to changes of the neuron...

  2. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2012-01-01

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD

  3. Recent progress in multi-electrode spike sorting methods.

    Science.gov (United States)

    Lefebvre, Baptiste; Yger, Pierre; Marre, Olivier

    2016-11-01

    In recent years, arrays of extracellular electrodes have been developed and manufactured to record simultaneously from hundreds of electrodes packed with a high density. These recordings should allow neuroscientists to reconstruct the individual activity of the neurons spiking in the vicinity of these electrodes, with the help of signal processing algorithms. Algorithms need to solve a source separation problem, also known as spike sorting. However, these new devices challenge the classical way to do spike sorting. Here we review different methods that have been developed to sort spikes from these large-scale recordings. We describe the common properties of these algorithms, as well as their main differences. Finally, we outline the issues that remain to be solved by future spike sorting algorithms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Carbon paste electrode incorporating multi-walled carbon nanotube ...

    Indian Academy of Sciences (India)

    The preparation and electrochemical performance of the carbon nanotube paste electrode modified with ferrocene (FCMCNPE) was investigated for electrocatalytic behaviour toward oxidation of -acetyl--cysteine (NAC) in the presence of tryptophan (Trp) using cyclic voltammetry (CV) and differential pulse voltammetry ...

  5. Ethylene Removal in Strong Electric Field Formed by Floating Multi-Electrode

    Science.gov (United States)

    Nagasawa, Takeshi

    Ethylene gas that contains the acetic acid ester element can be removed by applying the pulse voltage to the floating multi-electrode device. This phenomenon is caused in the weak discharge by the strong electric field between the narrow electrodes. This device is possible in very small electric power (apples, and 3.5ppm/30min for 2 melons. However, ethylene gas that doesn't contain the acetic acid ester cannot be removed (ex. ethylene pure gas and Japanese apricot).

  6. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    Science.gov (United States)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  7. A multi-pad electrode based functional electrical stimulation system for restoration of grasp

    Directory of Open Access Journals (Sweden)

    Malešević Nebojša M

    2012-09-01

    Full Text Available Abstract Background Functional electrical stimulation (FES applied via transcutaneous electrodes is a common rehabilitation technique for assisting grasp in patients with central nervous system lesions. To improve the stimulation effectiveness of conventional FES, we introduce multi-pad electrodes and a new stimulation paradigm. Methods The new FES system comprises an electrode composed of small pads that can be activated individually. This electrode allows the targeting of motoneurons that activate synergistic muscles and produce a functional movement. The new stimulation paradigm allows asynchronous activation of motoneurons and provides controlled spatial distribution of the electrical charge that is delivered to the motoneurons. We developed an automated technique for the determination of the preferred electrode based on a cost function that considers the required movement of the fingers and the stabilization of the wrist joint. The data used within the cost function come from a sensorized garment that is easy to implement and does not require calibration. The design of the system also includes the possibility for fine-tuning and adaptation with a manually controllable interface. Results The device was tested on three stroke patients. The results show that the multi-pad electrodes provide the desired level of selectivity and can be used for generating a functional grasp. The results also show that the procedure, when performed on a specific user, results in the preferred electrode configuration characteristics for that patient. The findings from this study are of importance for the application of transcutaneous stimulation in the clinical and home environments.

  8. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2002-09-17

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  9. A multi-wire beam profile monitor in the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Buxton, W.; Castillo, V.; Glenn, J.W. [and others

    1997-07-01

    A multi-wire beam profile monitor which can be used to directly monitor and control the optical matching between the Booster and AGS rings has been installed and tested in the AGS. Placement of a multi-wire monitor directly in the AGS provides profile measurements taken upon injection and the first two or more revolutions of the beam. The data from such measurements can be used to determine the optical properties of the beam transport line leading into the AGS.

  10. Binaural release from masking with single- and multi-electrode stimulation in children with cochlear implants.

    Science.gov (United States)

    Todd, Ann E; Goupell, Matthew J; Litovsky, Ruth Y

    2016-07-01

    Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs.

  11. Binaural release from masking with single- and multi-electrode stimulation in children with cochlear implantsa)

    Science.gov (United States)

    Todd, Ann E.; Goupell, Matthew J.; Litovsky, Ruth Y.

    2016-01-01

    Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs. PMID:27475132

  12. A new method synthesis polyaniline/multi-walled carbon nanotube composites for supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, J.; Wei, X.; Zhou, S.P. [Shandong Univ. of Technology, Zibo (China). School of Chemical Engineering

    2010-07-01

    A series of polyaniline multi-walled nanotube (PANIMWNT) composite films were prepared using an in situ polymerization technique. Scanning electron microscopy (SEM) was used to characterize the morphology and microstructure of the samples. Cyclic voltammetry (CV), impedance spectroscopy, and galvanostatic charge/discharge analyses were used to determine the electrochemical properties of the PANIMWNT films in a 3-electrode system. The electrochemical performance of PANI, PANIMWNT, and MWNT film performances was then compared. Results of the study showed that the PANI electrodes showed a much higher capacitance than the MWNT and PANIMWNT electrodes. Both the PANI and PANIMWNT nanocomposites showed good electrochemical capacitance. The improved performance of the electrodes was attributed to the presence of sodium hypochlorite (NaClO). 5 refs.

  13. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring.

    Science.gov (United States)

    Vasylieva, Natalia; Marinesco, Stéphane; Barbier, Daniel; Sabac, Andrei

    2015-10-15

    Simultaneous monitoring of glucose and lactate is an important challenge for understanding brain energetics in physiological or pathological states. We demonstrate here a versatile method based on a minimally invasive single implantation in the rat brain. A silicon/SU8-polymer multi-sensing needle-shaped biosensor, was fabricated and tested. The multi-electrode array design comprises three platinum planar microelectrodes with a surface area of 40 × 200 µm(2) and a spacing of 200 µm, which were micromachined on a single 3mm long micro-needle having a 100 × 50 µm(2) cross-section for reduced tissue damage during implantation. Platinum micro-electrodes were aligned at the bottom of micro-wells obtained by photolithography on a SU8 photoresist layer. After clean room processing, each micro-electrode was functionalized inside the micro-wells by means of a micro-dispensing device, either with glucose oxidase or with lactate oxidase, which were cross-linked on the platinum electrodes. The third electrode covered with Bovine Serum Albumin (BSA) was used for the control of non-specific currents. The thick SU8 photoresist layer has revealed excellent electrical insulation of the micro-electrodes and between interconnection lines, and ensured a precise localization and packaging of the sensing enzymes on platinum micro-electrodes. During in vitro calibration with concentrations of analytes in the mM range, the micro-wells patterned in the SU8 photoresist proved to be highly effective in eliminating cross-talk signals, caused by H2O2 diffusion from closely spaced micro-electrodes. Moreover, our biosensor was successfully assayed in the rat cortex for simultaneous monitoring of both glucose and lactate during insulin and glucose administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Fabrication and electrochemical characterization of multi-walled carbon nanotube electrodes for applications to nano-electrochemical sensing

    International Nuclear Information System (INIS)

    Hwang, Sookhyun; Choi, Hyonkwang; Jeon, Minhyon; Vedala, Harindra; Kim, Taehyung; Choi, Wonbong

    2010-01-01

    In this study, we fabricated and electrochemically characterized two types of individual carbon nanotube electrodes: an as-produced multi-walled carbon nanotube (MWNT) electrode and a modified MWNT electrode. As-produced MWNTs were electrically contacted with Au/Ti layers by using nanolithography and RF magnetron sputtering. Open-ended modified MWNT electrodes were fabricated by using a reactive ion etching treatment under an oxygen atmosphere. We also performed cyclic voltammetry measurements to detect aqueous dopamine solutions with different concentrations. We found that an individual MWNT electrode, which had a small effective area, showed good electrochemical performance. The electrocatalytic behavior of the modified electrode, which had 'broken' open ends were better than that of the as-produced electrode with respect to sensitivity. The modified electrode was capable of detecting dopamine at the picomolar level. Therefore, an individual modified MWNT electrode has potential for applications to active components in nanobiosensors.

  15. Action potential propagation recorded from single axonal arbors using multi-electrode arrays.

    Science.gov (United States)

    Tovar, Kenneth R; Bridges, Daniel C; Wu, Bian; Randall, Connor; Audouard, Morgane; Jang, Jiwon; Hansma, Paul K; Kosik, Kenneth S

    2018-04-11

    We report the presence of co-occurring extracellular action potentials (eAPs) from cultured mouse hippocampal neurons among groups of planar electrodes on multi-electrode arrays (MEAs). The invariant sequences of eAPs among co-active electrode groups, repeated co-occurrences and short inter-electrode latencies are consistent with action potential propagation in unmyelinated axons. Repeated eAP co-detection by multiple electrodes was widespread in all our data records. Co-detection of eAPs confirms they result from the same neuron and allows these eAPs to be isolated from all other spikes independently of spike sorting algorithms. We averaged co-occurring events and revealed additional electrodes with eAPs that would otherwise be below detection threshold. We used these eAP cohorts to explore the temperature sensitivity of action potential propagation and the relationship between voltage-gated sodium channel density and propagation velocity. The sequence of eAPs among co-active electrodes 'fingerprints' neurons giving rise to these events and identifies them within neuronal ensembles. We used this property and the non-invasive nature of extracellular recording to monitor changes in excitability at multiple points in single axonal arbors simultaneously over several hours, demonstrating independence of axonal segments. Over several weeks, we recorded changes in inter-electrode propagation latencies and ongoing changes in excitability in different regions of single axonal arbors. Our work illustrates how repeated eAP co-occurrences can be used to extract physiological data from single axons with low electrode density MEAs. However, repeated eAP co-occurrences leads to over-sampling spikes from single neurons and thus can confound traditional spike-train analysis.

  16. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design

    KAUST Repository

    Ahn, Yongtae

    2012-10-11

    Treatment of domestic wastewater using microbial fuel cells (MFCs) will require reactors with multiple electrodes, but this presents unique challenges under continuous flow conditions due to large changes in the chemical oxygen demand (COD) concentration within the reactor. Domestic wastewater treatment was examined using a single-chamber MFC (130 mL) with multiple graphite fiber brush anodes wired together and a single air cathode (cathode specific area of 27 m2/m3). In fed-batch operation, where the COD concentration was spatially uniform in the reactor but changed over time, the maximum current density was 148 ± 8 mA/m2 (1,000 Ω), the maximum power density was 120 mW/m2, and the overall COD removal was >90 %. However, in continuous flow operation (8 h hydraulic retention time, HRT), there was a 57 % change in the COD concentration across the reactor (influent versus effluent) and the current density was only 20 ± 13 mA/m2. Two approaches were used to increase performance under continuous flow conditions. First, the anodes were separately wired to the cathode, which increased the current density to 55 ± 15 mA/m2. Second, two MFCs were hydraulically connected in series (each with half the original HRT) to avoid large changes in COD among the anodes in the same reactor. The second approach improved current density to 73 ± 13 mA/m2. These results show that current generation from wastewaters in MFCs with multiple anodes, under continuous flow conditions, can be improved using multiple reactors in series, as this minimizes changes in COD in each reactor. © 2012 Springer-Verlag Berlin Heidelberg.

  17. Spectroscopic Analysis of Ion Concentration Profile at Electrode/Electrolyte Interface by Interferometry

    Science.gov (United States)

    Moore, David; Saraf, Ravi

    2014-03-01

    Owing to the difference in Fermi levels at an electrode/electrolyte interface, ions form an electrical double layer (EDL) with ion concentrations well over 10-fold compared to bulk. The concentration profile of the EDL intrinsically affects the electrochemical reaction rates at the electrode, which is of great significance in many applications, such as batteries and biosensors. Conventionally, using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the electrical properties of the EDL are represented as ``equivalent circuits'' consisting of the resistance to charge transfer (Rct), the double layer capacitance (Cdl) and a ``Warburg (constant phase) diffusion element'' that represents the long range diffusion of ions to the electrode. The translation to the well-understood physical structure can be lost as complicated effects are often lumped together. For example, the effect of subtle modification of the electrode surface by say, redox compounds, enzymes, or polymers is not directly measured, and must be inferred by capacitance changes. An interferometer method will be described to directly measure changes in concentration at the interface during redox process. This method in concert with CV or EIS performed concomitantly will lead to more information to model the diffuse layer for improved understanding of the kinetics of the reaction at different distances from the electrode. Applications to DNA and polymer adsorption binding will be discussed.

  18. Boundary element numerical method for the electric field generated by oblique multi-needle electrodes

    Institute of Scientific and Technical Information of China (English)

    LIU FuPing; WANG AnLing; WANG AnXuan; CAO YueZu; CHEN Qiang; YANG ChangChun

    2009-01-01

    According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa-tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced significance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.

  19. Effects of grid potentials and geometric dimensions on the multi-electrode probe measurements

    International Nuclear Information System (INIS)

    Elakshar, F.F.; Abdul El-Raoof, W.S.

    1986-01-01

    A hollow anode plasma source is used to produce low temperature plasma which is injected into a magnetic field. The effects of the grid potentials, collector potential and geometric dimensions on multi-electrode probe measurements, in the presence of a magnetic field, are investigated. It is found that the collector potential plays a substantial role in the measurement of temperatures and densities. The finite-size of the geometric dimensions of the probe influences the data and high values of temperature are obtained when a small ratio of the discriminator grid radius to the separation distance is used, providing that the repeller grid potentials is low. Reliable measurements can only be obtained if the multi-electrode probe is used in the presence of a magnetic field strong enough to reduce electron Larmor radii to less than the grid mesh radius. (author)

  20. A single camera photogrammetry system for multi-angle fast localization of EEG electrodes.

    Science.gov (United States)

    Qian, Shuo; Sheng, Yang

    2011-11-01

    Photogrammetry has become an effective method for the determination of electroencephalography (EEG) electrode positions in three dimensions (3D). Capturing multi-angle images of the electrodes on the head is a fundamental objective in the design of photogrammetry system for EEG localization. Methods in previous studies are all based on the use of either a rotating camera or multiple cameras, which are time-consuming or not cost-effective. This study aims to present a novel photogrammetry system that can realize simultaneous acquisition of multi-angle head images in a single camera position. Aligning two planar mirrors with the angle of 51.4°, seven views of the head with 25 electrodes are captured simultaneously by the digital camera placed in front of them. A complete set of algorithms for electrode recognition, matching, and 3D reconstruction is developed. It is found that the elapsed time of the whole localization procedure is about 3 min, and camera calibration computation takes about 1 min, after the measurement of calibration points. The positioning accuracy with the maximum error of 1.19 mm is acceptable. Experimental results demonstrate that the proposed system provides a fast and cost-effective method for the EEG positioning.

  1. Indirect Electrochemical Oxidation with Multi Carbon Electrodes for Restaurant Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    I Dewa Ketut Sastrawidana

    2018-01-01

    Full Text Available The removal of organic matter from the restaurant wastewater was investigated using the electrochemical oxida-tion method with multi carbon electrodes in a parallel construction. The degradation process was monitored by the measurement of COD concentration as a function of electrolysis time. The effectof operating parameter conditions on COD removal were investigated including initial pH, distance between electrodes, and the applied voltage difference.The results showed that the treatment of restaurant wastewater containing 2 g/L chloride ion using the electrochemical oxidation technique at the operation conditions characterized by: pH 5, distance between electrode of 10 cm and applied voltage of 12 V, enabled to obtained COD removal of 92.84% within 90 min electrolysis time. It is can be concluded that the indirect electrochemical oxidation method with multi carbon electrodes can be used effectivelyas an alternative technology for reducing COD and may be potentially applied for removal organic pollutants from wastewater at the industrial scale.

  2. Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays.

    Science.gov (United States)

    Mena, Gonzalo E; Grosberg, Lauren E; Madugula, Sasidhar; Hottowy, Paweł; Litke, Alan; Cunningham, John; Chichilnisky, E J; Paninski, Liam

    2017-11-01

    Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible.

  3. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black

    Science.gov (United States)

    Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.

    2010-01-01

    Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478

  4. Electrochemistry of metoclopramide at multi-walled carbon nanotube modified electrode and its voltammetric detection.

    Science.gov (United States)

    Guo, Wei; Geng, Mingjiang; Zhou, Lingyun

    2012-01-01

    A simple, sensitive and inexpensive electrochemical method was developed for the determination of metoclopramide (MCP) with a multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE). MWNT was dispersed into polyacrylic acid (PAA); the aqueous suspension was then cast on GCE electrodes, forming MWNT-PAA films after evaporation of the solvent. The electrochemical behavior of MCP at the MWNT-modified electrode was investigated in detail. Compared with the bare GCE, the MWNT-modified electrode exhibits electrocatalytic activity to the oxidation of MCP because of the significant oxidation peak-current enhancement. Furthermore, various experimental parameters, such as the solution pH value, the amount of MWNT-PAA suspension and accumulation conditions were optimized for the determination of MCP. Based on the electrocatalytic effect of the MWNT-modified electrode, linear sweep voltammetry (LSV) was developed for the determination of MCP with the linear response in the range from 1.0 × 10(-7) to 1.0 × 10(-5) mol L(-1) and a detection limit of 5.0 × 10(-8) mol L(-1). The method has been successfully applied to the determination of MCP in commercial MCP tablets.

  5. Reading Profiles in Multi-Site Data With Missingness.

    Science.gov (United States)

    Eckert, Mark A; Vaden, Kenneth I; Gebregziabher, Mulugeta

    2018-01-01

    Children with reading disability exhibit varied deficits in reading and cognitive abilities that contribute to their reading comprehension problems. Some children exhibit primary deficits in phonological processing, while others can exhibit deficits in oral language and executive functions that affect comprehension. This behavioral heterogeneity is problematic when missing data prevent the characterization of different reading profiles, which often occurs in retrospective data sharing initiatives without coordinated data collection. Here we show that reading profiles can be reliably identified based on Random Forest classification of incomplete behavioral datasets, after the missForest method is used to multiply impute missing values. Results from simulation analyses showed that reading profiles could be accurately classified across degrees of missingness (e.g., ∼5% classification error for 30% missingness across the sample). The application of missForest to a real multi-site dataset with missingness ( n = 924) showed that reading disability profiles significantly and consistently differed in reading and cognitive abilities for cases with and without missing data. The results of validation analyses indicated that the reading profiles (cases with and without missing data) exhibited significant differences for an independent set of behavioral variables that were not used to classify reading profiles. Together, the results show how multiple imputation can be applied to the classification of cases with missing data and can increase the integrity of results from multi-site open access datasets.

  6. Reading Profiles in Multi-Site Data With Missingness

    Directory of Open Access Journals (Sweden)

    Mark A. Eckert

    2018-05-01

    Full Text Available Children with reading disability exhibit varied deficits in reading and cognitive abilities that contribute to their reading comprehension problems. Some children exhibit primary deficits in phonological processing, while others can exhibit deficits in oral language and executive functions that affect comprehension. This behavioral heterogeneity is problematic when missing data prevent the characterization of different reading profiles, which often occurs in retrospective data sharing initiatives without coordinated data collection. Here we show that reading profiles can be reliably identified based on Random Forest classification of incomplete behavioral datasets, after the missForest method is used to multiply impute missing values. Results from simulation analyses showed that reading profiles could be accurately classified across degrees of missingness (e.g., ∼5% classification error for 30% missingness across the sample. The application of missForest to a real multi-site dataset with missingness (n = 924 showed that reading disability profiles significantly and consistently differed in reading and cognitive abilities for cases with and without missing data. The results of validation analyses indicated that the reading profiles (cases with and without missing data exhibited significant differences for an independent set of behavioral variables that were not used to classify reading profiles. Together, the results show how multiple imputation can be applied to the classification of cases with missing data and can increase the integrity of results from multi-site open access datasets.

  7. Radiofrequency ablation of chondroblastoma using a multi-tined expandable electrode system: initial results

    International Nuclear Information System (INIS)

    Tins, Bernhard; Cassar-Pullicino, Victor; McCall, Iain; Cool, Paul; Williams, David; Mangham, David

    2006-01-01

    The standard treatment for chondroblastoma is surgery, which can be difficult and disabling due to its apo- or epiphyseal location. Radiofrequency (RF) ablation potentially offers a minimally invasive alternative. The often large size of chondroblastomas can make treatment with plain electrode systems difficult or impossible. This article describes the preliminary experience of RF treatment of chondroblastomas with a multi-tined expandable RF electrode system. Four cases of CT guided RF treatment are described. The tumour was successfully treated in all cases. In two cases, complications occurred; infraction of a subarticular chondroblastoma in one case and cartilage and bone damage in the unaffected compartment of a knee joint in the other. Radiofrequency treatment near a joint surface threatens the integrity of cartilage and therefore long-term joint function. In weight-bearing areas, the lack of bone replacement in successfully treated lesions contributes to the risk of mechanical failure. Multi-tined expandable electrode systems allow the treatment of large chondroblastomas. In weight-bearing joints and lesions near to the articular cartilage, there is a risk of cartilage damage and mechanical weakening of the bone. In lesions without these caveats, RF ablation appears promising. The potential risks and benefits need to be evaluated for each case individually. (orig.)

  8. Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo

    Science.gov (United States)

    Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan

    2014-01-01

    The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735

  9. Optogenetic modulation and multi-electrode analysis of cerebellar networks in vivo.

    Directory of Open Access Journals (Sweden)

    Wolfgang Kruse

    Full Text Available The firing patterns of cerebellar Purkinje cells (PCs, as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs, climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2 expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.

  10. Radiofrequency ablation of chondroblastoma using a multi-tined expandable electrode system: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Tins, Bernhard; Cassar-Pullicino, Victor; McCall, Iain [RJAH Orthopaedic and District Hospital, Department of Radiology, Oswestry (United Kingdom); Cool, Paul [RJAH Orthopaedic and District Hospital, Musculoskeletal Tumour Unit, Oswestry (United Kingdom); Williams, David [Hereford Hospital, Department of Orthopaedics, Hereford (United Kingdom); Mangham, David [RJAH Orthopaedic and District Hospital, Department of Pathology, Oswestry (United Kingdom)

    2006-04-15

    The standard treatment for chondroblastoma is surgery, which can be difficult and disabling due to its apo- or epiphyseal location. Radiofrequency (RF) ablation potentially offers a minimally invasive alternative. The often large size of chondroblastomas can make treatment with plain electrode systems difficult or impossible. This article describes the preliminary experience of RF treatment of chondroblastomas with a multi-tined expandable RF electrode system. Four cases of CT guided RF treatment are described. The tumour was successfully treated in all cases. In two cases, complications occurred; infraction of a subarticular chondroblastoma in one case and cartilage and bone damage in the unaffected compartment of a knee joint in the other. Radiofrequency treatment near a joint surface threatens the integrity of cartilage and therefore long-term joint function. In weight-bearing areas, the lack of bone replacement in successfully treated lesions contributes to the risk of mechanical failure. Multi-tined expandable electrode systems allow the treatment of large chondroblastomas. In weight-bearing joints and lesions near to the articular cartilage, there is a risk of cartilage damage and mechanical weakening of the bone. In lesions without these caveats, RF ablation appears promising. The potential risks and benefits need to be evaluated for each case individually. (orig.)

  11. The Effect of Subcutaneous Fat on Electrical Impedance Myography: Electrode Configuration and Multi-Frequency Analyses.

    Directory of Open Access Journals (Sweden)

    Le Li

    Full Text Available This study investigates the impact of the subcutaneous fat layer (SFL thickness on localized electrical impedance myography (EIM, as well as the effects of different current electrodes, varying in distance and direction, on EIM output. Twenty-three healthy subjects underwent localized multi-frequency EIM on their biceps brachii muscles with a hand-held electrode array. The EIM measurements were recorded under three different configurations: wide (or outer longitudinal configuration 6.8 cm, narrow (or inner longitudinal configuration 4.5 cm, and narrow transverse configuration 4.5 cm. Ultrasound was applied to measure the SFL thickness. Coefficients of determination (R2 of three EIM variables (resistance, reactance, and phase and SFL thickness were calculated. For the longitudinal configuration, the wide distance could reduce the effects of the subcutaneous fat when compared with the narrow distance, but a significant correlation still remained for all three EIM parameters. However, there was no significant correlation between SFL thickness and reactance in the transverse configuration (R2 = 0.0294, p = 0.434. Utilizing a ratio of 50kHz/100kHz phase was found to be able to help reduce the correlation with SFL thickness for all the three configurations. The findings indicate that the appropriate selection of the current electrode distance, direction and the multi-frequency phase ratio can reduce the impact of subcutaneous fat on EIM. These settings should be evaluated for future clinical studies using hand-held localized arrays to perform EIM.

  12. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    Science.gov (United States)

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.

    2013-08-01

    Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

  13. Oxidized multi walled carbon nanotubes for improving the electrocatalytic activity of a benzofuran derivative modified electrode

    Directory of Open Access Journals (Sweden)

    Mohammad Mazloum-Ardakani

    2016-01-01

    Full Text Available In the present paper, the use of a novel carbon paste electrode modified by 7,8-dihydroxy-3,3,6-trimethyl-3,4-dihydrodibenzo[b,d]furan-1(2H-one (DTD and oxidized multi-walled carbon nanotubes (OCNTs is described for determination of levodopa (LD, acetaminophen (AC and tryptophan (Trp by a simple and rapid method. At first, the electrochemical behavior of DTD is studied, then, the mediated oxidation of LD at the modified electrode is investigated. At the optimum pH of 7.4, the oxidation of LD occurs at a potential about 330 mV less positive than that of an unmodified carbon paste electrode. Based on differential pulse voltammetry (DPV, the oxidation current of LD exhibits a linear range between 1.0 and 2000.0 μM of LD with a detection limit (3σ of 0.36 μM. DPV was also used for simultaneous determination of LD, AC and Trp at the modified electrode. Finally, the proposed electrochemical sensor was used for determinations of these substances in human serum sample.

  14. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    Science.gov (United States)

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  15. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes.

    Science.gov (United States)

    Wang, Sheng-Fu; Xu, Qiao

    2007-05-01

    In this paper, some electrochemical parameters of ethamsylate at a multi-walled carbon nanotube modified glassy carbon electrode, such as the charge number, exchange current density, standard heterogeneous rate constant and diffusion coefficient, were measured by cyclic voltammetry, chronoamperometry and chronocoulometry. The modified electrode exhibits good promotion of the electrochemical reaction of ethamsylate and increases the standard heterogeneous rate constant of ethamsylate greatly. The differential pulse voltammetry responses of ethamsylate were linearly dependent on its concentrations in a range from 2.0 x 10(-6) to 6.0 x 10(-5) mol L(-1), with a detection limit of 4.0 x 10(-7) mol L(-1).

  16. Extraction of network topology from multi-electrode recordings: Is there a small-world effect?

    Directory of Open Access Journals (Sweden)

    Felipe eGerhard

    2011-02-01

    Full Text Available The simultaneous recording of the activity of many neurons poses challenges for multivariate data analysis. Here, we propose a general scheme of reconstruction of the functional network from spike train recordings. Effective, causal interactions are estimated by fitting Generalized Linear Models (GLMs on the neural responses, incorporating effects of the neurons' self-history, of input from other neurons in the recorded network and of modulation by an external stimulus. The coupling terms arising from synaptic input can be transformed by thresholding into a binary connectivity matrix which is directed. Each link between two neurons represents a causal influence from one neuron to the other, given the observation of all other neurons from the population. The resulting graph is analyzed with respect to small-world and scale-free properties using quantitative measures for directed networks. Such graph-theoretic analyses have been performed on many complex dynamic networks, including the connectivity structure between different brain areas. Only few studies have attempted to look at the structure of cortical neural networks on the level of individual neurons. Here, using multi-electrode recordings from the visual system of the awake monkey, we find that cortical networks lack scale-free behavior, but show a small, but significant small-world structure. Assuming a simple distance-dependent probabilistic wiring between neurons, we find that this connectivity structure can account for all of the networks' observed small-world-ness. Moreover, for multi-electrode recordings the sampling of neurons is not uniform across the population. We show that the small-world-ness obtained by such a localized sub-sampling overestimates the strength of the true small-world-structure of the network. This bias is likely to be present in all previous experiments based on multi-electrode recordings.

  17. Self-discharge synchronizing operations in the external electrode fluorescent multi-lamps backlight

    International Nuclear Information System (INIS)

    Cho, Guangsup; Kwon, Nam O; Kim, Young M; Kim, Sung J; Cho, Tae S; Kim, Bong S; Kang, June G; Choi, Eun H; Lee, Ung W; Yang, Soon C; Uhm, Han S

    2003-01-01

    The external electrode fluorescent lamp (EEFL) is operated in a high frequency mode because the lamp lighting is basically a dielectric barrier discharge. The self-discharge synchronization is defined by synchronizing the self-discharge time of the dielectric wall charge with the voltage rising and falling time. It is shown that for the self-discharge synchronization a high brightness is obtained in the multi-lamps backlight connected in parallel with the EEFLs operated with square waves from a switching inverter. The frequency for self-discharge synchronizing is also shown to increase as the driving voltage increases

  18. An improved method of crafting a multi-electrode spiral cuff for the selective.

    Science.gov (United States)

    Rozman, Janez; Pečlin, Polona; Ribarič, Samo; Godec, Matjaž; Burja, Jaka

    2018-01-17

    This article reviews an improved methodology and technology for crafting a multi-electrode spiral cuff for the selective activation of nerve fibres in particular superficial regions of a peripheral nerve. The analysis, structural and mechanical properties of the spot welds used for the interconnections between the stimulating electrodes and stainless-steel lead wires are presented. The cuff consisted of 33 platinum electrodes embedded within a self-curling 17-mm-long silicone spiral sheet with a nominal internal diameter of 2.5 mm. The weld was analyzed using scanning electron microscopy and nanohardness tests, while the interconnection was investigated using destructive load tests. The functionality of the cuff was tested in an isolated porcine vagus nerve. The results of the scanning electron microscopy show good alloying and none of the typical welding defects that occur between the wire and the platinum foil. The results of the destructive load tests show that the breaking loads were between 3.22 and 5 N. The results of the nanohardness testing show that the hardness of the weld was different for the particular sites on the weld sample. Finally, the results of the functional testing show that for different stimulation intensities both the compound action potential deflection and the shape are modulated.

  19. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    Science.gov (United States)

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.

    2015-08-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  20. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    International Nuclear Information System (INIS)

    Jeong, Du Won; Jin Kim, Ju; Jung, Jongjin; Yang, Cheol-Soo; Lee, Jeong-O; Hwa Kim, Gook; Don Jung, Sang

    2015-01-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV–ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions. (paper)

  1. Design and manufacture of multi-electrode ion chamber for absolute photon-flux measurements of soft x-rays

    International Nuclear Information System (INIS)

    Yoshigoe, Akitaka; Teraoka, Yuden

    2001-03-01

    In order to measure the absolute photon-flux of soft x-rays at the photon energy region from 500 eV to 1500 eV, a sealed gas ion chamber with multi-electrodes was designed and manufactured. Actually we succeeded in measuring the photon-flux at the soft x-ray beamline, BL23SU, in the SPring-8. This report concretely describes the design and the adjustment of the sealed gas ion chamber with multi-electrodes. (author)

  2. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  3. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    Science.gov (United States)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  4. Electrochemical Oxidation of Sulfamethazine on Multi-Walled Nanotube Film Coated Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    L. Fotouhi

    2014-04-01

    Full Text Available The electrochemical oxidation of sulfamethazine (SMZ has been studied at a multi-walled carbon nanotubes modified glassy carbon electrode (MWCNT-GCE by cyclic voltammetry. This modified electrode (MWCNT-GCE exhibited excellent electrocatalytic behavior toward the oxidation of SMZ as evidenced by the enhancement of the oxidation peak current and the shift in the anodic potential to less positive values (170 mV in comparison with the bare GCE. The formal potential, E0', of SMZ is pH dependent with a slope of 54 mV per unit of pH, close to the anticipated Nerstian value of 59 mV for a 2-electron and 2-proton oxidation process. A detailed analysis of cyclic voltammograms gave fundamental electrochemical parameters including the electroactive surface coverage (Г, the transfer coefficient (a, the heterogeneous rate constant (ks. Under the selected conditions, the peak current shows two dynamic linear ranges of 10-200 mM and 300-3000 mM with the detection limit of 6.1 mM. The method was successfully applied to analyze SMZ in serum sample

  5. High-Speed Visualization of Evaporation Phenomena from Tungsten Based Electrode in Multi-Phase AC Arc

    Science.gov (United States)

    Tanaka, Manabu; Hashizume, Taro; Imatsuji, Tomoyuki; Nawata, Yushi; Watanabe, Takayuki

    2015-09-01

    A multi-phase AC arc has been developed for applications in various fields of engineering because it possesses unique advantages such as high energy efficiency. However, understanding of fundamental phenomena in the multi-phase AC arc is still insufficient for practical use. Purpose of this study is to investigate electrode erosion mechanism by high-speed visualization of the electrode metal vapor in the arc. Results indicated that the electrode mainly evaporated at anodic period, leading to the arc constriction. Moreover, evaporation of W electrode with 2wt% La2O3 at the anodic period was much higher than that with 2wt% ThO2. This can be explained by different properties of these oxide additives. Evaporation of the oxide additive resulted in the arc constriction, which accelerated the evaporation of W electrode. Therefore, addition of La2O3 with lower melting and boiling point than ThO2 lead to stronger arc constriction, resulting in severer evaporation of W electrode.

  6. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  7. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals.

    NARCIS (Netherlands)

    Lansink, C.S.; Bakker, M.; Buster, W.; Lankelma, J.; van der Blom, R.; Westdorp, R.; Joosten, R.N.J.M.A.; Mc.Naughton, B.L.; Pennartz, C.M.A.

    2007-01-01

    Complex cognitive operations such as memory formation and decision-making are thought to be mediated not by single, isolated brain structures but by multiple, connected brain areas. To facilitate studies on the neural communication between connected brain structures, we developed a multi-electrode

  8. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration

    International Nuclear Information System (INIS)

    Haight, S.M.; Schwartz, D.T.

    1999-01-01

    Metal hexacyanoferrate compounds show promise as electrochemically switchable ion exchange materials for use in the cleanup of radioactive wastes such as those found in storage basins and underground tanks at the Department of Energy's Hanford Nuclear Reservation. Reported is the use of line-imaging Raman spectroscopy for the in situ determination of oxidation state profiles in nickel hexacyanoferrate derivatized electrodes under potential control in an electrochemical cell. Line-imaging Raman spectroscopy is used to collect 256 contiguous Raman spectra every ∼5 microm from thin films (ca. 80 nm) formed by electrochemical derivatization of nickel electrodes. The cyanide stretching region of the Raman spectrum of the film is shown to be sensitive to iron oxidation state and is modeled by both univariate and multivariate correlations. Although both correlations fit the calibration set well, the multivariate (principle component regression or PCR) model's predictions of oxidation state are less sensitive to noise in the spectrum, yielding a much smoother oxidation state profile than the univariate model. Oxidation state profiles with spatial resolution of approximately 5 microm are shown for a nickel hexacyanoferrate derivatized electrode in reduced, intermediate, and oxidized states. In situ oxidation state profiles indicate that the 647.1 nm laser illumination photo-oxidizes the derivatized electrodes. This observation is confirmed using photoelectrochemical methods

  9. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K.

    2015-01-01

    Highlights: • The CuCl 2 doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl 2 ) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl 2 doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl 2 with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared nanocomposite can be used

  10. Transition metal doped poly(aniline-co-pyrrole)/multi-walled carbon nanotubes nanocomposite for high performance supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dhibar, Saptarshi; Bhattacharya, Pallab; Hatui, Goutam; Das, C.K., E-mail: chapal12@yahoo.co.in

    2015-03-15

    Highlights: • The CuCl{sub 2} doped copolymer (PANI and PPy)/MWCNTs nanocomposite was prepared. • The nanocomposite achieved highest specific capacitance of 383 F/g at a 0.5 A/g. • Nanocomposite exhibits better energy density as well as power density. • The nanocomposite also showed better electrical conductivity at room temperature. • The nanocomposite can be used as promising electrode materials for supercapacitor. - Abstract: In this present communication, copolymer of polyaniline (PANI) and polypyrrole (PPy) that is poly(aniline-co-pyrrole) [poly(An-co-Py)], copper chloride (CuCl{sub 2}) doped poly(aniline-co-pyrrole) [poly(An-co-Py) Cu], and CuCl{sub 2} doped poly(aniline-co-pyrrole)/multi walled carbon nanotubes (MWCNTs) [poly(An-co-Py) Cu CNT] nanocomposite have been prepared by a simple and inexpensive in-situ chemical oxidative polymerization method, using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant and investigated as high performance supercapacitor electrode materials. The possible interaction between CuCl{sub 2} with copolymers and MWCNTs was investigated by Fourier transform infrared spectroscopy (FTIR) and UV–visible spectroscopy analysis. The morphological characteristic of all the electrode materials were analyzed by Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM) study. The electrochemical characterizations of all the electrode materials were carried out by three electrode probe method where, standard calomel electrode and platinum were used as reference and counter electrodes, respectively. Among all the electrode materials, poly(An-co-Py) Cu CNT nanocomposite achieved highest specific capacitance value of 383 F/g at 0.5 A/g scan rate. The nanocomposite showed better electrical conductivity at room temperature and also attained nonlinear current–voltage characteristic. Based on the superior electrochemical as well as other properties the as prepared

  11. Complexity optimization and high-throughput low-latency hardware implementation of a multi-electrode spike-sorting algorithm.

    Science.gov (United States)

    Dragas, Jelena; Jackel, David; Hierlemann, Andreas; Franke, Felix

    2015-03-01

    Reliable real-time low-latency spike sorting with large data throughput is essential for studies of neural network dynamics and for brain-machine interfaces (BMIs), in which the stimulation of neural networks is based on the networks' most recent activity. However, the majority of existing multi-electrode spike-sorting algorithms are unsuited for processing high quantities of simultaneously recorded data. Recording from large neuronal networks using large high-density electrode sets (thousands of electrodes) imposes high demands on the data-processing hardware regarding computational complexity and data transmission bandwidth; this, in turn, entails demanding requirements in terms of chip area, memory resources and processing latency. This paper presents computational complexity optimization techniques, which facilitate the use of spike-sorting algorithms in large multi-electrode-based recording systems. The techniques are then applied to a previously published algorithm, on its own, unsuited for large electrode set recordings. Further, a real-time low-latency high-performance VLSI hardware architecture of the modified algorithm is presented, featuring a folded structure capable of processing the activity of hundreds of neurons simultaneously. The hardware is reconfigurable “on-the-fly” and adaptable to the nonstationarities of neuronal recordings. By transmitting exclusively spike time stamps and/or spike waveforms, its real-time processing offers the possibility of data bandwidth and data storage reduction.

  12. Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays

    Science.gov (United States)

    le Feber, Joost; Postma, Wybren; de Weerd, Eddy; Weusthof, Marcel; Rutten, Wim L. C.

    2015-01-01

    Cultured neurons on multi electrode arrays (MEAs) have been widely used to study various aspects of neuronal (network) functioning. A possible drawback of this approach is the lack of structure in these networks. At the single cell level, several solutions have been proposed to enable directed connectivity, and promising results were obtained. At the level of connected sub-populations, a few attempts have been made with promising results. First assessment of the designs' functionality, however, suggested room for further improvement. We designed a two chamber MEA aiming to create a unidirectional connection between the networks in both chambers (“emitting” and “receiving”). To achieve this unidirectionality, all interconnecting channels contained barbs that hindered axon growth in the opposite direction (from receiving to emitting chamber). Visual inspection showed that axons predominantly grew through the channels in the promoted direction. This observation was confirmed by spontaneous activity recordings. Cross-correlation between the signals from two electrodes inside the channels suggested signal propagation at ≈2 m/s from emitting to receiving chamber. Cross-correlation between the firing patterns in both chambers indicated that most correlated activity was initiated in the emitting chamber, which was also reflected by a significantly lower fraction of partial bursts (i.e., a one-chamber-only burst) in the emitting chamber. Finally, electrical stimulation in the emitting chamber induced a fast response in that chamber, and a slower response in the receiving chamber. Stimulation in the receiving chamber evoked a fast response in that chamber, but no response in the emitting chamber. These results confirm the predominantly unidirectional nature of the connecting channels from emitting to receiving chamber. PMID:26578869

  13. Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays.

    Directory of Open Access Journals (Sweden)

    Joost eLe Feber

    2015-11-01

    Full Text Available Cultured neurons on multi electrode arrays (MEAs have been widely used to study various as-pects of neuronal (network functioning. A possible drawback of this approach is the lack of structure in these networks. At the single cell level, several solutions have been proposed to ena-ble directed connectivity, and promising results were obtained. At the level of connected sub-populations, a few attempts have been made with promising results. First assessment of the de-signs’ functionality, however, suggested room for further improvement.We designed a two chamber MEA aiming to create a unidirectional connection between the net-works in both chambers (‘emitting’ and ‘receiving’. To achieve this unidirectionality, all inter-connecting channels contained barbs that hindered axon growth in the opposite direction (from receiving to emitting chamber. Visual inspection showed that axons predominantly grew through the channels in the promoted direction . This observation was confirmed by spontaneous activity recordings. Cross-correlation between the signals from two electrodes inside the channels suggested signal propagation at ≈2 m/s from emitting to receiving chamber. Cross-correlation between the firing patterns in both chambers indicated that most correlated activity was initiated in the emitting chamber, which was also reflected by a significantly lower fraction of partial bursts (e. a one-chamber-only burst in the emitting chamber. Finally, electrical stimulation in the emitting chamber induced a fast response in that chamber, and a slower response in the receiving chamber. Stimulation in the receiving chamber evoked a fast response in that chamber, but no response in the emitting chamber. These results confirm the predominantly unidirectional nature of the connecting channels from emitting to receiving chamber.

  14. CT-guided radiofrequency ablation of osteoid osteoma using a multi-tined expandable electrode system.

    Science.gov (United States)

    Costanzo, Alessandro; Sandri, Andrea; Regis, Dario; Trivellin, Giacomo; Pierantoni, Silvia; Samaila, Elena; Magnan, Bruno

    2017-10-18

    Radiofrequency ablation (RFA) is the gold standard for the treatment of symptomatic osteoid osteoma (OO) as RFA yields both a high success and low complication rate. It has been widely utilized over the years, but recurrences of OO after this treatment have been documented. These recurrences may be the result of various factors, including incomplete tumor ablation, and are significantly higher in lesions greater than 10 mm. Thus, the need to induce thermal ablation in a wider area led us to use a Multi-Tined Expandable Electrode System (MTEES). In this study we examined the efficacy and safety of RFA using a MTEES in symptomatic OO. Between January 2005 and June 2007, 16 patients with symptomatic OO were treated by CT-guided percutaneous RFA using a MTEES. The diameter of OO ranged from 6 to 15 mm (mean 10±2.6 mm). Patients were evaluated for clinical outcomes, complications and recurrence. Pain evaluation was assessed preoperatively, 2 weeks postoperatively and at last follow-up. Clinical follow-up was available for all patients at a mean of 84.3 months (range 73-96 months). Mean preoperative VAS score was 7.4 (range 5-9), two weeks after the procedure mean VAS score was 0.3 (range 0-1) with a mean change of -7.06 points (p<0.0001). At the last follow-up a complete relief from pain has been observed in all patients. No major and minor complications were observed nor recurrences. RFA using a MTEES has been effective, safe and reliable for the treatment of OOs. This system, by increasing the size of the necrosis, could be a viable alternative to the single needle electrode in lesions larger than 10 mm, reducing the risk of recurrence.

  15. Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine

    International Nuclear Information System (INIS)

    Zare, Hamid R.; Nasirizadeh, Navid

    2007-01-01

    A new hydrazine sensor has been fabricated by immobilizing hematoxylin at the surface of a glassy carbon electrode (GCE) modified with multi-wall carbon nanotube (MWCNT). The adsorbed thin films of hematoxylin on the MWCNT modified GCE show one pair of peaks with surface confined characteristics. The hematoxylin MWCNT (HMWCNT) modified GCE shows highly catalytic activity toward hydrazine electro-oxidation. The results show that the peak potential of hydrazine at HMWCNT modified GCE surface shifted by about 167 and 255 mV toward negative values compared with that at an MWCNT and activated modified GCE surface, respectively. In addition, at HMWCNT modified electrode surface remarkably improvement the sensitivity of determination of hydrazine. The kinetic parameters, such as the electron transfer coefficient, α, and the standard heterogeneous rate constant, k 0 , for oxidation of hydrazine at the HMWCNT modified GCE were determined and also is shown that the heterogeneous rate constant, k', is strongly potential dependent. The overall number of electron involved in the catalytic oxidation of hydrazine and the number of electrons involved in the rate-determining steps are 2 and 1, respectively. The amperometric detection of hydrazine is carried out at 220 mV in 0.1 M phosphate buffer solution (pH 7) with linear response range 2.0-122.8 μM hydrazine, detection limit of 0.68 μM and sensitivity of 0.0208 μA μM -1 . Finally the amperometric response for hydrazine determination is reproducible, fast and extremely stable, with no loss in sensitivity over a continual 400 s operation

  16. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater

    KAUST Repository

    Ahn, Yongtae

    2014-03-01

    Scaling-up of microbial fuel cells (MFCs) for practical applications requires compact, multiple-electrode designs. Two possible configurations are a separator electrode assembly (SEA) or closely spaced electrodes (SPA) that lack a separator. It is shown here that the optimal configuration depends on whether the goal is power production or rate of wastewater treatment. SEA MFCs produced a 16% higher maximum power density (328 ± 11 mW m-2) than SPA MFCs (282 ± 29 mW m-2), and higher coulombic efficiencies (SEAs, 9-31%; SPAs, 2-23%) with domestic wastewater. However, treatment was accomplished in only 12 h with the SPA MFC, compared to 36 h with the SEA configuration. Ohmic resistance was not a main factor in performance as this component contributed only 4-7% of the total internal resistance. Transport simulations indicated that hindered oxygen diffusion into the SEA reactor was the primary reason for the increased treatment time. However, a reduction in the overall rate of substrate diffusion also may contribute to the long treatment time with the SEA reactor. These results suggest that SEA designs can more effectively capture energy from wastewater, but SPA configurations will be superior in terms of treatment efficiency due to a greatly reduced time needed for treatment. © 2013 Elsevier B.V. All rights reserved.

  17. Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater

    KAUST Repository

    Ahn, Yongtae; Hatzell, Marta C.; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    Scaling-up of microbial fuel cells (MFCs) for practical applications requires compact, multiple-electrode designs. Two possible configurations are a separator electrode assembly (SEA) or closely spaced electrodes (SPA) that lack a separator. It is shown here that the optimal configuration depends on whether the goal is power production or rate of wastewater treatment. SEA MFCs produced a 16% higher maximum power density (328 ± 11 mW m-2) than SPA MFCs (282 ± 29 mW m-2), and higher coulombic efficiencies (SEAs, 9-31%; SPAs, 2-23%) with domestic wastewater. However, treatment was accomplished in only 12 h with the SPA MFC, compared to 36 h with the SEA configuration. Ohmic resistance was not a main factor in performance as this component contributed only 4-7% of the total internal resistance. Transport simulations indicated that hindered oxygen diffusion into the SEA reactor was the primary reason for the increased treatment time. However, a reduction in the overall rate of substrate diffusion also may contribute to the long treatment time with the SEA reactor. These results suggest that SEA designs can more effectively capture energy from wastewater, but SPA configurations will be superior in terms of treatment efficiency due to a greatly reduced time needed for treatment. © 2013 Elsevier B.V. All rights reserved.

  18. Performance of Multi Walled Carbon Nanotubes Grown on Conductive Substrates as Supercapacitors Electrodes using Organic and Ionic liquid electrolytes

    Science.gov (United States)

    Winchester, Andrew; Ghosh, Sujoy; Turner, Ben; Zhang, X. F.; Talapatra, Saikat

    2012-02-01

    In this work we will present the use of Multi Walled Carbon Nanotubes (MWNT) directly grown on inconel substrates via chemical vapor deposition, as electrode materials for electrochemical double layer capacitors (EDLC). The performance of the MWNT EDLC electrodes were investigated using two electrolytes, an organic electrolyte, tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4 in PC), and a room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). Cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements to obtain values for the capacitance and internal resistance of these devices will be presented and compared.

  19. Evaluation and use of regenerative multi electrode interfaces in peripheral nerves

    Science.gov (United States)

    Desai, Vidhi

    Peripheral nerves offer unique accessibility to the innate motor and sensory pathways that can be interfaced with high degree of selectivity for intuitive and bidirectional control of advanced upper extremity prosthetic limbs. Several peripheral nerve interfaces have been proposed and investigated over the last few decades with significant progress made in the area of sensory feedback. However, clinical translation still remains a formidable challenge due to the lack of long term recordings. Prominent causes include signal degradation, eventual interface failures, and lack of specificity in the low amplitude nerve signals. This dissertation evaluates the capabilities of the newly developed Regenerative Multi-electrode Interface (REMI) by the characterization of signal quality progression, the identification of interfaced axon types, and the demonstration of "functional linkage" between acquired signals and target organs. Chapter 2 details the chronic recording of high quality signals from REMI in sciatic nerve which remained stable over a 120 day implantation period indicative of minimal ongoing tissue response with no detrimental effects on the recording ability. The dominant cause of failures was attributable to abiotic factors pertaining to the connector/wire breakage, observed in 76% of REMI implants. Also, the REMI implants had 20% higher success rate and significantly larger Signal to Noise Ratio (SNR) in comparison to the Utah Slanted Electrode Array (USEA). Chapter 3 describes the successful feasibility of interfacing with motor and sensory axons by REMI implantation in the tibial and sural fascicles of the sciatic nerve. A characteristic sampling bias towards recording signals from medium-to-large diameter axons that are primarily involved in mechanoception and proprioception sensory functions was uncovered. Specific bursting units (Inter Spike Interval of 30-70ms) were observed most frequently from the tibial fascicle during bipedal locomotion. Chapter 4

  20. Multi-service traffic profiles to realise and maintain QoS guarantees in wireless LANs

    NARCIS (Netherlands)

    F.J.M. Panken; G.J. Hoekstra (Gerard)

    2009-01-01

    htmlabstractThis paper shows that throughput parameter \\"bits/s\\" does not provide accurate insight in load conditions and/or traffic demands in Wireless LANs (WLANs). A multi-service traffic profile that does provide this insight is therefore defined. The multi-service traffic profile

  1. Classification of functional interactions from multi-electrodes data using conditional modularity analysis

    Science.gov (United States)

    Makhtar, Siti Noormiza; Senik, Mohd Harizal

    2018-02-01

    The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.

  2. Unified selective sorting approach to analyse multi-electrode extracellular data

    Science.gov (United States)

    Veerabhadrappa, R.; Lim, C. P.; Nguyen, T. T.; Berk, M.; Tye, S. J.; Monaghan, P.; Nahavandi, S.; Bhatti, A.

    2016-01-01

    Extracellular data analysis has become a quintessential method for understanding the neurophysiological responses to stimuli. This demands stringent techniques owing to the complicated nature of the recording environment. In this paper, we highlight the challenges in extracellular multi-electrode recording and data analysis as well as the limitations pertaining to some of the currently employed methodologies. To address some of the challenges, we present a unified algorithm in the form of selective sorting. Selective sorting is modelled around hypothesized generative model, which addresses the natural phenomena of spikes triggered by an intricate neuronal population. The algorithm incorporates Cepstrum of Bispectrum, ad hoc clustering algorithms, wavelet transforms, least square and correlation concepts which strategically tailors a sequence to characterize and form distinctive clusters. Additionally, we demonstrate the influence of noise modelled wavelets to sort overlapping spikes. The algorithm is evaluated using both raw and synthesized data sets with different levels of complexity and the performances are tabulated for comparison using widely accepted qualitative and quantitative indicators. PMID:27339770

  3. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: Antioxidant capacity assay.

    Science.gov (United States)

    Ziyatdinova, Guzel; Kozlova, Ekaterina; Budnikov, Herman

    2016-04-01

    Phenolic antioxidants of wine were electrochemically oxidized on multi-walled carbon nanotubes modified glassy carbon electrode (MWNT/GCE) in phosphate buffer solution. Three oxidation peaks were observed at 0.39, 0.61 and 0.83V for red dry wine and 0.39, 0.80 and 1.18 V for white dry wine, respectively, using differential pulse voltammetry at pH 4.0. The oxidation potentials for individual phenolic antioxidants confirmed the integral nature of the analytical signals for the wines examined. A one-step chronocoulometric method at 0.83 and 1.18 V for red and white wines, respectively, has been developed for the evaluation of wine antioxidant capacity (AOC). The AOC is expressed in gallic acid equivalents per 1L of wine. The AOC of white wine was significantly less than red wine (386 ± 112 vs. 1224 ± 184, pwine and total antioxidant capacity, based on coulometric titration with electrogenerated bromine (r=0.8957 at n=5 and r=0.8986 at n=4 for red and white wines, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A multi-model analysis of vertical ozone profiles

    Directory of Open Access Journals (Sweden)

    J. E. Jonson

    2010-06-01

    Full Text Available A multi-model study of the long-range transport of ozone and its precursors from major anthropogenic source regions was coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP under the Convention on Long-range Transboundary Air Pollution (LRTAP. Vertical profiles of ozone at 12-h intervals from 2001 are available from twelve of the models contributing to this study and are compared here with observed profiles from ozonesondes. The contributions from each major source region are analysed for selected sondes, and this analysis is supplemented by retroplume calculations using the FLEXPART Lagrangian particle dispersion model to provide insight into the origin of ozone transport events and the cause of differences between the models and observations.

    In the boundary layer ozone levels are in general strongly affected by regional sources and sinks. With a considerably longer lifetime in the free troposphere, ozone here is to a much larger extent affected by processes on a larger scale such as intercontinental transport and exchange with the stratosphere. Such individual events are difficult to trace over several days or weeks of transport. This may explain why statistical relationships between models and ozonesonde measurements are far less satisfactory than shown in previous studies for surface measurements at all seasons. The lowest bias between model-calculated ozone profiles and the ozonesonde measurements is seen in the winter and autumn months. Following the increase in photochemical activity in the spring and summer months, the spread in model results increases, and the agreement between ozonesonde measurements and the individual models deteriorates further.

    At selected sites calculated contributions to ozone levels in the free troposphere from intercontinental transport are shown. Intercontinental transport is identified based on differences in model calculations with unperturbed emissions and

  5. All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters

    Science.gov (United States)

    Picollo, Federico; Battiato, Alfio; Bernardi, Ettore; Plaitano, Marilena; Franchino, Claudio; Gosso, Sara; Pasquarelli, Alberto; Carbone, Emilio; Olivero, Paolo; Carabelli, Valentina

    2016-02-01

    We report on the ion beam fabrication of all-carbon multi electrode arrays (MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond (SCD) substrates. The fabricated SCD-MEAs are systematically employed for the in vitro simultaneous amperometric detection of the secretory activity from populations of chromaffin cells, demonstrating a new sensing approach with respect to standard techniques. The biochemical stability and biocompatibility of the SCD-based device combined with the parallel recording of multi-electrodes array allow: i) a significant time saving in data collection during drug screening and/or pharmacological tests over a large number of cells, ii) the possibility of comparing altered cell functionality among cell populations, and iii) the repeatition of acquisition runs over many cycles with a fully non-toxic and chemically robust bio-sensitive substrate.

  6. Evolution of surface motor activation zones in hemiplegic patients during 20 sessions of FES therapy with multi-pad electrodes

    Directory of Open Access Journals (Sweden)

    Jovana Malešević

    2016-06-01

    Full Text Available The purpose of this study was to examine surface motor activation zones for wrist, fingers and thumb extension movements and their temporal change during 20 therapy sessions using advanced multi-pad functional electrical stimulation system. Results from four hemiplegic patients indicate that certain zones have higher probability of eliciting each of the target movements. However, mutual overlap and variations of the zones are present not just between the subjects, but also on the intrasubject level, reflected through these session to session transformations of the selected virtual electrodes. The obtained results could be used as a priori knowledge for semi-automated optimization algorithm and could shorten the time required for calibration of the multi-pad electrode.

  7. Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery.

    Science.gov (United States)

    Awara, Kousuke; Kitai, Ryuhei; Isozaki, Makoto; Neishi, Hiroyuki; Kikuta, Kenichiro; Fushisato, Naoki; Kawamoto, Akira

    2014-12-15

    Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.

  8. Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Vikkisk, Merilin; Kruusenberg, Ivar; Joost, Urmas; Shulga, Eugene; Tammeveski, Kaido

    2013-01-01

    Highlights: ► Pyrolysis in the presence of urea was used for nitrogen doping of carbon nanotubes. ► N-doped carbon nanotubes were used as catalysts for the oxygen reduction reaction. ► N-doped carbon material showed a high catalytic activity for ORR in alkaline media. ► N-containing CNT material is an attractive cathode catalyst for alkaline membrane fuel cells. - Abstract: The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O 2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells.

  9. Clinical thermometry, using the 27 MHz multi-electrode current-source interstitial hyperthermia system in brain tumours

    International Nuclear Information System (INIS)

    Kaatee, Robert S.J.P.; Nowak, Peter C.J.M.; Zee, Jacoba van der; Bree, Jacob de; Kanis, Bart P.; Crezee, Hans; Levendag, Peter C.; Visser, Andries G.

    2001-01-01

    Background and purpose: In interstitial hyperthermia, temperature measurements are mainly performed inside heating applicators, and therefore, give the maximum temperatures of a rather heterogeneous temperature distribution. The problem of how to estimate lesion temperatures using the multi-electrode current-source interstitial hyperthermia (MECS-IHT) system in the brain was studied. Materials and methods: Temperatures were measured within the electrodes and in an extra catheter at the edge of a 4x4x4.5 cm 3 glioblastoma multiforme resection cavity. From the temperature decays during a power-off period, information was obtained about local maximum and minimum tissue temperatures. The significance of these data was examined through model calculations. Results: Maximum tissue temperatures could be estimated roughly by switching off all electrodes for about 5 s. Model calculations showed that the minimum tissue temperatures near a certain afterloading catheter correspond well with the temperature of the applicator inside, about 1 min after this applicator was switched off. Conclusions: Although the electrode temperatures read during heating are not suitable to assess the temperature distribution, it is feasible to heat the brain adequately using the MECS-IHT system with extra sensors outside the electrodes and/or application of decay methods

  10. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

    International Nuclear Information System (INIS)

    Li Xinchun; Chen Zuanguang; Zhong Yuwen; Yang Fan; Pan Jianbin; Liang Yajing

    2012-01-01

    Highlights: ► CoHCF nanoparticles modified MWCNTs/graphite electrode use for electrochemistry on electrophoresis microchip for the first time. ► Simultaneous, rapid, and sensitive electrochemical detection of hydrazine and isoniazid in real samples. ► An exemplary work of CME sensor assembly onto microchip for determination of analytes with environmental significance. ► Manifestation of the applicability and flexibility of CME sensor for electroanalysis on microfluidic chip. - Abstract: Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 μM (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and high sensitivity, hold great potential for hydrazine compounds assay in the lab-on-a-chip system.

  11. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinchun [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Chen Zuanguang, E-mail: chenzg@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Zhong Yuwen, E-mail: yu0106@163.com [Center for Disease Control and Prevention of Guangdong Province, 176 Xingangxi, Guangzhou 510300 (China); Yang Fan; Pan Jianbin; Liang Yajing [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer CoHCF nanoparticles modified MWCNTs/graphite electrode use for electrochemistry on electrophoresis microchip for the first time. Black-Right-Pointing-Pointer Simultaneous, rapid, and sensitive electrochemical detection of hydrazine and isoniazid in real samples. Black-Right-Pointing-Pointer An exemplary work of CME sensor assembly onto microchip for determination of analytes with environmental significance. Black-Right-Pointing-Pointer Manifestation of the applicability and flexibility of CME sensor for electroanalysis on microfluidic chip. - Abstract: Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 {mu}M (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and

  12. Infrared Harvesting Colloidal Quantum Dot Solar Cell Based on Multi-scale Disordered Electrodes

    KAUST Repository

    Tian, Yi

    2015-06-23

    Colloidal quantum dot photovoltaics (CQDPV) offer a big potential to be a renewable energy source due to low cost and tunable band-gap. Currently, the certified power conversion efficiency of CQDPV has reached 9.2%. Compared to the 31% theoretical efficiency limit of single junction solar cells, device performances have still have a large potential to be improved. For photovoltaic devices, a classical way to enhance absorption is to increase the thickness of the active layers. Although this approach can improve absorption, it reduces the charge carriers extraction efficiency. Photo-generated carriers, in fact, are prone to recombine within the defects inside CQD active layers. In an effort to solve this problem, we proposed to increase light absorption from a given thickness of colloidal quantum dot layers with the assistance of disorder. Our approach is to develop new types of electrodes with multi-scale disordered features, which localize energy into the active layer through plasmonic effects. We fabricated nanostructured gold substrates by electrochemical methods, which allow to control surface disorder as a function of deposition conditions. We demonstrated that the light absorption from 600 nm to 800 nm is impressively enhanced, when the disorder of the nanostructured surface increases. Compared to the planar case, the most disorder case increased 65% light absorption at the wavelength of λ = 700nm in the 100 nm PbS film. The average absorption enhancement across visible and infrared region in 100 nm PbS film is 49.94%. By developing a photovoltaic module, we measured a dramatic 34% improvement in the short-circuit current density of the device. The power conversion efficiency of the tested device in top-illumination configuration showed 25% enhancement.

  13. Low noise multi-channel biopotential wireless data acquisition system for dry electrodes

    Science.gov (United States)

    Pandian, P. S.; Whitchurch, Ashwin K.; Abraham, Jose K.; Bhusan Baskey, Himanshu; Radhakrishnan, J. K.; Varadan, Vijay K.; Padaki, V. C.; Bhasker Rao, K. U.; Harbaugh, R. E.

    2008-03-01

    The bioelectrical potentials generated within the human body are the result of electrochemical activity in the excitable cells of the nervous, muscular or glandular tissues. The ionic potentials are measured using biopotential electrodes which convert ionic potentials to electronic potentials. The commonly monitored biopotential signals are Electrocardiogram (ECG), Electroencephalogram (EEG) and Electromyogram (EMG). The electrodes used to monitor biopotential signals are Ag-AgCl and gold, which require skin preparation by means of scrubbing to remove the dead cells and application of electrolytic gel to reduce the skin contact resistance. The gels used in biopotential recordings dry out when used for longer durations and add noise to the signals and also prolonged use of gels cause irritations and rashes to skin. Also noises such as motion artifact and baseline wander are added to the biopotential signals as the electrode floats over the electrolytic gel during monitoring. To overcome these drawbacks, dry electrodes are used, where the electrodes are held against the skin surface to establish contact with the skin without the need for electrolytic fluids or gels. The major drawback associated with the dry electrodes is the high skin-electrode impedance in the low frequency range between 0.1-120 Hz, which makes it difficult to acquire clean and noise free biopotential signals. The paper presents the design and development of biopotential data acquisition and processing system to acquire biopotential signals from dry electrodes. The electrode-skin-electrode- impedance (ESEI) measurements was carried out for the dry electrodes by impedance spectroscopy. The biopotential signals are processed using an instrumentation amplifier with high CMRR and high input impedance achieved by boot strapping the input terminals. The signals are band limited by means of a second order Butterworth band pass filters to eliminate noise. The processed biopotential signals are digitized

  14. Artificial control of muscle by endoneural multi electrode stimulation and sensing

    NARCIS (Netherlands)

    Rutten, Wim; Bouwman, R.L.M.

    1991-01-01

    Artificial electrical stimulation of motor nerves for muscle control can be made selective by using intrafascicular micro electrode arrays which contact many individual or small groups of nerve fibres. If at the same time te electrode arrays could record afferent information from the stimulated

  15. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries

    International Nuclear Information System (INIS)

    Song, Q.S.; Aravindaraj, G.K.; Sultana, H.; Chan, S.L.I.

    2007-01-01

    Carbon nanotubes (CNTs) were employed as a functional additive to improve the electrochemical performance of pasted nickel-foam electrodes for rechargeable nickel-based batteries. The nickel electrodes were prepared with spherical β-Ni(OH) 2 powder as the active material and various amounts of CNTs as additives. Galvanostatic charge/discharge cycling tests showed that in comparison with the electrode without CNTs, the pasted nickel electrode with added CNTs exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage, high-rate capability and cycling stability. Meanwhile, the CNT addition also lowered the packing density of Ni(OH) 2 particles in the three-dimensional porous nickel-foam substrate, which could lead to the decrease in the active material loading and discharge capacity of the electrode. Hence, the amount of CNTs added to Ni(OH) 2 should be optimized to obtain a high-performance nickel electrode, and an optimum amount of CNT addition was found to be 3 wt.%. The superior electrochemical performance of the nickel electrode with CNTs could be attributed to lower electrochemical impedance and less γ-NiOOH formed during charge/discharge cycling, as indicated by electrochemical impedance spectroscopy and X-ray diffraction analyses. Thus, it was an effective method to improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of CNTs to spherical Ni(OH) 2 as the active material

  16. Disposable screen-printed bismuth electrode modified with multi-walled carbon nanotubes for electrochemical stripping measurements.

    Science.gov (United States)

    Niu, Xiangheng; Zhao, Hongli; Lan, Minbo

    2011-01-01

    Integrating the advantages of screen printing technology with the encouraging electroanalytical characteristic of metallic bismuth, we developed an ultrasensitive and disposable screen-printed bismuth electrode (SPBE) modified with multi-walled carbon nanotubes (MWCNTs) for electrochemical stripping measurements. Metallic bismuth powders and MWCNTs were homogeneously mixed with graphite-carbon ink to mass-prepare screen-printed bismuth electrode doped with multi-walled carbon nanotubes (SPBE/MWCNT). The electroanalytical performance of the prepared SPBE/MWCNT was intensively evaluated by measuring trace Hg(II) with square-wave anodic stripping voltammetry (SWASV). The results indicated that the SPBE modified with 2 wt% MWCNTs could offer a more sensitive response to trace Hg(II) than the bare SPBE. The stripping current obtained at SPBE/MWCNT was linear with Hg(II) concentration in the range from 0.2 to 40 µg/L (R(2) = 0.9976), with a detection limit of 0.09 µg/L (S/N = 3) under 180 s accumulation. The proposed "mercury-free" electrode, with extremely simple preparation and ultrahigh sensitivity, holds wide application prospects in both environmental and industrial monitoring. 2011 © The Japan Society for Analytical Chemistry

  17. Fabrication of a Multi-Walled Nanotube (MWNT Ionic Liquid Electrode and Its Application for Sensing Phenolics in Red Wines

    Directory of Open Access Journals (Sweden)

    Kyo-Il Kim

    2009-08-01

    Full Text Available A multi-walled nanotube (MWNT ionic liquid was prepared by the immobilization of 1-butylimidazole bromide onto an epoxy group on a poly(glycidyl methacrylate-grafted MWNT, which was synthesized by radiation-induced graft polymerization of glycidyl methacrylate onto MWNT in an aqueous solution. Subsequently, a MWNT ionic liquid electrode was fabricated by hand-casting MWNT ionic liquid, tyrosinase, and chitosan solution as a binder on indium tin oxide (ITO glass. The sensing ranges of the MWNT ionic liquid electrode with immobilized tyrosinase was in the range of 0.01-0.08 mM in a phosphate buffer solution. The optimal conditions such as pH, temperature, and effects of different phenolic compounds were determined. The total phenolic compounds of three commercial red wines were also determined on the tyrosinase-immobilized biosensor.

  18. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    Science.gov (United States)

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  19. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees.

    Science.gov (United States)

    Tan, Daniel W; Schiefer, Matthew A; Keith, Michael W; Anderson, J Robert; Tyler, Dustin J

    2015-04-01

    Stability and selectivity are important when restoring long-term, functional sensory feedback in individuals with limb-loss. Our objective is to demonstrate a chronic, clinical neural stimulation system for providing selective sensory response in two upper-limb amputees. Multi-contact cuff electrodes were implanted in the median, ulnar, and radial nerves of the upper-limb. Nerve stimulation produced a selective sensory response on 19 of 20 contacts and 16 of 16 contacts in subjects 1 and 2, respectively. Stimulation elicited multiple, distinct percept areas on the phantom and residual limb. Consistent threshold, impedance, and percept areas have demonstrated that the neural interface is stable for the duration of this on-going, chronic study. We have achieved selective nerve response from multi-contact cuff electrodes by demonstrating characteristic percept areas and thresholds for each contact. Selective sensory response remains consistent in two upper-limb amputees for 1 and 2 years, the longest multi-contact sensory feedback system to date. Our approach demonstrates selectivity and stability can be achieved through an extraneural interface, which can provide sensory feedback to amputees.

  20. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository

    Directory of Open Access Journals (Sweden)

    Jordan Daoudi

    2017-06-01

    Full Text Available We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

  1. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository.

    Science.gov (United States)

    Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis

    2017-06-13

    We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

  2. Charge sharing in multi-electrode devices for deterministic doping studied by IBIC

    International Nuclear Information System (INIS)

    Jong, L.M.; Newnham, J.N.; Yang, C.; Van Donkelaar, J.A.; Hudson, F.E.; Dzurak, A.S.; Jamieson, D.N.

    2011-01-01

    Following a single ion strike in a semiconductor device the induced charge distribution changes rapidly with time and space. This phenomenon has important applications to the sensing of ionizing radiation with applications as diverse as deterministic doping in semiconductor devices to radiation dosimetry. We have developed a new method for the investigation of this phenomenon by using a nuclear microprobe and the technique of Ion Beam Induced Charge (IBIC) applied to a specially configured sub-100 μm scale silicon device fitted with two independent surface electrodes coupled to independent data acquisition systems. The separation between the electrodes is comparable to the range of the 2 MeV He ions used in our experiments. This system allows us to integrate the total charge induced in the device by summing the signals from the independent electrodes and to measure the sharing of charge between the electrodes as a function of the ion strike location as a nuclear microprobe beam is scanned over the sensitive region of the device. It was found that for a given ion strike location the charge sharing between the electrodes allowed the beam-strike location to be determined to higher precision than the probe resolution. This result has potential application to the development of a deterministic doping technique where counted ion implantation is used to fabricate devices that exploit the quantum mechanical attributes of the implanted ions.

  3. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    Science.gov (United States)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  4. Ubiquinol-cytochrome c reductase (Complex III) electrochemistry at multi-walled carbon nanotubes/Nafion modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Pelster, Lindsey N.; Minteer, Shelley D.

    2012-01-01

    Highlights: ► The electron transport chain is important to the understanding of metabolism in the living cell. ► Ubiquinol-cytochrome c reductase is a membrane bound complex of the electron transport chain (Complex III). ► The paper details the first bioelectrochemical characterization of ubiquinol-cytochrome c reductase at an electrode. - Abstract: Electron transport chain complexes are critical to metabolism in living cells. Ubiquinol-cytochrome c reductase (Complex III) is responsible for carrying electrons from ubiquinol to cytochrome c, but the complex has not been evaluated electrochemically. This work details the bioelectrochemistry of ubiquinol-cytochrome c reductase of the electron transport chain of tuber mitochondria. The characterization of the electrochemistry of this enzyme is investigated in carboxylated multi-walled carbon nanotube/tetrabutyl ammonium bromide-modified Nafion ® modified glassy carbon electrodes by cyclic voltammetry. Increasing concentrations of cytochrome c result in a catalytic response from the active enzyme in the nanotube sandwich. The experiments show that the enzyme followed Michaelis–Menten kinetics with a K m for the immobilized enzyme of 2.97 (±0.11) × 10 −6 M and a V max of 6.31 (±0.82) × 10 −3 μmol min −1 at the electrode, but the K m and V max values decreased compared to the free enzyme in solution, which is expected for immobilized redox proteins. This is the first evidence of ubiquinol-cytochrome c reductase bioelectrocatalysis.

  5. Effect of multi-layered bottom electrodes on the orientation of strontium-doped lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, M. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)], E-mail: madhu.bhaskaran@gmail.com; Sriram, S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia); Mitchell, D.R.G.; Short, K.T. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234 (Australia); Holland, A.S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)

    2008-09-30

    This article discusses the results from X-ray diffraction (XRD) analysis of piezoelectric strontium-doped lead zirconate titanate (PSZT) thin films deposited on multi-layer coatings on silicon. The films were deposited by RF magnetron sputtering on a metal coated substrate. The aim was to exploit the pronounced piezoelectric effect that is theoretically expected normal to the substrate. This work highlighted the influence that the bottom electrode architecture exerts on the final crystalline orientation of the deposited thin films. A number of bottom electrode architectures were used, with the uppermost metal layer on which PSZT was deposited being gold or platinum. The XRD analysis revealed that the unit cell of the PSZT thin films deposited on gold and on platinum were deformed, relative to expected unit cell dimensions. Experimental results have been used to estimate the unit cell parameters. The XRD results were then indexed based on these unit cell parameters. The choice and the thickness of the intermediate adhesion layers influenced the relative intensity, and in some cases, the presence of perovskite peaks. In some cases, undesirable reactions between the bottom electrode layers were observed, and layer architectures to overcome these reactions are also discussed.

  6. Diffusion-controlled oxygen reduction on multi-copper oxidase-adsorbed carbon aerogel electrodes without mediator

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, S.; Kamitaka, Y.; Kano, K. [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto (Japan)

    2007-12-15

    Bioelectrocatalytic reduction of O{sub 2} into water was archived at diffusion-controlled rate by using enzymes (laccase from Trametes sp. and bilirubin oxidase from Myrothecium verrucaria, which belong to the family of multi-copper oxidase) adsorbed on mesoporous carbon aerogel particle without a mediator. The current density was predominantly controlled by the diffusion of dissolved O{sub 2} in rotating-disk electrode experiments, and reached a value as large as 10 mA cm{sup -2} at 1 atm O{sub 2}, 25 C, and 8,000 rpm on the laccase-adsorbed electrode. The overpotential of the bioelectrocatalytic reduction of O{sub 2} was 0.4-0.55 V smaller than that observed on a Pt disk electrode. Without any optimization, the laccase-adsorbed biocathode showed stable current intensity of the O{sub 2} reduction in an air-saturated buffer at least for 10 days under continuous flow system. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes

    Science.gov (United States)

    Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu

    2018-03-01

    All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.

  8. Effects of electrode polarization and particle deposition profile on TJ-I plasma confinement

    International Nuclear Information System (INIS)

    Zurro, B.; Tabares, F.; Pardo, C.; Tafalla, D.; Cal, E. de la; Garcia-Castaner, B.; Pedrosa, M.A.; Sanchez, J.; Rodriguez-Yunta, A.

    1991-01-01

    The role of self-created radial electric field on particle confinement in TJ-I plasmas was addressed using plasma rotation data in conjunction with particle confinement times measured by laser ablation. In this paper following the pioneer work of Taylor, we have started to study the influence of a polarized electrode inserted into the plasma on particle confinement and plasma rotation in this ohmically heated tokamak. To have a supportive frame of reference, the confinement time of background particles and their transport into plasma without electrode, has been studied by measuring with space-time resolution the H α emission on varying plasma conditions. These experiments have been carried out in ohmically heated discharges of the TJ-I tokamak (R 0 =30 cm, a=10 cm) which was operated with plasma currents between 20 and 45 kA and a toroidal field ranging from 0.8 to 1.5 T. In this paper, firstly the experimental plasma and specific diagnostics are described, secondly, the parametric dependence of the particle confinement time and radial transport of background plasma is presented and finally, the influence of polarizing an inserted electrode on a particular discharge is given and discussed in the context of other polarization experiments. (author) 7 refs., 4 figs

  9. Glucose aided preparation of tungsten sulfide/multi-wall carbon nanotube hybrid and use as counter electrode in dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Jihuai; Yue, Gentian; Xiao, Yaoming; Huang, Miaoliang; Lin, Jianming; Fan, Leqing; Lan, Zhang; Lin, Jeng-Yu

    2012-12-01

    The tungsten sulfide/multi-wall carbon nanotube (WS(2)/MWCNT) hybrid was prepared in the presence of glucose by the hydrothermal route. The hybrid materials were used as counter electrode in the dye-sensitized solar cell (DSSC). The results of cyclic voltammetry measurement and electrochemical impedance spectroscopy indicated that the glucose aided prepared (G-A) WS(2)/MWCNT electrode had low charge-transfer resistance (R(ct)) and high electrocatalytic activity for triiodide reduction. The excellent electrochemical properties for (G-A) WS(2)/MWCNT electrode is due to the synergistic effects of WS(2) and MWCNTs, as well as amorphous carbon introduced by glucose. The DSSC based on the G-A WS(2)/MWCNT counter electrode achieved a high power conversion efficiency of 7.36%, which is comparable with the performance of the DSSC using Pt counter electrode (7.54%).

  10. Multi-way models for sensory profiling data

    NARCIS (Netherlands)

    Bro, Rasmus; Qannari, El Mostafa; Kiers, Henk A.L.; Naes, Tormod; Frost, Michael Bom; Bom, M.

    2008-01-01

    One of the problems in analyzing sensory profiling data is to handle the systematic individual differences in the assessments from different panelists. It is unavoidable that different persons have, at least to a certain degree, different perceptions of the samples as well as a different

  11. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    Science.gov (United States)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  12. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  13. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  14. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography.

    Science.gov (United States)

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I

    2017-08-01

    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  15. Computed tomographic reconstruction of beam profiles with a multi-wire chamber

    International Nuclear Information System (INIS)

    Alonso, J.R.; Tobias, C.A.; Chu, W.T.

    1979-03-01

    MEDUSA (MEdical Dose Uniformity SAmpler), a 16 plane multi-wire proportional chamber, has been built to accurately measure beam profiles. The large number of planes allows for reconstruction of highly detailed beam intensity structures by means of Fourier convolution reconstruction techniques. This instrument is being used for verification and tuning of the Bevalac radiotherapy beams, but has potential applications in many beam profile monitoring situations

  16. [Complex automatic data processing in multi-profile hospitals].

    Science.gov (United States)

    Dovzhenko, Iu M; Panov, G D

    1990-01-01

    The computerization of data processing in multi-disciplinary hospitals is the key factor in raising the quality of medical care provided to the population, intensifying the work of the personnel, improving the curative and diagnostic process and the use of resources. Even a small experience in complex computerization at the Botkin Hospital indicates that due to the use of the automated system the quality of data processing in being improved, a high level of patients' examination is being provided, a speedy training of young specialists is being achieved, conditions are being created for continuing education of physicians through the analysis of their own activity. At big hospitals a complex solution of administrative and curative diagnostic tasks on the basis of general hospital network of display connection and general hospital data bank is the most prospective form of computerization.

  17. Synthesis of Carbon–Metal Multi-Strand Nanocomposites by Discharges in Heptane Between Two Metallic Electrodes

    KAUST Repository

    Hamdan, Ahmad

    2017-04-26

    We studied composite wires assembled from electric field-driven nanoparticles in a dielectric liquid (heptane) to elucidate the exact processes and controlling factors involved in the synthesis of the multi-phase nanocomposites. Filamentary wires are synthesized by a two-step process: (1) abundant nanoparticle production, mostly of carbonaceous types, from heptane decomposition by spark discharge and of metal nanoparticles by electrode erosion and (2) assembly of hydrogenated amorphous carbonaceous nano-clusters with incorporated metal nanoparticles forming wires by dielectrophoretic transport while maintaining a high electric field between electrodes kept sufficiently separated to avoid breakdown. Four types of nanocomposites products are identified to form at different steps in distinctive zones of the setup. The black carbonaceous agglomerates with metal spherules made by electrode erosion represent the pyrolytic residues of heptane decomposition by spark discharge during step 1. The filamentary wires grown in the interelectrode gap during step 2 get assembled by dielectrophoretic transport and chaining forces. Their great stability is shown to express the concurrent effect of polymerization favoured by the abundance of metal catalysts. The nature, abundance, and transformation of solid particles from the source materials versus discharge conditions control the morphological and compositional diversity of the wires. The production of mineral and metal nano-particles traces the efficiency of dielectrophoresis to separate compound particle mixtures by size and to co-synthesize nanostructured microcrystals and nanocomposites. The link between impurities and the variability from nano- to micro-scales of the synthesized products provides an innovative contribution to the knowledge of nanocomposite synthesis triggered by electric field.

  18. Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li Li; Qin Zongyi, E-mail: phqin@dhu.edu.cn; Wang Lingfeng; Liu Hongjin; Zhu Meifang [Donghua University, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering (China)

    2010-09-15

    The partial coverage of manganese oxide (MnO{sub 2}) particles was achieved on the surfaces of multi-walled carbon nanotubes (MWCNTs) through a facile hydrothermal process. These particles were demonstrated to be alpha-manganese dioxide ({alpha}-MnO{sub 2}) nanocrystallites, and exhibited the appearance of the whisker-shaped crystals with the length of 80-100 nm. In such a configuration, the uncovered CNTs in the nanocomposite acted as a good conductive pathway and the whisker-shaped MnO{sub 2} nanocrystallites efficiently increased the contact of the electrolyte with the active materials. Thus, the highest specific capacitance of 550 F g{sup -1} was achieved using the resulting nanocomposites as the supercapacitor electrode. In addition, the enhancement of the capacity retention was observed, with the nanocomposite losing only 10% of the maximum capacity after 1,500 cycles.

  19. Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor

    Science.gov (United States)

    Li, Li; Qin, Zong-Yi; Wang, Ling-Feng; Liu, Hong-Jin; Zhu, Mei-Fang

    2010-09-01

    The partial coverage of manganese oxide (MnO2) particles was achieved on the surfaces of multi-walled carbon nanotubes (MWCNTs) through a facile hydrothermal process. These particles were demonstrated to be alpha-manganese dioxide (α-MnO2) nanocrystallites, and exhibited the appearance of the whisker-shaped crystals with the length of 80-100 nm. In such a configuration, the uncovered CNTs in the nanocomposite acted as a good conductive pathway and the whisker-shaped MnO2 nanocrystallites efficiently increased the contact of the electrolyte with the active materials. Thus, the highest specific capacitance of 550 F g-1 was achieved using the resulting nanocomposites as the supercapacitor electrode. In addition, the enhancement of the capacity retention was observed, with the nanocomposite losing only 10% of the maximum capacity after 1,500 cycles.

  20. Development and Characterization of a Diamond-Insulated Graphitic Multi Electrode Array Realized with Ion Beam Lithography

    Directory of Open Access Journals (Sweden)

    Federico Picollo

    2014-12-01

    Full Text Available The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ~mΩ·cm by exploiting the metastable nature of this allotropic form of carbon. A 16‑channels MEA (Multi Electrode Array suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3 to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release.

  1. Rapid determination of nitrophenol isomers in polluted water based on multi-walled carbon nanotubes modified screen-printed electrode

    Directory of Open Access Journals (Sweden)

    Essy Kouadio Fodjo

    2014-07-01

    Full Text Available A sensitive screen-printed electrode modified with multi-walled carbon nanotubes (MWCNTs/SPE was applied to determine simultaneously m-nitrophenol, o-nitrophenol and p-nitrophenol. The electrochemical response showed that o-nitrophenol, m-nitrophenol and p-nitrophenol were entirely separated at the MWCNTs/SPE interface. Under the optimized conditions, it was found that the detection limits were 8.1×10-8 , 5.5×10-7 and 2.0×10-7 M and the linear calibration ranges were 1.0×10-6 ~1.9×10-5 M, 2.5×10-6 ~2.1×10-5 M and 2.0×10-6 ~2.0×10-5 M for m-nitrophenol, o-nitrophenol and p-nitrophenol respectively, proving that the electrode presented here could be easily used to determine nitrophenol isomers simultaneously with high sensitivity within pH range from 4.8 to 8.0. The applications in water samples showed that no interferences appeared with deviations below 5% to the determination of nitrophenol isomers with 1000 fold excess, indicating a good response of this method for nitrophenol isomers detection. This disposable modified SPE combining with a portable electrochemical device were performed for wastewater samples on-field rapid determination.

  2. Electrochemical Behavior and Determination of Chlorogenic Acid Based on Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrode

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ma

    2016-10-01

    Full Text Available In this paper, the multi-walled carbon nanotubes modified screen-printed electrode (MWCNTs/SPE was prepared and the MWCNTs/SPE was employed for the electrochemical determination of the antioxidant substance chlorogenic acids (CGAs. A pair of well-defined redox peaks of CGA was observed at the MWCNTs/SPE in 0.10 mol/L acetic acid-sodium acetate buffer (pH 6.2 and the electrode process was adsorption-controlled. Cyclic voltammetry (CV and differential pulse voltammetry (DPV methods for the determination of CGA were proposed based on the MWCNTs/SPE. Under the optimal conditions, the proposed method exhibited linear ranges from 0.17 to 15.8 µg/mL, and the linear regression equation was Ipa (µA = 4.1993 C (×10−5 mol/L + 1.1039 (r = 0.9976 and the detection limit for CGA could reach 0.12 µg/mL. The recovery of matrine was 94.74%–106.65% (RSD = 2.92% in coffee beans. The proposed method is quick, sensitive, reliable, and can be used for the determination of CGA.

  3. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Chris R. Bowen

    2011-05-01

    Full Text Available The adaptation of standard integrated circuit (IC technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  4. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    Energy Technology Data Exchange (ETDEWEB)

    Rader, Geoffrey K.; Logan, Bruce E. [Department of Civil and Environmental Engineering, Penn State University, University Park, PA 16802 (United States)

    2010-09-15

    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m{sup 2}/m{sup 3}). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m{sup 2}, cathode surface area; 74 A/m{sup 3}) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of {eta}{sub E} = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H{sub 2} gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. (author)

  5. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    KAUST Repository

    Rader, Geoffrey K.; Logan, Bruce E.

    2010-01-01

    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m2/m3). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m2, cathode surface area; 74 A/m 3) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of ηE = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H2 gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  6. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate

    KAUST Repository

    Rader, Geoffrey K.

    2010-09-01

    Most microbial electrolysis cells (MECs) contain only a single set of electrodes. In order to examine the scalability of a multiple-electrode design, we constructed a 2.5 L MEC containing 8 separate electrode pairs made of graphite fiber brush anodes pre-acclimated for current generation using acetate, and 304 stainless steel mesh cathodes (64 m2/m3). Under continuous flow conditions and a one day hydraulic retention time, the maximum current was 181 mA (1.18 A/m2, cathode surface area; 74 A/m 3) within three days of operation. The maximum hydrogen production (day 3) was 0.53 L/L-d, reaching an energy efficiency relative to electrical energy input of ηE = 144%. Current production remained relatively steady (days 3-18), but the gas composition dramatically shifted over time. By day 16, there was little H2 gas recovered and methane production increased from 0.049 L/L-d (day 3) to 0.118 L/L-d. When considering the energy value of both hydrogen and methane, efficiency relative to electrical input remained above 100% until near the end of the experiment (day 17) when only methane gas was being produced. Our results show that MECs can be scaled up primarily based on cathode surface area, but that hydrogen can be completely consumed in a continuous flow system unless methanogens can be completely eliminated from the system. © 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

  7. Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes.

    Science.gov (United States)

    Yu, Xue; Lian, Wenjing; Zhang, Jiannan; Liu, Hongyun

    2016-06-15

    Herein, poly(N-isopropylacrylamide-co-N,N'-dimethylaminoethylmethacrylate) copolymer films were polymerized on electrode surface with a simple one-step method, and the enzyme horseradish peroxidase (HRP) was embedded in the films simultaneously, which were designated as P(NiPAAm-co-DMEM)-HRP. The films exhibited a reversible structure change with the external stimuli, such as pH, CO2, temperature and SO4(2-), causing the cyclic voltammetric (CV) response of electroactive K3Fe(CN)6 at the film electrodes to display the corresponding multi-stimuli sensitive ON-OFF behavior. Based on the switchable CV property of the system and the electrochemical reduction of H2O2 catalyzed by HRP in the films and mediated by Fe(CN)6(3-) in solution, a 5-input/3-output logic gate was established. To further increase the complexity of the logic system, another enzyme glucose oxidase (GOD) was added into the films, designated as P(NiPAAm-co-DMEM)-HRP-GOD. In the presence of oxygen, the oxidation of glucose in the solution was catalyzed by GOD in the films, and the produced H2O2 in situ was recognized and electrocatalytically reduced by HRP and mediated by Fe(CN)6(3-). Based on the bienzyme films, a cascaded or concatenated 4-input/3-output logic gate system was proposed. The present work combined the multi-responsive interface with bioelectrocatalysis to construct cascaded logic circuits, which might open a new avenue to develop biocomputing elements with more sophisticated functions and design novel glucose biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Profile Control by Biased Electrodes in Large Diameter RF Produced Pl asma

    Science.gov (United States)

    Shinohara, Shunjiro; Matsuoka, Norikazu; Yoshinaka, Toshiro

    1998-10-01

    Control of the plasma profile has been carried out, using the voltage biasing method in the large diameter (45 cm) RF (radio frequency) produced plasma in the presence of the uniform magnetic field (less than 1200 G). Under the low filling pressure condition of 0.16 mTorr, changing the biasing voltages to the three individual end plates with concentric circular ring shapes, the radial electron density (about 10^10 cm-3) profile could be changed from the hollow to the peaked one. On the contrary, the nearly flat electron temperature (several eV) profile did not change appreciably. The azimuthal rotation velocity measured by the Mach probe, i.e. directional probe, showed the different radial profiles (but nearly uniform along the axis) depending on the biasing voltage. This velocity became slower with the low magnetic field (less than 200 G) or in the higher pressure regime up to 20 mTorr with the higher electron density. The experimental results by other biasing methods will also be presented.

  9. STS-114: Multi-Cut Profiles and Mission Overviews

    Science.gov (United States)

    2005-01-01

    Profiles of the seven crewmembers of the STS-114 Discovery are shown. Eileen Collins, Commander, talks about her fascination with flying as a young child and her eagerness to have someone teach her to fly at age 19. Her eagerness and hard work earned her a master's in operations research from Stanford University in 1986 and a master's in space systems management from Webster University in 1989. Jim Kelly, Pilot, talks about his desire to become an astronaut at a very young age. Charles Camarda, Mission Specialist, always wanted to become an astronaut and earned a Bachelor's degree in aerospace engineering from Polytechnic Institute of Brooklyn in 1974, a Master's in engineering Science from George Washington University in 1980 and a doctorate in aerospace engineering from Virginia Polytechnic Institute and State University in 1990. Wendy Lawrence, Mission Specialist decided that she wanted to become an astronaut when she saw the first man to walk on the moon. Soichi Noguchi, Mission Specialist from JAXA expresses that people like scientists, doctors and engineers could fly and he also wanted to venture into spaceflight. Steve Robinson, Mission Specialist says that he was fascinated with things that flew as a child and wanted to make things fly. Australian born Andrew Thomas, Mission Specialist wanted to become an astronaut as a young boy but never realized that he would fulfill his dream. The crewmember profiles end with an overview of the STS-114 Discovery mission. Paul Hill, Lead Flight Director talks about the main goal of the STS-114 mission which is to demonstrate that changes to the Orbiter and flight procedures are good and the second goal is to finish construction of the International Space Station. Sergei Krikalev, Commander talks about increasing the capability of the International Space Station, Jim Kelly discusses the work that is being performed in the external tank, Andy Thomas talks about procedures done to stop foam release and Soichi Noguchi

  10. Evaluation of the preliminary auditory profile test battery in an international multi-centre study

    NARCIS (Netherlands)

    van Esch, T.E.M.; Kollmeier, B.; Vormann, M.; Lijzenga, J.; Houtgast, T.; Hallgren, M.; Larsby, B.; Athalye, S.P.; Lutman, M.E.; Dreschler, W.A.

    2013-01-01

    Objective: This paper describes the composition and international multi-centre evaluation of a battery of tests termed the preliminary auditory profile. It includes measures of loudness perception, listening effort, speech perception, spectral and temporal resolution, spatial hearing, self-reported

  11. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-02-01

    Full Text Available A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200–1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability. Keywords: Pheniramine, Sodium lauryl sulfate (SLS, Glassy carbon electrode modified with multi-walled carbon nanotubes (GCE-MWCNTs, Solubilized systems, Voltammetric quantification

  12. 2-D Low Energy Electron Beam Profile Measurement Based on Computer Tomography Algorithm with Multi-Wire Scanner

    CERN Document Server

    Yu, Nengjie; Li Qing Feng; Tang, Chuan-Xiang; Zheng, Shuxin

    2005-01-01

    A new method for low energy electron beam profile measurement is advanced, which presents a full 2-D beam profile distribution other than the traditional 2-D beam profile distribution given by 1-D vertical and horizontal beam profiles. The method is based on the CT (Computer Tomography) algorithm. Multi-sets of data about the 1-D beam profile projections are attained by rotating the multi-wire scanner. Then a 2-D beam profile is reconstructed from these projections with CT algorithm. The principle of this method is presented. The simulation and the experiment results are compared and analyzed in detail.

  13. Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Khoshsafar, Hosein; Bagheri, Hasan; Madrakian, Tayyebeh

    2014-01-01

    A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of cadmium. This sensor was designed by incorporation of multi-walled carbon nanotubes (MWCNTs) and a new synthesized Schiff base into the carbon paste ionic liquid electrode (CPE IL ) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Cd(II). The detection limit of the method was found to be 0.08 μg L −1 (S/N = 3) that is lower than the maximum contaminant level of Cd(II) allowed by the Environmental Protection Agency (EPA) in standard drinking waters. The proposed electrode exhibits good applicability for monitoring Cd(II) in various real samples. - Highlights: • A new nanocomposite was prepared and applied to the modification of CPE. • The prepared nanocomposite was characterized by scanning electron microscopy. • The electrode was used to the rapid and selective determination of Cd(II)

  14. A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Fang, B.; Feng, Y.; Wang, G.; Zhang, C.; Gu, A.; Liu, M.

    2011-01-01

    An electrode sensitive to uric acid was prepared by electrodeposition of nickel(II) hexacyanoferrate(III) on the surface of a glassy carbon electrode modified with multi-walled carbon nanotubes. The morphology of the material was characterized by scanning electron microscopy and Fourier transform infrared spectrometry. The modified electrode were characterized via cyclic voltammetry and amperometry (i - t). It exhibited efficient electron transfer ability and a strong and fast (< 3 s) response towards uric acid which is linear in the range from 0.1 μM to 18 μM, with a lower detection limit of 50 nM (at an S/N ratio of 3). In addition, the electrode exhibited good reproducibility and long-term stability. (author)

  15. Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Tertoolen, L.G.J.; Braam, S. R.; van Meer, B.J.; Passier, R.; Mummery, C. L.

    2018-01-01

    Multi electrode arrays (MEAs) are increasingly used to detect external field potentials in electrically active cells. Recently, in combination with cardiomyocytes derived from human (induced) pluripotent stem cells they have started to become a preferred tool to examine newly developed drugs for

  16. Wavelet based analysis of multi-electrode EEG-signals in epilepsy

    Science.gov (United States)

    Hein, Daniel A.; Tetzlaff, Ronald

    2005-06-01

    For many epilepsy patients seizures cannot sufficiently be controlled by an antiepileptic pharmacatherapy. Furthermore, only in small number of cases a surgical treatment may be possible. The aim of this work is to contribute to the realization of an implantable seizure warning device. By using recordings of electroenzephalographical(EEG) signals obtained from the department of epileptology of the University of Bonn we studied a recently proposed algorithm for the detection of parameter changes in nonlinear systems. Firstly, after calculating the crosscorrelation function between the signals of two electrodes near the epileptic focus, a wavelet-analysis follows using a sliding window with the so called Mexican-Hat wavelet. Then the Shannon-Entropy of the wavelet-transformed data has been determined providing the information content on a time scale in subject to the dilation of the wavelet-transformation. It shows distinct changes at the seizure onset for all dilations and for all patients.

  17. Confinement of nonneutral spheroidal plasmas in multi-ring electrode traps

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Yuyama, Tetsumori; Michishita, Toshinori; Higaki, Hiroyuki; Tanaka, Hitoshi; Yamazawa, Yohei; Aoyagi, Masayuki

    1998-01-01

    A nonneutral spheroidal plasma can be settled in a rigid rotor equilibrium inside a closed conducting cell independently of induced image charges on the cell wall if the electrostatic potential distribution on the wall surface is set equal to the sum of the external hyperbolic potential (r 2 -2z 2 ) and the self-potential produced by the plasma. A confinement system equipped with a train of properly biased ring electrodes can approximately generate any axisymmetric potential, including the above field. Experiments on confinement of electron spheroids in such a system showed that the confinement time became the longest when the condition to diminish the image charge effects was satisfied. The observed frequency of the centre-of-mass harmonic oscillation of the plasma in this configuration was in good agreement with the estimated one. (author)

  18. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    International Nuclear Information System (INIS)

    Liang, Junsheng; Su, Shijie; Fang, Xu; Wang, Dazhi; Xu, Shuangchao

    2016-01-01

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H_2SO_4) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m"2·g"−"1. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g"−"1, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg"−"1. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g"−"1 at a current density of 4 A·g"−"1, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g"−"1. And the specific capacitance of the electrode can retain 89% after 1500 charge/discharge cycles.

  19. Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Junsheng; Su, Shijie; Fang, Xu [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Wang, Dazhi, E-mail: d.wang@dlut.edu.cn [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023 (China); Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China); Xu, Shuangchao [Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116023 (China)

    2016-09-15

    Highlights: • Electrospun PANI/MWCNT fibrous electrodes for supercapacitor were prepared. • Microstructure of electrodes is tunable by changing the electrospin parameters. • Fiber-diameter dependence of the electrode performance was observed. • High performance and good stability of electrospun electrodes were obtained. - Abstract: Electrospinning technique was used to prepare high performance fibrous electrodes with tunable microstructure for all-solid-state electrochemical supercapacitor. Symmetrically sandwiched supercapacitors consisting of flexible electrospun polyaniline (PANI)/multi-walled carbon nanotube (MWCNT) electrodes and polyvinyl alcohol (PVA)/sulfuric acid (H{sub 2}SO{sub 4}) gel electrolyte were assembled. Tunable microstructure of the fibrous electrode was obtained by changing the electrospinning parameters including the collector–needle distance (CND) and the suspension flow rate (SFR). Results show that, higher CND combining with lower SFR can result in a smaller average diameter of the electrospun fibers and hence improve the electrode performance. When the CND changes from 80 to 140 mm, the average fiber diameter will decrease from 2.89 to 1.21 μm, and the specific surface area of the electrode can increase from 57 to 83 m{sup 2}·g{sup −1}. The corresponding specific capacitance of the electrospun electrode will therefore increase from 129.5 to 180 F·g{sup −1}, leading to a synchronous improvement of the energy density of the supercapacitor from 18 to 25 Wh·kg{sup −1}. On the other hand, the supercapacitors using fibrous electrodes in this work also show good rate capability and cycling stability. Using the electrode with an average fiber diameter of 1.21 μm, the specific capacitances can maintain 131 F·g{sup −1} at a current density of 4 A·g{sup −1}, which is 73% of the specific capacitance of the same sample at a current density of 0.5 A·g{sup −1}. And the specific capacitance of the electrode can retain 89

  20. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of the use of a flat wire electrode in gas metal arc welding and fuzzy logic model for the prediction of weldment shape profile

    Energy Technology Data Exchange (ETDEWEB)

    Karuthapandi, Sripriyan; Thyla, P. R. [PSG College of Technology, Coimbatore (India); Ramu, Murugan [Amrita University, Ettimadai (India)

    2017-05-15

    This paper describes the relationships between the macrostructural characteristics of weld beads and the welding parameters in Gas metal arc welding (GMAW) using a flat wire electrode. Bead-on-plate welds were produced with a flat wire electrode and different combinations of input parameters (i.e., welding current, welding speed, and flat wire electrode orientation). The macrostructural characteristics of the weld beads, namely, deposition, bead width, total bead width, reinforcement height, penetration depth, and depth of HAZ were investigated. A mapping technique was employed to measure these characteristics in various segments of the weldment zones. Results show that the use of a flat wire electrode improves the depth-to-width (D/W) ratio by 16.5 % on average compared with the D/W ratio when a regular electrode is used in GMAW. Furthermore, a fuzzy logic model was established to predict the effects of the use of a flat electrode on the weldment shape profile with varying input parameters. The predictions of the model were compared with the experimental results.

  2. Safety of atrial fibrillation ablation with novel multi-electrode array catheters on uninterrupted anticoagulation-a single-center experience.

    LENUS (Irish Health Repository)

    Hayes, Christopher Ruslan

    2012-02-01

    INTRODUCTION: A recent single-center report indicated that the performance of atrial fibrillation ablation in patients on uninterrupted warfarin using a conventional deflectable tip electrode ablation catheter may be as safe as periprocedural discontinuation of warfarin and bridging with heparin. Novel multi-electrode array catheters for atrial fibrillation ablation are currently undergoing clinical evaluation. While offering the possibility of more rapid atrial fibrillation ablation, they are stiffer and necessitate the deployment of larger deflectable transseptal sheaths, and it remains to be determined if they increase the risk of cardiac perforation and vascular injury. Such potential risks would have implications for a strategy of uninterrupted periprocedural anticoagulation. METHOD AND RESULTS: We audited the safety outcomes of our atrial fibrillation ablation procedures using multi-electrode array ablation catheters in patients on uninterrupted warfarin (CHADS2 score>or=2) and in patients not on warfarin (uninterrupted aspirin). Two bleeding complications occurred in 49 patients on uninterrupted warfarin, both of which were managed successfully without longterm sequelae, and no bleeding complication occurred in 32 patients not on warfarin (uninterrupted aspirin). There were no thromboembolic events or other complication with either anticoagulant regimen. CONCLUSION: Despite the larger diameter and increased stiffness of multi-electrode array catheters and their deflectable transseptal sheaths, their use for catheter ablation in patients with atrial fibrillation on uninterrupted warfarin in this single-center experience does not appear to be unsafe, and thus, an adequately powered multicenter prospective randomized controlled trial should be considered.

  3. A complicated biocomputing system based on multi-responsive P(NIPAM-co-APBA) copolymer film electrodes and electrocatalysis of NADH.

    Science.gov (United States)

    Liang, Jiying; Yu, Xue; Yang, Tiangang; Li, Menglu; Shen, Li; Jin, Yue; Liu, Hongyun

    2017-08-23

    In this paper, poly(N-isopropylacrylamide-co-3-aminophenylboronic acid) (P(NIPAM-co-APBA)) copolymer films were successfully electropolymerized on the Au electrode surface. The electroactive probe ferrocene carboxylic acid (FCA) in solution showed reversible thermal-, glucose- and pH-responsive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The comparative experiments demonstrated that the thermo-responsive property of the film electrode was ascribed to the PNIPAM component of the films, whereas the glucose- and pH-sensitive behaviors came from the PAPBA constituent. The reduced form of nicotinamide adenine dinucleotide (NADH) could be electrocatalytically oxidized by FCA at the film electrodes, which would greatly amplify the multi-responsive CV signal difference between the on and off states. On the basis of these results, a binary 4-input/4-output logic circuit was fabricated with temperature, glucose, pH and NADH as inputs and the CV responses at 4 different levels as outputs. Moreover, a ternary CONSENSUS logic circuit was established on the same platform, which was the first report on the combination of ternary logic gate and bioelectrocatalysis without using enzymes. This work provided a novel idea for constructing complicated biocomputing systems by increasing the number of inputs/outputs with multi-sensitive interfaces and by designing new types of multi-valued logic gates on the basis of bioelectrocatalysis.

  4. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yo Han; Woo, Sang-Wook; Jung, Hye-Ran; Yu, Hyung Kyun; Kim, Kitae; Oh, Byung Hun; Ahn, Soonho; Kim, Je Young [Battery R and D, LG Chem, Ltd., 104-1 Moonji-dong, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Sang-Young [School of Chemical Engineering, Kangwon National University, Chuncheon, Kangwondo (Korea, Republic of); Song, Seung-Wan [Graduate School of Green Energy Technology, Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon (Korea, Republic of); Cho, Jaephil [School of Energy Engineering and Converging Research Center for Innovative Battery Technologies, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of); Shin, Heon-Cheol [School of Materials Science and Engineering, Pusan National University, Busan (Korea, Republic of)

    2012-10-02

    The mechanical flexibility of a cable-type battery reaches levels far beyond what is possible with conventional designs. The hollow-spiral (helical) multi-helix anode architecture is critical to the robustness under mechanical stress and facilitates electrolyte wetting of the battery components. This design enables the battery to reliably power an LED screen or an MP3 player even under severe mechanical twisting and bending. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Multi frequency phase fluorimetry (MFPF) for oxygen partial pressure measurement: ex vivo validation by polarographic clark-type electrode.

    Science.gov (United States)

    Boehme, Stefan; Duenges, Bastian; Klein, Klaus U; Hartwich, Volker; Mayr, Beate; Consiglio, Jolanda; Baumgardner, James E; Markstaller, Klaus; Basciani, Reto; Vogt, Andreas

    2013-01-01

    Measurement of partial pressure of oxygen (PO2) at high temporal resolution remains a technological challenge. This study introduces a novel PO2 sensing technology based on Multi-Frequency Phase Fluorimetry (MFPF). The aim was to validate MFPF against polarographic Clark-type electrode (CTE) PO2 measurements. MFPF technology was first investigated in N = 8 anaesthetised pigs at FIO2 of 0.21, 0.4, 0.6, 0.8 and 1.0. At each FIO2 level, blood samples were withdrawn and PO2 was measured in vitro with MFPF using two FOXY-AL300 probes immediately followed by CTE measurement. Secondly, MFPF-PO2 readings were compared to CTE in an artificial circulatory setup (human packed red blood cells, haematocrit of 30%). The impacts of temperature (20, 30, 40°C) and blood flow (0.8, 1.6, 2.4, 3.2, 4.0 L min(-1)) on MFPF-PO2 measurements were assessed. MFPF response time in the gas- and blood-phase was determined. Porcine MFPF-PO2 ranged from 63 to 749 mmHg; the corresponding CTE samples from 43 to 712 mmHg. Linear regression: CTE = 15.59+1.18*MFPF (R(2) = 0.93; P0.05). MFPF response-time (monoexponential) was 1.48±0.26 s for the gas-phase and 1.51±0.20 s for the blood-phase. MFPF-derived PO2 readings were reproducible and showed excellent correlation and good agreement with Clark-type electrode-based PO2 measurements. There was no relevant impact of temperature and blood flow upon MFPF-PO2 measurements. The response time of the MFPF FOXY-AL300 probe was adequate for real-time sensing in the blood phase.

  6. Optimum Electrode Configurations for Two-Probe, Four-Probe and Multi-Probe Schemes in Electrical Resistance Tomography for Delamination Identification in Carbon Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Luis Waldo Escalona-Galvis

    2018-04-01

    Full Text Available Internal damage in Carbon Fiber Reinforced Polymer (CFRP composites modifies the internal electrical conductivity of the composite material. Electrical Resistance Tomography (ERT is a non-destructive evaluation (NDE technique that determines the extent of damage based on electrical conductivity changes. Implementation of ERT for damage identification in CFRP composites requires the optimal selection of the sensing sites for accurate results. This selection depends on the measuring scheme used. The present work uses an effective independence (EI measure for selecting the minimum set of measurements for ERT damage identification using three measuring schemes: two-probe, four-probe and multi-probe. The electrical potential field in two CFRP laminate layups with 14 electrodes is calculated using finite element analyses (FEA for a set of specified delamination damage cases. The measuring schemes consider the cases of 14 electrodes distributed on both sides and seven electrodes on only one side of the laminate for each layup. The effectiveness of EI reduction is demonstrated by comparing the inverse identification results of delamination cases for the full and the reduced sets using the measuring schemes and electrode sets. This work shows that the EI measure optimally reduces electrode and electrode combinations in ERT based damage identification for different measuring schemes.

  7. Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization

    International Nuclear Information System (INIS)

    Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen

    2014-01-01

    A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)

  8. Slice sensitivity profiles and pixel noise of multi-slice CT in comparison with single-slice CT

    International Nuclear Information System (INIS)

    Schorn, C.; Obenauer, S.; Funke, M.; Hermann, K.P.; Kopka, L.; Grabbe, E.

    1999-01-01

    Purpose: Presentation and evaluation of slice sensitivity profile and pixel noise of multi-slice CT in comparison to single-slice CT. Methods: Slice sensitivity profiles and pixel noise of a multi-slice CT equiped with a 2D matrix detector array and of a single-slice CT were evaluated in phantom studies. Results: For the single-slice CT the width of the slice sensitivity profiles increased with increasing pitch. In spite of a much higher table speed the slice sensitivity profiles of multi-slice CT were narrower and did not increase with higher pitch. Noise in single-slice CT was independent of pitch. For multi-slice CT noise increased with higher pitch and for the higher pitch decreased slightly with higher detector row collimation. Conclusions: Multi-slice CT provides superior z-resolution and higher volume coverage speed. These qualities fulfill one of the prerequisites for improvement of 3D postprocessing. (orig.) [de

  9. In situ detection of tree root distribution and biomass by multi-electrode resistivity imaging.

    Science.gov (United States)

    Amato, Mariana; Basso, Bruno; Celano, Giuseppe; Bitella, Giovanni; Morelli, Gianfranco; Rossi, Roberta

    2008-10-01

    Traditional methods for studying tree roots are destructive and labor intensive, but available nondestructive techniques are applicable only to small scale studies or are strongly limited by soil conditions and root size. Soil electrical resistivity measured by geoelectrical methods has the potential to detect belowground plant structures, but quantitative relationships of these measurements with root traits have not been assessed. We tested the ability of two-dimensional (2-D) DC resistivity tomography to detect the spatial variability of roots and to quantify their biomass in a tree stand. A high-resolution resistivity tomogram was generated along a 11.75 m transect under an Alnus glutinosa (L.) Gaertn. stand based on an alpha-Wenner configuration with 48 electrodes spaced 0.25 m apart. Data were processed by a 2-D finite-element inversion algorithm, and corrected for soil temperature. Data acquisition, inversion and imaging were completed in the field within 60 min. Root dry mass per unit soil volume (root mass density, RMD) was measured destructively on soil samples collected to a depth of 1.05 m. Soil sand, silt, clay and organic matter contents, electrical conductivity, water content and pH were measured on a subset of samples. The spatial pattern of soil resistivity closely matched the spatial distribution of RMD. Multiple linear regression showed that only RMD and soil water content were related to soil resistivity along the transect. Regression analysis of RMD against soil resistivity revealed a highly significant logistic relationship (n = 97), which was confirmed on a separate dataset (n = 67), showing that soil resistivity was quantitatively related to belowground tree root biomass. This relationship provides a basis for developing quick nondestructive methods for detecting root distribution and quantifying root biomass, as well as for optimizing sampling strategies for studying root-driven phenomena.

  10. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.

    Science.gov (United States)

    Petrofsky, J; Suh, H J; Fish, A; Hernandez, V; Abdo, A; Collins, K; Mendoza, E; Yang, T-N

    2008-01-01

    When electrical stimulation is used on wounds, the electrical current has difficulty penetrating areas where there is necrotic tissue. Further, for an irregularly shaped wound, current distribution is poor in some areas of the wound since conventional two-electrode delivery systems provide the greatest current in a line directly between the electrodes. A new stimulator and electrode system is described which uses three electrodes spaced around a wound to disperse current more evenly. The stimulator senses tissue impedance and then redirects current by altering its Thevenin's output impedance for each electrode; each of the three electrodes becomes the active one in sequence while the remaining are the sink electrodes. Eight subjects were examined to test the stimulator. Electrical stimulation was applied to the skin above the quadriceps muscle at currents of 15 mA in six subjects without wounds and in two subjects with wounds. The relationship between electrode position and current dispersion on the skin was examined with a two-electrode vs. a three-electrode system to set stimulation parameters for the computer. The results showed that the three-electrode system could (1) detect areas of the skin with high impedance; (2) compensate by altering the Thevenin's output impedance at each of the three electrodes to shift current to high impedance areas; (3) provide uniform current across the skin as assessed by skin current and blood flow measurements with a laser Doppler flow imager.

  11. Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit.

    Science.gov (United States)

    Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Shi, Guo-Yue; Zhang, Wen; Yamamoto, Katsunobu; Jin, Li-Tong

    2003-07-27

    In this paper, multi-wall carbon nanotubes functionalized with carboxylic groups modified electrode (MWNT-COOH CME) was fabricated. This chemically modified electrode (CME) can be used as the working electrode in the liquid chromatography for the determination of 6-mercaptopurine (6-MP). The results indicate that the CME exhibits efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP are linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N=3) of 2.0 x 10(-7) mol l(-1). Coupled with microdialysis, the method has been successfully applied to the pharmacokinetic study of 6-MP in rabbit blood. This method provides a fast, sensible and simple technique for the pharmacokinetic study of 6-MP in vivo.

  12. Electrophysiological Analysis of human Pluripotent Stem Cell-derived Cardiomyocytes (hPSC-CMs) Using Multi-electrode Arrays (MEAs).

    Science.gov (United States)

    Sala, Luca; Ward-van Oostwaard, Dorien; Tertoolen, Leon G J; Mummery, Christine L; Bellin, Milena

    2017-05-12

    Cardiomyocytes can now be derived with high efficiency from both human embryonic and human induced-Pluripotent Stem Cells (hPSC). hPSC-derived cardiomyocytes (hPSC-CMs) are increasingly recognized as having great value for modeling cardiovascular diseases in humans, especially arrhythmia syndromes. They have also demonstrated relevance as in vitro systems for predicting drug responses, which makes them potentially useful for drug-screening and discovery, safety pharmacology and perhaps eventually for personalized medicine. This would be facilitated by deriving hPSC-CMs from patients or susceptible individuals as hiPSCs. For all applications, however, precise measurement and analysis of hPSC-CM electrical properties are essential for identifying changes due to cardiac ion channel mutations and/or drugs that target ion channels and can cause sudden cardiac death. Compared with manual patch-clamp, multi-electrode array (MEA) devices offer the advantage of allowing medium- to high-throughput recordings. This protocol describes how to dissociate 2D cell cultures of hPSC-CMs to small aggregates and single cells and plate them on MEAs to record their spontaneous electrical activity as field potential. Methods for analyzing the recorded data to extract specific parameters, such as the QT and the RR intervals, are also described here. Changes in these parameters would be expected in hPSC-CMs carrying mutations responsible for cardiac arrhythmias and following addition of specific drugs, allowing detection of those that carry a cardiotoxic risk.

  13. Electrochemical Characterization of O2 Plasma Functionalized Multi-Walled Carbon Nanotube Electrode for Legionella pneumophila DNA Sensor

    Science.gov (United States)

    Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki

    2010-08-01

    An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.

  14. Investigation of E x B transport with a multi-electrode probe in the plasma boundary of TEXTOR

    International Nuclear Information System (INIS)

    Ivanov, R.S.; Moyer, R.A.; Nieuwenhove, R. van; Oost, G. van; Fuchs, G.; Hoethker, K.; Samm, U.

    1991-01-01

    A movable multi-element Langmuir probe was implemented in TEXTOR in order to study properties of the edge and scrape-off plasma. The probe has five graphite electrode pins allowing the simultaneous measurement of main parameters such as plasma densities, electron temperatures, floating potentials, poloidal and radial electric fields. Both time-averaged and fluctuating quantities have been considered in order to evaluate the DC and turbulence-driven cross-field particle fluxes. The spectral analysis of the fluctuating floating potentials at spatially separated probe pins allows to determine the velocity associated with the rotations of the boundary plasma. The investigations have been focused on the variations of plasma boundary properties in plasmas with pure ohmic heating as well as auxiliary heating (ICRH). Special attention has been paid to the change of transport properties with the transition to a detached plasma. In particular, a significant reduction of the poloidal phase velocity at the limited edge has been observed for detached plasmas. Preliminary data on physical effects near the plasma boundary, which occur when the toroidal belt limiter (ALT-II) is biased, are reported. (orig.)

  15. Voltammetric determination of In3+ based on the bifunctionality of a multi-walled carbon nanotubes-nafion modified electrode.

    Science.gov (United States)

    Li, Junhua; Zhang, Fuxing; Wang, Jianqiu; Xu, Zhifeng; Zeng, Rongying

    2009-05-01

    Due to the strong cation-exchange ability of Nafion and the excellent properties of multi-walled carbon nanotubes (MWCNTs), a highly sensitive and mercury-free method of determining trace levels of In(3+) has been established based on the bifunctionality of a MWCNTs/Nafion modified glassy carbon electrode (GCE). The MWCNTs/Nafion modified GCE detects In(3+) in a 0.01 M HAc-NaAc buffer solution at pH 5.0 using anodic stripping voltammetry (ASV). The experimental results suggest that a sensitive anodic stripping peak appears at -0.58 V on anodic stripping voltammograms, which can be used as an analytical signal for the determination of In(3+). A good linear relationship between the stripping peak currents and the In(3+) concentration is obtained, covering the concentration range from 5.0 x 10(-10) to 2.0 x 10(-7) M, with a correlation coefficient of 0.999; the detection limit is 1.0 x 10(-11) M. This proposed method has been applied to detect In(3+) as a new way.

  16. On-electrode autonomous current generator for multi-frequency EIT

    International Nuclear Information System (INIS)

    Jivet, I; Dragoi, B

    2008-01-01

    The paper presents an autonomous programmable current generator module for multi-frequency EIT systems. The module incorporates all stages from the sine wave generation with frequency and amplitude tuning, D/A converter and filter, a high output resistance voltage-to-current converter to the associated digital communication and control. The paper presents in depth the original digital quadrature signal generator and the output current generator with a high resistance. The other main blocks of the design use current practice specifications, since recent technological solutions proposed in the literature were found appropriate. The proposed signal generator circuit, characterized by a very low complexity, is analyzed in its capacity to produce multiple accurate signals up to 1 MHz in frequency. The precision output current source uses a modified current conveyor of type CCII with a high output resistance and low distortion. The output current frequency spectrum and linearity parameters obtained in the simulations are also described. The simulation results indicate a good linearity and high output resistance with an acceptable output voltage swing. The calculated performance parameters are validated with simulations, and future work for the prototype fabrication of the IC is outlined

  17. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-01-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L −1 . The lower detection limits were found to be 0.02 μmol L −1 . The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  18. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  19. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial.

    Science.gov (United States)

    Worthley, Stephen G; Tsioufis, Costas P; Worthley, Matthew I; Sinhal, Ajay; Chew, Derek P; Meredith, Ian T; Malaiapan, Yuvi; Papademetriou, Vasilios

    2013-07-01

    Catheter-based renal artery sympathetic denervation has emerged as a novel therapy for treatment of patients with drug-resistant hypertension. Initial studies were performed using a single electrode radiofrequency catheter, but recent advances in catheter design have allowed the development of multi-electrode systems that can deliver lesions with a pre-determined pattern. This study was designed to evaluate the safety and efficacy of the EnligHTN(™) multi-electrode system. We conducted the first-in-human, prospective, multi-centre, non-randomized study in 46 patients (67% male, mean age 60 years, and mean baseline office blood pressure 176/96 mmHg) with drug-resistant hypertension. The primary efficacy objective was change in office blood pressure from baseline to 6 months. Safety measures included all adverse events with a focus on the renal artery and other vascular complications and changes in renal function. Renal artery denervation, using the EnligHTN system significantly reduced the office blood pressure from baseline to 1, 3, and 6 months by -28/10, -27/10 and -26/10 mmHg, respectively (P renal artery injury or other serious vascular complications occurred. Small, non-clinically relevant, changes in average estimated glomerular filtration rate were reported from baseline (87 ± 19 mL/min/1.73 m2) to 6 months post-procedure (82 ± 20 mL/min/1.73 m2). Renal sympathetic denervation, using the EnligHTN multi-electrode catheter results in a rapid and significant office blood pressure reduction that was sustained through 6 months. The EnligHTN system delivers a promising therapy for the treatment of drug-resistant hypertension.

  20. The Effect of a Short-term Glucose Deprivation on Neuron Net Functioning of Hippocampus Primary Culture on a Multi-electrode Matrix

    OpenAIRE

    Vedunova M.V.; Korotchenko S.A.; Balashova A.N.; Isakova A.O.; Khaspekov L.G.; Kazantsev V.B.; Mukhina I.V.

    2011-01-01

    There has been studied the effect of a short-term glucose deprivation on neuron net functioning of hippocampus primary culture developing within 32 days on a multi-electrode matrix MED64 (Alpha MED Sciences Company, Japan) in an early and remote periods after deprivation. A short-term glucose deprivation (20 min) has been shown to result in the increase of electrobiological activity of neuron net of hippocampus primary culture, with the cascade of metabolic reactions being activated leading t...

  1. Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jun, E-mail: zhangjundoc@sina.co [School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Li Xiaoxue [School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Guo Wei [College of Environmental and Resource Sciences, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Hreid Tubshin [School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Hou Jinfeng [Test Center, Inner Mongolia University of Technology, 49 Aimin Street, Xincheng District, Hohhot 010051 (China); Su Haiquan [School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Road, Hohhot 010021 (China); Yuan Zhuobin [College of Chemistry and Chemical Engineering, Graduate University of the Chinese Academy of Sciences, 19(A) Yuquan Road, Beijing 100049 (China)

    2011-03-30

    Graphical abstract: Display Omitted Research highlights: PEDOT-MWCNT and PEDOT as the counter electrodes of DSSCs. The counter electrodes fabricated by a electropolymerization method. PEDOT-MWCNT films were more porous than PEDOT films. The energy conversion efficiency with PEDOT-MWCNT was 13.0% higher than with PEDOT. - Abstract: Composite films of poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes (PEDOT-MWCNT) were fabricated by a simple oxidative electropolymerization method. These films were formed on fluorine-doped, tin oxide, glass substrates as counter electrodes (CEs) of platinum-free, dye-sensitized solar cells (DSSCs). The surface morphology, formation mechanism and electrochemical nature of PEDOT-MWCNT films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and alternating current (AC) impedance spectroscopy. The SEM and AFM images showed that PEDOT-MWCNT films were more porous than PEDOT films. CV and AC impedance spectroscopy revealed that the PEDOT-MWCNT electrode had higher electrocatalytic activity for the I{sub 3}{sup -}/I{sup -} redox reaction and a smaller charge transfer resistance than the PEDOT electrodes. The energy conversion efficiency of the DSSC with a PEDOT-MWCNT CE was 13.0% higher than with a PEDOT CE using the same conditions with a ruthenium sensitizer.

  2. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polythiophene composite counter electrodes prepared by electrodeposition

    Science.gov (United States)

    Luo, Jun; Niu, Hai-jun; Wu, Wen-jun; Wang, Cheng; Bai, Xu-duo; Wang, Wen

    2012-01-01

    For the purpose of increasing the energy conversion efficiency of dye-sensitized solar cells (DSSCs), multi-wall carbon nanotube (MWCNT)/polythiophene (PTh) composite film counter electrode has been fabricated by electrophoresis and cyclic voltammetry (CV) in sequence. The morphology and chemical structure have been characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), and Raman spectroscopy respectively. The overall energy conversion efficiency of the DSSC employing the MWCNT/PTh composite film has reached 4.72%, which is close to that of the DSSC with a platinum (Pt) counter electrode (5.68%). Compared with a standard DSSC with MWCNT counter electrode whose efficiency is 2.68%, the energy conversion efficiency has been increased by 76.12% for the DSSC with MWCNT/PTh counter electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I 3- reduction can potentially be used as the counter electrode in a high-performance DSSC.

  3. Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance

    International Nuclear Information System (INIS)

    Zhang Jun; Li Xiaoxue; Guo Wei; Hreid Tubshin; Hou Jinfeng; Su Haiquan; Yuan Zhuobin

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → PEDOT-MWCNT and PEDOT as the counter electrodes of DSSCs. → The counter electrodes fabricated by a electropolymerization method. → PEDOT-MWCNT films were more porous than PEDOT films. → The energy conversion efficiency with PEDOT-MWCNT was 13.0% higher than with PEDOT. - Abstract: Composite films of poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes (PEDOT-MWCNT) were fabricated by a simple oxidative electropolymerization method. These films were formed on fluorine-doped, tin oxide, glass substrates as counter electrodes (CEs) of platinum-free, dye-sensitized solar cells (DSSCs). The surface morphology, formation mechanism and electrochemical nature of PEDOT-MWCNT films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), cyclic voltammetry (CV) and alternating current (AC) impedance spectroscopy. The SEM and AFM images showed that PEDOT-MWCNT films were more porous than PEDOT films. CV and AC impedance spectroscopy revealed that the PEDOT-MWCNT electrode had higher electrocatalytic activity for the I 3 - /I - redox reaction and a smaller charge transfer resistance than the PEDOT electrodes. The energy conversion efficiency of the DSSC with a PEDOT-MWCNT CE was 13.0% higher than with a PEDOT CE using the same conditions with a ruthenium sensitizer.

  4. A multi-electrode and pre-deformed bilayer spring structure electrostatic attractive MEMS actuator with large stroke at low actuation voltage

    International Nuclear Information System (INIS)

    Hu, Fangrong; Li, Zhi; Xiong, Xianming; Niu, Junhao; Peng, Zhiyong; Qian, Yixian; Yao, Jun

    2012-01-01

    This paper presents a multi-electrode and pre-deformed bilayer spring structure electrostatic attractive microelectromechanical systems (MEMS) actuator; it has large stroke at relatively low actuation voltage. Generally, electrostatic-attractive-force-based actuators have small stroke due to the instability resulted from the electrostatic ‘pull-in’ phenomenon. However, in many applications, the electrostatic micro-actuator with large stroke at low voltage is more preferred. By introducing a multi-electrode and a pre-deformed bilayer spring structure, an electrostatic attractive MEMS actuator with large stroke at very low actuation voltage has been successfully demonstrated in this paper. The actuator contains a central plate with a size of 300 µm × 300 µm × 1.5 µm and it is supported by four L-shaped bilayer springs which are pre-deformed due to residual stresses. Each bilayer spring is simultaneously attracted by three adjacent fixed electrodes, and the factors affecting the electrostatic attractive force are analyzed by a finite element analysis method. The prototype of the actuator is fabricated by poly-multi-user-MEMS-process (PolyMUMP) and the static performance is tested using a white light interferometer. The measured stroke of the actuator reaches 2 µm at 13 V dc, and it shows a good agreement with the simulation. (paper)

  5. Multi Frequency Phase Fluorimetry (MFPF) for Oxygen Partial Pressure Measurement: Ex Vivo Validation by Polarographic Clark-Type Electrode

    Science.gov (United States)

    Boehme, Stefan; Duenges, Bastian; Klein, Klaus U.; Hartwich, Volker; Mayr, Beate; Consiglio, Jolanda; Baumgardner, James E.; Markstaller, Klaus; Basciani, Reto; Vogt, Andreas

    2013-01-01

    Background Measurement of partial pressure of oxygen (PO2) at high temporal resolution remains a technological challenge. This study introduces a novel PO2 sensing technology based on Multi-Frequency Phase Fluorimetry (MFPF). The aim was to validate MFPF against polarographic Clark-type electrode (CTE) PO2 measurements. Methodology/Principal Findings MFPF technology was first investigated in N = 8 anaesthetised pigs at FIO2 of 0.21, 0.4, 0.6, 0.8 and 1.0. At each FIO2 level, blood samples were withdrawn and PO2 was measured in vitro with MFPF using two FOXY-AL300 probes immediately followed by CTE measurement. Secondly, MFPF-PO2 readings were compared to CTE in an artificial circulatory setup (human packed red blood cells, haematocrit of 30%). The impacts of temperature (20, 30, 40°C) and blood flow (0.8, 1.6, 2.4, 3.2, 4.0 L min−1) on MFPF-PO2 measurements were assessed. MFPF response time in the gas- and blood-phase was determined. Porcine MFPF-PO2 ranged from 63 to 749 mmHg; the corresponding CTE samples from 43 to 712 mmHg. Linear regression: CTE = 15.59+1.18*MFPF (R2 = 0.93; PPO2 ranged from 20 to 567 mmHg and CTE samples from 11 to 575 mmHg. Linear regression: CTE = −8.73+1.05*MFPF (R2 = 0.99; PPO2 due to variations of temperature were less than 6 mmHg (range 0–140 mmHg) and less than 35 mmHg (range 140–750 mmHg); differences due to variations in blood flow were less than 15 mmHg (all P-values>0.05). MFPF response-time (monoexponential) was 1.48±0.26 s for the gas-phase and 1.51±0.20 s for the blood-phase. Conclusions/Significance MFPF-derived PO2 readings were reproducible and showed excellent correlation and good agreement with Clark-type electrode-based PO2 measurements. There was no relevant impact of temperature and blood flow upon MFPF-PO2 measurements. The response time of the MFPF FOXY-AL300 probe was adequate for real-time sensing in the blood phase. PMID:23565259

  6. Algorithm Development for Multi-Energy SXR based Electron Temperature Profile Reconstruction

    Science.gov (United States)

    Clayton, D. J.; Tritz, K.; Finkenthal, M.; Kumar, D.; Stutman, D.

    2012-10-01

    New techniques utilizing computational tools such as neural networks and genetic algorithms are being developed to infer plasma electron temperature profiles on fast time scales (> 10 kHz) from multi-energy soft-x-ray (ME-SXR) diagnostics. Traditionally, a two-foil SXR technique, using the ratio of filtered continuum emission measured by two SXR detectors, has been employed on fusion devices as an indirect method of measuring electron temperature. However, these measurements can be susceptible to large errors due to uncertainties in time-evolving impurity density profiles, leading to unreliable temperature measurements. To correct this problem, measurements using ME-SXR diagnostics, which use three or more filtered SXR arrays to distinguish line and continuum emission from various impurities, in conjunction with constraints from spectroscopic diagnostics, can be used to account for unknown or time evolving impurity profiles [K. Tritz et al, Bull. Am. Phys. Soc. Vol. 56, No. 12 (2011), PP9.00067]. On NSTX, ME-SXR diagnostics can be used for fast (10-100 kHz) temperature profile measurements, using a Thomson scattering diagnostic (60 Hz) for periodic normalization. The use of more advanced algorithms, such as neural network processing, can decouple the reconstruction of the temperature profile from spectral modeling.

  7. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Cao, Lili; Deng, Ying; Gong, Shixing [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Shi, Fan; Li, Gaonan; Sun, Zhenfan [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 China (China)

    2013-06-05

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k{sub s}) as 0.97 s{sup −1}. The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L{sup −1} with a detection limit of 0.0153 mmol L{sup −1} (3σ), H{sub 2}O{sub 2} in the concentration range from 0.1 to 516.0 mmol L{sup −1} with a detection limit of 34.9 nmol/L (3σ) and NaNO{sub 2} in the concentration range from 0.5 to 650.0 mmol L{sup −1} with a detection limit of 0

  8. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-01-01

    Graphical abstract: -- Highlights: •A graphene and multi-walled carbon nanotubes nanocomposite was prepared. •Hemoglobin and nanocomposite modified carbon ionic liquid electrode was fabricated. •Direct electrochemistry of hemoglobin was realized on the modified electrode. •Bioelectrocatalysis towards the reduction of different substrates was enhanced. -- Abstract: A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (k s ) as 0.97 s −1 . The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L −1 with a detection limit of 0.0153 mmol L −1 (3σ), H 2 O 2 in the concentration range from 0.1 to 516.0 mmol L −1 with a detection limit of 34.9 nmol/L (3σ) and NaNO 2 in the concentration range from 0.5 to 650.0 mmol L −1 with a detection limit of 0.282 μmol L −1 (3σ). So the proposed

  9. Quantitative multi-target RNA profiling in Epstein-Barr virus infected tumor cells.

    Science.gov (United States)

    Greijer, A E; Ramayanti, O; Verkuijlen, S A W M; Novalić, Z; Juwana, H; Middeldorp, J M

    2017-03-01

    Epstein-Barr virus (EBV) is etiologically linked to multiple acute, chronic and malignant diseases. Detection of EBV-RNA transcripts in tissues or biofluids besides EBV-DNA can help in diagnosing EBV related syndromes. Sensitive EBV transcription profiling yields new insights on its pathogenic role and may be useful for monitoring virus targeted therapy. Here we describe a multi-gene quantitative RT-PCR profiling method that simultaneously detects a broad spectrum (n=16) of crucial latent and lytic EBV transcripts. These transcripts include (but are not restricted to), EBNA1, EBNA2, LMP1, LMP2, BARTs, EBER1, BARF1 and ZEBRA, Rta, BGLF4 (PK), BXLF1 (TK) and BFRF3 (VCAp18) all of which have been implicated in EBV-driven oncogenesis and viral replication. With this method we determine the amount of RNA copies per infected (tumor) cell in bulk populations of various origin. While we confirm the expected RNA profiles within classic EBV latency programs, this sensitive quantitative approach revealed the presence of rare cells undergoing lytic replication. Inducing lytic replication in EBV tumor cells supports apoptosis and is considered as therapeutic approach to treat EBV-driven malignancies. This sensitive multi-primed quantitative RT-PCR approach can provide broader understanding of transcriptional activity in latent and lytic EBV infection and is suitable for monitoring virus-specific therapy responses in patients with EBV associated cancers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. MODELING MULTI-WAVELENGTH PULSE PROFILES OF THE MILLISECOND PULSAR PSR B1821–24

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yuanjie; Shuai, Ping; Bei, Xiaomin; Chen, Shaolong; Fu, Linzhong; Huang, Liangwei; Lin, Qingqing; Meng, Jing; Wu, Yaojun; Zhang, Hengbin; Zhang, Qian; Zhang, Xinyuan [Qian Xuesen Laboratory of Space Technology, NO. 104, Youyi Road, Haidian District, Beijing 100094 (China); Qiao, Guojun, E-mail: dyj@nao.cas.cn [School of Physics, Peking University, Beijing 100871 (China)

    2015-03-10

    PSR B1821–24 is a solitary millisecond pulsar that radiates multi-wavelength pulsed photons. It has complex radio, X-ray, and γ-ray pulse profiles with distinct peak phase separations that challenge the traditional caustic emission models. Using the single-pole annular gap model with a suitable magnetic inclination angle (α = 40°) and viewing angle (ζ = 75°), we managed to reproduce its pulse profiles of three wavebands. It is found that the middle radio peak originated from the core gap region at high altitudes, and the other two radio peaks originated from the annular gap region at relatively low altitudes. Two peaks of both X-ray and γ-ray wavebands basically originated from the annular gap region, while the γ-ray emission generated from the core gap region contributes somewhat to the first γ-ray peak. Precisely reproducing the multi-wavelength pulse profiles of PSR B1821–24 enables us to understand emission regions of distinct wavebands and justify pulsar emission models.

  11. A distribution-free multi-factorial profiler for harvesting information from high-density screenings.

    Science.gov (United States)

    Besseris, George J

    2013-01-01

    Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1) easy to grasp, 2) well-explained test-power properties, 3) distribution-free, 4) sparsity-free, 5) calibration-free, 6) simulation-free, 7) easy to implement, and 8) expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process.

  12. A distribution-free multi-factorial profiler for harvesting information from high-density screenings.

    Directory of Open Access Journals (Sweden)

    George J Besseris

    Full Text Available Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1 easy to grasp, 2 well-explained test-power properties, 3 distribution-free, 4 sparsity-free, 5 calibration-free, 6 simulation-free, 7 easy to implement, and 8 expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process.

  13. Redo renal denervation using a multi-electrode radiofrequency system in patients with persistent therapy-resistant hypertension.

    Science.gov (United States)

    Daemen, J; Feyz, L; Van Zandvoort, L; Van Mieghem, N M

    2017-06-01

    Renal sympathetic denervation has been studied as a potential therapeutic option for patients with therapy-resistant hypertension; however, a significant proportion of patients do not show a significant reduction in blood pressure and are classified as non-responders. The objective of the present study was to assess whether a redo renal denervation procedure increases response rates. We present a case series of three consecutive renal denervation non-responders treated with the multi-electrode radiofrequency St. Jude EnligHTN catheter after an average of 22 months. Patients were followed for 6 months. Mean age was 66 years and two patients were male. Patients were previously treated using either ReCor's Paradise system, the Vessix V2 system or the Covidien OneShot system. Mean office blood pressure one year after the initial procedure was 187/102 mm Hg with a mean 24 h ambulatory blood pressure of 166/102 mm Hg. All patients underwent a successful redo procedure using the EnligHTN system because of persistent therapy-resistant hypertension. At 6 months a significant drop in both office and ambulatory blood pressure of -27/-6 mm Hg and -15/-13 mm Hg, respectively, was observed. No significant renal artery stenosis was observed at 6 months. In patients with therapy-resistant hypertension who do not respond to an initial renal denervation procedure, a redo procedure using the St. Jude EnligHTN system may help to significantly improve blood pressure control.

  14. Anodic stripping voltammetric determination of mercury using multi-walled carbon nanotubes film coated glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Hongchao [Department of Environmental Engineering, Hubei Agriculture College, 434103, Jingzhou (China)

    2003-10-01

    An electrochemical method for the determination of trace levels of mercury based on a multi-walled carbon nanotubes (MWNT) film coated glassy carbon electrode (GCE) is described. In 0.1 mol L{sup -1} HCl solution containing 0.02 mol L{sup -1} KI, Hg{sup 2+} was firstly preconcentrated at the MWNT film and then reduced at -0.60 V. During the anodic potential sweep, reduced mercury was oxidized, and then a sensitive and well-defined stripping peak at about -0.20 V appeared. Under identical conditions, a MWNT film coated GCE greatly enhances the stripping peak current of mercury in contrast to a bare GCE. Low concentrations of I{sup -} remarkably improve the determining sensitivity, since this increases the accumulation efficiency of Hg{sup 2+} at the MWNT film coated GCE. The stripping peak current is proportional to the concentration of Hg{sup 2+} over the range 8 x 10{sup -10}-5 x 10{sup -7} mol L{sup -1}. The lowest detectable concentration of Hg{sup 2+} is 2 x 10{sup -10} mol L{sup -1} at 5 min accumulation. The relative standard deviation (RSD) at 1 x 10{sup -8} mol L{sup -1} Hg{sup 2+} was about 6% (n=10). By using this proposed method, Hg{sup 2+} in some water samples was determined, and the results were compared with those obtained by atomic absorption spectrometry (AAS). The two results are similar, suggesting that the MWNT-film coated GCE has great potential in practical analysis. (orig.)

  15. Group-decoupled multi-group pin power reconstruction utilizing nodal solution 1D flux profiles

    International Nuclear Information System (INIS)

    Yu, Lulin; Lu, Dong; Zhang, Shaohong; Wang, Dezhong

    2014-01-01

    Highlights: • A direct fitting multi-group pin power reconstruction method is developed. • The 1D nodal solution flux profiles are used as the condition. • The least square fit problem is analytically solved. • A slowing down source improvement method is applied. • The method shows good accuracy for even challenging problems. - Abstract: A group-decoupled direct fitting method is developed for multi-group pin power reconstruction, which avoids both the complication of obtaining 2D analytic multi-group flux solution and any group-coupled iteration. A unique feature of the method is that in addition to nodal volume and surface average fluxes and corner fluxes, transversely-integrated 1D nodal solution flux profiles are also used as the condition to determine the 2D intra-nodal flux distribution. For each energy group, a two-dimensional expansion with a nine-term polynomial and eight hyperbolic functions is used to perform a constrained least square fit to the 1D intra-nodal flux solution profiles. The constraints are on the conservation of nodal volume and surface average fluxes and corner fluxes. Instead of solving the constrained least square fit problem numerically, we solve it analytically by fully utilizing the symmetry property of the expansion functions. Each of the 17 unknown expansion coefficients is expressed in terms of nodal volume and surface average fluxes, corner fluxes and transversely-integrated flux values. To determine the unknown corner fluxes, a set of linear algebraic equations involving corner fluxes is established via using the current conservation condition on all corners. Moreover, an optional slowing down source improvement method is also developed to further enhance the accuracy of the reconstructed flux distribution if needed. Two test examples are shown with very good results. One is a four-group BWR mini-core problem with all control blades inserted and the other is the seven-group OECD NEA MOX benchmark, C5G7

  16. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    International Nuclear Information System (INIS)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin; Wu, Wen-jun; Zhao, Ping; Wang, Cheng; Bai, Xu-duo; Wang, Wen

    2013-01-01

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor of electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R ct of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I 3 − reduction can potentially be used as the CE in a high-performance DSSC

  17. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jun; Niu, Hai-jun; Wen, Hai-lin [Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Department of Macromolecular Material and Engineering, Heilongjiang University, Harbin 150086 (China); Wu, Wen-jun; Zhao, Ping [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Wang, Cheng; Bai, Xu-duo [Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Department of Macromolecular Material and Engineering, Heilongjiang University, Harbin 150086 (China); Wang, Wen, E-mail: haijunniu@hotmail.com [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150080 (China)

    2013-03-15

    Graphical abstract: The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. Highlights: ► MWCNT/PPy composite film prepared by electrodeposition layer by layer was used as counter electrode in DSSC. ► The overall energy conversion efficiency of the DSSC was 3.78% by employing the composite film. ► The energy conversion efficiency increased by 41.04% compared with efficiency of 2.68% by using the single MWCNT film. ► We analyzed the mechanism and influence factor of electron transfer in the composite electrode by EIS. - Abstract: For the purpose of replacing the precious Pt counter electrode in dye-sensitized solar cells (DSSCs) with higher energy conversion efficiency, multi-wall carbon nanotube (MWCNT)/polypyrrole (PPy) double layers film counter electrode (CE) was fabricated by electrophoresis and cyclic voltammetry (CV) layer by layer. Atom force microscopy (AFM), scanning electron microscopy (SEM) and transmission electron microscope (TEM) demonstrated the morphologies of the composite electrode and Raman spectroscopy verified the PPy had come into being. The overall energy conversion efficiency of the DSSC employing the MWCNT/PPy CE reached 3.78%. Compared with a reference DSSC using single MWCNT film CE with efficiency of 2.68%, the energy conversion efficiency was increased by 41.04%. The result of impedance showed that the charge transfer resistance R{sub ct} of the MWCNT/PPy CE had the lowest value compared to that of MWCNT or PPy electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I{sub 3}{sup −} reduction can potentially be used as the CE in a high-performance DSSC.

  18. Nanomolar simultaneous determination of levodopa and serotonin at a novel carbon ionic liquid electrode modified with Co(OH)2 nanoparticles and multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Babaei, Ali; Taheri, Ali Reza; Aminikhah, Majid

    2013-01-01

    Highlights: ► A novel modified carbon ionic liquid electrode is fabricated as Nafion/Co(OH) 2 –MWCNTs/CILE. ► The modified electrode was used as the new sensor for nanomolar simultaneous determinations of L-dopa and serotonin. ► The electrode was impermeable to uric acid and ascorbic acid and other anionic species as electroactive coexistent compounds. ► Several techniques as cyclic voltammetry, differential pulse voltammetry and chronoamperometry were used for investigations. ► The proposed sensor showed a wide linear range, low detection limit, high stability and good reproducibility. -- Abstract: A novel modified carbon ionic liquid electrode is prepared as an electrochemical sensor for simultaneous determination of levodopa (L-dopa) and serotonin (5-HT). The experimental results suggest that a carbon ionic liquid electrode modified with multi-walled carbon nanotubes and cobalt hydroxide nanoparticles, and coated with Nafion (Nafion/Co(OH) 2 –MWCNTs/CILE), accelerates the electron transfer reactions of L-dopa and 5-HT. In addition it shows no significant interferences of uric acid and ascorbic acid as electroactive coexistent compounds with L-dopa and 5-HT in biological systems. The fabricated sensor revealed some advantages such as convenient preparation, good stability and high sensitivity toward 5-HT and L-dopa determination. The DPV data showed that the obtained anodic peak currents were linearly dependent on the L-dopa and 5-HT concentrations in the range of 0.25–225 and 0.05–75 μmol L −1 , respectively. The applicability of the modified electrode was demonstrated by simultaneous determination of 5-HT and L-dopa in human serum

  19. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes.

    Science.gov (United States)

    Sun, Wei; Cao, Lili; Deng, Ying; Gong, Shixing; Shi, Fan; Li, Gaonan; Sun, Zhenfan

    2013-06-05

    A graphene (GR) and multi-walled carbon nanotubes (MWCNT) hybrid was prepared and modified on a 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE). Hemoglobin (Hb) was immobilized on GR-MWCNT/CILE surface with Nafion as the film forming material and the modified electrode was denoted as Nafion/Hb-GR-MWCNT/CILE. Spectroscopic results revealed that Hb molecules retained its native structure in the GR-MWCNT hybird. Electrochemical behaviors of Hb were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks obtained, which indicated that direct electron transfer of Hb was realized in the hybrid modified electrode. The result could be attributed to the synergistic effects of GR-MWCNT hybrid with enlarged surface area and improved conductivity through the formation of a three-dimensional network. Electrochemical parameters of the immobilized Hb on the electrode surface were further calculated with the results of the electron transfer number (n) as 1.03, the charge transfer coefficient (a) as 0.58 and the electron-transfer rate constant (ks) as 0.97 s(-1). The Hb modified electrode showed good electrocatalytic ability toward the reduction of different substrates such as trichloroacetic acid in the concentration range from 0.05 to 38.0 mmol L(-1) with a detection limit of 0.0153 mmol L(-1) (3σ), H2O2 in the concentration range from 0.1 to 516.0 mmol L(-1) with a detection limit of 34.9 nmol/L (3σ) and NaNO2 in the concentration range from 0.5 to 650.0 mmol L(-1) with a detection limit of 0.282 μmol L(-1) (3σ). So the proposed electrode had the potential application in the third-generation electrochemical biosensors without mediator. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The measurement of gas–liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    International Nuclear Information System (INIS)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-01-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas–liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas–liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas–liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas–liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy. (paper)

  1. Sensitive warfarin sensor based on cobalt oxide nanoparticles electrodeposited at multi-walled carbon nanotubes modified glassy carbon electrode (CoxOyNPs/MWCNTs/GCE)

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Solgi, Mohammad

    2017-01-01

    In this work, cobalt oxide nanoparticles were electrodeposited on multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE) to develop a new sensor for warfarin determination. The modified electrodes were characterized by cyclic voltammetry, scanning electron microscopy (SEM) along with energy dispersive x-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The presence of cobalt oxide nanoparticles on the electrode surface enhanced the warfarin accumulation and its result was the improvement in the electrochemical response. The effect of various parameters such as pH, scan rate, accumulation potential, accumulation time and pulse amplitude on the sensor response were investigated. Under optimal conditions, the differential pulse adsorptive anodic stripping voltammetric (DPASV) response of the modified electrode was linear in the ranges of 8 nM to 50 μM and 50 μM to 800 μM with correlation coefficients greater than 0.998. The limit of detection of the proposed method was 3.3 nM. The proposed sensor was applied to determine warfarin in urine and plasma samples.

  2. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Nidhi [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India); Pundir, Chandra Shekhar, E-mail: pundircs@rediffmail.com [Department of Biochemistry, M.D. University, Rohtak 124001, Haryana (India)

    2011-09-02

    Graphical abstract: The stepwise amperometric biosensor fabrication process and immobilized acetylcholinesterase inhibition in pesticide solution. Highlights: {center_dot} Constructed a novel composite material using Fe{sub 3}O{sub 4}NP and c-MWCNT at Au electrode for electrocatalysis. {center_dot} The properties of nanoparticles modified electrodes were studied by SEM, FTIR, CVs and EIS. {center_dot} The biosensor exhibited good sensitivity (0.475 mA {mu}M{sup -1}) {center_dot} The half life of electrode was 2 months. {center_dot} The sensor was suitable for trace detection of OP pesticide residues in milk and water. - Abstract: An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe{sub 3}O{sub 4}NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe{sub 3}O{sub 4}/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe{sub 3}O{sub 4}NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 deg. C, 600 {mu}M substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1-40 nM, 0.1-50 nM, 1-50 nM and 10-100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The

  3. Molecular depth profiling of multi-layer systems with cluster ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Juan [Department of Chemistry, Penn State University, University Park, PA 16802 (United States); Winograd, Nicholas [Department of Chemistry, Penn State University, University Park, PA 16802 (United States)]. E-mail: nxw@psu.edu

    2006-07-30

    Cluster bombardment of molecular films has created new opportunities for SIMS research. To more quantitatively examine the interaction of cluster beams with organic materials, we have developed a reproducible platform consisting of a well-defined sugar film (trehalose) doped with peptides. Molecular depth profiles have been acquired with these systems using C{sub 60} {sup +} bombardment. In this study, we utilize this platform to determine the feasibility of examining buried interfaces for multi-layer systems. Using C{sub 60} {sup +} at 20 keV, several systems have been tested including Al/trehalose/Si, Al/trehalose/Al/Si, Ag/trehalose/Si and ice/trehalose/Si. The results show that there can be interactions between the layers during the bombardment process that prevent a simple interpretation of the depth profile. We find so far that the best results are obtained when the mass of the overlayer atoms is less than or nearly equal to the mass of the atoms in buried molecules. In general, these observations suggest that C{sub 60} {sup +} bombardment can be successfully applied to interface characterization of multi-layer systems if the systems are carefully chosen.

  4. Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples.

    Science.gov (United States)

    Rezaei, Behzad; Damiri, Sajjad

    2010-11-15

    A study of the electrochemical behavior and determination of RDX, a high explosive, is described on a multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) using adsorptive stripping voltammetry and electrochemical impedance spectroscopy (EIS) techniques. The results indicated that MWCNTs electrode remarkably enhances the sensitivity of the voltammetric method and provides measurements of this explosive down to the sub-mg/l level in a wide pH range. The operational parameters were optimized and a sensitive, simple and time-saving cyclic voltammetric procedure was developed for the analysis of RDX in ground and tap water samples. Under optimized conditions, the reduction peak have two linear dynamic ranges of 0.6-20.0 and 8.0-200.0 mM with a detection limit of 25.0 nM and a precision of <4% (RSD for 8 analysis). Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue)

    International Nuclear Information System (INIS)

    Dai, Juan; Deng, Fei; He, Shuang; Deng, Dongli; Yuan, Yali; Zhang, Jinzhong

    2016-01-01

    An amperometric nitrite sensor modified with multi-walled carbon nanotubes (MWCNTs) and poly(toluidine blue) (PTB) on glassy carbon electrode was constructed. The surface morphology of the composite- modified electrode was characterized by scanning electron microscopy, and the electrochemical response behavior and electrocatalytic oxidation mechanism of nitrite were investigated by cyclic voltammetry. The high surface-to-volume ratio of MWCNTs and PTB brings the electrochemical sensing unit and nitrite in full contact. This renders the electrochemical response extremely sensitive to nitrite. Under the optimal measurement conditions and a working voltage of 0.73 V (vs. SCE), a linear relationship is obtained between the oxidation peak current and nitrite concentration in the range of 39 nM–1.1 mM, and the limit of detection is lowered to 19 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitrite in greenhouse soils. (author)

  6. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems.

    Science.gov (United States)

    Jain, Rajeev; Sharma, Sanjay

    2012-02-01

    A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200-1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability.

  7. Effective source size, yield and beam profile from multi-layered bremsstrahlung targets

    International Nuclear Information System (INIS)

    Svensson, R.; Brahme, A.

    1996-01-01

    Modern conformal radiotherapy benefits from heterogeneous dose delivery using scanned narrow bremsstrahlung beams of high energy in combination with dynamic double focused multi-leaf collimation and purging magnets. When using a purging magnet to remove electrons and positrons the target space is limited and unorthodox thin multi-layered targets are needed. A computational technique has therefore been developed to determine the forward yield and the angular distributions of the bremsstrahlung beam as well as the size and location of the effective and the virtual photon point source for arbitrary multi-layer bremsstrahlung targets. The Gaussian approximation of the diffusion equation for the electrons has been used and convolved with the bremsstrahlung production process. For electrons with arbitrary emittance impinging on targets of any multi-layer and atomic number combination, the model is well applicable, at least for energies in the range 1-100 MeV. The intrinsic bremsstrahlung photon profile has been determined accurately by deconvolving the electron multiple scattering process from thin experimental beryllium target profiles. For electron pencil beams incident on a target of high density and atomic number such as tungsten, the size of the effective photon source stays at around a tenth of a millimetre. The effective photon source for low-Z materials such as Be, C and Al is located at depths from 3-7 mm in the target, decreasing with increasing atomic number. The effective photon source at off-axis positions then moves out considerably from the central axis, which should be considered when aligning collimators. For high-Z materials such as tungsten, the location of the effective photon source is at a few tenths of a millimetre deep. The virtual photon point source is located only a few tenths of a millimetre upstream of the effective photon source both for high- and low-Z materials. For 50 MeV electrons incident on multi-layered full range targets the radial

  8. FISH & CHIPS: Four Electrode Conductivity / Salinity Sensor on a Silicon Multi-sensor chip for Fisheries Research

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Olafsdottir, Iris; Olesen, M.

    2005-01-01

    The design and fabrication of a single chip silicon salinity, temperature, pressure and light multisensor is presented. The behavior 2- and 4-electrode conductivity microsensors are described and methods for precise determination of water conductivity are given......The design and fabrication of a single chip silicon salinity, temperature, pressure and light multisensor is presented. The behavior 2- and 4-electrode conductivity microsensors are described and methods for precise determination of water conductivity are given...

  9. Investigating Surface and Interface Phenomena in LiFeBO3 Electrodes Using Photoelectron Spectroscopy Depth Profiling

    DEFF Research Database (Denmark)

    Maibach, Julia; Younesi, Reza; Schwarzburger, Nele

    2014-01-01

    The formation of surface and interface layers at the electrodes is highly important for the performance and stability of lithium ion batteries. To unravel the surface composition of electrode materials, photoelectron spectroscopy (PES) is highly suitable as it probes chemical surface and interface...... properties with high surface sensitivity. Additionally, by using synchrotron-generated hard x-rays as excitation source, larger probing depths compared to in-house PES can be achieved. Therefore, the combination of in-house soft x-ray photoelectron spectroscopy and hard x-ray photoelectron spectroscopy...

  10. Highly sensitive simultaneous electrochemical determination of trace amounts of Pb(II) and Cd(II) using a carbon paste electrode modified with multi-walled carbon nanotubes and a newly synthesized Schiff base

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Ghaedi, Hamed; Madrakian, Tayyebeh; Rezaeivala, Majid

    2013-01-01

    Highlights: ► A new chemically modified carbon paste electrode was constructed and used. ► A new Schiff base and multi-walled carbon nanotube was used as modifiers. ► The electrochemical properties of the modified electrode were studied. ► The electrode was used to the simultaneous determination of Pb 2+ and Cd 2+ . -- Abstract: A new chemically modified electrode was constructed for rapid, simple, accurate, selective and highly sensitive simultaneous determination of lead and cadmium using square wave anodic stripping voltammetry (SWASV). The electrode was prepared by incorporation of new synthesized Schiff base and multi-walled carbon nanotubes (MWCNT) in carbon paste electrode. The limit of detection was found to be 0.25 ng mL −1 and 0.74 ng mL −1 for Pb 2+ and Cd 2+ , respectively. The stability constants of the complexes of the ligand with several metal cations in ethanol medium were determined. The effects of different cations and anions on the simultaneous determination of metal ions were studied and it was found that the electrode is highly selective. The proposed chemically modified electrode was used for the determination of lead and cadmium in several foodstuffs and water samples

  11. A Multi-Functional Microelectrode Array Featuring 59760 Electrodes, 2048 Electrophysiology Channels, Stimulation, Impedance Measurement and Neurotransmitter Detection Channels.

    Science.gov (United States)

    Dragas, Jelena; Viswam, Vijay; Shadmani, Amir; Chen, Yihui; Bounik, Raziyeh; Stettler, Alexander; Radivojevic, Milos; Geissler, Sydney; Obien, Marie; Müller, Jan; Hierlemann, Andreas

    2017-06-01

    Biological cells are characterized by highly complex phenomena and processes that are, to a great extent, interdependent. To gain detailed insights, devices designed to study cellular phenomena need to enable tracking and manipulation of multiple cell parameters in parallel; they have to provide high signal quality and high spatiotemporal resolution. To this end, we have developed a CMOS-based microelectrode array system that integrates six measurement and stimulation functions, the largest number to date. Moreover, the system features the largest active electrode array area to date (4.48×2.43 mm 2 ) to accommodate 59,760 electrodes, while its power consumption, noise characteristics, and spatial resolution (13.5 μm electrode pitch) are comparable to the best state-of-the-art devices. The system includes: 2,048 action-potential (AP, bandwidth: 300 Hz to 10 kHz) recording units, 32 local-field-potential (LFP, bandwidth: 1 Hz to 300 Hz) recording units, 32 current recording units, 32 impedance measurement units, and 28 neurotransmitter detection units, in addition to the 16 dual-mode voltage-only or current/voltage-controlled stimulation units. The electrode array architecture is based on a switch matrix, which allows for connecting any measurement/stimulation unit to any electrode in the array and for performing different measurement/stimulation functions in parallel.

  12. Optimal Selection of Clustering Algorithm via Multi-Criteria Decision Analysis (MCDA for Load Profiling Applications

    Directory of Open Access Journals (Sweden)

    Ioannis P. Panapakidis

    2018-02-01

    Full Text Available Due to high implementation rates of smart meter systems, considerable amount of research is placed in machine learning tools for data handling and information retrieval. A key tool in load data processing is clustering. In recent years, a number of researches have proposed different clustering algorithms in the load profiling field. The present paper provides a methodology for addressing the aforementioned problem through Multi-Criteria Decision Analysis (MCDA and namely, using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS. A comparison of the algorithms is employed. Next, a single test case on the selection of an algorithm is examined. User specific weights are applied and based on these weight values, the optimal algorithm is drawn.

  13. Multi-elemental profile of some Brazilian make-up products by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dalmazio, Ilza; Menezes, Maria Angela de B.C., E-mail: id@cdtn.b, E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Reator e Tecnicas Analiticas. Lab. de Ativacao Neutronica

    2011-07-01

    Recent works have shown that analysis in cosmetics and beauty products from the European and Asian markets indicate the presence of U, Th and rare earths besides other trace elements. Considering these previous findings and health issues, it would be valuable to obtain information on elements in cosmetics available in the Brazilian market. The purpose of this study was to acquire a multi-elemental profile of some Brazilian make-up products of diverse brands. Samples of eye shadow, liquid base, facial concealer, lipstick, and compact face powder were analyzed applying neutron activation analysis, k{sub 0}-standardization method at CDTN/CNEN, using the TRIGA Mark I IPR-R1 research reactor. Concentrations of more than 30 elements in samples are presented and it was found elements included in Brazilian National Health Surveillance Agency prohibitive list, rare earths, Th and U in a minimum of two cosmetic samples. (author)

  14. Multi-elemental profile of some Brazilian make-up products by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Dalmazio, Ilza; Menezes, Maria Angela de B.C.

    2011-01-01

    Recent works have shown that analysis in cosmetics and beauty products from the European and Asian markets indicate the presence of U, Th and rare earths besides other trace elements. Considering these previous findings and health issues, it would be valuable to obtain information on elements in cosmetics available in the Brazilian market. The purpose of this study was to acquire a multi-elemental profile of some Brazilian make-up products of diverse brands. Samples of eye shadow, liquid base, facial concealer, lipstick, and compact face powder were analyzed applying neutron activation analysis, k 0 -standardization method at CDTN/CNEN, using the TRIGA Mark I IPR-R1 research reactor. Concentrations of more than 30 elements in samples are presented and it was found elements included in Brazilian National Health Surveillance Agency prohibitive list, rare earths, Th and U in a minimum of two cosmetic samples. (author)

  15. Fast estimation of defect profiles from the magnetic flux leakage signal based on a multi-power affine projection algorithm.

    Science.gov (United States)

    Han, Wenhua; Shen, Xiaohui; Xu, Jun; Wang, Ping; Tian, Guiyun; Wu, Zhengyang

    2014-09-04

    Magnetic flux leakage (MFL) inspection is one of the most important and sensitive nondestructive testing approaches. For online MFL inspection of a long-range railway track or oil pipeline, a fast and effective defect profile estimating method based on a multi-power affine projection algorithm (MAPA) is proposed, where the depth of a sampling point is related with not only the MFL signals before it, but also the ones after it, and all of the sampling points related to one point appear as serials or multi-power. Defect profile estimation has two steps: regulating a weight vector in an MAPA filter and estimating a defect profile with the MAPA filter. Both simulation and experimental data are used to test the performance of the proposed method. The results demonstrate that the proposed method exhibits high speed while maintaining the estimated profiles clearly close to the desired ones in a noisy environment, thereby meeting the demand of accurate online inspection.

  16. Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode.

    Science.gov (United States)

    Yu, Yanyan; Chen, Zuanguang; He, Sijing; Zhang, Beibei; Li, Xinchun; Yao, Meicun

    2014-02-15

    In this work, poly (diallyldimethylammonium chloride) (PDDA)-capped gold nanoparticles (AuNPs) functionalized graphene (G)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were fabricated. Based on the electrostatic attraction, the G/MWCNTs hybrid material can be decorated with AuNPs uniformly and densely. The new hierarchical nanostructure can provide a larger surface area and a more favorable microenvironment for electron transfer. The AuNPs/G/MWCNTs nanocomposite was used as a novel immobilization platform for glucose oxidase (GOD). Direct electron transfer (DET) was achieved between GOD and the electrode. Field emission scanning electron microscopy (FESEM), UV-vis spectroscopy and cyclic voltammetry (CV) were used to characterize the electrochemical biosensor. The glucose biosensor fabricated based on GOD electrode modified with AuNPs/G/MWCNTs demonstrated satisfactory analytical performance with high sensitivity (29.72mAM(-1)cm(-2)) and low limit of detection (4.8 µM). The heterogeneous electron transfer rate constant (ΚS) and the apparent Michaelis-Menten constant (Km) of GOD were calculated to be 11.18s(-1) and 2.09 mM, respectively. With satisfactory selectivity, reproducibility, and stability, the nanostructure we proposed offered an alternative for electrode fabricating and glucose biosensing. © 2013 Elsevier B.V. All rights reserved.

  17. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Wu Kangbing; Hu Shengshui; Fei Junjie; Bai Wen

    2003-01-01

    A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd 2+ and Pb 2+ first adsorb onto the surface of a MWNT film coated GCE and then reduce at -1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at -0.88 and -0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I - significantly enhances the stripping peak currents since it induces Cd 2+ and Pb 2+ to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd 2+ from 2.5x10 -8 to 1x10 -5 mol/l and with that of Pb 2+ from 2x10 -8 to 1x10 -5 mol/l. The lowest detectable concentrations of Cd 2+ and Pb 2+ are estimated to be 6x10 -9 and 4x10 -9 mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd 2+ and Pb 2+ in water samples

  18. Study of the interaction of 6-mercaptopurine with protein by microdialysis coupled with LC and electrochemical detection based on functionalized multi-wall carbon nanotubes modified electrode.

    Science.gov (United States)

    Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Zhang, Wen; Shi, Guo-Yue; Yamamoto, Katsunobu; Jin, Li-Tong

    2003-07-14

    Microdialysis sampling coupled with liquid chromatography and electrochemical detection (LC-ECD) was developed and applied to study the interaction of 6-Mercaptopurine (6-MP) with bovine serum albumin (BSA). In the LC-ECD, the multi-wall carbon nanotubes fuctionalized with carboxylic groups modified electrode (MWNT-COOH CME) was used as the working electrode for the determination of 6-MP. The results indicated that this chemically modified electrode (CME) exhibited efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP were linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N = 3) of 2.0 x 10(-7) mol l(-1). The method had been successfully applied to assess the association constant (K) and the number of the binding sites (n) on a BSA molecular, which calculated by Scatchard equation, were 3.97 x 10(3) mol(-1) l and 1.51, respectively. This method provided a fast, sensible and simple technique for the study of drug-protein interactions.

  19. Determination of pulse profile characteristics of multi spot retinal photocoagulation lasers.

    Science.gov (United States)

    Clarkson, Douglas McG; Makhzoum, Osama; Blackburn, John

    2015-10-01

    A system is described for determination of discrete pulse train characteristics of multi spot laser delivery systems for retinal photocoagulation. While photodiodes provide an ideal detection mechanism, measurement artifacts can potentially be introduced by the spatial pattern of the delivered beam relative to a discrete photodiode element. This problem was overcome by use of an integrating sphere to produce a uniform light field at the site of the photodiode detector. A basic current driven photodiode detection circuit incorporating an operational amplifier was used to generate a signal captured by a commercially available USB interface device at a rate of 10 kHz. Studies were undertaken of a Topcon Pascal Streamline laser system with output at a wavelength of 577 nm (yellow). This laser features the proprietary feature of 'Endpoint Management' ™ where pulses can be delivered as 100% of set energy levels with visible reaction on the retina and also at a reduced energy level to create potentially non visible but clinically effective lesions. Using the pulse train measurement device it was identified that the 'Endpoint Management' ™ delivery mode of pulses of lower energy was achieved by reducing the pulse duration of pulses for non-visible effect pulses while maintaining consistent beam power levels within the delivered pulse profile. The effect of eye geometry in determining safety and effectiveness of multi spot laser delivery for retinal photocoagulation is discussed. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection.

    Science.gov (United States)

    Inoue, K; Kato, K; Yoshimura, Y; Makino, T; Nakazawa, H

    2000-11-10

    A simple and sensitive method using high-performance liquid chromatography with multi-electrode electrochemical detection (HPLC-ED) including a coulometric array of four electrochemical sensors has been developed for the determination of bisphenol A in water and human serum. For good separation and detection of bisphenol A, a CAPCELL PAK UG 120 C18 reversed-phase column and a mobile phase consisting of 0.3% phosphoric acid-acetonitrile (60:40) were used. The detection limit obtained by the HPLC-ED method was 0.01 ng/ml (0.5 pg), which was more than 3000-times higher than the detection limit obtained by the ultraviolet (UV) method, and more than 200-times higher than the detection limit obtained by the fluorescence (FL) method. Bisphenol A in water and serum samples was pretreated by solid-phase extraction (SPE) after removing possible contamination derived from a plastic SPE cartridges and water used for the pretreatment. A trace amount (ND approximately 0.013 ng/ml) of bisphenol A was detected from the parts of cartridges (filtration column, sorbent bed and frits) by extraction with methanol, and it was completely removed by washing with at least 15 ml of methanol in the operation process. The concentrations of bisphenol A in tap water and Milli-Q-purified water were found to be 0.01 and 0.02 ng/ml, respectively. For that reason, bisphenol A-free water was made to trap bisphenol A in water using an Empore disk. In every pretreatment, SPE methods using bisphenol A-free water and washing with 15 ml of methanol were done in water and serum samples. The yields obtained from the recovery tests using water to which 0.5 or 0.05 ng/ml of bisphenol A was added were 83.8 to 98.2%, and the RSDs were 3.4 to 6.1%, respectively. The yields obtained from the recovery tests by OASIS HLB using serum to which 1.0 ng/ml or 0.1 ng/ml of bisphenol A was added were 79.0% and 87.3%, and the RSDs were 5.1% and 13.5%, respectively. The limits of quantification in water and serum sample

  1. The distinctive gastric fluid proteome in gastric cancer reveals a multi-biomarker diagnostic profile

    Directory of Open Access Journals (Sweden)

    Eng Alvin KH

    2008-10-01

    Full Text Available Abstract Background Overall gastric cancer survival remains poor mainly because there are no reliable methods for identifying highly curable early stage disease. Multi-protein profiling of gastric fluids, obtained from the anatomic site of pathology, could reveal diagnostic proteomic fingerprints. Methods Protein profiles were generated from gastric fluid samples of 19 gastric cancer and 36 benign gastritides patients undergoing elective, clinically-indicated gastroscopy using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on multiple ProteinChip arrays. Proteomic features were compared by significance analysis of microarray algorithm and two-way hierarchical clustering. A second blinded sample set (24 gastric cancers and 29 clinically benign gastritides was used for validation. Results By significance analysyis of microarray, 60 proteomic features were up-regulated and 46 were down-regulated in gastric cancer samples (p Conclusion This simple and reproducible multimarker proteomic assay could supplement clinical gastroscopic evaluation of symptomatic patients to enhance diagnostic accuracy for gastric cancer and pre-malignant lesions.

  2. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection

    International Nuclear Information System (INIS)

    Salimi, Abdollah; MamKhezri, Hussein; Hallaj, Rahman; Zandi, Shiva

    2007-01-01

    In this study, multi-wall carbon nanotubes (MWCTs) is evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on iron-porphyrin. 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)P) adsorbed on MWCNTs immobilized on the surface of glassy carbon electrode. Cyclic voltammograms of the Fe(III)P-incorporated-MWCNTs indicate a pair of well-defined and nearly reversible redox couple with surface confined characteristics at wide pH range (2-12). The surface coverage (Γ) and charge transfer rate constant (k s ) of Fe(III)P immobilized on MWCNTs were 7.68 x 10 -9 mol cm -2 and 1.8 s -1 , respectively, indicating high loading ability of MWCNTs for Fe(III)P and great facilitation of the electron transfer between Fe(III)P and carbon nanotubes immobilized on the electrode surface. Modified electrodes exhibit excellent electrocatalytic activity toward reduction of ClO 3 - , IO 3 - and BrO 3 - in acidic solutions. The catalytic rate constants for catalytic reduction of bromate, chlorate and iodate were 6.8 x 10 3 , 7.4 x 10 3 and 4.8 x 10 2 M -1 s -1 , respectively. The hydrodynamic amperometry of rotating-modified electrode at constant potential versus reference electrode was used for detection of bromate, chlorate and iodate. The detection limit, linear calibration range and sensitivity for chlorate, bromate and iodate detections were 0.5 μM, 2 μM to 1 mM, 8.4 nA/μM, 0.6 μM, 2 μM to 0.15 mM, 11 nA/μM, and 2.5 μM, 10 μM to 4 mM and 1.5 nA/μM, respectively. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantages of this sensor. The obtained results show promising practical application of the Fe(III)P-MWCNTs-modified electrode as an amperometric sensor for chlorate, iodate and

  3. Modification of glassy carbon electrode with multi-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Nanotechnology Research Center of University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); E-mail: absalimi@uok.ac.ir; MamKhezri, Hussein [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Zandi, Shiva [Laboratory of Biochemistry, Kurdistan Medical University, Sanandaj (Iran, Islamic Republic of)

    2007-06-10

    In this study, multi-wall carbon nanotubes (MWCTs) is evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on iron-porphyrin. 5,10,15,20-Tetraphenyl-21H,23H-porphine iron(III) chloride (Fe(III)P) adsorbed on MWCNTs immobilized on the surface of glassy carbon electrode. Cyclic voltammograms of the Fe(III)P-incorporated-MWCNTs indicate a pair of well-defined and nearly reversible redox couple with surface confined characteristics at wide pH range (2-12). The surface coverage ({gamma}) and charge transfer rate constant (k {sub s}) of Fe(III)P immobilized on MWCNTs were 7.68 x 10{sup -9} mol cm{sup -2} and 1.8 s{sup -1}, respectively, indicating high loading ability of MWCNTs for Fe(III)P and great facilitation of the electron transfer between Fe(III)P and carbon nanotubes immobilized on the electrode surface. Modified electrodes exhibit excellent electrocatalytic activity toward reduction of ClO{sub 3} {sup -}, IO{sub 3} {sup -} and BrO{sub 3} {sup -} in acidic solutions. The catalytic rate constants for catalytic reduction of bromate, chlorate and iodate were 6.8 x 10{sup 3}, 7.4 x 10{sup 3} and 4.8 x 10{sup 2} M{sup -1} s{sup -1}, respectively. The hydrodynamic amperometry of rotating-modified electrode at constant potential versus reference electrode was used for detection of bromate, chlorate and iodate. The detection limit, linear calibration range and sensitivity for chlorate, bromate and iodate detections were 0.5 {mu}M, 2 {mu}M to 1 mM, 8.4 nA/{mu}M, 0.6 {mu}M, 2 {mu}M to 0.15 mM, 11 nA/{mu}M, and 2.5 {mu}M, 10 {mu}M to 4 mM and 1.5 nA/{mu}M, respectively. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantages of this sensor. The obtained results show promising practical

  4. Simultaneous determination of mycophenolate mofetil and its active metabolite, mycophenolic acid, by differential pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Soleimani, Mohammad; Afkhami, Abbas

    2014-09-01

    A highly sensitive electrochemical sensor for the simultaneous determination of mycophenolate mofetil (MPM) and mycophenolic acid (MPA) was fabricated by multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE). The electrochemical behavior of these two drugs was studied at the modified electrode using cyclic voltammetry and adsorptive differential pulse voltammetry. MPM and MPA were oxidized at the GCE during an irreversible process. DPV analysis showed two oxidation peaks at 0.87 V and 1.1 V vs. Ag/AgCl for MPM and an oxidation peak at 0.87 V vs. Ag/AgCl for MPA in phosphate buffer solution of pH 5.0. The MWCNTs/GCE displayed excellent electrochemical activities toward oxidation of MPM and MPA relative to the bare GCE. The experimental design algorithm was used for optimization of DPV parameters. The electrode represents linear responses in the range 5.0 × 10{sup −6} to 1.6 × 10{sup −4} mol L{sup −1} and 2.5 × 10{sup −6} mol L{sup −1} to 6.0 × 10{sup −5} mol L{sup −1} for MPM and MPA, respectively. The detection limit was found to be 9.0 × 10{sup −7} mol L{sup −1} and 4.0 × 10{sup −7} mol L{sup −1} for MPM and MPA, respectively. The modified electrode showed a good sensitivity and stability. It was successfully applied to the simultaneous determination of MPM and MPA in plasma and urine samples. - Highlights: • A new modified electrochemical sensor was constructed and used. • Multiwalled carbon nanotubes were used as the modifiers. • MPM and MPA were measured simultaneously at the low levels. • The sensor was used to the determination of MPA and MPM in real samples.

  5. Supercapacitor electrodes by direct growth of multi-walled carbon nanotubes on Al: a study of performance versus layer growth evolution

    International Nuclear Information System (INIS)

    Zhao, Fu; Vicenzo, Antonello; Hashempour, Mazdak; Bestetti, Massimiliano

    2014-01-01

    Supercapacitor electrodes were fabricated by direct growth of multi-walled carbon nanotubes (CNTs) on Al current collectors via a chemical vapor deposition process in the presence of a spin-coated Co-Mo catalyst. A detailed study of the dependence of the CNT layer structure and thickness on growth time set the basis for the assessment of supercapacitors assembled with the CNTs/Al electrodes. As the main features of the layer growth evolution, an increase in the population of finer CNTs and a shift from a random entanglement to a rough vertical alignment of nanotubes were noted with proceeding growth. The growth time influence on the performance of supercapacitors was in fact apparent. Particularly, the specific capacitance of CNTs/Al electrodes in 0.5 M K 2 SO 4 aqueous electrolyte increased from 35 to 80 F g −1 as the CNT layer thickness varied from 20 to 60 μm, with a concurrent loss in rate capability (knee frequency from 1 kHz to 60 Hz). The latter was excellent in general, arguably due to both a fast ion transport through the interconnected CNT network and a negligible contribution of the active layer/current collector contact to the equivalent series resistance (0.15–0.22 mΩ g), a distinct advantage of the direct growth fabrication method. Overall, a relatively simple process of direct growth of CNTs on Al foils is shown to be an effective method to fabricate supercapacitor electrodes, notably in the absence of special measures and processing steps finalized to a tight control of nanotubes growth and organization

  6. Determination of formation heterogeneity at a range of scales using novel multi-electrode resistivity scanning techniques

    International Nuclear Information System (INIS)

    Williams, G.M.; Jackson, P.D.; Ward, R.S.; Sen, M.A.; Meldrum, P.; Lovell, M.

    1991-01-01

    The traditional method of measuring ground resistivity involves passing a current through two outer electrodes, measuring the potential developed across two electrodes in between, and applying Ohm's Law. In the RESCAN system developed by the British Geological Survey, each electrode can be electronically selected and controlled by software to either pass current or measure potential. Thousands of electrodes can be attached to the system either in 2-D surface arrays or along special plastic covered probes driven vertically into the ground or emplaced in boreholes. Under computer control, the resistivity distribution within the emplaced array can be determined automatically with unprecedented detail and speed, and may be displayed as an image. So far, the RESCAN system has been applied at the meso-scale in monitoring the radial migration of an electrolyte introduced into a recharge well in an unconsolidated aquifer; and CORSCAN at the micro-scale on drill cores to evaluate spatial variability in physical properties. The RESCAN technique has considerable potential for determining formation heterogeneity at different scales and provides a basis for developing stochastic models of groundwater and solute flow in heterogeneous systems. 13 figs.; 1 tab.; 12 refs

  7. Performance enhancement of III–V multi-junction solar cells using indium-tin-oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Yu-Cheng [Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Ou, Sin-Liang [Department of Materials Science and Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Wu, Fan-Lei [Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Horng, Ray-Hua, E-mail: rhh@nctu.edu.tw [Graduate Institute of Precision Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-08-01

    InGaP/GaAs dual-junction solar cells were prepared on p-type GaAs substrates by metalorganic chemical vapor deposition. Three types of front-side electrodes, which included AuGe/Au metal-finger, ITO-finger, and ITO-overcoated, were individually fabricated on the devices and denoted as samples A, B, and C, respectively. The thickness of ITO film is 200 nm, and its transmittance can reach 99% in the visible region. Based on the current density-voltage (J-V) measurement, the short-circuit current density (J{sub sc}) of samples A, B, and C are 8.13, 9.35, and 10.90 mA/cm{sup 2}, while the conversion efficiencies of these three samples are evaluated to be 15.45%, 18.14%, and 20.24%, respectively. This reveals that sample C possesses 31.0% enhancement in the conversion efficiency compared to that of sample A. Additionally, the series resistances (Rs) of samples A, B, and C are 21.43, 22.94, and 6.71 Ω-cm{sup 2}, respectively. The lowest Rs occurred in sample C can be attributed to the elimination of the lateral resistance between electrodes because this device was fabricated with the ITO-overcoated front-side electrode. In sample C, since the ITO front-side electrode can cover overall surface of the device, all regions on the sample surface can extract the electrons, leading to the highest J{sub sc}. - Highlights: • The InGaP/GaAs dual-junction solar cells were prepared on p-type GaAs substrates. • The device was prepared with an ITO-overcoat electrode directly on the n{sup +}-GaAs layer. • This cell has 31.0% enhancement in the η compared to that with an AuGe/Au electrode. • This device possesses the lowest R{sub s} of 6.71 Ω-cm{sup 2} owing to the elimination of R{sub L}. • ITO-overcoat electrode acts a dual role both as the TCL and an anti-reflection layer.

  8. Root profile in Multi-layered Dehesas: an approach to plant-to-plant Interaction

    Science.gov (United States)

    Rolo, V.; Moreno, G.

    2009-04-01

    Assessing plant-to-plant relationship is a key issue in agroforestry systems. Due to the sessile feature of plants most of these interactions take place within a restricted space, so characterizing the zone where the plant alters its environment is important to find overlapping areas where the facilitation or competition could occur. Main part of plan-to-plant interactions in the dehesa are located at belowground level, thus the main limited resources in Mediterranean ecosystems are soil nutrient and water. Hence a better knowledge of rooting plant profile can be useful to understand the functioning of the dehesa. The Iberian dehesa has always been considered as a silvopastoral system where, at least, two strata of vegetation coexist: native grasses and trees. However the dehesa is also a diverse system where cropland and encroached territories have been systematically combined, more or less periodically, with native pasture in order to obtain agricultural, pastoral and forestry outputs. These multipurpose mosaic-type systems generate several scenarios where the plant influence zone may be overlapped and the interaction, competition or facilitation, between plants can play an important role in the ecosystem functioning in terms of productivity and stability. In the present study our aim was to characterize the rooting profile of multi-layered dehesas in order to understand the competitive, and/or facilitative, relationships within the different plant strata. The root profile of Quercus ilex subsp. ballota, Cistus ladanifer, Retama spaherocarpa and natural grasses was studied. So 48 trenches, up to 2 meters deep, were excavated in 4 different environments: (i) grass; (ii) tree-grass; (iii) tree-shrub and (iv) tree-shrub-grass (12 trenches in each environment). The study was carried out in 4 dehesas, 2 encroached with C. ladanifer and 2 with R. spaherocarpa. In every trench soil samples were taken each 20 cm. Subsequently, all samples were sieved using different mesh

  9. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  10. Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment

    International Nuclear Information System (INIS)

    Ren Jingyu; Qu Guangzhou; Liang Dongli; Hu Shibin; Wang Tiecheng

    2015-01-01

    A discharge plasma reactor with a point-to-plane structure was widely studied experimentally in wastewater treatment. In order to improve the utilization efficiency of active species and the energy efficiency of this kind of discharge plasma reactor during wastewater treatment, the electrode configuration of the point-to-plane corona discharge reactor was studied by evaluating the effects of discharge spacing and adjacent point distance on discharge power and discharge energy density, and then dye-containing wastewater decoloration experiments were conducted on the basis of the optimum electrode configuration. The experimental results of the discharge characteristics showed that high discharge power and discharge energy density were achieved when the ratio of discharge spacing to adjacent point distance (d/s) was 0.5. Reactive Brilliant Blue (RBB) wastewater treatment experiments presented that the highest RBB decoloration efficiency was observed at d/s of 0.5, which was consistent with the result obtained in the discharge characteristics experiments. In addition, the biodegradability of RBB wastewater was enhanced greatly after discharge plasma treatment under the optimum electrode configuration. RBB degradation processes were analyzed by GC-MS and IC, and the possible mechanism for RBB decoloration was also discussed. (paper)

  11. Photoelectrochemical performance of multi-layered BiOx–TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water

    International Nuclear Information System (INIS)

    Park, Hyunwoong; Bak, Ayoung; Ahn, Yong Yoon; Choi, Jina; Hoffmannn, Michael R.

    2012-01-01

    Highlights: ► We demonstrated that the electrocatalytic performance of BiO x –TiO 2 anodes for the degradation of aqueous phenol could be highly boosted by light irradiation. ► Although BiO x –TiO 2 anodes have been originally developed as the electrocatalytic anodes that operate in the absence of light by degeneratively doping Bi in TiO 2 , the presence of TiO 2 made them retain photoelectrocatalytic activity as well. ► Such dual functionality of BiO x –TiO 2 electrodes with high synergy effects may be directly used for water treatment with simultaneous hydrogen production from water. - Abstract: Multi-layered BiO x –TiO 2 electrodes were used for the oxidation of chemical contaminants coupled with the production of H 2 characterized by a synergistic enhancement. The BiO x –TiO 2 electrodes were composed of a mixed-metal oxide array involving an under layer of TaO x –IrO x , a middle layer of BiO x –SnO 2 , and a top layer of BiO x –TiO 2 deposited in a series on both sides of Ti foil. Cyclic voltammograms showed that the BiO x –TiO 2 electrodes had an electrocatalytic activity for oxidation of phenol that was enhanced by 70% under illumination with AM 1.5 light. When the BiO x –TiO 2 anode was coupled with a stainless steel cathode in a Na 2 SO 4 electrolyte with phenol and irradiated with UV light at an applied DC voltage, the anodic phenol oxidation rate and the cathodic H 2 production rates were enhanced by factors of four and three, respectively, as compared to the sum of each light irradiation and direct DC electrolysis. These synergistic effects depend on the specific electrode composition and decrease on TaO x –IrO x and BiO x –SnO 2 anodes in the absence of a top layer of BiO x –TiO 2 . These results indicate that the BiO x –TiO 2 layer functions as the key photo-electrocatalyst. The heavy doping level of Bi (25 mol%) in TiO 2 increases the electric conductivity of the parent TiO 2 .

  12. MULTI-FOLD, SEISMIC-STYLE TDEM INDUCTION OFFSET PROFILING AT KENTLAND FARMS, VA

    Science.gov (United States)

    Kazlauskas, E. M.; Weiss, C. J.

    2009-12-01

    An outstanding question in Valley and Ridge geology is the geomorphological history and hydrologic framework of the New River terraces. And while depth to bedrock on the upper terraces remains unknown, knowledge of the bedrock interface is key to addressing two specific issues: What is the geometry and connectivity of karst features such as sinkholes and what is the structure and depositional history of these terraces? To answer these questions, Kentland Farms (located in the Valley and Ridge of Southwest Virginia) has been chosen as the study site for its exceptional development of terrace deposits, nearly unrestricted access to its grounds, sparse vegetation coverage, and numerous sinkholes with a clear topographic expression. The Kentland Farms study area is characterized by heavily weathered, fluvial terrace deposits ranging from a few meters thickness to an estimated 70 m, overlying a karstic, Cambrian aged Elbrook Formation limestone. The terrace deposits consist of weathered clay units of varying composition with interbedded cobble and gravel horizons. The nature of the underlying bedrock coupled with the complex structure of the terrace deposits present difficulties in location of the bedrock interface. Due to complicated geology, a novel, multi-fold, seismic-style, Time Domain Electromagnetic (TDEM) induction survey was conducted in order to provide a more robust data set than a traditional common offset survey as well as to increase lateral resolution. This approach consists of taking multiple transmitter “shots” at a fixed position with a spread of receiver locations at fixed offset intervals (10m in this survey). The procedure is then repeated by moving the transmitter one interval at a time until the line is complete. 1-D inversions generated by using different transmitter-receiver offsets were analyzed to create a set of laterally constrained vertical profiles. In addition, multi-fold, seismic-style TDEM induction offset profiling allowed for

  13. Synthesis of Carbon–Metal Multi-Strand Nanocomposites by Discharges in Heptane Between Two Metallic Electrodes

    KAUST Repository

    Hamdan, Ahmad; Kabbara, H.; Courty, M.-A.; Cha, Min; Martinez, J.-M.; Belmonte, T.

    2017-01-01

    We studied composite wires assembled from electric field-driven nanoparticles in a dielectric liquid (heptane) to elucidate the exact processes and controlling factors involved in the synthesis of the multi-phase nanocomposites. Filamentary wires

  14. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wu Kangbing; Hu Shengshui; Fei Junjie; Bai Wen

    2003-08-18

    A multi-wall carbon nanotube (MWNT) modified glassy carbon electrode (GCE) was described for the simultaneous determination of trace levels of cadmium and lead by anodic stripping voltammetry (ASV). In pH 4.5 NaAc-HAc buffer containing 0.02 mol/l KI, Cd{sup 2+} and Pb{sup 2+} first adsorb onto the surface of a MWNT film coated GCE and then reduce at -1.20 V. During the positive potential sweep, reduced cadmium and lead were oxidized, and two well-defined stripping peaks appeared at -0.88 and -0.62 V. Compared with a bare GCE, a MWNT film coated GCE greatly improves the sensitivity of determining cadmium and lead. Low concentration of I{sup -} significantly enhances the stripping peak currents since it induces Cd{sup 2+} and Pb{sup 2+} to adsorb at the electrode surface. The striping peak currents change linearly with the concentration of Cd{sup 2+} from 2.5x10{sup -8} to 1x10{sup -5} mol/l and with that of Pb{sup 2+} from 2x10{sup -8} to 1x10{sup -5} mol/l. The lowest detectable concentrations of Cd{sup 2+} and Pb{sup 2+} are estimated to be 6x10{sup -9} and 4x10{sup -9} mol/l, respectively. The high sensitivity, selectivity, and stability of this MWNT film coated electrode demonstrated its practical application for a simple, rapid and economical determination of trace levels of Cd{sup 2+} and Pb{sup 2+} in water samples.

  15. A multi-offset vertical profiling (VSP) experiment for anisotropy analysis and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Grech, G. K.; Lawton, D. [Calgary Univ., AB (Canada)

    2000-09-01

    Vertical seismic profiling (VSP) and surface seismic data are used to image and locate hydrocarbon targets in the subsurface, hence the importance of assessing which formations exhibit seismic velocity anisotropy and quantify their parameters for use during seismic imaging. The purpose of the experiments described in this paper was to determine whether the multiple dipping thin shale beds overlying the target area in the Rocky Mountain Foothills in southern Alberta exhibit seismic velocity anisotropy and if so, how this phenomenon affects the image of the underlying target. Traveltime inversion of the first arrival data from the multi-offset VSP in the study area has revealed that the Cretaceous shales exhibit velocity anisotropy of about 10 degrees. For a target depth of 3000 m and moderate dips of 30 to 50 degrees in the anisotropic overburden, it would be reasonable to expect a lateral shift in the imaged location of the target of up to 300 m in the up-direction of overlying bedding. 8 refs., 9 figs.

  16. Sensitization Profile to Allergens in Patients Using Multi-Test II

    Science.gov (United States)

    Maniglia, Sergio Fabricio; Tsuru, Fernanda Miyoko; Santos, Victor Carvalho dos; Ueda, Denis Massatsugu

    2014-01-01

    Introduction Medical intervention in allergies has broadened its perspective, also focusing in the quality of life of patients. Patients are instructed, before using pharmacotherapy agents, to avoid the causal agent. Objective This study aims to analyze the sensitization profile of patients with allergic complaints and identify possible characteristics specific to each age group and gender. Methods A descriptive cross-sectional study included data collected from medical records (from Multi-Test II database, Lincoln Diagnostics Inc. Decatur, Illinois) of 1,912 patients who underwent skin prick test from March to October 2013. Patients were organized and analyzed according to gender, age, and results of the allergens subtypes tested. Results The study was composed of 1,912 patients (60% male and 40% female) of ages between 3 and 87 years. Positive tests were more prevalent in quantity and intensity with the mites Dermatophagoides pteronyssinus and Dermatophagoides farinae, each with 60% of the total analyzed. In second place were pollens, especially Dactylis glomerata and Festuca pratensis. Conclusion The female and male sexes were equally atopic. Fungi and epithelia of dog and cat were not considered potential aeroallergens that could cause symptoms. However, mites are common in Paraná, Brazil. Further studies regarding the pollens are needed, as this study result diverged from the literature. PMID:25992129

  17. Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M.

    2011-01-01

    A highly sensitive and mercury-free method for determination of bisphenol A (BPA) was established using a glassy carbon electrode that was modified with carboxylated multi-walled carbon nanotubes. A sensitive oxidation peak is found at 550 mV in linear sweep voltammograms at pH 7. Based on this finding, trace levels of bisphenol A can be determined over a concentration range that is linear from 10 nM to 104 nM, the correlation coefficient being 0.9983, and the detection limit (S/N = 3) being 5.0 nM. The method was successfully applied to the determination of BPA in food package. (author)

  18. Photovoltaic performance of multi-wall carbon nanotube/PEDOT:PSS composite on the counter electrode of a dye-sensitized solar cell

    Science.gov (United States)

    Rhee, Yonghoon; Ko, Minjae; Jin, Hwayoung; Jin, Joon-Hyung; Min, Nam Ki

    2014-08-01

    A composite of poly(3,4-ethylendioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and multi-walled carbon nanotubes (MWCNTs) was cyclovoltametrically electropolymerized on a fluorine-doped tin oxide (FTO) substrate and used as a counter electrode for a dye-sensitized solar cell. The PEDOT:PSS-MWCNT composite film was investigated using scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The CV diagrams showed that the PEDOT:PSS-MWCNT composite film has better electro-catalytic activity for the I-/I3- redox reaction than the conventional platinized FTO. The best energy conversion efficiency was observed in EIS data with an MWCNT content of 0.002 wt %.

  19. Preparation and application of a carbon paste electrode modified with multi-walled carbon nanotubes and boron-embedded molecularly imprinted composite membranes.

    Science.gov (United States)

    Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Deng, Chunyan; Liao, Lifu; Deng, Jian; Lin, Ying-Wu

    2018-06-01

    An innovative electrochemical sensor was fabricated for the sensitive and selective determination of tinidazole (TNZ), based on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and boron-embedded molecularly imprinted composite membranes (B-MICMs). Density functional theory (DFT) calculations were carried out to investigate the utility of template-monomer interactions to screen appropriate monomers for the rational design of B-MICMs. The distinct synergic effect of MWCNTs and B-MICMs was evidenced by the positive shift of the reduction peak potential of TNZ at B-MICMs/MWCNTs modified CPE (B-MICMs/MWCNTs/CPE) by about 200 mV, and the 12-fold amplification of the peak current, compared with a bare carbon paste electrode (CPE). Moreover, the coordinate interactions between trisubstituted boron atoms embedded in B-MICMs matrix and nitrogen atoms of TNZ endow the sensor with advanced affinity and specific directionality. Thereafter, a highly sensitive electrochemical analytical method for TNZ was established by different pulse voltammetry (DPV) at B-MICMs/MWCNTs/CPE with a lower detection limit (1.25 × 10 -12  mol L -1 ) (S/N = 3). The practical application of the sensor was demonstrated by determining TNZ in pharmaceutical and biological samples with good precision (RSD 1.36% to 3.85%) and acceptable recoveries (82.40%-104.0%). Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode

    Directory of Open Access Journals (Sweden)

    Hayati Filik

    2016-05-01

    Full Text Available In this paper, multi-walled carbon nanotube/Azure A/gold nanoparticle composites (Nafion/AuNPs/AzA/MWCNTs were prepared by binding gold nanoparticles to the surfaces of Azure A-coated carbon nanotubes. Nafion/AuNPs/AzA/MWCNTs based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrochemical properties of the modified electrodes. The modified electrode showed excellent electrocatalytic activity toward ascorbic acid, dopamine, uric acid, and tryptophan (pH 7.0. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA and Trp were 300–10,000 μM, 0.5–50 μM, 0.5–50 μM and 1.0–100 μM, respectively, and the detection limits were 16 μM, 0.014 μM, 0.028 μM and 0.56 μM (S/N = 3. The proposed method offers promise for simple, rapid, selective and cost-effective analysis of small biomolecules. The procedure was also applied to the determination of tryptophan in spiked milk samples.

  1. Surfactant Effect in Polypyrrole and Polypyrrole with Multi Wall Carbon Nanotube Counter Electrodes: Improved Power Conversion Efficiency of Dye-Sensitized Solar Cell.

    Science.gov (United States)

    Thuy, Chau Thi Thanh; Park, Ji Young; Lee, Seung Woo; Suresh, Thogiti; Kim, Jae Hong

    2016-05-01

    In our present study, polypyrrole-1 (PPy1), polypyrrole-2 (PPy2), and polypyrrole-2/multi wall carbon nanotube composite film (PPy2/MWCNT) were proposed as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) to replace the precious Pt CE. These films were fabricated on fluorine-doped tin oxide substrates by using a facile electrochemical polymerization route, and served as CEs in DSSCs. It is shown that the introduction of anionic surfactant, sodium dodecyl sulfate (SDS), enhanced the catalytic activity, thus leading to an improvement in the performance of PPy2. Further, introduction of MWCNT resulted in increase in conversion efficiency of DSSCs with PPy2/MWCNT composite film. The Tafel and electrochemical impedance analysis revealed that the PPy2 and PPy2/MWCNT CEs prepared with anionic surfactant possessed more catalytic activity and lower charge transfer resistance in comparison with PPy1 -based CE. This resulted in a better conversion efficiency of 5.88% for PPy2/MWCNT-based DSSC under 1 sun condition, reaching 86% of the DSSC based on reference Pt counter electrode (6.86%). These results indicate that the composite film with high catalytic properties for I3- reduction can potentially be used as the CE in a high-performance DSSC.

  2. Development of a multi-electrode extrapolation chamber as a prototype of a primary standard for the realization of the unit of the absorbed dose to water for beta brachytherapy sources

    CERN Document Server

    Bambynek, M

    2002-01-01

    The prototype of a primary standard has been developed, built and tested, which enables the realization of the unit of the absorbed dose to water for beta brachytherapy sources. In the course of the development of the prototype, the recommendations of the American Association of Physicists in Medicine (AAPM) Task Group 60 (TG60) and the Deutsche Gesellschaft fuer Medizinische Physik (DGMP) Arbeitskreis 18 (AK18) were taken into account. The prototype is based on a new multi-electrode extrapolation chamber (MEC) which meets, in particular, the requirements on high spatial resolution and small uncertainty. The central part of the MEC is a segmented collecting electrode which was manufactured in the clean room center of PTB by means of electron beam lithography on a wafer. A precise displacement device consisting of three piezoelectric macrotranslators has been incorporated to move the wafer collecting electrode against the entrance window. For adjustment of the wafer collecting electrode parallel to the entranc...

  3. Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bagheri, Hasan; Khoshsafar, Hosein; Saber-Tehrani, Mohammad; Tabatabaee, Masoumeh; Shirzadmehr, Ali

    2012-01-01

    Highlights: ► A new chemically modified carbon paste electrode was constructed and used. ► A new Schiff base and multi-walled carbon nanotube was used as a modifier. ► The electrochemical properties of the modified electrode were studied. ► The electrode was used to the simultaneous determination of Pb 2+ and Hg 2+ . - Abstract: A modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and 3-(4-methoxybenzylideneamino)-2-thioxothiazolodin-4-one as a new synthesized Schiff base was constructed for the simultaneous determination of trace amounts of Hg(II) and Pb(II) by square wave anodic stripping voltammetry. The modified electrode showed an excellent selectivity and stability for Hg(II) and Pb(II) determinations and for accelerated electron transfer between the electrode and the analytes. The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as pH, deposition potential and deposition time were optimized for the purpose of determination of traces of metal ions at pH 3.0. Under optimal conditions the limits of detection, based on three times the background noise, were 9.0 × 10 −4 and 6.0 × 10 −4 μmol L −1 for Hg(II) and Pb(II) with a 90 s preconcentration, respectively. In addition, the modified electrode displayed a good reproducibility and selectivity, making it suitable for the simultaneous determination of Hg(II) and Pb(II) in real samples such as sea water, waste water, tobacco, marine and human teeth samples.

  4. Multi-angle backscatter classification and sub-bottom profiling for improved seafloor characterization

    Science.gov (United States)

    Alevizos, Evangelos; Snellen, Mirjam; Simons, Dick; Siemes, Kerstin; Greinert, Jens

    2018-06-01

    This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian

  5. Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography

    International Nuclear Information System (INIS)

    Picollo, F.; Battiato, A.; Bernardi, E.; Boarino, L.; Enrico, E.; Forneris, J.; Gatto Monticone, D.; Olivero, P.

    2015-01-01

    In the present work we report about a parallel-processing ion beam fabrication technique whereby high-density sub-superficial graphitic microstructures can be created in diamond. Ion beam implantation is an effective tool for the structural modification of diamond: in particular ion-damaged diamond can be converted into graphite, therefore obtaining an electrically conductive phase embedded in an optically transparent and highly insulating matrix. The proposed fabrication process consists in the combination of Deep Ion Beam Lithography (DIBL) and Focused Ion Beam (FIB) milling. FIB micromachining is employed to define micro-apertures in the contact masks consisting of thin (<10 μm) deposited metal layers through which ions are implanted in the sample. A prototypical single-cell biosensor was realized with the above described technique. The biosensor has 16 independent electrodes converging inside a circular area of 20 μm diameter (typical neuroendocrine cells size) for the simultaneous recording of amperometric signals

  6. Multi-scale structuration of the electrode-electrolyte interface for applications in bio-electro-catalysis; Structuration multi-echelle de l'interface electrode-electrolyte pour des applications en bioelectrocatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, A. [Bordeaux-1 Univ., LACReM, ENSCPB, 33 - Pessac (France)

    2006-07-01

    In this work, two approaches have been combined to elaborate bio-functionalized interfaces having an original structure and well defined at several characteristic scales. These two approaches are 1)the growth of conducting or non conducting materials through organized structures and 2)the chemistry of non-covalent intermolecular bonds leading to the assembling of molecules towards interfacial structures having greatest size. With a deep physico-chemical characterization, it has been possible to understand the properties of these multi-scale structures and to propose different applications fields as for instance bio-electro-catalysis or photovoltaic cells. (O.M.)

  7. Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen—nitrogen mixtures

    International Nuclear Information System (INIS)

    Sima Wen-Xia; Peng Qing-Jun; Yang Qing; Yuan Tao; Shi Jian

    2013-01-01

    Local electron mean energy (LEME) has a direct effect on the rates of collisional ionization of molecules and atoms by electrons. Electron-impact ionization plays an important role and is the main process for the production of charged particles in a primary streamer discharge. Detailed research on the LEME profile in a primary streamer discharge is extremely important for a comprehensive understanding of the local physical mechanism of a streamer. In this study, the LEME profile of the primary streamer discharge in oxygen-nitrogen mixtures with a pin-plate gap of 0.5 cm under an impulse voltage is investigated using a fluid model. The fluid model includes the electron mean energy density equation, as well as continuity equations for electrons and ions and Poisson's electric field equation. The study finds that, except in the initial stage of the primary streamer, the LEME in the primary streamer tip tends to increase as the oxygen-nitrogen mole ratio increases and the pressure decreases. When the primary streamer bridges the gap, the LEME in the primary streamer channel is smaller than the first ionization energies of oxygen and nitrogen. The LEME in the primary streamer channel then decreases as the oxygen-nitrogen mole ratio increases and the pressure increases. The LEME in the primary streamer tip is primarily dependent on the reduced electric field with mole ratios of oxygen-nitrogen given in the oxygen-nitrogen mixtures. (physics of gases, plasmas, and electric discharges)

  8. An electrical impedance tomography (EIT) multi-electrode needle-probe device for local assessment of heterogeneous tissue impeditivity.

    Science.gov (United States)

    Meroni, Davide; Maglioli, Camilla Carpano; Bovio, Dario; Greco, Francesco G; Aliverti, Andrea

    2017-07-01

    Electrical Impedance Tomography (EIT) is an image reconstruction technique applied in medicine for the electrical imaging of living tissues. In literature there is the evidence that a large resistivity variation related to the differences of the human tissues exists. As a result of this interest for the electrical characterization of the biological samples, recently the attention is also focused on the identification and characterization of the human tissue, by studying the homogeneity of its structure. An 8 electrodes needle-probe device has been developed with the intent of identifying the structural inhomogeneities under the surface layers. Ex-vivo impeditivity measurements, by placing the needle-probe in 5 different patterns of fat and lean porcine tissue, were performed, and impeditivity maps were obtained by EIDORS open source software for image reconstruction in electrical impedance. The values composing the maps have been analyzed, pointing out a good tissue discrimination, and the conformity with the real images. We conclude that this device is able to perform impeditivity maps matching to reality for position and orientation. In all the five patterns presented is possible to identify and replicate correctly the heterogeneous tissue under test. This new procedure can be helpful to the medical staff to completely characterize the biological sample, in different unclear situations.

  9. Seismarmara experiment: results from reprocessing of selected multi-channel seismic reflection profiles

    Science.gov (United States)

    Cetin, S.; Voogd, B.; Carton, H.; Laigle, M.; Becel, A.; Saatcilar, R.; Singh, S.; Hirn, A.

    2003-04-01

    The North Anatolian Fault (NAF) has been responsible for the earthquakes of Izmit and Duzce in 1999. The occurrence of these earthquakes has drawn scientific attention into the Sea of Marmara since the NAF enters into the Sea of Marmara where the latest Izmit earthquake rupture stopped. The SEISMARMARA-2001 survey is a combined seismic reflection, refraction and earthquake experiment carried out in 2001 in the Marmara Region in Turkey by French-Turkish scientific cooperation. The objectives of this survey were to image the various branches of the NAF and related other fault systems. R/V Le Nadir was equipped with a 4.5 km long streamer with 360 channels and a large airgun source. During Leg 1, a grid of large regional lines encompassing the whole Marmara trough was shot. For part of them a strong 8100 cu.in. source for deepest penetration was used, with a 150 m shot interval giving a 15-fold coverage. Another part was shot for a higher resolution with a 2900 cu. in. array at a 50m or 38 m interval to give a 45 or 60-fold coverage. The latter acquisition parameters were used for Leg 2 that was devoted to a very dense grid of lines in the Cinarcik Basin Reprocessing of the multi-channel seismic data is currently being undertaken in several Institutions using different seismic processing softwares (GeoVecteur, ProMAX, Focus), to take advantage of the diverse acquisitions and cope with their limitations, for instance high fold-order for Leg 2 and strength of signal but loose spatial sampling for the bigger source. The main objectives of the reprocessing of the selected profiles are to do a detailed velocity analysis and stacking after deconvolution, filtering to remove or suppress deep sea bottom multiples and out of plane reflections, and time-migration and depth conversion and thus reveal both the shallow and deeper reflection image of the crust in the Sea of Marmara. We show that choosing an appropriate processing sequence for different sources and acquisition

  10. A method for crack profiles identification in eddy current testing by the multi-directional scan

    International Nuclear Information System (INIS)

    Kojima, Fumio; Ikeda, Takuya; Nguyen, Doung

    2006-01-01

    This paper is concerned with a method for identification of crack shape in conducting materials. Multi-directional scanning strategies using Eddy Current Testing is performed for sizing complex natural crackings. Two dimensional measurements by means of multi-directional scan are used in a output least square identifications. (author)

  11. Profiles

    International Nuclear Information System (INIS)

    2004-01-01

    Profiles is a synthetic overview of more than 100 national energy markets in the world, providing insightful facts and key energy statistics. A Profile is structured around 6 main items and completed by key statistics: Ministries, public agencies, energy policy are concerned; main companies in the oil, gas, electricity and coal sectors, status, shareholders; reserve, production, imports and exports, electricity and refining capacities; deregulation of prices, subsidies, taxes; consumption trends by sector, energy market shares; main energy projects, production and consumption prospects. Statistical Profiles are present in about 3 pages the main data and indicators on oil, gas, coal and electricity. (A.L.B.)

  12. The electrochemical properties of LaNi5 electrodes doped with multi-walled carbon nanotubes synthesized by chemical vapor deposition and treated at different temperatures in a nitrogen atmosphere

    International Nuclear Information System (INIS)

    Yi Shuangping; Zhang Haiyan; Zhang Guoqin; Hu Shoule; Pei Lei; Yin Jianfen

    2006-01-01

    The electrochemical properties of LaNi 5 electrodes doped with multi-walled carbon nanotubes (MWNTs) treated at different temperatures in a nitrogen atmosphere were investigated. The MWNTs were synthesized by chemical vapor deposition (CVD). The purified carbon nanotubes (CNTs) were annealed during 1.5 h in a nitrogen atmosphere at different temperatures. A three-electrode system was applied. The CNTs-LaNi 5 electrodes were prepared by mixing CNTs and LaNi 5 in a weight ratio of 1:10, and used as the working electrode; Ni(OH) 2 /NiOOH worked as the counter electrode and Hg/HgO as the reference electrode. A 6 mol/L KOH solution acted as the electrolyte. MWNTs annealed at different temperatures in a nitrogen atmosphere showed large differences in the electrochemical hydrogen storage capability under the same testing condition. The CNTs-LaNi 5 electrodes with 20-40 nm diameter CNTs heated at 800 deg. C in nitrogen proved to have the best electrochemical hydrogen storage capacity, with a discharging capacity of 519.1 mAh/g and a corresponding discharging plateau voltage of 1.18 V, at a 200 mA/g charge current density and a 60 Ma/g discharge current density with a 0.2 V discharge voltage limit. From 500 to 800 deg. C, the higher the annealing temperature,the better the electrochemical hydrogen storage property. However, CNTs-LaNi 5 electrodes with 20-40 nm diameter CNTs heated at 900 deg. C in nitrogen have a lower capacity of 476.2 mAh/g under the same testing condition. This shows that the annealing temperature of CNTs is an important factor that influences their electrochemical hydrogen storage performance

  13. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .

  14. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models

    Science.gov (United States)

    Yao, Zhi-Jiang; Dong, Jie; Che, Yu-Jing; Zhu, Min-Feng; Wen, Ming; Wang, Ning-Ning; Wang, Shan; Lu, Ai-Ping; Cao, Dong-Sheng

    2016-05-01

    Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com.

  15. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  16. Deactivation of Escherichia coli in a post-discharge chamber coupled to an atmospheric pressure multi-electrode DBD plasma source

    International Nuclear Information System (INIS)

    Pérez-Ruiz, V H; López-Callejas, R; De la Piedad Beneitez, A; Peña-Eguiluz, R; Mercado-Cabrera, A; Muñoz-Castro, A E; Barocio, S R; Valencia-Alvarado, R; Rodríguez-Méndez, B G

    2012-01-01

    Experimental results from applying a room pressure RF multi-electrode DBD plasma source to the inhibition of the population growth of Gram negative Escherichia coli (E. coli) within a post-discharge reactor are reported. The sample to be treated is deposited in the post-discharge chamber at about 50 mm from the plasma source outlet. Thus, the active species generated by the source are conveyed toward the chamber by the working gas flow. The plasma characterization included the measurement of the axial temperature at different distances from the reactor outlet by means of a K-type thermocouple. The resulting 294 K to 322 K temperature interval corresponded to distances between 10 mm to 1 mm respectively. As the material under treatment is placed further away, any thermal damage of the sample by the plasma is prevented. The measurement and optimization of the ozone O 3 concentration has also been carried out, provided that this is an active specie with particularly high germicide power. The effectiveness treatment of the E. coli bacteria growth inhibition by the proposed plasma source reached 99% when a 10 3 CFU/mL concentration on an agar plate had been exposed during ten minutes.

  17. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods.

    Science.gov (United States)

    Silva, Francisco de Assis dos Santos; da Silva, Monique Gabriella Angelo; Lima, Phabyanno Rodrigues; Meneghetti, Mario Roberto; Kubota, Lauro Tatsuo; Goulart, Marilia Oliveira Fonseca

    2013-12-15

    A nanohybrid platform built with multi-walled carbon nanotubes and gold nanorods, prepared via a cationic surfactant-containing seed-mediated sequential growth process, in aqueous solution, on a glassy carbon substrate has been successfully developed to be used in the electrocatalytic oxidation of L-cysteine (Cys). The nanohybrid was characterized by transmission electron microscopy, Raman spectroscopy and electrochemical measurements. Cyclic voltammetry results had shown that the modified electrode allows the oxidation of Cys at a very low anodic potential (0.00 V vs. Ag/AgCl). The kinetic constant kcat for the catalytic oxidation of Cys was evaluated by chronoamperometry and provided a value of 5.6×10(4) L mol(-1) s(-1). The sensor presents a linear response range from 5.0 up to 200.0 µmol L(-1), detection limit of 8.25 nmol L(-1) and a sensitivity of 120 nA L µmol(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography

    Directory of Open Access Journals (Sweden)

    Xiaobin Hong

    2015-01-01

    Full Text Available Direct Current (DC electrical resistivity is a material property that is sensitive to temperature changes. In this paper, the relationship between resistivity and local temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion cells is innovatively studied by Electrical Resistance Tomography (ERT. The Schlumberger configuration in ERT is applied to divide the cell body into several blocks distributed in different levels, where the apparent resistivities are measured by multi-electrode surface probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have shown that the resistivities mainly depend on temperature changes in each block of the two cells used and the function of the resistivity and temperature can be fitted to the ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity on the state of charge (SOC is investigated, and the SOC range of 70%–100% has a remarkable impact on the resistivity at low temperatures. The proposed approach under a thermal cool down regime is demonstrated to monitor the local transient temperature.

  19. One-step synthesis of layered CuS/multi-walled carbon nanotube nanocomposites for supercapacitor electrode material with ultrahigh specific capacitance

    International Nuclear Information System (INIS)

    Huang, Ke-Jing; Zhang, Ji-Zong; Xing, Ke

    2014-01-01

    In this work, hierarchical-structured copper sulfide/multi-walled carbon nanotubes (CuS/MWCNTs) are synthesized via a one-step hydrothermal process. The chemical composition and microstructure of CuS-MWCNTs are characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and research as electrode matericals for high-performance supercapacitors by cyclic voltammogram, galvanostatic charge-discharge and electrochemical impedance spectroscopy. As expected, the CuS-MWCNTs exhibit a much higher specific capacitance up to 2831 F g −1 , compared with 925.1 F g −1 for CuS and 555.6 F g −1 for MWCNTs. Furthermore, the CuS-MWCNTs hybrids also exhibit good cycling stability with more than 90% capacitance retention over 600 cycles. The enhancement of CuS/MWCNTs in supercapacitor performance not only attribute to their unique 3D structures with large specific surface area, but also their excellent conductivity, which facilitate efficient charge transport and promotes electrolyte diffusion

  20. A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamole

    International Nuclear Information System (INIS)

    Liu, Ren; Zeng, Xuebiao; Liu, Jingcheng; Luo, Jing; Zheng, Yuanyi; Liu, Xiaoya

    2016-01-01

    The article describes an electrochemical sensor for simultaneous determination of dopamine (DA) and paracetamole (PAT). It is based on the use of an electroactive polymer (referred to as BPVCM) to functionalize multi-walled carbon nanotubes. BPVCM is a branched amphiphilic photo-sensitive and electroactive polymer that was obtained by copolymerization of a vinyl benzyl carbazole, maleic acid anhydride, 4-vinyl benzylthiol and a vinylbenzyl oxycoumarin. BPVCM efficiently disperses MWCNT in aqueous solution. The electropolymerization of the carbazole moieties of the BPVCM enhances the current response. It also facilitates electron transfer in the MWCNT-BPVCM hybrid as evidenced by cyclic voltammetry and electrochemical impedance spectroscopy. A glassy carbon electrode modified with the nanocomposite displays outstanding electrocatalytic activity towards DA and PAT. DA can be determined, best at a working voltage of 0.2 V (vs. SCE), in the 5 to 1000 μM concentration range with a 2.3 μM detection limit. PAT can be determined in parallel, at a working voltage of 0.39 V (vs. SCE), in the same concentration range with a 3.5 μM detection limit. This analytical range of this method is wider than that of most alternative methods. (author)

  1. Surface-enhanced oxidation and detection of Sunset Yellow and Tartrazine using multi-walled carbon nanotubes film-modified electrode.

    Science.gov (United States)

    Zhang, Weikang; Liu, Tao; Zheng, Xiaojiang; Huang, Wensheng; Wan, Chidan

    2009-11-01

    The insoluble multi-walled carbon nanotubes (MWNT) was successfully dispersed into water in the presence of hydrophobic surfactant. After that, MWNT film-coated glassy carbon electrode (GCE) was achieved via dip-coating and evaporating water. Owing to huge surface area, high sorption capacity and subtle electronic properties, MWNT film exhibits highly efficient accumulation efficiency as well as considerable surface enhancement effects to Sunset Yellow and Tartrazine. As a result, the oxidation peak currents of Sunset Yellow and Tartrazine remarkably increase at the MWNT film-modified GCE. Based on this, a novel electrochemical method was developed for the simultaneous determination of Sunset Yellow and Tartrazine. The limits of detection are 10.0 ng mL(-1) (2.2 x 10(-8)mol L(-1)) and 0.1 microg mL(-1) (1.88 x 10(-7)mol L(-1)) for Sunset Yellow and Tartrazine. Finally, the proposed method was successfully used to detect Sunset Yellow and Tartrazine in soft drinks.

  2. Frequency-dependent spatiotemporal profiles of visual responses recorded with subdural ECoG electrodes in awake monkeys: Differences between high- and low-frequency activity.

    Science.gov (United States)

    Takaura, Kana; Tsuchiya, Naotsugu; Fujii, Naotaka

    2016-01-01

    Electrocorticography (ECoG) constitutes a powerful and promising neural recording modality in humans and animals. ECoG signals are often decomposed into several frequency bands, among which the so-called high-gamma band (80-250Hz) has been proposed to reflect local cortical functions near the cortical surface below the ECoG electrodes. It is typically assumed that the lower the frequency bands, the lower the spatial resolution of the signals; thus, there is not much to gain by analyzing the event-related changes of the ECoG signals in the lower-frequency bands. However, differences across frequency bands have not been systematically investigated. To address this issue, we recorded ECoG activity from two awake monkeys performing a retinotopic mapping task. We characterized the spatiotemporal profiles of the visual responses in the time-frequency domain. We defined the preferred spatial position, receptive field (RF), and response latencies of band-limited power (BLP) (i.e., alpha [3.9-11.7Hz], beta [15.6-23.4Hz], low [30-80Hz] and high [80-250Hz] gamma) for each electrode and compared them across bands and time-domain visual evoked potentials (VEPs). At the population level, we found that the spatial preferences were comparable across bands and VEPs. The high-gamma power showed a smaller RF than the other bands and VEPs. The response latencies for the alpha band were always longer than the latencies for the other bands and fastest in VEPs. Comparing the response profiles in both space and time for each cortical region (V1, V4+, and TEO/TE) revealed regional idiosyncrasies. Although the latencies of visual responses in the beta, low-, and high-gamma bands were almost identical in V1 and V4+, beta and low-gamma BLP occurred about 17ms earlier than high-gamma power in TEO/TE. Furthermore, TEO/TE exhibited a unique pattern in the spatial response profile: the alpha and high-gamma responses tended to prefer the foveal regions, whereas the beta and low-gamma responses

  3. New geological interpretation of multi-channel seismic profiles from the Pacific Margin of the Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    Okoń Jan

    2016-06-01

    Full Text Available The Polish Geophysical Expedition to West Antarctica in 1979–1980 was carried out by the Institute of Geophysics, Polish Academy of Sciences. Beside deep seismic soundings, 12 multi-channel seismic profiles, with a total length of ca 1000 km have been recorded north and east of the South Shetland Islands and in the Bransfield Strait, but they have never before been completely interpreted and published. All profiles have been processed with modern processing flow including time migration. Profiles crossing the South Shetland Trench revealed distinct reflector inside continental slope, which has been interpreted as border between buried accretionary prism and overlying slope sediments of glacial-marine origin. Profiles in the Bransfield Strait show traces of the Last Glacial Maximum (LGM in the form of glacial foreground valleys, with some of them used as weak spots for young age volcanic intrusions. This paper is the first comprehensive geological interpretation of collected dataset and differences between results from other expeditions are discussed.

  4. How school climate relates to chronic absence: A multi-level latent profile analysis.

    Science.gov (United States)

    Van Eck, Kathryn; Johnson, Stacy R; Bettencourt, Amie; Johnson, Sarah Lindstrom

    2017-04-01

    Chronic absence is a significant problem in schools. School climate may play an important role in influencing chronic absence rates among schools, yet little research has evaluated how school climate constructs relate to chronic absence. Using multilevel latent profile analysis, we evaluated how profiles of student perceptions of school climate at both the student and school level differentiated school-level rates of chronic absence. Participants included 25,776 middle and high school students from 106 schools who completed a district administered school climate survey. Students attended schools in a large urban school district where 89% of 6th through 12th grade students were African-American and 61% were eligible for the federally subsidized school meals program. Three student-level profiles of perceptions of school climate emerged that corresponded to "positive," "moderate," and "negative" climate. Two predominant patterns regarding the distribution of these profiles within schools emerged that corresponded to the two school-level profiles of "marginal climate" and "climate challenged" schools. Students reporting "moderate" and "negative" climate in their schools were more likely to attend schools with higher chronic absence rates than students reporting that their school had "positive" climate. Likewise, "climate challenged" schools had significantly higher chronic absence rates than "marginal climate" schools. These results suggest that school climate shares an important relation with chronic absence among adolescent students attending urban schools. Implications for prevention and intervention programs are discussed. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  5. Electrochemical profiling of multi-clad aluminium sheets used in automotive heat exchangers

    DEFF Research Database (Denmark)

    Bordo, Kirill; C. Gudla, Visweswara; Peguet, Lionel

    2018-01-01

    A combination of glow discharge optical emission spectroscopy sputtering and local electrochemical measurements was used to determine electrochemical changes upon brazing in a multi-layered Aluminium sheet (AA4343/AA3xxx/AA4343) with an additional low-Cu (AA3xxx) interlayer. Ecorr values from pot...

  6. Electrochemical profiling of multi-clad aluminium sheets used in automotive heat exchangers

    DEFF Research Database (Denmark)

    Bordo, Kirill; Ambat, Rajan; Peguet, Lionel

    2014-01-01

    The objective of the present study is to understand the mechanisms of corrosion propagation across the multi-clad structure of Al alloys sheets as a function of local alloy composition and microstructure, with and without brazing treatment. Electro-chemical behaviour at different depths was profi...

  7. Nanostructuring effect of multi-walled carbon nanotubes on electrochemical properties of carbon foam as constructive electrode for lead acid battery

    Science.gov (United States)

    Kumar, Rajeev; Kumari, Saroj; Mathur, Rakesh B.; Dhakate, Sanjay R.

    2015-01-01

    In the present study, nanostructuring effect of multi-walled carbon nanotubes (MWCNTs) on electrochemical properties of coal tar pitch (CTP) based carbon foam (CFoam) was investigated. The different weight fractions of MWCNTs were mixed with CTP and foam was developed from the mixture of CTP and MWCNTs by sacrificial template technique and heat treated at 1,400 and 2,500 °C in inert atmosphere. These foams were characterized by scanning electron microscopy, X-ray diffraction, and potentiostat PARSTAT for cyclic voltammetry. It was observed that, bulk density of CFoam increases with increasing MWCNTs content and decreases after certain amount. The MWCNTs influence the morphology of CFoam and increase the width of ligaments as well as surface area. During the heat treatment, stresses exerting at MWCNTs/carbon interface accelerate ordering of the graphene layer which have positive effect on the electrochemical properties of CFoam. The current density increases from 475 to 675 mA/cm2 of 1,400 °C heat treated and 95 to 210 mA/cm2 of 2,500 °C heat-treated CFoam with 1 wt% MWCNTs. The specific capacitance was decreases with increasing the scan rate from 100 to 1,000 mV/s. In case of 1 % MWCNTs content CFoam the specific capacitance at the scan rate 100 mV/s was increased from 850 to 1,250 μF/cm2 and 48 to 340 μF/cm2 of CFoam heat treated at 1,400 °C and 2,500 °C respectively. Thus, the higher value surface area and current density of MWCNTs-incorporated CFoam heat treated to 1,400 °C can be suitable for lead acid battery electrode with improved charging capability.

  8. Novel modulatory effects of neurosteroids and benzodiazepines on excitatory and inhibitory neurons excitability: a multi-electrode array (MEA recording study"

    Directory of Open Access Journals (Sweden)

    Giulia ePuia

    2012-11-01

    Full Text Available The balance between glutamate- and GABA-mediated neurotransmission in the brain is fundamental in the nervous system, but it is regulated by the ‘tonic’ release of a variety of endogenous factors. One such important group of molecules are the neurosteroids (NSs which, similarly to benzodiazepines (BDZs, enhance GABAergic neurotransmission. The purpose of our work was to investigate, at in-vivo physiologically relevant concentrations, the effects of NSs and BDZs as GABA modulators on dissociated neocortical neuron networks grown in long-term culture. We used a multi-electrode array (MEA recording technique and a novel analysis that was able to both identify the action potentials of engaged excitatory and inhibitory neurons and to detect drug-induced network up-states (burst. We found that the NSs tetrahydrodeoxycorticosterone (THDOC and allopregnanolone (ALLO applied at low nM concentrations, produced different modulatory effects on the two neuronal clusters. Conversely, at high concentrations (1 µM, both NSs, decreased excitatory and inhibitory neuron cluster excitability; however, even several hours after washout, the excitability of inhibitory neurons continued to be depressed, leading to a network long term depression (LTD. The BDZs clonazepam (CLZ and midazolam (MDZ also decreased the network excitability, but only MDZ caused LTD of inhibitory neuron cluster. To investigate the origin of the LTD after MDZ application, we tested finasteride (FIN, an inhibitor of endogenous NSs synthesis. FIN did not prevent the LTD induced by MDZ, but surprisingly induced it after application of CLZ. The significance and possible mechanisms underlying these LTD effects of NSs and BDZs are discussed. Taken together, our results not only demonstrate that ex-vivo networks show a sensitivity to NSs and BDZs comparable to that expressed in vivo, but also provide a new global in-vitro description that can help in understanding their activity in more complex

  9. Testing the capacity of a Multi-Nutrient profiling system to guide food and beverage reformulation

    NARCIS (Netherlands)

    Combet, Emilie; Vlassopoulos, Antonis; Molenberg, Famke; Gressier, Mathilde; Privet, Lisa; Wratten, Craig; Sharif, Sahar; Vieux, Florent; Lehmann, Undine; Masset, Gabriel

    2017-01-01

    Nutrient profiling ranks foods based on their nutrient composition, with applications in multiple aspects of food policy. We tested the capacity of a category-specific model developed for product reformulation to improve the average nutrient content of foods, using five national food composition

  10. The Profile of a School and Measurement of a Multi-School Organization Change Program.

    Science.gov (United States)

    Feitler, Fred C.

    Modern organization theory and research from business and industry predicts that schools which change toward the Likert participative group organizations will increase productivity. This paper reports interventions of a one-year organization development program carried out with 12 schools and the change results measured by the Profile of a School.…

  11. Predicting multi-class customer profiles based on transactions : a case study in food sales

    NARCIS (Netherlands)

    Apeh, E.; Zliobaite, I.; Pechenizkiy, M.; Gabrys, B.; Bramer, M.; Petridis, M.

    2012-01-01

    Predicting the class of customer profiles is a key task in marketing, which enables businesses to approach the customers in a right way to satisfy the customer’s evolving needs. However, due to costs, privacy and/or data protection, only the business’ owned transactional data is typically available

  12. Mission-profile based multi-objective optimization of power electronics converter for wind turbines

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh; Teodorescu, Remus; Kerekes, Tamas

    2017-01-01

    -objective optimization approach for designing power converter is presented. The objective is to minimize the energy loss for a given load profile as against the conventional approach of minimizing power loss at specific loading conditions. The proposed approach is illustrated by designing a grid-side power converter...

  13. Integrated multi-level quality control for proteomic profiling studies using mass spectrometry

    Directory of Open Access Journals (Sweden)

    Barrett Jennifer H

    2008-12-01

    Full Text Available Abstract Background Proteomic profiling using mass spectrometry (MS is one of the most promising methods for the analysis of complex biological samples such as urine, serum and tissue for biomarker discovery. Such experiments are often conducted using MALDI-TOF (matrix-assisted laser desorption/ionisation time-of-flight and SELDI-TOF (surface-enhanced laser desorption/ionisation time-of-flight MS. Using such profiling methods it is possible to identify changes in protein expression that differentiate disease states and individual proteins or patterns that may be useful as potential biomarkers. However, the incorporation of quality control (QC processes that allow the identification of low quality spectra reliably and hence allow the removal of such data before further analysis is often overlooked. In this paper we describe rigorous methods for the assessment of quality of spectral data. These procedures are presented in a user-friendly, web-based program. The data obtained post-QC is then examined using variance components analysis to quantify the amount of variance due to some of the factors in the experimental design. Results Using data from a SELDI profiling study of serum from patients with different levels of renal function, we show how the algorithms described in this paper may be used to detect systematic variability within and between sample replicates, pooled samples and SELDI chips and spots. Manual inspection of those spectral data that were identified as being of poor quality confirmed the efficacy of the algorithms. Variance components analysis demonstrated the relatively small amount of technical variance attributable to day of profile generation and experimental array. Conclusion Using the techniques described in this paper it is possible to reliably detect poor quality data within proteomic profiling experiments undertaken by MS. The removal of these spectra at the initial stages of the analysis substantially improves the

  14. Profiling micro-organic contaminants in groundwater using multi-level piezometers

    OpenAIRE

    White, Debbie; Lapworth, Dan; Stuart, Marianne; Williams, Peter

    2015-01-01

    The presence of micro-organic pollutants, including ‘emerging contaminants’ within groundwater is of increasing interest. Robust protocols are required to minimise the introduction of contamination during the sampling process. Below we discuss the sampling protocols used to reduce inputs of plasticisers during the sampling process, as well as the techniques used to characterise the distribution of micro-organic pollutants in the subsurface. In this study multi-level piezometers...

  15. Highly sensitive voltammetric sensor based on immobilization of bisphosphoramidate-derivative and quantum dots onto multi-walled carbon nanotubes modified gold electrode for the electrocatalytic determination of olanzapine

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi-Behzad, Leila [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, Mohammad Bagher, E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, Khodayar [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Barati, Ali [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholami, Akram [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2016-03-01

    In the present paper, a new bisphosphoramidate derivative compound, 1, 4-bis(N-methyl)-benzene-bis(N-phenyl, N-benzoylphosphoramidate) (BMBPBP), was synthesized and used as a mediator for the electrocatalytic oxidation of olanzapine. The electro-oxidation of olanzapine at the surface of the BMBPBP/CdS-quantum dots/multi-walled carbon nanotubes (BMBPBP/CdS-QDs/MWCNTs) modified gold electrode was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. This sensor showed an excellent electrocatalytic oxidation activity toward olanzapine at less positive potential, pronounced current response, and good sensitivity. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) were determined for olanzapine oxidation, using the electrochemical approaches. Surface morphology and electrochemical properties of the prepared modified electrode were investigated by scanning electron microscopy (SEM), cyclic voltammetry and electrochemical impedance spectroscopy techniques. The hydrodynamic amperometry at rotating modified electrode at constant potential versus reference electrode was used for detection of olanzapine. Under optimized conditions, the calibration plot was linear in the concentration range of 20 nM to 100 μM and detection limit was found to be 6 nM. The proposed method was successfully applied to the determination of olanzapine in pharmaceuticals and human serum samples. - Highlights: • A highly sensitive sensor for OLZ determination was developed. • The sensor constructed based on immobilization of BMBPBP on CdS-QDs/MWCNTs Au electrode • The morphology of the modified electrode was examined by SEM. • The prepared sensor shows stable electrochemical behavior at a wide pH range. • The proposed sensor is used for trace determination of OLZ in real samples.

  16. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.

    Science.gov (United States)

    Ali, Mehreen; Khan, Suleiman A; Wennerberg, Krister; Aittokallio, Tero

    2018-04-15

    Proteomics profiling is increasingly being used for molecular stratification of cancer patients and cell-line panels. However, systematic assessment of the predictive power of large-scale proteomic technologies across various drug classes and cancer types is currently lacking. To that end, we carried out the first pan-cancer, multi-omics comparative analysis of the relative performance of two proteomic technologies, targeted reverse phase protein array (RPPA) and global mass spectrometry (MS), in terms of their accuracy for predicting the sensitivity of cancer cells to both cytotoxic chemotherapeutics and molecularly targeted anticancer compounds. Our results in two cell-line panels demonstrate how MS profiling improves drug response predictions beyond that of the RPPA or the other omics profiles when used alone. However, frequent missing MS data values complicate its use in predictive modeling and required additional filtering, such as focusing on completely measured or known oncoproteins, to obtain maximal predictive performance. Rather strikingly, the two proteomics profiles provided complementary predictive signal both for the cytotoxic and targeted compounds. Further, information about the cellular-abundance of primary target proteins was found critical for predicting the response of targeted compounds, although the non-target features also contributed significantly to the predictive power. The clinical relevance of the selected protein markers was confirmed in cancer patient data. These results provide novel insights into the relative performance and optimal use of the widely applied proteomic technologies, MS and RPPA, which should prove useful in translational applications, such as defining the best combination of omics technologies and marker panels for understanding and predicting drug sensitivities in cancer patients. Processed datasets, R as well as Matlab implementations of the methods are available at https://github.com/mehr-een/bemkl-rbps. mehreen

  17. Multi-channel electronics for secondary emission grid profile monitor of TTF linac

    International Nuclear Information System (INIS)

    Reingardt-Nikoulin, P.; Gaidash, V.; Mirzojan, A.; Kocharyan, V.; Noelle, D.

    2004-01-01

    According to the TTF beam experimental program, a measurement f the time dependence of the energy spread within the bunch train should be done by means of a standard device for profile measurements, that is Secondary Emission Grid (SEMG). SEMG on the high-energy TTF beam is placed in the focal plane of the magnet spectrometer. It should measure the total energy spread in the range from 0.1% up to a few percents for any single or any group of electron bunches in the bunch train of TTF Linac. SEMG profile measurements with new high sensitive electronics are described. Beam results of SEMG Monitor test are given for two modifications of an electronic preamplifier

  18. Multi-machine transport analysis of hybrid discharges from the ITPA profile database

    International Nuclear Information System (INIS)

    Artaud, J.F.; Bourdelle, C.; Joffrin, E.; Kinsey, J.; Tala, T.J.J.; Fujita, T.; Sakamoto, Y.; Na, Y.S.; Sips, A.C.C.; Na, Y.S.; Parail, V.V.

    2005-01-01

    Current diffusion, heat transport modelling, and linear gyrokinetic stability analysis have been carried out on a set of 7 hybrid discharges from AUG, DIII-D, JET and JT-60U, in order to gain better understanding of the physics underlying this promising candidate scenario for ITER. Within this dataset, the GLF23 model has a higher accuracy than the Weiland model in predicting the temperature profiles in the region 0.3 N on extended duration. (authors)

  19. MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling

    Energy Technology Data Exchange (ETDEWEB)

    Burnum-Johnson, Kristin E.; Kyle, Jennifer E.; Eisfeld, Amie J.; Casey, Cameron P.; Stratton, Kelly G.; Gonzalez, Juan F.; Habyarimana, Fabien; Negretti, Nicholas M.; Sims, Amy C.; Chauhan, Sadhana; Thackray, Larissa B.; Halfmann, Peter J.; Walters, Kevin B.; Kim, Young-Mo; Zink, Erika M.; Nicora, Carrie D.; Weitz, Karl K.; Webb-Robertson, Bobbie-Jo M.; Nakayasu, Ernesto S.; Ahmer, Brian; Konkel, Michael E.; Motin, Vladimir; Baric, Ralph S.; Diamond, Michael S.; Kawaoka, Yoshihiro; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.

    2017-01-01

    The continued emergence and spread of infectious agents is of increasing concern due to increased population growth and the associated increased livestock production to meet food demands, increased urbanization and land-use changes, and greater travel. A systems biology approach to infectious disease research can significantly advance our understanding of host-pathogen relationships and facilitate the development of new therapies and vaccines. Molecular characterization of infectious samples outside of appropriate biosafety containment can only take place subsequent to pathogen inactivation. Herein, we describe a modified Folch extraction using chloroform/methanol that facilitates the molecular characterization of infectious samples by enabling simultaneous pathogen inactivation and extraction of proteins, metabolites, and lipids for subsequent mass spectrometry-based multi-omics measurements. This metabolite, protein and lipid extraction (MPLEx) method resulted in complete inactivation of bacterial and viral pathogens with exposed lipid membranes, including Yersinia pestis, Salmonella Typhimurium, and Campylobacter jejuni in pure culture, and Yersinia pestis, Campylobacter jejuni, West Nile, MERS-CoV, Ebola, and influenza H7N9 viruses in infection studies. Partial inactivation was observed for pathogens without exposed lipid membranes including 99.99% inactivation of community-associated methicillin-resistant Staphylococcus aureus, 99.6% and >99% inactivation of Clostridium difficile spores and vegetative cells, respectively, and 50% inactivation of adenovirus type 5. To demonstrate that MPLEx yields biomaterial of sufficient quality for subsequent multi-omics analyses, we highlight select proteomics, metabolomics and lipidomics data from human epithelial lung cells infected with wild-type and mutant forms of influenza H7N9. We believe that MPLEx will facilitate systems biology studies of infectious samples by enabling simultaneous pathogen inactivation and multi

  20. Effects of controlled school-based multi-component model of nutrition and lifestyle interventions on behavior modification, anthropometry and metabolic risk profile of urban Asian Indian adolescents in North India.

    Science.gov (United States)

    Singhal, N; Misra, A; Shah, P; Gulati, S

    2010-04-01

    To study the effectiveness of a multi-component intervention model of nutrition and lifestyle education on behavior modification, anthropometry and metabolic risk profile of urban Asian-Indian adolescents in North India. Two schools matched for student strength and middle socioeconomic strata were randomly allocated to intervention and control group. Changes in nutrition-related knowledge, attitude, lifestyle practices, food frequency and body image of eleventh-grade students (15-17 years) in both schools were tested using a validated questionnaire. Anthropometric and biochemical measurements were made using standard methods. Segmental body composition analysis was carried out using an 8-electrode multifrequency bioelectrical impedance method of body fat estimation. At 6 months follow-up, significant improvement in several domains of knowledge was observed in intervention children (n=99; males=60; females=39) as compared with control school children (n=102; males=61; females=41). In the intervention group, significantly lower proportion of children consumed aerated drinks (15.1%; Phabits and lifestyle practices, and resulted in beneficial changes in anthropometric and biochemical profiles of the Asian Indian adolescents. This model should be applied on countrywide basis to prevent obesity and diabetes.

  1. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.

    Directory of Open Access Journals (Sweden)

    Daniel P Riordan

    Full Text Available Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the

  2. Modification of glassy carbon electrode with poly(hydroxynaphthol blue)/multi-walled carbon nanotubes composite and construction a new voltammetric sensor for the simultaneous determination of hydroquinone, catechol, and resorcinol

    Science.gov (United States)

    Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir

    2018-03-01

    A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.

  3. Determination of multi-element profiles of soil at Visakhapatnam using EDXRF technique

    International Nuclear Information System (INIS)

    Sandeep, P.; Kothai, P.; Dusane, C.B.; Sahu, S.K.; Pandit, G.G.

    2014-01-01

    In the present study attempt has been made to generate elemental profile database for major sources of soil pollution, specific to Visakhapatnam. Representative road dust and soil samples from major industrial locations were collected and analyzed for various metals distribution using EDXRF. Analysis results indicate that V and Ni were predominant at PR and Zn was found to be dominating in road dust samples. Higher concentration of Arsenic was observed at TPP as compared to all other sites. Cr was found to be dominating at TPP and SP. I geo calculations suggest that soil is highly contaminated with heavy metal pollutants. (author)

  4. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    Science.gov (United States)

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  5. Determination of multi-element profiles of soil using energy dispersive X-ray fluorescence (EDXRF)

    International Nuclear Information System (INIS)

    Yu, K.N.; Yeung, Z.L.L.; Lee, L.Y.L.; Stokes, M.J.; Kwok, R.C.W.

    2002-01-01

    The source profile for soil in Hong Kong is important both for determination of the main air pollutant source in Hong Kong and for assessment of the impact of Asian dust storms on Hong Kong. Soil associated with different rock types have been sampled, and the concentrations of 19 chemical elements, Na, Al, Si, Ti, V, Cr, Mn, Fe, Co, K, Ca, Ni, Cu, Zn, Pb, Rb, Sr, Y and Zr, have been determined using energy dispersive X-ray fluorescence. A profile for the average soil for Hong Kong has been determined by taking average values for the different soil categories. The values for the Hong Kong soil are commensurate with values for rural soil derived by other workers, except that Hong Kong soil has much lower Fe and Ca concentrations. The abundance of Al, Ca and Fe in the average Hong Kong soil are 9.23%, 0.11% and 0.85%. We conclude that Ca provides a good marker element for identifying dust episodes in Hong Kong while Al does not

  6. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development

    KAUST Repository

    Xin, Chengqi; Liu, Wanfei; Lin, Qiang; Zhang, Xiaowei; Cui, Peng; Li, Fusen; Zhang, Guangyu; Pan, Linlin; Al-Amer, Ali; Mei, Hailiang; Al-Mssallem, Ibrahim S.; Hu, Songnian; Al-Johi, Hasan Awad; Yu, Jun

    2015-01-01

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development.

  7. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development

    KAUST Repository

    Xin, Chengqi

    2015-01-29

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development.

  8. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding

    Directory of Open Access Journals (Sweden)

    Mari eTervaniemi

    2014-07-01

    Full Text Available Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel to compare memory-related MMN and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians. In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  9. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding.

    Science.gov (United States)

    Tervaniemi, Mari; Huotilainen, Minna; Brattico, Elvira

    2014-01-01

    Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  10. Serotypes, antibiotic susceptibilities, and multi-locus sequence type profiles of Streptococcus agalactiae isolates circulating in Beijing, China.

    Science.gov (United States)

    Wang, Ping; Tong, Jing-jing; Ma, Xiu-hua; Song, Feng-li; Fan, Ling; Guo, Cui-mei; Shi, Wei; Yu, Sang-jie; Yao, Kai-hu; Yang, Yong-hong

    2015-01-01

    To investigate the serotypes, antibiotic susceptibilities, and multi-locus sequence type (MLST) profiles of Streptococcus agalactiae (S. agalactiae) in Beijing to provide references for the prevention and treatment of S. agalactiae infections. All isolates were identified using the CAMP test and the latex-agglutination assay and serotyped using a Strep-B-Latex kit, after which they were assessed for antibiotic susceptibility, macrolide-resistance genes, and MLST profiles. In total, 56 S. agalactiae isolates were identified in 863 pregnant women (6.5%). Serotypes Ia, Ib, II, III, and V were identified, among which types III (32.1%), Ia (17.9%), Ib (16.1%), and V (14.3%) were the predominant serotypes. All isolates were susceptible to penicillin and ceftriaxone. The nonsusceptiblity rates measured for erythromycin, clarithromycin, azithromycin, telithromycin, clindamycin, tetracycline, and levofloxacin were 85.7%, 92.9%, 98.2%, 30.4%, 73.2%, 91%, and 39.3%, respectively. We identified 14 sequence types (STs) for the 56 isolates, among which ST19 (30.4%) was predominant. The rate of fluoroquinolone resistance was higher in serotype III than in the other serotypes. Among the 44 erythromycin-resistant isolates, 32 (72.7%) carried ermB. S. agalactiae isolates of the serotypes Ia, Ib, III, and V are common in Beijing. Among the S. agalactiae isolates, the macrolide and clindamycin resistance rates are extremely high. Most of the erythromycin-resistant isolates carry ermB.

  11. Cardiometabolic risks profile of normal weight obese and multi-ethnic women in a developing country.

    Science.gov (United States)

    Moy, Foong Ming; Loh, Debbie Ann

    2015-07-01

    To determine the prevalence of normal weight obesity among multi-ethnic women in Peninsular Malaysia and examine its associations with cardiometabolic risks and lifestyle behaviours. This was a cross-sectional study involving women recruited via multi-stage sampling from six states in Malaysia. Anthropometric and body composition analysis were performed. Normal weight obese (NWO) was defined as normal body mass index for Asians and the highest tertile of % body fat (BF). Biochemical measurements included fasting lipid and blood glucose levels. Metabolic syndrome was diagnosed based on the Harmonization criteria. Participants completed self-reported questionnaires that included physical activity, smoking, alcohol consumption, fruit and vegetable intake and sleep duration. Body mass index, %BF, cardiometabolic risk factors, lifestyle behaviours. A total of 6854 women were recruited and the prevalence of NWO was 19.8% (95% CI: 17.3-22.5). NWO was more prevalent among the Indians and older women. NWO women had higher odds for abdominal obesity (OR: 2.64, 95% CI: 1.73-4.04), hypertriglyceridemia (2.51, 1.47-4.29) and hypertension (1.63, 1.15-2.31) compared to women with lower % body fat after adjusted for age and ethnicity. The prevalence of metabolic syndrome among NWO women was 5.4% (95% CI: 3.0-9.8). None of the lifestyle behaviours were significantly associated with NWO. Women with NWO had cardiometabolic abnormalities including abdominal obesity, dyslipidaemia and increased blood pressure. Health promotion efforts should include NWO women who may be oblivious of their deleterious health risks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Design of a new hypoxanthine biosensor: xanthine oxidase modified carbon film and multi-walled carbon nanotube/carbon film electrodes.

    Science.gov (United States)

    Torres, A Carolina; Ghica, M Emilia; Brett, Christopher M A

    2013-04-01

    A new and simple-to-prepare hypoxanthine biosensor has been developed using xanthine oxidase (XOD) immobilised on carbon electrode surfaces. XOD was immobilised by glutaraldehyde cross-linking on carbon film (CF) electrodes and on carbon nanotube (CNT) modified CF (CNT/CF). A comparison of the performance of the two configurations was carried out by the current response using amperometry at fixed potential; the best characteristics being exhibited by XOD/CNT/CF modified electrodes. The effects of electrolyte pH and applied potential were evaluated, and a proposal is made for the enzyme mechanism of action involving competition between regeneration of flavin adenine dinucleotide and reduction of hydrogen peroxide. Under optimised conditions, the determination of hypoxanthine was carried out at -0.2 V vs. a saturated calomel electrode (SCE) with a detection limit of 0.75 μM on electrodes with CNT and at -0.3 V vs. SCE with a detection limit of 0.77 μM on electrodes without CNT. The applicability of the biosensor was verified by performing an interference study, reproducibility and stability were investigated, and hypoxanthine was successfully determined in sardine and shrimp samples.

  13. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  14. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding

    DEFF Research Database (Denmark)

    Tervaniemi, Mari; Huotilainen, Minna; Brattico, Elvira

    2014-01-01

    Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory......-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared...... with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies...

  15. Multi-omic profiling of MYCN-amplified neuroblastoma cell-lines

    Directory of Open Access Journals (Sweden)

    Erik Dassi

    2015-12-01

    Full Text Available Neuroblastoma is the most common pediatric cancer, arising from the neural crest cells of the sympathetic nervous system. Its most aggressive subtype, characterized by the amplification of the MYCN oncogene, has a dismal prognosis and no effective treatment is available. Understanding the alterations induced by the tumor on the various layers of gene expression is therefore important for a complete characterization of this neuroblastoma subtype and for the discovery of new therapeutic opportunities. Here we describe the profiling of 13 MYCN-amplified neuroblastoma cell lines at the genome (copy number, transcriptome, translatome and miRome levels (GEO series GSE56654, GSE56552 and GSE56655. We provide detailed experimental and data analysis procedures by means of which we derived the results described in [1].

  16. sRNAbench: profiling of small RNAs and its sequence variants in single or multi-species high-throughput experiments

    Czech Academy of Sciences Publication Activity Database

    Barturen, G.; Rueda, A.; Hamberg, M.; Alganza, A.; Lebron, R.; Kotsyfakis, Michalis; Shi, B.-J.; Koppers-Lalic, D.; Hackenberg, M.

    2014-01-01

    Roč. 1, SEP 30 2014 (2014), s. 21-31 ISSN 2084-7173 Institutional support: RVO:60077344 Keywords : microRNA * small RNA * isomiRs * expression profiling * multi-species experiment * webserver Subject RIV: EB - Genetics ; Molecular Biology

  17. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  18. Cognitive Profiles in Patients with Multi-Infarct Dementia: An Omani Study

    Directory of Open Access Journals (Sweden)

    Samir Al-Adawi

    2014-07-01

    Full Text Available Background: Studies on neurocognitive impairment among patients presenting with multi-infarct dementia (MID have received little attention from non-Western societies, and the Arab world is no exception. To our knowledge, this is the first study to characterize neurocognitive, affective and vegetative functioning in patients with MID in Oman. Methods: In this study, we recruited 20 Omani patients presenting with MID and age- and gender-matched controls at the outpatient clinic of the Department of Behavioral Medicine, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Oman. In addition to the collection of clinical and demographic information, various cognitive batteries were administered to the consenting participants, including those indexing nonverbal reasoning abilities, working memory (attention, concentration and recall and executive functioning. Questionnaires that elicit the affective range and the quality of sleep were also administered. Results: Compared with the matched healthy subjects, the patients diagnosed with MID significantly differed in the presently operationalized indices of visuospatial function, semantic memory and affective and vegetative functioning. In contrast, episodic memory and some attentional capacities were not significantly different compared with the control subjects. Conclusions: The present study was explorative and clinically designed to describe neurocognitive functioning in patients with MID seeking consultation at a tertiary care center in Oman. Our data are necessary for planning and setting up community services and health care programs for demented patients in a society where dementia is a growing silent epidemic. © 2014 S. Karger AG, Basel

  19. Determination of geographic provenance of cotton fibres using multi-isotope profiles and multivariate statistical analysis

    Science.gov (United States)

    Daeid, N. Nic; Meier-Augenstein, W.; Kemp, H. F.

    2012-04-01

    The analysis of cotton fibres can be particularly challenging within a forensic science context where discrimination of one fibre from another is of importance. Normally cotton fibre analysis examines the morphological structure of the recovered material and compares this with that of a known fibre from a particular source of interest. However, the conventional microscopic and chemical analysis of fibres and any associated dyes is generally unsuccessful because of the similar morphology of the fibres. Analysis of the dyes which may have been applied to the cotton fibre can also be undertaken though this can be difficult and unproductive in terms of discriminating one fibre from another. In the study presented here we have explored the potential for Isotope Ratio Mass Spectrometry (IRMS) to be utilised as an additional tool for cotton fibre analysis in an attempt to reveal further discriminatory information. This work has concentrated on un-dyed cotton fibres of known origin in order to expose the potential of the analytical technique. We report the results of a pilot study aimed at testing the hypothesis that multi-element stable isotope analysis of cotton fibres in conjunction with multivariate statistical analysis of the resulting isotopic abundance data using well established chemometric techniques permits sample provenancing based on the determination of where the cotton was grown and as such will facilitate sample discrimination. To date there is no recorded literature of this type of application of IRMS to cotton samples, which may be of forensic science relevance.

  20. LINKING MOTOR-RELATED BRAIN POTENTIALS AND VELOCITY PROFILES IN MULTI-JOINT ARM REACHING MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Julià L Amengual

    2014-04-01

    Full Text Available The study of the movement related brain potentials (MRPBs needs accurate technical approaches to disentangle the specific patterns of bran activity during the preparation and execution of movements. During the last forty years, synchronizing the electromiographic activation (EMG of the muscle with the electrophysiological recordings (EEG has been commonly ussed for these purposes. However, new clinical approaches in the study of motor diseases and rehabilitation suggest the demand of new paradigms that might go further into the study of the brain activity associated with the kinematics of movement. As a response to this call, we have used a 3-D hand tracking system with the aim to record continuously the position of an ultrasonic sender located on the hand during the performance of multi-joint self-pace movements. We synchronized the time-series of position of velocity of the sender with the EEG recordings, obtaining specific patterns of brain activity as a function of the fluctuations of the kinematics during the natural movement performance. Additionally, the distribution of the brain activity during the preparation and execution phases of movement was similar that reported previously using the EMG, suggesting the validity of our technique. We claim that this paradigm could be usable in patients because of its simplicity and the potential knowledge that can be extracted from clinical protocols.

  1. Compositional profiling and sensorial analysis of multi-wholegrain extruded puffs as affected by fructan inclusion.

    Science.gov (United States)

    Handa, C; Goomer, S

    2015-09-01

    Rice grits, corn grits, pulse, wholegrain - finger millet and sorghum were utilized in the production of multigrain extruded puffs using a single screw extruder. The effect of inclusion of fructan - fructoligosaccharide in multi-wholegrain (MWG) extruded puffs was examined. MWG fructan enriched puffs puffs had 450 % higher dietary fiber content than the control puff (CP). These puffs can be categorized as 'Good Source' of fiber as it suffices 17.2 % DV of fiber. Puffs were rated 8.1 ± 0.6, 8.3 ± 0.7, 8.1 ± 0.6, 7.5 ± 0.5 and 8.2 ± 0.6 for color, flavor, texture, appearance and overall acceptability respectively. The scores for all the attributes were found to be not significantly different (p extruded puffs could be improved by the inclusion of fructans.

  2. Multi-machine transport analysis of hybrid discharges from the ITPA Profile Database

    International Nuclear Information System (INIS)

    Imbreaux, F.; Fujita, T.; Isayama, A.; Joffrin, E.; Kinsey, J.; Litaudon, X.; Luce, T.; Murakami, M.; Na, Y. S.; Sakamoto, Y.; Slips, A. C. C. C.; Wade, M.; Artaud, J. F.; Basiuk, V.

    2005-01-01

    The so-called Hybrid regime is a promising candidate scenario for ITER with a potential for longer inductive pulse at high fusion gain. Hybrid discharges are operated at higher q95 than the conventional H modes, which increases the non-inductive current fraction and the duration of the discharge. Another important characteristics of this regime is the absence of large sawteeth owing toa q-profile generally just above one in the plasma core. This property allows to reach high values of the normalised kinetic to magnetic pressure ratio β N =βaB T /I p of the order of 3, without triggering deleterious Neoclassical Tearing Modes. This work presents results of transport modelling of hybrid discharges from various tokamaks (Asdes Upgrade, DIII-D, JET, JT-60U) which have been submitted recently to the ITPA database. The objective is to assess the commonality of the transport physics in the hybrid regimes obtained by the various machines. The study focuses on the dependence of the transport properties as a function of important parameters like the density and the normalised Larmor radios ρ. Induced, those parameters play a critical role in the extrapolation of the transport characteristics of present day experiments to ITER. Various transport models are used in order to test their capability to reproduce the experimental parametric dependences on density and ρ. The extrapolability of the hybrid regime to ITER is checked using integrated modeling. (Author)

  3. Direct measurement of glucose profiles in immobilized yeast gels with a pH-insensitive micro-electrode under anaerobic conditions

    NARCIS (Netherlands)

    Cronenberg, C.C.H.; Heuvel, van den J.C.; Ottengraf, S.P.P.

    1993-01-01

    A 10 µm glucose sensor was developed based on a glucose oxidase coated Pt-electrode inserted in a capillary shaft. The internal buffer medium effected in a glucose response that was insensitive for the external pH. The sensor was successfully utilized at pH 4 under anaerobic conditions in gel

  4. Multi-year longitudinal profiles of cortisol and corticosterone recovered from baleen of North Atlantic right whales (Eubalaena glacialis).

    Science.gov (United States)

    Hunt, Kathleen E; Lysiak, Nadine S; Moore, Michael; Rolland, Rosalind M

    2017-12-01

    Research into stress physiology of mysticete whales has been hampered by difficulty in obtaining repeated physiological samples from individuals over time. We investigated whether multi-year longitudinal records of glucocorticoids can be reconstructed from serial sampling along full-length baleen plates (representing ∼10years of baleen growth), using baleen recovered from two female North Atlantic right whales (Eubalaena glacialis) of known reproductive history. Cortisol and corticosterone were quantified with immunoassay of subsamples taken every 4cm (representing ∼60d time intervals) along a full-length baleen plate from each female. In both whales, corticosterone was significantly elevated during known pregnancies (inferred from calf sightings and necropsy data) as compared to intercalving intervals; cortisol was significantly elevated during pregnancies in one female but not the other. Within intercalving intervals, corticosterone was significantly elevated during the first year (lactation year) and/or the second year (post-lactation year) as compared to later years of the intercalving interval, while cortisol showed more variable patterns. Cortisol occasionally showed brief high elevations ("spikes") not paralleled by corticosterone, suggesting that the two glucocorticoids might be differentially responsive to certain stressors. Generally, immunoreactive corticosterone was present in higher concentration in baleen than immunoreactive cortisol; corticosterone:cortisol ratio was usually >4 and was highly variable in both individuals. Further investigation of baleen cortisol and corticosterone profiles could prove fruitful for elucidating long-term, multi-year patterns in stress physiology of large whales, determined retrospectively from stranded or archived specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Electrocatalytic boost up of epinephrine and its simultaneous resolution in the presence of serotonin and folic acid at poly(serine)/multi-walled carbon nanotubes composite modified electrode: A voltammetric study

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, P.V. [Electrochemical Research Laboratory, Department of Chemistry, SVU College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Madhusudana Reddy, T., E-mail: tmsreddysvu@gmail.com [Electrochemical Research Laboratory, Department of Chemistry, SVU College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Gopal, P. [Electrochemical Research Laboratory, Department of Chemistry, SVU College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Mohan Reddy, M. [Department of Psychiatry, Sri Devaraj Ur' s Acedamy of Higher Education and Research (SDUAHER), Tamaka, Kolar, Karnataka (India); Ramakrishna Naidu, G. [Department of Environmental Sciences, SVU College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India)

    2015-11-01

    The present paper describes the new strategy for the development of nanosensor based on dropcasting of multi-walled carbon nanotubes (MWCNTs) followed by electropolymerization of serine (ser) onto the glassy carbon electrode (GCE). The developed nanocomposite sensor was abbreviated as poly(ser)/MWCNTs/GCE and was characterized by using electrochemical impedance spectroscopy (EIS) technique. The EIS results confirmed the fast electron transfer rate at the surface of poly(ser)/MWCNTs/GCE. The proposed sensor exhibited good catalytic activity towards the sensing of epinephrine (EP) individually and simultaneously in the presence of serotonin (5-HT) and folic acid (FA) in 0.1 M phosphate buffer solution (PBS) at pH 7.0. The limit of detection (LOD) and limit of quantification (LOQ) of EP was found to be 6 × 10{sup −7} M and 2 × 10{sup −6} M respectively. The fabricated sensor showed excellent precision and accuracy with a relative standard deviation (RSD) of 4.86%. The proposed composite sensor was effectively applied towards the determination of EP in human blood serum and pharmaceutical injection sample. - Highlights: • Poly(ser)/MWCNTs/GCE showed high sensitivity in the sensing of EP. • The sensor reduced the overpotential for oxidation of EP. • This electrode was successfully used for simultaneous sensing of EP, 5-HT and FA. • The electrode was effectively used for the determination of EP in real samples.

  6. Optimising carbon electrode materials for adsorptive stripping voltammetry

    OpenAIRE

    Chaisiwamongkhol, K; Batchelor-McAuley, C; Sokolov, S; Holter, J; Young, N; Compton, R

    2017-01-01

    Different types of carbon electrode materials for adsorptive stripping voltammetry are studied through the use of cyclic voltammetry. Capsaicin is utilised as a model compound for adsorptive stripping voltammetry using unmodified and modified basal plane pyrolytic graphite (BPPG) electrodes modified with multi-walled carbon nanotubes, carbon black or graphene nanoplatelets, screen printed carbon electrodes (SPE), carbon nanotube modified screen printed electrodes, and carbon paste electrodes....

  7. The Effects of a Multi-Ingredient Performance Supplement on Hormonal Profiles and Body Composition in Male College Athletes

    Directory of Open Access Journals (Sweden)

    Matthew H. Sharp

    2016-05-01

    Full Text Available Periods of intense training can elicit an acute decline in performance and body composition associated with weakened hormone profiles. This study investigated the effects of a multi-ingredient performance supplement (MIPS on body composition and hormone levels in college athletes following a six-week training protocol. Twenty male college athletes were equally assigned to MIPS and placebo (PLA groups for supplementation (three pills, twice daily in conjunction with resistance training and specialized sports training (e.g., nine total sessions/week for six weeks. Dual Energy X-ray Absorptiometry determined body composition at weeks 0 and 6. Serum samples collected at weeks 0 and 6 determined free testosterone (FT, total testosterone (TT, IGF-1 and total estrogen (TE levels. PLA experienced a significant decline in lean body mass (LBM (−1.5 kg; p < 0.05 whereas the MIPS sustained LBM. The MIPS increased TT 21.9% (541.5 ± 48.7 to 639.1 ± 31.7 and increased FT 15.2% (13.28 ± 1.1 to 15.45 ± 1.3 ng/dL (p < 0.05. Conversely, PLA decreased TT 7.9% (554.5 ± 43.3 to 497.2 ± 39.1 ng/dL, decreased FT 17.4% (13.41 ± 1.8 to 11.23 ± 2.55 ng/dL, and decreased FT:E 12.06% (p < 0.05. These findings suggest the MIPS can prevent decrements in LBM and anabolic hormone profiles during intense training periods.

  8. Investigation of the effects of the fatty acid profile on fuel properties using a multi-criteria decision analysis

    International Nuclear Information System (INIS)

    Islam, Muhammad Aminul; Brown, Richard J.; Brooks, P.R.; Jahirul, M.I.; Bockhorn, H.; Heimann, Kirsten

    2015-01-01

    Highlights: • Long chain mono-unsaturated fatty acids (C16:1, C18:1) have positive impact on CN. • Very long chain unsaturated fatty acids (C20:5, C22:5, C22:6) increase the fuel density and decrease the cetane number. • Calculated CN overestimated the impact of very long chain unsaturated fatty acids. - Abstract: The structural features of fatty acids in biodiesel, including degree of unsaturation, percentage of saturated fatty acids and average chain length, influence important fuel properties such as cetane number, iodine value, density, kinematic viscosity, higher heating value and oxidation stability. The composition of fatty acid esters within the fuel should therefore be in the correct ratio to ensure fuel properties are within international biodiesel standards such as ASTM 6751 or EN 14214. This study scrutinises the influence of fatty acid composition and individual fatty acids on fuel properties. Fuel properties were estimated based on published equations, and measured according to standard procedure ASTM D6751 and EN 14214 to confirm the influences of the fatty acid profile. Based on fatty acid profile-derived calculations, the cetane number of the microalgal biodiesel was estimated to be 11.6, but measured 46.5, which emphasises the uncertainty of the method used for cetane number calculation. Multi-criteria decision analysis (MCDA), PROMETHEE–GAIA, was used to determine the influence of individual fatty acids on fuel properties in the GAIA plane. Polyunsaturated fatty acids increased the iodine value and had a negative influence on cetane number. Kinematic viscosity was negatively influenced by some long chain polyunsaturated fatty acids such as C20:5 and C22:6 and some of the more common saturated fatty acids C14:0 and C18:0. The positive impact of average chain length on higher heating value was also confirmed in the GAIA plane

  9. Systematic variations in multi-spectral lidar representations of canopy height profiles and gap probability

    Science.gov (United States)

    Chasmer, L.; Hopkinson, C.; Gynan, C.; Mahoney, C.; Sitar, M.

    2015-12-01

    Airborne and terrestrial lidar are increasingly used in forest attribute modeling for carbon, ecosystem and resource monitoring. The near infra-red wavelength at 1064nm has been utilised most in airborne applications due to, for example, diode manufacture costs, surface reflectance and eye safety. Foliage reflects well at 1064nm and most of the literature on airborne lidar forest structure is based on data from this wavelength. However, lidar systems also operate at wavelengths further from the visible spectrum (e.g. 1550nm) for eye safety reasons. This corresponds to a water absorption band and can be sensitive to attenuation if surfaces contain moisture. Alternatively, some systems operate in the visible range (e.g. 532nm) for specialised applications requiring simultaneous mapping of terrestrial and bathymetric surfaces. All these wavelengths provide analogous 3D canopy structure reconstructions and thus offer the potential to be combined for spatial comparisons or temporal monitoring. However, a systematic comparison of wavelength-dependent foliage profile and gap probability (index of transmittance) is needed. Here we report on two multispectral lidar missions carried out in 2013 and 2015 over conifer, deciduous and mixed stands in Ontario, Canada. The first used separate lidar sensors acquiring comparable data at three wavelengths, while the second used a single sensor with 3 integrated laser systems. In both cases, wavelenegths sampled were 532nm, 1064nm and 1550nm. The experiment revealed significant differences in proportions of returns at ground level, the vertical foliage distribution and gap probability across wavelengths. Canopy attenuation was greatest at 532nm due to photosynthetic plant tissue absorption. Relative to 1064nm, foliage was systematically undersampled at the 10% to 60% height percentiles at both 1550nm and 532nm (this was confirmed with coincident terrestrial lidar data). When using all returns to calculate gap probability, all

  10. Catheter-based renal denervation for resistant hypertension: Twenty-four month results of the EnligHTN I first-in-human study using a multi-electrode ablation system.

    Science.gov (United States)

    Tsioufis, Costas P; Papademetriou, Vasilios; Dimitriadis, Kyriakos S; Kasiakogias, Alexandros; Tsiachris, Dimitrios; Worthley, Matthew I; Sinhal, Ajay R; Chew, Derek P; Meredith, Ian T; Malaiapan, Yuvi; Thomopoulos, Costas; Kallikazaros, Ioannis; Tousoulis, Dimitrios; Worthley, Stephen G

    2015-12-15

    Long term safety and efficacy data of multi-electrode ablation system for renal denervation (RDN) in patients with drug resistant hypertension (dRHT) are limited. We studied 46 patients (age: 60 ± 10 years, 4.7 ± 1.0 antihypertensive drugs) with drug resistant hypertension (dRHT). Reduction in office BP at 24 months from baseline was -29/-13 mmHg, while the reduction in 24-hour ambulatory BP and in home BP at 24 months were -13/-7 mmHg and -11/-6 mmHg respectively (p<0.05 for all). A correlation analysis revealed that baseline office and ambulatory BP were related to the extent of office and ambulatory BP drop. Apart from higher body mass index (33.3 ± 4.7 vs 29.5 ± 6.2 kg/m(2), p<0.05), there were no differences in patients that were RDN responders defined as ≥10 mmHg decrease (74%, n=34) compared to non-responders. Stepwise logistic regression analysis revealed no prognosticators of RDN response (p=NS for all). At 24 months there were no new serious device or procedure related adverse events. The EnligHTN I study shows that the multi-electrode ablation system provides a safe method of RDN in dRHT accompanied by a clinically relevant and sustained BP reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Traceability of Opuntia ficus-indica L. Miller by ICP-MS multi-element profile and chemometric approach.

    Science.gov (United States)

    Mottese, Antonio Francesco; Naccari, Clara; Vadalà, Rossella; Bua, Giuseppe Daniel; Bartolomeo, Giovanni; Rando, Rossana; Cicero, Nicola; Dugo, Giacomo

    2018-01-01

    Opuntia ficus-indica L. Miller fruits, particularly 'Ficodindia dell'Etna' of Biancavilla (POD), 'Fico d'india tradizionale di Roccapalumba' with protected brand and samples from an experimental field in Pezzolo (Sicily) were analyzed by inductively coupled plasma mass spectrometry in order to determine the multi-element profile. A multivariate chemometric approach, specifically principal component analysis (PCA), was applied to individuate how mineral elements may represent a marker of geographic origin, which would be useful for traceability. PCA has allowed us to verify that the geographical origin of prickly pear fruits is significantly influenced by trace element content, and the results found in Biancavilla PDO samples were linked to the geological composition of this volcanic areas. It was observed that two principal components accounted for 72.03% of the total variance in the data and, in more detail, PC1 explains 45.51% and PC2 26.52%, respectively. This study demonstrated that PCA is an integrated tool for the traceability of food products and, at the same time, a useful method of authentication of typical local fruits such as prickly pear. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Feature extraction based on extended multi-attribute profiles and sparse autoencoder for remote sensing image classification

    Science.gov (United States)

    Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman

    2018-02-01

    The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.

  13. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  14. Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Pourbahram, Bahareh; Mansouri-Majd, Samira; Hallaj, Rahman

    2015-01-01

    Highlights: • CNTs/chitosan/GC electrode used as platform for electrodeposition of MnO x -nanoflakes. • Modified electrode has excellent catalytic activity for oxidation of Cr 3+ at pH 3–7. • Detection limit and sensitivity of sensor for Cr 3+ detection were 0.3 μM and 18.7 nA/μM. • Sensor has good stability and high selectivity in the presence of common interferences. • Sensor applied for the detection of Cr 3+ in real samples with satisfactory results. - Abstract: In this research a nanocomposite containing chitosan (Chit) and maltiwalled carbon nanotubes (MWCNTs) was applied as platform for immobilization of electrodeposited manganese oxide (MnOx) nanostructures. First, glassy carbon (GC) electrode modified with thin film of Chitosan/MWCNTs nanocomposite. Then MnO x nanostructures was electrodeposited onto Chitosan/MWCNTs modified GC electrode using combination of constant potential step (0.6 V) and cyclic voltammetry(0.3–0.6 V) techniques. The XRD patterns and scanning electron microscope images indicated immobilization of uniformly MnOx nanoflakes with high crystallite onto MWCNTs/Chit film. The modified electrode shows a well-defined redox couple for Mn 2+ /MnO 2 system. Charge transfer coefficient (α), electron transfer rate constant (k s ) and surface concentration (Γ) were 0.394, 3.44 s −1 and 3.3 × 10 −11 mol cm −2 , respectively. The modified electrode showed excellent electrocatalytic activity toward oxidation of chromium (III) at natural pH solutions. Cyclic voltammetry and hydrodynamic amperometery were applied as measuring techniques for chromium detection. Detection limit, sensitivity and linear concentration range of the sensor were, 0.3 (μM), 18.7 nAμ M −1 and 3 μM to 200 μM, respectively. Moreover, the sensor retained about 90% of its original response toward Cr(III) after storage three months in ambient condition. Furthermore, the sensor response toward different common interferences was negligible. Finally, the

  15. Influence of Surface-profile and Movement-path of Roller on Thickness Thinning during Multi-pass Deep Drawing Spinning

    Directory of Open Access Journals (Sweden)

    Xia Qinxiang

    2016-01-01

    Full Text Available Over thinning is a serious defect influencing the forming quality of spun workpiece during multi-pass deep drawing spinning. Surface-profile and movement-path of roller are the key factors influencing the thinning ratio of wall thickness of spun workpiece. The influence of surface-profile and movement-path of roller on thickness thinning were studied based on numerical simulation and experimental research, four groups of forming experiments were carried out under the combination of the different surface-profile of roller (R12 and R25-12 and movement-path of roller (spinning from the bottom of the blank and spinning from the middle of the blank. The results show that both the surface-profile and movement-path of roller have great influence on wall thickness thinning during multi-pass deep drawing spinning; and compared with the movement-path of roller, the influence of surface-profile of roller is more significant. The experimental results conform well to the simulation ones. It indicates that the FEA model established is reasonable and reliable.

  16. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  17. Sensitive stripping voltammetric determination of Cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhao, Guo; Yin, Yuan; Wang, Hui; Liu, Gang; Wang, Zhiqiang

    2016-01-01

    Highlights: • A MWCNT-EBP-NA composite film modified GCE was fabricated and characterized. • The GCE modified with the MWCNT-EBP-NA composite film exhibited excellent performance in the analysis of Cd(II) and Pb(II) by SWASV. • The Cd(II) and Pb(II) detection limits of the developed electrode were approximately 0.06 μg/L and 0.08 μg/L, respectively. • Bi/MWCNT-EBP-NA/GCE was successfully used to determine metal ions in soil samples. - Abstract: In this study, a multi-walled carbon nanotube (MWCNT)-emeraldine base polyaniline (EBP)-Nafion (NA) composite modified glassy carbon electrode (MWCNT-EBP-NA/GCE) was prepared and used for the sensitive detection of trace Pb(II) and Cd(II), with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), by square wave anodic stripping voltammetry (SWASV). A bismuth film was prepared through the in situ plating of bismuth on the MWCNT-EBP-NA/GCE. The morphologies and electrochemical properties of the modified electrode were characterized by SWASV, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The parameters affecting the stripping current response were investigated and optimized. The formed MWCNTs in the composite film enlarged the specific surface area of the electrode and significantly promoted electron transferring, and the formed polyaniline (PANI) enhanced the ion-exchange capacity and prevented the macromolecules in real samples from absorbing onto the surface of the electrode. The presence of NA effectively increased the stability and adhesion of the composite film, enhanced the cation-exchange capacity and improved the ability to preconcentrate metal ions. Under the optimized conditions, a linear range of 1.0 to 50.0 μg/L was achieved for both metal ions, with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), offering good repeatability. Finally, the Bi/MWCNT-EBP-NA/GCE was used for the

  18. Predicting protein-ATP binding sites from primary sequence through fusing bi-profile sampling of multi-view features

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Nan

    2012-05-01

    Full Text Available Abstract Background Adenosine-5′-triphosphate (ATP is one of multifunctional nucleotides and plays an important role in cell biology as a coenzyme interacting with proteins. Revealing the binding sites between protein and ATP is significantly important to understand the functionality of the proteins and the mechanisms of protein-ATP complex. Results In this paper, we propose a novel framework for predicting the proteins’ functional residues, through which they can bind with ATP molecules. The new prediction protocol is achieved by combination of sequence evolutional information and bi-profile sampling of multi-view sequential features and the sequence derived structural features. The hypothesis for this strategy is single-view feature can only represent partial target’s knowledge and multiple sources of descriptors can be complementary. Conclusions Prediction performances evaluated by both 5-fold and leave-one-out jackknife cross-validation tests on two benchmark datasets consisting of 168 and 227 non-homologous ATP binding proteins respectively demonstrate the efficacy of the proposed protocol. Our experimental results also reveal that the residue structural characteristics of real protein-ATP binding sites are significant different from those normal ones, for example the binding residues do not show high solvent accessibility propensities, and the bindings prefer to occur at the conjoint points between different secondary structure segments. Furthermore, results also show that performance is affected by the imbalanced training datasets by testing multiple ratios between positive and negative samples in the experiments. Increasing the dataset scale is also demonstrated useful for improving the prediction performances.

  19. Studies on the heterogeneous electron transport and oxygen reduction reaction at metal (Co, Fe) octabutylsulphonylphthalocyanines supported on multi-walled carbon nanotube modified graphite electrode

    CSIR Research Space (South Africa)

    Mamuru, SA

    2010-09-01

    Full Text Available Heterogeneous electron transfer dynamics and oxygen reduction reaction (ORR) activities using octabutylsulphonylphthalocyanine complexes of iron (FeOBSPc) and cobalt (CoOBSPc) supported on multi-walled carbon nanotube (MWCNT) platforms have been...

  20. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  1. In vitro evaluation of the effect of haemodilution with dextran 40 on coagulation profile as measured by thromboelastometry and multiple electrode aggregometry.

    Science.gov (United States)

    Kam, Pca; Liou, Jpc; Yang, Kxf

    2017-09-01

    We evaluated the effects of haemodilution with either dextran 40 or 0.9% normal saline on coagulation in vitro using rotational thromboelastometry (ROTEM®, Pentapharm Co., Munich, Germany) and multiple electrode aggregometry (Multiplate® Platelet Function Analyser, Dynabyte, Munich, Germany). Venous blood samples obtained from 20 healthy volunteers were diluted in vitro with dextran 40 or normal saline by 5%, 10% and 15%. Fibrinogen concentration, ROTEM-EXTEM® (screening test for the extrinsic coagulation pathway), FIBTEM® (an EXTEM-based assay of the fibrin component of clot) parameters including coagulation time, clot formation time, alpha angle, maximum clot firmness and lysis index were measured in the undiluted sample and at each level of haemodilution. Dextran 40 at 15% haemodilution significantly prolonged coagulation time, clot formation time and significantly decreased the alpha angle and maximal clot firmness (EXTEM amplitude at five minutes [A5] and ten minutes [A10]) compared with normal saline. The FIBTEM assay (maximal clot firmness and FIBTEM A5 and A10) showed a marked decrease in maximal clot firmness at all dilutions suggesting impaired fibrinogen activity and a risk of bleeding. Multiple electrode aggregometry did not demonstrate any platelet dysfunction. Haemodilution with dextran 40 causes significant impairment in clot formation and strength compared to saline haemodilution and undiluted blood. At the levels of in vitro haemodilution designed to reflect the clinical use of dextran infusions, no significant fibrinolysis or platelet inhibition was observed.

  2. Development of a modified electrode with amine-functionalized TiO{sub 2}/multi-walled carbon nanotubes nanocomposite for electrochemical sensing of the atypical neuroleptic drug olanzapine

    Energy Technology Data Exchange (ETDEWEB)

    Arvand, Majid, E-mail: arvand@guilan.ac.ir; Palizkar, Bahareh

    2013-12-01

    In this work, using of amine-functionalized TiO{sub 2}/multi-walled carbon nanotubes (NH{sub 2}-TiO{sub 2}-MWCNTs) nanocomposite for modification of glassy carbon electrode (GCE) was investigated. The nanocomposite was characterized by Fourier transformed infrared spectroscopy, transmission electron microscopy and scanning electron microscopy. The efficiency of modified electrode for electrocatalytic the oxidation of olanzapine was studied by cyclic voltammetry, square wave voltammetry and chronoamperometry. The electrochemical measurements were carried out in phosphate-buffered solution (PBS, pH 5.0). The NH{sub 2}-TiO{sub 2}-MWCNTs/GCE provided high surface area and more sensitive performance. The charge transfer coefficient (α) and the apparent charge transfer rate constant (k{sub s}) were calculated to be equal to 0.42 and 0.173 s{sup −1}, respectively. The square wave voltammetry exhibited two linear dynamic ranges and a detection limit of 0.09 μM of olanzapine. In addition, the modified electrode was employed for the determination of olanzapine in pharmaceutical and human blood serum samples in order to illustrate the applicability of proposed method. - Highlights: • A simple and rapid sensor for determination of olanzapine in tablet and serum was prepared. • The amine-functionalized TiO{sub 2}-MWCNTs/GCE showed an obvious increase in surface area. • The presence of NH{sub 2}-TiO{sub 2} nanoparticles showed good ability to distinguish the response of olanzapine.

  3. Development of a sensor for L-Dopa based on Co(DMG)(2)ClPy/multi-walled carbon nanotubes composite immobilized on basal plane pyrolytic graphite electrode.

    Science.gov (United States)

    Leite, Fernando Roberto Figueirêdo; Maroneze, Camila Marchetti; de Oliveira, Adriano Bof; dos Santos, Wallans Torres Pio; Damos, Flavio Santos; Silva Luz, Rita de Cássia

    2012-08-01

    L-Dopa is the immediate precursor of the neurotransmitter dopamine, being the most widely prescribed drug in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-Dopa in pharmaceutical formulations using a basal plane pyrolytic graphite (BPPG) electrode modified with chloro(pyridine)bis(dimethylglyoximato)cobalt(III) (Co(DMG)(2)ClPy) absorbed in a multi-walled carbon nanotube (MWCNT). Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy were used to characterize the materials. The electrocatalytical oxidation of L-Dopa using the Co(DMG)(2)ClPy/MWCNT/BPPG electrode was investigated by cyclic voltammetry and square wave voltammetry. The parameters that influence the electrode response (the amount of Co(DMG)(2)ClPy and of MWCNT, buffer solution, buffer concentration, buffer pH, frequency and potential pulse amplitude) were investigated. Voltammetric peak currents showed a linear response for L-Dopa concentration in the range of 3 to 100 μM, with a sensitivity of 4.43 μAcm(-2)/μM and a detection limit of 0.86 μM. The related standard deviation for 10 determinations of 50 μM L-Dopa was 1.6%. The results obtained for L-Dopa determination in pharmaceutical formulations (tablets) were in agreement with the compared official method. The sensor was successfully applied for L-Dopa selective determination in pharmaceutical formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taewoong [Department of Nano-Photonics Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Seong, Tae-Yeon [Department of Nano-Photonics Engineering, Korea University, Seoul 136-713 (Korea, Republic of); School of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kwon, Ohmyoung, E-mail: omkwon@korea.ac.kr [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2016-06-06

    Efficiency droop is a phenomenon in which the efficiency of a light-emitting diode (LED) decreases with the increase in current density. To analyze efficiency droop, direct experimental observations on the energy conversion occurring inside the LED is required. Here, we present the measured voltage profiles on the cross section of an operating LED and analyze them with the cross-sectional temperature profiles obtained in a previous study under the same operation conditions. The measured voltage profiles suggest that with increases in the injection current density, electron depletion shifts from the multi-quantum well through an electron blocking layer to the p-GaN region. This is because electron leakage increases with increases in current density.

  5. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    Science.gov (United States)

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A combined salt-hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance

    KAUST Repository

    Bhandari, Nidhi

    2015-06-01

    A new approach, based on a combination of salt and hard templating for producing multi-modal porous carbons is demonstrated. The hard template, silica nanoparticles, generate mesopores (∼22 nm), and in some cases borderline-macropores (∼64 nm), resulting in high pore volume (∼3.9 cm3/g) while the salt template, zinc chloride, generates borderline-mesopores (∼2 nm), thus imparting high surface area (∼2100 m2/g). The versatility of the proposed synthesis technique is demonstrated using: (i) dual salt templates with hard template resulting in magnetic, nanostructured-clay embedded (∼27% clay content), high surface area (∼1527 m2/g) bimodal carbons (∼2 and 70 nm pores), (ii) multiple hard templates with salt template resulting in tri-modal carbons (∼2, 12 and 28 nm pores), (iii) low temperature (450 °C) synthesis of bimodal carbons afforded by the presence of hygroscopic salt template, (iv) easy coupling with physical activation approaches. A selected set of thus synthesized carbons were used to evaluate, for the first time, the simultaneous effects of carbon porosity and pressure applied during electrode fabrication on EDLC performance. Electrode pressing was found to be more favorable for carbons containing hard-templated mesopores (∼87% capacitance retention at current density of 40 A/g) as compared to those without (∼54% capacitance retention). © 2015 Elsevier Ltd. All rights reserved.

  7. Depth profiling Li in electrode materials of lithium ion battery by {sup 7}Li(p,γ){sup 8}Be and {sup 7}Li(p,α){sup 4}He nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sunitha, Y., E-mail: sunibarc@gmail.com; Kumar, Sanjiv

    2017-06-01

    A proton induced γ-ray emission method based on {sup 7}Li(p,γ){sup 8}Be proton capture reaction and a nuclear reaction analysis method involving {sup 7}Li(p,α){sup 4}He reaction are described for depth profiling Li in the electrode materials, graphite and lithium cobalt oxide for example, of a Li-ion battery. Depth profiling by {sup 7}Li(p,γ){sup 8}Be reaction is accomplished by the resonance at 441 keV and involves the measurement of 14.6 and 17.6 MeV γ-rays, characteristic of the reaction, by a NaI(Tl) detector. The method has a detection sensitivity of ∼0.2 at% and enables profiling up to a depth ≥20 µm with a resolution of ≥150 nm. The profiling to a fairly large depth is facilitated by the absence of any other resonance up to 1800 keV proton energy. The reaction has substantial off-resonance cross-sections. A procedure is outlined for evaluating the off-resonance yields. Interferences from fluorine and aluminium are major limitation of this depth profiling methodology. The depth profile measurement by {sup 7}Li(p,α){sup 4}He reaction, on the other hand, utilises 2–3 MeV protons and entails the detection of α-particles at 90° or 150° angles. The reaction exhibits inverse kinematics at 150°. This method, too, suffers interference from fluorine due to the simultaneous occurrence of {sup 19}F(p,α){sup 16}O reaction. Kinematical considerations show that the interference is minimal at 90° and thus is the recommended angle of detection. The method is endowed with a detection sensitivity of ∼0.1 at%, a depth resolution of ∼100 nm and a probing depth of about 30 µm in the absence and 5–8 µm in the presence of fluorine in the material. Both methods yielded comparable depth profiles of Li in the cathode (lithium cobalt oxide) and the anode (graphite) of a Li-ion battery.

  8. A New Platform for Profiling Degradation-Related Impurities Via Exploiting the Opportunities Offered by Ion-Selective Electrodes: Determination of Both Diatrizoate Sodium and Its Cytotoxic Degradation Product.

    Science.gov (United States)

    Riad, Safaa M; Abd El-Rahman, Mohamed K; Fawaz, Esraa M; Shehata, Mostafa A

    2018-05-01

    Although the ultimate goal of administering active pharmaceutical ingredients (APIs) is to save countless lives, the presence of impurities and/or degradation products in APIs or formulations may cause harmful physiological effects. Today, impurity profiling (i.e., the identity as well as the quantity of impurity in a pharmaceutical) is receiving critical attention from regulatory authorities. Despite the predominant use of spectroscopic and chromatographic methods over electrochemical methods for impurity profiling of APIs, this work investigates the opportunities offered by electroanalytical methods, particularly, ion-selective electrodes (ISEs), for profiling degradation-related impurities (DRIs) compared with conventional spectroscopic and chromatographic methods. For a meaningful comparison, diatrizoate sodium (DTA) was chosen as the anionic X-ray contrast agent based on its susceptibility to deacetylation into its cytotoxic and mutagenic degradation product, 3,5-diamino-2,4,6 triiodobenzoic acid (DTB). This cationic diamino compound can be also detected as an impurity in the final product because it is used as a synthetic precursor for the synthesis of DTA. In this study, four novel sensitive and selective sensors for the determination of both DTA and its cytotoxic degradation products are presented. Sensors I and II were developed for the determination of the anionic drug, DTA, and sensors III and IV were developed for the determination of the cationic cytotoxic impurity. The use of these novel sensors not only provides a stability-indicating method for the selective determination of DTA in the presence of its degradation product, but also permits DRI profiling. Moreover, a great advantage of these proposed ISE systems is their higher sensitivity for the quantification of DTB relative to other spectroscopic and chromatographic methods, so it can measure trace amounts of DTB impurities in DTA bulk powder and pharmaceutical formulation without a need for

  9. New synthesis of poly ortho-methoxyaniline nanostructures and its application to construct modified multi-wall carbon nanotube/graphite paste electrode for simultaneous determination of uric acid and folic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Hossein, E-mail: h.rajabi8086@gmail.com; Noroozifar, Meissam

    2017-06-01

    Uric acid (UA) and folic acid (FA) are compounds of biomedical interest. In humans, about 70% of daily uric acid disposal occurs via the kidneys, and in 5–25% of humans, impaired renal (kidney) excretion leads to hyperuricemia. Folate is another form folic acid of which is known as, is one of the B vitamins. It is used as a supplement by women to prevent neural tube defects developing during pregnancy. Polyortho-methoxyaniline nanostructures (POMANS) was synthesized with a new two phase (organic-water) synthesis method. The POMANS was characterized using transmission electron microscopy (TEM) and Fourier transform IR (FTIR). This polymer was used to construct a modified multi-wall carbon nanotube, graphite paste electrode (POMANS-MWCNT/GPE). Linear sweep voltammograms (LSV), cyclic voltammetry (CV) and chronoamperometry were used to investigate the suitability of polyortho-methoxyaniline with multi-wall carbon nanotubes paste electrode as a modifier for the electrocatalytic oxidation of UA and FA in aqueous solutions with various pHs. The results showed that POMANS-MWCNT/GPE had high anodic peak currents for the electrooxidation of UA and FA in pH 6.0.Under the optimized conditions, The catalytic peak currents obtained, was linearly dependent on the UA and FA concentrations in the range of 0.6–52 and 0.5–68 μM with two segments and the detection limits 0.157 and 0.113 μM for UA and FA were, respectively. Finally, the proposed method was also examined as a sensitive, simple and inexpensive electrochemical sensor for the simultaneous determination of UA and FA in real samples such as urine and serum. - Highlights: • For the first time, POMANS was synthesized with a new method of two-phase organic & water. • POMANS-MWCNT/GPE was used for simultaneous determination of UA and FA at optimum pH 6.0. • Parameters n and α were also determined for UA and FA. • Electrochemical simultaneous determination of UA and FA with modified electrode real samples.

  10. Multi-electrode laterally coupled distributed feedback InGaAsP/InP lasers: a prescription for longitudinal mode control

    Science.gov (United States)

    Benhsaien, Abdessamad; Dridi, Kais; Zhang, Jessica; Hall, Trevor J.

    2013-10-01

    Photonic Integrated Circuits (PICs) enable photons as data carriers at a very high speed. PIC market opportunities call for reduced wafer dimensions, power consumption and cost as well as enhanced reliability. The PIC technology development must cater for the latter relentless traits. In particular, monolithic PICs are sought as they can integrate hundreds of components and functions onto a single chip. InGaAsP/InP laterally-coupled distributed feedback (LC-DFB) lasers stand as key enablers in the PIC technology thanks to the compelling advantages their embedded high-order surface-gratings have. The patterning of the spatial corrugation along the sidewalls of the LC-DFB ridge, has been established to make the epitaxial overgrowth unnecessary thereby reducing the cost and time of manufacturing, and ultimately increasing the yield. LC-DFBs boast a small footprint synonymous of enhanced monolithic integrate-ability. Nonetheless, LC-DFBs suffer from the adverse longitudinal spatial hole burning (LSHB) effects materialized by typically quite high threshold current levels. Indeed, the carrier density longitudinal gradient- responsible for modes contending for the available material gain in the cavity- may be alleviated somewhat by segmenting the LC-DFB electrode into two or three reasonably interspaced longitudinal sections. In this work we report on the realization and performance of various electrode partition configurations. At room temperature, the experimental characterization of many as-cleaved LC-DFB devices provides ample evidence of superior performance such as a narrow linewidth (less than 400 kHz), a wide wavelength tune-ability (over 4 nm) and a hop-free single mode emission (side mode suppression ratio (SMSR) exceeding 54dB).

  11. Characterization of Pasteurella multocida associated with ovine pneumonia using multi-locus sequence typing (MLST) and virulence-associated gene profile analysis and comparison with porcine isolates.

    Science.gov (United States)

    García-Alvarez, Andrés; Vela, Ana Isabel; San Martín, Elvira; Chaves, Fernando; Fernández-Garayzábal, José Francisco; Lucas, Domínguez; Cid, Dolores

    2017-05-01

    Pasteurella multocida is a pathogen causing disease in a wide range of hosts including sheep and pigs. Isolates from ovine pneumonia were characterized by MLST (Multi-host and RIRDC databases) and virulence-associated gene (VAG) typing and compared with porcine isolates. Ovine and porcine isolates did not share any STs as determined by both schemes and exhibited different VAG profiles. With the Multi-host database, sixteen STs were identified among 43 sheep isolates with two STs (ST50 and ST19) comprising 53.5% of the isolates, and seven MLST genotypes (ST3, ST11 and ST62 included 75% of the isolates) among the 48 pig isolates. The most frequent VAG profile among sheep isolates was tbpA+/toxA+ (69.8% of isolates) and pfhA+ (62.5%) and hgbB+ (33.3%) among pig isolates. Representative ovine and porcine isolates of those STs identified by the Multi-host scheme were further typed using the RIRDC scheme. Seven STs were identified among the ovine isolates (ST95 RIRDC , ST131 RIRDC , ST203 RIRDC , ST320 RIRDC , ST324 RIRDC , ST321 RIRDC , and ST323 RIRDC ), with the latter four sequence types being new STs identified in this study, and six STs (ST9 RIRDC , ST13 RIRDC , ST27 RIRDC , ST50 RIRDC , and ST74 RIRDC and a new sequence type ST322 RIRDC ) among the porcine isolates. STs identified among ovine isolates have been detected exclusively in small ruminants, suggesting an adaptation to these hosts, while the genotypes identified among pig isolates have been previously identified in multiple hosts and therefore they are not restricted to pigs. The differences in genotypes and VAG profiles between ovine and pig isolates suggest they could represent different subpopulations of P. multocida. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multi-Omics Analysis Reveals a Correlation between the Host Phylogeny, Gut Microbiota and Metabolite Profiles in Cyprinid Fishes

    Science.gov (United States)

    Li, Tongtong; Long, Meng; Li, Huan; Gatesoupe, François-Joël; Zhang, Xujie; Zhang, Qianqian; Feng, Dongyue; Li, Aihua

    2017-01-01

    Gut microbiota play key roles in host nutrition and metabolism. However, little is known about the relationship between host genetics, gut microbiota and metabolic profiles. Here, we used high-throughput sequencing and gas chromatography/mass spectrometry approaches to characterize the microbiota composition and the metabolite profiles in the gut of five cyprinid fish species with three different feeding habits raised under identical husbandry conditions. Our results showed that host species and feeding habits significantly affect not only gut microbiota composition but also metabolite profiles (ANOSIM, p ≤ 0.05). Mantel test demonstrated that host phylogeny, gut microbiota, and metabolite profiles were significantly related to each other (p ≤ 0.05). Additionally, the carps with the same feeding habits had more similarity in gut microbiota composition and metabolite profiles. Various metabolites were correlated positively with bacterial taxa involved in food degradation. Our results shed new light on the microbiome and metabolite profiles in the gut content of cyprinid fishes, and highlighted the correlations between host genotype, fish gut microbiome and putative functions, and gut metabolite profiles. PMID:28367147

  13. The Utility of a Computerized Algorithm Based on a Multi-Domain Profile of Measures for the Diagnosis of Attention Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Alessandro Crippa

    2017-10-01

    Full Text Available The current gold standard for diagnosis of attention deficit/hyperactivity disorder (ADHD includes subjective measures, such as clinical interview, observation, and rating scales. The significant heterogeneity of ADHD symptoms represents a challenge for this assessment and could prevent an accurate diagnosis. The aim of this work was to investigate the ability of a multi-domain profile of measures, including blood fatty acid (FA profiles, neuropsychological measures, and functional measures from near-infrared spectroscopy (fNIRS, to correctly recognize school-aged children with ADHD. To answer this question, we elaborated a supervised machine-learning method to accurately discriminate 22 children with ADHD from 22 children with typical development by means of the proposed profile of measures. To assess the performance of our classifier, we adopted a nested 10-fold cross validation, where the original dataset was split into 10 subsets of equal size, which were used repeatedly for training and testing. Each subset was used once for performance validation. Our method reached a maximum diagnostic accuracy of 81% through the combining of the predictive models trained on neuropsychological, FA profiles, and deoxygenated-hemoglobin features. With respect to the analysis of a single-domain dataset per time, the most discriminant neuropsychological features were measures of vigilance, focused and sustained attention, and cognitive flexibility; the most discriminating blood FAs were linoleic acid and the total amount of polyunsaturated fatty acids. Finally, with respect to the fNIRS data, we found a significant advantage of the deoxygenated-hemoglobin over the oxygenated-hemoglobin data in terms of predictive accuracy. These preliminary findings show the feasibility and applicability of our machine-learning method in correctly identifying children with ADHD based on multi-domain data. The present machine-learning classification approach might be helpful

  14. Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression.

    Science.gov (United States)

    Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo

    2018-05-10

    Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.

  15. Structures and Properties of Polyacrylonitrile/Graphene Composite Nanofiber Yarns Prepared by Multi-Needle Electrospinning Device with an Auxiliary Electrode.

    Science.gov (United States)

    Yan, Tao; Pan, Zhi-Juan

    2018-06-01

    In this paper, polyacrylonitrile/graphene composite nanofiber filaments were manufactured continuously by a homemade eight-needle electrospinning device with an auxiliary electrode. The polyacrylonitrile/graphene composite nanofiber yarns were obtained continuously by plying and twisting the composite nanofiber filaments. The structures and properties of the composite nanofiber filaments with different GP mass fractions and yarns were investigated. The results demonstrated that the maximum alignment degree of the composite nanofibers along the filament axis could reach 74.3% with 1%, and the alignment degree decreased with increasing graphene mass fraction. The diameters of the composite nanofibers were considerably smaller than those of the pure polyacrylonitrile nanofiber, and the minimum diameter was 156 nm for 1%. The conductivity of the composite nanofiber filaments was significantly enhanced by seven orders of magnitude compared with that of the pure polyacrylonitrile nanofiber filament, and the maximum value was 3.73×10-7 S/cm for 1.5%. Due to graphene agglomeration, the conductivity decreased when the mass fraction was more than 1.5%. The different number of filaments and twists were examined in detail to improve the poor mechanical properties of the nanofiber filaments. With an increase in twists, the breaking stress and strain increased initially and later decreased, and the maximum breaking stress and strain were 16.54 MPa and 26.42%, respectively. This study demonstrates the possibility of continuously and stably manufacturing polyacrylonitrile/graphene composite nanofiber yarns.

  16. Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4/SiO2 multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode

    International Nuclear Information System (INIS)

    Hu Yufang; Li Jiaxing; Zhang Zhaohui; Zhang Huabin; Luo Lijuan; Yao Shouzhuo

    2011-01-01

    Graphical abstract: A novel imprinted sol-gel electrochemical sensor based on Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposite film and a thin MIP film has been developed on a carbon electrode. Highlights: → A novel imprinted sol-gel electrochemical sensor based on Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposites has been developed. → Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposites act as 'electronic wires' to enhance the electron transfer. → The inherent specificity of the MIPs brings about highly selectivity. The imprinted sensor detects benzylpenicillin in real samples successfully. - Abstract: Herein, a novel imprinted sol-gel electrochemical sensor based on multi-walled carbon nanotubes (MWNTs) doped with chitosan film on a carbon electrode has been developed. Prior to doped, the MWNTs have been decorated with Fe 3 O 4 nanoparticles which have been coated uniformly with SiO 2 layer. The characterization of imprinted sensor has been carried out by X-ray diffraction and scanning electron microscopy. The performance of the proposed imprinted sensor has been investigated using cyclic voltammetry and differential pulse voltammetry. The imprinted sensor offers a fast response and sensitive benzylpenicillin quantification. The fabricated benzylpenicillin imprinted sensor exhibits a linear response from 5.0 x 10 -8 to 1.0 x 10 -3 mol L -1 with a detection limit of 1.5 x 10 -9 mol L -1 . For samples analysis, perfect recoveries of the imprinted sensor for benzylpenicillin indicated that the imprinted sensor was able to detect benzylpenicillin in real samples successfully.

  17. Profile of Students’ Mental Model Change on Law Concepts Archimedes as Impact of Multi-Representation Approach

    Science.gov (United States)

    Taher, M.; Hamidah, I.; Suwarma, I. R.

    2017-09-01

    This paper outlined the results of an experimental study on the effects of multi-representation approach in learning Archimedes Law on students’ mental model improvement. The multi-representation techniques implemented in the study were verbal, pictorial, mathematical, and graphical representations. Students’ mental model was classified into three levels, i.e. scientific, synthetic, and initial levels, based on the students’ level of understanding. The present study employed the pre-experimental methodology, using one group pretest-posttest design. The subject of the study was 32 eleventh grade students in a Public Senior High School in Riau Province. The research instrument included model mental test on hydrostatic pressure concept, in the form of essay test judged by experts. The findings showed that there was positive change in students’ mental model, indicating that multi-representation approach was effective to improve students’ mental model.

  18. Multi-phase simulation of fast ion profile flattening due to Alfvén eigenmodes in a DIII-D experiment

    International Nuclear Information System (INIS)

    Todo, Y.; Van Zeeland, M.A.; Bierwage, A.; Heidbrink, W.W.

    2014-01-01

    A multi-phase simulation that is a combination of classical simulation and hybrid simulation for energetic particles interacting with a magnetohydrodynamic (MHD) fluid is developed to simulate the nonlinear dynamics on the slowing down time scale of the energetic particles. The hybrid simulation code is extended with realistic beam deposition profile, collisions and losses, and is used for both the classical and hybrid phases. The code is run without MHD perturbations in the classical phase, while the interaction between the energetic particles and the MHD fluid is simulated in the hybrid phase. In a multi-phase simulation of DIII-D discharge #142111, the stored beam ion energy is saturated due to Alfvén eigenmodes (AE modes) at a level lower than in the classical simulation. After the stored fast ion energy is saturated, the hybrid simulation is run continuously. It is demonstrated that the fast ion spatial profile is significantly flattened due to the interaction with the multiple AE modes with amplitude v/v A  ∼ δB/B ∼ O(10 −4 ). The dominant AE modes are toroidal Alfvén eigenmodes (TAE modes), which is consistent with the experimental observation at the simulated moment. The amplitude of the temperature fluctuations brought about by the TAE modes is of the order of 1% of the equilibrium temperature. This is also comparable with electron cyclotron emission measurements in the experiment. (paper)

  19. Specific Clinical Profile and Risk Factors for Mortality in General Surgery Patients with Infections by Multi-Drug-Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Rubio-Perez, Ines; Martin-Perez, Elena; Domingo-García, Diego; Garcia-Olmo, Damian

    2017-07-01

    The incidence of gram-negative multi-drug-resistant (MDR) infections is increasing worldwide. This study sought to determine the incidence, clinical profiles, risk factors, and mortality of these infections in general surgery patients. All general surgery patients with a clinical infection by gram-negative MDR bacteria were studied prospectively for a period of five years (2007-2011). Clinical, surgical, and microbiologic parameters were recorded, with a focus on the identification of risk factors for MDR infection and mortality. Incidence of MDR infections increased (5.6% to 15.2%) during the study period; 106 patients were included, 69.8% presented nosocomial infections. Mean age was 65 ± 15 years, 61% male. Extended-spectrum β-lactamases (ESBL) Escherichia coli was the most frequent MDR bacteria. Surgical site infections and abscesses were the most common culture locations. The patients presented multiple pre-admission risk factors and invasive measures during hospitalization. Mortality was 15%, and related to older age (odds ratio [OR] 1.07), malnutrition (OR 13.5), chronic digestive conditions (OR 4.7), chronic obstructive pulmonary disease (OR 3.9), and surgical re-intervention (OR 9.2). Multi-drug resistant infections in the surgical population are increasing. The most common clinical profile is a 65-year-old male, with previous comorbidities, who has undergone a surgical intervention, intensive care unit (ICU) admission, and invasive procedures and who has acquired the MDR infection in the nosocomial setting.

  20. Measurement of multi-slice computed tomography dose profile with the Dose Magnifying Glass and the MOSkin radiation dosimeter

    International Nuclear Information System (INIS)

    Lian, C.P.L.; Wong, J.H.D.; Young, A.; Cutajar, D.; Petasecca, M.; Lerch, M.L.F.; Rosenfeld, A.B.

    2013-01-01

    This study describes the application of two in-house developed dosimeters, the Dose Magnifying Glass (DMG) and the MOSkin dosimeter at the Centre for Medical Radiation Physics, University of Wollongong, Australia, for the measurement of CT dose profiles for a clinical diagnostic 16-slice MSCT scanner. Two scanner modes were used; axial mode and helical mode, and the effect of varying beam collimation and pitch was studied. With an increase in beam collimation in axial mode and an increase of CT pitch in helical mode, cumulative point dose at scanner isocentre decreased while FWHM increased. There was generally good agreement to within 3% between the acquired dose profiles obtained by the DMG and the film except at dose profile tails, where film over-responded by up to 30% due to its intrinsic depth dose dependence at low doses. -- Highlights: ► This study shows the CT beam profiles acquired with our institution's detectors. ► The DMG is a relative dosimeter calibrated to absolute MOSkin readings. ► There was good agreement between dose profiles acquired by the DMG and the film

  1. Multi-omic profiling of EPO producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    Heterologous protein production in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied to characterize the physiological impact of erythropoietin production, and discover production bottlenecks, ...

  2. Multi-omic profiling of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    2015-01-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied...

  3. Metal impurities profile in a 450kg multi-crystalline silicon ingot by Cold Neutron Prompt Gamma-ray Activation Analysis

    International Nuclear Information System (INIS)

    Baek, Hani; Sun, Gwang Min; Kim, Ji seok; Oh, Mok; Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Baek, Sung Yeol; Tuan, Hoang Sy Minh

    2014-01-01

    Metal impurities are harmful to multi-crystalline silicon solar cells. They reduce solar cell conversion efficiencies through increased carrier recombination. They are present as isolated point-like impurities or precipitates. This work is to study the concentration profiles of some metal impurities of the directionally solidified 450kg multi-crystalline silicon ingot grown for solar cell production. The concentration of such impurities are generally below 10 15 cm -3 , and as such cannot be detected by physical techniques such as secondary-ion-mass spectroscopy(SIMS). So, we have tried to apply Cold Neutron - Prompt Gamma ray Activation Analysis(CN-PGAA) at the HANARO reactor research. The impurity concentrations of Au, Mn, Pt, Mo of a photovoltaic grade multi-crystalline silicon ingot appear by segregation from the liquid to the solid phase in the central region of the ingot during the crystallization. In the impurities concentration of the bottom region is higher than middle region due to the solid state diffusion. Towards the top region the segregation impurities diffused, during cooling process

  4. Design and evaluation of multi-indicator profiles for targeted-selective treatment against gastrointestinal nematodes at housing in adult dairy cows.

    Science.gov (United States)

    Ravinet, Nadine; Lehebel, Anne; Bareille, Nathalie; Lopez, Carlos; Chartier, Christophe; Chauvin, Alain; Madouasse, Aurélien

    2017-04-15

    Targeted-selective treatments against gastrointestinal nematode (GIN) in adult dairy cows require the identification of "cows to treat", i.e. cows whose milk production (MP) would increase after treatment. This study aimed at quantifying the ability of multi-indicator profiles to identify such cows. A randomized controlled clinical trial was conducted at housing in 25 French pasturing dairy herds. In each herd, treated cows received fenbendazole orally, control cows remained untreated. Daily MP was recorded and the MP variation between the pre- and post-visit periods was calculated (ΔMP) for each cow. ΔMP was modelled with control cows data (n=412) (piecewise linear mixed model). Estimated parameters were applied to treated cows data (n=414) to predict the expected ΔMP in treated cows if they had not been treated. Treated cows with an observed ΔMP (with treatment) higher than the expected ΔMP (without treatment) were labelled as "cows to treat". Herds where at least 50% of the young cows were "cows to treat" were qualified as "herds to target". To characterize such cows and herds, the available candidate indicators were (i) at the cow-level: parity, stage of lactation and production level, faecal egg count (FEC), serum pepsinogen level and anti-Ostertagia antibody level (expressed as ODR); (ii) at the herd-level: bulk tank milk (BTM) Ostertagia ODR, Time of Effective Contact (TEC, in months) with GIN infective larvae before the first calving, and percentage of positive FEC. These indicators were tested one-by-one or in combination to assess their ability to characterize "herds to target" and "cows to treat" (Chi-square tests). 115 out of 414 treated cows (27.8%) were considered as "cows to treat", and 9 out of 22 herds were qualified as "herds to target". The indicators retained to profile such cows and herds were the parity, the production level, the BTM Ostertagia ODR and the TEC. Multi-indicator profiles were much more specific than single indicator

  5. Square-wave adsorptive stripping voltammetric determination of nanomolar levels of bezafibrate using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film.

    Science.gov (United States)

    Ardila, Jorge Armando; Oliveira, Geiser Gabriel; Medeiros, Roberta Antigo; Fatibello-Filho, Orlando

    2014-04-07

    A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.

  6. Rapid Detection of Ascorbic Acid Based on a Dual-Electrode Sensor System Using a Powder Microelectrode Embedded with Carboxyl Multi-Walled Carbon Nanotubes.

    Science.gov (United States)

    He, Bao-Shan; Zhang, Jun-Xia

    2017-07-02

    In this paper, carboxyl groups were introduced by liquid oxidation methods onto multi-walled carbon nanotubes (MWCNTs) to improve the MWCNTs' electrocatalytic properties. A platinum wire microelectrode (ME) was corroded using aqua regia and subsequently embedded with MWCNTs to achieve more active sites, producing a so-called powder microelectrode (PME). Compared with conventional MEs, the PME has a larger specific surface area and more active sites. When PME was used to detect ascorbic acid (AA), the AA oxidation potential shifted negatively and current peak was visibly increased. The calibration curve obtained for AA was in a range of 5.00 × 10 -6 ~9.50 × 10 -4 mol·L -1 : I pa (μA) = 3.259 × 10 -2 + 1.801 × 10² C (mol·L -1 ) under the optimum testing conditions. Moreover, the detection and quantitation limits were confirmed at 4.89 × 10 -7 mol·L -1 and 1.63 × 10 -7 mol·L -1 , respectively. When the fabricated PME was practically applied to detect AA, it was shown a recovery rate of 94~107% with relative standard deviation (RSD) <5%. The proposed strategy thus offers a promising, rapid, selective and low-cost approach to effective analysis of AA.

  7. Particle and power balances of hot-filament discharge plasmas in a multi-dipole device in the presence of a positively biased electrode

    International Nuclear Information System (INIS)

    Cho, M.H.; Hershkowitz, N.; Intrator, T.

    1989-01-01

    The plasma potential is typically assumed to float above an anode potential by a few times of an electron temperature (T /e). The difference between the plasma potential and the anode potential can be estimated by considering the particle production and loss. However, it has been reported experimentally that the plasma potential of a steady state plasma can be more negative than the anode potential with a potential dip (-- T /e) in front of the anode. This paper describes particle and power balances to estimate the bulk plasma potential of a hot-filament discharge plasma produced in a multi-dipole plasma device. The bulk plasma potential dependence on positive DC bias applied to an anode is analyzed, and the predicted characteristics of the plasma potential dependence are compared to the experiment. A steady state potential dip in front of an anode is experimentally observed using emissive probes with the zero emission inflection point method, and the conditions for the potential dip formation are derived

  8. Multi-element, multi-compound isotope profiling as a means to distinguish the geographical and varietal origin of fermented cocoa (Theobroma cacao L.) beans.

    Science.gov (United States)

    Diomande, Didier; Antheaume, Ingrid; Leroux, Maël; Lalande, Julie; Balayssac, Stéphane; Remaud, Gérald S; Tea, Illa

    2015-12-01

    Multi-element stable isotope ratios have been assessed as a means to distinguish between fermented cocoa beans from different geographical and varietal origins. Isotope ratios and percentage composition for C and N were measured in different tissues (cotyledons, shells) and extracts (pure theobromine, defatted cocoa solids, protein, lipids) obtained from fermented cocoa bean samples. Sixty-one samples from 24 different geographical origins covering all four continental areas producing cocoa were analyzed. Treatment of the data with unsupervised (Principal Component Analysis) and supervised (Partial Least Squares Discriminant Analysis) multiparametric statistical methods allowed the cocoa beans from different origins to be distinguished. The most discriminant variables identified as responsible for geographical and varietal differences were the δ(15)N and δ(13)C values of cocoa beans and some extracts and tissues. It can be shown that the isotope ratios are correlated with the altitude and precipitation conditions found in the different cocoa-growing regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Multi-q pattern classification of polarization curves

    Science.gov (United States)

    Fabbri, Ricardo; Bastos, Ivan N.; Neto, Francisco D. Moura; Lopes, Francisco J. P.; Gonçalves, Wesley N.; Bruno, Odemir M.

    2014-02-01

    Several experimental measurements are expressed in the form of one-dimensional profiles, for which there is a scarcity of methodologies able to classify the pertinence of a given result to a specific group. The polarization curves that evaluate the corrosion kinetics of electrodes in corrosive media are applications where the behavior is chiefly analyzed from profiles. Polarization curves are indeed a classic method to determine the global kinetics of metallic electrodes, but the strong nonlinearity from different metals and alloys can overlap and the discrimination becomes a challenging problem. Moreover, even finding a typical curve from replicated tests requires subjective judgment. In this paper, we used the so-called multi-q approach based on the Tsallis statistics in a classification engine to separate the multiple polarization curve profiles of two stainless steels. We collected 48 experimental polarization curves in an aqueous chloride medium of two stainless steel types, with different resistance against localized corrosion. Multi-q pattern analysis was then carried out on a wide potential range, from cathodic up to anodic regions. An excellent classification rate was obtained, at a success rate of 90%, 80%, and 83% for low (cathodic), high (anodic), and both potential ranges, respectively, using only 2% of the original profile data. These results show the potential of the proposed approach towards efficient, robust, systematic and automatic classification of highly nonlinear profile curves.

  10. Simple luminosity normalization of greenness, yellowness and redness/greenness for comparison of leaf spectral profiles in multi-temporally acquired remote sensing images.

    Science.gov (United States)

    Doi, Ryoichi

    2012-09-01

    Observation of leaf colour (spectral profiles) through remote sensing is an effective method of identifying the spatial distribution patterns of abnormalities in leaf colour, which enables appropriate plant management measures to be taken. However, because the brightness of remote sensing images varies with acquisition time, in the observation of leaf spectral profiles in multi-temporally acquired remote sensing images, changes in brightness must be taken into account. This study identified a simple luminosity normalization technique that enables leaf colours to be compared in remote sensing images over time. The intensity values of green and yellow (green+red) exhibited strong linear relationships with luminosity (R2 greater than 0.926) when various invariant rooftops in Bangkok or Tokyo were spectralprofiled using remote sensing images acquired at different time points. The values of the coefficient and constant or the coefficient of the formulae describing the intensity of green or yellow were comparable among the single Bangkok site and the two Tokyo sites, indicating the technique's general applicability. For single rooftops, the values of the coefficient of variation for green, yellow, and red/green were 16% or less (n=6-11), indicating an accuracy not less than those of well-established remote sensing measures such as the normalized difference vegetation index. After obtaining the above linear relationships, raw intensity values were normalized and a temporal comparison of the spectral profiles of the canopies of evergreen and deciduous tree species in Tokyo was made to highlight the changes in the canopies' spectral profiles. Future aspects of this technique are discussed herein.

  11. On the Salt Water Intrusion into the Durusu Lake, Istanbul: A Joint Central Loop TEM And Multi-Electrode ERT Field Survey

    Science.gov (United States)

    Ardali, Ayça Sultan; Tezkan, Bülent; Gürer, Aysan

    2018-02-01

    Durusu Lake is the biggest and most important freshwater source supplying drinking water to the European side of Istanbul. In this study, electrical resistivity tomography (ERT) and transient electromagnetic (TEM) measurements were applied to detect a possible salt water intrusion into the lake and to delineate the subsurface structure in the north of Durusu Lake. The ERT and TEM measurements were carried out along six parallel profiles extending from the sea coast to the lake shore on the dune barrier. TEM data were interpreted using different 1-D inversion methods such as Occam, Marquardt, and laterally constrained inversion (LCI). ERT data were interpreted using 2-D inversion techniques. The inversion results of ERT and TEM data were shown as resistivity depth sections including topography. The sand layer spreading over the basin has a resistivity of 150-400 Ωm with a thickness of 5-10 m. The sandy layer with clay, silt, and gravel has a resistivity of 15-100 Ωm and a thickness of 10-40 m followed by a clay layer of a resistivity below 10 Ωm. When the inversion of these data is interpreted along with the hydrogeology of the area, it is concluded that the salt water intrusion along the dune barrier is not common and occurs at a particular area where the distance between lake and sea is very close. Using information from boreholes around the lake, it was verified that the common conductive region at depths of 30 m or more consists of clay layers and clay lenses.

  12. Mission profile based multi-disciplinary analysis of power modules in single-phase transformerless photovoltaic inverters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Wang, Huai; Blaabjerg, Frede

    2013-01-01

    years) has been set as a main target and an emerging demand from the customers, which imposes a new challenge on grid-connected transformerless inverters. In order to reduce maintenance cost, it is essential to predict the lifetime of the transformerless PV inverter and its components based......The popularity of transformerless photovoltaic (PV) inverters in Europe proves that these topologies can achieve higher efficiency (e.g., ≥ 98% has been reported). Along with the advanced power electronics technology and the booming development of PV power systems, a long service time (e.g. 25...... on the mission profiles — solar irradiance and ambient temperature. In this paper, a mission profile based analysis approach is proposed and it is demonstrated by three main single-phase transformerless PV inverters — Full-Bridge (FB) with bipolar modulation scheme, the FB inverter with DC bypass (FB...

  13. Development of feature extraction analysis for a multi-functional optical profiling device applied to field engineering applications

    Science.gov (United States)

    Han, Xu; Xie, Guangping; Laflen, Brandon; Jia, Ming; Song, Guiju; Harding, Kevin G.

    2015-05-01

    In the real application environment of field engineering, a large variety of metrology tools are required by the technician to inspect part profile features. However, some of these tools are burdensome and only address a sole application or measurement. In other cases, standard tools lack the capability of accessing irregular profile features. Customers of field engineering want the next generation metrology devices to have the ability to replace the many current tools with one single device. This paper will describe a method based on the ring optical gage concept to the measurement of numerous kinds of profile features useful for the field technician. The ring optical system is composed of a collimated laser, a conical mirror and a CCD camera. To be useful for a wide range of applications, the ring optical system requires profile feature extraction algorithms and data manipulation directed toward real world applications in field operation. The paper will discuss such practical applications as measuring the non-ideal round hole with both off-centered and oblique axes. The algorithms needed to analyze other features such as measuring the width of gaps, radius of transition fillets, fall of step surfaces, and surface parallelism will also be discussed in this paper. With the assistance of image processing and geometric algorithms, these features can be extracted with a reasonable performance. Tailoring the feature extraction analysis to this specific gage offers the potential for a wider application base beyond simple inner diameter measurements. The paper will present experimental results that are compared with standard gages to prove the performance and feasibility of the analysis in real world field engineering. Potential accuracy improvement methods, a new dual ring design and future work will be discussed at the end of this paper.

  14. The effect of different temperature profiles upon the length and crystallinity of vertically-aligned multi-walled carbon nanotubes.

    Science.gov (United States)

    Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun

    2012-08-01

    We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.

  15. Experimental investigation of different fluid flow profiles in a rotary multi-bed active magnetic regenerator device

    DEFF Research Database (Denmark)

    Fortkamp, F. P.; Eriksen, D.; Engelbrecht, K.

    2018-01-01

    A rotary multi-bed active magnetic regenerator (AMR) device was modified to allow testing different fluid flow waveforms, with different blow fractions (i.e. the fraction of the AMR cycle when there is fluid flow in the regenerators). The different values of blow fraction were generated using dif.......1% was obtained for the largest blow fraction tested (80%). Designs for magnetic refrigerators where the fluid flow waveform can change during operation are also discussed in this paper.......A rotary multi-bed active magnetic regenerator (AMR) device was modified to allow testing different fluid flow waveforms, with different blow fractions (i.e. the fraction of the AMR cycle when there is fluid flow in the regenerators). The different values of blow fraction were generated using...... different cam rings that actuate the poppet valves at the inlet and outlet of the regenerators, controlling how long the valves stay open and the number of valves open at the same time. Results showed that smaller blow fractions yield higher values of temperature span for fixed flow rate and cooling...

  16. Chemical profiles and pharmacological activities of Chang-Kang-Fang, a multi-herb Chinese medicinal formula, for treating irritable bowel syndrome.

    Science.gov (United States)

    Mao, Qian; Shi, Lei; Wang, Zhi-Gang; Luo, Yu-Hui; Wang, Yin-Yu; Li, Xue; Lu, Min; Ju, Jian-Min; Xu, Jin-Di; Kong, Ming; Zhou, Shan-Shan; Shen, Min-Qin; Li, Song-Lin

    2017-04-06

    Chang-Kang-Fang formula (CKF), a multi-herb traditional Chinese medicinal formula, has been clinically used for treatment of irritable bowel syndrome (IBS). The mechanisms of CKF for treating IBS and the components that are responsible for the activities were still unknown. To investigate the chemical profiles and effects of CKF on IBS model. The chemical profiles of CKF were investigated by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS). On colon irritation induced rat neonates IBS model, the influence of CKF on neuropeptides, including substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and 5-hydroxytryptamine (5-HT), were measured by ELISA, and the effect on intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores. In addition, the activities of CKF against acetic acid-induced nociceptive responses and prostigmin methylsulfate triggered intestinal propulsion in mice were also evaluated. 80 components were identified or tentatively assigned from CKF, including 11 alkaloids, 20 flavanoids, 4 monoterpenoids, 9 iridoid glycoside, 9 phenylethanoid glycosides, 10 chromones, 7 organic acid, 3 coumarins, 2 triterpene and 5 other compounds. On IBS rat model, CKF was observed to reduce AWR scores and levels of SP, CGRP, VIP and 5-HT. Moreover, CKF reduced the acetic acid-induced writhing scores at all dosages and reduced the intestinal propulsion ration at dosage of 7.5 and 15.0g/kg/d. CKF could alleviate the symptoms of IBS by modulating the brain-gut axis through increasing the production of neuropeptides such as CGRP, VIP, 5-HT and SP, releasing pain and reversing disorders of intestinal propulsion. Berberine, paeoniflorin, acteoside, flavonoids and chromones may be responsible for the multi-bioactivities of CKF. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. A comparison study of electrodes for neonate electrical impedance tomography

    International Nuclear Information System (INIS)

    Rahal, Mohamad; Demosthenous, Andreas; Khor, Joo Moy; Tizzard, Andrew; Bayford, Richard

    2009-01-01

    Electrical impedance tomography (EIT) is an imaging technique that has the potential to be used for studying neonate lung function. The properties of the electrodes are very important in multi-frequency EIT (MFEIT) systems, particularly for neonates, as the skin cannot be abraded to reduce contact impedance. In this work, the impedance of various clinical electrodes as a function of frequency is investigated to identify the optimum electrode type for this application. Six different types of self-adhesive electrodes commonly used in general and neonatal cardiology have been investigated. These electrodes are Ag/AgCl electrodes from the Ambu® Cardiology Blue sensors range (BR, NF and BRS), Kendall (KittyCat(TM) and ARBO®) and Philips 13953D electrodes. In addition, a textile electrode without gel from Textronics was tested on two subjects to allow comparison with the hydrogel-based electrodes. Two- and four-electrode measurements were made to determine the electrode-interface and tissue impedances, respectively. The measurements were made on the back of the forearm of six healthy adult volunteers without skin preparation with 2.5 cm electrode spacing. Impedance measurements were carried out using a Solartron SI 1260 impedance/gain-phase analyser with a frequency range from 10 Hz to 1 MHz. For the electrode-interface impedance, the average magnitude decreased with frequency, with an average value of 5 kΩ at 10 kHz and 337 Ω at 1 MHz; for the tissue impedance, the respective values were 987 Ω and 29 Ω. Overall, the Ambu BRS, Kendall ARBO® and Textronics textile electrodes gave the lowest electrode contact impedance at 1 MHz. Based on the results of the two-electrode measurements, simple RC models for the Ambu BRS and Kendall-ARBO and Textronics textile electrodes have been derived for MFEIT applications

  18. Construction of Multi-Year Time-Series Profiles of Suspended Particulate Inorganic Matter Concentrations Using Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Pannimpullath R. Renosh

    2017-12-01

    Full Text Available Hydro-sedimentary numerical models have been widely employed to derive suspended particulate matter (SPM concentrations in coastal and estuarine waters. These hydro-sedimentary models are computationally and technically expensive in nature. Here we have used a computationally less-expensive, well-established methodology of self-organizing maps (SOMs along with a hidden Markov model (HMM to derive profiles of suspended particulate inorganic matter (SPIM. The concept of the proposed work is to benefit from all available data sets through the use of fusion methods and machine learning approaches that are able to process a growing amount of available data. This approach is applied to two different data sets entitled “Hidden” and “Observable”. The hidden data are composed of 15 months (27 September 2007 to 30 December 2008 of hourly SPIM profiles extracted from the Regional Ocean Modeling System (ROMS. The observable data include forcing parameter variables such as significant wave heights ( H s and H s 50 (50 days from the Wavewatch 3-HOMERE database and barotropic currents ( U b a r and V b a r from the Iberian–Biscay–Irish (IBI reanalysis data. These observable data integrate hourly surface samples from 1 February 2002 to 31 December 2012. The time-series profiles of the SPIM have been derived from four different stations in the English Channel by considering 15 months of output hidden data from the ROMS as a statistical representation of the ocean for ≈11 years. The derived SPIM profiles clearly show seasonal and tidal fluctuations in accordance with the parent numerical model output. The surface SPIM concentrations of the derived model have been validated with satellite remote sensing data. The time series of the modeled SPIM and satellite-derived SPIM show similar seasonal fluctuations. The ranges of concentrations for the four stations are also in good agreement with the corresponding satellite data. The high accuracy of the

  19. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  20. Models of Emission-Line Profiles and Spectral Energy Distributions to Characterize the Multi-Frequency Properties of Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Giovanni La Mura

    2017-11-01

    Full Text Available The spectra of active galactic nuclei (AGNs are often characterized by a wealth of emission lines with different profiles and intensity ratios that lead to a complicated classification. Their electromagnetic radiation spans more than 10 orders of magnitude in frequency. In spite of the differences between various classes, the origin of their activity is attributed to a combination of emitting components, surrounding an accreting supermassive black hole (SMBH, in the unified model. Currently, the execution of sky surveys, with instruments operating at various frequencies, provides the possibility to detect and to investigate the properties of AGNs on very large statistical samples. As a result of the spectroscopic surveys that allow the investigation of many objects, we have the opportunity to place new constraints on the nature and evolution of AGNs. In this contribution, we present the results obtained by working on multi-frequency data, and we discuss their relations with the available optical spectra. We compare our findings with the AGN unified model predictions, and we present a revised technique to select AGNs of different types from other line-emitting objects. We discuss the multi-frequency properties in terms of the innermost structures of the sources.

  1. Influence of multi-level anaesthesia care and patient profile on perioperative patient satisfaction in short-stay surgical inpatients: A preliminary study

    Directory of Open Access Journals (Sweden)

    Amarjeet Singh

    2007-01-01

    Full Text Available Background and goals of study: Patient satisfaction in relation to perioperative anesthesia care represents essential aspect of quality health-care management. We analyzed the influence of multi-level anesthesia care exposure and patient profile on perioperative patient satisfaction in short-stay surgical inpatients. Methods : 120 short-stay surgical inpatients who underwent laparoscopic surgery have been included in this prospective study. Pertaining to demographic parameters (age, gender, education, profession, duration of stay (preoperative room, recovery room, various patient problems and patient satisfaction (various levels, overall were recorded by an independent observer and analyzed. Overall, adults, male and uneducated patients experienced more problems. Conversely, elderly, females and educated patients were more dissatisfied. Female patients suffered more during immediate postoperative recovery room stay and were more dissatisfied than their male counterparts (p< 0.05. However, patient′s professional status had no bearing on the problems encountered and dissatisfaction levels. Preoperative and early postoperative period accounted for majority of the problems encountered among the study population. There was a positive correlation between problems faced and dissatisfaction experienced at respective levels of anesthesia care (p< 0.05. Conclusion(s : Patient′s demographic profile and problems faced during respective level of anesthesia care has a correlation with dissatisfaction. Interestingly, none of the above stated factors had any effect on overall satisfaction level.

  2. [Systemic Antimicrobials Consumption and Expenditures in Departments of Surgery of Multi-Profile Hospitals in the Russian Federation and the Republic of Belarus: Results of Multicentre Pharmacoepidemiological Study].

    Science.gov (United States)

    Belkova, Yu A; Rachina, S A; Kozlov, R S; Mishchenko, V M; Pavlukov, R A; Abubakirova, A I; Berezhanskiy, B V; Eliseeva, E V; Zubareva, N A; Karpov, I A; Kopylova, I A; Palyutin, Sh Kh; Portnyagina, U S; Pribytkova, O V; Samuylo, E K

    2016-01-01

    The results of the systemic antimicrobials (AM) consumption and expenditures assessment in the departments of surgery of multi-profile hospitals in different regions of the Russian Federation and the Republic of Belarus in 2009-2010 based on retrospective collection and analysis of the data from the hospital expenditure notes using ATC/DDD methodology are presented. The average AM consumption and expenditure rates in the above mentioned departments varied from 24.9 DDD/100 bed-days to 61.7 DDD/100 bed-days depending on the department profile, with beta-lactams (cephalosporins and penicillins) share in the consumption being as high as 70-90%, followed by fluoroquinolones and aminoglycosides. Only 55-70% of the consumed AM belonged to the drugs of choice, whereas the improper AM consumption and expenditure rates amounted up to 10-18%. The study outputs can be used for the budget allocation and AM distribution improvement in the departments of surgery, as well as for the development and efficacy control of the local antimicrobial stewardship programs.

  3. Multi-omic profiling of EPO-producing CHO cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    The Chinese hamster ovary (CHO) cell line is the predominant mammalian cell factory for production of therapeutic glycoproteins. In this work, we aimed to study bottlenecks in the secretory pathway associated with the production of human erythropoietin (EPO) in CHO cells. In connection to this, we...... discovered indications of metabolic adaptation of the amino acid catabolism in favor of heterologous protein production. We established a panel of stably EPO expressing CHO-K1 clones spanning a 25-fold productivity range and characterized the clones in batch and chemostat cultures. For this, we employed...... a multi-omic physiological characterization including metabolic foot printing of amino acids, metabolite fingerprinting of glycolytic intermediates, NAD(P)H-/NAD(P)+ and adenosine nucleotide phosphates. We used qPCR, qRT-PCR, western blots and Affymetrix CHO microarrays to assess EPO gene copy numbers...

  4. Multimodal Examination of Atrial Fibrillation Substrate: Correlation of Left Atrial Bipolar Voltage Using Multi-Electrode Fast Automated Mapping, Point-by-Point Mapping, and Magnetic Resonance Image Intensity Ratio.

    Science.gov (United States)

    Zghaib, Tarek; Keramati, Ali; Chrispin, Jonathan; Huang, Dong; Balouch, Muhammad A; Ciuffo, Luisa; Berger, Ronald D; Marine, Joseph E; Ashikaga, Hiroshi; Calkins, Hugh; Nazarian, Saman; Spragg, David D

    2018-01-01

    Bipolar voltage mapping, as part of atrial fibrillation (AF) ablation, is traditionally performed in a point-by-point (PBP) approach using single-tip ablation catheters. Alternative techniques for fibrosis-delineation include fast-anatomical mapping (FAM) with multi-electrode circular catheters, and late gadolinium-enhanced magnetic-resonance imaging (LGE-MRI). The correlation between PBP, FAM, and LGE-MRI fibrosis assessment is unknown. In this study, we examined AF substrate using different modalities (PBP, FAM, and LGE-MRI mapping) in patients presenting for an AF ablation. LGE-MRI was performed pre-ablation in 26 patients (73% males, age 63±8years). Local image-intensity ratio (IIR) was used to normalize myocardial intensities. PBP- and FAM-voltage maps were acquired, in sinus rhythm, prior to ablation and co-registered to LGE-MRI. Mean bipolar voltage for all 19,087 FAM voltage points was 0.88±1.27mV and average IIR was 1.08±0.18. In an adjusted mixed-effects model, each unit increase in local IIR was associated with 57% decrease in bipolar voltage (p0.74 corresponded to bipolar voltage voltage was significantly associated with log-PBP bipolar voltage (ß=0.36, pvoltages, FAM-mapping distribution was shifted to the left compared to PBP-mapping; at intermediate voltages, FAM and PBP voltages were overlapping; and at high voltages, FAM exceeded PBP-voltages. LGE-MRI, FAM and PBP-mapping show good correlation in delineating electro-anatomical AF substrate. Each approach has fundamental technical characteristics, the awareness of which allows proper assessment of atrial fibrosis.

  5. Investigation of the slice sensitivity profile for step-and-shoot mode multi-slice computed tomography

    International Nuclear Information System (INIS)

    Hsieh Jiang

    2001-01-01

    Multislice computed tomography (MCT) is one of the recent technology advancements in CT. Compared to single slice CT, MCT significantly improves examination time, x-ray tube efficiency, and contrast material utilization. Although the scan mode of MCT is predominately helical, step-and-shoot (axial) scans continue to be an important part of routine clinical protocols. In this paper, we present a detailed investigation on the slice sensitivity profile (SSP) of MCT in the step-and-shoot mode. Our investigation shows that, unlike single slice CT, the SSP for MCT exhibits multiple peaks and valleys resulting from intercell gaps between detector rows. To fully understand the characteristics of the SSP, we developed an analytical model to predict the behavior of MCT. We propose a simple experimental technique that can quickly and accurately measure SSP. The impact of the SSP on image artifacts and low contrast detectability is also investigated

  6. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  7. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  8. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  9. Force Control and Nonlinear Master-Slave Force Profile to Manage an Admittance Type Multi-Fingered Haptic User Interface

    Energy Technology Data Exchange (ETDEWEB)

    Anthony L. Crawford

    2012-08-01

    Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in remote and/or hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space to name a few. In order to achieve this end the research presented in this paper has developed an admittance type exoskeleton like multi-fingered haptic hand user interface that secures the user’s palm and provides 3-dimensional force feedback to the user’s fingertips. Atypical to conventional haptic hand user interfaces that limit themselves to integrating the human hand’s characteristics just into the system’s mechanical design this system also perpetuates that inspiration into the designed user interface’s controller. This is achieved by manifesting the property differences of manipulation and grasping activities as they pertain to the human hand into a nonlinear master-slave force relationship. The results presented in this paper show that the admittance-type system has sufficient bandwidth that it appears nearly transparent to the user when the user is in free motion and when the system is subjected to a manipulation task, increased performance is achieved using the nonlinear force relationship compared to the traditional linear scaling techniques implemented in the vast majority of systems.

  10. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface.

    Science.gov (United States)

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-06-05

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states.

  11. Linear particle accelerator with seal structure between electrodes and insulators

    Science.gov (United States)

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  12. On the modeling of electrical boundary layer (electrode layer) and ...

    Indian Academy of Sciences (India)

    In the first part of the paper, equations and methodology are discussed and in the second, we discuss results. 2. Methodology. In the atmospheric electricity, the earth's surface is one electrode and electrode layer or electrical boundary layer is a region near the surface of the earth in which profiles of atmospheric electrical.

  13. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    Science.gov (United States)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with

  14. Low-cost electrodes for stable perovskite solar cells

    Science.gov (United States)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  15. Creating virtual electrodes with 2D current steering

    Science.gov (United States)

    Spencer, Thomas C.; Fallon, James B.; Shivdasani, Mohit N.

    2018-06-01

    Objective. Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that ‘virtual’ electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. Approach. Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to ‘steer’ current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. Main results. Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p  >  0.05 neural spread: one-way ANOVA on Ranks, p  >  0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. Significance. The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number

  16. Gene expression profiles in auricle skin as a possible additional endpoint for determination of sensitizers: A multi-endpoint evaluation of the local lymph node assay.

    Science.gov (United States)

    Tsuchiyama, Hiromi; Maeda, Akihisa; Nakajima, Mayumi; Kitsukawa, Mika; Takahashi, Kei; Miyoshi, Tomoya; Mutsuga, Mayu; Asaoka, Yoshiji; Miyamoto, Yohei; Oshida, Keiyu

    2017-10-05

    The murine local lymph node assay (LLNA) is widely used to test chemicals to induce skin sensitization. Exposure of mouse auricle skin to a sensitizer results in proliferation of local lymph node T cells, which has been measured by in vivo incorporation of H 3 -methyl thymidine or 5-bromo-2'-deoxyuridine (BrdU). The stimulation index (SI), the ratio of the mean proliferation in each treated group to that in the concurrent vehicle control group, is frequently used as a regulatory-authorized endpoint for LLNA. However, some non-sensitizing irritants, such as sodium dodecyl sulfate (SDS) or methyl salicylate (MS), have been reported as false-positives by this endpoint. In search of a potential endpoint to enhance the specificity of existing endpoints, we evaluated 3 contact sensitizers; (hexyl cinnamic aldehyde [HCA], oxazolone [OXA], and 2,4-dinitrochlorobenzene [DNCB]), 1 respiratory sensitizer (toluene 2,4-diisocyanate [TDI]), and 2 non-sensitizing irritants (MS and SDS) by several endpoints in LLNA. Each test substance was applied to both ears of female CBA/Ca mice daily for 3 consecutive days. The ears and auricle lymph node cells were analyzed on day 5 for endpoints including the SI value, lymph node cell count, cytokine release from lymph node cells, and histopathological changes and gene expression profiles in auricle skin. The SI values indicated that all the test substances induced significant proliferation of lymph node cells. The lymph node cell counts showed no significant changes by the non-sensitizers assessed. The inflammatory findings of histopathology were similar among the auricle skins treated by sensitizers and irritants. Gene expression profiles of cytokines IFN-γ, IL-4, and IL-17 in auricle skin were similar to the cytokine release profiles in draining lymph node cells. In addition, the gene expression of the chemokine CXCL1 and/or CXCL2 showed that it has the potential to discriminate sensitizers and non-sensitizing irritants. Our results

  17. Concept and development of measurement method of time sensitivity profile (TSP) in X-ray CT. Comparison of non-helical, single-slice helical, and multi-slice helical scans

    International Nuclear Information System (INIS)

    Tsujioka, Katsumi; Ida, Yoshihiro; Ohtsubo, Hironori; Takahashi, Yasukata; Niwa, Masayoshi

    2000-01-01

    We focused on the time element contained in a single CT image, and devised the concept of a time-sensitivity profile (TSP) describing how the time element is translated into an image. We calculated the data collection time range when the helical pitch is changed in non helical scans, single slice helical scans, and multi slice helical scans. We then calculated the time sensitivity profile (TSP) from the weighting applied when the data collection time range is translated into an image. TSP was also measured for each scanning method using our self-made moving phantom. TSPs obtained from the calculation and the experiments were very close. TSP showed interesting characteristics with each scanning method, especially in the case of multi slice helical scanning, in which TSP became shorter as helical pitch increased. We referred to the TSP's FWHM as the effective scanning time. When we conducted multi slice helical scanning at helical pitch 3, the effective scanning time increased to about 24% longer than that of a non helical scan. When we conducted multi slice helical scanning at helical pitch 5 or 6, the effective scanning time was about half that of a non helical scan. The time sensitivity profile (TSP) is a totally new concept that we consider an important element in discussing the time resolution of a CT scanner. The results of this review will provide significant data in determining the scanning parameters when scanning a moving object. (author)

  18. The impact of hydraulic flow unit & reservoir quality index on pressure profile and productivity index in multi-segments reservoirs

    Directory of Open Access Journals (Sweden)

    Salam Al-Rbeawi

    2017-12-01

    Full Text Available The objective of this paper is studying the impact of the hydraulic flow unit and reservoir quality index (RQI on pressure profile and productivity index of horizontal wells acting in finite reservoirs. Several mathematical models have been developed to investigate this impact. These models have been built based on the pressure distribution in porous media, depleted by a horizontal well, consist of multi hydraulic flow units and different reservoir quality index. The porous media are assumed to be finite rectangular reservoirs having different configurations and the wellbores may have different lengths. Several analytical models describing flow regimes have been derived wherein hydraulic flow units and reservoir quality index have been included in addition to rock and fluid properties. The impact of these two parameters on reservoir performance has also been studied using steady state productivity index.It has been found that both pressure responses and flow regimes are highly affected by the existence of multiple hydraulic flow units in the porous media and the change in reservoir quality index for these units. Positive change in the RQI could lead to positive change in both pressure drop required for reservoir fluids to move towards the wellbore and hence the productivity index.

  19. Experimental validation of concentration profiles in an HCCI engine, modelled by a multi-component kinetic mechanism: Outline for auto-ignition and emission control

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim, E-mail: hatim-machrafi@enscp.f [UPMC Universite Paris 06, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); Universite de Liege, Thermodynamique des Phenomenes Irreversibles, 17, Allee du Six-Aout, 4000 Liege (Belgium)

    2010-10-15

    In order to contribute to the auto-ignition and emission control for Homogeneous Charge Compression Ignition (HCCI), a kinetic multi-component mechanism, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene is validated in this work, comparing for the concentration profiles of the fuel, the total hydrocarbons, O{sub 2}, CO{sub 2}, CO, acetaldehyde and iso-butene. These species are sampled during the combustion and quantified. For these measurements an automotive exhaust analyser, a gas chromatograph, coupled to a mass spectrometer and a flame ionisation detector are used, depending on the species to be measured. The fuel, total hydrocarbons, O{sub 2}, CO{sub 2}, iso-butene and acetaldehyde showed a satisfactory quantitative agreement between the mechanism and the experiments. Both the experiments and the modelling results showed the same formation behaviour of the different species. An example is shown of how such a validated mechanism can provide for a set of information of the behaviour of the auto-ignition process and the emission control as a function of engine parameters.

  20. Experimental validation of concentration profiles in an HCCI engine, modelled by a multi-component kinetic mechanism: Outline for auto-ignition and emission control

    International Nuclear Information System (INIS)

    Machrafi, Hatim

    2010-01-01

    In order to contribute to the auto-ignition and emission control for Homogeneous Charge Compression Ignition (HCCI), a kinetic multi-component mechanism, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene is validated in this work, comparing for the concentration profiles of the fuel, the total hydrocarbons, O 2 , CO 2 , CO, acetaldehyde and iso-butene. These species are sampled during the combustion and quantified. For these measurements an automotive exhaust analyser, a gas chromatograph, coupled to a mass spectrometer and a flame ionisation detector are used, depending on the species to be measured. The fuel, total hydrocarbons, O 2 , CO 2 , iso-butene and acetaldehyde showed a satisfactory quantitative agreement between the mechanism and the experiments. Both the experiments and the modelling results showed the same formation behaviour of the different species. An example is shown of how such a validated mechanism can provide for a set of information of the behaviour of the auto-ignition process and the emission control as a function of engine parameters.

  1. Electron and positron contributions to the displacement per atom profile in bulk multi-walled carbon nanotube material irradiated with gamma rays

    International Nuclear Information System (INIS)

    Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Leyva Pernia, Diana

    2013-01-01

    The electron and positron contributions to the effective atom displacement cross-section in multi-walled carbon nanotube bulk materials exposed to gamma rays were calculated. The physical properties and the displacement threshold energy value reported in literature for this material were taken into account. Then, using the mathematical simulation of photon and particle transport in matter, the electron and positron energy flux distributions within the irradiated object were also calculated. Finally, considering both results, the atom displacement damage profiles inside the analyzed bulk carbon nanotube material were determined. The individual contribution from each type of secondary particles generated by the photon interactions was specified. An increasing behavior of the displacement cross-sections for all the studied particles energy range was observed. The particles minimum kinetic energy values that make probabilistically possible the single and multiple atom displacement processes were determined. The positrons contribution importance to the total number of point defects generated during the interaction of gamma rays with the studied materials was confirmed

  2. Uncharged positive electrode composition

    Science.gov (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  3. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz

    2013-01-01

    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  4. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    Science.gov (United States)

    Lee, Jung Han; Kim, Jeong A.; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  5. Urinary and Rectal Toxicity Profiles After Permanent Iodine-125 Implant Brachytherapy in Japanese Men: Nationwide J-POPS Multi-institutional Prospective Cohort Study

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Toshio, E-mail: ohashi@rad.med.keio.ac.jp [Keio University School of Medicine, Tokyo (Japan); Yorozu, Atsunori; Saito, Shiro [National Hospital Organization Tokyo Medical Center, Tokyo (Japan); Tanaka, Nobumichi [Nara Medical University School of Medicine, Nara (Japan); Katayama, Norihisa [Okayama University School of Medicine, Okayama (Japan); Kojima, Shinsuke; Maruo, Shinichiro; Kikuchi, Takashi [Translational Research Informatics Center, Hyogo (Japan); Dokiya, Takushi [Kyoundo Hospital, Tokyo (Japan); Fukushima, Masanori [Translational Research Informatics Center, Hyogo (Japan); Yamanaka, Hidetoshi [Institutes of Preventive Medicine, Kurosawa Hospital, Gunma (Japan)

    2015-09-01

    Purpose: To assess, in a nationwide multi-institutional cohort study begun in 2005 and in which 6927 subjects were enrolled by 2010, the urinary and rectal toxicity profiles of subjects who enrolled during the first 2 years, and evaluate the toxicity profiles for permanent seed implantation (PI) and a combination therapy with PI and external beam radiation therapy (EBRT). Methods and Materials: Baseline data for 2339 subjects out of 2354 patients were available for the analyses. Toxicities were evaluated using the National Cancer Institute's Common Terminology Criteria for Adverse Events, and the International Prostate Symptom Scores were recorded prospectively until 36 months after radiation therapy. Results: Grade 2+ acute urinary toxicities developed in 7.36% (172 of 2337) and grade 2+ acute rectal toxicities developed in 1.03% (24 of 2336) of the patients. Grade 2+ late urinary and rectal toxicities developed in 5.75% (133 of 2312) and 1.86% (43 of 2312) of the patients, respectively. A higher incidence of grade 2+ acute urinary toxicity occurred in the PI group than in the EBRT group (8.49% vs 3.66%; P<.01). Acute rectal toxicity outcomes were similar between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late urinary toxicities were 6.04% versus 4.82% for the PI and the EBRT groups, respectively, with no significant differences between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late rectal toxicities were 0.90% versus 5.01% (P<.01) for the PI and the EBRT groups, respectively. The mean of the postimplant International Prostate Symptom Score peaked at 3 months, but it decreased to a range that was within 2 points of the baseline score, which was observed in 1625 subjects (69.47%) at the 1-year follow-up assessment. Conclusions: The acute urinary toxicities observed were acceptable given the frequency and retention, and the late rectal toxicities were more favorable than those of other

  6. Electrode stabilizing materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.

    2015-11-03

    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  7. Durable fuel electrode

    DEFF Research Database (Denmark)

    2017-01-01

    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  8. [Poison cases and types of poisons based on data obtained of patients hospitalized from 1995-2009 with acute poisoning in the second internal ward in a multi-profile provincial hospital in Tarnow].

    Science.gov (United States)

    Lata, Stanisław; Janiszewski, Jacek

    2010-01-01

    The thesis presents a short history and organization of an acute poisoning centre in the1995 functioning within the internal diseases department in a multi-profile provincial hospital. The data show the number of patients treated beetween 1995-2009 an the types of toxic substances that caused poisoning. The conclusions presented refer to the role of the centre to help people suffering from acute poisoning within the city of Tarnow.

  9. Amodiaquine polymeric membrane electrode.

    Science.gov (United States)

    Malongo, T Kimbeni; Blankert, B; Kambu, O; Amighi, K; Nsangu, J; Kauffmann, J-M

    2006-04-11

    The construction and electrochemical response characteristics of two types of poly(vinyl chloride) (PVC) membrane sensors for the determination of amodiaquine hydrochloride (ADQ.2HCl) are described. The sensing membrane comprised an ion-pair formed between the cationic drug and sodium tetraphenyl borate (NaTPB) or potassium tetrakis(4-chlorophenyl) borate (KTCPB) in a plasticized PVC matrix. Eight PVC membrane ion-selective electrodes were fabricated and studied. Several plasticizers were studied namely, dioctyl phthalate (DOP), 2-nitrophenyl octyl ether (NPOE), dioctyl phenylphosphonate (DOPP) and bis(2-ethylhexyl)adipate (EHA). The sensors display a fast, stable and near-Nernstian response over a relative wide ADQ concentration range (3.2 x 10(-6) to 2.0 x 10(-2) M), with slopes comprised between 28.5 and 31.4 mV dec(-1) in a pH range comprised between pH 3.7 and 5.5. The assay of amodiaquine hydrochloride in pharmaceutical dosage forms using one of the proposed sensors gave average recoveries of 104.3 and 99.9 with R.S.D. of 0.3 and 0.6% for tablets (Malaritab) and a reconstituted powder containing ADQ.2HCl, respectively. The sensor was also used for dissolution profile studies of two drug formulations. The sensor proved to have a good selectivity for ADQ.2HCl over some inorganic and organic compounds, however, berberine chloride interfered significantly. The results were validated by comparison with a spectrophotometric assay according to the USP pharmacopoeia.

  10. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors.

    Science.gov (United States)

    Farma, R; Deraman, M; Awitdrus, A; Talib, I A; Taer, E; Basri, N H; Manjunatha, J G; Ishak, M M; Dollah, B N M; Hashmi, S A

    2013-03-01

    Fibres from oil palm empty fruit bunches, generated in large quantities by palm oil mills, were processed into self-adhesive carbon grains (SACG). Untreated and KOH-treated SACG were converted without binder into green monolith prior to N2-carbonisation and CO2-activation to produce highly porous binderless carbon monolith electrodes for supercapacitor applications. Characterisation of the pore structure of the electrodes revealed a significant advantage from combining the chemical and physical activation processes. The electrochemical measurements of the supercapacitor cells fabricated using these electrodes, using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge techniques consistently found that approximately 3h of activation time, achieved via a multi-step heating profile, produced electrodes with a high surface area of 1704m(2)g(-1) and a total pore volume of 0.889cm(3)g(-1), corresponding to high values for the specific capacitance, specific energy and specific power of 150Fg(-1), 4.297Whkg(-1) and 173Wkg(-1), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. High-performance membrane electrode assembly with multi-functional Pt/SnO2eSiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions

    CSIR Research Space (South Africa)

    Hou, S

    2016-06-01

    Full Text Available A novel self-humidifying membrane electrode assembly (MEA) with homemade multifunctional Pt/SnO(sub2)-SiO(sub2)/C as the anode was developed to improve the performance of a proton exchange membrane fuel cell under low humidity. The MEAs' performance...

  12. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  13. Clinical profile and predictors of mortality of severe pandemic (H1N1 2009 virus infection needing intensive care: A multi-centre prospective study from South India

    Directory of Open Access Journals (Sweden)

    Kartik Ramakrishna

    2012-01-01

    Full Text Available Background: This multi-center study from India details the profile and outcomes of patients admitted to the intensive care unit (ICU with pandemic Influenza A (H1N1 2009 virus [P(H1N12009v] infection. Materials and Methods: Over 4 months, adult patients diagnosed to have P(H1N12009v infection by real-time RT-PCR of respiratory specimens and requiring ICU admission were followed up until death or hospital discharge. Sequential organ failure assessment (SOFA scores were calculated daily. Results: Of the 1902 patients screened, 464 (24.4% tested positive for P(H1N12009v; 106 (22.8% patients aged 35±11.9 (mean±SD years required ICU admission 5.8±2.7 days after onset of illness. Common symptoms were fever (96.2%, cough (88.7%, and breathlessness (85.9%. The admission APACHE-II and SOFA scores were 14.4±6.5 and 5.5±3.1, respectively. Ninety-six (90.6% patients required ventilation for 10.1±7.5 days. Of these, 34/96 (35.4% were non-invasively ventilated; 16/34 were weaned successfully whilst 18/34 required intubation. Sixteen patients (15.1% needed dialysis. The duration of hospitalization was 14.0±8.0 days. Hospital mortality was 49%. Mortality in pregnant/puerperal women was 52.6% (10/19. Patients requiring invasive ventilation at admission had a higher mortality than those managed with non-invasive ventilation and those not requiring ventilation (44/62 vs. 8/44, P<0.001. Need for dialysis was independently associated with mortality (P=0.019. Although admission APACHE-II and SOFA scores were significantly (P<0.02 higher in non-survivors compared with survivors on univariate analysis, individually, neither were predictive on multivariate analysis. Conclusions: In our setting, a high mortality was observed in patients admitted to ICU with severe P(H1N12009v infection. The need for invasive ventilation and dialysis were associated with a poor outcome.

  14. Relevance of the Pharmacokinetic and Pharmacodynamic Profiles of Puerariae lobatae Radix to Aggregation of Multi-Component Molecules in Aqueous Decoctions

    Directory of Open Access Journals (Sweden)

    Bili Su

    2016-06-01

    Full Text Available The complexity of traditional Chinese medicines (TCMs is related to their multi-component system. TCM aqueous decoction is a common clinical oral formulation. Between molecules in solution, there exist intermolecular strong interactions to form chemical bonds or weak non-bonding interactions such as hydrogen bonds and Van der Waals forces, which hold molecules together to form “molecular aggregates”. Taking the TCM Puerariae lobatae Radix (Gegen as an example, we explored four Gegen decoctions of different concentration of 0.019, 0.038, 0.075, and 0.30 g/mL, named G-1, G-2, G-3, and G-4. In order of molecular aggregate size (diameter the four kinds of solution were ranked G-1 < G-2 < G-3 < G-4 by Flow Cell 200S IPAC image analysis. A rabbit vertebrobasilar artery insufficiency (VBI model was set up and they were given Gegen decoction (GGD at a clinical dosage of 0.82 g/kg (achieved by adjusting the gastric perfusion volume depending on the concentration. The HPLC fingerprint of rabbit plasma showed that the chemical component absorption into blood in order of peak area values was G-1 < G-2 > G-3 > G-4. Puerarin and daidzin are the major constituents of Gegen, and the pharmacokinetics of G-1 and G-2 puerarin conformed with the two compartment open model, while for G-3 and G-4, they conformed to a one compartment open model. For all four GGDs the pharmacokinetics of daidzin complied with a one compartment open model. FQ-PCR assays of rabbits’ vertebrobasilar arterial tissue were performed to determine the pharmacodynamic profiles of the four GGDs. GGD markedly lowered the level of AT1R mRNA, while the AT2R mRNA level was increased significantly vs. the VBI model, and G-2 was the most effective. In theory the dosage was equal to the blood drug concentration and should be consistent; however, the formation of molecular aggregates affects drug absorption and metabolism, and therefore influences drugs’ effects. Our data provided references for

  15. Physically based method for measuring suspended-sediment concentration and grain size using multi-frequency arrays of acoustic-doppler profilers

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2014-01-01

    As the result of a 12-year program of sediment-transport research and field testing on the Colorado River (6 stations in UT and AZ), Yampa River (2 stations in CO), Little Snake River (1 station in CO), Green River (1 station in CO and 2 stations in UT), and Rio Grande (2 stations in TX), we have developed a physically based method for measuring suspended-sediment concentration and grain size at 15-minute intervals using multifrequency arrays of acoustic-Doppler profilers. This multi-frequency method is able to achieve much higher accuracies than single-frequency acoustic methods because it allows removal of the influence of changes in grain size on acoustic backscatter. The method proceeds as follows. (1) Acoustic attenuation at each frequency is related to the concentration of silt and clay with a known grain-size distribution in a river cross section using physical samples and theory. (2) The combination of acoustic backscatter and attenuation at each frequency is uniquely related to the concentration of sand (with a known reference grain-size distribution) and the concentration of silt and clay (with a known reference grain-size distribution) in a river cross section using physical samples and theory. (3) Comparison of the suspended-sand concentrations measured at each frequency using this approach then allows theory-based calculation of the median grain size of the suspended sand and final correction of the suspended-sand concentration to compensate for the influence of changing grain size on backscatter. Although this method of measuring suspended-sediment concentration is somewhat less accurate than using conventional samplers in either the EDI or EWI methods, it is much more accurate than estimating suspended-sediment concentrations using calibrated pump measurements or single-frequency acoustics. Though the EDI and EWI methods provide the most accurate measurements of suspended-sediment concentration, these measurements are labor-intensive, expensive, and

  16. Incorporating space-time constraints and activity-travel time profiles in a multi-state supernetwork approach to individual activity-travel scheduling

    NARCIS (Netherlands)

    Liao, F.; Arentze, T.A.; Timmermans, H.J.P.

    2013-01-01

    Activity-travel scheduling is at the core of many activity-based models that predict short-term effects of travel information systems and travel demand management. Multi-state supernetworks have been advanced to represent in an integral fashion the multi-dimensional nature of activity-travel

  17. A pore-scale model for the cathode electrode of a proton exchange membrane fuel cell by lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Molaeimanesh, Gholam Reza; Akbari, Mohammad Hadi [Shiraz University, Shiraz (Iran, Islamic Republic of)

    2015-03-15

    A pore-scale model based on the lattice Boltzmann method (LBM) is proposed for the cathode electrode of a PEM fuel cell with heterogeneous and anisotropic porous gas diffusion layer (GDL) and interdigitated flow field. An active approach is implemented to model multi-component transport in GDL, which leads to enhanced accuracy, especially at higher activation over-potentials. The core of the paper is the implementation of an electrochemical reaction with an active approach in a multi-component lattice Boltzmann model for the first time. After model validation, the capability of the presented model is demonstrated through a parametric study. Effects of activation over-potential, pressure differential between inlet and outlet gas channels, land width to channel width ratio, and channel width are investigated. The results show the significant influence of GDL microstructure on the oxygen distribution and current density profile.

  18. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  19. Spectral backward radiation profile

    International Nuclear Information System (INIS)

    Kwon, Sung Duck; Lee, Keun Hyun; Kim, Bo Ra; Yoon, Suk Soo

    2004-01-01

    Ultrasonic backward radiation profile is frequency-dependent when incident region has deptional gradient of acoustical properties or multi-layers. Until now, we have measured the profiles of principal frequencies of used transducers so that it was not easy to understand the change of the frequency component and spectrum of backward radiation from the profile. We tried to measure the spectral backward radiation profiles using DFP(digital filer package) Lecroy DSO. The very big changes in the shape and pattern of spectral backward radiation profiles leads to the conclusion that this new try could be very effective tool to evaluate frequency dependent surface area.

  20. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    CATO DM; DAHL MM; PHILO GL; EDGEMON GL; BELL DR.JLS; MOORE CG

    2010-03-26

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  1. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    International Nuclear Information System (INIS)

    Cato, D.M.; Dahl, M.M.; Philo, G.L.; Edgemon, G.L.; Bell, J.L.S.; Moore, C.G.

    2010-01-01

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  2. The Influence of Electrodes and Conditioning on Space Charge Accumulation in XLPE

    DEFF Research Database (Denmark)

    Fleming, R. J.; Henriksen, Mogens; Holbøll, Joachim

    2000-01-01

    . They also developed homocharge close to the electrodes. The choice of electrode material had little effect on the heterocharge profile in unconditioned samples. Conditioning by holding at 80°C for four days, at rotary pump pressure or at atmospheric pressure, suppressed the accumulation of heterocharge....... Homocharge accumulation close to the electrodes in samples with semicon electrodes was affected little by this conditioning, but was reduced considerably in samples with gold electrodes. Conditioning by holding at room temperature for seven days at rotary pump pressure had little effect. The heterocharge...

  3. Electrode and limiter biasing experiments on the tokamak ISTTOK

    International Nuclear Information System (INIS)

    Silva, C.; Figueiredo, H.; Cabral, J.A.C.; Nedzelsky, I.; Varandas, C.A.F.

    2003-01-01

    In this contribution limiter and electrode biasing experiments are compared, in particular in what concerns their effects on the edge plasma parameters. For electrode AC bias a substantial increase (>50%) in the average plasma density is observed with positive voltage, without significant changes in the edge density, leading to steeper profiles. The ratio n e /Hα also increases significantly (>20%), indicating an improvement in gross particle confinement. The plasma potential profile is strongly modified as both the edge E r and its shear increase significantly. For positive limiter bias an increase in the average plasma density and the radiation losses is observed, resulting in almost no modification, or a slight, in particle confinement. Preliminary results of simultaneous electrode and limiter bias experiments show that the control of the plasma potential profile is very limited, since negative voltages do not modify the plasma parameters significantly. (author)

  4. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    Science.gov (United States)

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    Background Transcranial Direct Current Stimulation (tDCS) is investigated to treat a wide range of neuropsychiatric disorders, for rehabilitation, and for enhancing cognitive performance. The monitoring of electrode resistance before and during tDCS is considered important for tolerability and safety, where an unusually high resistance is indicative of undesired electrode or poor skin contact conditions. Conventional resistance measurement methods do not isolate individual electrode resistance but rather measures overall voltage. Moreover, for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. Objective We propose a novel method for monitoring of the individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low-intensity and low-frequency sinusoids with electrode– specific frequencies) and a single sentinel electrode (not used for DC). Methods To validate this methodology, we developed lumped-parameter models of two and multi-electrode tDCS. Approaches with and without a sentinel electrode were solved and underlying assumptions identified. Assumptions were tested and parameterized in healthy participants using forearm stimulation combining tDCS (2 mA) and sinusoidal test-signals (38 μA and 76 μA peak to peak at 1 Hz, 10 Hz, and 100 Hz) and an in vitro test (where varied electrode failure modes were created). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. Results A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. For multi-electrode resistance tracking, cross talk was aggravated with electrode proximity and current/resistance mismatches, but could be corrected using proposed approaches. Average voltage and average pain scores were not significantly different across test current intensities and frequencies (two-way repeated measures ANOVA) indicating the

  5. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  6. Porous electrode preparation method

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  7. Estimation of current density distribution under electrodes for external defibrillation

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2002-12-01

    Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.

  8. Sandwich-type electrode

    Science.gov (United States)

    Lu, Wen-Tong P.; Garcia, Earl R.

    1983-01-01

    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  9. Ion-selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhelson, Konstantin N. [St. Petersburg State Univ. (Russian Federation). Ion-Selective Electrode Laboratory

    2013-06-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered.

  10. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  11. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N

    2013-01-01

    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  12. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6.

    Science.gov (United States)

    Shi, Jian-Jun; He, Ting-Ting; Jiang, Fang; Abdel-Halim, E S; Zhu, Jun-Jie

    2014-05-15

    An ultrasensitive electrochemical immunoassay was developed for rapid detection of interleukin-6 (IL-6) and matrix metallopeptidase-9 (MMP-9); the method utilized PS@PDA-metal nanocomposites based on graphene nanoribbon (GNR)-modified heated screen-printed carbon electrode (HSPCE). Because of the good hydrophilicity and low toxicity, GNRs were used to immobilize antibodies (Ab) and amplify the electrochemical signal. PS@PDA-metal was used to label antibodies and generate a strong electrochemical signal in acetic buffer. A sandwich strategy was adopted to achieve simultaneous detection of MMP-9 and IL-6 based on HSPCE without cross-talk between adjacent electrodes in the range of 10(-5) to 10(3) ng mL(-1) with detection limits of 5 fg mL(-1) and 0.1 pg mL(-1) (S/N=3), respectively. The proposed method showed wide detection range, low detection limit, acceptable stability and good reproducibility. Satisfactory results were also obtained in the practical samples, thus showing this is a promising technique for simultaneous clinical detection of biocomponent proteins. © 2013 Elsevier B.V. All rights reserved.

  13. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  14. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  15. High density plasma productions by hydrogen storage electrode in the Tohoku University Heliac

    International Nuclear Information System (INIS)

    Utoh, H.; Takahashi, H.; Tanaka, Y.; Takenaga, M.; Ogawa, M.; Shinde, J.; Iwazaki, K.; Shinto, K.; Kitajima, S.; Sasao, M.; Nishimura, K.; Inagaki, S.

    2005-01-01

    In the Tohoku University Heliac (TU-Heliac), the influence of a radial electric field on improved modes has been investigated by an electrode biasing. In both positive and negative biasing experiments by the stainless steel (SUS) electrode (cold-electron or ion collection), the improvement of plasma confinement was clearly observed. Furthermore, by negative biasing with a hot cathode (electron injection), the radial electric fields can be actively controlled as a consequence of the control of the electrode current I E . By using the electrode made of a hydrogen storage metal, for example Titanium (Ti) or Vanadium (V), the following possibility can be expected: (1) ions accelerated from the positive biased electrode allow the simulation for the orbit loss of high-energy particles, (2) the electrons/neutral- particles injected from the negative biased electrode provide the production of the high- density plasma, if hydrogen are successfully stored in the electrode. In this present work, several methods were tried as the treatment for hydrogen storage. In the case of the Ti electrode biased positively after the treatment, the improvement of plasma confinement was observed in He plasma, which were same as the experimental results of the SUS electrode. However, in the electron density profiles inside the electrode position there was difference between the biased plasma by the Ti electrode and that by the SUS electrode. In some of Ar discharges biased negatively with the Ti electrode after the treatment, the electron density and the line intensity of H α increased about 10 times of those before biasing. This phenomenon has not been observed in the Ar plasma biased by the SUS electrode. This result suggested that the Ti electrode injected electrons/neutral-hydrogen into the plasma. This high-density plasma productions were observed only 1 ∼ 3 times in the one treatment for hydrogen storage. By using a Vanadium (V) electrode, productions of the high-density plasma

  16. Development of a Flexible Non-Metal Electrode for Cell Stimulation and Recording

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2016-09-01

    Full Text Available This study presents a method of producing flexible electrodes for potentially simultaneously stimulating and measuring cellular signals in retinal cells. Currently, most multi-electrode applications rely primarily on etching, but the metals involved have a certain degree of brittleness, leaving them prone to cracking under prolonged pressure. This study proposes using silver chloride ink as a conductive metal, and polydimethysiloxane (PDMS as the substrate to provide electrodes with an increased degree of flexibility to allow them to bend. This structure is divided into the electrode layer made of PDMS and silver chloride ink, and a PDMS film coating layer. PDMS can be mixed in different proportions to modify the degree of rigidity. The proposed method involved three steps. The first segment entailed the manufacturing of the electrode, using silver chloride ink as the conductive material, and using computer software to define the electrode size and micro-engraving mechanisms to produce the electrode pattern. The resulting uniform PDMS pattern was then baked onto the model, and the flow channel was filled with the conductive material before air drying to produce the required electrode. In the second stage, we tested the electrode, using an impedance analyzer to measure electrode cyclic voltammetry and impedance. In the third phase, mechanical and biocompatibility tests were conducted to determine electrode properties. This study aims to produce a flexible, non-metallic sensing electrode which fits snugly for use in a range of measurement applications.

  17. Protected electrodes for plasma panels

    International Nuclear Information System (INIS)

    Hall, S.W.

    1984-01-01

    A metal oxide coating is applied between the conductive base and the magnesium oxide dielectric of the input and/or erase electrode(s) in a plasma display device to prevent break-down of the dielectric

  18. Fabrication of Pillar Shaped Electrode Arrays for Artificial Retinal Implants

    Directory of Open Access Journals (Sweden)

    Sung June Kim

    2008-09-01

    Full Text Available Polyimide has been widely applied to neural prosthetic devices, such as the retinal implants, due to its well-known biocompatibility and ability to be micropatterned. However, planar films of polyimide that are typically employed show a limited ability in reducing the distance between electrodes and targeting cell layers, which limits site resolution for effective multi-channel stimulation. In this paper, we report a newly designed device with a pillar structure that more effectively interfaces with the target. Electrode arrays were successfully fabricated and safely implanted inside the rabbit eye in suprachoroidal space. Optical Coherence Tomography (OCT showed well-preserved pillar structures of the electrode without damage. Bipolar stimulation was applied through paired sites (6:1 and the neural responses were successfully recorded from several regions in the visual cortex. Electrically evoked cortical potential by the pillar electrode array stimulation were compared to visual evoked potential under full-field light stimulation.

  19. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  20. Species distribution and susceptibility profile to fluconazole, voriconazole and MXP-4509 of 551 clinical yeast isolates from a Romanian multi-centre study

    NARCIS (Netherlands)

    Minea, B; Nastasa, V; Moraru, R F; Kolecka, A; Flonta, M M; Marincu, I; Man, A; Toma, F; Lupse, M; Doroftei, B; Marangoci, N; Pinteala, M; Boekhout, T; Mares, M

    This is the first multi-centre study regarding yeast infections in Romania. The aim was to determine the aetiological spectrum and susceptibility pattern to fluconazole, voriconazole and the novel compound MXP-4509. The 551 isolates were identified using routine laboratory methods, matrix-assisted

  1. Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review.

    Science.gov (United States)

    Alves, Georgina M S; Rocha, Luciana S; Soares, Helena M V M

    2017-12-01

    Nowadays, water is no longer regarded as an inexhaustible resource and the excessive release and proliferation of toxic metal(loid)s into aquatic environments has become a critical issue. Therefore, fast, accurate, simple, selective, sensitive and portable methodologies to detect multiple elements in natural waters is of paramount importance. Electrochemical stripping analysis is an efficient tool for trace metal(loid)s determinations and bring new prospects for answering the current environmental concerns. This review presents a survey of the advancements made between 2003 and 2016 on the development and application of non-toxic mercury free electrodes on the simultaneous analysis of metals and metalloids in waters and wastewaters by means of electroanalytical stripping techniques. The advantages, limitations, improvements and real applications of these "green" sensors are discussed from a critical point of view. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Advantages of a multi-state approach in surgical research: how intermediate events and risk factor profile affect the prognosis of a patient with locally advanced rectal cancer.

    Science.gov (United States)

    Manzini, G; Ettrich, T J; Kremer, M; Kornmann, M; Henne-Bruns, D; Eikema, D A; Schlattmann, P; de Wreede, L C

    2018-02-13

    Standard survival analysis fails to give insight into what happens to a patient after a first outcome event (like first relapse of a disease). Multi-state models are a useful tool for analyzing survival data when different treatments and results (intermediate events) can occur. Aim of this study was to implement a multi-state model on data of patients with rectal cancer to illustrate the advantages of multi-state analysis in comparison to standard survival analysis. We re-analyzed data from the RCT FOGT-2 study by using a multi-state model. Based on the results we defined a high and low risk reference patient. Using dynamic prediction, we estimated how the survival probability changes as more information about the clinical history of the patient becomes available. A patient with stage UICC IIIc (vs UICC II) has a higher risk to develop distant metastasis (DM) or both DM and local recurrence (LR) if he/she discontinues chemotherapy within 6 months or between 6 and 12 months, as well as after the completion of 12 months CTx with HR 3.55 (p = 0.026), 5.33 (p = 0.001) and 3.37 (p start of CTx, whereas for a low risk patient this is 79%. After the development of DM 1 year later, the high risk patient has an estimated 5-year survival probability of 11% and the low risk patient one of 21%. Multi-state models help to gain additional insight into the complex events after start of treatment. Dynamic prediction shows how survival probabilities change by progression of the clinical history.

  3. A multi-instrument non-parametric reconstruction of the electron pressure profile in the galaxy cluster CLJ1226.9+3332

    Science.gov (United States)

    Romero, C.; McWilliam, M.; Macías-Pérez, J.-F.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; de Petris, M.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2018-04-01

    Context. In the past decade, sensitive, resolved Sunyaev-Zel'dovich (SZ) studies of galaxy clusters have become common. Whereas many previous SZ studies have parameterized the pressure profiles of galaxy clusters, non-parametric reconstructions will provide insights into the thermodynamic state of the intracluster medium. Aim. We seek to recover the non-parametric pressure profiles of the high redshift (z = 0.89) galaxy cluster CLJ 1226.9+3332 as inferred from SZ data from the MUSTANG, NIKA, Bolocam, and Planck instruments, which all probe different angular scales. Methods: Our non-parametric algorithm makes use of logarithmic interpolation, which under the assumption of ellipsoidal symmetry is analytically integrable. For MUSTANG, NIKA, and Bolocam we derive a non-parametric pressure profile independently and find good agreement among the instruments. In particular, we find that the non-parametric profiles are consistent with a fitted generalized Navaro-Frenk-White (gNFW) profile. Given the ability of Planck to constrain the total signal, we include a prior on the integrated Compton Y parameter as determined by Planck. Results: For a given instrument, constraints on the pressure profile diminish rapidly beyond the field of view. The overlap in spatial scales probed by these four datasets is therefore critical in checking for consistency between instruments. By using multiple instruments, our analysis of CLJ 1226.9+3332 covers a large radial range, from the central regions to the cluster outskirts: 0.05 R500 generation of SZ instruments such as NIKA2 and MUSTANG2.

  4. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  5. Changes in heat load profile of typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    end-use savings are implemented in buildings concurrent with the application of low-temperature district heating (LTDH), the heat profiles of the buildings will change. Reducing peak loads is important, since this is the dimensioning foundation for future district heating systems. To avoid oversized...

  6. Multi-locus variable-number tandem repeat profiling of Salmonella enterica serovar Typhi isolates from blood cultures and gallbladder specimens from Makassar, South-Sulawesi, Indonesia.

    Directory of Open Access Journals (Sweden)

    Mochammad Hatta

    Full Text Available Multi-locus variable-number tandem repeat analysis differentiated 297 Salmonella enterica serovar Typhi blood culture isolates from Makassar in 76 genotypes and a single unique S. Typhi genotype was isolated from the cholecystectomy specimens of four patients with cholelithiasis. The high diversity in S. Typhi genotypes circulating in Makassar indicates that the number of carriers could be very large, which may complicate disease prevention and control.

  7. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  8. Flexible transparent electrode

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew

    2011-06-01

    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  9. Site Selection for Hvdc Ground Electrodes

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2014-12-01

    High-Voltage Direct Current (HVDC) transmission systems are composed of a bipole transmission line with a converter substation at each end. Each substation may be equipped with a HVDC ground electrode, which is a wide area (up to 1 km Ø) and deep (from 3 to 100m) electrical grounding. When in normal operation, the ground electrode will dissipate in the soil the unbalance of the bipole (~1.5% of the rated current). When in monopolar operation with ground return, the HVDC electrode will inject in the soil the nominal pole continuous current, of about 2000 to 3000 Amperes, continuously for a period up to a few hours. HVDC ground electrodes site selection is a work based on extensive geophysical and geological surveys, in order to attend the desired design requirements established for the electrodes, considering both its operational conditions (maximum soil temperature, working life, local soil voltage gradients etc.) and the interference effects on the installations located up to 50 km away. This poster presents the geophysical investigations conducted primarily for the electrodes site selection, and subsequently for the development of the crust resistivity model, which will be used for the interference studies. A preliminary site selection is conducted, based on general geographical and geological criteria. Subsequently, the geology of each chosen area is surveyed in detail, by means of electromagnetic/electrical geophysical techniques, such as magnetotelluric (deep), TDEM (near-surface) and electroresistivity (shallow). Other complementary geologic and geotechnical surveys are conducted, such as wells drilling (for geotechnical characterization, measurement of the water table depth and water flow, and electromagnetic profiling), and soil and water sampling (for measurement of thermal parameters and evaluation of electrosmosis risk). The site evaluation is a dynamic process along the surveys, and some sites will be discarded. For the two or three final sites, the

  10. Advantages of a multi-state approach in surgical research: how intermediate events and risk factor profile affect the prognosis of a patient with locally advanced rectal cancer

    Directory of Open Access Journals (Sweden)

    G. Manzini

    2018-02-01

    Full Text Available Abstract Background Standard survival analysis fails to give insight into what happens to a patient after a first outcome event (like first relapse of a disease. Multi-state models are a useful tool for analyzing survival data when different treatments and results (intermediate events can occur. Aim of this study was to implement a multi-state model on data of patients with rectal cancer to illustrate the advantages of multi-state analysis in comparison to standard survival analysis. Methods We re-analyzed data from the RCT FOGT-2 study by using a multi-state model. Based on the results we defined a high and low risk reference patient. Using dynamic prediction, we estimated how the survival probability changes as more information about the clinical history of the patient becomes available. Results A patient with stage UICC IIIc (vs UICC II has a higher risk to develop distant metastasis (DM or both DM and local recurrence (LR if he/she discontinues chemotherapy within 6 months or between 6 and 12 months, as well as after the completion of 12 months CTx with HR 3.55 (p = 0.026, 5.33 (p = 0.001 and 3.37 (p < 0.001, respectively. He/she also has a higher risk to die after the development of DM (HR 1.72, p = 0.023. Anterior resection vs. abdominoperineal amputation means 63% risk reduction to develop DM or both DM and LR (HR 0.37, p = 0.003 after discontinuation of chemotherapy between 6 and 12 months. After development of LR, a woman has a 4.62 times higher risk to die (p = 0.006. A high risk reference patient has an estimated 43% 5-year survival probability at start of CTx, whereas for a low risk patient this is 79%. After the development of DM 1 year later, the high risk patient has an estimated 5-year survival probability of 11% and the low risk patient one of 21%. Conclusions Multi-state models help to gain additional insight into the complex events after start of treatment. Dynamic prediction shows how survival

  11. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    International Nuclear Information System (INIS)

    Ogino, Y; Hirata, Y; Nomura, K

    2011-01-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  12. MEGAS: Multi-electrode gas sensor system. Micromechanical high-temperature sensor system on a silicon basis for measuring NOx concentrations in motor car exhaust; MEGAS - Multi-Elektroden-Gassensorsystem. Mikromechanisches Hochtemperatur-Sensorsystem auf Silizium-Basis zur Ermittlung von Stickstoffmonoxid-Konzentrationen im Kfz-Abgas. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, M.; Gerlich, M.; Kornely, S.; Bausewein, A.; Meixner, H.

    2002-03-13

    A new electrode structure with two additional middle-electrodes running in-between the interdigitated electrodes, is presented. With this structure the voltage drops at these middle-electrodes are measured as well as the conductivity of a screen printed n-type WO{sub 3}/TiO{sub 2} mixed oxide layer. The gas sensing properties to NO{sub x}, CH{sub x} and CO are determined at 300 C sensor temperature. It is shown that with this four point structure different sensor regions, namely the pure semiconducting layer and the interface electrode/semiconductor, can be separated and different gas sensing properties can be determined for this regions. Additionally, by evaluating the signals at the middle-electrodes, single gases in gas-mixtures can be detected and discriminated. (orig.) [German] Mit dem Sensorprinzip auf der Basis halbleitender Metalloxide koennen preisguenstige und leistungsfaehige Gassensoren realisiert werden, die sich durch einfachen robusten Aufbau sowie ein einfach auszulesendes Sensorsignal auszeichnen. Das bisher hauptsaechlich in Anwendungen verwendete SnO{sub 2} ist jedoch aufgrund seiner geringen Temperatur- und Reduktionsstabilitaet nicht in Verbrennungsabgasen verwendbar und wird hauptsaechlich in der Ueberwachung von atmosphaerischer Luft eingesetzt. Mit neuentwickelten aeusserst stabilen und bei Temperaturen bis zu 1000 C betriebenen, halbleitenden Metalloxiden koennen jedoch Gassensoren realisiert werden, die auch in rauhen Umgebungen wie dem heissen Abgas von Verbrennungsmotoren eingesetzt werden koennen. Damit koennen Verbrennungsprozesse in Motoren oder auch in Feuerungsanlagen kontinuierlich geregelt und die umweltschaedlichen Emissionen reduziert werden. Zur Realisierung derartiger Sensoren wird das Detektionsmaterial - ein geeignetes halbleitendes Metalloxid - in Form eines duennen Films auf einem Traeger (Substrat) praepariert womit ein moeglichst guter Kontakt des Detektormaterials zur Gasphase sichergestellt wird. Mit Messelektroden aus

  13. Experimental investigation on multidisciplinary geophysical characterization of deep underground structure using multi-scale, multi-mode seismic profiling for the evaluation of ground motion and seismic model building

    International Nuclear Information System (INIS)

    Abe, Susumu

    2014-01-01

    Recent advancements in data acquisition and velocity estimation for multi-mode, multiscale seismic exploration were explained along with the basic concept of strategic geophysical surveys for NPP siting assessment. Then, as a case study using this concept, multidisciplinary geophysical characterization results pertaining to the deep underground structure beneath the JNES Kashiwazaki Center were explained in detail. At the site, reflection/refraction surveys and magnetotelluric/gravity surveys were also conducted. It was shown that these surveys can be used complementary because at the upsurge part, where clear images cannot be obtained by reflection/refraction surveys, magnetotelluric /gravity surveys can be used to obtain clear images. (author)

  14. A nonlinear multi-proxy model based on manifold learning to reconstruct water temperature from high resolution trace element profiles in biogenic carbonates

    Directory of Open Access Journals (Sweden)

    M. Bauwens

    2010-11-01

    Full Text Available A long standing problem in paleoceanography concerns the reconstruction of water temperature from δ18O carbonate. It is problematic in the case of freshwater influenced environments because the δ18O isotopic composition of the ambient water (related to salinity needs to be known. In this paper we argue for the use of a nonlinear multi-proxy method called Weight Determination by Manifold Regularization (WDMR to develop a temperature reconstruction model that is less sensitive to salinity variations. The motivation for using this type of model is twofold: firstly, observed nonlinear relations between specific proxies and water temperature motivate the use of nonlinear models. Secondly, the use of multi-proxy models enables salinity related variations of a given temperature proxy to be explained by salinity-related information carried by a separate proxy. Our findings confirm that Mg/Ca is a powerful paleothermometer and highlight that reconstruction performance based on this proxy is improved significantly by combining its information with the information for other trace elements in multi-proxy models. Although the models presented here are black-box models that do not use any prior knowledge about the proxies, the comparison of model reconstruction performances based on different proxy combinations do yield useful information about proxy characteristics. Using Mg/Ca, Sr/Ca, Ba/Ca and Pb/Ca the WDMR model enables a temperature reconstruction with a root mean squared error of ± 2.19 °C for a salinity range between 15 and 32.

  15. HVDC Ground Electrodes - a Source of Geophysical Data

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  16. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  17. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-01-01

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure. PMID:28788148

  18. Development of comprehensive image processing technique for differential diagnosis of liver disease by using multi-modality images. Pixel-based cross-correlation method using a profile

    International Nuclear Information System (INIS)

    Inoue, Akira; Okura, Yasuhiko; Akiyama, Mitoshi; Ishida, Takayuki; Kawashita, Ikuo; Ito, Katsuyoshi; Matsunaga, Naofumi; Sanada, Taizo

    2009-01-01

    Imaging techniques such as high magnetic field imaging and multidetector-row CT have been markedly improved recently. The final image-reading systems easily produce more than a thousand diagnostic images per patient. Therefore, we developed a comprehensive cross-correlation processing technique using multi-modality images, in order to decrease the considerable time and effort involved in the interpretation of a radiogram (multi-formatted display and/or stack display method, etc). In this scheme, the criteria of an attending radiologist for the differential diagnosis of liver cyst, hemangioma of liver, hepatocellular carcinoma, and metastatic liver cancer on magnetic resonance images with various sequences and CT images with and without contrast enhancement employ a cross-correlation coefficient. Using a one-dimensional cross-correlation method, comprehensive image processing could be also adapted for various artifacts (some depending on modality imaging, and some on patients), which may be encountered at the clinical scene. This comprehensive image-processing technique could assist radiologists in the differential diagnosis of liver diseases. (author)

  19. Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes

    Science.gov (United States)

    Liu, Xiaojuan; Wu, Tao; Dai, Zengxin; Tao, Keran; Shi, Yong; Peng, Chuang; Zhou, Xiaohang; Chen, George Z.

    2016-03-01

    Stacked electrolysers with titanium bipolar plates are constructed for electrodeposition of polypyrrole electrodes for supercapacitors. The cathode side of the bipolar Ti plates are pre-coated with activated carbon. In this new design, half electrolysis occurs which significantly lowers the deposition voltage. The deposited electrodes are tested in a symmetrical unit cell supercapacitor and an asymmetrical supercapacitor stack. Both devices show excellent energy storage performances and the capacitance values are very close to the design value, suggesting a very high current efficiency during the electrodeposition. The electrolyser stack offers multi-fold benefits for preparation of conducting polymer electrodes, i.e. low energy consumption, facile control of the electrode capacitance and simultaneous preparation of a number of identical electrodes. Therefore, the stacked bipolar electrolyser is a technology advance that offers an engineering solution for mass production of electrodeposited conducting polymer electrodes for supercapacitors.

  20. Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations

    Directory of Open Access Journals (Sweden)

    J. A. Fisher

    2015-03-01

    Pole-to-Pole Observations (HIPPO, together with model output from the SH Model Intercomparison Project, to elucidate the drivers of CO vertical structure in the remote SH. Observed CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific 10–20 years later, despite major differences in time periods, flight locations, and sampling strategies between the two data sets. These similarities suggest the processes driving observed vertical gradients are coherent across much of the remote SH and have not changed significantly over the past 2 decades. Model ability to simulate CO profiles reflects the interplay between biogenic emission sources, the chemical mechanisms that drive CO production from these sources, and the transport that redistributes this CO throughout the SH. The four chemistry-climate and chemical transport models included in the intercomparison show large variability in their abilities to reproduce the observed CO profiles. In particular, two of the four models significantly underestimate vertical gradients in austral summer and autumn, which we find are driven by long-range transport of CO produced from oxidation of biogenic compounds. Comparisons between the models show that more complex chemical mechanisms do not necessarily provide more accurate simulation of CO vertical gradients due to the convolved impacts of emissions, chemistry, and transport. Our results imply a large sensitivity of the remote SH troposphere to biogenic emissions and chemistry, both of which remain key uncertainties in global modeling. We suggest that the CO vertical gradient can be used as a metric for future model evaluation as it provides a sensitive test of the processes that define the chemical state of the background atmosphere.

  1. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  2. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  3. Temperature profiles induced by a stationary CW laser beam in a multi-layer structure: application to solar cell interconnect welding

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.E.; Ianno, N.J.; Ahmed, A.U.

    1985-01-01

    A three-dimensional heat transfer model for heating of a multilayer structure by a stationary Gaussian CW CO/sub 2/ laser beam is developed and applied to solar cell interconnect welding. This model takes into account the temperature dependence of the thermal conductivity and diffusivity as well as free carrier absorption of the incident beam in the silicon where appropriate. Finally, the theoretical temperature profiles are used to determine the weld spot size and these values are compared to results obtained from a simple welding experiment, where excellent agreement is obtained. 18 references, 13 figures.

  4. Change in heat load profile for typical Danish multi-storey buildings when energy-renovated and supplied with low-temperature district heating

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2013-01-01

    ) supply. When end-use-savings are implemented in buildings concurrent with the application of low-temperature district heating (DH) (supply=55°C, return=25°C) the heat demand profiles for the individual buildings will change. The reduction in peak load is important since it is the dimensioning foundation...... for the future DH-systems and in order to avoid oversized RE-based capacity, a long-term perspective needs to be taken. The results show that it is possible to design the DH-plants based on an average value of the 5 days with highest daily average loads without compromising with indoor thermal comfort. Applying...

  5. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  6. Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS

    DEFF Research Database (Denmark)

    McIntyre, Melissa D.; Walker, Robert; Traulsen, Marie Lund

    2015-01-01

    an applied potential.1-3 The presented work explores the polarisation induced changes in LSM electrode composition by utilizing in operando Raman spectroscopy and post mortem ToF-SIMS depth profiling on LSM thin film model electrodes fabricated by pulsed laser deposition on YSZ substrates with a thin (200 nm...... recorded through the LSM thin film electrodes and revealed distinct compositional changes throughout the electrodes (Figure 2). The electrode elements and impurities separated into distinct layers that were more pronounced for the stronger applied polarisations. The mechanism behind this separation...

  7. Texture analysis with neutron bending on geological/mineralogical multi-phase samples using a locally resolving detector and profile analysis

    International Nuclear Information System (INIS)

    Merz, P.L.

    1991-02-01

    In the context of this work, the NANCY four circuit diffractometer of the University of Bonn at the RRJ2 research reactor at KFA Juelich was equipped with a linear locally resolving scintillation detector JULIOS. To evaluate the diffractogram occurring at a pole figure measurement, user-friendly profile analysis and other evaluation programs were developed on the PC. The course of evaluation was largely automated, so that only a few interactive steps are required. The measuring period of a sample is usually two to three days. Up to 35 pole figures are produced, depending on the phase conditions of the examined sample. The evaluation of up to 900 diffractograms with the aid of the automatically running profile analysis program takes between 30 and 100 minutes on a 20 MHz PC 386. Pole figure datafiles are produced from the intensity data obtained in this way by a conversion program. The texture analyses of copper pyrites ores introduced here are connected with geological questions. (orig.) [de

  8. Testing the Capacity of a Multi-Nutrient Profiling System to Guide Food and Beverage Reformulation: Results from Five National Food Composition Databases

    Directory of Open Access Journals (Sweden)

    Emilie Combet

    2017-04-01

    Full Text Available Nutrient profiling ranks foods based on their nutrient composition, with applications in multiple aspects of food policy. We tested the capacity of a category-specific model developed for product reformulation to improve the average nutrient content of foods, using five national food composition datasets (UK, US, China, Brazil, France. Products (n = 7183 were split into 35 categories based on the Nestlé Nutritional Profiling Systems (NNPS and were then classified as NNPS ‘Pass’ if all nutrient targets were met (energy (E, total fat (TF, saturated fat (SFA, sodium (Na, added sugars (AS, protein, calcium. In a modelling scenario, all NNPS Fail products were ‘reformulated’ to meet NNPS standards. Overall, a third (36% of all products achieved the NNPS standard/pass (inter-country and inter-category range: 32%–40%; 5%–72%, respectively, with most products requiring reformulation in two or more nutrients. The most common nutrients to require reformulation were SFA (22%–44% and TF (23%–42%. Modelled compliance with NNPS standards could reduce the average content of SFA, Na and AS (10%, 8% and 6%, respectively at the food supply level. Despite the good potential to stimulate reformulation across the five countries, the study highlights the need for better data quality and granularity of food composition databases.

  9. Easy to use program “Simkine3” for simulating kinetic profiles of multi-step chemical Systems and optimisation of predictable rate coefficients therein

    Directory of Open Access Journals (Sweden)

    S.B. Jonnalagadda

    2012-08-01

    Full Text Available ‘Simkine3’, a Delphi based software is developed to simulate the kinetic schemes of complex reaction mechanisms involving multiple sequential and competitive elementary steps for homogeneous and heterogeneous chemical reactions. Simkine3 is designed to translate the user specified mechanism into chemical first-order differential equations (ODEs and optimise the estimated rate constants in such a way that simulated curves match the experimental kinetic profiles. TLSoda which uses backward differentiation method is utilised to solve resulting ODEs and Downhill Simplex method is used to optimise the estimated rate constants in a robotic way. An online help file is developed using HelpScrible Demo to guide the users of Simkine3. The versatility of the software is demonstrated by simulating the complex reaction between methylene violet and acidic bromate, a reaction which exhibits complex nonlinear kinetics. The new software is validated after testing it on a 19-step intricate mechanism involving 15 different species. The kinetic profiles of multiple simulated curves, illustrating the effect of initial concentrations of bromate, and bromide were matched with the corresponding experimental curves.DOI: http://dx.doi.org/10.4314/bcse.v26i2.10

  10. Testing the Capacity of a Multi-Nutrient Profiling System to Guide Food and Beverage Reformulation: Results from Five National Food Composition Databases.

    Science.gov (United States)

    Combet, Emilie; Vlassopoulos, Antonis; Mölenberg, Famke; Gressier, Mathilde; Privet, Lisa; Wratten, Craig; Sharif, Sahar; Vieux, Florent; Lehmann, Undine; Masset, Gabriel

    2017-04-21

    Nutrient profiling ranks foods based on their nutrient composition, with applications in multiple aspects of food policy. We tested the capacity of a category-specific model developed for product reformulation to improve the average nutrient content of foods, using five national food composition datasets (UK, US, China, Brazil, France). Products ( n = 7183) were split into 35 categories based on the Nestlé Nutritional Profiling Systems (NNPS) and were then classified as NNPS 'Pass' if all nutrient targets were met (energy (E), total fat (TF), saturated fat (SFA), sodium (Na), added sugars (AS), protein, calcium). In a modelling scenario, all NNPS Fail products were 'reformulated' to meet NNPS standards. Overall, a third (36%) of all products achieved the NNPS standard/pass (inter-country and inter-category range: 32%-40%; 5%-72%, respectively), with most products requiring reformulation in two or more nutrients. The most common nutrients to require reformulation were SFA (22%-44%) and TF (23%-42%). Modelled compliance with NNPS standards could reduce the average content of SFA, Na and AS (10%, 8% and 6%, respectively) at the food supply level. Despite the good potential to stimulate reformulation across the five countries, the study highlights the need for better data quality and granularity of food composition databases.

  11. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  12. Field testing of sulphide electrodes

    International Nuclear Information System (INIS)

    Singh, P.R.; Gaonkar, K.B.; Gadiyar, H.S.

    1993-01-01

    Sulphide ion selective electrodes have been developed at BARC, for determination of Ag + and S - ions directly and Cl - and CN - ions indirectly. The electrodes were tested for their use in sulphide environments in the EAD (Effluent After Dilution) stream at the Heavy Water Plant, Kota. The electrodes are suitable in the concentration range of 16000 ppm to 0.002 ppm, with a slope of 29-31 mV per decade change in the sulphide ion concentration. The response time is less than 10 seconds. These electrodes are reliable for continuous on-line use for a long period. (author). 7 refs., 11 figs., 1 tab

  13. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  14. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S

    1979-10-01

    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  15. Lithium alloy negative electrodes

    Science.gov (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  16. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  17. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/polyaniline composite electrodes

    International Nuclear Information System (INIS)

    Dalmolin, Carla; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Bocchi, Nerilso

    2009-01-01

    Polyaniline was electrodeposited onto reticulated vitreous carbon - RVC - in order to obtain a tridimensional composite electrode. Three variations of these electrodes were analysed: a small-anion-doped polyaniline (RVC/Pani), a polyanion-doped polyaniline (RVC/PaniPSS) and a bi-layer type formed by an inner layer of the first electrode and an outer layer of the second one (RVC/Pani/PaniPSS). These composites were characterized by cyclic voltammetry, scanning electronic microscopy and electrochemical impedance spectroscopy. Photomicrographies, voltammetric profiles and impedance data pointed to different morphological and electrochemical characteristics for polyaniline doped with small or large anions, and a mixed behavior for the bi-layer electrodes. Charge-discharge tests for these tridimensional (3D) electrodes, employed as the cathode in lithium batteries, indicated better performance for the RVC/Pani electrode. These RVC composites presented higher specific capacities when compared with those obtained for Pani deposited onto bidimensional substrates.

  18. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  19. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas

    2011-07-01

    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  20. A microfluidic chip platform with electrochemical carbon nanotube electrodes for pre-clinical evaluation of antibiotics nanocapsules.

    Science.gov (United States)

    Hong, Chien-Chong; Wang, Chih-Ying; Peng, Kuo-Ti; Chu, I-Ming

    2011-04-15

    This paper presents a microfluidic chip platform with electrochemical carbon nanotube electrodes for preclinical evaluation of antibiotics nanocapsules. Currently, there has been an increasing interest in the development of nanocapsules for drug delivery applications for localized treatments of diseases. So far, the methods to detect antibiotics are liquid chromatography (LC), high performance liquid chromatography (HPLC), mass spectroscopy (MS). These conventional instruments are bulky, expensive, not ease of access, and talented operator required. In order to help the development of nanocapsules and understand drug release profile before planning the clinical experiments, it is important to set up a biosensing platform which could monitor and evaluate the real-time drug release profile of nanocapsules with high sensitivity and long-term measurement ability. In this work, a microfluidic chip platform with electrochemical carbon nanotube electrodes has been developed and characterized for rapid detection of antibiotics teicoplanin nanocapsules. Multi-walled carbon nanotubes are used to modify the gold electrode surfaces to enhance the performance of the electrochemical biosensors. Experimental results show that the limit of detection of the developed platform using carbon nanotubes electrodes is 0.1 μg/ml with a linear range from 1 μg/ml to 10 μg/ml. The sensitivity of the developed system is 0.023 mA ml/μg at 37°C. The drug release profile of teicoplanin nanocapsules in PBS shows that the antibiotics nanocapsules significantly increased the release of drug on the 4th day, measuring 0.4858 μg/(ml hr). The release of drug from the antibiotics nanocapsules reached 34.98 μg/ml on the 7th day. The results showed a similar trend compared with the measurement result using the HPLC instrument. Compared with the traditional HPLC measurements, the electrochemical sensing platform we developed measures results with increased flexibility in controlling experimental

  1. Mapping the temporal pole with a specialized electrode array: technique and preliminary results

    International Nuclear Information System (INIS)

    Abel, Taylor J; Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A III; Granner, Mark A; Tranel, Daniel T; Griffiths, Timothy D

    2014-01-01

    Temporopolar cortex plays a crucial role in the pathogenesis of temporal lobe epilepsy and subserves important cognitive functions. Because of its shape and position in the middle cranial fossa, complete electrode coverage of the temporal pole (TP) is difficult to achieve using existing devices. We designed a novel TP electrode array that conforms to the surface of temporopolar cortex and achieves dense electrode coverage of this important brain region. A multi-pronged electrode array was designed that can be placed over the surface of the TP using a straightforward insertion technique. Twelve patients with medically intractable epilepsy were implanted with the TP electrode array for purposes of seizure localization. Select patients underwent cognitive mapping by electrocorticographic (ECoG) recording from the TP during a naming task. Use of the array resulted in excellent TP electrode coverage in all patients. High quality ECoG data were consistently obtained for purposes of delineating seizure activity and functional mapping. During a naming task, significant increases in ECoG power were observed within localized subregions of the TP. One patient developed a transient neurological deficit thought to be related to the mass effect of multiple intracranial recording arrays, including the TP array. This deficit resolved following removal of all electrodes. The TP electrode array overcomes limitations of existing devices and enables clinicians and researchers to obtain optimal multi-site recordings from this important brain region. (paper)

  2. EDM Electrode for Internal Grooves

    Science.gov (United States)

    Ramani, V.; Werner, A.

    1985-01-01

    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  3. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  4. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.

    1984-01-01

    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  5. Storage-battery electrodes. [preparation

    Energy Technology Data Exchange (ETDEWEB)

    1961-12-29

    Two incompatible thermoplastic resins are mixed with a powdered electrochemical active substance. The substance may be, for example, an oxide of cadmium, iron, lead, or zinc or nickel hydroxide. After the mixture is shaped into elements which are inserted into conducting sheaths for an electrode, the one resin is washed out to form a porous electrode. (RWR)

  6. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  7. Improved photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  8. Multi-target retrieval (MTR): the simultaneous retrieval of pressure, temperature and volume mixing ratio profiles from limb-scanning atmospheric measurements

    International Nuclear Information System (INIS)

    Dinelli, B.M.; Alpaslan, D.; Carlotti, M.; Magnani, L.; Ridolfi, M.

    2004-01-01

    In this paper we describe a retrieval approach for the simultaneous determination of the altitude distributions of p, T and VMR of atmospheric constituents from limb-scanning measurements of the atmosphere. This analysis method, named multi-target retrieval (MTR), has been designed and implemented in a computer code aimed at the analysis of MIPAS-ENVISAT observations; however, the concepts implemented in MTR have a general validity and can be extended to the analysis of all type of limb-scanning observations. In order to assess performance and advantages of the proposed approach, MTR has been compared with the sequential analysis system implemented by ESA as the level-2 processor for MIPAS measurements. The comparison has been performed on a common set of target species and spectral intervals. The performed tests have shown that MTR produces results of better quality than a sequential retrieval. However, the simultaneous retrieval of p, T and water VMR has not lead to satisfactory results below the tropopause, because of the high correlation occurring between p and water VMR in the troposphere. We have shown that this problem can be fixed extending the MTR analysis to at least one further target whose spectral features decouple the retrieval of pressure and water VMR. Ozone was found to be a suitable target for this purpose. The advantages of the MTR analysis system in terms of systematic errors have also been discussed

  9. Soil properties, strontium isotopic signatures and multi-element profiles to authenticate the origin of vegetables from small-scale regions: illustration with early potatoes from southern Italy.

    Science.gov (United States)

    Zampella, Mariavittoria; Quétel, Christophe R; Paredes, Eduardo; Goitom Asfaha, Daniel; Vingiani, Simona; Adamo, Paola

    2011-10-15

    We propose a method for the authentication of the origin of vegetables grown under similar weather conditions, in sites less than 10 km distance from the sea and distributed over a rather small scale area (58651 km(2)). We studied how the strontium (Sr) isotopic signature and selected elemental concentrations ([Mn], [Cu], [Zn], [Rb], [Sr] and [Cd]) in early potatoes from three neighbouring administrative regions in the south of Italy were related to the geological substrate (alluvial sediments, volcanic substrates and carbonate rocks) and to selected soil chemical properties influencing the bioavailability of elements in soils (pH, cation exchange capacity and total carbonate content). Through multiple-step multivariate statistics (PLS-DA) we could assign 26 potatoes (including two already commercialised samples) to their respective eight sites of production, corresponding to the first two types of geological substrates. The other 12 potatoes from four sites of production had similar characteristics in terms of the geological substrate (third type) and these soil properties could be grouped together. In this case, more discriminative parameters would be required to allow the differentiation between sites. The validation of our models included external prediction tests with data of potatoes harvested the year before and a study on the robustness of the uncertainties of the measurement results. Annual variations between multi-elemental and Sr isotopic fingerprints were observed in potatoes harvested from soils overlying carbonate rocks, stressing the importance of testing long term variations in authentication studies. Copyright © 2011 John Wiley & Sons, Ltd. and European Union [2011].

  10. Segmentation and profiling consumers in a multi-channel environment using a combination of self-organizing maps (SOM method, and logistic regression

    Directory of Open Access Journals (Sweden)

    Seyed Ali Akbar Afjeh

    2014-05-01

    Full Text Available Market segmentation plays essential role on understanding the behavior of people’s interests in purchasing various products and services through various channels. This paper presents an empirical investigation to shed light on consumer’s purchasing attitude as well as gathering information in multi-channel environment. The proposed study of this paper designed a questionnaire and distributed it among 800 people who were at least 18 years of age and had some experiences on purchasing goods and services on internet, catalog or regular shopping centers. Self-organizing map, SOM, clustering technique was performed based on consumer’s interest in gathering information as well as purchasing products through internet, catalog and shopping centers and determined four segments. There were two types of questions for the proposed study of this paper. The first group considered participants’ personal characteristics such as age, gender, income, etc. The second group of questions was associated with participants’ psychographic characteristics including price consciousness, quality consciousness, time pressure, etc. Using multinominal logistic regression technique, the study determines consumers’ behaviors in each four segments.

  11. Adsorption at electrodes

    International Nuclear Information System (INIS)

    Hubbard, A.T.; Ping Gao

    1991-01-01

    Surface electrochemical studies are described and summarized in which atomic, ionic or molecular layers were allowed to form from aqueous solutions at well-defined Pt(111) surfaces. The resulting adsorbed layers were chemisorbed in most cases and stable in vacuum, permitting identification and quantitation by Auger spectroscopy, EELS, LEED and electrochemistry. Adsorbed atomic, ionic, or molecular layers formed at metal-solution interfaces frequently display long-range order. Molecular properties of the adsorbed layers correlate with their electrochemical properties. The molecular orientation of organic adsorbates was deduced from packing density measurements, supplemented with vibrational spectra. Interfacial variables such as electrode potential have a strong influence on interfacial structure along with the nature and mode of surface attachment of adsorbates. The angular distribution of Auger electron emission from metal single crystals and atomic adsorbed layers has proved to be useful for direct imaging of surface crystal and interfacial structure. (author). 14 refs, 11 figs

  12. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  13. Evaluation of high-perimeter electrode designs for deep brain stimulation

    Science.gov (United States)

    Howell, Bryan; Grill, Warren M.

    2014-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  14. Electrode for a lithium cell

    Science.gov (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  15. Institutional Profiles: Some Strategic Tools

    Directory of Open Access Journals (Sweden)

    Frans van Vught

    2014-04-01

    Full Text Available In this paper we argue that both internal and external pressures and conditions urge contemporary higher education institutions to carefully think through their institutional profiles positions in domestic and global higher education contexts. We subsequently analyse strategic positioning from the strategic management literature and offer four tools — mapping, multi-dimensional ranking, benchmarking and degree profiling — to assist higher education institutions in their profiling and positioning strategies.

  16. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction

    International Nuclear Information System (INIS)

    Beesley, Luke; Moreno-Jimenez, Eduardo; Clemente, Rafael; Lepp, Nicholas; Dickinson, Nicholas

    2010-01-01

    Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile. - Mobility of arsenic, cadmium and zinc in a polluted soil can be realistically interpreted by in-situ soil pore water sampling.

  17. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  18. Facile Growth of Multi-twined Au Nanostructures

    Indian Academy of Sciences (India)

    like nanostructures undergo spontaneous transformation into multi-twined nanostructures within 24 h. These nanocrystalline ... reactions,1 and a color indicating reagent for the sensing of biomolecules.2 ... Two-compartment, three electrode ...

  19. Damped button electrode for B-Factory BPM system

    Energy Technology Data Exchange (ETDEWEB)

    Shintake, T; Akasaka, N; Obina, T; Chin, Y H [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    A new concept of damping of resonances in a button electrode has been proposed and tested in the BPM system for the B-Factory project at KEK (KEKB). Since a very high current beam has to be stored in the machine, even a small resonance in the ring will result in losing a beam due to multi-bunch instabilities. In a conventional button electrode used in BPMs, a TE110 mode resonance can be trapped in the gap between the electrode and the vacuum chamber. In order to damp this mode, the diameter of the electrode has been chosen to be small to increase the resonance frequency and to radiate the power into the beam pipe. In addition, an asymmetric structure is applied to extract the EM energy of the TE110 mode into the coaxial cable as the propagating TEM mode which has no cut-off frequency. Results of the computer simulations and tests with cold models are reported. The quality factor of the TE110 mode was small enough due to the radiation into the beam pipe even in the conventional electrode and the mode coupling effect due to the asymmetric shape was significant on a cavity-like TE111 mode. (author)

  20. High-performance flexible supercapacitor based on porous array electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Jen-Yu; Tsai, Sung-Ying; Li, Bo-Yan [Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Yu, Hsin Her, E-mail: hhyu@nfu.edu.tw [Department of Biotechnology, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China)

    2017-07-01

    In this study, an array of polystyrene (PS) spheres was synthesized by a dispersion-polymerization technique as a template onto which a porous polydimethylsiloxane (PDMS) microarray structure was fabricated by soft lithography. A conducting layer was coated on the surface of the microarray after a suspension of multi-walled carbon nanotubes (MWCNTs) mixed with graphene (G) had been poured into the porous array. A PDMS-based porous supercapacitor was assembled by sandwiching a separator between two porous electrodes filled with a H{sub 3}PO{sub 4}/polyvinyl alcohol (PVA) gel electrolyte. The specific capacitance, electrochemical properties, and cycle stability of the porous electrode supercapacitors were explored. The porous PDMS-electrode-based supercapacitor exhibited high specific capacitance and good cycle stability, indicating its enormous potential for future applications in wearable and portable electronic products. - Highlights: • Porous electrode was prepared using an array of polystyrene spheres as template. • The porous electrodes provided increased contact area with the electrolyte. • A gel electrolyte averted problems with leakage and poor interfacial contact. • A larger separator pore size effectively reduced the internal resistance, iR{sub drop}. • Porous PDMS supercapacitor showed superior flexibility and cycling stability.

  1. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes

    Science.gov (United States)

    Azoubel, Suzanna; Shemesh, Shay; Magdassi, Shlomo

    2012-08-01

    Carbon nanotube (CNTs) inks may provide an effective route for producing flexible electronic devices by digital printing. In this paper we report on the formulation of highly concentrated aqueous CNT inks and demonstrate the fabrication of flexible electroluminescent (EL) devices by inkjet printing combined with wet coating. We also report, for the first time, on the formation of flexible EL devices in which all the electrodes are formed by inkjet printing of low-cost multi-walled carbon nanotubes (MWCNTs). Several flexible EL devices were fabricated by using different materials for the production of back and counter electrodes: ITO/MWCNT and MWCNT/MWCNT. Transparent electrodes were obtained either by coating a thin layer of the CNTs or by inkjet printing a grid which is composed of empty cells surrounded by MWCNTs. It was found that the conductivity and transparency of the electrodes are mainly controlled by the MWCNT film thickness, and that the dominant factor in the luminance intensity is the transparency of the electrode.

  2. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyonkwang; Kim, Hyunkook; Hwang, Sookhyun; Jeon, Minhyon [Department of Nano Systems Engineering, Center of Nano Manufacturing, Inje University, Obang, Gimhae, Gyungnam 621-749 (Korea, Republic of); Choi, Wonbong [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2011-01-15

    We demonstrated a counter electrode in dye-sensitized solar cells (DSSCs) using the graphene-based multi-walled carbon nanotubes (GMWNTs) structure. Graphene layers were prepared by drop casting on a SiO{sub 2}/Si substrate and multi-walled carbon nanotubes (MWNTs) were synthesized on graphene layers using iron catalyst by chemical vapor deposition. The structural properties of GMWNTs were investigated by transmission electron microscope and field-emission scanning electron microscopy. The GMWNTs sheets were lifted off from the Si substrate by buffered oxide etching and were transplanted on fluorine-doped tin oxide glass by Van der Waals force as a counter electrode. From the electrochemical impedance spectroscopy and energy conversion efficiencies, electrochemical properties of GMWNTs were comparable with those of MWNTs counter electrode. The results suggested that GMWNTs were one of the candidates for a counter electrode for dye-sensitized solar cells. (author)

  3. ELECTROD FLUOR-SELECTIV

    Directory of Open Access Journals (Sweden)

    Mariana DÎRU

    2018-03-01

    Full Text Available A fost preparat un senzor anionic specific, bazat pe pivalatul trinuclear al cromului(III ca material electro­activ încorporat în membrana PVC plastifiată. Senzorul prezintă răspuns Nernstian (55,78 mV/decadă în intervalul de concentrație 10-1-10-4 mol/L cu limita de detecție 2,0∙10-5 mol/L pentru anionul fluorură. Domeniul optim de pH de funcţionare a electrodului asamblat este ˃5. Senzorul dat are un timp de răspuns de 30-60 s și reproductibilitatea rezultatelor se menține timp de 3 luni. Coeficienții potențiometrici ai selectivității au fost determinați prin metoda soluțiilor separate. A fost realizată aplicarea acestor electrozi la analiza pastei de dinți ce conține fluorură și rezultatele experimentale au fost comparate cu datele de pe prospect.FLUORIDE-SELECTIVE ELECTRODEA specific anionic sensor has been prepared, based on trinuclearchromium(III pivalate as sensing material incorpo­rated into the plasticized PVC-membrane. The sensor exhibited Nernstian response (55,78 mV/decade in the region between 10-1-10-4 mol/L with a detection limit of 2,0∙10-5 mol/L for fluoride. The working pH of the electrode was in the 5-6 range. The sensor has a response time 30-60 s and can be used for least 3 month. The potentiometric selectivity coefficients were determined by separate solution method. Application of these electrodes to the analysis of toothpaste containing fluoride has been realized and experimental results have been compared with the data on the prospectus.

  4. Capacitance enhancement via electrode patterning

    International Nuclear Information System (INIS)

    Ho, Tuan A.; Striolo, Alberto

    2013-01-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties

  5. Studies of pyrrole black electrodes as possible battery positive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mengoli, G.; Musiani, M.M.; Fleischmann, M.; Pletcher, D.

    1984-05-01

    It is shown that a polypyrrole, pyrrole black, may be formed anodically in several aqueous acids. The polypyrrole film shows a redox couple at less positive potentials than that required to form the film and the charge associated with these reduction and oxidation processes together with their stabilty to cycling varies with the anion in solution and the potential where the polypyrrole is formed; over-oxidation of the film caused by taking its potential too positive has a particularly disadvantageous affect. In the acids HBr and HI, the polypyrrole films can act as a storage medium for Br/sub 2/ or I/sub 2/ so that they may be used as a substrate for a X/sub 2//X/sup -/ electrode. Such electrodes may be charge/discharge cycled and the pyrrole/Br/sub 2/ electrode shows promise as a battery positive electrode.

  6. Optimized electrode configuration for current-in-plane characterization of magnetic tunnel junction stacks

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Kjær, Daniel; Østerberg, Frederik Westergaard

    2017-01-01

    The current-in-plane tunneling technique (CIPT) has been a crucial tool in the development of magnetic tunnel junction stacks suitable for magnetic random access memories (MRAM) for more than a decade. The MRAM development has now reached the maturity to make the transition from the R&D phase...... of electrodes on a multi-electrode probe to reach up to 36% improvement on the repeatability for the resistance area product and the tunneling magnetoresistance measurement, without any hardware modification....

  7. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  8. Polarization Induced Changes in LSM Thin Film Electrode Composition Observed by In Operando Raman Spectroscopy and TOF-SIMS

    DEFF Research Database (Denmark)

    McIntyre, Melissa D.; Traulsen, Marie Lund; Norrman, Kion

    2015-01-01

    Polarization induced changes in LSM electrode composition were investigated by utilizing in operando Raman spectroscopy and post mortem TOF-SIMS depth profiling. Experiments were conducted on cells with 160 nm thick (La0.85Sr0.15)0.9MnO3±δ thin film electrodes in 10% O2 at 700 °C under various...

  9. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Oh, Kyeongmin; Won, Seongyeon; Ju, Hyunchul

    2015-01-01

    Highlights: • The effects of electrode compression on VRFB are examined. • The electronic conductivity is improved when the compression is increased. • The kinetic losses are similar regardless of the electrode compression level. • The vanadium distribution is more uniform within highly compressed electrode. - Abstract: The porous carbon felt electrode is one of the major components of all-vanadium redox flow batteries (VRFBs). These electrodes are necessarily compressed during stack assembly to prevent liquid electrolyte leakage and diminish the interfacial contact resistance among VRFB stack components. The porous structure and properties of carbon felt electrodes have a considerable influence on the electrochemical reactions, transport features, and cell performance. Thus, a numerical study was performed herein to investigate the effects of electrode compression on the charge and discharge behavior of VRFBs. A three-dimensional, transient VRFB model developed in a previous study was employed to simulate VRFBs under two degrees of electrode compression (10% vs. 20%). The effects of electrode compression were precisely evaluated by analysis of the solid/electrolyte potential profiles, transfer current density, and vanadium concentration distributions, as well as the overall charge and discharge performance. The model predictions highlight the beneficial impact of electrode compression; the electronic conductivity of the carbon felt electrode is the main parameter improved by electrode compression, leading to reduction in ohmic loss through the electrodes. In contrast, the kinetics of the redox reactions and transport of vanadium species are not significantly altered by the degree of electrode compression (10% to 20%). This study enhances the understanding of electrode compression effects and demonstrates that the present VRFB model is a valuable tool for determining the optimal design and compression of carbon felt electrodes in VRFBs.

  10. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  11. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  12. Electrode configuration for extreme-UV electrical discharge source

    Science.gov (United States)

    Spence, Paul Andrew; Fornaciari, Neal Robert; Chang, Jim Jihchyun

    2002-01-01

    It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

  13. Handcrafted Electrocorticography Electrodes for a Rodent Behavioral Model

    Directory of Open Access Journals (Sweden)

    Nishat Tasnim

    2016-08-01

    Full Text Available Electrocorticography (ECoG is a minimally invasive neural recording method that has been extensively used for neuroscience applications. It has proven to have the potential to ease the establishment of proper links for neural interfaces that can offer disabled patients an alternative solution for their lost sensory and motor functions through the use of brain-computer interface (BCI technology. Although many neural recording methods exist, ECoG provides a combination of stability, high spatial and temporal resolution with chronic and mobile capabilities that could make BCI systems accessible for daily applications. However, many ECoG electrodes require MEMS fabricating techniques which are accompanied by various expenses that are obstacles for research projects. For this reason, this paper presents an animal study using a low cost and simple handcrafted ECoG electrode that is made of commercially accessible materials. The study is performed on a Lewis rat implanted with a handcrafted 32-channel non-penetrative ECoG electrode covering an area of 3 × 3 mm2 on the cortical surface. The ECoG electrodes were placed on the motor and somatosensory cortex to record the signal patterns while the animal was active on a treadmill. Using a Tucker-Davis Technologies acquisition system and the software Synapse to monitor and analyze the electrophysiological signals, the electrodes obtained signals within the amplitude range of 200 µV for local field potentials with reliable spatiotemporal profiles. It was also confirmed that the handcrafted ECoG electrode has the stability and chronic features found in other commercial electrodes.

  14. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  15. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    Science.gov (United States)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-12-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.

  16. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    International Nuclear Information System (INIS)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-01-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS − ) and perchlorate (ClO 4 − ) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO 4 ) electrodes was 401 ± 18 mF cm −2 , which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes. (paper)

  17. Fractals in several electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunyong, E-mail: zhangchy@njau.edu.cn [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); Wu, Jingyu [Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095 (China); Fu, Degang [Suzhou Key Laboratory of Environment and Biosafety, Suzhou Academy of Southeast University, Dushuhu lake higher education town, Suzhou 215123 (China); State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096 (China)

    2014-09-15

    Highlights: • Fractal geometry was employed to characterize three important electrode materials. • The surfaces of all studied electrodes were proved to be very rough. • The fractal dimensions of BDD and ACF were scale dependent. • MMO film was more uniform than BDD and ACF in terms of fractal structures. - Abstract: In the present paper, the fractal properties of boron-doped diamond (BDD), mixed metal oxide (MMO) and activated carbon fiber (ACF) electrode have been studied by SEM imaging at different scales. Three materials are self-similar with mean fractal dimension in the range of 2.6–2.8, confirming that they all exhibit very rough surfaces. Specifically, it is found that MMO film is more uniform in terms of fractal structure than BDD and ACF. As a result, the intriguing characteristics make these electrodes as ideal candidates for high-performance decontamination processes.

  18. Electrode materials for rechargeable batteries

    Science.gov (United States)

    Abouimrane, Ali; Amine, Khalil

    2015-04-14

    Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.

  19. Towards point of care testing for C. difficile infection by volatile profiling, using the combination of a short multi-capillary gas chromatography column with metal oxide sensor detection

    International Nuclear Information System (INIS)

    McGuire, N D; Ewen, R J; De Lacy Costello, B; Garner, C E; Vaughan, K; Ratcliffe, N M; Probert, C S J

    2014-01-01

    Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor sensor and artificial neural network software. For direct analysis of biological samples this prototype offers alternatives to conventional gas chromatography (GC) detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenized in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 min compared to 30 min for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden. (paper)

  20. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    Energy Technology Data Exchange (ETDEWEB)

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W., E-mail: leesw@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Na, J.; Kim, G. T. [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, B. J.; Kim, J. J.; Jeong, G. H. [Department of Nano Applied Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Lee, I.; Kim, K. S. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  1. Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge

    International Nuclear Information System (INIS)

    Liang, F; Tanaka, M; Choi, S; Watanabe, T

    2014-01-01

    Diffuse and multiple arc-anode attachment modes were observed in a DC arc discharge with a carbon electrode. During the arc discharge, the surface temperature of the electrode was successfully measured by two-colour pyrometry combined with a high-speed camera which employs appropriate band-pass filters. The relationship between the arc-anode attachment mode and the temperature fluctuation of electrode surface was investigated. The diffuse arc-anode attachment mode leads to relatively large temperature fluctuation on anode surface due to the rotation of the arc spot. In the case of diffuse mode, the purity of synthesized multi-wall carbon nanotube was deteriorated with temperature fluctuation

  2. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Li, Jun; Yang, QuanMin; Zhitomirsky, Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  3. Stability, structure and scale: improvements in multi-modal vessel extraction for SEEG trajectory planning.

    Science.gov (United States)

    Zuluaga, Maria A; Rodionov, Roman; Nowell, Mark; Achhala, Sufyan; Zombori, Gergely; Mendelson, Alex F; Cardoso, M Jorge; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sébastien

    2015-08-01

    Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying significantly associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer-assisted planning systems that can optimise the safety profile of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Twelve paired data sets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coefficient was 0.89 ± 0.04, representing a statistically significantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ± 0.03). Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.

  4. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  5. The kinetics of porous insertion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Atlung, S; West, K [British Columbia Univ., Vancouver (Canada)

    1989-05-01

    The principles of porous electrodes are discussed as well as the discharge of the insertion compound, the working potential, transport in the electrolyte, the time dependence of the electrolyte concentration, and modeling of the porous electrode. The simulation of a TiS2 porous electrode and the composite insertion electrode are considered as well. The influence of electrode thickness and porosity in a typical porous TiS2 electrode is revealed. It is shown that the use of insertion compounds as battery electrodes is limited by the requirement that the inserted ion must be distributed in the interior of the insertion compound particle. 15 refs.

  6. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht

    2015-01-01

    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  7. Extraction electrode geometry for a calutron

    International Nuclear Information System (INIS)

    Veach, A.M.; Bell, W.A. Jr.

    1975-01-01

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source

  8. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    International Nuclear Information System (INIS)

    Nguyen, D T; Kosobrodov, R; Jin, C; McEwan, A; Barry, M A; Chik, W; Thiagalingam, A; Oh, T I

    2013-01-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  9. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    catalyst and catalyst support, but that it forms a complex structure consisting of fiber and film like structures in the pores of the electrode. In addition, the EF-TEM result delivered a strong indication for the infiltration of catalyst agglomerates by the polymer electrolyte. Furthermore, a new concept for the investigation of multi-component structures, consisting of the membrane, electrodes and gas di1usion layers (GDL) was developed. Thus it was possible to provide evidence for the intrusion of individual carbon fibers from the GDL into the electrode. In addition the influence of GDL structure on delamination of the electrode could be demonstrated. Another part of the work deals with the characterization of a novel platinum catalyst deposited on hydrous ruthenium oxide coated carbon nanotubes (CNT), which was developed in close cooperation with a Chinese partner at Tsinghua University (Beijing). (orig.)