WorldWideScience

Sample records for mulberry alloy

  1. Adhesion of electrodeposited coatings on U--Ti and Mulberry

    International Nuclear Information System (INIS)

    Johnson, H.R.; Dini, J.W.

    1976-05-01

    Quantitative test data are presented for two etched and plated uranium alloys, U-0.75 Ti and mulberry (U-7.5 Nb, 2.5 Zr). Conical head tensile tests showed that the bond between nickel plating and U--Ti was stronger than that between nickel plating and mulberry. Ring shear tests showed that electroplated nickel coatings are more adherent than other coatings applied to U--Ti. Utilizing a newly developed etchant for mulberry, large cylinders of this material were joined to aluminum and then tensile tested. Results showed that the strength of the joint was directly influenced by the taper angle on the mulberry

  2. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  3. Intravascular "mulberry-like" bodies

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Klebe, J G; Henriques, U V

    1988-01-01

    Intravascular "mulberry-like" bodies in a stillborn female infant with moderate maceration are reported. The histogenesis of these structures is discussed based on light-microscopic, immunohistochemical and ultrastructural findings. No demonstrable causal relation between the intravascular lesion...... and fetal death was found, the cause of death being attributed to intrauterine asphyxia. It is concluded, that intravascular "mulberry-bodies" most likely represent artifacts due to red blood cell autolysis.......Intravascular "mulberry-like" bodies in a stillborn female infant with moderate maceration are reported. The histogenesis of these structures is discussed based on light-microscopic, immunohistochemical and ultrastructural findings. No demonstrable causal relation between the intravascular lesions...

  4. mulberry

    Indian Academy of Sciences (India)

    Small auxin-up RNA (SAUR) genes are important gene families in auxin ... In this study, we used Arabidopsis sequences as query to search against mulberry, hemp ...... T. J. 1989 Transcription, organization, and sequence of an auxin-.

  5. Intravascular "mulberry-like" bodies

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Klebe, J G; Henriques, U V

    1988-01-01

    Intravascular "mulberry-like" bodies in a stillborn female infant with moderate maceration are reported. The histogenesis of these structures is discussed based on light-microscopic, immunohistochemical and ultrastructural findings. No demonstrable causal relation between the intravascular lesions...... and fetal death was found, the cause of death being attributed to intrauterine asphyxia. It is concluded, that intravascular "mulberry-bodies" most likely represent artifacts due to red blood cell autolysis....

  6. Alcoholic Beverages Obtained from Black Mulberry

    Directory of Open Access Journals (Sweden)

    Jacinto Darias-Martín

    2003-01-01

    Full Text Available Black mulberry (Morus nigra is a fruit not known only for its nutritional qualities and its flavour, but also for its traditional use in natural medicine as it has a high content of active therapeutic compounds. However, this fruit is not widely produced in Spain but some trees are still found growing in the Canary Islands, particularly on the edges of the ravine. The inhabitants of these islands (Tenerife, La Gomera, La Palma, El Hierro and Lanzarote collect the fruit and prepare homemade beverages for medicinal purposes. Numerous authors have reported that type II diabetes mellitus can be controlled by taking a mixture containing black mulberry and water. Apart from that, this fruit has been used for the treatment of mouth, tongue and throat inflammations. In this study we present some characteristics of black mulberry juice (TSS, pH, titratable acidity, citric acid, lactic acid, polyphenols, anthocyanins, the potassium etc. and alcoholic beverages (alcoholic grade, pH, total acidity, volatile acidity, tannins, phenols etc. obtained from black mulberry. Moreover, we have studied the quality of liquors obtained from black mulberry in Canary Islands.

  7. Quantification and Purification of Mulberry Anthocyanins with Macroporous Resins

    Directory of Open Access Journals (Sweden)

    Xueming Liu

    2004-01-01

    Full Text Available Total anthocyanins in different cultivars of mulberry were measured and a process for the industrial preparation of mulberry anthocyanins as a natural food colorant was studied. In 31 cultivars of mulberry, the total anthocyanins, calculated as cyanidin 3-glucoside, ranged from 147.68 to 2725.46 mg/L juice. Extracting and purifying with macroporous resins was found to be an efficient potential method for the industrial production of mulberry anthocyanins as a food colorant. Of six resins tested, X-5 demonstrated the best adsorbent capability for mulberry anthocyanins (91 mg/mL resin. The adsorption capacity of resins increased with the surface area and the pore radius. Residual mulberry fruit juice after extraction of pigment retained most of its nutrients, except for anthocyanins, and may provide a substrate for further processing.

  8. Kauplus Mulberry - Oksana Tandit = Mulberry - Oksana Tandit store

    Index Scriptorium Estoniae

    2011-01-01

    Inglise firma Mulberry ja eesti moekunstniku Oksana Tanditi kauplusest Tallinnas Suur-Karja 2. Sisearhitektid Tiina Talvi ja Elo Pärlioja. Loetletud sisearhitektide tehtud töid. Interjööris kasutatud sepised valmistasid Tõnu Narro ja Märt Vaidla

  9. Transgenesis: An efficient tool in mulberry breeding

    African Journals Online (AJOL)

    DELL

    2013-11-27

    Nov 27, 2013 ... ... (south campus). They have developed drought and salinity tolerent transgenic mulberry ... generates tolerence to salinity and water stress in transgenic mulberry (Morus indica). Key words: ..... seasonal cold acclimation.

  10. Non-Mulberry and Mulberry Silk Protein Sericins as Potential Media Supplement for Animal Cell Culture

    Directory of Open Access Journals (Sweden)

    Neety Sahu

    2016-01-01

    Full Text Available Silk protein sericins, in the recent years, find application in cosmetics and pharmaceuticals and as biomaterials. We investigate the potential of sericin, extracted from both mulberry Bombyx mori and different non-mulberry sources, namely, tropical tasar, Antheraea mylitta; muga, Antheraea assama; and eri, Samia ricini, as growth supplement in serum-free culture medium. Sericin supplemented media containing different concentrations of sericins from the different species are examined for attachment, growth, proliferation, and morphology of fibrosarcoma cells. The optimum sericin supplementation seems to vary with the source of sericins. The results indicate that all the sericins promote the growth of L929 cells in serum-free culture media; however, S. ricini sericin seems to promote better growth of cells amongst other non-mulberry sericins.

  11. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  12. Identification of a latent pathogen on mulberry tree with a disease of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Pathogen inoculation and comparison. The healthy mulberry trees grown in Wuxing Station of Silkworm and Mulberry Technical Guidance, Huzhou (the area without disea- sed mulberries) and Institute of Sericultural Reseach, Chinese. Academy of Agricultura Sciences (Zhenjiang City, Jiangsu Province).

  13. Reducing soil erosion and nutrient loss on sloping land under crop-mulberry management system.

    Science.gov (United States)

    Fan, Fangling; Xie, Deti; Wei, Chaofu; Ni, Jiupai; Yang, John; Tang, Zhenya; Zhou, Chuan

    2015-09-01

    Sloping croplands could result in soil erosion, which leads to non-point source pollution of the aquatic system in the Three Gorges Reservoir Region. Mulberry, a commonly grown cash plant in the region, is traditionally planted in contour hedgerows as an effective management practice to control soil erosion and non-point source pollution. In this field study, surface runoff and soil N and P loss on sloping land under crop-mulberry management were investigated. The experiments consisted of six crop-mulberry treatments: Control (no mulberry hedgerow with mustard-corn rotation); T1 (two-row contour mulberry with mustard-corn rotation); T2 (three-row contour mulberry with mustard-corn rotation); T3 (border mulberry and one-row contour mulberry with mustard-corn rotation); T4 (border mulberry with mustard-corn rotation); T5 (two-row longitudinal mulberry with mustard). The results indicated that crop-mulberry systems could effectively reduce surface runoff and soil and nutrient loss from arable slope land. Surface runoff from T1 (342.13 m(3) hm(-2)), T2 (260.6 m(3) hm(-2)), T3 (113.13 m(3) hm(-2)), T4 (114 m(3) hm(-2)), and T5 (129 m(3) hm(-2)) was reduced by 15.4, 35.6, 72.0, 71.8, and 68.1%, respectively, while soil loss from T1 (0.21 t hm(-2)), T2 (0.13 t hm(-2)), T3 (0.08 t hm(-2)), T4 (0.11 t hm(-2)), and T5 (0.12 t hm(-2)) was reduced by 52.3, 70.5, 81.8, 75.0, and 72.7%, respectively, as compared with the control. Crop-mulberry ecosystem would also elevate soil N by 22.3% and soil P by 57.4%, and soil nutrient status was contour-line dependent.

  14. Durability of adhesive bonds to uranium alloys, tungsten, tantalum, and thorium

    International Nuclear Information System (INIS)

    Childress, F.G.

    1975-01-01

    Long-term durability of epoxy bonds to alloys of uranium (U-Nb and Mulberry), nickel-plated uranium, thorium, tungsten, tantalum, tantalum--10 percent tungsten, and aluminum was evaluated. Significant strengths remain after ten years of aging; however, there is some evidence of bond deterioration with uranium alloys and thorium stored in ambient laboratory air

  15. Phytochemical Content of Some Black (Morus nigra L. and Purple (Morus rubra L. Mulberry Genotypes

    Directory of Open Access Journals (Sweden)

    Murat Tosun

    2010-01-01

    Full Text Available Bright black (Morus nigra and purple mulberry (Morus rubra are particularly desirable fruits in Turkey. More recently, the interest in these bright black and purple mulberry fruits has also increased because of the popularization of healthy properties of these fruits. The study was carried out in 2008 aiming to determine the antioxidant activity (ferric reducing ability of plasma, FRAP, total phenolic, total anthocyanin, mineral, soluble solid, vitamin C, and total acid content of four black and four purple mulberry genotypes grown in Turkey. The results show that black mulberry genotypes have a higher bioactive content than purple mulberry genotypes. The average total phenolic content and total anthocyanins of black mulberry genotypes were 2149 μg of gallic acid equivalent (GAE per g and 719 μg of cyanidin 3-glucoside equivalent (Cy 3-glu per g of fresh mass. In purple mulberry, these values were for GAE 1690 μg/g and for Cy 3-glu 109 μg/g on fresh mass basis. The average antioxidant activity of black mulberry genotypes was also found to be higher than that of the purple ones according to FRAP assay (Trolox equivalent (TE per fresh mass of black and purple mulberries was 13.35 and 6.87 μmol/g, respectively.

  16. Effects of Diets Supplemented with Ensiled Mulberry Leaves and Sun-Dried Mulberry Fruit Pomace on the Ruminal Bacterial and Archaeal Community Composition of Finishing Steers

    NARCIS (Netherlands)

    Niu, Yuhong; Meng, Qingxiang; Li, Shengli; Ren, Liping; Zhou, Bo; Schonewille, Thomas; Zhou, Zhenming

    This study investigated the effects of ensiled mulberry leaves (EML) and sun-dried mulberry fruit pomace (SMFP) on the ruminal bacterial and archaeal community composition of finishing steers. Corn grain- and cotton meal-based concentrate was partially replaced with EML or SMFP. The diets had

  17. Phenotypic and Transcriptomic Analyses of Autotetraploid and Diploid Mulberry (Morus alba L.).

    Science.gov (United States)

    Dai, Fanwei; Wang, Zhenjiang; Luo, Guoqing; Tang, Cuiming

    2015-09-22

    Autopolyploid plants and their organs are often larger than their diploid counterparts, which makes them attractive to plant breeders. Mulberry (Morus alba L.) is an important commercial woody plant in many tropical and subtropical areas. In this study, we obtained a series of autotetraploid mulberry plants resulting from a colchicine treatment. To evaluate the effects of genome duplications in mulberry, we compared the phenotypes and transcriptomes of autotetraploid and diploid mulberry trees. In the autotetraploids, the height, breast-height diameter, leaf size, and fruit size were larger than those of diploids. Transcriptome data revealed that of 21,229 expressed genes only 609 (2.87%) were differentially expressed between diploids and autotetraploids. Among them, 30 genes were associated with the biosynthesis and signal transduction of plant hormones, including cytokinin, gibberellins, ethylene, and auxin. In addition, 41 differentially expressed genes were involved in photosynthesis. These results enhance our understanding of the variations that occur in mulberry autotetraploids and will benefit future breeding work.

  18. Agrobacterium-mediated transient MaFT expression in mulberry (Morus alba L.) leaves.

    Science.gov (United States)

    Wu, Su-Li; Yang, Xiao-Bing; Liu, Li-Qun; Jiang, Tao; Wu, Hai; Su, Chao; Qian, Yong-Hua; Jiao, Feng

    2015-01-01

    To optimize Agrobacterium-mediated transient transformation assay in mulberry (Morus alba L.), various infiltration methods, Agrobacterium tumefaciens (A. tumefaciens) strains, and bacterial concentrations were tested in mulberry seedlings. Compared with LBA4404, GV3101 harboring pBE2133 plasmids presented stronger GUS signals at 3 days post infiltration using syringe. Recombinant plasmids pBE2133:GFP and pBE2133:GFP:MaFT were successfully constructed. Transient expression of MaFT:GFP protein was found in leaves, petiole (cross section), and shoot apical meristem (SAM) of mulberry according to the GFP signal. Moreover, MaFT:GFP mRNA was also detected in leaves and SAM via RT-PCR and qRT-PCR. An efficient transient transformation system could be achieved in mulberry seedlings by syringe using A. tumefaciens GV3101 at the OD600 of 0.5. The movement of MaFT expression from leaves to SAM might trigger the precocious flowering of mulberry.

  19. Protective effect of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Ma Song-Tao

    2014-12-01

    Full Text Available Mulberry leaves (Morus alba L. are a traditional Chinese medicine for blood serum glucose reduction. This study evaluated the protective effects of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats. In this study, 80 Sprague-Dawley rats were divided into five groups: A (control, B (diabetic treated with saline, C-D (diabetic treated with 0.3, 0.1 g/kg mulberry flavonoids once a day for 8 weeks and E (diabetic treated with 0.3 mg/kg methycobal. The diabetic condition was induced by intraperitoneal injection of 200 mg/kg alloxan dissolved in saline. At the end of the experimental period, blood, and tissue samples were obtained for biochemical and histopathological investigation. Treatment with 0.3 g/kg mulberry flavonoids significantly inhibited the elevated serum glucose (P< 0.01. The increased myelin sheath area (P< 0.01, myelinated fiber cross-sectional area and extramedullary fiber number (P< 0.05 were also reduced in alloxan-induced rats treated with 0.3 g/kg mulberry flavonoids. 0.3 g/kg mulberry flavonoids also markedly decreased onion-bulb type myelin destruction and degenerative changes of mitochondria and Schwann cells. These findings demonstrate that mulberry flavonoids may improve the recovery of a severe peripheral nerve injury in alloxan-induced diabetic rats and is likely to be useful as a potential treatment on peripheral neuropathy (PN in diabetic rats.

  20. Sex Distribution of Paper Mulberry (Broussonetia papyrifera in the Pacific.

    Directory of Open Access Journals (Sweden)

    Johany Peñailillo

    Full Text Available Paper mulberry (Broussonetia papyrifera (L. L'Hér. ex Vent is a dioecious tree native to East Asia and mainland Southeast-Asia, introduced prehistorically to Polynesia as a source of bark fiber by Austronesian-speaking voyagers. In Oceania, trees are coppiced and harvested for production of bark-cloth, so flowering is generally unknown. A survey of botanical records of paper mulberry revealed a distributional disjunction: the tree is apparently absent in Borneo and the Philippines. A subsequent study of chloroplast haplotypes linked paper mulberry of Remote Oceania directly to a population in southern Taiwan, distinct from known populations in mainland Southeast-Asia.We describe the optimization and use of a DNA marker designed to identify sex in paper mulberry. We used this marker to determine the sex distribution in selected localities across Asia, Near and Remote Oceania. We also characterized all samples using the ribosomal internal transcribed spacer sequence (ITS in order to relate results to a previous survey of ITS diversity.In Near and Remote Oceania, contemporary paper mulberry plants are all female with the exception of Hawaii, where plants of both sexes are found. In its natural range in Asia, male and female plants are found, as expected. Male plants in Hawaii display an East Asian ITS genotype, consistent with modern introduction, while females in Remote Oceania share a distinctive variant.Most paper mulberry plants now present in the Pacific appear to be descended from female clones introduced prehistorically. In Hawaii, the presence of male and female plants is thought to reflect a dual origin, one a prehistoric female introduction and the other a modern male introduction by Japanese/Chinese immigrants. If only female clones were dispersed from a source-region in Taiwan, this may explain the absence of botanical records and breeding populations in the Philippines and Borneo, and Remote Oceania.

  1. Improved 1-Deoxynojirimycin (DNJ production in mulberry leaves fermented by microorganism

    Directory of Open Access Journals (Sweden)

    Yun-Gang Jiang

    2014-06-01

    Full Text Available DNJ, an inhibitor of α-glucosidase, is used to suppress the elevation of postprandial hyperglycemia. In this study, we focus on screening an appropriate microorganism for performing fermentation to improve DNJ content in mulberry leaf. Results showed that Ganoderma lucidum was selected from 8 species and shown to be the most effective in improvement of DNJ production from mulberry leaves through fermentation. Based on single factor and three factor influence level tests by following the Plackett-Burman design, the optimum extraction yield was analyzed by response surface methodology (RSM. The extracted DNJ was determined by reverse-phase high performance liquid chromatograph equipped with fluorescence detector (HPLC-FD. The results of RSM showed that the optimal condition for mulberry fermentation was defined as pH 6.97, potassium nitrate content 0.81% and inoculums volume 2 mL. The extraction efficiency reached to 0.548% in maximum which is 2.74 fold of those in mulberry leaf.

  2. Effects of Applied Nitrogen Amounts on the Functional Components of Mulberry (Morus alba L.) Leaves.

    Science.gov (United States)

    Sugiyama, Mari; Takahashi, Makoto; Katsube, Takuya; Koyama, Akio; Itamura, Hiroyuki

    2016-09-21

    This study investigated the effects of applied nitrogen amounts on specific functional components in mulberry (Morus alba L.) leaves. The relationships between mineral elements and the functional components in mulberry leaves were examined using mulberry trees cultivated in different soil conditions in four cultured fields. Then, the relationships between the nitrogen levels and the leaf functional components were studied by culturing mulberry in plastic pots and experimental fields. In the common cultured fields, total nitrogen was negatively correlated with the chlorogenic acid content (R(2) = -0.48) and positively correlated with the 1-deoxynojirimycin content (R(2) = 0.60). Additionally, differences in nitrogen fertilizer application levels affected each functional component in mulberry leaves. For instance, with increased nitrogen levels, the chlorogenic acid and flavonol contents significantly decreased, but the 1-deoxynojirimycin content significantly increased. Selection of the optimal nitrogen application level is necessary to obtain the desired functional components from mulberry leaves.

  3. Lead in the soil-mulberry (Morus alba L.)-silkworm (Bombyx mori) food chain: translocation and detoxification.

    Science.gov (United States)

    Zhou, Lingyun; Zhao, Ye; Wang, Shuifeng; Han, Shasha; Liu, Jing

    2015-06-01

    The translocation of lead (Pb) in the soil-mulberry-silkworm food chain and the process of Pb detoxification in the mulberry-silkworm chain were investigated. The amount of Pb in mulberry, silkworm, feces and silk increased in a dose-responsive manner to the Pb contents in the soils. Mulberry roots sequestered most of the Pb, ranging from 230.78 to 1209.25 mg kg(-1). Over 92% of the Pb in the mulberry leaves was deposited in the cell wall, and 95.29-95.57% of the Pb in the mulberry leaves was integrated with oxalic acid, pectates and protein, and it had low bioavailability. The Pb concentrations in the silkworm feces were 4.50-4.64 times higher than those in the leaves. The synthesis of metallothioneins in three tissues of the silkworms was induced to achieve Pb homeostasis under Pb stress. These results indicated the mechanism involved in Pb transfer along the food chain was controlled by the detoxification of Pb in different trophic levels. Planting mulberry and rearing silkworm could be a promising approach for the remediation of Pb-polluted soils due to the Pb tolerance of mulberry and silkworm. Copyright © 2015. Published by Elsevier Ltd.

  4. The Mulberry (Morus alba L.) Fruit-A Review of Characteristic Components and Health Benefits.

    Science.gov (United States)

    Yuan, Qingxia; Zhao, Longyan

    2017-12-06

    Mulberry (Morus alba L.) fruit has a high yield in one fruiting season in many countries, especially in Asia, and a long history of use as an edible fruit and traditional medicine. A great diversity of nutritive compounds such as fatty acids, amino acids, vitamins, minerals, and bioactive compounds, including anthocyanins, rutin, quercetin, chlorogenic acid, and polysaccharides have been found in mulberry fruit depending on the cultivars and maturity stages. Furthermore, the extracts and active components of mulberry fruit have demonstrated numerous biological activities, including antioxidant, neuroprotective, antiatherosclerosis, immunomodulative, antitumor, antihyperglycemic, and hypolipidemic activities in in vitro and in vivo studies, and they have received increasing interest from researchers and pharmaceutical companies. Although some mechanistic studies further substantiate these potential health benefits of mulberry fruit, a need exists to make a better understanding of the roles of these compounds in traditional medicine and the diet. This review provides recent findings regarding the chemical constituents and biological activities of mulberry fruit, which may be useful for stimulating deep research of mulberry fruit and for predicting their uses as important and safe contributors to benefit human health.

  5. Immunoglobulin E reactivity and allergenic potency of Morus papyrifera (paper mulberry) pollen

    NARCIS (Netherlands)

    Micheal, S.; Wangorsch, A.; Wolfheimer, S.; Foetisch, K.; Minhas, K.; Scheurer, S.; Ahmed, A.

    2013-01-01

    BACKGROUND: Paper mulberry (Morus papyrifera) pollen is considered to be one of the most clinically relevant aeroallergens in Pakistan. To date, the allergenicity of the pollen has not been investigated. OBJECTIVE: To characterize the sensitization profile of mulberry-allergic patients and the

  6. Cadmium transfer and detoxification mechanisms in a soil-mulberry-silkworm system: phytoremediation potential.

    Science.gov (United States)

    Zhou, Lingyun; Zhao, Ye; Wang, Shuifeng

    2015-11-01

    Phytoremediation has been proven to be an environmentally sound alternative for the recovery of contaminated soils, and the economic profit that comes along with the process might stimulate its field use. This study investigated cadmium (Cd) transfer and detoxification mechanisms in a soil-mulberry-silkworm system to estimate the suitability of the mulberry and silkworm as an alternative method for the remediation of Cd-polluted soil; it also explored the underlying mechanisms regulating the trophic transfer of Cd. The results show that both the mulberry and silkworm have high Cd tolerance. The transfer factor suggests that the mulberry has high potential for Cd extraction from polluted soil. The subcellular distribution and chemical forms of Cd in mulberry leaves show that cell wall deposition and vacuolar compartmentalization play important role in Cd tolerance. In the presence of increasing Cd concentrations in silkworm food, detoxification mechanisms (excretion and homeostasis) were activated so that excess Cd was excreted in fecal balls, and metallothionein levels in the mid-gut, the posterior of the silk gland, and the fat body of silkworms were enhanced. And, the Cd concentrations in silk are at a low level, ranging from 0.02 to 0.21 mg kg(-1). Therefore, these mechanisms of detoxification can regulate Cd trophic transfer, and mulberry planting and silkworm breeding has high phytoremediation potential for Cd-contaminated soil.

  7. Influence of Tannin Extract and Yeast Extract on Color Preservation and Anthocyanin Content of Mulberry Wine.

    Science.gov (United States)

    You, Yilin; Li, Na; Han, Xue; Guo, Jielong; Liu, Guojie; Huang, Weidong; Zhan, Jicheng

    2018-04-01

    The color of mulberry wine is extremely unstable in processing and aging. This paper investigates the effects of tannin extract and yeast extract on the color and color-preserving characteristics of mulberry wine made from the Dashi cultivar. The results showed that the maximum absorption wavelength in both tannin extract and yeast extract groups changed generating the red shift effect. The color of the tannin extract maintained a good gloss in the first 4 months, while the yeast extract group showed remarkable color preservation for the first 3 months. The total anthocyanin and cyanidin-3-rutinoside contents in both experiment groups were significantly higher than that of the control group, thus proving that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during its aging. Moreover, sensory analysis indicated that the quality of mulberry wine treated with tannin extract was significantly higher than that of the control. The distinct color of mulberry wine is one of the foremost qualities that imprints on consumers' senses, but it is extremely unstable in processing and aging. However, the color protection of mulberry wine was not studied previously. In this study, we found that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during aging. The study is of great significance as a guide to improving the color stability of mulberry wine, thereby also improving and promoting the development of the mulberry deep processing industry. © 2018 Institute of Food Technologists®.

  8. Comparative analysis and nutritional composition of mulberry fruit morus alba plus seabuckthorn (hippophae) and their products

    International Nuclear Information System (INIS)

    Alizai, M.N.; Rehman, S.; Shah, W.H.

    2003-01-01

    The fruits of mulberry produced in Northern Pakistan were subjected to hot air dehydration to preserve without losing its natural flavour and nutrients. The dehydrated mulberry powder which is called mulberry beverage base (MBB) yielded good fruit tasty drink when mixed with suitable amount of water Shelf-life assessment was also conducted. The fresh fruit extract and the dehydrated mulberry beverage base (MBB) were analysed for juice/pulp, MBB, moisture, acidity as citric acid, total soluble solids, sugars, ascorbic acid and ash minerals like calcium, potassium, phosphorous, sodium and iron in fresh fruit extract was also determined. Mulberry pulp was mixed with seabuckthorn pulp prior to dehydration. Dehydrated product was found better in taste, colour and flavour. (author)

  9. Morphological, biochemical and sensory characteristics of black mulberry fruits (Morus nigra L.

    Directory of Open Access Journals (Sweden)

    Beáta Stehlíková

    2013-02-01

    Full Text Available This work aimed at the morphological, biochemical, technological and sensorial determination of black mulberry (Morus nigra L. – MN  fruitage and their utilization in the food production branches. For the experimental purposes were selected 50 genotypes of this population grown in the Pukanec surroundings. The medium fruitage weight determined in the selected collection ranged from 7.26 g (MN-1 to 1.42 g (MN-14, fruitage length in a range of 13.51 mm (MN-14 to 29.20 mm (MN-12 and the medium fruitage width  11.88 mm (MN-14 – 21.12 mm (MN-2. The variability of the evaluated traits varried from low to high degree. Juice yield from matured fruitage achieved 62.40 %. From black mulberry fruitages 16 food products were prepared – juice mixed with cream, yoghurt and/or curd (in several proportions and 3 confectionery products. Sensorial analyses showed significant differences among tested products. In the group of confectionery products was generally preferred the cream-mulberry cake. High values of antioxidative activity has been measured in the chocolate cake with a mulberry jam (36.90 – 28.43 %, followed by the cream-mulberry cake (29.78 – 12.71 % and the fresh mulberry juice (30.97 – 20.17 %. The antioxidation activities exerted generally higher values with the samples tested in water, when compared with those prepared in ethanol extract. Based on the gained results 4 genotypes were selected and recommended for the use in practice, as these provided relative high values of tested traits.doi:10.5219/234

  10. Sericins of mulberry and non-mulberry silkworms for eco-friendly synthesis of silver nanoparticles.

    Science.gov (United States)

    Chaisabai, Wanna; Khamhaengpol, Arunrat; Siri, Sineenat

    2018-05-01

    Green synthesis of silver nanoparticles (AgNPs) has received many interests as a simple, cost-effective, and environmentally friendly method. This study reported the use of sericins extracted from non-mulberry (Samia cynthia ricini) and mulberry (Bombyx mori) silkworms for green syntheses of AgNPs. Both sericins possessed the reducing activity, which the reducing activity of S. c. ricini sericin was significantly higher than that of B. mori sericin. The formation of AgNPs facilitated by S. c. ricini sericin was greater than B. mori sericin as determined by the intensity of the surfacing plasmon resonance peak of silver at 412 nm. The synthesized AgNPs using both sericins were spherical and uniform in size with the average diameter of ∼13 nm. The silver component and the crystalline structure was determined by energy-dispersive X-ray and X-ray diffraction analyses. The synthesized AgNPs exhibited the antibacterial activity against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, suggesting their potential application as an effective antibacterial agent.

  11. Processing black mulberry into jam: Effects on antioxidant potential and in vitro bioaccessibility

    NARCIS (Netherlands)

    Tomas, Merve; Toydemir, Gamze; Boyacioglu, Dilek; Hall, R.D.; Beekwilder, M.J.; Capanoglu, Esra

    2017-01-01

    Black mulberries (Morus nigra) were processed into jam on an industrialized scale, including the major steps of: selection of frozen black mulberries, adding glucose-fructose syrup and water, cooking, adding citric acid and apple pectin, removing seeds, and pasteurization. Qualitative and

  12. Analysis of Functional Constituents in Mulberry (Morus alba L.) Twigs by Different Cultivars, Producing Areas, and Heat Processings

    Science.gov (United States)

    Choi, Sang Won; Jang, Yeon Jeong; Lee, Yu Jin; Leem, Hyun Hee; Kim, Eun Ok

    2013-01-01

    Four functional constituents, oxyresveratrol 3′-O-β-D-glucoside (ORTG), oxyresveratrol (ORT), t-resveratrol (RT), and moracin (MC) were isolated from the ethanolic extract of mulberry (Morus alba L.) twigs by a series of isolation procedures, including solvent fractionation, and silica-gel, ODS-A, and Sephadex LH-20 column chromatographies. Their chemical structures were identified by NMR and FABMS spectral analysis. Quantitative changes of four phytochemicals in mulberry twigs were determined by HPLC according to cultivar, producing area, and heat processing. ORTG was a major abundant compound in the mulberry twigs, and its levels ranged from 23.7 to 105.5 mg% in six different mulberry cultivars. Three other compounds were present in trace amounts (<1 mg/100 g) or were not detected. Among mulberry cultivars examined, “Yongcheon” showed the highest level of ORTG, whereas “Somok” had the least ORTG content. Levels of four phytochemicals in the mulberry twigs harvested in early September were higher than those harvested in early July. Levels of ORTG and ORT in the “Cheongil” mulberry twigs produced in the Uljin area were higher than those produced in other areas. Generally, levels of ORTG and ORT in mulberry twigs decreased with heat processing, such as steaming, and microwaving except roasting, whereas those of RT and MC did not considerably vary according to heat processing. These results suggest that the roasted mulberry twigs may be useful as potential sources of functional ingredients and foods. PMID:24551827

  13. Identification of a latent pathogen on mulberry tree with a disease of ...

    African Journals Online (AJOL)

    A disease on mulberries with the typical symptoms of mosaic and dwarf leaves was found in middle areas of China in 1980s. Presently, this disease became serious and spread out. Based on previous finding, we detected a viroid-like small molecular RNA in diseased mulberries tissues. In this paper, we further identified ...

  14. Changes in the Quality of Black Mulberry and Blueberry Sherbets During Storage

    Directory of Open Access Journals (Sweden)

    Ahsen Rayman Ergün

    2017-01-01

    Full Text Available This study was evaluated the quality properties of traditional drink sherbets that are prepared from black mulberry and blueberry fruits. After production sherbets were investigated to determine their pH, acidity, °brix and colour values, total sugar, phenolic, anthocyanin and antioxidant contents. Moreover the sherbets stored at 4°C during 2 months and the changes in these quality properties were examined per month. As a result statistically significant changes were observed in the quality properties of these sherbets of black mulberry and blueberry fruits which are known with their rich content of phytochemical compounds. The results show that in blueberry sherbet the degradation of phenolics was faster than black mulberry sherbet. Anthocyanins that are higher in black mulberry sherbets after production were preserved better in blueberry sherbets at the end of 2nd month. L*and a* values decreased for blackberry and blueberry sherbets during storage. b* value decreased from 5.59 to 4.92 for blackberry sherbet while it increased from 0.62 to 0.79 for blueberry sherbet at the end of the storage time.

  15. Comparative study of aromatic compounds in fruit wines from raspberry, strawberry, and mulberry in central Shaanxi area

    Directory of Open Access Journals (Sweden)

    Yiming Feng

    2015-11-01

    Full Text Available Background: Although grape wines have firmly dominated the production and consumption markets of fruit wines, raspberry, strawberry, and mulberry have been utilized to make wines because of their joyful aroma and high contents of polyphenolic phytochemicals and essential fatty acids. However, little is known about aromatic compounds of the wines produced from these three fruits. Methods: The aromatic composition of fruit wines produced from raspberry, strawberry, mulberry, and red grape was analyzed by GC-MS. Odor activity values (OAVs and relative odor contributions (ROCs were used to estimate the sensory contribution of the aromatic compounds to the overall flavor of the wines. Results: In strawberry, raspberry, and mulberry wines, 27, 30, and 31 odorants were detected, respectively. Alcohols formed the most abundant group, followed by esters and acids. The grape wine contained a wider variety (16 types of alcohols, and 4-methyl-2-pentanol and 2,3-butanediol were not present in the three fruit wines. The quantity of esters in raspberry (1.54% and mulberry wines (2.08% were higher than those of strawberry wine (0.78%, and mulberry wine contained more types of esters. There were no significant differences of acids between the three fruit wines and the control wine. In addition, 2-heptanone, 2-octanone, 2-nonanone, and 2-undecanone were unique to raspberry wine, and nonanal was present only in mulberry wine. The indistinguishable aroma of the three fruit wines was attributed to the dominance of fruity and floral odor components derived from ethyl esters of fatty acids and their contributions to the global aroma of the three fruit wines. Conclusion: The present study demonstrated that there were significant differences in the volatile components of fruit wines made from raspberry, strawberry, and mulberry. The aroma compounds were more abundant in the raspberry and mulberry wines than in the strawberry wine, but the quality of strawberry wine was

  16. Hyperspectral Imaging Coupled with Random Frog and Calibration Models for Assessment of Total Soluble Solids in Mulberries

    Directory of Open Access Journals (Sweden)

    Yan-Ru Zhao

    2015-01-01

    Full Text Available Chemometrics methods coupled with hyperspectral imaging technology in visible and near infrared (Vis/NIR region (380–1030 nm were introduced to assess total soluble solids (TSS in mulberries. Hyperspectral images of 310 mulberries were acquired by hyperspectral reflectance imaging system (512 bands and their corresponding TSS contents were measured by a Brix meter. Random frog (RF method was used to select important wavelengths from the full wavelengths. TSS values in mulberry fruits were predicted by partial least squares regression (PLSR and least-square support vector machine (LS-SVM models based on full wavelengths and the selected important wavelengths. The optimal PLSR model with 23 important wavelengths was employed to visualise the spatial distribution of TSS in tested samples, and TSS concentrations in mulberries were revealed through the TSS spatial distribution. The results declared that hyperspectral imaging is promising for determining the spatial distribution of TSS content in mulberry fruits, which provides a reference for detecting the internal quality of fruits.

  17. New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves.

    Science.gov (United States)

    Gryn-Rynko, Anna; Bazylak, Grzegorz; Olszewska-Slonina, Dorota

    2016-12-01

    The present work demonstrates the profound and unique phyto-pharmacological and nutritional profile of white mulberry (Morus alba L.) leaves which containing considerable amounts of easy digestive proteins, carbohydrates, micro- and macronutrients, polyphenols, free amino acids, organic acids. The wide range of significant biopharmaceutical activities of the aqueous and polar organic solvents extracts from mulberry leaves - including antidiabetic, antibacterial, anticancer, cardiovascular, hypolipidemic, antioxidant, antiatherogenic, and anti-inflammatory - have been critically discussed. The main objective was to demonstrate the results of recently published study on the components of white mulberry leaves exhibiting their biological activity in the various pathological and health human ailments. In addition, we intend to drawn the attention of researchers and public health workers for the extended exploration of this deciduous plant leaves as the source of potential indigenous nutraceuticals and functional food products to enable development of alternative prevention and treatment protocols offered in therapy of the common non-communicable diseases and malignances. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings.

    Science.gov (United States)

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  19. Development of a model for predicting the dry matter production of mulberry [Morus alba] based on meteorological factors

    International Nuclear Information System (INIS)

    Fukui, K.; Ito, D.

    1999-01-01

    It is necessary to predict mulberry growth and yield precisely at any time during the growing period, since mulberry trees are cut anytime along with the increase of the frequency of silkworm rearing per year. Therefore, in this study, attempts were made to develop a model to predict the dry matter production in mulberry fields with standard density with the cooperation of the prefectural experimental stations of Ibaraki, Tochigi, Gunma, Saitama, Tokyo and Gifu. To construct the model, we conducted three experiments. In the first year, we estimated the dry weight of mulberry new shoots based on the length and base width. Logarithm of leaf dry weight of a new shoot was regressed linearly on the logarithm of the product of length and base width. Stem dry weight was estimated with a linear regression of the logarithm on the logarithm of the product of length and base square width. In the next year, we evaluated the maximal effective radiation (Smax) of mulberry, over which mulberry cannot use radiation to produce dry matter. This experiment included shaded and control (non-shaded) plots, and the difference between these plots was analyzed. Shading treatment decreased the dry matter production, but did not affect the radiation conversion efficiency. Shoot dry matter production increased almost proportionally with intercepted radiation except for the later growth periods. Therefore, no Smax was revealed in mulberry fields with standard density. The effect of temperature and growth stage on the radiation conversion efficiency was investigated last year. Relation of temperature and radiation conversion efficiency was not clear for shoot dry matter production. However, there was a positive relation for stem dry mater production. Although the efficiency decreased with mulberry growth for leaf dry matter production, it increased at the early growth stage and decreased at the late stage for stem dry matter production

  20. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    International Nuclear Information System (INIS)

    Thongphasuk, Jarunee; Thongphasuk, Piyanuch

    2005-10-01

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 μg/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 μg/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities

  1. Tyrosinase Inhibitory and Antioxidant Activities of Silk Cocoons and Mulberry Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Thongphasuk, Jarunee [Office of Atoms for Peace, Bangkok (Thailand); Thongphasuk, Piyanuch [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Pathumthani (Thailand)

    2005-10-15

    Silk cocoons and mulberry leaves have been used in the field of medicines, cosmetics, and foods. The objective of this study is to determine the antioxidant activities of silk cocoons and mulberry leaves using 1,1-diphenyl-2-picryl-hydrazyl radical and thin-layer chromatography (TLC), and to determine tyrosinase inhibitory activities using dihydroxyphenylalanine. The water and ethanol extracts from silk cocoons (Nang Noi, U B1, and Lao) and mulberry leaves showed antioxidants and tyrosinase inhibitory activities. However, the extracts from all samples at 1,000 {mu}g/reaction mixture inhibited tyrosinase in the range of 12.28-45.98%, which was much lower than the standard whitening agent kojic acid (IC50 0.45 {mu}g/reaction mixture). The results from TLC showed that the ethanol extracts from the 3 species of cocoons contained flavonoids, but only the extract from Nang Noi contained carotenoid. In addition, the separation destroyed the fraction with high antioxidant activity. Therefore, the disadvantage of the extract separation is increased cost and decreased antioxidant activities.

  2. DECISION TOOLS FOR MULBERRY THRIPS PSEUDODENDROTHRIPS MORI (NIWA, 1908) MANAGEMENT IN SERICULTURAL REGIONS; AN OVERVIEW

    Institute of Scientific and Technical Information of China (English)

    KayvanEtebari; L.Matindoost; R.N.Singh

    2004-01-01

    Mulberry thrips Pseudodendrothrips mori (Niwa, 1908) is a major pest of mulberry trees recorded from different sericultural regions of the world. The thrips infestation affects the qualitative and quantitative characters of mulberry leaf, by direct feeding damage to leaves and the ingestion of sap, which in turn affects the silkworm cocoon crop. This is most harmful in dry climates and seasons when heavily attacked plants lose moisture heavily. Under these conditions infestation can seriously deplete yields. The seasonal population fluctuation and the degree of damage caused to the host plant are influenced by various environmental factors including climate, host-plant variety, topography, soil type, and management regimes.This article attempts to review all available documents on mulberry thrips and to discuss the practical approaches for best control of this pest.

  3. Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry.

    Science.gov (United States)

    Nunney, Leonard; Schuenzel, Erin L; Scally, Mark; Bromley, Robin E; Stouthamer, Richard

    2014-05-01

    Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry.

  4. Processing black mulberry into jam: effects on antioxidant potential and in vitro bioaccessibility.

    Science.gov (United States)

    Tomas, Merve; Toydemir, Gamze; Boyacioglu, Dilek; Hall, Robert D; Beekwilder, Jules; Capanoglu, Esra

    2017-08-01

    Black mulberries (Morus nigra) were processed into jam on an industrialised scale, including the major steps of: selection of frozen black mulberries, adding glucose-fructose syrup and water, cooking, adding citric acid and apple pectin, removing seeds, and pasteurisation. Qualitative and quantitative determinations of antioxidants in black mulberry samples were performed using spectrophotometric methods, as well as HPLC- and LC-QTOF-MS-based measurements. These analyses included the determination of total polyphenolic content, % polymeric colour, total and individual anthocyanin contents, antioxidant capacity, and in vitro bioaccessibility in processing samples. Jam processing led to a significant reduction in total phenolics (88%), total flavonoids (89%), anthocyanins (97%), and antioxidant capacity (88-93%) (P < 0.05). Individual anthocyanin contents, determined using HPLC analysis, also showed a significant decrease (∼99% loss). In contrast, % recovery of bioaccessible total phenolics, anthocyanins, and antioxidant capacity (ABTS assay) increased after jam processing (16%, 12%, and 37%, respectively). Fruit processing resulted in losses of polyphenols, anthocyanins, and antioxidant capacity of black mulberry jam. Optimisation of food processing could help to protect the phenolic compounds in fruits which might be helpful for the food industry to minimise the antioxidant loss and improve the final product quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Effect of Cultivar, Temperature, and Environmental Conditions on the Dynamic Change of Melatonin in Mulberry Fruit Development and Wine Fermentation.

    Science.gov (United States)

    Wang, Cheng; Yin, Li-Yuan; Shi, Xue-Ying; Xiao, Hua; Kang, Kun; Liu, Xing-Yan; Zhan, Ji-Cheng; Huang, Wei-Dong

    2016-04-01

    High levels of melatonin have been reported in various foods but not in mulberry or its wine. This study investigated the dynamic changes of melatonin levels during mulberry fruit development and ethanol fermentation of 2 different colored mulberry cultivars ("Hongguo2ˮ Morus nigra, black and "Baiyuwangˮ Morus alba, white) at 2 fermentation temperatures (16 and 25 °C). Our results showed that the melatonin level increased in the beginning of mulberry development but decreased in the end. The MnTDC gene expression level correlated with melatonin production, which implied that TDC may be the rate-limiting enzyme of the melatonin biosynthetic process in mulberries. During mulberry fermentation, the melatonin concentration increased rapidly in the beginning and then decreased gradually. Low temperature delayed the melatonin production during fermentation. A relatively high level of melatonin was found in "Hongguo2ˮ compared with "Baiyuwangˮ during fruit development and fermentation. The variation of melatonin correlated with the ethanol production rate, suggesting that melatonin may participate in physiological regulation of Saccharomyces cerevisiae during the fermentation stage. © 2016 Institute of Food Technologists®

  6. Analysis of genetic relationships of mulberry (Morus L.) germplasm ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Analysis of genetic ... Key words: Mulberry, molecular marker, genetic diversity, SRAP. ... Europe, North and South America, and Africa, and it is cultivated ... Xingjiang autonomous region, China.

  7. Effect of solar radiation on the functional components of mulberry (Morus alba L.) leaves.

    Science.gov (United States)

    Sugiyama, Mari; Katsube, Takuya; Koyama, Akio; Itamura, Hiroyuki

    2016-08-01

    The functional components of mulberry leaves have attracted the attention of the health food industry, and increasing their concentrations is an industry goal. This study investigated the effects of solar radiation, which may influence the production of flavonol and 1-deoxynojirimycin (DNJ) functional components in mulberry leaves, by comparing a greenhouse (poor solar radiation) and outdoor (rich solar radiation) setting. The level of flavonol in leaves cultivated in the greenhouse was markedly decreased when compared with those cultivated outdoors. In contrast, the DNJ content in greenhouse-cultivated plants was increased only slightly when compared with those cultivated outdoors. Interestingly, the flavonol content was markedly increased in the upper leaves of mulberry trees that were transferred from a greenhouse to the outdoors compared with those cultivated only in the outdoors. Solar radiation conditions influence the synthesis of flavonol and DNJ, the functional components of mulberry leaves. Under high solar radiation, the flavonol level becomes very high but the DNJ level becomes slightly lower, suggesting that the impact of solar radiation is great on flavonol but small on DNJ synthesis. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Galactose-binding lectin from mulberry (Morus alba L. seeds with growth hormone-like activity

    Directory of Open Access Journals (Sweden)

    E. Khurtsidze

    2017-03-01

    Full Text Available Plant lectins are well documented to participate in multiple physiological activities based on selective binding to the carbohydrate structures. They have been reported to play significant roles in various processes such as growth and development, differentiation and plant protection. Nevertheless, the intrinsic roles of plant lectins still remain undefined. We purified a galactose-binding lectin, named MAL, from mulberry (M. alba L. seeds and analyzed its properties. The lectin is composed of one polypeptide of 17 kDa, which is abundant in the seed protein fraction. MAL interacted with GalNAc and galactose residues of saccharides with high binding ability. Western blotting analysis suggested that MAL is deposited in the mulberry leaves and inflorescence. MAL was examined for growth stimulatory activity on mulberry hypocotyls and internodal sections of in vitro grown P. euphratica cultures. Elongation of mulberry hypocotyls was detected in the apical parts of the hypocotyl, where the growth increment was 58%. MAL had no significant effect on the stem elongation and induction of new leaves. Our results suggest that MAL may be involved in the growth and cell elongation at initial stages of tissue development.

  9. Cytomorphological studies of two mulberry varieties (Moraceae ...

    African Journals Online (AJOL)

    Two mulberry varieties, namely, S34 and Tr-10 were selected for cytomorphological studies. Stomatal frequency, somatic chromosome number, ploidy level and meiotic behaviour were studied for these varieties. S34 is diploid with 2n=28 and Tr-10 is triploid with 2n=42 chromosomes. Meiosis was irregular. Various ...

  10. Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.).

    Science.gov (United States)

    Asano, N; Yamashita, T; Yasuda, K; Ikeda, K; Kizu, H; Kameda, Y; Kato, A; Nash, R J; Lee, H S; Ryu, K S

    2001-09-01

    New polyhydroxylated alkaloids, (2R,3R,4R)-2-hydroxymethyl-3,4-dihydroxypyrrolidine-N-propionamide from the root bark of Morus alba L., and 4-O-alpha-D-galactopyranosyl-calystegine B(2) and 3 beta,6 beta-dihydroxynortropane from the fruits, were isolated by column chromatography using a variety of ion-exchange resins. Fifteen other polyhydroxylated alkaloids were also isolated. 1-Deoxynojirimycin, a potent alpha-glucosidase inhibitor, was concentrated 2.7-fold by silkworms feeding on mulberry leaves. Some alkaloids contained in mulberry leaves were potent inhibitors of mammalian digestive glycosidases but not inhibitors of silkworm midgut glycosidases, suggesting that the silkworm has enzymes specially adapted to enable it to feed on mulberry leaves. The possibility of preventing the onset of diabetes and obesity using natural dietary supplements containing 1-deoxynojirimycin and other alpha-glucosidase inhibitors in high concentration is of great potential interest.

  11. Mulberry (Morus sp. leaf moisture in storage enviroments

    Directory of Open Access Journals (Sweden)

    Antonio José Porto

    2010-02-01

    Full Text Available Mulberry leaves (IZ 56/4 cultivar in the pos-harvest, had been taken to the laboratory and submitted to six storage environments (8 hours in open ambient-O, 8 hours in cover ambient- C, 1hO/7hC, 2hO/6hC, 3hO/5hC and 4hO/4hC, aiming to evaluate moisture exchange capacity . It was utilized the experimental design split plot with five replications (blocks, six principal treatments (parcels and nine secondary treatments (sub parcels, weighing of hour in hour, of 08h00min. until 16h00min.. In the period of eight hours of experimentation mulberry leaves moisturedevreased in all the ambients evaluated. However, for cover leaves with wet cloth, for all periods, the water purport (74,63% was maintained close to the original value (08h00min.- 76,07%, demonstrating the efficiency technique in the conservation of the humidity of leaves for feeding silkworm.

  12. Beneficial Effects of Bioactive Compounds in Mulberry Fruits against Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Dahae Lee

    2018-04-01

    Full Text Available Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae, is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1–5. The compounds were identified as butyl pyroglutamate (1, quercetin 3-O-β-d-glucoside (2, kaempferol 3-O-β-d-rutinoside (3, rutin (4, and 2-phenylethyl d-rutinoside (5 by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR data with those in published literature, and liquid chromatography–mass spectrometry analysis. The isolated compounds 1–5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.

  13. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction.

    Science.gov (United States)

    Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2015-01-01

    Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains.

  14. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction.

    Directory of Open Access Journals (Sweden)

    Wei Guan

    Full Text Available Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains.

  15. In Vivo Hypoglycaemic Effect and Inhibitory Mechanism of the Branch Bark Extract of the Mulberry on STZ-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Hua-Yu Liu

    2014-01-01

    Full Text Available Branch bark extract (BBE derived from the mulberry cultivar Husang 32 (Morus multicaulis L. with aqueous alcohol solution has been investigated as an inhibitor of α-glycosidase in vitro. Mulberry BBE was orally administered to STZ-induced diabetic mice for three weeks, and it improved the weight gain and ameliorated the swelling of liver and kidney in diabetic mice. Obviously, mulberry BBE not only can reduce the abnormally elevated levels of serum insulin and ameliorate insulin resistance induced by STZ, but also it regulates dyslipidemia in diabetic mice. To understand this therapeutic effect and the regulatory mechanisms of BBE in diabetic mice, a qRT-PCR experiment was performed, indicating that the mulberry BBE can regulate the mRNA expression of glycometabolism genes in diabetic mice, including glucose-6-phosphatase (G6Pase, glucokinase (GCK, and phosphoenolpyruvate carboxykinase (PEPCK, thereby regulating sugar metabolism and reducing the blood glucose level in diabetic mice. The mulberry BBE can increase the mRNA expression of the genes Ins1, Ins2 and pancreatic duodenal homeobox-1 (PDX-1 and may decrease the insulin resistance in diabetic mice. Those results provide an important basis for making the best use of mulberry branch resources and producing biomedical drugs with added value.

  16. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    Science.gov (United States)

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  17. Feeding behavior of lambs fed with diets containing mulberry hay

    Directory of Open Access Journals (Sweden)

    Luís Gabriel Alves Cirne

    2014-02-01

    Full Text Available The experiment was conducted to evaluate the feeding behavior of lambs fed with diets containing 0, 12.5 and 25.0% of mulberry hay as a substitute for the concentrate. Twenty four Ile de France lambs, non castrated, with 25 kg of body weight and four months old, confined, in a completely randomized design, were used. The feeding daily time (242.01 minutes, rumination (435.48 minutes and leisure (762.50 minutes, the numbers of cakes ruminated per day (658.36 and the time spent per cake (40.03 sec were not affected (P>0.05 by different levels of hay in mulberry concentrate. The dry matter voluntary intake (1.258 kg/day and neutral detergent fiber intake (0.302 kg/day, as well as the efficiency of dry matter intake and rumination (316.24 and 173.54 g/h, respectively and efficiency of neutral detergent fiber intake and rumination (75.89 and 41.68 g/h, respectively were similar in all treatments. The ruminating chew expressed in hour/day (11.29 and the number of chews expressed per cake (72.65 and per day (47.638.06, as well as the number and the feeding time (22.02 meals and 11.23 min/meal, rumination (25.95 ruminations and 17.29 min/rumination and idle (41.81 idle and 18.30 min/idle time, were also not affected (P>0.05. The inclusion of mulberry hay did not change the rumination expressed in g of DM and NDF/cake (1.91 and 0.46, respectively and min/kg of DM and NDF (361.51 and 1.505.78, respectively, as well as the total chew expressed in min/kg of DM and NDF (563.70 and 2.347.19, respectively. The use of mulberry hay partially replacing the concentrated, does not change the feeding behavior of feedlot lambs.

  18. Estimating Genetic Conformism of Korean Mulberry Cultivars Using Random Amplified Polymorphic DNA and Inter-Simple Sequence Repeat Profiling

    Directory of Open Access Journals (Sweden)

    Sunirmal Sheet

    2018-03-01

    Full Text Available Apart from being fed to silkworms in sericulture, the ecologically important Mulberry plant has been used for traditional medicine in Asian countries as well as in manufacturing wine, food, and beverages. Germplasm analysis among Mulberry cultivars originating from South Korea is crucial in the plant breeding program for cultivar development. Hence, the genetic deviations and relations among 8 Morus alba plants, and one Morus lhou plant, of different cultivars collected from South Korea were investigated using 10 random amplified polymorphic DNA (RAPD and 10 inter-simple sequence repeat (ISSR markers in the present study. The ISSR markers exhibited a higher polymorphism (63.42% among mulberry genotypes in comparison to RAPD markers. Furthermore, the similarity coefficient was estimated for both markers and found to be varying between 0.183 and 0.814 for combined pooled data of ISSR and RAPD. The phenogram drawn using the UPGMA cluster method based on combined pooled data of RAPD and ISSR markers divided the nine mulberry genotypes into two divergent major groups and the two individual independent accessions. The distant relationship between Dae-Saug (SM1 and SangchonJo Sang Saeng (SM5 offers a possibility of utilizing them in mulberry cultivar improvement of Morus species of South Korea.

  19. Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries.

    Science.gov (United States)

    Sánchez-Salcedo, Eva M; Sendra, Esther; Carbonell-Barrachina, Ángel A; Martínez, Juan José; Hernández, Francisca

    2016-01-01

    This research has determined qualitatively and quantitatively the fatty acids composition of white (Morus alba) and black (Morus nigra) fruits grown in Spain, in 2013 and 2014. Four clones of each species were studied. Fourteen fatty acids were identified and quantified in mulberry fruits. The most abundant fatty acids were linoleic (C18:2), palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids in both species. The main fatty acid in all clones was linoleic (C18:2), that ranged from 69.66% (MN2) to 78.02% (MA1) of the total fatty acid content; consequently Spanish mulberry fruits were found to be rich in linoleic acid, which is an essential fatty acid. The fatty acid composition of mulberries highlights the nutritional and health benefits of their consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Induction of mutation on mulberry (morus alba L.) by using in vitro techniques in combination with gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Van Vinh [Nuclear Research Institute, Department of Biotechnology, Dalat (Viet Nam)

    2001-03-01

    Mutation induction and selection of desired characters on mulberry will contribute to industrialization and modernization in agricultural development in Vietnam. The objectives are to conduct biochemical and physiological analyses of collected mulberry varieties and to improve techniques for boosting yield and better quality in some mulberry genotypes by using in vitro technique combined with gamma irradiation. Two mulberry varieties named BauDen and VA 186 were used. Cuts of them were treated with gamma rays of Co-60, cultivated in experimental field with use of vitro technique to rapidly isolate mutants in irradiated population and investigated for plantlets, color of leaves, etc 30 days after cultivation. The results on the mutation frequency and spectrum of variation as well as the results of selection and isolation are presented. Eleven mutated clones from the two starting varieties were obtained during 1993-99. Three of them are now being cultivated in LamDong province fields. (S. Ohno)

  1. Induction of mutation on mulberry (morus alba L.) by using in vitro techniques in combination with gamma irradiation

    International Nuclear Information System (INIS)

    Nguyen Van Vinh

    2001-01-01

    Mutation induction and selection of desired characters on mulberry will contribute to industrialization and modernization in agricultural development in Vietnam. The objectives are to conduct biochemical and physiological analyses of collected mulberry varieties and to improve techniques for boosting yield and better quality in some mulberry genotypes by using in vitro technique combined with gamma irradiation. Two mulberry varieties named BauDen and VA 186 were used. Cuts of them were treated with gamma rays of Co-60, cultivated in experimental field with use of vitro technique to rapidly isolate mutants in irradiated population and investigated for plantlets, color of leaves, etc 30 days after cultivation. The results on the mutation frequency and spectrum of variation as well as the results of selection and isolation are presented. Eleven mutated clones from the two starting varieties were obtained during 1993-99. Three of them are now being cultivated in LamDong province fields. (S. Ohno)

  2. A holistic picture of Austronesian migrations revealed by phylogeography of Pacific paper mulberry

    Science.gov (United States)

    Chang, Chi-Shan; Liu, Hsiao-Lei; Moncada, Ximena; Seelenfreund, Andrea; Seelenfreund, Daniela; Chung, Kuo-Fang

    2015-01-01

    The peopling of Remote Oceanic islands by Austronesian speakers is a fascinating and yet contentious part of human prehistory. Linguistic, archaeological, and genetic studies have shown the complex nature of the process in which different components that helped to shape Lapita culture in Near Oceania each have their own unique history. Important evidence points to Taiwan as an Austronesian ancestral homeland with a more distant origin in South China, whereas alternative models favor South China to North Vietnam or a Southeast Asian origin. We test these propositions by studying phylogeography of paper mulberry, a common East Asian tree species introduced and clonally propagated since prehistoric times across the Pacific for making barkcloth, a practical and symbolic component of Austronesian cultures. Using the hypervariable chloroplast ndhF-rpl32 sequences of 604 samples collected from East Asia, Southeast Asia, and Oceanic islands (including 19 historical herbarium specimens from Near and Remote Oceania), 48 haplotypes are detected and haplotype cp-17 is predominant in both Near and Remote Oceania. Because cp-17 has an unambiguous Taiwanese origin and cp-17–carrying Oceanic paper mulberries are clonally propagated, our data concur with expectations of Taiwan as the Austronesian homeland, providing circumstantial support for the “out of Taiwan” hypothesis. Our data also provide insights into the dispersal of paper mulberry from South China “into North Taiwan,” the “out of South China–Indochina” expansion to New Guinea, and the geographic origins of post-European introductions of paper mulberry into Oceania. PMID:26438853

  3. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    Science.gov (United States)

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  4. Antidiabetic and Antioxidant Effects and Phytochemicals of Mulberry Fruit (Morus alba L.) Polyphenol Enhanced Extract

    Science.gov (United States)

    Wang, Yihai; Xiang, Limin; Wang, Chunhua; Tang, Chao; He, Xiangjiu

    2013-01-01

    The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE) of mulberry fruit (Morus alba L.) were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG) and glycosylated serum protein (GSP), and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px) in streptozotocin (STZ)-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit. PMID:23936259

  5. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L. polyphenol enhanced extract.

    Directory of Open Access Journals (Sweden)

    Yihai Wang

    Full Text Available The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE of mulberry fruit (Morus alba L. were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG and glycosylated serum protein (GSP, and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px in streptozotocin (STZ-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit.

  6. Phenolic compounds participating in mulberry juice sediment formation during storage.

    Science.gov (United States)

    Zou, Bo; Xu, Yu-Juan; Wu, Ji-Jun; Yu, Yuan-Shan; Xiao, Geng-Sheng

    The stability of clarified juice is of great importance in the beverage industry and to consumers. Phenolic compounds are considered to be one of the main factors responsible for sediment formation. The aim of this study is to investigate the changes in the phenolic content in clarified mulberry juice during storage. Hence, separation, identification, quantification, and analysis of the changes in the contents of phenolic compounds, both free and bound forms, in the supernatant and sediments of mulberry juice, were carried out using high performance liquid chromatographic system, equipped with a photo-diode array detector (HPLC-PDA) and HPLC coupled with quadrupole-time of flight mass spectrometric (HPLC-QTOF-MS/MS) techniques. There was an increase in the amount of sediment formed over the period of study. Total phenolic content of supernatant, as well as free phenolic content in the extracts of the precipitate decreased, whereas the bound phenolic content in the sediment increased. Quantitative estimation of individual phenolic compounds indicated high degradation of free anthocyanins in the supernatant and sediment from 938.60 to 2.30 mg/L and 235.60 to 1.74 mg/g, respectively. A decrease in flavonoids in the supernatant was also observed, whereas the contents of bound forms of gallic acid, protocatechuic acid, caffeic acid, and rutin in the sediment increased. Anthocyanins were the most abundant form of phenolics in the sediment, and accounted for 67.2% of total phenolics after 8 weeks of storage. These results revealed that phenolic compounds, particularly anthocyanins, were involved in the formation of sediments in mulberry juice during storage.

  7. Chemistry and biosynthesis of isoprenylated flavonoids from Japanese mulberry tree

    Science.gov (United States)

    Nomura, Taro; Hano, Yoshio; Fukai, Toshio

    2009-01-01

    Many isoprenylated flavonoids have been isolated from Japanese mulberry tree (Moraceae). Among them, kuwanons G (1) and H (2) were the first isolated active substances exhibiting a hypotensive effect. These compounds are considered to be formed through an enzymatic Diels-Alder type reaction between an isoprenyl portion of an isoprenylphenol as the diene and an α, β-double bond of chalcone as the dienophile. The absolute configurations of these Diels-Alder type adducts were confirmed by three different methods. The stereochemistries of the adducts were consistent with those of ones in the Diels-Alder reaction involving exo- and endo-addition. Some strains of Morus alba callus tissues have a high productivity of mulberry Diels-Alder type adducts, such as chalcomoracin (3) and kuwanon J (4). The biosynthetic studies of the mulberry Diels-Alder type adducts have been carried out with the aid of the cell strain. Chalcomoracin (3) and kuwanon J (4) were proved to be enzymatic Diels-Alder type reaction products by the administration experiments with O-methylchalcone derivatives. Furthermore, for the isoprenoid biosynthesis of prenylflavonoids in Morus alba callus tissues by administration of [1,3-13C2]- and [2-13C]-glycerol, a novel way through the junction of glycolysis and pentose-phosphate cycle was proved. Two independent isoprenoid biosynthetic pathways, that for sterols and that for isoprenoidphenols, operate in the Morus alba cell cultures. The former is susceptible to compactin (ML-236) and the latter resists to compactin in the cell cultures, respectively. PMID:19907125

  8. (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC-MS approach.

    Science.gov (United States)

    Sánchez-Salcedo, Eva M; Tassotti, Michele; Del Rio, Daniele; Hernández, Francisca; Martínez, Juan José; Mena, Pedro

    2016-12-01

    This study reports the (poly)phenolic fingerprinting and chemometric discrimination of leaves of eight mulberry clones from Morus alba and Morus nigra cultivated in Spain. UHPLC-MS(n) (Ultra High Performance Liquid Chromatography-Mass Spectrometry) high-throughput analysis allowed the tentative identification of a total of 31 compounds. The phenolic profile of mulberry leaf was characterized by the presence of a high number of flavonol derivatives, mainly glycosylated forms of quercetin and kaempferol. Caffeoylquinic acids, simple phenolic acids, and some organic acids were also detected. Seven compounds were identified for the first time in mulberry leaves. The chemometric analysis (cluster analysis and principal component analysis) of the chromatographic data allowed the characterization of the different mulberry clones and served to explain the great intraspecific variability in mulberry secondary metabolism. This screening of the complete phenolic profile of mulberry leaves can assist the increasing interest for purposes related to quality control, germplasm screening, and bioactivity evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A new set of mulberry-specific SSR markers for application in ...

    Indian Academy of Sciences (India)

    Marian Vincent Pinto

    have used these markers to characterize a set of 216 diverse mulberry germplasm and ..... tinctness of a new cultivar or for reliable, cost-effective and quick germplasm ... Morus boninensis Koidz., to establish conservation program. Mol. Ecol.

  10. Effectiveness of matured Morus nigra L. (black mulberry) fruit extract ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... Morin, a form of flavonoid that is highly found in black mulberry, has been ... determined by the method of Shimoi et al. (1994) with the .... quantified by DAD following HPLC separation at 280 nm for CA and. NA, 254 nm for RU, ...

  11. Feeding response of the silkworm, Bombyx mori, to UV irradiation of mulberry leaves

    International Nuclear Information System (INIS)

    Yazawa, M.; Shimizu, T.; Hirao, T.

    1992-01-01

    Ultraviolet irradiation of mulberry leaves caused a reduced feeding response in Bombyx mori larvae (ca. 22% reduction in consumption as compared with control). Sucrose content of the foliage decreased after exposure to UV irradiation (0.5 mW/cm 2 ) for 1 hr. Electrophysiological responses of the sensilla styloconica-I to sucrose concentration (ca. 0-80 mg/g) showed a reduced response to UV-irradiated foliage when compared with the control. From feeding, gustatory, and electrophysiological responses, as well as the measurement of sucrose contents of the leaves, we concluded that the reduced feeding response to UV-irradiated leaves is due to the reduced sucrose content of the mulberry leaves, thus reducing pleogostimulatory levels

  12. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties.

    Science.gov (United States)

    Tao, Yang; Wang, Ping; Wang, Yilin; Kadam, Shekhar U; Han, Yongbin; Wang, Jiandong; Zhou, Jianzhong

    2016-07-01

    The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2-117.6 W/L for 5-15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Extraction, purification and anti-fatigue activity of γ-aminobutyric acid from mulberry (Morus alba L.) leaves

    Science.gov (United States)

    Chen, Hengwen; He, Xuanhui; Liu, Yan; Li, Jun; He, Qingyong; Zhang, Cuiying; Wei, Benjun; Zhang, Ye; Wang, Jie

    2016-01-01

    Mulberry (Morus alba L.) is a tree species of Moraceae widely distributed in Southern China. In the present study, the white crystal of γ-aminobutyric acid (GABA) was purified from mulberry leaves, and its bioactivity was also investigated. The main results were as follows: first, the crude GABA was extracted from mulberry leaves by using biochemical methods. Then, the crude was purified by chromatography over an S-8 macroporous resin, Sephadex G-10, and 732 cation exchange resin to yield a white crystal. Lavage administration and exposure of GABA to male NIH mice showed no adverse effects on their growth and development. In an endurance capacity test, the average loaded-swimming time of medium dose was 111.60% longer than the control (P levels of blood urea nitrogen (BUN) were 36.83% and 40.54% lower (P levels were 12.81% and 17.22% lower (P GABA has an advantage over taurine of anti-fatigue effect. These findings were indicative of the anti-fatigue activity of GABA.

  14. Characteristics of sucrose formation, and the influence of UV irradiation on the feeding by the silkworm, in leaves of the mulberry

    International Nuclear Information System (INIS)

    Yazawa, M.

    1997-01-01

    The mode of formation of sucrose, which is not only a nutritional material but also a phagostimulant for larvae of Bombyx mori, was investigated by measuring the rates of photosynthesis and carbon dioxide fixation in mulberry leaves. Also examined was the influence of UV irradiation to mulberry leaves on the feeding by larvae, as an increase in total amounts of UV rays arriving the surface of the earth due to the destruction of ozone layer has recently led to a global issue. Using mesophyll cells isolated from mulberry leaves, the photosynthetic rate was determined by the oxygen electrode method, and the pathway of carbon dioxide fixation was analyzed by the incorporation of radioactive precursors. In comparison with Ichinose, a popular Japanese race of mulberry, Thailand races investigated were found to be peculiar in that their photosynthetic activities were lower and the photorespiration (glycolic acid cycle) activities were higher, although the synthetic rate of sucrose and its content were much higher than those of Ichinose. It is thus likely that the photorespiration pathway is more important to the sucrose formation in the Thailand races than in Ichinose. In addition, the temperatures during cultivation of mulberry trees was found to influence the relative contributions of photosynthesis and photorespiration to the sucrose formation

  15. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system.

    Science.gov (United States)

    Zhang, Meng-Meng; Wang, Ning; Hu, Yan-Bo; Sun, Guang-Yu

    2018-04-01

    A better understanding of tree-based intercropping effects on soil physicochemical properties and bacterial community has a potential contribution to improvement of agroforestry productivity and sustainability. In this study, we investigated the effects of mulberry/alfalfa intercropping on soil physicochemical properties and soil bacterial community by MiSeq sequencing of bacterial 16S rRNA gene. The results showed a significant increase in the contents of available nitrogen, available phosphate, available potassium, and total carbon in the rhizosphere soil of the intercropped alfalfa. Sequencing results showed that intercropping improved bacterial richness and diversity of mulberry and alfalfa based on richness estimates and diversity indices. The relative abundances of Proteobacteria, Actinobacteria, and Firmicutes were significantly higher in intercropping mulberry than in monoculture mulberry; and the abundances of Proteobacteria, Bacteroidetes, and Gemmatimonadetes in the intercropping alfalfa were markedly higher than that in monoculture alfalfa. Bacterial taxa with soil nutrients cycling were enriched in the intercropping system. There were higher relative abundances of Bacillus (0.32%), Pseudomonas (0.14%), and Microbacterium (0.07%) in intercropping mulberry soil, and Bradyrhizobium (1.0%), Sphingomonas (0.56%), Pseudomonas (0.18%), Microbacterium (0.15%), Rhizobium (0.09%), Neorhizobium (0.08%), Rhodococcus (0.06%), and Burkholderia (0.04%) in intercropping alfalfa soil. Variance partition analysis showed that planting pattern contributed 26.7% of the total variation of bacterial community, and soil environmental factors explained approximately 56.5% of the total variation. This result indicated that the soil environmental factors were more important than the planting pattern in shaping the bacterial community in the field soil. Overall, mulberry/alfalfa intercropping changed soil bacterial community, which was related to changes in soil total carbon

  16. The antiproliferative effect of mulberry (Morus alba L.) plant on ...

    African Journals Online (AJOL)

    Shadia A. Fathy

    2013-08-12

    Aug 12, 2013 ... cell line HepG2 ... a Faculty of Science, Ain Shams University, Egypt ... Mulberry leaf extracts were prepared using the solvents: water, 50% aqueous ... cused on the search for a potential source rich in biologically ... Materials and methods. 2.1. ... HPLC grade (means high quality) were obtained from Fisher.

  17. Genetic diversity and relationships in mulberry (genus Morus as revealed by RAPD and ISSR marker assays

    Directory of Open Access Journals (Sweden)

    Thangavelu K

    2004-01-01

    Full Text Available Abstract Background The genus Morus, known as mulberry, is a dioecious and cross-pollinating plant that is the sole food for the domesticated silkworm, Bombyx mori. Traditional methods using morphological traits for classification are largely unsuccessful in establishing the diversity and relationships among different mulberry species because of environmental influence on traits of interest. As a more robust alternative, PCR based marker assays including RAPD and ISSR were employed to study the genetic diversity and interrelationships among twelve domesticated and three wild mulberry species. Results RAPD analysis using 19 random primers generated 128 discrete markers ranging from 500–3000 bp in size. One-hundred-nineteen of these were polymorphic (92%, with an average of 6.26 markers per primer. Among these were a few putative species-specific amplification products which could be useful for germplasm classification and introgression studies. The ISSR analysis employed six anchored primers, 4 of which generated 93 polymorphic markers with an average of 23.25 markers per primer. Cluster analysis of RAPD and ISSR data using the WINBOOT package to calculate the Dice coefficient resulted into two clusters, one comprising polyploid wild species and the other with domesticated (mostly diploid species. Conclusion These results suggest that RAPD and ISSR markers are useful for mulberry genetic diversity analysis and germplasm characterization, and that putative species-specific markers may be obtained which can be converted to SCARs after further studies.

  18. Response Surface Optimized Extraction of 1-Deoxynojirimycin from Mulberry Leaves (Morus alba L. and Preparative Separation with Resins

    Directory of Open Access Journals (Sweden)

    Teng Wang

    2014-05-01

    Full Text Available In the present study, the extraction technology and preparative separation of 1-deoxynojirimycin from mulberry leaves were systematically investigated. Four extraction parameters (ethanol concentration, extraction temperature, extraction time and ratio of solvent to sample were explored by response surface methodology (RSM. The results indicated that the maximal yield of 1-deoxynojirimycin was achieved with an ethanol concentration of 55%, extraction temperature of 80 °C, extraction time of 1.2 h and ratio of solvent to sample of 12:1. The extraction yield under these optimum conditions was found to be 256 mg/100 g dry mulberry leaves. A column packed with a selected resin was used to perform dynamic adsorption and desorption tests to optimize the separation process. The results show that the preparative separation of 1-deoxynojirimycin from mulberry leaves can be easily and effectively done by adopting 732 resin. In conclusion, 732 resin is the most appropriate for the separation of 1-deoxynojirimycin from other components in mulberry leaves extracts, and its adsorption behavior can be described with Langmuir isotherms and a two-step adsorption kinetics model. The recovery and purity of 1-deoxynojirimycin in the final product were 90.51% and 15.3%, respectively.

  19. Protective Effect of Mulberry (Morus alba L.) Extract against Benzo[a]pyrene Induced Skin Damage through Inhibition of Aryl Hydrocarbon Receptor Signaling.

    Science.gov (United States)

    Woo, Hyunju; Lee, JungA; Park, Deokhoon; Jung, Eunsun

    2017-12-20

    Benzo[a]pyrene (B[a]P), a type of polycyclic aromatic hydrocarbon, is present in the atmosphere surrounding our environment. Although B[a]P is a procarcinogen, enzymatically metabolized benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) could intercalate into DNA to form bulky BPDE-DNA adducts as an ultimate carcinogenic product in human keratinocytes. The aim of this study was to evaluate the protective effect of mulberry extract, purified from the fruit of Morus Alba L., on B[a]P-induced cytotoxicity in human keratinocytes and its mechanisms of action. In this study, we confirmed that B[a]P induced nuclear translocation and the activation of aryl hydrocarbon receptor (AhR) were decreased by pretreatment of mulberry extract. Mulberry extract could decrease DNA damage through the suppression of B[a]P derived DNA adduct formation and restoration of cell cycle retardation at S phase in a dose-dependent manner. Additionally, cyanidin-3-glucoside (C3G), a major active compound of mulberry extract, showed biological activities to protect the cells from B[a]P exposure, similar to the effectivity of the mulberry extract. These results indicated that the inhibitory effect of C3G against B[a]P inducing skin cancer is attributable to repress the AhR signaling pathway.

  20. Proportional relationship between intercepted solar radiation and dry matter production in a mulberry [Morus] field

    International Nuclear Information System (INIS)

    Aqueel, S.A.; Ito, D.; Naoi, T.

    1999-01-01

    In order to investigate the relationship between dry matter production (DMP) and the amount of intercepted solar radiation (S), and to analyze the fluctuations in the radiation conversion efficiency (DMP/S), summer-pruned mulberry (Morus alba L.) trees under a standard planting density were subjected to a shading treatment using a cheesecloth. Then, using a non-destructive method, DMP was examined for 5 plants from each plot every 15 days from July to September. DMP was also examined for mulberry trees under a high planting density. Rates of radiation that penetrated onto the ground and beneath the cheesecloth were measured to calculate S from the incoming solar radiation. In the shading plots, DMP decreased depending on the degree of shading throughout the experimental period. Compared with the control plot, 70 and 60 % DMP were produced finally under 71 and 53 % S. Therefore, DMP was considered to be almost proportional to S even in a broad-leaf population like mulberry. Radiation conversion efficiency gradually decreased with growth regardless of the planting density. At the late growth stage, radiation conversion efficiency was lower in the densely planted field than in the standard density field

  1. Mulberry (桑葚子 Sang Shèn Zǐ and its Bioactive Compounds, the Chemoprevention Effects and Molecular Mechanisms In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Hui-Pei Huang

    2013-01-01

    Full Text Available Mulberry (桑葚子 sāng shèn zǐ, a traditional Chinese medicine (TCM in Taiwan, has many bioactive substances, including polyphenol and anthocyanins compounds. Over the past decade, many scientific and medical studies have examined mulberry fruit for its antioxidation and antiinflammation effects both in vitro and in vivo. This review thus focuses on the recent advances of mulberry extracts (MEs and their applications in the prevention and treatment of human cancer, liver disease, obesity, diabetes, and cardiovascular disease. The ME modulates several apoptotic pathways and matrix metalloproteinases (MMPs to block cancer progression. Mulberry can increase detoxicated and antioxidant enzyme activities and regulate the lipid metabolism to treat hepatic disease resulting from alcohol consumption, high fat diet, lipopolysaccharides (LPS and CCl4 exposure. Of the various compounds in ME, cyanidin 3-glucoside (C3G is the most abundant, and the active compound studied in mulberry research. Herein, the antioxidant and antiinflammatory actions of C3G to improve diabetes and cardiovascular disease are also discussed. These studies provide strong evidence ME may possess the bioactivity to affect the pathogenesis of several chronic diseases.

  2. The response of mulberry trees after seedling hardening to summer drought in the hydro-fluctuation belt of Three Gorges Reservoir Areas.

    Science.gov (United States)

    Huang, Xiaohui; Liu, Yun; Li, Jiaxing; Xiong, Xingzheng; Chen, Yang; Yin, Xiaohua; Feng, Dalan

    2013-10-01

    Interest has developed in the potential of mulberry (Morus alba), a woody perennial, for revegetating the hydro-fluctuation belt of the Three Gorges Reservoir due to its resistance to water-logging stress. To be useful, the trees must also be able to withstand dry conditions in summer when temperatures can be very high and droughts become severe quickly. Here, we report a study in which mulberry seedlings were grown in a greenhouse under a variety of simulated soil water conditions reflecting potential summer scenarios in the hydro-fluctuation belt of the Three Gorges Reservoir Area. We compared the responses of two pretreatment groups of mulberry seedlings to different levels of drought stress. The pretreatment groups differed with respect to drought hardening: the daily-managed (DM) group had relative soil moisture held constant in the range 70-80 %, while the drought-hardened (DH) group had relative soil moisture held constant at 40-50 %. Following the month-long pretreatment of seedlings, the two groups of young trees (DM and DH) were then respectively subjected to three levels of drought stress for a month: normal watering, moderate drought stress, and severe drought stress. A series of measurements comparing the physiological status of the plants in the two groups were then made, and the following results were obtained: (1) As drought stress increased, the heights, base diameters, root surface areas, photosynthetic rates (Pn), stomatal conductances (Gs), and transpiration rates (Tr) of the mulberry trees in both groups (DM and DH) decreased significantly, while the specific root area and abscisic acid (ABA) contents had increasing trends. Root activity and instantaneous water use efficiency of mulberry trees in both groups (DM and DH) were all raised under drought stress conditions than under normal watering, but the root/shoot ratio and leaf water potential were lowered. (2) At the same level of soil water content, the heights, base diameters, root

  3. The Nutritive value of mulberry leaves (Morus Alba) and partial replacement of cotton seed in rations on the performance of growing Vietnamese cattle

    NARCIS (Netherlands)

    Vu, C.C.; Verstegen, M.W.A.; Hendriks, W.H.; Pham, K.T.

    2011-01-01

    The in vivo digestibility of mulberry leaves (Morus alba) and the effects of the partial replacement of cotton seed with fresh mulberry leaf in rations on the performance of growing Vietnamese cattle was investigated. For the in vivo digestibility trial, twenty castrated rams of Phanrang breed (a

  4. Reverse transcriptase sequences from mulberry LTR retrotransposons: characterization analysis

    Directory of Open Access Journals (Sweden)

    Ma Bi

    2017-10-01

    Full Text Available Copia and Gypsy play important roles in structural, functional and evolutionary dynamics of plant genomes. In this study, a total of 106 and 101, Copia and Gypsy reverse transcriptase (rt were amplified respectively in the Morus notabilis genome using degenerate primers. All sequences exhibited high levels of heterogeneity, were rich in AT and possessed higher sequence divergence of Copia rt in comparison to Gypsy rt. Two reasons are likely to account for this phenomenon: a these elements often experience deletions or fragmentation by illegitimate or unequal homologous recombination in the transposition process; b strong purifying selective pressure drives the evolution of these elements through “selective silencing” with random mutation and eventual deletion from the host genome. Interestingly, mulberry rt clustered with other rt from distantly related taxa according to the phylogenetic analysis. This phenomenon did not result from horizontal transposable element transfer. Results obtained from fluorescence in situ hybridization revealed that most of the hybridization signals were preferentially concentrated in pericentromeric and distal regions of chromosomes, and these elements may play important roles in the regions in which they are found. Results of this study support the continued pursuit of further functional studies of Copia and Gypsy in the mulberry genome.

  5. Accumulation of Flavonoid Glycosides and UFGT Gene Expression in Mulberry Leaves (Morus alba L.) before and after Frost.

    Science.gov (United States)

    Yu, Xiaofeng; Zhu, Yiling; Fan, Jingyi; Wang, Dujun; Gong, Xiaohui; Ouyang, Zhen

    2017-08-01

    In order to determine the molecular mechanism underlying the influence of frost on chemical changes in mulberry leaves, the UFGT activity, expression level, and accumulation of flavonoid glycosides in mulberry leaves (Morus alba L.) were studied. The expression of UFGT gene was investigated by quantitative real-time PCR (qRT-PCR) and the UFGT activity, accumulation of flavonoid glycosides was studied by high performance liquid chromatography. Then, the correlation between the expression level of UFGT, the UFGT activity, and the flavonoid glycosides accumulation with temperature was explored. The accumulation of isoquercitrin and astragalin is significantly positively correlated with UFGT gene expression and UFGT activity. On the contrary, the average temperature was significantly negatively correlated with the level of UFGT gene expression and UFGT activity. The results show that after frost, low temperature can induce the expression of UFGT gene in mulberry leaves, resulting in the accumulation of flavonoid glycosides. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  6. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan

    Science.gov (United States)

    Mulberry trees are distributed throughout Pakistan. Besides the use of mulberry in forage and food for animals, it is also used as herbal medicine. The ojbective of this study was to determine phenolic acids profile, sugar content, and the antioxidant activity of the leaves and fruits of three mulb...

  7. Illustrated accounts of coccinellid predators of Maconellicoccus hirsutus (Green) (Hemiptera: Sternorrhyncha: Pseudococcidae) on mulberry in India, with description of a new species of Scymnus Kugelann (Coleoptera: Coccinellidae) from West Bengal.

    Science.gov (United States)

    Poorani, J; Lalitha, N

    2018-02-20

    The pink hibiscus mealybug, Maconellicoccus hirsutus (Green), is a major pest of mulberry (Morus alba L.), the sole host of the mulberry silkworm, Bombyx mori (L.), which is a source of livelihood to millions of sericulture farmers in India. Several predators, mainly Coccinellidae (Coleoptera), have been reported to feed on M. hirsutus on mulberry. Coccinellid predators of M. hirsutus collected on mulberry from different parts of India are illustrated here with brief diagnostic notes to facilitate their identification. An account of mycophagous species of coccinellids commonly found on mulberry and misreported as predators of mulberry pests is also given with illustrations. Scymnus (Pullus) latifolius sp. nov., a promising predator of M. hirsutus, hitherto misidentified and reported as Scymnus pallidicollis Mulsant, is described and illustrated from West Bengal, India, with detailed biological notes. Keiscymnus taiwanensis Yang Wu, 1972 is reduced to a new junior synonym of Scymnus pallidicollis Mulsant, 1853 (syn. nov.). Illeis bielawskii Ghorpade, 1976 is found to be a valid species and removed from synonymy with I. bistigmosa Mulsant, 1850 (stat. rev.).

  8. Spatial variation of important mulberry pests and their natural enemies

    Directory of Open Access Journals (Sweden)

    A. Mohan

    2017-04-01

    Full Text Available Mulberry is a silkworm food plant (Bombyxmori. L that is seriously affected by many insect pests. The incidence of Diaphania pulverulentalis (Hampson, Maconellicoccus hirsutus (Green, Paracoccus marginatus (Williams and Granara de Willink, Aleurodiscus dispersus (Russels and Pseudodendrothrips mori (Niwa and their natural enemies, viz. coccinellids and spiders (/100 plants, were observed through survey and surveillance for 3 months. In February 2013, the incidence of insect pests in Vaikkalpattarai and Reddipudur villages (India was: D. pulverulentalis, 1.20 and 0.85%; P. marginatus, 6.80 and 33.10%; P. mori 42.98 and 45.50%, respectively. Further, the infestation of M. hirsutus (1.40% and A. dispersus (59.72% was also observed in February at Vaikkalpattarai. The population of coccinellids was high in December (1.02 and 0.84/100 plants, but the spider population was even higher in February and January (1.04 and 1.81/100 plants. Population of pests had a significant positive correlation with relative humidity. The population of coccinellids and spiders have positive correlation with temperature and mulberry pests infestation. The natural enemies observed in the study were mostly the ladybird beetles, Psyllobora bisoctonotata and unidentified species of spiders.

  9. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage

    Science.gov (United States)

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt. PMID:26877641

  10. Antimicrobial activity, phyto chemical profile and trace minerals of black mulberry (morus nigra l.) fresh juice

    International Nuclear Information System (INIS)

    Khalid, N.; Fawad, S.A.; Ahmed, I.

    2011-01-01

    In the present work, the fresh juice of black mulberry (Morus nigra) was tested for antimicrobial activity against various pathogenic microorganisms. Total antioxidant contents, total phenolic contents, total anthocyanins, trace minerals, total acid contents, total solids and ascorbic acid content were also evaluated. The results showed good antimicrobial activity both for Gram- positive and Gram-negative bacteria, with highest zones of inhibition for Bacillus spizizenii (19.68 mm, Gram-positive) and Pseudomonas aeruginosa (19.87 mm, Gram-negative). The black mulberry juice was rich in ascorbic acid (23.45 mg/100 g), had low overall acid content (1.60 %) and had 19% total soluble solids. The average total anthocyanins and total phenolic contents of black mulberry juice were 769 mu g/g of cyanidin 3-glucoside equivalent (Cy 3-gly) per gram and 2050 mu g of gallic acid equivalent (GAE) per gram of fresh juice. The average antioxidant activity (Trolox equivalent, TE) of fresh juice was 14.00 mu mol/g according to a FRAP assay and 20.10 mu mol/g according to a DPPH assay. The fresh juice was also rich in a variety of trace minerals. (author)

  11. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage.

    Science.gov (United States)

    Sung, Jung-Min; Kim, Young-Boong; Kum, Jun-Seok; Choi, Yun-Sang; Seo, Dong-Ho; Choi, Hyun-Wook; Park, Jong-Dae

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt.

  12. Quantitative 1H-NMR Spectroscopy for Profiling Primary Metabolites in Mulberry Leaves

    Directory of Open Access Journals (Sweden)

    Qianqian Liang

    2018-03-01

    Full Text Available The primary metabolites in aqueous extract of mulberry (Morus alba L. leaves were characterized by using proton nuclear magnetic resonance (1H-NMR spectroscopy. With the convenience of resonance assignment, GABA together with the other 10 primary metabolites was simultaneously identified and quantified in one 1H-NMR spectrum. In this study, external calibration curves for metabolites were employed to calculate the concentrations of interests. The proposed quantitative approach was demonstrated with good linearity (r2 ranged in the interval of 0.9965–0.9999, precision, repeatability, stability (RSD values in the ranges of 0.35–4.89%, 0.77–7.13% and 0.28–2.33%, respectively and accuracy (recovery rates from 89.2% to 118.5%. The established 1H-NMR method was then successfully applied to quantify 11 primary metabolites in mulberry leaves from different geographical regions within a rapid analysis time and a simple sample preparation procedure.

  13. Expression plasticity and evolutionary changes extensively shape the sugar-mimic alkaloid adaptation of non-digestive glucosidase in lepidopteran mulberry-specialist insects.

    Science.gov (United States)

    Li, Xiaotong; Shi, Liangen; Dai, Xiangping; Chen, Yajie; Xie, Hongqing; Feng, Min; Chen, Yuyin; Wang, Huabing

    2018-05-12

    During the co-evolutionary arms race between plants and herbivores, insects evolved systematic adaptive plasticity to minimise the chemical defence effects of their host plants. Previous studies mainly focused on the expressional plasticity of enzymes in detoxification and digestion. However, the expressional response and adaptive evolution of other fundamental regulators against host phytochemicals are largely unknown. Glucosidase II (GII), which is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit, is an evolutionarily conserved enzyme that regulates glycoprotein folding. In this study, we found that GIIα expression of the mulberry-specialist insect was significantly induced by mulberry leaf extract, 1-Deoxynojirimycin (1-DNJ), whereas GIIβ transcripts were not significantly changed. Moreover, positive selection was detected in GIIα when the mulberry-specialist insects diverged from the lepidopteran order; whereas GIIβ was mainly subjected to purifying selection, thus indicating an asymmetrically selective pressure of GII subunits. In addition, positively selected sites were enriched in the GIIα of mulberry-specialist insects, and located around the 1-DNJ binding sites and in the C-terminal region, which could result in conformational changes that affect catalytic activity and substrate-binding efficiency. These results show that expression plasticity and evolutionary changes extensively shape sugar-mimic alkaloids adaptation of non-digestive glucosidase in lepidopteran mulberry-specialist insects. Our study provides novel insights into a deep understanding of the sequestration and adaptation of phytophagous specialists to host defensive compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Complete Genome Sequence of Mulberry Vein Banding Associated Virus, a New Tospovirus Infecting Mulberry.

    Directory of Open Access Journals (Sweden)

    Jiaorong Meng

    Full Text Available Mulberry vein banding associated virus (MVBaV that infects mulberry plants with typical vein banding symptoms had been identified as a tentative species of the genus Tospovirus based on the homology of N gene sequence to those of tospoviruses. In this study, the complete sequence of the tripartite RNA genome of MVBaV was determined and analyzed. The L RNA has 8905 nucleotides (nt and encodes the putative RNA-dependent RNA polymerase (RdRp of 2877 aa amino acids (aa in the viral complementary (vc strand. The RdRp of MVBaV shares the highest aa sequence identity (85.9% with that of Watermelon silver mottle virus (WSMoV, and contains conserved motifs shared with those of the species of the genus Tospovirus. The M RNA contains 4731 nt and codes in ambisense arrangement for the NSm protein of 309 aa in the sense strand and the Gn/Gc glycoprotein precursor (GP of 1,124 aa in the vc strand. The NSm and GP of MVBaV share the highest aa sequence identities with those of Capsicum chlorosis virus (CaCV and Groundnut bud necrosis virus (GBNV (83.2% and 84.3%, respectively. The S RNA is 3294 nt in length and contains two open reading frames (ORFs in an ambisense coding strategy, encoding a 439-aa non-structural protein (NSs and the 277-aa nucleocapsid protein (N, respectively. The NSs and N also share the highest aa sequence identity (71.1% and 74.4%, respectively with those of CaCV. Phylogenetic analysis of the RdRp, NSm, GP, NSs, and N proteins showed that MVBaV is most closely related to CaCV and GBNV and that these proteins cluster with those of the WSMoV serogroup, and that MVBaV seems to be a species bridging the two subgroups within the WSMoV serogroup of tospoviruses in evolutionary aspect, suggesting that MVBaV represents a distinct tospovirus. Analysis of S RNA sequence uncovered the highly conserved 5'-/3'-ends and the coding regions, and the variable region of IGR with divergent patterns among MVBaV isolates.

  15. Effect of Bio-inoculants Applied to M5 Mulberry Under Rain-fed ...

    African Journals Online (AJOL)

    Bheema

    Bombyx Mori L., is a monophagous insect that drives almost all required nutrients ... to mulberry plant is, therefore, very essential for the successful silkworm growth and cocoon ... However, the recommended rate of chemical .... Larval duration starting from hatching of the eggs up to 90 per cent of worms attain spinning was.

  16. Effect of Bio-inoculants Applied to M 5 Mulberry Under Rain-fed ...

    African Journals Online (AJOL)

    The present investigation was carried out at the department of sericulture, GKVK, UAS, Bangalore, India in 2007 with an objective to determine the effect of three bio-inoculants application to M5 mulberry plant on silkworm (PM x CSR2) growth, development and coocoon traits. The feeding experiment was laid-out in ...

  17. Storage condition of mulberry branches (Morus sp. in the survival, development and production of Bombyx mori L.

    Directory of Open Access Journals (Sweden)

    Antonio José Porto

    2012-02-01

    Full Text Available The study was carried with the objective of evaluate the survival, development and cocoons production of silkworm fed with mulberry leaves (Cultivar IZ 56/4 from branches stored in warehouse(24 hours or stored in the system of covering with wet cloth and immersion of bases in water, for a period of 72 hours. It was used a completely randomized design, with two treatments and six replications. Caterpillars fed with mulberry leaves from branches stored in the system of covering and immersion for 72 hours had conditions suitable for survival, development and production of cocoon, not differing from those who received leaves from branches stored in the warehouse.

  18. High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba).

    Science.gov (United States)

    Li, Ruixue; Chen, Dandan; Wang, Taichu; Wan, Yizhen; Li, Rongfang; Fang, Rongjun; Wang, Yuting; Hu, Fei; Zhou, Hong; Li, Long; Zhao, Weiguo

    2017-01-01

    MicroRNAs (miRNAs) play important regulatory roles by targeting mRNAs for cleavage or translational repression. Identification of miRNA targets is essential to better understanding the roles of miRNAs. miRNA targets have not been well characterized in mulberry (Morus alba). To anatomize miRNA guided gene regulation under drought stress, transcriptome-wide high throughput degradome sequencing was used in this study to directly detect drought stress responsive miRNA targets in mulberry. A drought library (DL) and a contrast library (CL) were constructed to capture the cleaved mRNAs for sequencing. In CL, 409 target genes of 30 conserved miRNA families and 990 target genes of 199 novel miRNAs were identified. In DL, 373 target genes of 30 conserved miRNA families and 950 target genes of 195 novel miRNAs were identified. Of the conserved miRNA families in DL, mno-miR156, mno-miR172, and mno-miR396 had the highest number of targets with 54, 52 and 41 transcripts, respectively, indicating that these three miRNA families and their target genes might play important functions in response to drought stress in mulberry. Additionally, we found that many of the target genes were transcription factors. By analyzing the miRNA-target molecular network, we found that the DL independent networks consisted of 838 miRNA-mRNA pairs (63.34%). The expression patterns of 11 target genes and 12 correspondent miRNAs were detected using qRT-PCR. Six miRNA targets were further verified by RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-5' RACE). Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these target transcripts were implicated in a broad range of biological processes and various metabolic pathways. This is the first study to comprehensively characterize target genes and their associated miRNAs in response to drought stress by degradome sequencing in mulberry. This study provides a framework for understanding

  19. Dissolution and regeneration of non-mulberry Eriogyna Pyretorum silk fibroin

    Science.gov (United States)

    Guo, Yuhang; Li, Xiufang; Zhang, Qiang; Yan, Shuqin; You, Renchuan

    2017-10-01

    Protein-based materials have been actively pursued as biomaterials because of their nontoxicity, biocompatibility and biodegradability. In this work, we demonstrated the potential of Eriogyna pyretorum silk fibroin (ESF), a non-mulberry silk protein, as biomaterials. The degummed ESF fibers could be dissolved completely by Ca(NO3)2/H2O/C2H5OH solution to produce regenerated ESF. The solubility was strongly dependent on the addition of C2H5OH, heating temperature and dissolving time. α-helix and random coil are main molecular conformation in aqueous ESF solution. The sol-gel transition behavior of regenerated ESF was also studied, indicating that the conformational transition of regenerated ESF from random coil/α-helix to β-sheet during gelation. Especially, ESF showed more rapid gelation than mulberry silk fibroin (BSF). Consequently, the gelation rate of BSF could be controlled ranging from tens of minutes to days by changing the ESF ratio, providing useful options for the fabrication of silk hydrogels. Water-stable regenerated ESF film could be achieved by using aqueous ethanol to induce structural transition. Tensile tests showed that the ESF films have a dry strength of approximate 31.0 MPa and a wet strength of approximate 3.3 MPa. This study provides new opportunities as an alternative natural protein material for biomedical applications.

  20. Studies on mutation breeding in mulberry (Morus spp.)

    International Nuclear Information System (INIS)

    Fujita, H.; Wada, M.

    1982-01-01

    Re-irradiation of induced mulberry mutants with gamma rays has proved to give higher mutation frequencies and a wider mutation spectrum than when the original cultivars were irradiated. A comparison between chronic and acute re-irradiation was made, using a special cutting-back technique. Mutation frequencies of the shoots that developed from the sub-lateral shoot in chronic irradiation were lower than in acute irradiation. The five-lobed cultivar Ichinose raised an entire-leaved mutant, IRB240-1, by gamma rays, which showed reversion in leaf shape, from entire to lobed, by re-treatment of the mutant with gamma rays. The mutant and original cultivar were crossed with an entire-leaved cultivar Shiromekeiso. As a result of these crosses, the three mutants are supposed to be not of genic origin concerning leaf shape. A drop of conidia suspension was placed on a scratched surface of the irradiated shoots to select resistant mutants to die-back disease. Two resistant strains were selected by means of inoculation of conidia. It is considered that inoculation of solution using a vaccination apparatus was most efficient and reliable for selecting resistant mutants. Thirteen mutants and three strains were tested for the rooting ability of semi-softwood cuttings. Some mutant strains did not show any disability of rooting initiation of the shoot. Useful mutants which show high rooting ability can be selected by gamma irradiation. To detect the change in fine structure of mulberry a scanning electron microscope was used. The mutants not only varied in visible character from the original, but also in invisible changes, such as trichome, idioblast, etc

  1. Production Efficiency of Cocoon Shell of Silkworm, Bombyx mori L. (Bombycidae: Lepidoptera, as an Index for Evaluating the Nutritive Value of Mulberry, Morus sp. (Moraceae, Varieties

    Directory of Open Access Journals (Sweden)

    Jalaja Suresh Kumar

    2011-01-01

    Full Text Available The nutritional efficiency of mulberry leaves consumed by silkworms, Bombyx mori L., is usually evaluated in terms of the proportion of cocoon shell weight to the amount of food ingested. The production efficiency of cocoon shell is generally used to identify the superiority of a mulberry variety for silkworm rearing. In this study the production efficiency of cocoon shell was used as an index for evaluating the nutritive value of different mulberry varieties of India. Among the varieties, V-1, having highest production efficiency of cocoon shell with less amount of food ingested and highest digestibility, is regarded as the best suitable variety with nutritive values ideal for silkworm rearing.

  2. Optimization of Solid-Liquid Extraction of Antioxidants from Black Mulberry Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Zoran Zeković

    2012-01-01

    Full Text Available The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The aim of this study is to examine the influence of solvent concentration (ethanol/water 40–80 %, by volume, temperature (40–80 °C and solvent/raw material ratio (10–30 mL/g on the extraction yield of phenolic compounds, flavonoids and antioxidant activity from black mulberry (Morus nigra L. leaves. Experimental values of total phenolic content were in the range from 18.6 to 48.7 mg of chlorogenic acid equivalents per g of dried leaves and total flavonoids in the range from 6.0 to 21.4 mg of rutin eqivalents per g of dried leaves. Antioxidant activity expressed as the inhibition concentration at 50 % (IC50 value was in the range from 0.019 to 0.078 mg of mulberry extract per mL. Response surface methodology (RSM was used to determine the optimum extraction conditions and to investigate the effect of different variables on the observed properties of mulberry leaf extracts. The results show a good fit to the proposed model (R˄2>0.90. The optimal conditions for obtaining the highest extraction yield of phenolics and flavonoids were within the experimental range. The experimental values agreed with those predicted, thus indicating suitability of the used model and the success of RSM in optimizing the investigated extraction conditions.

  3. Antinociceptive and Antibacterial Properties of Anthocyanins and Flavonols from Fruits of Black and Non-Black Mulberries

    Directory of Open Access Journals (Sweden)

    Hu Chen

    2017-12-01

    Full Text Available Anthocyanins and flavones are important pigments responsible for the coloration of fruits. Mulberry fruit is rich in anthocyanins and flavonols, which have multiple uses in traditional Chinese medicine. The antinociceptive and antibacterial activities of total flavonoids (TF from black mulberry (MnTF, TF of Morus nigra and non-black mulberry (MmTF, TF of Morus mongolica; and MazTF, TF of Morus alba ‘Zhenzhubai’ fruits were studied. MnTF was rich in anthocyanins (11.3 mg/g and flavonols (0.7 mg/g identified by ultra-performance liquid chromatography–tunable ultraviolet/mass single-quadrupole detection (UPLC–TUV/QDa. Comparatively, MmTF and MazTF had low flavonol contents and MazTF had no anthocyanins. MnTF showed significantly higher antinociceptive and antibacterial activities toward Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus than MmTF and MazTF. MnTF inhibited the expression of interleukin 6 (IL-6, inducible nitric oxide synthase (iNOS, phospho-p65 (p-p65 and phospho-IκBα (p-IκBα, and increased interleukin 10 (IL-10. Additionally, mice tests showed that cyanidin-3-O-glucoside (C3G, rutin (Ru and isoquercetin (IQ were the main active ingredients in the antinociceptive process. Stronger antinociceptive effect of MnTF was correlated with its high content of anthocyanins and flavonols and its inhibitory effects on proinflammatory cytokines, iNOS and nuclear factor-κB (NF-κB pathway-related proteins.

  4. "1"3"7Cs distribution in mulberry (Morus alba) after the Fukushima Dai-ichi Nuclear Power Plant accident and effect of spray application of a liquid potassium fertilizer onto trunk surface

    International Nuclear Information System (INIS)

    Harada, Naoki; Nonaka, Masanori; Motojima, Sayaka; Igarashi, Kazuki

    2015-01-01

    After the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011, contamination of mulberry-leaf tea with over 100Bq kg"-"1 "1"3"7Cs was found. We therefore investigated "1"3"7Cs distribution in mulberry trees (Morus alba) and soil in Nihonmatsu City from 2012. As a result, mulberry leaves near the end of branches (0 - 30 cm), which are usually used as edible leaves, were shown to contain higher "1"3"7Cs concentration than the others. Trunk showed highest "1"3"7Cs concentration among the plant parts of mulberry investigated, while root "1"3"7Cs concentration was relatively low. Autoradiographic studies for leaf, bark and cross-sectional trunk suggest that radioactive substances were deposited onto bark and leaf radioactive contamination could be due to translocation of "1"3"7Cs from trunk. Spray application of 0.5% KH_2PO_4 solution onto trunk surface significantly reduced "1"3"7Cs concentration in edible leaves emerged about one month after the application. However, the effect was limited and insufficient to solve the problem of radioactive contamination in edible mulberry leaves. (author)

  5. Nutrigenetic Screening Strains of the Mulberry Silkworm, Bombyx mori, for Nutritional Efficiency

    OpenAIRE

    Ramesha, Chinnaswamy; Lakshmi, Hothur; Kumari, Savarapu Sugnana; Anuradha, Chevva M.; Kumar, Chitta Suresh

    2012-01-01

    The activity of sericulture is declining due the reduction of mulberry production area in sericulture practicing countries lead to adverse effects on silkworm rearing and cocoon production. Screening for nutrigenetic traits in silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) is an essential prerequisite for better understanding and development of nutritionally efficient breeds/hybrids, which show less food consumption with higher efficiency conversion. The aim of this study was to identify ...

  6. Mulberry anthocyanins improves thyroid cancer progression mainly by inducing apoptosis and autophagy cell death

    Directory of Open Access Journals (Sweden)

    Hou-Long Long

    2018-05-01

    Full Text Available Dietary anthocyanin compounds have multiple biological effects, including antioxidant, anti-inflammatory, and anti-atherosclerotic characteristics. The present study evaluated the anti-tumor capacity of mulberry anthocyanins (MA in thyroid cancer cells. Our data showed that MA suppressed SW1736 and HTh-7 cell proliferation in a time- and dose-dependent manner. Meanwhile, flow cytometry results indicated that MA significantly increased SW1736 and HTh-7 cell apoptosis. We additionally observed that SW1736 and HTh-7 cell autophagy was markedly enhanced after MA treatment. Importantly, anthocyanin-induced cell death was largely abolished by 3-methyladenine (3-MA or chloroquine diphosphate salt (CQ treatment, suggesting that MA-induced SW1736 and HTh-7 cell death was partially dependent on autophagy. In addition, activation of protein kinase B (Akt, mammalian target of rapamycin (mTOR, and ribosomal protein S6 (S6 were significantly suppressed by anthocyanin exposure. In summary, MA may serve as an adjunctive therapy for thyroid cancer patients through induction of apoptosis and autophagy-dependent cell death. Keywords: Mulberry anthocyanins, Thyroid cancer, Apoptosis, Autophagic death

  7. Metal toxicity on the basis of the mulberry growth and the mineral status in leaves

    Energy Technology Data Exchange (ETDEWEB)

    Takagishi, H.; Goto, A.; Sato, T.

    1976-02-01

    Some pot experiments were carried out to evaluate the toxicity of metal elements to mulberry plant. Alluvial sandy loam with strong acidity of pH (H/sub 2/O) ca. 4.5 was used. Leaf yield was reduced as the supply of tested metal element was increased, but the degree of yield reduction was different for each mulberry variety; Kenmochi (Morus bombysis Koidz) was most resistant to toxicity, and followed by Kairyo-Nezumigaeshi (M. Alba Linn) and Roso (M. latifolia Pollet) in the decreasing order of the resistance. The toxicity of test elements was in the order of Cu > Co greater than or equal to Ni > Zn much greater than Mn. The order was estimated from the value half acting concentration in soil which is obtained from multiplication of the half application amount by active coefficient; here the former shows the concentration of each metal which reduces the leaf yield to a half by toxicity and the latter corresponds to the regression coefficient between the supplied amount of metals and the extracted amount by neutral ammonium acetate solution. The soil-mulberry plant relationship of the elements was studied. Nickel had the highest mobility into leaves from soil, and being followed by Zn, Co and Cu of which contents in leaves were not so much affected by their increasing supply. Owing to this relation, the toxicity on the basis of metal content in leaves was in the order of Co greater than or equal to Cu > Ni much greater than Zn > Mn and the order was somewhat different from the above-mentioned one. Phosphorus content in leaves tended to decrease by Zn and Co supply.

  8. The Latex Protein MLX56 from Mulberry (Morus multicaulis Protects Plants against Insect Pests and Pathogens

    Directory of Open Access Journals (Sweden)

    Ying-Ping Gai

    2017-08-01

    Full Text Available Biotic stresses are major constraints limiting the leaf quality and productivity of mulberry. MLX56 is a unique chitin-binding protein isolated from Shin-Ichinose (Morus alba latex that displays toxicity against lepidopteran caterpillars. In this study, the full-length cDNA encoding MLX56 was isolated from Husang 32 (M. multicaulis and designated HMLX56. Amino acid sequence analysis and protein modeling of three MLX56 proteins showed that they were highly conserved among Morus species. Tissue expression pattern analysis showed that the HMLX56 gene was strongly expressed in mulberry bark and leaves but only slightly expressed in fruits. In addition, analysis of GUS expression indicated that the promoter of HMLX56 showed higher transcriptional activity along the vascular strands, and its activity can be regulated by various environmental factors. Like the MLX56 protein from M. alba, the HMLX56 protein showed toxicity to Plutella xylostella. Moreover, when the HMLX56 gene was ectopically expressed in Arabidopsis, the transgenic plants showed enhanced resistance to aphids, the fungal pathogen Botrytis cinerea and the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our data suggest that the HMLX56 protein has a lectin-like molecular structure consisting of two hevein-like chitin-binding domains which provide not only chitin-binding activities but also other mechanisms of defense. The information provided here improves our understanding of the potential functions and defense mechanisms of MLX56 proteins, enabling in-depth functional analysis of latex exudates and perhaps facilitating mulberry genetic improvement in the future.

  9. Genotypic variation in tolerance to drought stress is highly coordinated with hydraulic conductivity-photosynthesis interplay and aquaporin expression in field-grown mulberry (Morus spp.).

    Science.gov (United States)

    Reddy, Kanubothula Sitarami; Sekhar, Kalva Madhana; Reddy, Attipalli Ramachandra

    2017-07-01

    Hydraulic conductivity quantifies the efficiency of a plant to transport water from root to shoot and is a major constriction on leaf gas exchange physiology. Mulberry (Morus spp.) is the most economically important crop for sericulture industry. In this study, we demonstrate a finely coordinated control of hydraulic dynamics on leaf gas exchange characteristics in 1-year-old field-grown mulberry genotypes (Selection-13 (S13); Kollegal Local (KL) and Kanva-2 (K2)) subjected to water stress by withholding water for 20 days and subsequent recovery for 7 days. Significant variations among three mulberry genotypes have been recorded in net photosynthetic rates (Pn), stomatal conductance and sap flow rate, as well as hydraulic conductivity in stem (KS) and leaf (KL). Among three genotypes, S13 showed significantly high rates of Pn, KS and KL both in control as well as during drought stress (DS) and recovery, providing evidence for superior drought-adaptive strategies. The plant water hydraulics-photosynthesis interplay was finely coordinated with the expression of certain key aquaporins (AQPs) in roots and leaves. Our data clearly demonstrate that expression of certain AQPs play a crucial role in hydraulic dynamics and photosynthetic carbon assimilation during DS and recovery, which could be effectively targeted towards mulberry improvement programs for drought adaptation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Detection of adulteration in mulberry pekmez samples added various sugar syrups with ¹³C/¹²C isotope ratio analysis method.

    Science.gov (United States)

    Tosun, Murat

    2014-12-15

    Mulberry pekmez can be adulterated in different ways either during the production process or after production is completed. To identify these adulterations, stable carbon isotope ratio analysis (SCIRA) was performed on the model examples prepared by adding saccharose syrup (SS), glucose syrup (GS) and high fructose corn syrup (HFCS) into two different pure mulberry pekmez samples in the ratios of 0%, 10%, 30% and 50%. The δ(13)C ratio of the pure mulberry pekmez was determined as -26.60‰ on average, the saccharose syrup as -24.80‰, the glucose syrup as -11.20‰ and the high-fructose corn syrup as -11.40‰. In identifying the adulteration made to pekmez, especially with the high-fructose corn syrup, which is obtained from corn starch, and with the glucose syrup, the δ(13)C ratio comes into prominence. However it remains impossible identify the adulterations made with the saccharose, which is obtained from beet sugar, or invert sugar syrups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Studies on F1 radiation sterilization of diamondback moth and mulberry wild silkworm

    International Nuclear Information System (INIS)

    Yang Rongxing; Xia Darong; Cu Weiping; Chu Jiming; Zhang Yanjun

    1993-01-01

    The study began in 1988 under the aegis of the FAO/IAEA co-ordinated research programme on Radiation Induced F 1 Sterility in Lepidoptera for Area-Wide Control. During the following four years the control of the mulberry wild silkworm (Bombyx mandarina Moore) and the diamondback moth (Plutella xylostella L.) by means of radiation induced sterility was studied. (author). 4 refs, 9 figs, 6 tabs

  12. Biochar amendment improves soil fertility and productivity of mulberry plant

    Directory of Open Access Journals (Sweden)

    Faruque Ahmed

    2017-07-01

    Full Text Available Biochar has the potential to improve soil fertility and crop productivity. A field experiment was carried out at the experimental field of Bangladesh Sericulture Research and Training Institute (BSRTI, Rajshahi, Bangladesh. The objective of this study was to examine the effect of biochar on soil properties, growth, yield and foliar disease incidence of mulberry plant. The study consisted of 6 treatments: control, basal dose of NPK, rice husk biochar, mineral enriched biochar, basal dose + rice husk biochar and basal dose + mineral enriched biochar. Growth parameters such as node/meter, total branch number/plant, total leaf yield/hectare/year were significantly increased in basal dose + mineral enriched biochar treated plot in second year compared with the other fertilizer treatments. In second year, the total leaf yield/hectare/year were also 142.1% and 115.9% higher in combined application of basal dose + mineral enriched biochar and basal dose + rice husk biochar, respectively, than the control treatment. The soil properties such as organic matter, phosphorus, sulphur and zinc percentage were significantly increased with both the (mineral enriched and rice husk biochar treated soil applied with or without recommended basal dose of NPK than the control and only the recommended basal dose of NPK, respectively. Further, the lowest incidences of tukra (6.4%, powdery mildew (10.4% and leaf spot (7.6% disease were observed in second year under mineral enriched biochar treated plot than the others. The findings revealed that utilization of biochar has positive effect on the improvement of soil fertility and productivity as well as disease suppression of mulberry plant.

  13. Antihemolytic Activities of Green Tea, Safflower, and Mulberry Extracts during Plasmodium berghei Infection in Mice

    Directory of Open Access Journals (Sweden)

    Suthin Audomkasok

    2014-01-01

    Full Text Available Malaria-associated hemolysis is associated with mortality in adult patients. It has been speculated that oxidative stress and inflammation induced by malaria parasite are involved in its pathophysiology. Hence, we aimed to investigate the antihemolytic effect of green tea, safflower, and mulberry extracts against Plasmodium berghei infection. Aqueous crude extracts of these plants were prepared using hot water method and used for oral treatment in mice. Groups of ICR mice were infected with 6 × 106 infected red blood cells of P. berghei ANKA by intraperitoneal injection and given the extracts (500, 1500, and 3000 mg/kg twice a day for 4 consecutive days. To assess hemolysis, hematocrit levels were then evaluated. Malaria infection resulted in hemolysis. However, antihemolytic effects were observed in infected mice treated with these extracts at dose-dependent manners. In conclusion, aqueous crude extracts of green tea, safflower, and mulberry exerted antihemolysis induced by malaria infection. These plants may work as potential source in the development of variety of herbal formulations for malarial treatment.

  14. Synthesis and urea-loading of an eco-friendly superabsorbent composite based on mulberry branches

    Directory of Open Access Journals (Sweden)

    Xiying Liang

    2013-02-01

    Full Text Available Mulberry branch, consisting of bark and stalk, was used as raw skeleton material without any chemical pre-treatment to synthesize an eco-friendly mulberry branch-g-poly(acrylic acid-co-acrylamide (PMB/P(AA-co-AM superabsorbent composite. The synthesis conditions and properties of the PMB/P(AA-co-AM superabsorbent composite were investigated. The results showed that under the optimal synthesis conditions, the water absorbency of the prepared PMB/P(AA-co-AM reached 570.5 g/g in deionized water, 288.0 g/g in tap water, and 70.0 g/g in 0.9 wt% aqueous NaCl solution. The PMB/P(AA-co-AM composite also exhibited excellent water retention capacity as well as a rapid water absorbency rate. The urea loading percentage of the PMB/P(AA-co-AM composite was controlled by the concentration of aqueous urea solution. The release of urea from the loaded PMB/P(AA-co-AM composite in deionized water initially exhibited a high rate of release for 60 min, followed by a rapid decline. Meanwhile, the PMB/P(AA-co-AM superabsorbent composite with larger particle size achieved a better sustained release of urea.

  15. Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-01-01

    Full Text Available Ethyl carbamate (EC is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH depletion and caused mitochondrial membrane potential (MMP collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress.

  16. Identification and Chacterization of new strains of Enterobacter spp. causing Mulberry (Morus alba) wilt disease in China

    Science.gov (United States)

    A new mulberry wilt disease (MWD) was recently identified in Hangzhou, Zhejiang province, China. Typical symptoms of the disease are dark brown discolorations in vascular tissues, leaf wilt, defoliation, and tree decline. Unlike the bacterial wilt disease caused by Ralstonia solanacearum, the leaf w...

  17. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.)

    Czech Academy of Sciences Publication Activity Database

    Choi, J. W.; Synytsya, A.; Capek, P.; Bleha, R.; Pohl, Radek; Park, Y. I.

    2016-01-01

    Roč. 146, Aug 1 (2016), s. 187-196 ISSN 0144-8617 Institutional support: RVO:61388963 Keywords : mulberry fruit * pectic polysaccharide * structure * pre-adipocytes * apoptosis Subject RIV: CC - Organic Chemistry Impact factor: 4.811, year: 2016

  18. Protective property of mulberry digest against oxidative stress - A potential approach to ameliorate dietary acrylamide-induced cytotoxicity.

    Science.gov (United States)

    Zhang, Linxia; Xu, Yang; Li, Yuting; Bao, Tao; Gowd, Vemana; Chen, Wei

    2017-09-01

    The aim of this study was investigating the protective effect of mulberry digest (MBD) on acrylamide-induced oxidative stress. Composition analysis of MBD revealed that it contained six major phenolic compounds (quercetin-3-O-rutinoside, quercetin hexoside, quercetin rhamnosylhexoside hexoside, kaempferol rhamnosylhexoside, cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside). After in vitro digestion, the contents of two anthocyanins were both decreased significantly, while the contents of four flavonoid glycosides were all increased. In addition, MBD was found to successfully suppress acrylamide-induced ROS overproduction, restore the mitochondrial membrane potential, and inhibit the mitochondrial membrane lipid peroxidation and glutathione depletion. More interestingly, the protective effect of MBD against acrylamide-induced oxidative damage was enhanced compared with mulberry fruits without digestion (MBE). Further study revealed that MBD enhanced the cell resistance capacity to acrylamide-induced oxidative stress, rather than its direct reaction with acrylamide. Overall, our results indicate that MBD provides a potent protection against acrylamide-induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Radiation damage and induced tetraploidy in mulberry (Morus alba L.)

    International Nuclear Information System (INIS)

    Katagiri, K.

    1976-01-01

    Vigorously growing mulberry shoots were exposed to 5 kR of gamma rays at the rate of 0.2 kR/hr and 5.0 kR/hr and successively pruned three times in two growing seasons. The most radiosensitive part of both the apical and axillary meristems was the second cell layer. The younger axillary bud primordia were more sensitive to radiation then the older ones. Recovery from radiation damage was assumed to be from the flank meristem in the shoot apex. The frequency of mutations was much lower than that of tetraploidy. Among the tetraploids 50% were 2-4-4 chimeras. (author)

  20. Mulberry-extract improves glucose tolerance and decreases insulin concentrations in normoglycaemic adults: Results of a randomised double-blind placebo-controlled study.

    Directory of Open Access Journals (Sweden)

    Mark Lown

    Full Text Available High sugar and refined carbohydrate intake is associated with weight gain, increased incidence of diabetes and is linked with increased cardiovascular mortality. Reducing the health impact of poor quality carbohydrate intake is a public health priority. Reducose, a proprietary mulberry leaf extract (ME, may reduce blood glucose responses following dietary carbohydrate intake by reducing absorption of glucose from the gut.A double-blind, randomised, repeat measure, phase 2 crossover design was used to study the glycaemic and insulinaemic response to one reference product and three test products at the Functional Food Centre, Oxford Brooks University, UK. Participants; 37 adults aged 19-59 years with a BMI ≥ 20kg/m2 and ≤ 30kg/m2. The objective was to determine the effect of three doses of mulberry-extract (Reducose versus placebo on blood glucose and insulin responses when co-administered with 50g maltodextrin in normoglycaemic healthy adults. We also report the gastrointestinal tolerability of the mulberry extract.Thirty-seven participants completed the study: The difference in the positive Incremental Area Under the Curve (pIAUC (glucose (mmol / L x h for half, normal and double dose ME compared with placebo was -6.1% (-18.2%, 5.9%; p = 0.316, -14.0% (-26.0%, -2.0%; p = 0.022 and -22.0% (-33.9%, -10.0%; p<0.001 respectively. The difference in the pIAUC (insulin (mIU / L x h for half, normal and double dose ME compared with placebo was -9.7% (-25.8%, 6.3%; p = 0.234, -23.8% (-39.9%, -7.8%; p = 0.004 and -24.7% (-40.8%, -8.6%; p = 0.003 respectively. There were no statistically significant differences between any of the 4 groups in the odds of experiencing one or more gastrointestinal symptoms (nausea, abdominal cramping, distension or flatulence.Mulberry leaf extract significantly reduces total blood glucose rise after ingestion of maltodextrin over 120 minutes. The pattern of effect demonstrates a classical dose response curve with

  1. Antibacterial, antibiofilm and antitumor activities of grape and mulberry leaves ethanolic extracts towards bacterial clinical strains

    Directory of Open Access Journals (Sweden)

    Elshahat M. Ramadan

    2017-12-01

    Full Text Available The minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC were measured at concentrations of 0.01–2.56 mg/mL of grape and mulberry leaves ethanolic extracts. The MIC values were ranged from 0.08 to 0.16 mg/mL against Ps. aeruginosa Ps9, and 0.32 mg/mL against each of S. aureus St3, E. coli Ec3, and S. typhi Sa1. Whereas, the MBC values were ranged from 0.32 to 1.28 mg/mL of the tested extracts. The effects of the tested extracts were also studied representing the bactericidal effect of the grape extract with a ratio of 2 against all investigated isolates, except S. typhi Sa1. Whereas, the mulberry extract had a bactericidal effect towards S. aureus St3 and E. coli Ec3 with ratio of 2, and a bacteriostatic effect against Ps. aeruginosa Ps9 and S. typhi Sa1 with a ratio ≥4. The investigated bacteria found to have a strong ability to form biofilms with densities ranged from 0.67 to 0.80. Both tested extracts inhibited these biofilms with percentages ranged from 48 to 66% at sub-inhibitory concentrations (SICs ranged from 0.04 to 0.16 mg/mL. In addition, the tested extracts have an excellent cytotoxic activity towards colon cancer cell lines (HCT-16. Five phenolic compounds detected in the tested extracts of grape and mulberry using high performance liquid chromatography (HPLC after 9.53 min of the retention time. The phenolic compounds of both tested extracts were gallic, coumaric, ferulic, chlorogenic and caffeic with concentrations ranged from 1.28 to 6.56 µg/mL.

  2. Conjunctival Aspergilloma with Multiple Mulberry Nodules: A Case Report

    Directory of Open Access Journals (Sweden)

    Jiunn-Liang Chen

    2005-06-01

    Full Text Available A 30-year-old healthy female presented with a 1-year history of chronic mucous discharge, tearing, and irritation in the left eye. Slit-lamp examination revealed severe papillary and follicular reaction surrounding a movable subconjunctival mass on the left upper tarsal conjunctiva. Incision and curettage were performed to establish the diagnosis. Multiple peculiar black mulberry nodules were obtained. The clumps of septate hyphae seen with periodic acid-Schiff stain were characteristic of fungus ball (aspergilloma. The patient's symptoms improved significantly after surgery without any antifungal therapy. Although rarely reported, aspergillus is a common fungus in the conjunctiva that may seed into the subconjunctiva. We present this case to remind ophthalmologists of such a rare cause of recalcitrant conjunctival inflammation in immunocompetent patients.

  3. Fuzzy logic, artificial neural network and mathematical model for prediction of white mulberry drying kinetics

    Science.gov (United States)

    Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim

    2018-05-01

    The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).

  4. Antioxidant activity of mulberry (Morus alba L.) fruits in male rats exposed to gamma- radiation

    International Nuclear Information System (INIS)

    Hamza, R.G.; Mekawey, H.M.S.; El shahat, A.N.

    2013-01-01

    This study was designed to investigate the possible ameliorative effects of mulberry fruits on oxidative damage induced by irradiation in male rats. Gamma irradiation (2.5 Gy x 3 delivered every other day) resulted in a significant decrease of hepatic glutathione content (GSH) and the activity of xanthine dehydrogenase (XDH), superoxide dismutase (SOD) and catalase (CAT). The level of insulin and testosterone as well as the concentration of high density lipoprotein-cholesterol (HDL-C) showed a decrease. A remarkable increase of malondialdehyde (MDA) concentration and xanthine oxidase activity was elevated in the liver. The activity of some liver enzymes, the level of glucose and the concentrations of total cholesterol (TC), triglycerides (TG), low density- and very low density lipoprotein-cholesterol showed a significant increase. Administration of mulberry fruit powder (MFP) to irradiated rats was found to offer protection against irradiation induced oxidative stress by elevating the activity of antioxidant enzymes, enhancing liver function in addition to improving the lipid metabolism. From all results collected in this study, it could be concluded that the berries might be considered a natural antioxidant substance that can protect from radiation hazards

  5. Metabolic Effects of Mulberry Leaves: Exploring Potential Benefits in Type 2 Diabetes and Hyperuricemia

    Directory of Open Access Journals (Sweden)

    A. Hunyadi

    2013-01-01

    Full Text Available The leaves of Morus alba L. have a long history in Traditional Chinese Medicine and also became valued by the ethnopharmacology of many other cultures. The worldwide known antidiabetic use of the drug has been suggested to arise from a complex combination effect of various constituents. Moreover, the drug is also a potential antihyperuricemic agent. Considering that type 2 diabetes and hyperuricemia are vice-versa in each other’s important risk factors, the use of mulberry originated phytotherapeutics might provide an excellent option for the prevention and/or treatment of both conditions. Here we report a series of relevant in vitro and in vivo studies on the bioactivity of an extract of mulberry leaves and its fractions obtained by a stepwise gradient on silica gel. In vivo antihyperglycemic and antihyperuricemic activity, plasma antioxidant status, as well as in vitro glucose consumption by adipocytes in the presence or absence of insulin, xanthine oxidase inhibition, free radical scavenging activity, and inhibition of lipid peroxidation were tested. Known bioactive constituents of M. alba (chlorogenic acid, rutin, isoquercitrin, and loliolide were identified and quantified from the HPLC-DAD fingerprint chromatograms. Iminosugar contents were investigated by MS/MS, 1-deoxynojirimycin was quantified, and amounts of 2-O-alpha-D-galactopyranosyl-1-deoxynojirimicin and fagomine were additionally estimated.

  6. Morphological, biochemical and sensory characteristics of black mulberry fruits (Morus nigra L.)

    OpenAIRE

    Beáta Stehlíková; Marcela Čuláková; Andrej Sinica; Lucia Kucelová; Ján Brindza

    2013-01-01

    This work aimed at the morphological, biochemical, technological and sensorial determination of black mulberry (Morus nigra L. – MN)  fruitage and their utilization in the food production branches. For the experimental purposes were selected 50 genotypes of this population grown in the Pukanec surroundings. The medium fruitage weight determined in the selected collection ranged from 7.26 g (MN-1) to 1.42 g (MN-14), fruitage length in a range of 13.51 mm (MN-14) to 29.20 mm (MN-12) and the med...

  7. Influence of Fiber Bundle Morphology on the Mechanical and Bonding Properties of Cotton Stalk and Mulberry Branch Reconstituted Square Lumber

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-08-01

    Full Text Available The mechanical properties of natural fiber composites can be strengthened in the longitudinal direction if the fiber is formed in a parallel manner. Reconstituted cotton stalk lumber and mulberry branch lumber were fabricated using hot-press technology, and the effects of fiber morphology on their mechanical and bonding properties were investigated. The fiber bundle size had a great influence on the mechanical and bonding properties of the final products. The maximum specific modulus of rupture (MOR and specific modulus of elasticity (MOE of the reconstituted lumber were obtained for medium-size fiber bundles, and the maximum MOR and MOE of reconstituted cotton stalk lumber was 130.3 MPa·g-1·cm-3 and 12.9 GPa·g-1·cm-3, respectively. The maximum MOR and MOE of the mulberry branch lumber was 147.2 MPa·g-1·cm-3 and 14.7 GPa·g-1·cm-3, respectively. Mechanical interlocking structures in the lumber were observed via fluorescence microscopy, showing that phenol-formaldehyde adhesive had penetrated into several cell layers of the fiber bundle under heating and pressure. The adhesive penetration capacity was stronger when the fiber bundles were smaller in size and density. The reconstituted lumber fabricated from both materials exhibited excellent mechanical performance in the parallel direction. Therefore, reconstituted cotton stalk and mulberry branch lumber are attractive potential materials for the construction industry.

  8. The use of in vitro gas production technique to evaluate molasses supplementation to mulberry (morus alba and rice straw mixed diets

    Directory of Open Access Journals (Sweden)

    Dwi Yulistiani

    2007-12-01

    Full Text Available Mulberry foliages have high nutritive value (protein content, digestibility and degradability, therefore it is potential to be used as a supplement to poor quality roughages. The objective of this experiment was to evaluate the effect of addition of fermentable energy in the mixed of mulberry and rice straw basal diet. A control diet consisted of either rice straw (RS or urea treated rice straw mixed with mulberry foliage (URS with ratio of 60 : 40%. Treatment was formulated by supplementation of control diet with molasses (as sources of fermentable energy at 3 levels (5, 10 and 15%. The study was conducted in a 2 x 4 factorial experiment, consisted of 2 levels rice straw (untreated and urea treated and 4 levels molasses supplementation (control and 3 levels for molasses. Diets were evaluated using in vitro gas production. The fermentation kinetics was determined from the incubation of 200 mg sample during 96 hours. The calculation of the kinetics based on exponential equation P = A+ B (1-e-ct. A shorter gas production test was carried out to determine truly degradable fermented substrates (in vitro true organic matter degradability/IVTOMD by incubating 500 mg of samples 24 hours. The result showed that there was no significant interaction between rice straw treatment and molasses supplementation on fermentation characteristics, in vitro true dry matter digestibility, fermented substrate and total volatile fatty acid (VFA production. However there was a significant interaction between rice straw treatment on partitioning factor (PF, gas produced, propionic acid production and ratio between acetic acid and propionic acid. Molasses supplementation significantly (P<0.05 decreased gas production and ratio of acetic to propionic acid, and increase PF, propionic acid production in untreated rice straw mulberry (RSM basal diet. It is concluded that molasses supplementation to RSM diet decreased gas production and ratio of C2/C3, and increased PF and

  9. Adsorption of heavy metals by bio-chars produced from pyrolysis of paper mulberry from simulated industrial wastewater

    International Nuclear Information System (INIS)

    Adil, S.; Asma, M.

    2014-01-01

    Paper mulberry bio-char (by-product of pyrolysis) was evaluated for the removal of heavy metals (Cd, Cr, Cu, Zn and Pb) from simulated industrial waste water. The surface properties and surface area of the bio-char was found suitable for metal adsorption. Batch sorption studies for adsorption potential of paper mulberry bio-char for Cd, Cr, Cu, Pb and Zn were investigated under different experimental conditions of pH, temperature and contact time. Maximum removal efficiency of Cd, Cu, Pb and Zn was 97.8, 76.8, 85.6, and 82.2 % respectively at pH 12 while maximum removal of Cr was recorded (98%) at pH 2. The removal efficiency showed different behaviour at different contact times. Maximum removal efficiency of Cd, Cr, Zn was 81, 86, 61.4% at contact time of 3 hr. The maximum removal of Cu was 64.2% observed at a contact time of 4 hours while the maximum removal of Pb and Zn was 85% at contact time of 2 hr. The values of the thermodynamic parameters, enthalpy delta H, Gibbs free energy delta G of sorption and entropy delta So were calculated to define endothermic or exothermic behavior of the sorbent used. Negative value of delta G for Cd, Cu, Cr and Pb indicated paper mulberry bio-char as a feasible sorbent for the efficient removal of Cd, Cu, Cr and Pb. Negative value of delta H was observed for Cd and Pb indicating that the adsorption process is exothermic while positive value of delta H was calculated for Cu, Cr and Zn showed that the adsorption is endothermic. The results obtained showed that plant residue bio-char can act as an effective sorbent for the removal of heavy metals from aqueous solutions. (author)

  10. Formation of 14C-asparagine from 14C-precursor in mulberry leaves

    International Nuclear Information System (INIS)

    Yamashita, Tadaaki

    1981-01-01

    Since a remarkable accumulation of asparagine in the young leaves of mulberry has been observed, the formation of 14 C-asparagine from 14 C-labeled substrates in young leaves was examined in comparison with that in the mature leaves. 14 C-aspartic acid and 14 C-succinic acid expected as active precursors for asparagine biosynthesis, and 14 C-sucrose as respiratory substrates were fed respectively to the disks of young or mature leaves of mulberry. Although 14 C-succinic acid was actively converted to 14 C-asparagine, no significant amount of 14 C-asparagine was formed from 14 C-aspartic acid in two hours of feeding period. The rate of formation of 14 C-asparagine from 14 C-succinic acid in the mature leaves was slightly higher than that in the young leaves. Amino acids other than asparagine acquired 14 C from 14 C-labeled substrates were mainly aspartic acid, glutamic acid, alanine and ν-amino butyric acid in both of the leaves. Intending to accelerate the formation of asparagine in the leaves, ammonium ion was supplied to culturing solution as only source of nitrogen and plants were grown for two weeks in that solution before 14 C-labeled substrates feeding experiments. Supplying of ammonium ion brought about enhanced accumulation of asparagine in the young leaves, and caused remarkable formation of 14 C-asparagine from 14 C-aspartic acid in both of the leaves. However, the rate of 14 C-asparagine formation from 14 C-aspartic acid in the young leaves did not exceed that in the mature leaves. (author)

  11. COCOON PRODUCTION OF THE SILKWORM, Bombyx mori L. (LEPIDOPTERA: BOMBYCIDAE, FED ON LEAVES OF MULBERRY HYBRIDS

    Directory of Open Access Journals (Sweden)

    GERBSON AZEVEDO DE MENDONÇA

    2010-01-01

    Full Text Available Brazil is the fourth cocoon producer in the world. In São Paulo State there are mulberry some hybrids whose productivity are higher than the commonly cultivated varieties. The objective of this study was to evaluate the effect of mulberry hybrids (Morus spp. on the cocoon production of silkworm (Bombyx mori L.. The experiment was conducted at the Unidade Regional de Pesquisa de Gália do Instituto de Zootecnia, SP. The caterpillars were fed on leaves of the hybrids IZ-3/2, IZ-13/6, IZ-15/7, IZ-19/13, IZ-56/4, IZ-57/2, IZ- 40, IZ-64, in a rearing hut at 25 oC ± 3 oC and 75% ± 5% relative humidity. 'Korin' was used as standard. The hybrids affected the duration of the larval period and the weight of the caterpillars, prepupaes and the silk glands as well. There was a reduction in the duration of larval development when the caterpillars had been fed with hybrid IZ-56/4 and the 'Korin' variety. Hybrids IZ-57/2, IZ-56/4 and IZ-15/7 presented the highest cocoon production.

  12. Effect of Different Solvents on the Measurement of Phenolics and the Antioxidant Activity of Mulberry (Morus atropurpurea Roxb.) with Accelerated Solvent Extraction.

    Science.gov (United States)

    Yang, Jiufang; Ou, XiaoQun; Zhang, Xiaoxu; Zhou, ZiYing; Ma, LiYan

    2017-03-01

    The effects of 9 different solvents on the measurement of the total phenolics and antioxidant activities of mulberry fruits were studied using accelerated solvent extraction (ASE). Sixteen to 22 types of phenolics (flavonols, flavan-3-ols, flavanol, hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes) from different mulberry extracts were characterized and quantified using HPLC-MS/MS. The principal component analysis (PCA) was used to determine the suitable solvents to distinguish between different classes of phenolics. Additionally, the phenolic extraction abilities of ASE and ultrasound-assisted extraction (UAE) were compared. The highest extraction efficiency could be achieved by using 50% acidified methanol (50MA) as ASE solvents with 15.14 mg/gallic acid equivalents g dry weight of mulberry fruit. The PCA results revealed that the 50MA followed by 50% acidified acetone (50AA) was the most efficient solvent for the extraction of phenolics, particularly flavonols (627.12 and 510.31 μg/g dry weight, respectively), while water (W) was not beneficial to the extraction of all categories of phenolics. Besides, the results of 3 antioxidant capability assays (DPPH, ABTS free radical-scavenging assay, and ferric-reducing antioxidant power assay) showed that water-based organic solvents increased the antioxidant capabilities of the extracts compared with water or pure organic solvents. ASE was more suitable for the extraction of phenolics than UAE. © 2017 Institute of Food Technologists®.

  13. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    Science.gov (United States)

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  14. Avaliação nutricional do feno das folhas da amoreira (Morus alba L. em frangos de corte - doi: 10.4025/actascianimsci.v33i4.10679 Nutritional assessment of mulberry (Morus alba L. leaf hay in broilers - doi: 10.4025/actascianimsci.v33i4.10679

    Directory of Open Access Journals (Sweden)

    Euclides Braga Malheiros

    2011-09-01

    Full Text Available O experimento foi conduzido com o objetivo de avaliar nutricionalmente o feno das folhas de amoreira, utilizando-se de frangos de corte. Foram utilizados cinco tratamentos (Testemunha (sem amoreira, 3,16% FB, 15% de amoreira (4,14% FB, 30% de amoreira (5,09% FB, Sem amoreira (4,14% FB e Sem amoreira (5,09% FB usando-se o delineamento em blocos casualizados, com dois blocos e três repetições dentro de cada bloco e avaliados os índices de desempenho, o exame histopatológico dos órgãos viscerais e medidas morfométricas do núcleo dos hepatócitos e ácinos pancreáticos. Foi verificado o pior desempenho produtivo para as aves que ingeriram feno de folhas de amoreira, além de lesões tais como esteatose, proliferação de células de ductos hepáticos e necrose focal múltipla no fígado das aves alimentadas com o tratamento 30% de amoreira (5,09% FB, além da diminuição nas dimensões do núcleo dos hepatócitos e dos ácinos pancreáticos.The trial was carried to evaluate the nutritional effects of mulberry leaf hay in broiler chickens. Five treatments were used: control (no mulberry, 3.16% CF; 15% mulberry (4.14% CF; 30% mulberry (5.09% CF, no mulberry (4.14% CF; no mulberry (5.09% CF. A randomized blocks design was used, with two blocks and three replications into the blocks to evaluate performance index, histopathological examination of the visceral organs and morphometric measurements of the hepatocyte nucleus and pancreatic acini. A poor performance index was observed for broilers feeding on mulberry leaves; lesions such as steatosis, proliferation of hepatic duct cells and multiple necrosis were found in the livers of the chickens fed with 30% mulberry (5.09% CF, as well as size reduction of the hepatocyte nucleus and pancreatic acini. From these data, it is concluded that mulberry probably has some toxic substance which can interfere in the improvement of diet ingredients, resulting in damage to broiler chickens.

  15. Pastoreo restringido de ovejas Pelibuey en bancos de proteína de morera (Morus alba Restricted grazing of Pelibuey ewes in protein banks of mulberry (Morus alba

    Directory of Open Access Journals (Sweden)

    P.E Lara

    2007-06-01

    Full Text Available Con el objetivo de medir el efecto del pastoreo de ovejas Pelibuey en un banco de proteína de morera (Morus alba en el comportamiento productivo, se desarrolló un experimento completamente al azar y se utilizaron 10 ovejas de tercer parto con 32 + 2,6 kg de PV, considerando una oveja como unidad experimental; los tratamientos fueron: grupo testigo (T pastoreo en pasto estrella más 250 g de alimento concentrado animal-1 d-1 y pastoreo restringido (2 h d-1 en morera (M. Se encontró diferencia (PWith the objective of measuring the effect of grazing by Pelibuey ewes in a protein bank of mulberry (Morus alba on the productive performance, a completely randomized trial was carried out and 10 third parturition ewes with 32 ± 2,6 kg LW were used, considering one ewe as experimental unit; the treatments were: control -1 -1 -1 group (C grazing in star grass plus 250 g of concentrate feed animal d and restricted grazing (2 h d in mulberry (M. Difference (P < 0,05 was found in the body condition at the moment of weaning, of 2,46 ± 0,30 in C and 2,00 ± 0,24 in M. The voluntary intake (VI of the ewes was higher in mulberry, with 5,05% in pregnancy and 2,97% in lactation with regards to group C (4,28 and 2,28%. The weight at birth and weaning, as well as the MDG were better (P < 0,05 in the offspring of group C with 3,77; 15,61 and 0,207 vs 2,82; 13,01 and 0,185 kg, respectively. This was due to a lower prolificacy in C, for which the kilograms born and weaned were higher in M, with 5,86 and 23,41 vs 4,52 and 18,74 for C. The regrowth capacity of mulberry was optimal for grazing after 70 days, for which it is feasible to substitute the supplementation with concentrate in ewes by restricted grazing for 2 h in a mulberry bank during pregnancy and lactation.

  16. Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny.

    Directory of Open Access Journals (Sweden)

    Qiwei Zeng

    Full Text Available Mulberry, belonging to the order Rosales, family Moraceae, and genus Morus, has received attention because of both its economic and medicinal value, as well as for its important ecological function. The genus Morus has a worldwide distribution, however, its taxonomy remains complex and disputed. Many studies have attempted to classify Morus species, resulting in varied numbers of designated Morus spp. To address this issue, we used information from internal transcribed spacer (ITS genetic sequences to study the taxonomy of all the members of generally accepted genus Morus. We found that intraspecific 5.8S rRNA sequences were identical but that interspecific 5.8S sequences were diverse. M. alba and M. notabilis showed the shortest (215 bp and the longest (233 bp ITS1 sequence length, respectively. With the completion of the mulberry genome, we could identify single nucleotide polymorphisms within the ITS locus in the M. notabilis genome. From reconstruction of a phylogenetic tree based on the complete ITS data, we propose that the Morus genus should be classified into eight species, including M. alba, M. nigra, M. notabilis, M. serrata, M. celtidifolia, M. insignis, M. rubra, and M. mesozygia. Furthermore, the classification of the ITS sequences of known interspecific hybrid clones into both paternal and maternal clades indicated that ITS variation was sufficient to distinguish interspecific hybrids in the genus Morus.

  17. Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny.

    Science.gov (United States)

    Zeng, Qiwei; Chen, Hongyu; Zhang, Chao; Han, Minjing; Li, Tian; Qi, Xiwu; Xiang, Zhonghuai; He, Ningjia

    2015-01-01

    Mulberry, belonging to the order Rosales, family Moraceae, and genus Morus, has received attention because of both its economic and medicinal value, as well as for its important ecological function. The genus Morus has a worldwide distribution, however, its taxonomy remains complex and disputed. Many studies have attempted to classify Morus species, resulting in varied numbers of designated Morus spp. To address this issue, we used information from internal transcribed spacer (ITS) genetic sequences to study the taxonomy of all the members of generally accepted genus Morus. We found that intraspecific 5.8S rRNA sequences were identical but that interspecific 5.8S sequences were diverse. M. alba and M. notabilis showed the shortest (215 bp) and the longest (233 bp) ITS1 sequence length, respectively. With the completion of the mulberry genome, we could identify single nucleotide polymorphisms within the ITS locus in the M. notabilis genome. From reconstruction of a phylogenetic tree based on the complete ITS data, we propose that the Morus genus should be classified into eight species, including M. alba, M. nigra, M. notabilis, M. serrata, M. celtidifolia, M. insignis, M. rubra, and M. mesozygia. Furthermore, the classification of the ITS sequences of known interspecific hybrid clones into both paternal and maternal clades indicated that ITS variation was sufficient to distinguish interspecific hybrids in the genus Morus.

  18. Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny

    Science.gov (United States)

    Zeng, Qiwei; Chen, Hongyu; Zhang, Chao; Han, Minjing; Li, Tian; Qi, Xiwu; Xiang, Zhonghuai; He, Ningjia

    2015-01-01

    Mulberry, belonging to the order Rosales, family Moraceae, and genus Morus, has received attention because of both its economic and medicinal value, as well as for its important ecological function. The genus Morus has a worldwide distribution, however, its taxonomy remains complex and disputed. Many studies have attempted to classify Morus species, resulting in varied numbers of designated Morus spp. To address this issue, we used information from internal transcribed spacer (ITS) genetic sequences to study the taxonomy of all the members of generally accepted genus Morus. We found that intraspecific 5.8S rRNA sequences were identical but that interspecific 5.8S sequences were diverse. M. alba and M. notabilis showed the shortest (215 bp) and the longest (233 bp) ITS1 sequence length, respectively. With the completion of the mulberry genome, we could identify single nucleotide polymorphisms within the ITS locus in the M. notabilis genome. From reconstruction of a phylogenetic tree based on the complete ITS data, we propose that the Morus genus should be classified into eight species, including M. alba, M. nigra, M. notabilis, M. serrata, M. celtidifolia, M. insignis, M. rubra, and M. mesozygia. Furthermore, the classification of the ITS sequences of known interspecific hybrid clones into both paternal and maternal clades indicated that ITS variation was sufficient to distinguish interspecific hybrids in the genus Morus. PMID:26266951

  19. The Impact of Plastic Film Mclching on the White Mulberry Fruit Disease and Fruit Quality%果桑地表覆膜对桑白果病发病及果实品质的影响

    Institute of Scientific and Technical Information of China (English)

    阿布都肉苏力·库尔班; 师志敏; 麦麦提依明·阿尤甫; 石彩云; 吕化荣; 刘永忠

    2016-01-01

    以果桑(Morsu alba L)品种大十(M.alba cv.Big ten)为材料,分别覆盖聚乙烯白色地膜、黑色地膜和银黑反光膜,在果桑萌芽开花前于行内覆盖,比较了开花前不同地表覆膜对果桑果实桑白果病发病率以及果实品质的影响.结果表明,不同地膜覆盖均能显著降低果桑果实桑白果病的发病率,对成熟果实的可滴定酸含量有降低的趋势,同时也显著降低了果实可溶性固形物、花青素和抗坏血酸的含量.说明地表覆膜可以有效预防桑白果病的发生,但是对果实品质的影响尚待进一步试验确认.%To study the influence of different surface mulching before flowering on the white mulberry(Morsu alba L.) disease and fruit quality of mulberry,with M.alba cv.Big ten as tested material,polyethylene mulch film,black and silver black reflective film,respectively,were tightly coated before bud sprouting and flowering of mulberry.The study found that,under different film covering,infection rates of the white mulberry disease and titratable acid (TA) in ripe mulberry fruit reduced significantly.Meanwhile,several beneficial metabolites,such as total soluble solids (TAA),anthocyanin and ascorbic acid dropped significantly.The surface coating could effectively prevent the happening of the white mulberry disease;but the effects on fruit quality is yet to be further confirmed.

  20. Overexpression of the mulberry latex gene MaMLX-Q1 enhances defense against Plutella xylostella in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Liu Yan

    2017-01-01

    Full Text Available Purified mulberry latex chitinase (MLX has a role in defense against some lepidopteran insects. In this study, a full length chitinase gene, MaMLX-Q1, of 1405 bp with a 1140 bp open reading frame, was obtained from mulberry leaves by the degenerate primers and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR procedure. The gene encoded a mature protein with the predicted molecular mass of 39.38 kDa and an isoelectric point (pI of 6.43; it contained two chitin-binding domains and a hydrolase family 19 chitinase domain. Sequence alignment and phylogenetic analysis grouped it in the class I chitinase protein group. Heterogeneous expression of this MaMLX-Q1 in Arabidopsis showed non-visible alterations in growth phenotype, except for the higher transcriptional expression of MaMLX-Q1 when compared to that of wild-type Arabidopsis. This ectopic MaMLX-Q1 exhibited toxicity to the growth and development of Plutella xylostella larvae, causing significantly lower weight gain and higher mortality. These results indicate an application of MaMLX-Q1 as an insecticide for plant protection.

  1. Separation and identification of anthocyanin extracted from mulberry fruit and the pigment binding properties toward human serum albumin.

    Science.gov (United States)

    Sheng, Feng; Wang, Yuning; Zhao, Xingchen; Tian, Na; Hu, Huali; Li, Pengxia

    2014-07-16

    Purple pigments were isolated from mulberry extracts using preparative high-speed countercurrent chromatography (HSCCC) and identified by ESI-MS/MS and high performance liquid chromatography (HPLC) techniques. The solvent system containing methyl tert-butyl ether, 1-butanol, acetonitrile, water, and trifluoroacetic acid (10:30:10:50:0.05; %, v/v) was developed in order to separate anthocyanins with different polarities. Cyanidin 3-O-(6″-O-α-rhamnopyranosyl-β-galactopyranoside) (also known as keracyanin) is the major component present in mulberry (41.3%). Other isolated pigments are cyanidin 3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside) and petunidin 3-O-β-glucopyranoside. The binding characteristics of keracyanin with human serum albumin (HSA) were investigated by fluorescence and circular dichroism (CD) spectroscopy. Spectroscopic analysis reveals that HSA fluorescence quenched by keracyanin follows a static mode. Binding of keracyanin to HSA mainly depends on van der Waals force or H-bonds with average binding distance of 2.82 nm. The results from synchronous fluorescence, three-dimensional fluorescence, and CD spectra show that adaptive structure rearrangement and decrease of α-helical structure occur in the presence of keracyanin.

  2. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho; Lo, Yu-Jen [Department of Mechanical Engineering, National Taipei University of Technology (China)

    2010-10-15

    This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO{sub 2} nanofluid with an average particle size of 25 nm. Electrophoresis deposition was performed to deposit TiO{sub 2} nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO{sub 2} thin film with the thickness of 11 {mu}m. Furthermore, this TiO{sub 2} thin film was sintered at 450 C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20 nm. The electrodes, electrolyte (I{sub 3}{sup -}), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100 mW/cm{sup 2} to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (V{sub OC}) of 0.56 V, short-circuit current density (J{sub SC}) of 2.05 mA/cm{sup 2}, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with V{sub OC} of 0.555 V and J{sub SC} of 1.89 mA/cm{sup 2} and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with V{sub OC} of 0.53 V, J{sub SC} of 2.8 mA/cm{sup 2}, and FF of 0.49. (author)

  3. The Effects of Supplementary Mulberry Leaf (Morus alba) Extracts on the Trace Element Status (Fe, Zn and Cu) in Relation to Diabetes Management and Antioxidant Indices in Diabetic Rats.

    Science.gov (United States)

    Król, Ewelina; Jeszka-Skowron, Magdalena; Krejpcio, Zbigniew; Flaczyk, Ewa; Wójciak, Rafał W

    2016-11-01

    Mulberry leaves (Morus alba) have been used in folk medicine to mitigate symptoms of diabetes. The mulberry plant contains phenolic compounds that are able to decrease blood glucose concentration. Since various phenolics have antioxidant and metal binding properties, they can be used to alleviate oxidative stress and chelate trace elements involved in redox reactions. The aim of this study was to evaluate the effects of dietary supplementation with mulberry leaf extracts (acetone-water (AE) and ethanol-water (EE)) on the trace element status (Fe, Zn and Cu) in relation to diabetes management and antioxidant indices in high-fat diet-fed/STZ diabetic rats. The experiment was performed on 38 male Wistar rats with diabetes (induced by high-fat diet (HF) and streptozotocin injection) or the control fed with AIN-93M or high-fat diet. As a result, five experimental groups were used: (1) a healthy control group fed with AIN-93M; (2) an HF control group; (3) a diabetic HF group; (4) a diabetic HF + AE group (6 g/kg diet); (5) a diabetic HF + EE group (6 g/kg diet). The rats were fed with appropriate diets for 4 weeks. The content of trace elements (Fe, Zn and Cu) in the serum and tissues was measured by means of atomic absorption spectrometry (AAS). Biochemical analyses (glucose, TBARS, FRAP) were performed on the blood serum. It was shown that the AE decreased hepatic and renal Fe stores, while the EE increased hepatic Cu levels in diabetic rats and confirmed their ability to regulate the Fe and Cu status in diabetes. The results confirmed a significant hypoglycaemic and antioxidant potential of both mulberry leaf extracts in diabetic rats.

  4. Determination of pollen quality and quantity in mulberry (morus alba l.)

    International Nuclear Information System (INIS)

    Erdogan, U.

    2015-01-01

    In this study, the pollen grains of eight different mulberry types in I.spir and Pazaryolu districts of Erzurum were tested for the determination of viability, germination rates, pollen production levels and morphologically homogeneity. Viability of the pollens was determined by TTC (2, 3, 5-triphenly tetrazolium chlorid) and IKI (iodine + potassium iodide) tests. Pollen germination experiments were performed with Agar-plate (1%) method in sucrose solutions of 0, 5, 10, 15, 20 and 25% concentrations. In addition, pollen production and morphologically homogeneity were determined by the Hemacytometric method. The pollen viability of all types used in this study was obtained in high ratios. Pollen germination rates were the highest for 15% and 20% sucrose solutions. The highest pollen production level was obtained from the genotype 6. The morphologically homogeneity levels of pollens changed from 97.36 to 98.86% in types. (author)

  5. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage

    OpenAIRE

    Sung, Jung-Min; Kim, Young-Boong; Kum, Jun-Seok; Choi, Yun-Sang; Seo, Dong-Ho; Choi, Hyun-Wook; Park, Jong-Dae

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h....

  6. Production and characterization of distilled alcoholic beverages obtained by solid-state fermentation of black mulberry (Morus nigra L.) and black currant (Ribes nigrum L.).

    Science.gov (United States)

    Alonso González, Elisa; Torrado Agrasar, Ana; Pastrana Castro, Lorenzo M; Orriols Fernández, Ignacio; Pérez Guerra, Nelson

    2010-02-24

    The present study was conducted to appraise the potential of black mulberry and black currant to be used as fermentation substrates for producing alcoholic beverages obtained by distillation of the fruits previously fermented with Sacchromyces cerevisiae IFI83. In the two distillates obtained, the volatile compounds that can pose health hazards are within the limits of acceptability fixed by the European Council (Regulation 110/2008) for fruit spirits. However, the amount of volatile substances in the black currant distillate (121.1 g/hL absolute alcohol (aa)) was lower than the minimum limit (200 g/hL aa) fixed by the aforementioned regulation. The mean volatile composition of both distillates was different from other alcoholic beverages such as four commercial Galician orujo spirits, Portuguese bagaceiras, and two distillates obtained from fermented whey and blackberry. The results obtained showed the feasibility for obtaining distillates from fermented black mulberry and black currant, which have their own distinctive characteristics.

  7. An Approach to Function Annotation for Proteins of Unknown Function (PUFs in the Transcriptome of Indian Mulberry.

    Directory of Open Access Journals (Sweden)

    K H Dhanyalakshmi

    Full Text Available The modern sequencing technologies are generating large volumes of information at the transcriptome and genome level. Translation of this information into a biological meaning is far behind the race due to which a significant portion of proteins discovered remain as proteins of unknown function (PUFs. Attempts to uncover the functional significance of PUFs are limited due to lack of easy and high throughput functional annotation tools. Here, we report an approach to assign putative functions to PUFs, identified in the transcriptome of mulberry, a perennial tree commonly cultivated as host of silkworm. We utilized the mulberry PUFs generated from leaf tissues exposed to drought stress at whole plant level. A sequence and structure based computational analysis predicted the probable function of the PUFs. For rapid and easy annotation of PUFs, we developed an automated pipeline by integrating diverse bioinformatics tools, designated as PUFs Annotation Server (PUFAS, which also provides a web service API (Application Programming Interface for a large-scale analysis up to a genome. The expression analysis of three selected PUFs annotated by the pipeline revealed abiotic stress responsiveness of the genes, and hence their potential role in stress acclimation pathways. The automated pipeline developed here could be extended to assign functions to PUFs from any organism in general. PUFAS web server is available at http://caps.ncbs.res.in/pufas/ and the web service is accessible at http://capservices.ncbs.res.in/help/pufas.

  8. Effects of Supplementation of Mulberry (Morus alba) Foliage and Urea-rice Bran as Fermentable Energy and Protein Sources in Sheep Fed Urea-treated Rice Straw Based Diet.

    Science.gov (United States)

    Yulistiani, Dwi; Jelan, Z A; Liang, J B; Yaakub, H; Abdullah, N

    2015-04-01

    A digestibility study was conducted to evaluate the effects of supplementing mulberry foliage and urea rice-bran as a source of fermentable energy and protein to 12 sheep fed diets based on urea-treated rice straw (TRS). The three dietary treatments were: T1, TRS with mulberry; T2, TRS with 50% mulberry replaced with rice bran and urea; and T3, TRS with rice bran and urea. The study was arranged in a completely randomized design with four replications for each treatment. The sheep were fed one of the three diets and the supplements were offered at 1.2% of the body weight (BW) and the TRS was provided ad libitum. There were no differences (p>0.05) among the three treatment groups with respect to dry matter (DM) intake (76.8±4.2 g/kg BW(0.75)) and DM, organic matter (OM), and crude protein (CP) digestibility (55.3±1.22; 69.9±0.85; 46.3±1.65% respectively for DM, OM, and CP). The digestibility of fiber (neutral detergent fiber [NDF] and acid detergent fiber) was significantly lower (penergy and protein for sheep fed TRS based diet. The suggested level of supplementation is 1.2% of BW or 32% of the total diet since it resulted in similar effects on the intake of DM, OM, and NDF, digestibility of DM, OM, and CP, N utilization and microbial supply when compared to rice bran and urea supplementation.

  9. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    International Nuclear Information System (INIS)

    Adavallan, K; Krishnakumar, N

    2014-01-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15−53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition. (papers)

  10. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    Science.gov (United States)

    Adavallan, K.; Krishnakumar, N.

    2014-06-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.

  11. Statistical interpretation of chromatic indicators in correlation to phytochemical profile of a sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes.

    Science.gov (United States)

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T

    2018-01-15

    The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.

  12. Effect of four varieties of mulberry on biochemistry and nutritional physiology of mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    M. Oftadeh

    2014-08-01

    Full Text Available The effects of four mulberry varieties (Kenmochi, Ichinose, Shin Ichinose, Mahalii on nutritional indices and digestive proteolytic and amylolytic activities of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae were determined at 24±1°C, 75±5% RH and a photoperiod of 16:8 L:D. Fifth instar larvae reared on Shin Ichinose showed the highest efficiency of conversion of digested food and efficiency of conversion of ingested food (3.82±0.16% and 3.11±0.07%, respectively. Approximate digestibility values of the fourth instar larvae were highest (95.23±0.73% and lowest (91.77±1.45% on Kenmochi and Shin Ichinose, respectively. The fifth instar larvae fed on Kenmochi had the highest consumption index (4.6±0.73 and lowest relative growth rate (0.03±0.10, respectively. Our results showed that the highest protease activity in optimal pH was on Malalii variety (0.97 U/mg and the lowest was on Kenmochi (0.75 U/mg. In addition, the highest amylase activity in optimal pH was on Mahalii (0.17 U/mg and lowest on Kenmochi (0.103 U/mg. Specific proteolytic analysis showed that larvae feeding on Mahalii had the highest activity of trypsin and elastase (2.30 and 2.13 U/mg, respectively. This research showed that plasticity in food utilization and enzyme activity is functionally relevant to host plant cultivars. The results of nutritional indices and activity of digestive enzymes indicated that Kenmochi was an unsuitable host for feeding of Glyphodes pyloalis.

  13. Insect food for astronauts: gas exchange in silkworms fed on mulberry and lettuce and the nutritional value of these insects for human consumption during deep space flights.

    Science.gov (United States)

    Tong, L; Yu, X; Liu, H

    2011-10-01

    In this study, silkworm moth (Bombyx mori L.) larvae were regarded as an animal protein source for astronauts in the bioregenerative life support system during long-term deep space exploration in the future. They were fed with mulberry and stem lettuce leaves during the first three instars and the last two instars, respectively. In addition, this kind of environmental approach, which utilised inedible biomass of plants to produce animal protein of high quality, can likewise be applied terrestrially to provide food for people living in extreme environments and/or impoverished agro-ecosystems, such as in polar regions, isolated military bases, ships, submarines, etc. Respiration characteristics of the larvae during development under two main physiological conditions, namely eating and not-eating of leaves, were studied. Nutrient compositions of silkworm powder (SP), ground and freeze-dried silkworms on the 3rd day of the 5th instar larvae, including protein, fat, vitamins, minerals and fatty acids, were measured using international standard methods. Silkworms' respiration rates, measured when larvae were eating mulberry leaves, were higher than those of similar larvae that hadn't eaten such leaves. There was a significant difference between silkworms fed on mulberry leaves and those fed on stem lettuce in the 4th and 5th instars (Pinsects were under the two physiological statuses (P<0.01). Moreover, silkworms' respiration quotient under the eating regime was larger than when under the not-eating regime. The SP was found to be rich in protein and amino acids in total; 12 essential vitamins, nine minerals and twelve fatty acids were detected. Moreover, 359 kcal could be generated per 100 gram of SP (dry weight).

  14. Effects of Supplementation of Mulberry ( Foliage and Urea-rice Bran as Fermentable Energy and Protein Sources in Sheep Fed Urea-treated Rice Straw Based Diet

    Directory of Open Access Journals (Sweden)

    Dwi Yulistiani

    2015-04-01

    Full Text Available A digestibility study was conducted to evaluate the effects of supplementing mulberry foliage and urea rice-bran as a source of fermentable energy and protein to 12 sheep fed diets based on urea-treated rice straw (TRS. The three dietary treatments were: T1, TRS with mulberry; T2, TRS with 50% mulberry replaced with rice bran and urea; and T3, TRS with rice bran and urea. The study was arranged in a completely randomized design with four replications for each treatment. The sheep were fed one of the three diets and the supplements were offered at 1.2% of the body weight (BW and the TRS was provided ad libitum. There were no differences (p>0.05 among the three treatment groups with respect to dry matter (DM intake (76.8±4.2 g/kg BW0.75 and DM, organic matter (OM, and crude protein (CP digestibility (55.3±1.22; 69.9±0.85; 46.3±1.65% respectively for DM, OM, and CP. The digestibility of fiber (neutral detergent fiber [NDF] and acid detergent fiber was significantly lower (p<0.05 for T3 (46.2 and 46.6 respectively compared to T1 (55.8 and 53.7 respectively and T2 (54.1 and 52.8 respectively. Nitrogen (N intake by sheep on diet T3 was significantly (p<0.05 higher than sheep fed diet T1. However, N balance did not differ among the three diets (3.0±0.32 g/d. In contrast, the rumen ammonia (NH3-N concentrations in sheep fed T2 and T3 were significantly (p<0.05 higher than in sheep fed T1. The NH3-N concentrations for all three diets were above the critical value required for optimum rumen microbial growth and synthesis. Total volatile fatty acid concentrations were highest (p<0.05 in T1 (120.3 mM, whilst the molar proportion of propionic acid was highest in T3 (36.9%. However, the microbial N supply in sheep fed T1 and T3 was similar but was significantly (p<0.05 higher than for sheep fed T2. It was concluded that mulberry foliage is a potential supplement of fermentable energy and protein for sheep fed TRS based diet. The suggested level of

  15. Phylogeography of herbarium specimens of asexually propagated paper mulberry [Broussonetia papyrifera (L.) L'Hér. ex Vent. (Moraceae)] reveals genetic diversity across the Pacific.

    Science.gov (United States)

    Payacan, Claudia; Moncada, Ximena; Rojas, Gloria; Clarke, Andrew; Chung, Kuo-Fang; Allaby, Robin; Seelenfreund, Daniela; Seelenfreund, Andrea

    2017-09-01

    Paper mulberry or Broussonetia papyrifera (L.) L'Hér. ex Vent. (Moraceae) is a dioecious species native to continental South-east Asia and East Asia, including Taiwan, that was introduced to the Pacific by pre-historic voyagers and transported intentionally and propagated asexually across the full range of Austronesian expansion from Taiwan to East Polynesia. The aim of this study was to gain insight into the dispersal of paper mulberry into Oceania through the genetic analysis of herbaria samples which represent a more complete coverage of the historical geographical range of the species in the Pacific before later introductions and local extinctions occurred. DNA from 47 herbarium specimens of B. papyrifera collected from 1882 to 2006 from different islands of the Pacific was obtained under ancient DNA protocols. Genetic characterization was based on the ribosomal internal transcribed spacer ITS-1 sequence, a sex marker, the chloroplast ndhF-rpl32 intergenic spacer and a set of ten microsatellites developed for B. papyrifera. Microsatellites allowed detection of 15 genotypes in Near and Remote Oceanian samples, in spite of the vegetative propagation of B. papyrifera in the Pacific. These genotypes are structured in two groups separating West and East Polynesia, and place Pitcairn in a pivotal position. We also detected the presence of male plants that carry the Polynesian chloroplast DNA (cpDNA) haplotype, in contrast to findings in contemporary B. papyrifera populations where only female plants bear the Polynesian cpDNA haplotype. For the first time, genetic diversity was detected among paper mulberry accessions from Remote Oceania. A clear separation between West and East Polynesia was found that may be indicative of pulses during its dispersal history. The pattern linking the genotypes within Remote Oceania reflects the importance of central Polynesia as a dispersal hub, in agreement with archaeological evidence. © The Author 2017. Published by Oxford

  16. A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane

    Science.gov (United States)

    Yang, Jinxin; Pi, Pihui; Wen, Xiufang; Zheng, Dafeng; Xu, Mengyi; Cheng, Jiang; Yang, Zhuoru

    2009-01-01

    A superhydrophobic surface was obtained by combining application of CaCO 3/SiO 2 mulberry-like composite particles, which originated from violent stirring and surface modification, and self-assembly of polydimethylsiloxane. Water contact angle and sliding angle of the superhydrophobic surface were measured to be about 164 ± 2.5° and 5°, respectively. The excellent hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness (fabricated by composite particles) and the low surface energy (provided by polydimethylsiloxane). This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  17. Nota Técnica: Comportamiento productivo de la morera sometida a dos alternativas de fertilización orgánica Technical Note: Productive performance of mulberry subject to two alternatives of organic fertilization

    Directory of Open Access Journals (Sweden)

    Gertrudis Pentón

    2007-11-01

    Full Text Available Con el objetivo de evaluar el comportamiento agronómico de la morera (Morus alba L. var. Acorazonada ante dos alternativas de fertilización orgánica, se realizó un estudio en áreas de la EEPF «Indio Hatuey». El suelo característico del lugar es del tipo Ferralítico Rojo hidratado; las precipitaciones oscilaron entre 1 000 y 1 145 mm de lluvia por año. En el corte de establecimiento se obtuvieron variaciones altamente significativas entre los tratamientos: testigo sin fertilizar, asociación morera-Albizia lebbeck como abono verde vs morera fertilizada con materia orgánica (41,6; 45,0 y 72,4 g de biomasa seca comestible por individuo, respectivamente. Sin embargo, en la época lluviosa del segundo año de explotación, la producción acumulada no mostró variaciones significativas entre la asociación y la morera fertilizada (88,8 y 86,7 g de biomasa seca comestible por individuo, aunque sí con respecto al testigo que solo produjo 40,7 g. Se concluye que el aporte de materia orgánica al suelo durante el establecimiento de las plantaciones de morera y/o la asociación de A. lebbeck manejada como abono verde, proporcionan una ventaja significativa en la respuesta productiva del arbusto forrajero, y se destacó la segunda alternativa por su carácter endógeno.A study was carried out in areas of the EEPF “Indio Hatuey”, with the objective of evaluating the agronomic performance of mulberry (Morus alba L. var. Acorazonada before two alternatives of organic fertilization. The soil of the site is hydrated Ferralitic Red; rainfall oscillated between 1 000 and 1 145 mm per year. In the establishment cutting highly significant variations were obtained among the treatments: control without fertilization, association mulberry-Albizia lebbeck as green manure vs mulberry fertilized with organic matter (41,6; 45,0 and 72,4 g of edible dry biomass per individual, respectively. Nevertheless, in the rainy season of the second year of exploitation

  18. Immunomodulatory activity of methanolic extract of Morus alba Linn. (mulberry) leaves.

    Science.gov (United States)

    Bharani, Shendige Eswara Rao; Asad, Mohammed; Dhamanigi, Sunil Samson; Chandrakala, Gowda Kallenahalli

    2010-01-01

    The leaves of Morus alba Linn. (Family: Moraceae) commonly known as mulberry are mainly used as food for the silkworms and they are sometimes eaten as vegetable or used as cattle fodder in different parts of the world. The effect of Morus alba on the immune system was evaluated by using different experimental models such as carbon clearance test, cyclophosphamide induced neutropenia, neutrophil adhesion test, effect on serum immunoglobulins, mice lethality test and indirect haemagglutination test. Methanolic extract of Morus alba was administered orally at low dose and high dose of 100 mg/kg and 1 g/kg respectively and Ocimum sanctum (100 mg/kg, po) was used as standard drug. Morus alba extract in both doses increased the levels of serum immunoglobulins and prevented the mortality induced by bovine Pasteurella multocida in mice. It also increased the circulating antibody titre in indirect haemagglutination test. On the other hand, it showed significant increase in the phagocytic index in carbon clearance assay, a significant protection against cyclophosphamide induced neutropenia and increased the adhesion of neutrophils in the neutrophil adhesion test. Hence, it was concluded that Morus alba increases both humoral immunity and cell mediated immunity.

  19. Mulberry-like dual-drug complicated nanocarriers assembled with apogossypolone amphiphilic starch micelles and doxorubicin hyaluronic acid nanoparticles for tumor combination and targeted therapy.

    Science.gov (United States)

    Li, Ke; Liu, Hao; Gao, Wei; Chen, Mu; Zeng, Yun; Liu, Jiajun; Xu, Liang; Wu, Daocheng

    2015-01-01

    A comprehensive strategy for the preparation of mulberry-like dual-drug complicated nanocarriers (MLDC NCs) with high drug loading and adjustable dual-drug ratio was developed. First, apogossypolone (ApoG2) amphiphilic starch micelles (AASt MCs) were prepared by self-assembly process, and doxorubicin (DOX) hyaluronic acid nanoparticles (DHA NPs) were prepared by DOX absorption with excess HA by electrostatic absorption. MLDC NCs were obtained by adsorption of 8-9 DHA NPs around one AASt MC via electrostatic interaction. UV-visible and fluorescence spectrophotometers were used to measure the entrapment efficiency and loading efficiency of the two drugs. Transmission electron microscope and dynamic light scattering method were used to observe the size distribution and morphology of the particles. The tumor-targeting feature caused by HA-receptor mediation was confirmed by in vitro cell uptake and in vivo near-infrared fluorescence imaging. MLDC NCs were found to possess a mulberry-like shape with a dynamic size of 83.1 ± 6.6 nm. The final encapsulation efficiencies of ApoG2 and DOX in MLDC NCs were 94 ± 1.7% and 87 ± 5.8% with respect to drug-loading capacities of 13.3 ± 1.2% and 13.1 ± 3.7%, respectively. Almost no ApoG2 release was found within 80 h and less than 30% of DOX was released into the outer phase even after 72 h. In vivo fluorescence imaging revealed that MLDC NCs had highly efficient targeting and accumulation at the tumor in vivo and was maintained for 96 h after being injected intravenously in mice. Low LD50 for the two drugs in MLDC NCs was found after acute toxicity test. One-fifth normal dosage of the two drugs in MLDC NCs exhibited significantly higher anti-tumor efficiency in reducing tumor size compared with free drugs combination or single drug-loaded nanoparticles individually, indicating that the mulberry-like dual-drug nanoplatform has a great potential in tumor therapy. Copyright © 2014 Elsevier Ltd. All rights

  20. Mercury adsorption of modified mulberry twig chars in a simulated flue gas.

    Science.gov (United States)

    Shu, Tong; Lu, Ping; He, Nan

    2013-05-01

    Mulberry twig chars were prepared by pyrolysis, steam activation and impregnation with H2O2, ZnCl2 and NaCl. Textural characteristics and surface functional groups were performed using nitrogen adsorption and FTIR, respectively. Mercury adsorption of different modified MT chars was investigated in a quartz fixed-bed absorber. The results indicated that steam activation and H2O2-impregnation can improve pore structure significantly and H2O2-impregnation and chloride-impregnation promote surface functional groups. However, chloride-impregnation has adverse effect on pore structure. Mercury adsorption capacities of impregnated MT chars with 10% or 30% H2O2 are 2.02 and 1.77 times of steam activated MT char, respectively. Mercury adsorption capacity of ZnCl2-impregnated MT char increase with increasing ZnCl2 content and is better than that of NaCl-impregnated MT char at the same chloride content. The modified MT char (MT873-A-Z5) prepared by steam activation following impregnation with 5% ZnCl2 exhibits a higher mercury adsorption capacity (29.55 μg g(-1)) than any other MT chars. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora.

    Science.gov (United States)

    Chen, Yao; Li, Qian; Zhao, Ting; Zhang, Zhen; Mao, Guanghua; Feng, Weiwei; Wu, Xiangyang; Yang, Liuqing

    2017-12-15

    Anthocyanins (ACNs) are naturally occurring components of human diet. Evidence has accumulated regarding the positive association of their intake with chronic disease. Because microbiota has been considered as a metabolic organ, the bacterial-dependent metabolisms of three types of ACNs from mulberry fruits (cyanidin-3-glucoside (C3G), cyanidin-3-rutinoside (C3R), delphinidin-3-rutinoside (D3R)) during a simulation of large intestine conditions were investigated. ACNs and metabolites were analysed and characterized by high performance liquid chromatography-electrospray ionization-mass spectrum (HPLC-ESI-MS/MS). C3G disappeared after 6h of metabolism, while C3R and D3R were no longer detected after 8h. The metabolism of C3G and C3R mainly resulted in the formation of protocatechuic, vanillic, and p-coumaric acids, as well as 2,4,6-trihydroxybenzaldehyde, while the main metabolites of D3R were gallic acid, syringic acid and 2,4,6-trihydroxybenzaldehyde. This research indicated that the intake of ACNs may result in the appearance of specific metabolites that exert a protective effect in the host physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  3. Sol-Gel TiO2 thin films sensitized with the mulberry pigment cyanidin

    Directory of Open Access Journals (Sweden)

    Emerson Henrique de Faria

    2007-12-01

    Full Text Available TiO2 films have various applications, among them solar cells and photodegradation of pollutants. In this study, we investigated TiO2 films functionalized with the organic dye cyanidin extracted from black mulberry (Morus nigra. The TiO2 was functionalized by the sol-gel method and the film was deposited on glass substrates by dip-coating. Our aim was to investigate the interaction between the semiconductor and the dye, as well as the influence of the velocity and number of deposits on the characteristics of the film. Using ultraviolet-visible spectroscopy, we observed a shift from the maximum absorption band at 545 nm for the dye’s ethanol solution to 595 nm for the film, indicating interaction of the cyanidin with the TiO2. The absorption spectra in the infrared region of the functionalized TiO2 particles showed bands characteristic of the oxide and indicated their interaction with the dye. Using profilometry and m-line techniques, we found that the films presented thicknesses in the order of 100 nm. A SEM analysis confirmed the high density of the films.

  4. Improvement effect of gamma-irradiated complex leaf extract of date plum, persimmon and mulberry on UVB-induced skin damage

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ji Won; Cho, Byoung Ok; Che, Denis Nchang; Shin, Jae Young; Fang, Chong Zhou; Jang, Seon Il [Jeonju University, Jeonju (Korea, Republic of)

    2016-11-15

    This study was conducted to evaluate the improvement effect of gamma-irradiated complex leaf extract of Date Plum, Persimmon and Mulberry (γ-DPME) on UVB induced skin damage. The samples were gamma irradiated at doses of 10 kGy. γ-DPME treatment tended to decrease UVB-induced immune cell infiltration and erthyderma index than the groups treated with non-gamma-irradiated DPME (n-DPME) and L-ascobic acid (AA). In addition, γ-DPME treatment significantly decreased skin thickness, melanin index and mast cell infiltration in UVB-irradiated skin. Moreover, γ-DPME treatment significantly decreased the compound 48/80-induced scratching behavior and immune cell infiltration than n-DPME group. These results show that gamma irradiation can be used to increase the physiological activities of DPME.

  5. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  6. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia.

    Science.gov (United States)

    Natić, Maja M; Dabić, Dragana Č; Papetti, Adele; Fotirić Akšić, Milica M; Ognjanov, Vladislav; Ljubojević, Mirjana; Tešić, Živoslav Lj

    2015-03-15

    In this study, the polyphenolic profile of 11 Morus alba fruits grown in the Vojvodina region was investigated. Ultra high performance liquid chromatography (UHPLC) coupled with Linear Trap Quadrupole and OrbiTrap mass analyzer, and UHPLC coupled with a diode array detector and a triple-quadrupole mass spectrometer were used for the identification and quantification of the polyphenols, respectively. A total of 14 hydroxycinnamic acid esters, 13 flavonol glycosides, and 14 anthocyanins were identified in the extracts with different distributions and contents according to the sampling. The total phenolic content ranged from 43.84 to 326.29 mg GAE/100g frozen fruit. The radical scavenging capacity (50.18-86.79%), metal chelating ability (0.21-8.15%), ferric ion reducing power (0.03-38.45 μM ascorbic acid) and superoxide anion radical scavenging activity (16.53-62.83%) were assessed. The findings indicated that mulberry polyphenolics may act as potent superoxide anion radical scavengers and reducing agents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Genome-Wide Identification and Characterization of Four Gene Families Putatively Involved in Cadmium Uptake, Translocation and Sequestration in Mulberry

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2018-06-01

    Full Text Available The zinc-regulated transporters, iron-regulated transporter-like proteins (ZIPs, the natural resistance and macrophage proteins (NRAMP, the heavy metal ATPases (HMAs and the metal tolerance or transporter proteins (MTPs families are involved in cadmium (Cd uptake, translocation and sequestration in plants. Mulberry (Morus L., one of the most ecologically and economically important (as a food plant for silkworm production genera of perennial trees, exhibits excellent potential for remediating Cd-contaminated soils. However, there is no detailed information about the genes involved in Cd2+ transport in mulberry. In this study, we identified 31 genes based on a genome-wide analysis of the Morus notabilis genome database. According to bioinformatics analysis, the four transporter gene families in Morus were distributed in each group of the phylogenetic tree, and the gene exon/intron structure and protein motif structure were similar among members of the same group. Subcellular localization software predicted that these transporters were mainly distributed in the plasma membrane and the vacuolar membrane, with members of the same group exhibiting similar subcellular locations. Most of the gene promoters contained abiotic stress-related cis-elements. The expression patterns of these genes in different organs were determined, and the patterns identified, allowing the categorization of these genes into four groups. Under low or high-Cd2+ concentrations (30 μM or 100 μM, respectively, the transcriptional regulation of the 31 genes in root, stem and leaf tissues of M. alba seedlings differed with regard to tissue and time of peak expression. Heterologous expression of MaNRAMP1, MaHMA3, MaZIP4, and MaIRT1 in Saccharomyces cerevisiae increased the sensitivity of yeast to Cd, suggested that these transporters had Cd transport activity. Subcellular localization experiment showed that the four transporters were localized to the plasma membrane of yeast and

  8. Physical and hydrologic environments of the Mulberry coal reserves in eastern Kansas

    Science.gov (United States)

    Kenny, J.F.; Bevans, H.E.; Diaz, A.M.

    1982-01-01

    Strippable reserves of Mulberry coal underlie an area of approximately 300 square miles of Miami, Linn, and Bourbon Counties of eastern Kansas. Although subject to State reclamation law, current and projected strip mining of this relatively thin coal seam could alter and hydrologic environment of the study area. Drained by the Marais des Cygnes and Little Osage Rivers and their tributaries, this area is characterized by low relief and moderately impermeable soils. Streamflows are poorly sustained by ground-water discharge and fluctuate widely due to climatic extremes and usage of surface-water supplies. Because ground-water supplies are generally unreliable in quantity and quality, surface water is used to meet most water requirements in the study area. Primary used of surface waters are for domestic supplies, maintenance of wildlife and recreational areas, and cooling needs at LaCygne Power Plant. The prevailing chemical type of the natural streamflow is calcium bicarbonate, with concentrations of dissolved solids generally less than 500 milligrams per liter and pH near neutral. Additional streamflow and water-quality data are needed to evaluate the premining characteristics of and the anticipated changes in the hydrologic environment as strip mining proceeds within the study area. A network of data-collection stations and a sampling scheme have been established to acquire this additional information. (USGS)

  9. Leaf Surface Scanning Electron Microscopy of 16 Mulberry Genotypes (Morus spp. with Respect to their Feeding Value in Silkworm (Bombyx mori L. Rearing Microscopía Electrónica de Barrido de la Superficie Foliar de 16 Genotipos de Morus spp. en Relación a su Valor Alimenticio para Crianza del Gusano de la Seda (Bombyx mori L.

    Directory of Open Access Journals (Sweden)

    B.K Singhal

    2010-06-01

    Full Text Available Mulberry (Morus spp. is the only silkworm (Bombyx mori L. food plant. In Indian sub tropics, S-146 is the only popular and ruling mulberry genotype for silkworm rearing. As a result, mulberry leaf availability is always the limiting factor, and therefore, sub tropics are contributing less than 1% of the country’s total silk production compared with more than 60% under tropical conditions. Besides climatic conditions, this is due to a very limited number of mulberry genotypes available in this region for silkworm rearing. However, in the mean time, 15 mulberry genotypes viz. ‘Tr-10’,‘Chinese White’,‘K-2’,‘Sujanpur Local’,‘BC2-59’,‘S-1635’,‘C-1730’,‘Mandalaya’,‘S-30’‘(Vishala,‘RFS-175’,‘Anantha’,‘C-2016’,‘C-2017’,‘S-41’ and‘V-1’ were also introduced in the sub tropics, but remained unexplored. In sericulture, leaf surface is also an important parameter for, both, the silkworm’s acceptability of not having any feeding impediment and the mulberry improvement programs. The objective of this study was to explore the possibilities of using these 16 mulberry genotypes for their leaf surface characteristics by scanning electron microscopy and using them for sericulture. Based on leaf yield, stomatal size, stomatal number per unit of area and trichomes and idioblasts length, these genotypes were grouped into different categories. The mulberry genotype ‘Mandalaya’, in addition to the ruling genotype ‘S-146’ excelled because of their higher leaf yield and desired leaf surface characteristics. Furthermore, the genotypes ‘K-2’, ‘S-41’ and ‘Sujanpur Local’ are also suggested to develop high yield mulberry genotypes in the Indian sub tropics.La morera (Morus spp. es la única planta de alimento para el gusano de la seda (Bombyx mori L.. En los sub-trópicos de la India, ‘S-146’ es el único genotipo popular y predominante de morera para criarlo. Como resultado, la

  10. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  11. Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations.

    Science.gov (United States)

    Ma, Qianyun; Liang, Tieqiang; Cao, Lele; Wang, Lijuan

    2018-03-01

    The aim of this study was to prepare a visually responsive intelligent film based on poly (vinyl alcohol) (PVA), chitosan nanoparticles (CHNPs) and mulberry extracts (MBE). CHNPs were first prepared by using ionotropic gelation method to enhance the mechanical properties of PVA based films. The morphology, particle size, zeta potential and crystallinity of CHNPs were measured. The resultant CHNPs were spherical with a diameter of 381.2nm, with high stability and a zeta potential of 49.1±1.33mV. The film with 6% CHNPs (P-C6) had the highest tensile strength (∼73.43MPa). MBE was incorporated into the P-C6 film. The film containing 20% MBE had the highest tensile strength and showed visible color responses to variations across pH 1-13. The film was tested by monitoring the spoilage of fish. The color of the film changed from red to green as the fish spoiled. Therefore, the pH responsive intelligent film developed here can be used as a package label to detect food spoilage. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities

    Energy Technology Data Exchange (ETDEWEB)

    Blawert, C., E-mail: carsten.blawert@gkss.d [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Fechner, D.; Hoeche, D.; Heitmann, V.; Dietzel, W.; Kainer, K.U. [GKSS Forschungszentrum Geesthacht GmbH, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Zivanovic, P.; Scharf, C.; Ditze, A.; Groebner, J.; Schmid-Fetzer, R. [TU Clausthal, Institut fuer Metallurgie, Robert-Koch-Str. 42, 38678 Clausthal-Zellerfeld (Germany)

    2010-07-15

    The development of secondary magnesium alloys requires a completely different concept compared with standard alloys which obtain their corrosion resistance by reducing the levels of impurities below certain alloy and process depending limits. The present approach suitable for Mg-Al based cast and wrought alloys uses a new concept replacing the {beta}-phase by {tau}-phase, which is able to incorporate more impurities while being electro-chemically less detrimental to the matrix. The overall experimental effort correlating composition, microstructure and corrosion resistance was reduced by using thermodynamic calculations to optimise the alloy composition. The outcome is a new, more impurity tolerant alloy class with a composition between the standard AZ and ZC systems having sufficient ductility and corrosion properties comparable to the high purity standard alloys.

  13. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  14. FORMULASI, KANDUNGAN GIZI, DAN DAYA TERIMA KUE-KUE TRADISIONAL MAKASSAR BERBASIS TEPUNG PUPAE–MULBERRY (PURY SEBAGAI MAKANAN BERGIZI MASA DEPAN

    Directory of Open Access Journals (Sweden)

    Clara Meliyanti Kusharto

    2016-04-01

    Full Text Available ABSTRACTThe aims of this research was to formulate and improve the nutrient content and define of makassar traditional snack which was enriched with Pupae-mulberry (Pury powder. Experimental study was conducted and proximate analysis was used to determine nutrient content of the product and acceptance test was used by hedonic test of 25-32 semi-trained panelists. This research produced three kinds of traditional snacks, namely Rampari sponge cake, Deppatori Pury, and Pury sticks. Based on organoleptic test product Deppatori was selected to develop further by mixing basic substances consist of rice flour, glutinous rice flour, brown sugar, sesame and water with pupae-mulberry (pury powder. The formulas were F1 (pury powder 5%, F2 (pury powder 10%, and F3 (pury powder 15%. The study showed that by hedonic scale, the panel preferred F2 because the addition more than 10% of Pury powder will make texture harder. Hedonic quality scale indicated that F2 had characteristics yellowish brown color, taste and flavor close to neutral. Nutrient content of Deppatori Pury 10% (per 100 g was water 7.92 g, ash 1.19 g, protein 5.80 g, fat 25.99 g, carbohydrates 67.02 g, energy 484 kcal, calcium 74.14 mg, iron 1.96 mg, phosporus 97.23 mg, respectively and result of microbiology test was 390 cfu/g. Protein contribution of Deppatori-Pury 10% per 100 g serving size to RDA of elderly was 9.4-10.4%. Therefore, two serving size is recommended for Deppatori-Pury as future food to reach 20% RDA protein.Keywords: acceptability, deppatori, makassar’s snack, pury powderABSTRAKTujuan penelitian adalah melakukan formulasi dan meningkatkan kandungan zat gizi serta daya terima kue-kue tradisional Makassar yang diperkaya tepung pupae-mulberry (Pury. Penelitian ini merupakan studi eksperimental yang melakukan analisis kandungan zat gizi secara proksimat dan uji penerimaan panelis (organoleptik menggunakan uji hedonik oleh 25-32 orang panelis semi terlatih. Pembuatan kue

  15. Proximate Composition and Antioxidant Potential of Leaves from Three Varieties of Mulberry (Morus sp.): A Comparative Study

    Science.gov (United States)

    Iqbal, Shahid; Younas, Umer; Sirajuddin; Chan, Kim Wei; Sarfraz, Raja Adil; Uddin, Kamal

    2012-01-01

    In this study, leaves of three indigenous varieties of Mulberry namely, Morus alba L., Morus nigra L. and Morus rubra L. were investigated for their antioxidant potential and their proximate composition was determined. The yields of 80% methanolic extracts ranged between 8.28–13.89%. The contents of total phenolics (TPC), total flavonoids (TFC) and ascorbic acid (AA) ranged between 16.21–24.37 mg gallic acid equivalent (GAE)/g, 26.41–31.28 mg rutin equivalent (RE)/g and 0.97–1.49 mg/g, respectively. The antioxidant activity of leaf extracts was evaluated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical scavenging actity, 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid (ABTS•+) radical cation scavenging capacity and ferric ion reducing power and values ranged between 1.89–2.12, 6.12–9.89 and 0.56–0.97 mM Trolox equivalent/g of dried leaves, respectively. The investigated features reveal good nutritive and antioxidant attributes of all the varieties with mutually significant differences. PMID:22837655

  16. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  17. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate.

    Science.gov (United States)

    Fazaeli, Mahboubeh; Hojjatpanah, Ghazale; Emam-Djomeh, Zahra

    2013-02-01

    Black mulberry juice was concentrated by different heating methods, including conventional heating and microwave heating, at different operational pressures (7.3, 38.5 and 100 kPa). The effects of each method on evaporation rate, quality attributes of concentrated juice were investigated. The final juice concentration of 42° Brix was achieved in 140, 120, and 95 min at 100, 38.5, and 7.3 kPa respectively by using a rotary evaporator. Applying microwave energy decreased required times to 115, 95, and 60 min. The changes in color, anthocyanin content during the concentration processes were investigated. Hunter parameters (L, a, and b) were measured to estimate the intensity of color loss. All Hunter color parameters decreased with time. Results showed that the degradation of color and consequently anthocyanins, was more pronounced in rotary evaporation compared to microwave heating method.

  18. Mulberry Tumors in Retina and Nasal Hamartoma in a Patient With Tuberous Sclerosis

    Directory of Open Access Journals (Sweden)

    S. Reshadat

    2008-10-01

    Full Text Available Introduction: Tuberous Sclerosis (TS is an autosomal dominant disease that affects the brain, skin, eye, heart, kidney even bones. The commonest presentation is seizures in infancy or early childhood (in 80% of cases, mental retardation (in 44%of cases. Characteristic skin lesion includes facial angiofibromas, adenoma sebaceum, hypopigmented macules, shagreen patches ungual ungual fibromas, ash leaf spots, cafe'-au-lait spots.Case Report: A nine years old male was admitted in a pediatric hospital because of the status myoclonic seizures. Seizures had been started since infancy. In physical exam he had some hypopigmented macules, cafe'-au-lait spots and ash leaf lesions, frontal fibrosis and also shagreen patches. Patient was a case of mild mentally retardation with no any focal neurological deficit. Computed tomography scan of brain and MRI imaging revealed sub ependymal tubers with multiple calcification in both sides of parietal region. Electroencephal-ogram recording suggested abnormal spike, sharp wave discharges and lennox-Gastaut pattern. The diagnosis based on the history and physical exam and MRI were tuberous sclerosis. His foundoscopic exam revealed two prominent calcified mass around right optic disc in supratemporal arch, left eye was normal. Retinal angiography revealed the mulberry tumors and right phakoma of retina. Conclusion: Computed tomography also revaled the nasal hamartoma. Histopathologic examination confirmed the diagnosis of angiomyolipoma because the lesion was composed of smooth muscle bundles, mature adipose tissue and blood vessels of different sizes. He remained seizures free after treatment.

  19. Digestibilidade in vivo dos nutrientes de cultivares de amoreira (Morus alba L. em caprinos Digestibility in vivo of the nutrients from mulberry (Morus alba L. cultivates in goats

    Directory of Open Access Journals (Sweden)

    Cláudia Josefina Dorigan

    2004-04-01

    Full Text Available Este trabalho foi conduzido para avaliar a digestibilidade "in vivo" dos nutrientes dos cultivares de amoreira FM 86 e FM SM nas idades de crescimento de 45 e 90 dias. Foram utilizados 8 caprinos machos, da raça Saanen, com 6 meses de idade e peso vivo médio de 26kg. O delineamento experimental adotado foi o inteiramente casualizado em esquema fatorial 2 X 2 (2 cultivares de amoreira e 2 idades de crescimento. O coeficiente de digestibilidade da FDN do cultivar FM 86 (74,82 % superou o cultivar FM SM (69,36 %, não ocorrendo diferença significativa entre as idades de crescimento. Ocorreu interação significativa entre cultivar e idade de crescimento para o Coeficiente de Digestibilidade da FDA, e o cultivar FM 86 na idade de 45 dias (75,09 % superou a de 90 dias (68,82 %. Para os parâmetros NDT e oeficientes de digestibilidade da energia, MS e PB, verificou-se superioridade da idade de corte de 45 dias, sem diferença entre os cultivares. Concluiu-se que os cultivares FM 86 e FM SM apresentaram excelente valor energético e altos coeficientes de digestibilidade da MS, da PB e dos constituintes da parede celular, indicando um elevado potencial da amoreira como forrageira para caprinos.This work was carried out for evaluating in vivo digestibility of nutrients from FM 86 and FM SM cultivars of mulberry at two growth ages, 45 and 90 days. Eight Saanen male goats being six month-old and 26kg of live weight were used. Experimental design was completely randomized factorial 2 x 2 (two mulberry cultivars and two growth ages. The NDF digestibility coefficient of FM 86 cultivar (74.82% was higher than the FM SM (69.36% and there was not statiscal difference between their growth ages. In relation to ADF digestibility coefficient, there was significant interaction between cultivars and growth ages. FM 86 cultivar with 45 day-old showed ADF digestibility coefficient higher (75.09% than that with 90 day-old (68.82%. Considering NDT and energy, DM and CP

  20. Investigation on mechanical alloying process for v-cr-ti alloys

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Bucsa, G.; Abrudeanu, M.; Galateanu, A.

    2015-01-01

    Mechanical alloying (MA) is an efficient approach for fabricating oxide-dispersion alloys and structural materials including vanadium alloys for fusion and fission application. Dissolution behaviour of the alloying elements is a key issue for optimizing the mechanical alloying process in fabricating vanadium alloys. This paper studies the MA process of V-4wt.%Cr-4wt.%Ti alloy. The outcomes of the MA powders in a planetary ball mill are reported in terms of powder particle size and morphology evolution and elemental composition. The impact of spark-plasma sintering process on the mechanically alloyed powder is analysed. An optimal set of sintering parameters, including the maximum temperature, the dwell time and the heating rate are determined. (authors)

  1. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  2. Characteristics of mechanical alloying of Zn-Al-based alloys

    International Nuclear Information System (INIS)

    Zhu, Y.H.; Hong Kong Polytechnic; Perez Hernandez, A.; Lee, W.B.

    2001-01-01

    Three pure elemental powder mixtures of Zn-22%Al-18%Cu, Zn-5%Al-11%Cu, and Zn-27%Al-3%Cu (in wt.%) were mechanically alloyed by steel-ball milling processing. The mechanical alloying characteristics were investigated using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. It was explored that mechanical alloying started with the formation of phases from pure elemental powders, and this was followed by mechanical milling-induced phase transformation. During mechanical alloying, phases stable at the higher temperatures formed at the near room temperature of milling. Nano-structure Zn-Al-based alloys were produced by mechanical alloying. (orig.)

  3. Radio protective effect of black mulberry extract on radiation-induced damage in bone marrow cells and liver in the rat

    Science.gov (United States)

    Ghasemnezhad Targhi, Reza; Homayoun, Mansour; Mansouri, Somaieh; Soukhtanloo, Mohammad; Soleymanifard, Shokouhozaman; Seghatoleslam, Masoumeh

    2017-01-01

    Ionizing radiation by producing free radicals induces tissue oxidative stress and has clastogenic and cytotoxic effects. The radio protective effect of black mulberry extract (BME) has been investigated on liver tissue and bone marrow cells in the rat. Intraperitoneal (ip) administration of 200 mg/kg BME three days before and three days after 3 Gy and 6 Gy gamma irradiation significantly reduced the frequencies of micro nucleated polychromatic erythrocytes (MnPCEs) and micro nucleated norm chromatic erythrocyte (MnNCEs) and increased PCE/PCE+NCE ratio in rat bone marrow compared to the non-treated irradiated groups. Moreover, this concentration of BME extract decreased the level of malondialdehyde (MDA) and superoxide dismutase (SOD), as well as enhanced the total thiol content and catalase activity in rat's liver compared to the non-treated irradiated groups. It seems that BME extract with antioxidant activity reduced the genotoxicity and cytotoxicity induced by gamma irradiation in bone marrow cells and liver in the rat.

  4. Extraction optimization, characterization and antioxidant activity in vitro of polysaccharides from mulberry (Morus alba L.) leaves.

    Science.gov (United States)

    Yuan, Qingxia; Xie, Yufeng; Wang, Wei; Yan, Yuhua; Ye, Hong; Jabbar, Saqib; Zeng, Xiaoxiong

    2015-09-05

    Extraction optimization, characterization and antioxidant activity in vitro of polysaccharides from mulberry leaves (MLP) were investigated in the present study. The optimal extraction conditions with an extraction yield of 10.0 ± 0.5% for MLP were determined as follows: extraction temperature 92 °C, extraction time 3.5h and ratio (v/w, mL/g) of extraction solvent (water) to raw material 34. Two purified fractions, MLP-3a and MLP-3b with molecular weights of 80.99 and 3.64 kDa, respectively, were obtained from crude MLP by chromatography of DEAE-Cellulose 52 and Sephadex G-100. Fourier transform-infrared spectroscopy revealed that crude MLP, MLP-3a and MLP-3b were acidic polysaccharides. Furthermore, crude MLP and MLP-3a had more complicated monosaccharide compositions, while MLP-3b had a relatively higher content of uronic acid. Crude MLP, MLP-3a and MLP-3b exhibited potent Fe(2+) chelating power and scavenging activities on 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, superoxide and 2,2'-azinobis-(3-ethyl-benzothiazolin-6-sulfonic acid) radicals. The results suggested that MLP could be explored as natural antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Odisolane, a Novel Oxolane Derivative, and Antiangiogenic Constituents from the Fruits of Mulberry (Morus alba L.).

    Science.gov (United States)

    Lee, Seoung Rak; Park, Jun Yeon; Yu, Jae Sik; Lee, Sung Ok; Ryu, Ja-Young; Choi, Sang-Zin; Kang, Ki Sung; Yamabe, Noriko; Kim, Ki Hyun

    2016-05-18

    Mulberry, the fruit of Morus alba L., is known as an edible fruit and commonly used in Chinese medicines as a warming agent and as a sedative, tonic, laxative, odontalgic, expectorant, anthelmintic, and emetic. Systemic investigation of the chemical constituents of M. alba fruits led to the identification of a novel oxolane derivative, (R*)-2-((2S*,3R*)-tetrahydro-2-hydroxy-2-methylfuran-3-yl)propanoic acid (1), namely, odisolane, along with five known heterocyclic compounds (2-6). The structure of the new compound was elucidated on the basis of HR-MS, 1D and 2D NMR ((1)H-(1)H COSY, HSQC, HMBC, and NOESY) data analysis. Compound 1 has a novel skeleton that consists of 8 carbon units with an oxolane ring, which until now has never been identified in natural products. The isolated compounds were subjected to several activity tests to verify their biological function. Among them, compounds 1, 3, and 5 significantly inhibited cord formation in HUVECs. The action mechanism of compound 3, which had the strongest antiangiogenic activity, was mediated by decreasing VEGF, p-Akt, and p-ERK protein expression. These results suggest that compounds isolated from M. alba fruits might be beneficial in antiangiogenesis therapy for cancer treatment.

  6. Application of mechanical alloying to synthesis of intermetallic phases based alloys

    International Nuclear Information System (INIS)

    Dymek, S.

    2001-01-01

    Mechanical alloying is the process of synthesis of powder materials during milling in high energetic mills, usually ball mills. The central event in mechanical alloying is the ball-powder-ball collision. Powder particles are trapped between the colliding balls during milling and undergo deformation and/or fracture. Fractured parts are cold welded. The continued fracture and cold welding results in a uniform size and chemical composition of powder particles. The main applications of mechanical alloying are: processing of ODS alloys, syntheses of intermetallic phases, synthesis of nonequilibrium structures (amorphous alloys, extended solid solutions, nanocrystalline, quasi crystals) and magnetic materials. The present paper deals with application of mechanical alloying to synthesis Ni A l base intermetallic phases as well as phases from the Nb-Al binary system. The alloy were processed from elemental powders. The course of milling was monitored by scanning electron microscopy and X-ray diffraction. After milling, the collected powders were sieved by 45 μm grid and hot pressed (Nb alloys and NiAl) or hot extruded (NiAl). The resulting material was fully dense and exhibited fine grain (< 1 μm) and uniform distribution of oxide dispersoid. The consolidated material was compression and creep tested. The mechanical properties of mechanically alloys were superior to properties of their cast counterparts both in the room and elevated temperatures. Higher strength of mechanically alloyed materials results from their fine grains and from the presence of dispersoid. At elevated temperatures, the Nb-Al alloys have higher compression strength than NiAl-based alloys processed at the same conditions. The minimum creep rates of mechanically alloyed Nb alloys are an order of magnitude lower than analogously processed NiAl-base alloys. (author)

  7. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.).

    Science.gov (United States)

    Choi, Ji Won; Synytsya, Andriy; Capek, Peter; Bleha, Roman; Pohl, Radek; Park, Yong Il

    2016-08-01

    A water-soluble polysaccharide JS-MP-1 was isolated from Korean mulberry fruits Oddi (Morus alba L.). Sugar linkage analysis and NMR data confirmed that it is a rhamnogalacturonan type I (RG I) polymer carrying arabinan and arabinogalactan (AG II) side chains. JS-MP-1 reduced dose-dependently the viability of 3T3-L1 pre-adipocyte cells, significantly stimulated the cleavage of caspases 9 and 3 and poly (ADP-ribose) polymerase (PARP) and decreased the ratio of Bcl-2 to Bax expression level that led to mitochondrial dysfunction and apoptosis in pre-adipocyte cells. The apoptotic death was mediated by stimulation of MAPKs (ERK and p38) signalling pathway. These results suggest that JS-MP-1 is able to reduce the number of fat cells and the mass of adipose tissue via inhibition of pre-adipocyte proliferation and thus JS-MP-1 itself or a crude aqueous Oddi extract containing this polysaccharide can be used as functional ingredient of health-beneficial food supplements for the treatment or prevention of obesity disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass% Si-Fe alloy electrode

    Energy Technology Data Exchange (ETDEWEB)

    Stambekova, Kuralay [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China); Lin, Hung-Mao [Department of Mechanical Engineering, Far East University, No. 49, Zhonghua Rd., Xinshi Dist., Tainan City 74448, Taiwan (China); Uan, Jun-Yen, E-mail: jyuan@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan (China)

    2012-03-01

    This study experimentally investigates the surface modification of 5083 Al alloy by the electrical discharge alloying (EDA) process with a Si-Fe alloy as an electrode. Samples were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), micro-hardness and corrosion resistance tests. The micro-hardness of EDA alloyed layer was evidently higher than that of the base metal (5083 Al alloy). The TEM results show that the matrix of the alloyed layer has an amorphous-like structure; the matrix contains fine needle-like Si particles, block-like Si particles and nano-size Al{sub 4.5}FeSi and Al{sub 13}Fe{sub 4} particles. The TEM results support experimental results for the high hardness of the alloyed layer. Moreover, the EDA alloyed layer with composite microstructures has good corrosion resistance in NaCl aqueous solution.

  9. Synthesis Of NiCrAlC alloys by mechanical alloying

    International Nuclear Information System (INIS)

    Silva, A.K.; Pereira, J.I.; Vurobi Junior, S.; Cintho, O.M.

    2010-01-01

    The purpose of the present paper is the synthesis of nickel alloys (NiCrAlC), which has been proposed like a economic alternative to the Stellite family Co alloys using mechanical alloying, followed by sintering heat treatment of milled material. The NiCrAlC alloys consist of a chromium carbides dispersion in a Ni 3 Al intermetallic matrix, that is easily synthesized by mechanical alloying. The use of mechanical alloying enables higher carbides sizes and distribution control in the matrix during sintering. We are also investigated the compaction of the processed materials by compressibility curves. The milling products were characterized by X-ray diffraction, and the end product was featured by conventional metallography and scanning electronic microscopy (SEM), that enabled the identification of desired phases, beyond microhardness test, which has been shown comparable to alloys manufactured by fusion after heat treating. (author)

  10. Nutrigenetic screening strains of the mulberry silkworm, Bombyx mori, for nutritional efficiency.

    Science.gov (United States)

    Chinnaswamy, Ramesha; Lakshmi, Hothur; Kumari, Savarapu S; Anuradha, Chebba M; Kumar, Chitta S

    2012-01-01

    The activity of sericulture is declining due the reduction of mulberry production area in sericulture practicing countries lead to adverse effects on silkworm rearing and cocoon production. Screening for nutrigenetic traits in silkworm, Bombyx mori L. (Lepidoptera: Bombycidae) is an essential prerequisite for better understanding and development of nutritionally efficient breeds/hybrids, which show less food consumption with higher efficiency conversion. The aim of this study was to identify nutritionally efficient polyvoltine silkworm strains using the germplasm breeds RMW(2), RMW(3), RMW(4), RMG(3), RMG(1), RMG(4), RMG(5), RMG(6) and APM(1) as the control. The 1(st) day of 5(th) stage silkworm larvae of polyvoltine strains were subjected to standard gravimetric analysis until spinning for three consecutive generations covering three different seasons on 19 nutrigenetic traits. Highly significant (p ≤ 0.001) differences were found among all nutrigenetic traits of polyvoltine silkworm strains in the experimental groups. The nutritionally efficient polvoltine silkworm strains were resulted by utilizing nutrition consumption index and efficiency of conversion of ingesta/cocoon traits as the index. Higher nutritional efficiency conversions were found in the polyvoltine silkworm strains on efficiency of conversion of ingesta to cocoon and shell than control. Comparatively smaller consumption index, respiration, metabolic rate with superior relative growth rate, and quantum of food ingesta and digesta requisite per gram of cocoon and shell were shown; the lowest amount was in new polyvoltine strains compared to the control. Furthermore, based on the overall nutrigenetic traits utilized as index or 'biomarkers', three polyvoltine silkworm strains (RMG(4), RMW(2), and RMW(3)) were identified as having the potential for nutrition efficiency conversion. The data from the present study advances our knowledge for the development of nutritionally efficient silkworm breeds

  11. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  12. Titanium alloys. Advances in alloys, processes, products and applications

    International Nuclear Information System (INIS)

    Blenkinsop, P.A.

    1993-01-01

    The last few years have been a period of consolidation of existing alloys and processes. While the aerospace industry remains the principal driving force for alloy development, the paper illustrates examples of new markets being established in 'older' alloys, by a combination of product/process development and a re-examination of engineering design parameters. Considerable attention is still being directed towards the titanium aluminide systems, but other more conventional alloy developments are underway aimed at specific engineering and process requirements, both in the aerospace and non-aerospace sectors. Both the advanced high temperature and conventional alloy developments are considered, before the paper goes on to assess the potential of new processes and products, like spray-forming, metal matrix composites and shaped-plate rolling. (orig.)

  13. High-temperature deformation of a mechanically alloyed niobium-yttria alloy

    International Nuclear Information System (INIS)

    Chou, I.; Koss, D.A.; Howell, P.R.; Ramani, A.S.

    1997-01-01

    Mechanical alloying (MA) and hot isostatic pressing have been used to process two Nb alloys containing yttria particles, Nb-2 vol.%Y 2 O 3 and Nb-10 vol.%Y 2 O 3 . Similar to some thermomechanically processed nickel-based alloys, both alloys exhibit partially recrystallized microstructures, consisting of a 'necklace' of small recrystallized grains surrounding much larger but isolated, unrecrystallized, cold-worked grains. Hot compression tests from 1049 to 1347 C (0.5-0.6T MP ) of the 10% Y 2 O 3 alloy show that MA material possesses a much higher yield and creep strength than its powder-blended, fully recrystallized counterpart. In fact, the density-compensated specific yield strength of the MA Nb-10Y 2 O 3 exceeds that of currently available commercial Nb alloys. (orig.)

  14. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  15. White Mulberry (Morus alba Foliage Methanolic Extract Can Alleviate Aeromonas hydrophila Infection in African Catfish (Clarias gariepinus

    Directory of Open Access Journals (Sweden)

    Atefeh Sheikhlar

    2014-01-01

    Full Text Available Two experiments were simultaneously conducted with Morus alba (white mulberry foliage extract (MFE as a growth promoter and treatment of Aeromonas hydrophila infection in separate 60 and 30 days trail (Experiments 1 and 2, resp. in African catfish (Clarias gariepinus. In Experiment 1, four diets, control and control supplemented with 2, 5, or 7 g MFE/kg dry matter (DM of diet, were used. In Experiment 2, fish were intraperitoneally infected with Aeromonas hydrophila and fed the same diets as experiment 1 plus additional two diets with or without antibiotic. Results of experiment 1 showed that growth was unaffected by dietary levels of MFE. Treatments with the inclusion of MFE at the levels of 5 and 7 g/Kg DM had no mortality. Red blood cells (RBC, albumin, and total protein were all higher for the treatments fed MFE (5 and 7 g/Kg DM. Results of experiment 2 showed RBC, hemoglobin, hematocrit, globulin, albumin, and total protein improved with the increase in MFE in the infected fish. The dietary MFE at the level of 7 g/kg DM reduced mortality rate. In conclusion, MFE at the level of 7 g/kg DM could be a valuable dietary supplement to cure the infected fish.

  16. The isolation and the characterization of two polysaccharides from the branch bark of mulberry (Morus alba L.).

    Science.gov (United States)

    Qiu, Fan; He, Tian-Zhen; Zhang, Yu-Qing

    2016-07-01

    Two water-soluble polysaccharides termed MBBP-1 and MBBP-2 were isolated from the branches of the mulberry tree (Morus alba L.) using hot water extraction and purified on Anion-exchange DEAE52-cellulose and Sephadex G-100 column. MBBP-1 was shown to be composed of rhamnose, xylose, arabinose, mannose, glucose and galactose in the molar ratio of 4.53:2.49:4.38:4.67:17.85:5.88. MBBP-2 was composed of rhamnose, xylose, arabinose, mannose, glucose, galactose and galacturonic acid in the molar ratio of 26.85:13.8:3.14:4.4:6.1:3.19:4.9. Their structural characteristics were further investigated by FI-IR spectroscopy, Smith degradation, methylation analysis and NMR spectroscopy. Based on the data obtained, MBBP-1 had a backbone mainly consisting of (1 → 3)-linked glucose. MBBP-2 had a backbone mainly consisting of (1 → 3)-linked rhamnose and (1 → 2, 4)-linked xylose. Antioxidant assays indicated that antioxidant activities of MBBP-2 were significantly stronger than those of MBBP-1, and this was likely in relation to the different content of 8.2 % galacturonic acid in MBBP-2.

  17. White Mulberry (Morus alba) Foliage Methanolic Extract Can Alleviate Aeromonas hydrophila Infection in African Catfish (Clarias gariepinus)

    Science.gov (United States)

    Sheikhlar, Atefeh; Alimon, Abd Razk; Daud, Hassan; Saad, Chee R.; Webster, Carl D.; Meng, Goh Yong

    2014-01-01

    Two experiments were simultaneously conducted with Morus alba (white mulberry) foliage extract (MFE) as a growth promoter and treatment of Aeromonas hydrophila infection in separate 60 and 30 days trail (Experiments 1 and 2, resp.) in African catfish (Clarias gariepinus). In Experiment 1, four diets, control and control supplemented with 2, 5, or 7 g MFE/kg dry matter (DM) of diet, were used. In Experiment 2, fish were intraperitoneally infected with Aeromonas hydrophila and fed the same diets as experiment 1 plus additional two diets with or without antibiotic. Results of experiment 1 showed that growth was unaffected by dietary levels of MFE. Treatments with the inclusion of MFE at the levels of 5 and 7 g/Kg DM had no mortality. Red blood cells (RBC), albumin, and total protein were all higher for the treatments fed MFE (5 and 7 g/Kg DM). Results of experiment 2 showed RBC, hemoglobin, hematocrit, globulin, albumin, and total protein improved with the increase in MFE in the infected fish. The dietary MFE at the level of 7 g/kg DM reduced mortality rate. In conclusion, MFE at the level of 7 g/kg DM could be a valuable dietary supplement to cure the infected fish. PMID:25574488

  18. White mulberry (Morus alba) foliage methanolic extract can alleviate Aeromonas hydrophila infection in African catfish (Clarias gariepinus).

    Science.gov (United States)

    Sheikhlar, Atefeh; Alimon, Abd Razk; Daud, Hassan; Saad, Chee R; Webster, Carl D; Meng, Goh Yong; Ebrahimi, Mahdi

    2014-01-01

    Two experiments were simultaneously conducted with Morus alba (white mulberry) foliage extract (MFE) as a growth promoter and treatment of Aeromonas hydrophila infection in separate 60 and 30 days trail (Experiments 1 and 2, resp.) in African catfish (Clarias gariepinus). In Experiment 1, four diets, control and control supplemented with 2, 5, or 7 g MFE/kg dry matter (DM) of diet, were used. In Experiment 2, fish were intraperitoneally infected with Aeromonas hydrophila and fed the same diets as experiment 1 plus additional two diets with or without antibiotic. Results of experiment 1 showed that growth was unaffected by dietary levels of MFE. Treatments with the inclusion of MFE at the levels of 5 and 7 g/Kg DM had no mortality. Red blood cells (RBC), albumin, and total protein were all higher for the treatments fed MFE (5 and 7 g/Kg DM). Results of experiment 2 showed RBC, hemoglobin, hematocrit, globulin, albumin, and total protein improved with the increase in MFE in the infected fish. The dietary MFE at the level of 7 g/kg DM reduced mortality rate. In conclusion, MFE at the level of 7 g/kg DM could be a valuable dietary supplement to cure the infected fish.

  19. Phenolic compounds, bioactive content and antioxidant capacity of the fruits of mulberry (Morus spp. germplasm in Turkey

    Directory of Open Access Journals (Sweden)

    Gundogdu Muttalip

    2017-12-01

    Full Text Available The study was carried out in 2014 and 2015, and aimed to determine some important biochemical and antioxidant characteristics of the fruits of mulberry (Morus spp. cultivars and genotypes found in Malatya (Turkey. Phenolic compounds (protocatechuic acid, vanillic acid, ellagic acid, rutin, quercetin, gallic acid, catechin, chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid, o-coumaric acid, phloridzin and ferulic acid, organic acids, sugars, vitamin C and antioxidant capacity were analyzed in sampled fruits. The results showed that most of the biochemical content and antioxidant capacities of the cultivars and genotypes were significantly different from one another (p < 0.05. Among the phenolic compounds, rutin (118.23 mg 100 g-1, gallic acid (36.85 mg 100 g-1, and chlorogenic acid (92.07 mg 100 g-1 were determined to have the highest values for most of the fruit samples. Malic acid and citric acid were dominant among the organic acids for all the cultivars and genotypes except 44-Nrk-05. Glucose was measured as a more abundant sugar than fructose and sucrose in all samples. Antioxidant capacity, on the other hand, varied between 6.17 and 21.13 μmol TE g-1 among the cultivars and genotypes analyzed.

  20. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  1. Protective Effect of Morus alba Leaf Extract on N-Nitrosodiethylamine-induced Hepatocarcinogenesis in Rats.

    Science.gov (United States)

    Kujawska, Małgorzata; Ewertowska, Małgorzata; Adamska, Teresa; Ignatowicz, Ewa; Flaczyk, Ewa; Przeor, Monika; Kurpik, Monika; Liebert, Jadwiga Jodynis

    The leaves of white mulberry (Morus alba L.) contain various polyphenolic compounds possessing strong antioxidant activity and anticancer potential. This study was designed to investigate the chemopreventive effect of aqueous extract of mulberry leaves against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. Wistar rats were divided into four groups: control, mulberry extract-treated, NDEA-treated, and mulberry extract plus NDEA-treated. Mulberry extract was given in the diet (1,000 mg/kg b.w./day); NDEA was given in drinking water. Mulberry extract reduced the incidence of hepatocellular carcinoma, dysplastic nodules, lipid peroxidation, protein carbonyl formation, and DNA degradation. Treatment with mulberry leaf extract along with NDEA challenge did not affect the activity of antioxidant enzymes and glutathione content. Treatment with mulberry leaf extract partially protected the livers of rats from NDEA-induced hepatocarcinogenesis and a direct antioxidant mechanism appears to contribute to its anticarcinogenic activity. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  3. Turned windrow composting of cow manure as appropriate technology for zero discharge of mulberry pulp wastewater.

    Science.gov (United States)

    Jolanun, Banjarata; Kaewkam, Chompoonuch; Bauoon, Orapin; Chiemchaisri, Chart

    2014-08-01

    Turned windrow composting was investigated as appropriate technology for recycling the wastewater (excluding black liquor) from mulberry pulp and paper handicrafts. Two exterior turned windrows (1.5 m width x 1.5 m height x 2.0 m length) with dry leaves/cow manure/sawdust wet weight ratios of 60:40:0 (Pile A) and 55:40:5 (Pile B) were used for the investigation. Changes in the physical and chemical properties of the compost were examined and a phytotoxicity analysis was performed. A soil incubation test and an informal focus group discussion were also conducted. The results revealed that while both piles met the regulatory processing requirements for further reduced pathogens (>or= 55 degrees C for 15 days or longer), the operation without sawdust (Pile A) not only significantly enhanced the thermophilic temperature regime (P 0.05). The germination index of two plant species in both piles varied between 126% and 230% throughout the experiment, and no pronounced differences (P > 0.05) among the samples were found. Addition of the compost significantly improved soil organic matter and pH (7-8), as well as reduced the loss of NO3-N. Local discussion groups were initiated to evaluate the cost-benefits, the potential of wastewater removal, the cooperation of community users and supporters, the compost quality and the potential compost market.

  4. Nickel alloys and high-alloyed special stainless steels. Properties, manufacturing, applications. 4. compl. rev. ed.

    International Nuclear Information System (INIS)

    Heubner, Ulrich; Kloewer, Jutta; Alves, Helena; Behrens, Rainer; Schindler, Claudius; Wahl, Volker; Wolf, Martin

    2012-01-01

    This book contains the following eight topics: 1. Nickel alloys and high-alloy special stainless steels - Material overview and metallurgical principles (U. Heubner); 2. Corrosion resistance of nickel alloys and high-alloy special stainless steels (U. Heubner); 3. Welding of nickel alloys and high-alloy special stainless steels (T. Hoffmann, M. Wolf); 4. High-temperature materials for industrial plant construction (J. Kloewer); 5. Nickel alloys and high-alloy special stainless steels as hot roll clad composites-a cost-effective alternative (C. Schindler); 6. Selected examples of the use of nickel alloys and high-alloy special stainless steels in chemical plants (H. Alves); 7. The use of nickel alloys and stainless steels in environmental engineering (V. Wahl); 8: Nickel alloys and high-alloy special stainless steels for the oil and gas industry (R. Behrens).

  5. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  6. Interphase thermodynamic bond in heterogeneous alloys: effects on alloy properties

    International Nuclear Information System (INIS)

    Savchenko, A.M.; Konovalov, Yu.V.; Yuferov, O.I.

    2005-01-01

    Inconsistency between a conventional thermodynamic description of alloys as a mechanical mixture of phases and a real alloys state as a common thermodynamic system in which there is a complicated physical-chemical phases interaction has been considered. It is supposed that in heterogeneous alloys (eutectic ones, for instance), so called interphase thermodynamic bond can become apparent due to a partial electron levels splitting under phase interaction. Thermodynamic description of phase equilibrium in alloys is proposed taking into account a thermodynamic bond for the system with phase diagram of eutectic type, and methods of the value of this bond estimation are presented. Experimental evidence (Al-Cu-Si, Al-Si-Mg-Cu, U-Mo + Al) of the effect of interphase thermodynamic bond on temperature and enthalpy of melting of alloys are produced as well as possibility of its effects on alloys electrical conduction, strength, heat and corrosion resistance is substantiated theoretically [ru

  7. Irradiation-assisted stress corrosion cracking in HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Bajaj, R.; Mills, W.J.; Lebo, M.R.; Hyatt, B.Z.; Burke, M.G.

    1995-01-01

    In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water to determine the irradiation-assisted stress corrosion cracking (IASCC) behavior of HTH Alloy X-750 and direct-aged Alloy 625. New data confirm previous results showing that high irradiation levels reduce SCC resistance in Alloy X-750. Heat-to-heat variability correlates with boron content, with low boron heats showing improved IASCC properties. Alloy 625 is resistant to IASCC, as no cracking was observed in any Alloy 625 specimens. Microstructural, microchemical and deformation studies were performed to characterize the mechanisms responsible for IASCC in Alloy X-750 and the lack of an effect in Alloy 625. The mechanisms under investigation are: boron transmutation effects, radiation-induced changes in microstructure and deformation characteristics, and radiation-induced segregation. Irradiation of Alloy X-750 caused significant strengthening and ductility loss that was associated with the formation of cavities and dislocation loops. High irradiation levels did not cause significant segregation of alloying or trace elements in Alloy X-750. Irradiation of Alloy 625 resulted in the formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to the loops and precipitates was apparently offset by a partial dissolution of γ double-prime precipitates, as Alloy 625 showed no irradiation-induced strengthening or ductility loss. In the nonirradiated condition, an IASCC susceptible HTH heat containing 28 ppm B showed grain boundary segregation of boron, whereas a nonsusceptible HTH heat containing 2 ppm B and Alloy 625 with 20 ppm B did not show significant boron segregation. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in Alloy X-750, and the absence of these two effects results in the superior IASCC resistance displayed by Alloy 625

  8. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  9. The Evaluation of the Corrosion Resistance of the Al-Si Alloys Antimony Alloyed

    Directory of Open Access Journals (Sweden)

    Svobodova J.

    2014-06-01

    Full Text Available This paper deals with the evaluation of the corrosion resistance of the Al-Si alloys alloyed with the different amount of antimony. Specifically it goes about the alloy AlSi7Mg0,3 which is antimony alloyed in the concentrations 0; 0,001; 0,005; 0,01 a 0,05 wt. % of antimony. The introduction of the paper is dedicated to the theory of the aluminium alloys corrosion resistance, testing and evaluation of the corrosion resistance. The influence of the antimony to the Al-Si alloys properties is described further in the introduction. The experimental part describes the experimental samples which were prepared for the experiment and further they were exposed to the loading in the atmospheric conditions for a period of the 3 months. The experimental samples were evaluated macroscopically and microscopically. The results of the experiment were documented and the conclusions in terms of the antimony impact to the corrosion resistance of the Al-Si alloy were concluded. There was compared the corrosion resistance of the Al-Si alloy antimony alloyed (with the different antimony content with the results of the Al-Si alloy without the alloying after the corrosion load in the atmospheric conditions in the experiment.

  10. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  11. Crevice corrosion propagation on alloy 625 and alloy C276 in natural seawater

    International Nuclear Information System (INIS)

    McCafferty, E.; Bogar, F.D.; Thomas, E.D. II; Creegan, C.A.; Lucas, K.E.; Kaznoff, A.I.

    1997-01-01

    Chemical composition of the aqueous solution within crevices on two different Ni-Cr-Mo-Fe alloys immersed in natural seawater was determined using a semiquantitative thin-layer chromatographic method. Active crevices were found to contain concentrated amounts of dissolved Ni 2+ , Cr 3+ , Mo 3+ , and Fe 2+ ions. Propagation of crevice corrosion for the two alloys was determined from anodic polarization curves in model crevice solutions based upon stoichiometric dissolution or selective dissolution of alloy components. Both alloys 625 (UNS N06625) and C276 (UNS N10276) underwent crevice corrosion in the model crevice electrolytes. For the model crevice solution based upon selective dissolution of alloy constituents, the anodic dissolution rate for alloy 625 was higher than that for alloy C276. This trend was reversed for the model crevice solution based upon uniform dissolution of alloy constituents

  12. Corrosion of aluminum alloys as a function of alloy composition

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1969-10-01

    A study was initiated which included nineteen aluminum alloys. Tests were conducted in high purity water at 360 0 C and flow tests (approx. 20 ft/sec) in reactor process water at 130 0 C (TF-18 loop tests). High-silicon alloys and AlSi failed completely in the 360 0 C tests. However, coupling of AlSi to 8001 aluminum suppressed the failure. The alloy compositions containing iron and nickel survived tht 360 0 C autoclave exposures. Corrosion rates varied widely as a function of alloy composition, but in directions which were predictable from previous high-temperature autoclave experience. In the TF-18 loop flow tests, corrosion penetrations were similar on all of the alloys and on high-purity aluminum after 105 days. However, certain alloys established relatively low linear corrosion rates: Al-0.9 Ni-0.5 Fe-0.1 Zr, Al-1.0 Ni-0.15 Fe-11.5 Si-0.8 Mg, Al-1.2 Ni-1.8 Fe, and Al-7.0 Ni-4.8 Fe. Electrical polarity measurements between AlSi and 8001 alloys in reactor process water at temperatures up to 150 0 C indicated that AlSi was anodic to 8001 in the static autoclave system above approx. 50 0 C

  13. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  14. The Properties of 7xxx Series Alloys Formed by Alloying Additions

    Directory of Open Access Journals (Sweden)

    Kwak Z.

    2015-06-01

    Full Text Available Currently there is a constant development in the field of aluminium alloys engineering. This results from, i.a., better understanding of the mechanisms that direct strengthening of these alloys and the role of microalloying. Now it is microalloying in aluminum alloys that is receiving a lot of attention. It affects substantially the macro- and microstructure and kinetics of phase transformation influencing the properties during production and its exploitation. 7xxx series aluminum alloys, based on the Al-Zn-Mg-Cu system, are high-strength alloys, moreover, the presence of Zr and Sr further increases their strength and improves resistance to cracking.

  15. Reducing thermal conductivity of binary alloys below the alloy limit via chemical ordering

    International Nuclear Information System (INIS)

    Duda, John C; English, Timothy S; Jordan, Donald A; Norris, Pamela M; Soffa, William A

    2011-01-01

    Substitutional solid solutions that exist in both ordered and disordered states will exhibit markedly different physical properties depending on their exact crystallographic configuration. Many random substitutional solid solutions (alloys) will display a tendency to order given the appropriate kinetic and thermodynamic conditions. Such order-disorder transitions will result in major crystallographic reconfigurations, where the atomic basis, symmetry, and periodicity of the alloy change dramatically. Consequently, the dominant scattering mechanism in ordered alloys will be different than that in disordered alloys. In this study, we present a hypothesis that ordered alloys can exhibit lower thermal conductivities than their disordered counterparts at elevated temperatures. To validate this hypothesis, we investigate the phononic transport properties of disordered and ordered AB Lennard-Jones alloys via non-equilibrium molecular dynamics and harmonic lattice dynamics calculations. It is shown that the thermal conductivity of an ordered alloy is the same as the thermal conductivity of the disordered alloy at ∼0.6T melt and lower than that of the disordered alloy above 0.8T melt .

  16. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  17. Electron beam and laser surface alloying of Al-Si base alloys

    International Nuclear Information System (INIS)

    Vanhille, P.; Tosto, S.; Pelletier, J.M.; Issa, A.; Vannes, A.B.; Criqui, B.

    1992-01-01

    Surface alloying on aluminium-base alloys is achieved either by using an electron beam or a laser beam, in order to improve the mechanical properties of the near-surface region. A predeposit of nickel is first realized by plasma spraying. Melting of both the coating and part of the substrate produces a surface alloy with a fine, dendritic microstructure with a high hardness. Enhancement of this property requires an increase in the nickel content. Various problems occur during the formation of nickel-rich surface layers: incomplete homogenization owing to a progressive increase of the liquidus temperature, cracks owing to the brittleness of this hard suface alloy, formation of a plasma when experiments are carried out in a gaseous environment (laser surface alloying). Nevertheless, various kinds of surface layers may be achieved; for example very hard surface alloys (HV 0.2 =900), with a thickness of about 500-600 μm, or very thick surface alloys (e>2 mm), with a fairly good hardness (greater than 350 HV 0.2 ). Thus, it is possible to obtain a large variety of new materials by using high energy beams on aluminium substrates. (orig.)

  18. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, Thomas, E-mail: gebhardt@mch.rwth-aachen.de; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-06-30

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition-structure-property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  19. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design

    International Nuclear Information System (INIS)

    Gebhardt, Thomas; Music, Denis; Takahashi, Tetsuya; Schneider, Jochen M.

    2012-01-01

    This paper provides an overview of modern alloy development, from discovery and optimization towards alloy design, based on combinatorial thin film materials science. The combinatorial approach, combining combinatorial materials synthesis of thin film composition-spreads with high-throughput property characterization has proven to be a powerful tool to delineate composition–structure–property relationships, and hence to efficiently identify composition windows with enhanced properties. Furthermore, and most importantly for alloy design, theoretical models and hypotheses can be critically appraised. Examples for alloy discovery, optimization, and alloy design of functional as well as structural materials are presented. Using Fe-Mn based alloys as an example, we show that the combination of modern electronic-structure calculations with the highly efficient combinatorial thin film composition-spread method constitutes an effective tool for knowledge-based alloy design.

  20. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  1. Grindability of dental magnetic alloys.

    Science.gov (United States)

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  2. Alloying Solid Solution Strengthening of Fe-Ga Alloys: A First-Principle Study

    National Research Council Canada - National Science Library

    Chen, Kuiying; Cheng, Leon M

    2006-01-01

    ... and Co in cubic solid solution of Fe-Ga alloys. Mayer bond order "BO" values were used to evaluate the atomic bond strengths in the alloys, and were then used to assess the alloying strengthening characteristics...

  3. Studies on neutron irradiation effects of iron alloys and nickel-base heat resistant alloys

    International Nuclear Information System (INIS)

    Watanabe, Katsutoshi

    1987-09-01

    The present paper describes the results of neutron irradiation effects on iron alloys and nickel-base heat resistant alloys. As for the iron alloys, irradiation hardening and embrittlement were investigated using internal friction measurement, electron microscopy and tensile testings. The role of alloying elements was also investigated to understand the irradiation behavior of iron alloys. The essential factors affecting irradiation hardening and embrittlement were thus clarified. On the other hand, postirradiation tensile and creep properties were measured of Hastelloy X alloy. Irradiation behavior at elevated temperatures is discussed. (author)

  4. Neutron-absorbing alloys

    International Nuclear Information System (INIS)

    Portnoi, K.I.; Arabei, L.B.; Gryaznov, G.M.; Levi, L.I.; Lunin, G.L.; Kozhukhov, V.M.; Markov, J.M.; Fedotov, M.E.

    1975-01-01

    A process is described for the production of an alloy consiting of 1 to 20% In, 0.5 to 15% Sm, and from 3 to 18% Hf, the balance being Ni. Such alloys show a good absorption capacity for thermal and intermediate neutrons, good neutron capture efficiency, and good corrosion resistance, and find application in nuclear reactor automatic control and safety systems. The Hf provides for the maintenance of a reasonably high order of neutron capture efficiency throughout the lifetime of a reactor. The alloys are formed in a vacuum furnace operating with an inert gas atmosphere at 280 to 300 mm.Hg. They have a corrosion resistance from 3 to 3.5 times that of the Ag-based alloys commonly employed, and a neutron capture efficiency about twice that of the Ag alloys. Castability and structural strength are good. (U.K.)

  5. Effect of mechanical alloying on FeCrC reinforced Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, S. Osman [Univ. of Namik Kemal, Tekirdag (Turkey); Teker, Tanju [Adiyaman Univ. (Turkey). Dept. of Metallurgical and Materials Engineering; Demir, Fatih [Batman Univ. (Turkey)

    2016-05-01

    Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. In the present study, the intermetallic matrix composites (IMCs) of Ni-Al reinforced by M{sub 7}C{sub 3} were produced by powder metallurgical routes via solid state reaction of Ni, Al and M{sub 7}C{sub 3} particulates by mechanical alloying processes. Ni, Al and M{sub 7}C{sub 3} powders having 100 μm were mixed, mechanical alloyed and the compacts were combusted in a furnace. The mechanically alloyed (MAed) powders were investigated by X-ray diffraction (XRD), microhardness measurement, optic microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The presence of the carbides depressed the formation of unwanted NiAl intermetallic phases. The mechanical alloyed M{sub 7}C{sub 3} particles were unstable and decomposed partially within the matrix during alloying and sintering, and the morphology of the composites changed with the dissolution ratio of M{sub 7}C{sub 3} and sintering temperature.

  6. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  7. Progressive degradation of alloy 690 and the development of a significant improvement in alloy 800CR

    International Nuclear Information System (INIS)

    Staehle, Roger W.; Arioka, Koji; Tapping, Robert

    2015-01-01

    The present most widely used alloys for tubing in steam generators and structural materials in water cooled reactors are Alloy 690 and Alloy 800. However, both alloys, while improved over Alloy 600 may not meet the needs of longer range applications in the range of 80-100 years. Alloy 690 sustains damage resulting from the formation of cavities at grain boundaries which eventually cover about 50% of the area of the grain boundaries with the remainder covering being covered with carbides. The cavities seem to nucleate on the carbides leaving the grain boundaries a structure of cavities and carbides. Such a structure will lead the Alloy 690 to fail completely. Normal Alloy 800 does not produce such cavities and probably retains a large amount of its corrosion resistance but does sustain progressive SCC at low rate. A new alloy, 800CR, has been developed in a collaboration among Arioka, Tapping, and Staehle. This alloy is based on a Cr composition of 23.5-27% with the remainder retaining the previous Alloy 800 composition. 800CR sustains a crack velocity about 100 times less than Alloy 690 and a negligible rate of initiation. The 800CR, alloy is now seeking a patent. (authors)

  8. Nonswelling alloy

    Science.gov (United States)

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  9. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  10. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  11. Ultrahigh temperature intermetallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  12. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  13. Monitoring alloy formation during mechanical alloying process by x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Abdul Kadir Masrom; Noraizam Md Diah; Mazli Mustapha

    2002-01-01

    Monitoring alloying (MA) is a novel processing technique that use high energy impact ball mill to produce alloys with enhanced properties and microscopically homogeneous materials starting from various powder mixtures. Mechanical alloying process was originally developed to produce oxide dispersion strengthened nickel superalloys. In principal, in high-energy ball milling process, alloy is formed by the result of repeated welding, fracturing and rewelding of powder particles in a high energy ball mill. In this process a powder mixture in a ball mill is subjected to high-energy collisions among balls. MA has been shown to be capable of synthesizing a variety of materials. It is known to be capable to prepare equilibrium and non-equilibrium phases starting from blended elemental or prealloyed powders. The process ability to produce highly metastable materials such as amorphous alloys and nanostructured materials has made this process attractive and it has been considered as a promising material processing technique that could be used to produce many advanced materials at low cost. The present study explores the conditions under which aluminum alloys formation occurs by ball milling of blended aluminum and its alloying elements powders. In this work, attempt was made in producing aluminum 2024 alloys by milling of blended elemental aluminum powder of 2024 composition in a stainless steel container under argon atmosphere for up to 210 minutes. X-ray diffraction together with thermal analysis techniques has been used to monitor phase changes in the milled powder. Results indicate that, using our predetermined milling parameters, alloys were formed after 120 minutes milling. The thermal analysis data was also presented in this report. (Author)

  14. Effect of ternary alloying elements on the shape memory behavior of Ti-Ta alloys

    International Nuclear Information System (INIS)

    Buenconsejo, Pio John S.; Kim, Hee Young; Miyazaki, Shuichi

    2009-01-01

    The effect of ternary alloying elements (X = V, Cr, Fe, Zr, Hf, Mo, Sn, Al) on the shape memory behavior of Ti-30Ta-X alloys was investigated. All the alloying elements decreased the martensitic transformation temperatures. The decrease in the martensitic transformation start (M s ) temperature due to alloying was affected by the atomic size and number of valence electrons of the alloying element. A larger number of valence electrons and a smaller atomic radius of an alloying element decreased the M s more strongly. The effect of the alloying elements on suppressing the aging effect on the shape memory behavior was also investigated. It was found that the additions of Sn and Al to Ti-Ta were effective in suppressing the effect of aging on the shape memory behavior, since they strongly suppress the formation of ω phase during aging treatment. For this reason the Ti-30Ta-1Al and Ti-30Ta-1Sn alloys exhibited a stable high-temperature shape memory effect during thermal cycling.

  15. Anodic behavior of alloy 22 in bicarbonate containing media: Effect of alloying

    International Nuclear Information System (INIS)

    Zadorozne, N S; Giordano, C M; Rebak, R B; Ares, A E; Carranza, R M

    2012-01-01

    Alloy 22 is one of the candidates for the manufacture of high level nuclear waste containers. These containers provide services in natural environments characterized by multi-ionic solutions.It is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is necessary to produce cracking, . It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media at potentials below transpassivity. The aim of this work is to study the effect of alloying elements on the anodic behavior of Alloy 22 in media containing bicarbonate and chloride ions at different concentrations and temperatures. Polarization curves were made on alloy 22 (Ni-22% Cr-13% Mo), Ni-Mo (Ni-28, 5% Mo) and Ni-Cr (Ni-20% Cr) in the following solutions: 1 mol/L NaCl at 90 o C, and 1.148 mol/L NaHCO 3 ; 1.148 mol/L NaHCO 3 + 1 mol/L NaCl; 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl, at 90 o C, 75 o C, 60 o C and 25 o C. It was found that alloy 22 has a anodic current density peak at potentials below transpassivity, only in the presence of bicarbonate ions. Curves performed in 1 mol/L NaCl did not show any anodic peak, in any of the tested alloys. The curves made on alloys Ni-Mo and Ni-Cr in the presence of bicarbonate ions, allowed to determine that Cr, is responsible for the appearance of the anodic peak in alloy 22. The curves of alloy Ni-Mo showed no anodic peak in the studied conditions. The potential at which the anodic peak appears in alloy 22 and Ni-Cr alloy, increases with decreasing temperature. The anodic peak was also affected by solution composition. When chloride ion is added to bicarbonate solutions, the anodic peak is shifted to higher potential and current densities, depending on the concentration of added chloride ions (author)

  16. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  17. Characteristics of Film Formed on Alloy 600 and Alloy 690 in Water Containing lead

    International Nuclear Information System (INIS)

    Hwang Seong Sik; Lee, Deok Hyun; Kim, Hong Pyo; Kim, Joung Soo; Kim, Ju Yup

    1999-01-01

    Anodic polarization behaviors of Alloy 600 and Alloy 690 have been studied as a function of lead content in the solution of pH 4 and 10 at 90 .deg. C. As the amount of lead in the solution increased, critical current densities and passive current densities of Alloy 600 and Alloy 690 increased, while the breakdown potential of the alloys decreased. The high critical current density in the high lead solution was thought to come from the combination of an enhanced dissolution of constituents on the surface of the alloys by the lead and an anodic dissolution of metallic lead deposited on the surface of the specimens. The morphology of lead precipitated on the specimen after the anodic scan changed with the pH of solution: small irregular particles were precipitated on the surface of the specimen in the solution of pH 4, while the high density of regular sized particles was formed on it in the solution of pH 10.Pb was observed to enhance Cr depletion from the outer surface of Alloy 600 and Alloy 690 and also to increase the ratio of O 2- /OH - in the surface film formed in the high lead solution. The SCC resistance of Alloy 600 and Alloy 690 may have decreased due to the poor quality of the passive film formed and the enhanced oxygen evolution in the solution containing lead

  18. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    International Nuclear Information System (INIS)

    Qin, Gaowu W.; Ren Yuping; Huang Wei; Li Song; Pei Wenli

    2010-01-01

    Graphical abstract: Display Omitted Research highlights: The ε-AlMn phase acts as the heterogeneous nucleus of α-Mg phase during the solidification of the AZ31 Mg alloy, not the γ-Al 8 Mn 5 phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure ε-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 o C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure ε-AlMn, γ 2 -Al 8 Mn 5 or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the ε-AlMn phase in the Mn-Al alloys, not the γ 2 -Al 8 Mn 5 phase. The grain size of AZ31 Mg alloy is about 91 μm without any addition of Mn-Al alloys, but remarkably decreases to ∼55 μm with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to ∼53 μm, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 o C.

  19. Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying

    Science.gov (United States)

    Omuro, Keisuke; Miura, Harumatsu

    1991-05-01

    Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.

  20. Formation and characterization of Al–Ti–Nb alloys by electron-beam surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Valkov, S., E-mail: stsvalkov@gmail.com [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Petrov, P. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria); Lazarova, R. [Institute of Metal Science, Equipment and Technologies with Hydro and Aerodynamics Center, Bulgarian Academy of Science, 67 Shipchenski Prohod blvd., 1574 Sofia (Bulgaria); Bezdushnyi, R. [Department of Solid State Physics and Microelectronics, Faculty of Physics, Sofia University “St. Kliment Ohridsky”, 1164 Sofia (Bulgaria); Dechev, D. [Institute of Electronics, Bulgarian Academy of Science, 72 Tzarigradsko Chaussee blvd., 1784 Sofia (Bulgaria)

    2016-12-15

    Highlights: • Al–Ti–Nb surface alloys have been successfully obtained by electron-beam surface alloying technology. • The alloys consist of (Ti,Nb)Al{sub 3} fractions, distributed in the biphasic structure of (Ti,Nb)Al{sub 3} particles dispersed in α-Al. • The alloying speed does not affect the lattice parameters of (Ti,Nb)Al{sub 3} and, does not form additional stresses, strains etc. • It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. • The measured hardness of (Ti,Nb)Al{sub 3} compound reaches 775 HV[kg/cm{sup 2}] which is much greater than the values of NbAl{sub 3}. - Abstract: The combination of attractive mechanical properties, light weight and resistance to corrosion makes Ti-Al based alloys applicable in many industrial branches, like aircraft and automotive industries etc. It is known that the incorporation of Nb improves the high temperature performance and mechanical properties. In the present study on Al substrate Ti and Nb layers were deposited by DC (Direct Current) magnetron sputtering, followed by electron-beam alloying with scanning electron beam. It was chosen two speeds of the specimen motion during the alloying process: V{sub 1} = 0.5 cm/s and V{sub 2} = 1 cm/s. The alloying process was realized in circular sweep mode in order to maintain the melt pool further. The obtained results demonstrate a formation of (Ti,Nb)Al{sub 3} fractions randomly distributed in biphasic structure of intermetallic (Ti,Nb)Al{sub 3} particles, dispersed in α-Al solid solution. The evaluated (Ti,Nb)Al{sub 3} lattice parameters are independent of the speed of the specimen motion and therefore the alloying speed does not affect the lattice parameters and thus, does not form additional residual stresses, strains etc. It was found that lower velocity of the specimen motion during the alloying process develops more homogeneous structures. The metallographic analyses demonstrate a

  1. Effects of alloying elements on thermal desorption of helium in Ni alloys

    International Nuclear Information System (INIS)

    Xu, Q.; Cao, X.Z.; Sato, K.; Yoshiie, T.

    2012-01-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni–Si, and Ni–Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni–Si and Ni–Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni–Sn alloy.

  2. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q., E-mail: xu@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Cao, X.Z.; Sato, K.; Yoshiie, T. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan)

    2012-12-15

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  3. Effects of alloying elements on thermal desorption of helium in Ni alloys

    Science.gov (United States)

    Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.

    2012-12-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  4. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  5. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick (Ireland); Redington, W. [Materials and Surface Science Institute, University of Limerick (Ireland)

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  6. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  7. Advanced ordered intermetallic alloy deployment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Maziasz, P.J.; Easton, D.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  8. Impact toughness of laser alloyed aluminium AA1200 alloys

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2013-08-01

    Full Text Available ),. 559-563. [2] T. Tomida, K. Nakata, S. Saji, T. Kubo, T, Formation of metal matrix composite layer on aluminium alloy with TiC-Cu powder by laser surface alloying process; Surface and Coatings Technology; vol. 142-144, 2001, 585-589. [3] L. A. B...

  9. A sulfidation-resistant nickel-base alloy

    International Nuclear Information System (INIS)

    Lai, G.Y.

    1989-01-01

    For applications in mildly to moderately sulfidizing environments, stainless steels, Fe-Ni-Cr alloys (e.g., alloys 800 and 330), and more recently Fe-Ni-Cr-Co alloys (e.g., alloy 556) are frequently used for construction of process equipment. However, for many highly sulfidizing environments, few existing commercial alloys have adequate performance. Thus, a new nickel-based alloy containing 27 wt.% Co, 28 wt.% Cr, 4 wt.% Fe, 2.75 wt.% Si, 0.5 wt.% Mn and 0.05 wt.% C (Haynes alloy HR-160) was developed

  10. Irradiation assisted stress corrosion cracking of HTH Alloy X-750 and Alloy 625

    International Nuclear Information System (INIS)

    Mills, W.J.; Lebo, M.R.; Bajaj, R.; Kearns, J.J.; Hoffman, R.C.; Korinko, J.J.

    1994-01-01

    In-reactor testing of bolt-loaded precracked compact tension specimens was performed in 360 degree C water to determine effect of irradiation on the SCC behavior of HTH Alloy X-750 and direct aged Alloy 625. Out-of-flux and autoclave control specimens provided baseline data. Primary test variables were stress intensity factor, fluence, chemistry, processing history, prestrain. Results for the first series of experiments were presented at a previous conference. Data from two more recent experiments are compared with previous results; they confirm that high irradiation levels significantly reduce SCC resistance in HTH Alloy X-750. Heat-to-heat differences in IASCC were related to differences in boron content, with low boron heats showing improved SCC resistance. The in-reactor SCC performance of Alloy 625 was superior to that for Alloy X-750, as no cracking was observed in any Alloy 625 specimens even though they were tested at very high K 1 and fluence levels. A preliminary SCC usage model developed for Alloy X-750 indicates that in-reactor creep processes, which relax stresses but also increase crack tip strain rates, and radiolysis effects accelerate SCC. Hence, in-reactor SCC damage under high flux conditions may be more severe than that associated with postirradiation tests. In addition, preliminary mechanism studies were performed to determine the cause of IASCC In Alloy X-750

  11. Improvement of magnetocaloric properties of Gd-Ge-Si alloys by alloying with iron

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available The influence of annealing of Gd5Ge2Si2Fex alloys at 1200°C and of alloying with various amount of iron on structure as well as thermal and magnetocaloric properties is investigated. It was found that annealing for 1 to 10 hours improves the entropy change, but reduces the temperature of maximum magnetocaloric effect by up to 50 K. Prolonged annealing of the Gd5Ge2Si2 alloy results in the decrease of entropy change due to the reduction of Gd5Ge2Si2 phase content. Addition of iron to the ternary alloy enhances the magnetocaloric effect, if x = 0.4 – 0.6, especially if alloying is combined with annealing at 1200°C: the peak value of the isothermal entropy change from 0 to 2 T increases from 3.5 to 11 J/kgK. Simultaneously, the temperature of maximum magnetocaloric effect drops to 250 K. The changes in magnetocaloric properties are related to the change in phase transformation from the second order for arc molten ternary alloy to first order in the case of annealed and/or alloyed with iron. The results of this study indicate that the minor addition of iron and heat treatment to Gd-Ge-Si alloys may be useful in improving the materials’ magnetocaloric properties..

  12. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep, K.G. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Materials Chemistry, RWTH Aachen University, Kopernikusstr.10, 52074 Aachen (Germany); Tasan, C.C., E-mail: c.tasan@mpie.de [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Yao, M.J. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Deng, Y. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Department of Engineering Design and Materials, Norwegian University of Science and Technology, No-7491 Trondheim (Norway); Springer, H. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany); Raabe, D., E-mail: d.raabe@mpie.de [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-str.1, 40237 Düsseldorf (Germany)

    2015-11-11

    The high entropy alloy (HEA) concept has triggered a renewed interest in alloy design, even though some aspects of the underlying thermodynamic concepts are still under debate. This study addresses the short-comings of this alloy design strategy with the aim to open up new directions of HEA research targeting specifically non-equiatomic yet massively alloyed compositions. We propose that a wide range of massive single phase solid solutions could be designed by including non-equiatomic variants. It is demonstrated by introducing a set of novel non-equiatomic multi-component CoCrFeMnNi alloys produced by metallurgical rapid alloy prototyping. Despite the reduced configurational entropy, detailed characterization of these materials reveals a strong resemblance to the well-studied equiatomic single phase HEA: The microstructure of these novel alloys exhibits a random distribution of alloying elements (confirmed by Energy-Dispersive Spectroscopy and Atom Probe Tomography) in a single face-centered-cubic phase (confirmed by X-ray Diffraction and Electron Backscatter Diffraction), which deforms through planar slip (confirmed by Electron-Channeling Contrast Imaging) and leads to excellent ductility (confirmed by uniaxial tensile tests). This approach widens the field of HEAs to non-equiatomic multi-component alloys since the concept enables to tailor the stacking fault energy and associated transformation phenomena which act as main mechanisms to design useful strain hardening behavior.

  13. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design

    International Nuclear Information System (INIS)

    Pradeep, K.G.; Tasan, C.C.; Yao, M.J.; Deng, Y.; Springer, H.; Raabe, D.

    2015-01-01

    The high entropy alloy (HEA) concept has triggered a renewed interest in alloy design, even though some aspects of the underlying thermodynamic concepts are still under debate. This study addresses the short-comings of this alloy design strategy with the aim to open up new directions of HEA research targeting specifically non-equiatomic yet massively alloyed compositions. We propose that a wide range of massive single phase solid solutions could be designed by including non-equiatomic variants. It is demonstrated by introducing a set of novel non-equiatomic multi-component CoCrFeMnNi alloys produced by metallurgical rapid alloy prototyping. Despite the reduced configurational entropy, detailed characterization of these materials reveals a strong resemblance to the well-studied equiatomic single phase HEA: The microstructure of these novel alloys exhibits a random distribution of alloying elements (confirmed by Energy-Dispersive Spectroscopy and Atom Probe Tomography) in a single face-centered-cubic phase (confirmed by X-ray Diffraction and Electron Backscatter Diffraction), which deforms through planar slip (confirmed by Electron-Channeling Contrast Imaging) and leads to excellent ductility (confirmed by uniaxial tensile tests). This approach widens the field of HEAs to non-equiatomic multi-component alloys since the concept enables to tailor the stacking fault energy and associated transformation phenomena which act as main mechanisms to design useful strain hardening behavior.

  14. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  15. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Gaowu W., E-mail: qingw@smm.neu.edu.c [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China); Ren Yuping; Huang Wei; Li Song; Pei Wenli [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Wenhu Road 3-11, Heping District, Shenyang 110004, Liaoning Province (China)

    2010-10-08

    Graphical abstract: Display Omitted Research highlights: The {epsilon}-AlMn phase acts as the heterogeneous nucleus of {alpha}-Mg phase during the solidification of the AZ31 Mg alloy, not the {gamma}-Al{sub 8}Mn{sub 5} phase. The grain refinement effect is very clear with the addition of only 0.5 wt% Mn-28Al alloy (pure {epsilon}-AlMn). The grain refinement does not deteriorate up to the holding time of 60 min at 740 {sup o}C. - Abstract: The effect of manganese on grain refinement of Al-containing AZ31 Mg alloy has been investigated by designing a series of Mn-Al alloys composed of either pure {epsilon}-AlMn, {gamma}{sub 2}-Al{sub 8}Mn{sub 5} or both of them using optical microscopy and X-ray diffraction. It is experimentally clarified that the grain refinement of the AZ31 Mg alloy is due to the existence of the {epsilon}-AlMn phase in the Mn-Al alloys, not the {gamma}{sub 2}-Al{sub 8}Mn{sub 5} phase. The grain size of AZ31 Mg alloy is about 91 {mu}m without any addition of Mn-Al alloys, but remarkably decreases to {approx}55 {mu}m with the addition of either Mn-34 wt% Al or Mn-28 wt% Al. With a minor addition of 0.5 wt% Mn-28Al alloy, the grain size of AZ31 alloy decreases to {approx}53 {mu}m, and the Mn-28Al alloy can be active as grain refiner for holding time up to 60 min for the melt AZ31 alloy at 750 {sup o}C.

  16. Corrosion-electrochemical and mechanical properties of aluminium-berylium alloys alloyed by rare-earth metals

    International Nuclear Information System (INIS)

    Safarov, A.M.; Odinaev, Kh.E.; Shukroev, M.Sh.; Saidov, R.Kh.

    1997-01-01

    In order to study influence of rare earth metals on corrosion-electrochemical and mechanical properties of aluminium-berylium alloys the alloys contain 1 mass % beryllium and different amount of rare earth metals were obtained.-electrochemical and mechanical properties of aluminium-berylium alloys. The electrochemical characteristics of obtained alloys, including stationary potential, potentials of passivation beginning and full passivation, potentials of pitting formation and re passivation were defined.

  17. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Rupa, E-mail: rupadasgupta@ampri.res.in; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-25

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  18. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    International Nuclear Information System (INIS)

    Dasgupta, Rupa; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-01

    Highlights: • Cu based SMAs with high transition temperature could be made using LM route. • The properties depend on alloying composition. • Property characterisation establishes feasibility of making SMAs. - Abstract: The effect of alloying seven different elements [Zn, Si, Fe, Ni, Mg, Cr and Ti] on the microstructure, hardness, phase precipitation and transformation temperature in a Cu–12.5Al–5Mn alloy with a view to possible improvements as a result of these additions is the focus of the reported study. The base alloy has been chosen keeping in mind its ability to exhibit shape memory properties and improved ductility over other Cu-based SMAs. The objective was to ascertain changes or improvements attained due to the individual tertiary additions. The samples were prepared through liquid metallurgy route using pure copper, aluminum, manganese and the respective quaternary alloying elements in right quantities to weigh 1000 g of the alloy in total and were melted together. Samples from the cast alloys were subject to homogenisation treatment at 200 °C for 2 h in a muffle furnace and furnace cooled. Samples from the homogenised alloys were heated and held for 2 h at 920 °C followed by ice quenching to obtain the desired martensitic structure for shape memory behaviour. The alloys in the cast, homogenised and quenched conditions were metallographically polished to observe the martensitic phase formation mainly in quenched samples which is a pre requisite for exhibiting shape memory properties in these alloys. X-ray Diffraction studies were carried out on the cast and quenched samples using Cu Kα target; and the phases identified indicate martensitic phase precipitation; however in some cases the precipitation is incomplete. Differential Scanning Calorimetric [DSC] studies were carried out on quenched samples from room temperature to 600 °C maintaining a constant rate of 10 °C/min. Results indicate clear transformation peaks in all the samples which

  19. Fracture of Shape Memory Alloys

    OpenAIRE

    Miyazaki, Shuichi; Otsuka, Kazuhiro

    1981-01-01

    The initiation and the propagation of cracks during both quenching and deformation in polycrystalline Cu-Al-Ni alloys have been investigated under various conditions. The fracture surfaces of Ti-Ni and Cu-Al-Ni alloys were also observed by a scanning electron microscope. From these results, it was concluded that the brittleness of Cu-Al-Ni alloy and other β phase alloys are due to large elastic anisotropy and large grain sizes, while that the large ductility in Ti-Ni alloy being due to the sm...

  20. Alloy development for cladding and duct applications

    International Nuclear Information System (INIS)

    Straalsund, J.L.; Johnson, G.D.

    1981-01-01

    Three general classes of materials under development for cladding and ducts are listed. Solid solution strengthened, or austenitic, alloys are Type 316 stainless steel and D9. Precipitation hardened (also austenitic) alloys consist of D21, D66 and D68. These alloys are similar to such commercial alloys as M-813, Inconel 706, Inconel 718 and Nimonic PE-16. The third general class of alloys is composed of ferritic alloys, with current emphasis being placed on HT-9, a tempered martensitic alloy, and D67, a delta-ferritic steel. The program is comprised of three parallel paths. The current reference, or first generation alloy, is 20% cold worked Type 316 stainless steel. Second generation alloys for near-term applications include D9 and HT-9. Third generation materials consist of the precipitation strengthened steels and ferritic alloys, and are being considered for implementation at a later time than the first and second generation alloys. The development of second and third generation materials was initiated in 1974 with the selection of 35 alloys. This program has proceeded to today where there are six advanced alloys being evaluated. These alloys are the developmental alloys D9, D21, D57, D66 and D68, together with the commerical alloy, HT-9. The status of development of these alloys is summarized

  1. ZIRCONIUM-TITANIUM-BERYLLIUM BRAZING ALLOY

    Science.gov (United States)

    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.

    1962-06-12

    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  2. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  3. Grain refinement of an AZ63B magnesium alloy by an Al-1C master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yichuan Pan; Xiangfa Liu; Hua Yang [The Key Lab. of Liquid Structure and Heredity of Materials, Shandong Univ., Jinan (China)

    2005-12-01

    In order to develop a refiner of Mg-Al alloys, an Al-1C (in wt.%) master alloy was synthesized using a casting method. The microstructure and grain-refining performance of the Al-1C master alloy were investigated using X-ray diffraction (XRD), electron probe microanalysis (EPMA) and a grain-refining test. The microstructure of the Al-1C master alloy is composed of {alpha}-Al solid solution, Al{sub 4}C{sub 3} particles, and graphite phases. After grain refinement of AZ63B alloy by the Al-1C master alloy, the mean grain size reached a limit when 2 wt.% Al-C master alloy was added at 800 C and held for 20 min in the melt before casting. The minimum mean grain size is approximately 48 {mu}m at the one-half radius of the ingot and is about 17% of that of the unrefined alloy. The Al-1C master alloy results in better grain refinement than C{sub 2}Cl{sub 6} and MgCO{sub 3} carbon-containing refiners. (orig.)

  4. The physical metallurgy of mechanically-alloyed, dispersion-strengthened Al-Li-Mg and Al-Li-Cu alloys

    Science.gov (United States)

    Gilman, P. S.

    1984-01-01

    Powder processing of Al-Li-Mg and Al-Li-Cu alloys by mechanical alloying (MA) is described, with a discussion of physical and mechanical properties of early experimental alloys of these compositions. The experimental samples were mechanically alloyed in a Szegvari attritor, extruded at 343 and 427 C, and some were solution-treated at 520 and 566 C and naturally, as well as artificially, aged at 170, 190, and 210 C for times of up to 1000 hours. All alloys exhibited maximum hardness after being aged at 170 C; lower hardness corresponds to the solution treatment at 566 C than to that at 520 C. A comparison with ingot metallurgy alloys of the same composition shows the MA material to be stronger and more ductile. It is also noted that properly aged MA alloys can develop a better combination of yield strength and notched toughness at lower alloying levels.

  5. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  6. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  7. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Takanobu [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)]. E-mail: siraisi@nagasaki-u.ac.jp; Takuma, Yasuko [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Miura, Eri [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Fujita, Takeshi [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan); Hisatsune, Kunihiro [Department of Dental and Biomedical Materials Science, Unit of Basic Medical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588 (Japan)

    2007-06-15

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys.

  8. Effects of segregation of primary alloying elements on the creep response in magnesium alloys

    DEFF Research Database (Denmark)

    Huang, Y.D.; Dieringa, H.; Hort, N.

    2008-01-01

    The segregation of primary alloying elements deteriorates the high temperature creep resistance of magnesium alloys. Annealing at high temperatures alleviating their segregations can improve the creep resistance. Present investigation on the effect of segregation of primary alloying elements...... on the creep response may provide some useful information about how to improve the creep resistance of magnesium alloys in the future. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  9. Effectiveness of Ti-micro alloying in relation to cooling rate on corrosion of AZ91 Mg alloy

    International Nuclear Information System (INIS)

    Candan, S.; Celik, M.; Candan, E.

    2016-01-01

    In this study, micro Ti-alloyed AZ91 Mg alloys (AZ91 + 0.5wt.%Ti) have been investigated in order to clarify effectiveness of micro alloying and/or cooling rate on their corrosion properties. Molten alloys were solidified under various cooling rates by using four stage step mold. The microstructural investigations were carried out by using scanning electron microscopy (SEM). Corrosion behaviors of the alloys were evaluated by means of immersion and electrochemical polarization tests in 3.5% NaCl solution. Results showed that the Mg 17 Al 12 (β) intermetallic phase in the microstructure of AZ91 Mg alloy formed as a net-like structure. The Ti addition has reduced the distribution and continuity of β intermetallic phase and its morphology has emerged as fully divorced eutectic. Compared to AZ91 alloy, the effect of the cooling rate in Ti-added alloy on the grain size was less pronounced. When AZ91 and its Ti-added alloys were compared under the same cooling conditions, the Ti addition showed notably high corrosion resistance. Electrochemical test results showed that while I corr values of AZ91 decrease with the increase in the cooling rate, the effect of the cooling rate on I corr values was much lower in the Ti-added alloy. The corrosion resistance of AZ91 Mg alloy was sensitive towards the cooling rates while Ti-added alloy was not affected much from the cooling conditions. - Highlights: • Effect the cooling rate on grain size was less pronounced in the Ti-added alloy. • The morphology of the β phase transformed into fully divorced eutectics. • Ti addition exhibited significantly higher corrosion resistance. • Ti micro alloying is more effective than faster cooling of the alloy on corrosion.

  10. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys

    International Nuclear Information System (INIS)

    Bakhsheshi-Rad, H.R.; Idris, M.H.; Abdul-Kadir, M.R.; Ourdjini, A.; Medraj, M.; Daroonparvar, M.; Hamzah, E.

    2014-01-01

    Highlights: • Quaternary alloy show better mechanical and corrosion properties than binary alloy. • Mg–2Ca–0.5Mn–2Zn alloy showed suitable mechanical properties for bone application. • The improved corrosion resistance with addition of Mn and Zn into the Mg–Ca alloy. • Formation of protective surface film Mn-containing magnesium on quaternary alloy. • Secondary phases have strong effect on micro-galvanic corrosion of Mg alloys. - Abstract: Binary Mg–xCa alloys and the quaternary Mg–Ca–Mn–xZn were studied to investigate their bio-corrosion and mechanical properties. The surface morphology of specimens was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of mechanical properties show that the yield strength (YS), ultimate tensile strength (UTS) and elongation of quaternary alloy increased significantly with the addition of zinc (Zn) up to 4 wt.%. However, further addition of Zn content beyond 4 wt.% did not improve yield strength and ultimate tensile strength. In contrast, increasing calcium (Ca) content has a deleterious effect on binary Mg–Ca alloys. Compression tests of the magnesium (Mg) alloys revealed that the compression strength of quaternary alloy was higher than that of binary alloy. However, binary Mg–Ca alloy showed higher reduction in compression strength after immersion in simulated body fluid. The bio-corrosion behaviour of the binary and quaternary Mg alloys were investigated using immersion tests and electrochemical tests. Electrochemical tests shows that the corrosion potential (E corr ) of binary Mg–2Ca significantly shifted toward nobeler direction from −1996.8 to −1616.6 mV SCE with the addition of 0.5 wt.% manganese (Mn) and 2 wt.% Zn content. However, further addition of Zn to 7 wt.% into quaternary alloy has the reverse effect. Immersion tests show that the quaternary

  11. Effect of reversible hydrogen alloying and plastic deformation on microstructure development in titanium alloys

    International Nuclear Information System (INIS)

    Murzinova, M.A.

    2011-01-01

    Hydrogen leads to degradation in fracture-related mechanical properties of titanium alloys and is usually considered as a very dangerous element. Numerous studies of hydrogen interaction with titanium alloys showed that hydrogen may be considered not only as an impurity but also as temporary alloying element. This statement is based on the following. Hydrogen stabilizes high-temperature β-phase, leads to decrease in temperature of β→α transformation and extends (α + β )-phase field. The BCC β-phase exhibits lower strength and higher ductility in comparison with HCP α -phase. As a result, hydrogen improves hot workability of hard-to-deform titanium alloys. Hydrogen changes chemical composition of the phases, kinetics of phase transformations, and at low temperatures additional phase transformation (β→α + TiH 2 ) takes place, which is accompanied with noticeable change in volumes of phases. As a result, fine lamellar microstructure may be formed in hydrogenated titanium alloys after heat treatment. It was shown that controlled hydrogen alloying improves weldability and machinability of titanium alloys. After processing hydrogenated titanium preforms are subjected to vacuum annealing, and the hydrogen content decreases up to safe level. Hydrogen removal is accompanied with hydrides dissolution and β→α transformation that makes possible to control structure formation at this final step of treatment. Thus, reversible hydrogen alloying of titanium alloys allows to obtain novel microstructure with enhanced properties. The aim of the work was to study the effect of hydrogen on structure formation, namely: i) influence of hydrogen content on transformation of lamellar microstructure to globular one during deformation in (α+β)-phase field; ii) effect of dissolved hydrogen on dynamic recrystallization in single α- and β- phase regions; iii) influence of vacuum annealing temperature on microstructure development. The work was focused on the optimization of

  12. Physical metallurgy of titanium alloys

    International Nuclear Information System (INIS)

    Collings, E.W.

    1988-01-01

    Researches in electric, magnetic, thermophysical properties of titanium alloys in the wide range of temperatures (from helium upto elevated one), as well as stability of phases in alloys of different types are generalized. Fundamental description of physical properties of binary model alloys is given. Acoustic emission, shape memory and Bauschinger effects, pseudoelasticity, aging and other aspects of physical metallurgy of titanium alloys are considered

  13. Fe-Cr-Ni system alloys

    International Nuclear Information System (INIS)

    Levin, F.L.

    1986-01-01

    Phase diagram of Fe-Cr-Ni system, which is the basic one for production of corrosion resistant alloys, is considered. Data on corrosion resistance of such alloys are correlated depending on a number of factors: quality and composition of modifying elements, corrosion medium, temperature, alloy structure, mechanical and thermal treatment. Grades of Fe-Ni-Cr alloys are presented, and fields of their application are pointed out

  14. Galvanic corrosion in odontological alloys

    International Nuclear Information System (INIS)

    Riesgo, O.; Bianchi, G.L.; Duffo, G.S.

    1993-01-01

    Galvanic corrosion can occur when different alloys are placed in direct contact within the oral cavity or within tissues. Concern has been expressed associated with the coupling of selected restorative materials as well as implant material with various alloys used for restorative procedures. This could be critical if the crown or bridge had subgingival finish line with a metallic zone in contact with the tissue, and the implant was made in titanium alloy. The present work shows the results of galvanic coupling studies done on implants of titanium alloy connected to nickel-chromium and cobalt-chromium alloys. (Author)

  15. Toxic effects of cadmium on Morus alba L. and Bombyx moril L.

    NARCIS (Netherlands)

    Wang, K.R.; Gong, H.; Wang, Y.; Zee, van der S.E.A.T.M.

    2004-01-01

    A 3-year micro-plot experiment of mulberry cultivation with Cd-polluted soil and silkworm breeding experiments by feeding with exogenous or endogenous ¿Cd-polluted mulberry leaves were conducted to evaluate the toxic effects of Cd on mulberry and silkworms. There was no apparent harmful effect on

  16. Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy

    Science.gov (United States)

    Hotea, V.; Juhasz, J.; Cadar, F.

    2017-05-01

    This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.

  17. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  18. Studies of the AA2519 Alloy Hot Rolling Process and Cladding with EN AW-1050A Alloy

    Directory of Open Access Journals (Sweden)

    Płonka B.

    2016-03-01

    Full Text Available The objective of the study was to determine the feasibility of plastic forming by hot rolling of the AA2519 aluminium alloy sheets and cladding these sheets with a layer of the EN AW-1050A alloy. Numerous hot-rolling tests were carried out on the slab ingots to define the parameters of the AA2519 alloy rolling process. It has been established that rolling of the AA2519 alloy should be carried out in the temperature range of 400-440°C. Depending on the required final thickness of the sheet metal, appropriate thickness of the EN AW-1050A alloy sheet, used as a cladding layer, was selected. As a next step, structure and mechanical properties of the resulting AA2519 alloy sheets clad with EN AW-1050A alloy was examined. The thickness of the coating layer was established at 0,3÷0,5mm. Studies covered alloy grain size and the core alloy-cladding material bond strength.

  19. Investigation of a hot-pressed Nb–Ti–Al alloy: Mechanical alloying, microstructure and mechanical property

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhiwu; Wei, Hua; Zhang, Hongyu; Jin, Tao; Sun, Xiaofeng; Zheng, Qi, E-mail: qzheng@imr.ac.cn

    2016-01-10

    The Nb–23Ti–15Al (at%) alloy was prepared by mechanical alloying (MA) and hot-pressing (HPing). The microstructure evolution of powder particles during MA and its influence on the microstructure and mechanical properties of the hot-pressed (HPed) alloy have been investigated. The powder and HPed alloy were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that particle size increases in the first stage and then decreases in the second stage during MA; as milling speed increases, mechanically alloyed (MAed) powder with convoluted elemental lamellae, homogeneous Nb solid-solution and an amorphous phase could be obtained respectively in 24 h. Higher homogeneity in microstructure and composition of the MAed powder particles promotes the precipitation of the δ phase and refines the β and Ti(O,C) phases in the HPed alloy. Moreover, due to the phase equilibrium changes caused by Fe and Cr in the amorphous powder, σ phase appears in the alloy as a stable phase instead of the δ phase. Properly MAed powder contributes to higher hardness of the HPed alloy, for reasons of microstructure refinement and sufficient precipitating of strengthening phases.

  20. Investigation of a hot-pressed Nb–Ti–Al alloy: Mechanical alloying, microstructure and mechanical property

    International Nuclear Information System (INIS)

    Shi, Zhiwu; Wei, Hua; Zhang, Hongyu; Jin, Tao; Sun, Xiaofeng; Zheng, Qi

    2016-01-01

    The Nb–23Ti–15Al (at%) alloy was prepared by mechanical alloying (MA) and hot-pressing (HPing). The microstructure evolution of powder particles during MA and its influence on the microstructure and mechanical properties of the hot-pressed (HPed) alloy have been investigated. The powder and HPed alloy were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that particle size increases in the first stage and then decreases in the second stage during MA; as milling speed increases, mechanically alloyed (MAed) powder with convoluted elemental lamellae, homogeneous Nb solid-solution and an amorphous phase could be obtained respectively in 24 h. Higher homogeneity in microstructure and composition of the MAed powder particles promotes the precipitation of the δ phase and refines the β and Ti(O,C) phases in the HPed alloy. Moreover, due to the phase equilibrium changes caused by Fe and Cr in the amorphous powder, σ phase appears in the alloy as a stable phase instead of the δ phase. Properly MAed powder contributes to higher hardness of the HPed alloy, for reasons of microstructure refinement and sufficient precipitating of strengthening phases.

  1. A new technique to modify hypereutectic Al-24%Si alloys by a Si-P master alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yaping; Wang Shujun; Li Hui [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China); Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, 73 Jingshi Road, Jinan 250061 (China)], E-mail: xfliu@sdu.edu.cn

    2009-05-27

    The modification effect of a Si-P master alloy on Al-24%Si alloy was investigated by using electron probe micro-analyzer (EPMA) and optical microscopy (OM). The dissolution problem of the Si-P master alloys was solved by changing the sequence of addition. When the Si-P master alloy was added into Al melt before the addition of silicon, the best modification effect could be achieved. The modification parameters of the master alloy on Al-24%Si alloy were optimized through designing and analyzing the orthogonal experiment, and their influences on the modification effect were discussed. The results show that the influence of temperature on the modification effect is the greatest, followed by the addition level, and the holding time is the least. The optimized modification parameters are the modification temperature of 810 deg. C, the addition level of 0.35 wt.%, the holding time of 30 min + 50 min whose meaning is that the Si-P master alloy is added firstly to the molten Al, and silicon is added 30 min later, then holding another 50 min. In addition, the modification mechanism of the Si-P master alloy on Al-24%Si alloy was also discussed.

  2. Study on microstructure and properties of Mg-alloy surface alloying layer fabricated by EPC

    Directory of Open Access Journals (Sweden)

    Chen Dongfeng

    2010-02-01

    Full Text Available AZ91D surface alloying was investigated through evaporative pattern casting (EPC technology. Aluminum powder (0.074 to 0.104 mm was used as the alloying element in the experiment. An alloying coating with excellent properties was fabricated, which mainly consisted of adhesive, co-solvent, suspending agent and other ingredients according to desired proportion. Mg-alloy melt was poured under certain temperature and the degree of negative pressure. The microstructure of the surface layer was examined by means of scanning electron microscopy. It has been found that a large volume fraction of network new phases were formed on the Mg-alloy surface, the thickness of the alloying surface layer increased with the alloying coating increasing from 0.3 mm to 0.5 mm, and the microstructure became compact. Energy dispersive X-ray (EDX analysis was used to determine the chemical composition of the new phases. It showed that the new phases mainly consist of β-Mg17Al12, in addition to a small quantity of inter-metallic compounds and oxides. A micro-hardness test and a corrosion experiment to simulate the effect of sea water were performed. The result indicated that the highest micro-hardness of the surface reaches three times that of the matrix. The corrosion rate of alloying samples declines to about a fifth of that of the as-cast AZ91D specimen.

  3. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  4. The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements

    Science.gov (United States)

    Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe

    2014-04-01

    The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.

  5. Effect of Al alloying on the martensitic temperature in Ti-Ta shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Alberto; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitaet Bochum (Germany)

    2017-07-01

    Ti-Ta-based alloys are promising candidates as high temperature shape memory alloys (HTSMAs) for actuators and superelastic applications. The shape memory mechanism involves a martensitic transformation between the low-temperature α'' phase (orthorhombic) and the high-temperature β phase (body-centered cubic). In order to prevent the degradation of the shape memory effect, Ti-Ta needs to be alloyed with further elements. However, this often reduces the martensitic temperature M{sub s}, which is usually strongly composition dependent. The aim of this work is to analyze how the addition of a third element to Ti-Ta alloys affects M{sub s} by means of electronic structure calculations. In particular, it will be investigated how alloying Al to Ti-Ta alters the relative stability of the α'' and β phases. This understanding will help to identify new alloy compositions featuring both a stable shape memory effect and elevated transformation temperatures.

  6. Density of Liquid Ni-Cr Alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of liquid Ni-Cr alloy was measured by a modified sessile drop method. The density of liquid Ni-Cr alloywas found to decrease with increasing temperature and Cr concentration in the alloy. The molar volume of liquidNi-Cr alloy increases with increasing the Cr concentration in the alloy. The molar volume of Ni-Cr alloy determinedin the present work shows a positive deviation from the linear molar volume.

  7. Low activation ferritic alloys

    Science.gov (United States)

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  8. Radiosensitivity, mutation and tetraploid induction in the gamma-ray-irradiated growing shoots in mulberry, Morus alba L

    International Nuclear Information System (INIS)

    Katagiri, Koitsu

    1976-01-01

    The vigorously developing mulberry shoots on the 1 year old grafted trees of the variety Inchinose were separately exposed to 60 Co γ-ray of 6KR at 120 R/hr and 7.5 KR at 150 R/hr in early July, early August and early September. After the irradiation, all of the irradiated shoots developed axially buds with malformed narrow leaves, and after that, all plants subjected to the irradiation in September and 30% of the July irradiation group and 40% of the August irradiation group both with higher exposure ceased shoot development. This type of radiation damage was large for the plants with higher exposure as compared with those with lower one, and it was also severe for the plants irradiated in July in comparison with those in August. From the ceasing of shoot development the LD 50 value of 150 R/hr irradiation was estimated to be a little more than 7.5 KR. The frequencies of mutation and tetraploid in the grafts produced by the propagation of the axially buds below the leafless portion were high in the grafts with higher exposure than those with lower one, and also the frequencies were high in July irradiation in comparison with August irradiation. It was confirmed that the size of mutation or tetraploid sector was large in the shoots derived from the less advanced axially bud primordia at the time of irradiation than that from the advanced ones. All of tetraploids were the cytochimeras having diploid epidermises over tetraploid internal tissues. (Kobatake, H.)

  9. Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films

    Directory of Open Access Journals (Sweden)

    Bao Lin

    2014-10-01

    Full Text Available Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30 and white gold (Au50Ag50 foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM. Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested.

  10. Preparation of Copper and Chromium Alloyed Layers on Pure Titanium by Plasma Surface Alloying Technology

    Science.gov (United States)

    He, Xiaojing; Li, Meng; Wang, Huizhen; Zhang, Xiangyu; Tang, Bin

    2015-05-01

    Cu-Cr alloyed layers with different Cu and Cr contents on pure titanium were obtained by means of plasma surface alloying technology. The microstructure, chemical composition and phase composition of Cu-Cr alloyed layers were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. The experimental results demonstrate that the alloyed layers are bonded strongly to pure titanium substrate and consist of unbound Ti, CuTi, Cu3Ti, CuTi3 and Cr2Ti. The thickness of Cu5Cr5 and Cu7Cr3 alloyed layer are about 18 μm and 28 μm, respectively. The antibacterial properties against gram-negative Escherichia coli (E.coli, ATCC10536) and gram-positive Staphylococcus aureus (S. aureus, ATCC6538) of untreated pure titanium and Cu-Cr alloyed specimen were investigated by live/dead fluorescence staining method. The study shows that Cu-Cr alloyed layers exhibit excellent antibacterial activities against both E.coli and S.aureus within 24 h, which may be attributed to the formation of Cu-containing phases.

  11. Preparation of a high strength Al–Cu–Mg alloy by mechanical alloying and press-forming

    International Nuclear Information System (INIS)

    Tang Huaguo; Cheng Zhiqiang; Liu Jianwei; Ma Xianfeng

    2012-01-01

    Highlights: ► A high strength aluminum alloy of Al–2 wt.%Mg–2 wt.%Cu has been prepared by mechanical alloying and press-forming. ► The alloy only consists of solid solution α-Al. ► The grains size of α-Al was about 300 nm–5 μm. ► The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al–2 wt.%Mg–2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution α-Al. Microstructure characterizations revealed that the grain size of α-Al was about 300 nm–5 μm. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  12. Preparation of a high strength Al-Cu-Mg alloy by mechanical alloying and press-forming

    Energy Technology Data Exchange (ETDEWEB)

    Tang Huaguo [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Cheng Zhiqiang [College of Resources and Environment, Jilin Agricultural University, Changchun 130118 (China); Liu Jianwei [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ma Xianfeng, E-mail: xfma@ciac.jl.cn [State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer A high strength aluminum alloy of Al-2 wt.%Mg-2 wt.%Cu has been prepared by mechanical alloying and press-forming. Black-Right-Pointing-Pointer The alloy only consists of solid solution {alpha}-Al. Black-Right-Pointing-Pointer The grains size of {alpha}-Al was about 300 nm-5 {mu}m. Black-Right-Pointing-Pointer The solid solution strengthening and the grain refinement strengthening are the main reasons for such a high strength. - Abstract: A high strength aluminum alloy, with the ratio of 96 wt.%Al-2 wt.%Mg-2 wt.%Cu, has been prepared by mechanical alloying and press-forming. The alloy exhibited a high tensile strength of 780 MPa and a high microhardness of 180 HV. X-ray diffraction characterizations confirmed that the alloy only consists of a solid solution {alpha}-Al. Microstructure characterizations revealed that the grain size of {alpha}-Al was about 300 nm-5 {mu}m. The solid solution strengthening and the grain refinement strengthening were considered to be the reason for such a high strength.

  13. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  14. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  15. Superconducting alloys

    International Nuclear Information System (INIS)

    Bowers, J.E.

    1976-01-01

    Reference is made to superconductors having high critical currents. The superconductor described comprises an alloy consisting of a matrix of a Type II superconductor which is a homogeneous mixture of 50 to 95 at.% Pb and 5 to 40 at.%Bi and/or 10 to 50 at.%In. Dispersed in the matrix is a material to provide pinning centres comprising from 0.01% to 20% by volume of the alloy; this material is a stable discontinuous phase of discrete crystalline particles of Cu, Mn, Te, Se, Ni, Ca, Cr, Ce, Ge or La, either in the form of the element or a compound with a component of the matrix. These particles should have an average diameter of not more than 2μ. A method for making this alloy is described. (U.K.)

  16. Imparting passivity to vapor deposited magnesium alloys

    Science.gov (United States)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  17. Strength and fracture of two-phase alloys: a comparison of two alloy systems

    International Nuclear Information System (INIS)

    Gurland, J.

    1978-01-01

    The functional roles of the hard and soft constituents in the deformation and fracture of two-phase alloys are discussed on the basis of two commercially important alloy systems, namely spheroidized carbon steels and cemented carbides, WC-Co. A modified rule of mixtures provides a structural approach to the yield and flow strength. Consideration of the fracture toughness is attempted by means of a phenomenological modelling of the fracture process on the microscale. While there are large differences in properties between the two alloys, the deformation and fracture processes show broad smilarities which are associated with the features of the interaction between constituents common to both alloys

  18. Passive Corrosion Behavior of Alloy 22

    International Nuclear Information System (INIS)

    R.B. Rebak; J.H. Payer

    2006-01-01

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids

  19. Corrosion-electrochemical behaviour and mechanical properties ofaluminium alloy-321, alloyed by barium

    International Nuclear Information System (INIS)

    Ganiev, I.; Mukhiddinov, G.N.; Kargapolova, T.V.; Mirsaidov, U.

    1995-01-01

    The purpose of present work is studying of influence of barium additionson electrochemical corrosion of casting aluminium-copper alloy Al-321,containing as base alloying components copper, chromium, manganese, titanium,zirconium, cadmium

  20. Enhancing emulsification and antioxidant ability of egg albumin by moderately acid hydrolysis: Modulating an emulsion-based system for mulberry seed oil.

    Science.gov (United States)

    Chang, Jing; Kang, Xu; Yuan, Jiang-Lan

    2018-07-01

    Mulberry seed oil (MSO) is a kind of potential health-care lipids. This study, we investigated unsaturated fatty acids profiles of freshly squeezed MSO by GC-MS and modulated an oil-in-water emulsion system stabilized by acid hydrolyzed egg albumin (AHEA) to protect MSO from oxidation. The results showed that the content of total unsaturated fatty acids in MSO was almost 80%, of which 9, 12- and 10, 13-linoleic acid was over 60% and 10% respectively. In the case of the MSO-in-AHEA emulsions, it was observed that acid hydrolysis improved emulsifying effect, emulsifying stability and antioxidant activity of egg albumin (EA). The hydrolysates of EA (1%, w/w) acid hydrolyzed for 4 h at 85 °C had the best DPPH radical scavenging efficiency. It was suitable for EA to hydrolyze for 4 to 12 h at pH 2.5 and 85 °C because of their better emulsification and oxidation stability than the others. The results about AHEA could be valuable for designing delivery and protect systems for MSO or other bioactive component to avoid their oxidative damage or control their release. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Coupling between bulk ordering and surface segregation: from alloy surfaces to surface alloys

    International Nuclear Information System (INIS)

    Gallis, Coralie

    1997-01-01

    -The knowledge of the alloy surfaces is of prime interest to understand their catalytic properties. On the one hand, the determination of the stability of the surface alloys depends very strongly on the behaviours of the A c B 1-c alloy surfaces. On the other hand, the knowledge of the kinetics of the formation-dissolution of surface alloys can allow to understand the equilibrium segregation isotherm. We have then studied the relation between the equilibrium surface segregation in an alloy A c B 1-c and the kinetics of dissolution of a few metallic layers of A/B and the inverse deposit. We have used an energetic model derived from the electronic structure (T.I.B.M.) allowing us to study the surface segregation both in the disordered state and in the ordered one. The kinetics of dissolution were studied using the kinetic version of this model (K.T.I.B.M.) consistent with the equilibrium model. To illustrate our study, we have chosen the Cu-Pd system, a model for the formation of surface alloys and for which a great number of studies, both experimental and theoretical, are in progress. We then have shown for the (111) surface of this system that the surface alloys obtained during the dissolution are related to the alloy surfaces observed for the equilibrium segregation. The Cu-Pd system is characteristic of systems which have a weak segregation energy. Then, we have performed an equivalent study for a system with a strong segregation energy. Our choice was directly put on the Pt-Sn system. The surface behaviour, both in equilibrium and during the kinetics of dissolution, is very different from the Cu-Pd case. In particular, we have found pure 2-D surface alloys. Finally, a quenched molecular dynamics study has allowed us to determine the relative stability of various possible surface superstructures. (author) [fr

  2. ODS Alloys for Nuclear Applications

    International Nuclear Information System (INIS)

    Jang, Jin Sung

    2006-01-01

    ODS (oxide dispersion strengthening) alloy is one of the potential candidate alloys for the cladding or in reactor components of Generation IV reactors and for the structural material even for fusion reactors. It is widely accepted as very resistant material to neutron irradiation as well as strong material at high temperature due to its finely distributed and stable oxide particles. Among Generation IV reactors SFR and SCWR are anticipated in general to run in the temperature range between 300 and 550 .deg. C, and the peak cladding temperature is supposed to reach at about 620 .deg. C during the normal operation. Therefore Zr.base alloys, which have been widely known and adopted for the cladding material due to their excellent neutron economics, are no more adequate at these operating conditions. Fe-base ODS alloys in general has a good high temperature strength at the above high temperature as well as the neutron resistance. In this study a range of commercial grade ODS alloys and their applications are reviewed, including an investigation of the stability of a commercial grade 20% Cr Fe-base ODS alloy(MA956). The alloy was evaluated in terms of the fracture toughness change along with the aging treatment. Also an attempt of the development of 9% Cr Fe-base ODS alloys is introduced

  3. Positrons in amorphous alloys

    International Nuclear Information System (INIS)

    Moser, Pierre.

    1981-07-01

    Positron annihilation techniques give interesting informations about ''empty spaces'' in amorphous alloys. The results of an extensive research work on the properties of either pre-existing or irradiation induced ''empty spaces'' in four amorphous alloys are presented. The pre-existing empty spaces appear to be small vacancy-like defects. The irradiation induced defects are ''close pairs'' with widely distributed configurations. There is a strong interaction between vacancy like and interstitial like components. A model is proposed, which explains the radiation resistance mechanism of the amorphous alloys. An extensive joint research work to study four amorphous alloys, Fe 80 B 20 ,Fe 40 Ni 40 P 14 B 6 , Cu 50 Ti 50 , Pd 80 Si 20 , is summarized

  4. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  5. Environmental fatigue in aluminum-lithium alloys

    Science.gov (United States)

    Piascik, Robert S.

    1992-01-01

    Aluminum-lithium alloys exhibit similar environmental fatigue crack growth characteristics compared to conventional 2000 series alloys and are more resistant to environmental fatigue compared to 7000 series alloys. The superior fatigue crack growth behavior of Al-Li alloys 2090, 2091, 8090, and 8091 is due to crack closure caused by tortuous crack path morphology and crack surface corrosion products. At high R and reduced closure, chemical environment effects are pronounced resulting in accelerated near threshold da/dN. The beneficial effects of crack closure are minimized for small cracks resulting in rapid growth rates. Limited data suggest that the 'chemically small crack' effect, observed in other alloy system, is not pronounced in Al-Li alloys. Modeling of environmental fatigue in Al-Li-Cu alloys related accelerated fatigue crack growth in moist air and salt water to hydrogen embrittlement.

  6. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation

    International Nuclear Information System (INIS)

    Sreeranganathan, A.; Gokhale, A.; Tamirisakandala, S.

    2008-01-01

    The constitutive properties of the titanium alloy matrix in boron-modified titanium alloys are different from those of the corresponding unreinforced alloy due to the microstructural changes resulting from the addition of boron. Experimental and finite-element analyses of spherical indentation with a large penetration depth to indenter radius ratio are used to compute the local constitutive properties of the matrix alloy. The results are compared with that of the corresponding alloy without boron, processed in the same manner

  7. The quasicrystalline phase formation in Al-Cu-Cr alloys produced by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Sviridova, T.A.; Shevchukov, A.P.; Shelekhov, E.V. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation); Diakonov, D.L. [Bardin Central Research Institute for the Iron and Steel Industry, Moscow 105005 (Russian Federation); Tcherdyntsev, V.V.; Kaloshkin, S.D. [National University of Science and Technology ' MISIS' , Moscow 119049 (Russian Federation)

    2011-06-15

    Research highlights: > Formation of decagonal quasicrystalline phase in Al-Cu-Cr alloys. > Obtained decagonal phase belongs to D{sub 3} family of decagonal quasicrystals. > Decagonal phase has 1.26 nm periodicity along 10-fold axis. > Alloys were produced by combination of mechanical alloying and subsequent annealing. > Phase composition of as-milled powders depending on annealing temperature. - Abstract: Almost single-phase decagonal quasicrystal with periodicity of 1.26 nm along 10-fold axis was produced in Al{sub 69}Cu{sub 21}Cr{sub 10} and Al{sub 72.5}Cu{sub 16.5}Cr{sub 11} alloys using combination of mechanical alloying (MA) and subsequent annealing. Phase transformations of as-milled powders depending on annealing temperature in the range of 200-800 deg. C are examined. Since the transformations can be explained based on kinetic and thermodynamic reasons it seems that applied technique (short preliminary MA followed by the annealing) permits to produce the equilibrium phases rather than metastable ones.

  8. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hajizadeh

    2014-03-01

    Full Text Available Background: It has been proposed that oxidative stress may contribute to the development of testicular abnormalities in diabetes. Morus alba leaf extract (MAE has hypoglycemic and antioxidant properties. We, therefore, explored the impact of the administration of MAE on steroidogenesis in diabetic rats. Methods: To address this hypothesis, we measured the serum level of glucose, insulin, and free testosterone (Ts as well as oxidative stress parameters (including glutathione peroxidase, glutathione reductase, total antioxidant capacity, and malondialdehyde in the testis of control, untreated and MAE-treated (1 g/day/kg diabetic rats. In order to determine the likely mechanism of MAE action on Ts levels, we analyzed the quantitative mRNA expression level of the two key steroidogenic proteins, namely steroid acute regulatory protein (StAR and P450 cholesterol side-chain cleavage enzyme (P450scc, by real-time PCR. Results: The MAE-treated diabetic rats had significantly decreased glucose levels and on the other hand increased insulin and free Ts levels than the untreated diabetic rats. In addition, the administration of MAE to the diabetic rats restored the oxidative stress parameters toward control. Induction of diabetes decreased testicular StAR mRNA expression by 66% and MAE treatment enhanced mRNA expression to the same level of the control group. However, the expression of P540scc was not significantly decreased in the diabetic group as compared to the control group. Conclusion: Our findings indicated that MAE significantly increased Ts production in the diabetic rats, probably through the induction of StAR mRNA expression levels. Administration of MAE to experimental models of diabetes can effectively attenuate oxidative stress-mediated testosterone depletion. Please cite this article as: Hajizadeh MR, Eftekhar E, Zal F, Jaffarian A, Mostafavi-Pour Z. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in

  9. Grain refinement of zinc-aluminium alloys

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2006-01-01

    It is now well-established that the structure of the zinc-aluminum die casting alloys can be modified by the binary Al-Ti or the ternary Al-Ti-B master alloys. in this paper, grain refinement of zinc-aluminum alloys by rare earth materials is reviewed and discussed. The importance of grain refining of these alloys and parameters affecting it are presented and discussed. These include parameters related to the Zn-Al alloys cast, parameters related to the grain refining elements or alloys and parameters related to the process. The effect of addition of other alloying elements e.g. Zr either alone or in the presence of the main grain refiners Ti or Ti + B on the grain refining efficiency is also reviewed and discussed. Furthermore, based on the grain refinement and the parameters affecting it, a criterion for selection of the optimum grain refiner is suggested. Finally, the recent research work on the effect of grain refiners on the mechanical behaviour, impact strength, wear resistance, and fatigue life of these alloys are presented and discussed. (author)

  10. Applications of thermodynamic calculations to Mg alloy design: Mg-Sn based alloy development

    International Nuclear Information System (INIS)

    Jung, In-Ho; Park, Woo-Jin; Ahn, Sang Ho; Kang, Dae Hoon; Kim, Nack J.

    2007-01-01

    Recently an Mg-Sn based alloy system has been investigated actively in order to develop new magnesium alloys which have a stable structure and good mechanical properties at high temperatures. Thermodynamic modeling of the Mg-Al-Mn-Sb-Si-Sn-Zn system was performed based on available thermodynamic, phase equilibria and phase diagram data. Using the optimized database, the phase relationships of the Mg-Sn-Al-Zn alloys with additions of Si and Sb were calculated and compared with their experimental microstructures. It is shown that the calculated results are in good agreement with experimental microstructures, which proves the applicability of thermodynamic calculations for new Mg alloy design. All calculations were performed using FactSage thermochemical software. (orig.)

  11. A highly ductile magnesium alloy system

    International Nuclear Information System (INIS)

    Gao, W; Liu, H

    2009-01-01

    Magnesium (Mg) alloys are finding increasing applications in industry mainly due to their high strength-to-weight ratio. However, they have intrinsically poor plastic deformation ability at room temperature. Therefore, the vast majority of Mg alloys are used only in cast state, severely limiting the development of their applications. We have recently discovered a new Mg alloy system that possesses exceptionally high ductility as well as good mechanical strength. The superior plasticity allows this alloy system to be mechanically deformed at room temperature, directly from an as-cast alloy plate, sheet or ingot into working parts. This type of cold mechanical forming properties has never been reported with any other Mg alloy systems.

  12. HAYNES 244 alloy – a new 760 ∘C capable low thermal expansion alloy

    Directory of Open Access Journals (Sweden)

    Fahrmann Michael G.

    2014-01-01

    Full Text Available HAYNES® 244TM alloy is a new 760∘C capable, high strength low thermal expansion (CTE alloy. Its nominal chemical composition in weight percent is Ni – 8 Cr – 22.5 Mo – 6 W. Recently, a first mill-scale heat of 244 alloy was melted by Haynes International, and processed to various product forms such as re-forge billet, plate, and sheet. This paper presents key attributes of this new alloy (CTE, strength, low-cycle fatigue performance, oxidation resistance, thermal stability as they pertain to the intended use in rings and seals of advanced gas turbines.

  13. Aeronautical Industry Requirements for Titanium Alloys

    Science.gov (United States)

    Bran, D. T.; Elefterie, C. F.; Ghiban, B.

    2017-06-01

    The project presents the requirements imposed for aviation components made from Titanium based alloys. A significant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys).For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  14. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  15. Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts

    International Nuclear Information System (INIS)

    Zhang Jifu; Yan Chuanwei; Wang Fuhui

    2009-01-01

    The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl 3 -NaCl-KCl-MnCl 2 molten salts at 170 deg. C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl 2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.

  16. Hardening of niobium alloys at precrystallization annealing

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Pustovalov, V.A.

    1989-01-01

    Niobium base alloys were investigated. It is shown that precrystallization annealing of niobium-molybdenum, niobium-vanadium and niobium-zirconium alloys elevates much more sufficiently their resistance to microplastic strains, than to macroplastic strains. Hardening effect differs sufficiently for different alloys. The maximal hardening is observed for niobium-vanadium alloys, the minimal one - for niobium-zirconium alloys

  17. Structural thermodynamics of alloys

    CERN Document Server

    Manenc, Jack

    1973-01-01

    Technical progress has for a very long time been directly dependent on progress in metallurgy, which is itself connected with improvements in the technology of alloys. Metals are most frequently used in the form of alloys for several reasons: the quantity of pure metal in its native state in the earth's crust is very limited; pure metals must be extracted from ores which are themselves impure. Finally, the methods of treatment used lead more easily to alloys than to pure metals. The most typical case is that of iron, where a pure ore may be found, but which is the starting point for cast iron or steel, alloys of iron and carbon. In addition, the properties of alloys are in general superior to those of pure metals and modem metallurgy consists of controlling these properties so as to make them conform to the requirements of the design office. Whilst the engineer was formerly compelled to adapt his designs and constructions to the materials available, such as wood, stone, bronze, iron, cast iron and ordinary st...

  18. Alloying element's substitution in titanium alloy with improved oxidation resistance and enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ang-Yang, E-mail: ayyu@imr.ac.cn; Wei, Hua; Hu, Qing-Miao; Yang, Rui

    2017-01-15

    First-principles method is used to characterize segregation and magnetic properties of alloyed Ti/TiO{sub 2}interface. We calculate the segregation energy of the doped Ti/TiO{sub 2} interface to investigate alloying atom's distribution. The oxidation resistance of Ti/TiO{sub 2} interface is enhanced by elements Fe and Ni but reduced by element Co. Magnetism could be produced by alloying elements such as Co, Fe and Ni in the bulk of titanium and the surface of Ti at Ti/TiO{sub 2} interface. The presence of these alloying elements could transform the non-magnetic titanium alloys into magnetic systems. We have also calculated the temperature dependence of magnetic permeability for the doped and pure Ti/TiO{sub 2} interfaces. Alloying effects on the Curie temperature of the Ti/TiO{sub 2} interface have been elaborated. - Highlights: • We consider the segregation of alloying atoms on the Ti(101¯0)/TiO{sub 2}(100) interface. • Alloying the Ti//TiO{sub 2} interface with Fe and Ni has a great advantage of improving the oxidation resistance. • Fe, Co and Nican enhance the magnetic properties of the investigated system. • The variation of permeability with temperature has been presented.

  19. Swelling in neutron-irradiated titanium alloys

    International Nuclear Information System (INIS)

    Peterson, D.T.

    1982-04-01

    Immersion density measurements have been performed on a series of titanium alloys irradiated in EBR-II to a fluence of 5 x 10 22 n/cm 2 (E > 0.1 MeV) at 450 and 550 0 C. The materials irradiated were the near-alpha alloys Ti-6242S and Ti-5621S, the alpha-beta alloy Ti-64, and the beta alloy Ti-38644. Swelling was observed in all alloys with the greater swelling being observed at 550 0 C. Microstructural examination revealed the presence of voids in all alloys. Ti-38644 was found to be the most radiation resistant. Ti-6242S and Ti-5621S also displayed good radiation resistance, whereas considerable swelling and precipitation were observed in Ti-64 at 550 0 C

  20. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  1. Noble metal alloys for metal-ceramic restorations.

    Science.gov (United States)

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  2. Electroplating technologies of alloys

    International Nuclear Information System (INIS)

    Kim, Joung Soo; Kim, Seung Ho; Jeong, Hyun Kyu; Hwnag, Sung Sik; Seo, Yong Chil; Kim, Dong Jin; Seo, Moo Hong

    2001-12-01

    In localization of electrosleeving technique, there are some problems like the following articles. Firstly, Patents published by OHT have claimed Ni-P, Ni-B alloy plating and Mo, Mn Cr, W, Co as a pinning agent. Secondly, alloy platings have many restrictions. There are some method to get alloy plating in spite of the various restrictions. If current density increase above limiting current density in one of the metals, both of the metals discharge at the same time. The addition of surface active agent(sufactant) in the plating solution is one of the methods to get alloy plating. Alloy plating using pulse current easily controls chemical composition and structure of deposit. Ni-Fe alloy plating is known to exhibit anomalous type of plating behavior in which deposition of the less noble metal is favoured. Presence of hypophohphite ion can control the iron codeposition by changing the deposition mechanism. Hypophohphite suppresses the deposition of Fe and also promotes Ni. Composite plating will be considered to improve the strength at the high temperature. Addition of particle size of 10δ400μm makes residual stress compressive in plate layer and suppress the grain growth rate at the high temperature. Addition of particle makes suface roughness high and fracture stress low at high temperature. But, selection of the kinds of particle and control of additives amount overcome the problems above

  3. Processing and properties of Nb-Ti-based alloys

    International Nuclear Information System (INIS)

    Sikka, V.K.; Viswanathan, S.

    1992-01-01

    The processing characteristics, tensile properties, and oxidation response of two Nb-Ti-Al-Cr alloys were investigated. One creep test at 650 C and 172 MPa was conducted on the base alloy which contained 40Nb-40Ti-10Al-10Cr. A second alloy was modified with 0.11 at. % carbon and 0.07 at. % yttrium. Alloys were arc melted in a chamber backfilled with argon, drop cast into a water-cooled copper mold, and cold rolled to obtain a 0.8-mm sheet. The sheet was annealed at 1,100 C for 0.5 h. Longitudinal tensile specimens and oxidation specimens were obtained for both the base alloy and the modified alloy. Tensile properties were obtained for the base alloy at room temperature, 400, 600, 700, 800, 900, and 1,000 C, and for the modified alloy at room temperature, 400, 600, 700, and 800 C. Oxidation tests on the base alloy and modified alloy, as measured by weight change, were carried out at 600, 700, 800, and 900 C. Both the base alloy and the modified alloy were extremely ductile and were cold rolled to the final sheet thickness of 0.8 mm without an intermediate anneal. The modified alloy exhibited some edge cracking during cold during cold rolling. Both alloys recrystallized at the end of a 0.5-h annealing treatment. The alloys exhibited moderate strength and oxidation resistance below 600 C, similar to the results of alloys reported in the literature

  4. Aeronautical requirements for Inconel 718 alloy

    Science.gov (United States)

    Elefterie, C. F.; Guragata, C.; Bran, D.; Ghiban, B.

    2017-06-01

    The project goal is to present the requirements imposed by aviation components made from super alloys based on Nickel. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Alloy 718. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, yield strength and fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it’s what limits the lifetime of the airframe. Also, the excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  5. Recent advances in alloy design of Ni{sub 3}Al alloys for structural use

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; George, E.P.

    1996-12-31

    This is a comprehensive review of recent advances in R&D of Ni{sub 3}Al-based alloys for structural use at elevated temperatures in hostile environments. Recent studies indicate that polycrystalline Ni{sub 3}Al is intrinsically quite ductile at ambient temperatures, and its poor tensile ductility and brittle grain-boundary fracture are caused mainly by moisture-induced hydrogen embrittlement when the aluminide is tested in moisture- or hydrogen-containing environments. Tensile ductility is improved by alloying with substitutional and interstitial elements. Among these additives, B is most effective in suppressing environmental embrittlement and enhancing grain-boundary cohesion, resulting in a dramatic increase of tensile ductility at room temperature. Both B-doped and B-free Ni{sub 3}Al alloys exhibit brittle intergranular fracture and low ductility at intermediate temperatures (300-850 C) because of oxygen-induced embrittlement in oxidizing environments. Cr is found to be most effective in alleviating elevated-temperature embrittlement. Parallel efforts on alloy development using physical metallurgy principles have led to development of several Ni{sub 3}Al alloys for industrial use. The unique properties of these alloys are briefly discussed. 56 refs, 15 figs, 3 tabs.

  6. Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

    Science.gov (United States)

    Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng

    2018-03-01

    This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

  7. Microstructural characterization of mechanically alloyed Al–Cu–Mn alloy with zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Prosviryakov, A.S., E-mail: pro.alex@mail.ru; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2015-01-19

    An evolution of Al–Cu–Mn alloy microstructure during its mechanical alloying with zirconium 20 wt% and after subsequent annealing was studied by X-ray diffraction, light microscopy and transmission electron microscopy. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined.

  8. Antibacterial biodegradable Mg-Ag alloys

    Directory of Open Access Journals (Sweden)

    D Tie

    2013-06-01

    Full Text Available The use of magnesium alloys as degradable metals for biomedical applications is a topic of ongoing research and the demand for multifunctional materials is increasing. Hence, binary Mg-Ag alloys were designed as implant materials to combine the favourable properties of magnesium with the well-known antibacterial property of silver. In this study, three Mg-Ag alloys, Mg2Ag, Mg4Ag and Mg6Ag that contain 1.87 %, 3.82 % and 6.00 % silver by weight, respectively, were cast and processed with solution (T4 and aging (T6 heat treatment.The metallurgical analysis and phase identification showed that all alloys contained Mg4Ag as the dominant β phase. After heat treatment, the mechanical properties of all Mg-Ag alloys were significantly improved and the corrosion rate was also significantly reduced, due to presence of silver. Mg(OH2 and MgO present the main magnesium corrosion products, while AgCl was found as the corresponding primary silver corrosion product. Immersion tests, under cell culture conditions, demonstrated that the silver content did not significantly shift the pH and magnesium ion release. In vitro tests, with both primary osteoblasts and cell lines (MG63, RAW 264.7, revealed that Mg-Ag alloys show negligible cytotoxicity and sound cytocompatibility. Antibacterial assays, performed in a dynamic bioreactor system, proved that the alloys reduce the viability of two common pathogenic bacteria, Staphylococcus aureus (DSMZ 20231 and Staphylococcus epidermidis (DSMZ 3269, and the results showed that the killing rate of the alloys against tested bacteria exceeded 90%. In summary, biodegradable Mg-Ag alloys are cytocompatible materials with adjustable mechanical and corrosion properties and show promising antibacterial activity, which indicates their potential as antibacterial biodegradable implant materials.

  9. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  10. A study of the formation of Cr-surface alloyed layer on structural alloy steel by Co2 laser

    International Nuclear Information System (INIS)

    Kim, T.H.; Han, W.S.

    1986-01-01

    In order to improve wear and erosion-resistances of a structural alloy steel (SNCM 8) during heat-cycling, chromium-alloyed layers were produced on the surface by irradiating Co 2 laser. Specimens were prepared either by electroplating of hard-chromium or coating of chromium powders on the steel followed by the laser treatment. Index values, which related the depth and the width of the alloyed layers to the scanning speed of laser, for both samples are experimentally measured. At a fixed scanning speed, while both samples resulted in a similar depth of the alloyed layers, the chromium powder coated specimen showed larger width of the alloyed layer than the chromium electroplated one. The hardness values of the alloyed layers in both samples were slightly lower than that of the martensitic region beneath the alloyed layers. But they are considerably higher than those of steel matrices. Regardless of the prior treatments before laser irradiation, distributions of chromium were fairly uniform throughout the alloyed layers. (Author)

  11. Precipitation and Hardening in Magnesium Alloys

    Science.gov (United States)

    Nie, Jian-Feng

    2012-11-01

    Magnesium alloys have received an increasing interest in the past 12 years for potential applications in the automotive, aircraft, aerospace, and electronic industries. Many of these alloys are strong because of solid-state precipitates that are produced by an age-hardening process. Although some strength improvements of existing magnesium alloys have been made and some novel alloys with improved strength have been developed, the strength level that has been achieved so far is still substantially lower than that obtained in counterpart aluminum alloys. Further improvements in the alloy strength require a better understanding of the structure, morphology, orientation of precipitates, effects of precipitate morphology, and orientation on the strengthening and microstructural factors that are important in controlling the nucleation and growth of these precipitates. In this review, precipitation in most precipitation-hardenable magnesium alloys is reviewed, and its relationship with strengthening is examined. It is demonstrated that the precipitation phenomena in these alloys, especially in the very early stage of the precipitation process, are still far from being well understood, and many fundamental issues remain unsolved even after some extensive and concerted efforts made in the past 12 years. The challenges associated with precipitation hardening and age hardening are identified and discussed, and guidelines are outlined for the rational design and development of higher strength, and ultimately ultrahigh strength, magnesium alloys via precipitation hardening.

  12. Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species

    Science.gov (United States)

    2013-01-01

    Background Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. Result We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species

  13. Effect of Microstructure and Alloy Chemistry on Hydrogen Embrittlement of Precipitation-Hardened Ni-Based Alloys

    Science.gov (United States)

    Obasi, G. C.; Zhang, Z.; Sampath, D.; Morana, Roberto; Akid, R.; Preuss, M.

    2018-04-01

    The sensitivity to hydrogen embrittlement (HE) has been studied in respect of precipitation size distributions in two nickel-based superalloys: Alloy 718 (UNS N07718) and Alloy 945X (UNS N09946). Quantitative microstructure analysis was carried out by the combination of scanning and transmission electron microscopy and energy dispersive x-ray spectroscopy (EDS). While Alloy 718 is mainly strengthened by γ″, and therefore readily forms intergranular δ phase, Alloy 945X has been designed to avoid δ formation by reducing Nb levels providing high strength through a combination of γ' and γ″. Slow strain rate tensile tests were carried out for different microstructural conditions in air and after cathodic hydrogen (H) charging. HE sensitivity was determined based on loss of elongation due to the H uptake in comparison to elongation to failure in air. Results showed that both alloys exhibited an elevated sensitivity to HE. Fracture surfaces of the H precharged material showed quasi-cleavage and transgranular cracks in the H-affected region, while ductile failure was observed toward the center of the sample. The crack origins observed on the H precharged samples exhibited quasi-cleavage with slip traces at high magnification. The sensitivity is slightly reduced for Alloy 718, by coarsening γ″ and reducing the overall strength of the alloy. However, on further coarsening of γ″, which promotes continuous decoration of grain boundaries with δ phase, the embrittlement index rose again indicating a change of hydrogen embrittlement mechanism from hydrogen-enhanced local plasticity (HELP) to hydrogen-enhanced decohesion embrittlement (HEDE). In contrast, Alloy 945X displayed a strong correlation between strength, based on precipitation size and embrittlement index, due to the absence of any significant formation of δ phase for the investigated microstructures. For the given test parameters, Alloy 945X did not display any reduced sensitivity to HE compared with

  14. Lipid abnormalities in streptozotocin-diabetes: Amelioration by Morus indica L. cv Suguna leaves

    OpenAIRE

    Andallu, B.; Vinay Kumar, A. V.; Varadacharyulu, N. Ch.

    2009-01-01

    AIM: To observe the influence of mulberry (Morus indica L. cv Suguna) leaves on lipid abnormalities in STZ-diabetic rats. MATERIALS AND METHODS: Treatment with dried mulberry leaf powder for a period of 8 weeks in hyperglycemic and hyperlipidemic STZ-diabetic rats. RESULTS: Mulberry leaves regulated fasting blood glucose, ameliorated the abnormalities in lipid profile as indicated by significant (P

  15. Stress Corrosion Cracking of Certain Aluminum Alloys

    Science.gov (United States)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  16. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  17. Alloys under irradiation

    International Nuclear Information System (INIS)

    Martin, G.; Bellon, P.; Soisson, F.

    1997-01-01

    During the last two decades, some effort has been devoted to establishing a phenomenology for alloys under irradiation. Theoretically, the effects of the defect supersaturation, sustained defect fluxes and ballistic mixing on solid solubility under irradiation can now be formulated in a unified manner, at least for the most simple cases: coherent phase transformations and nearest-neighbor ballistic jumps. Even under such restrictive conditions, several intriguing features documented experimentally can be rationalized, sometimes in a quantitative manner and simple qualitative rules for alloy stability as a function of irradiation conditions can be formulated. A quasi-thermodynamic formalism can be proposed for alloys under irradiation. However, this point of view has limits illustrated by recent computer simulations. (orig.)

  18. Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels

    International Nuclear Information System (INIS)

    Kandavel, T.K.; Chandramouli, R.; Karthikeyan, P.

    2012-01-01

    Highlights: ► Corrosion of low alloy P/M steels under HCl acid pickling environment has been studied. ► Influence of density, strain and alloying elements on the rate of corrosion of the steels has been investigated. ► Residual porosity has significant effect on acid corrosion. ► Addition of the alloying elements Cu, Mo and Ti reduces the corrosion rate significantly. ► Carbide forming elements Mo and Ti improve further the resistance of the steels to aqueous corrosion. -- Abstract: Low alloy steels produced through powder metallurgy route of sintering followed by forging are promising candidate materials for high strength small components. Porosity in such steels poses a real challenge during acid pickling treatment, which is one of the processing steps during manufacturing. The present research work attempts to investigate the mechanism underlying the acid corrosion behaviour of some sintered low alloy steels under induced acid pickling conditions. Sintered-forged low alloy steel samples containing molybdenum (Mo), copper (Cu) and titanium (Ti) were subjected to aqueous corrosion attack by immersing the samples in 18% HCl (Hydrochloric acid) solution for 25 h. Sample weight loss and Fe (Iron) loss were estimated for the corroded samples. The morphology of the corroded surfaces was studied through metallography and scanning electron microscopy. Higher porosity alloys underwent enhanced corrosion rates. Both corrosion rate and iron loss are found to decrease linearly with reduction in porosity in all cases of the alloys. The alloying elements Mo, Ti and Cu, when added in combination, have played a complementary role in the reduction of corrosion rate by almost one order of magnitude compared to unalloyed steel. Presence of carbides of the carbide forming elements Mo and Ti played a positive role on the corrosion behaviour of the low alloy steels.

  19. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  20. Phage induction by UV and mitomycin C in Pseudomonas mori, the pathogen of bacterial blight of mulberry

    International Nuclear Information System (INIS)

    Sato, Mamoru

    1979-01-01

    Phage induction by ultraviolet radiation (UV) and mitomycin C (MMC) in some lysogenic strains of Pseudomonas mori, the pathogen of bacterial blight of mulberry, was examined. Among 5 strains tested, in the strains S 6804 and S 6805, phage was induced by both UV and MMC, and in the strain M 5, only by MMC. In the strains S 6807 and S 6808, it was not induced by both these inducers. The rate of phage production in the strain 6805 was highest when it was exposed to UV (15 W UV lamp, 40 cm) for 5 seconds, by which about 90% of the bacteria were killed, and decreased rapidly by further extending the exposure time. The bacteria suspended in 0.02 M magnesium solution were more sensitive in responding to UV than those suspended in nutrient broth, but after the UV treatment, nutrient broth was more favorable than magnesium solution for phage production. The MMC added to nutrient broth induced phage production at the concentration from 0.5 to 5 μg/ml. The strains induced by either UV or MMC their temperate phages after about 3 hours of latent period. The phage induction by UV was almost completely suppressed by 40 minute exposure to fluorescent light (a 15 W fluorescent lamp, 10 cm) or by 5 minute exposure to sunlight, given within 45 minutes after the UV treatment, i.e. within 1/4 of the latent period. Thus, the photoreversion of the UV effect on phage induction was observed in Ps. mori as well as in Ps. pyocyanea and E. coli. (Kaihara, S.)

  1. Synthesis of Nb-18%Al alloy by mechanical alloying method

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Dollar, M.

    1999-01-01

    The main goal of this study was attempt to employ by mechanical alloying to produce Nb-Al alloy. The Nb-rich alloy composition was selected in order to receive the ductile niobium solid solution (Nb ss ) phase in the final, equilibrium state. This ductile phase was believed to prevent crack propagation in the consolidated alloy and thus to improve its ductility and toughness. Elemental powders of niobium (99.8% pure and -325 mesh) and aluminium (99.9% pure and -325 mesh) were used as starting materials. These powders were mixed to give the nominal compositions od 82% Nb and 18% Al (atomic percent). Mechanical alloying was carried out in a Szegvari laboratory attritor mill in an argon atmosphere with the controlled oxygen level reduced to less than 10 ppm. The total milling time was 86 hours. During the course of milling powder samples were taken out after 5, 10 and 20 hours, which allowed characterization of the powder morphology and progress of the mechanical alloying process. The changes in particle morphology during milling were examined using a scanning electron microscope and the phase analysis was performed in a X-ray diffractometer with CoK α radiation. Initially, particles' size increased and their appearance changed from the regular to one of the flaky shape. X-ray diffraction patterns of examined powders as a function of milling time are presented. Peaks from Al, through much weaker than in the starting material, were still present after 5 hours of milling but disappeared completely after 10 hours of milling. With increasing milling time, the peaks became broader and their intensities decreased. Formation of amorphous phase was observed after 86 hours of milling. This was deducted from a diffuse halo observed at the 2Θ angle of about 27 o . Intermetallic phases Nb 3 Al and Nb 2 Al were found in the consolidated material only. (author)

  2. Electron microscopy study of hardened layers structure at electrospark alloying the VT-18 titanium alloy with aluminium

    International Nuclear Information System (INIS)

    Pilyankevich, A.N.; Martynenko, A.N.; Verkhoturov, A.D.; Paderno, V.N.

    1979-01-01

    Presented are the results of metallographic, electron-microscopic, and X-ray structure analysis, of microhardness measurements and of the study of the electrode weight changes at electrospark alloying the VT-18 titanium alloy with aluminium. It is shown, that pulsating thermal and mechanical loadings in the process of electrospark alloying result in the electrode surface electroerosion, a discrete relief is being formed, which changes constantly in the process depending on the alloying time. Though with the process time the cathode weight gain increases, microareas of fracture in the hardened layer appear already at the initial stages of electrospark alloying

  3. Development and evaluation of a magnesium–zinc–strontium alloy for biomedical applications — Alloy processing, microstructure, mechanical properties, and biodegradation

    International Nuclear Information System (INIS)

    Guan, Ren-guo; Cipriano, Aaron F.; Zhao, Zhan-yong; Lock, Jaclyn; Tie, Di; Zhao, Tong; Cui, Tong; Liu, Huinan

    2013-01-01

    A new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8 h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m 2 ·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm 2 , which was much lower than 1.67 mA/mm 2 for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications. - Highlights: • Developed a new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy for medical implant applications • Reported Mg–Zn–Sr alloy processing and microstructure characterization • Improved mechanical properties of Mg alloy after aging treatment • Improved degradation properties of Mg alloy in simulated body fluid

  4. Influence of impurities and ion surface alloying on the corrosion resistance of E110 alloy

    International Nuclear Information System (INIS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Novikov, V. V.; Markelov, V. A.; Pimenov, Yu. V.

    2013-01-01

    The corrosion resistance of zirconium alloys depends on their structural-phase state, the type of core coolant and operating factors. The formation of a protective oxide film on the zirconium alloys is sensitive to the content of impurity atoms present in the charge base of alloys and accumulating in them in the manufacture of products. The impurity composition of the initial zirconium is determined by the method of its manufacture and generally remains unchanged in the products, deter-mining their properties, including their corrosion resistance. An increased content of impurities (C, N, Al, Mo, Fe) both individually and in their combination negatively affects the corrosion resistance of zirconium and its alloys. One of the potentially effective methods to increase the protective properties of oxide films on zirconium alloys is a surface alloying using the regime of mixing the atoms of a film, preliminarily coated on the surface, and the atoms of a target. This method makes it possible to form a given structural-phase state in the thin surface layer with unique physicochemical properties and thus to in-crease the corrosion resistance and wear resistance of fuel claddings. In this context, the object of investigation was samples of cladding tubes from alloy E110 with various content of impurity elements (nitrogen, aluminum, and carbon) with the aim to reduce the negative influence of impurities on the corrosion resistance by changing the structural-phase state of the surface layer of fuel claddings and fuel assembly components with alloying in the regime of ion mixing of atoms

  5. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.

    Science.gov (United States)

    Guan, Ren-guo; Cipriano, Aaron F; Zhao, Zhan-yong; Lock, Jaclyn; Tie, Di; Zhao, Tong; Cui, Tong; Liu, Huinan

    2013-10-01

    A new biodegradable magnesium-zinc-strontium (Mg-Zn-Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m(2)·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm(2), which was much lower than 1.67 mA/mm(2) for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    Science.gov (United States)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  7. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  8. Phase transformations on Zr-Nb alloys

    International Nuclear Information System (INIS)

    Doi, Sergio Norifumi

    1980-01-01

    This research intended the laboratory scale experimental development of Zr-Nb alloys with adequate characteristics for use as fuel element cladding or for the making of irradiation capsules. Zr-Nb alloys with different Nb contents were melted and the resulting material was characterised. The following metallurgical aspects were considered: preparation of Zr-Nb alloys with various Nb contents; heat and thermomechanical treatments; microstructural characterization; mechanical properties; oxidation properties. The influence of the heat treatment and thermomechanical treatment, on the out-of-pile mechanical and oxidation properties of the Zr-Nb alloys were studied. It was found that the alloy microhardness increases with the Nb content and/or with the thermomechanical treatment. Mechanical properties such as yield and ultimate tensile strength as well as elongation were determined by means of compression tests. The results showed that the alloy yield stress increases with the Nb content and with the thermomechanical treatment, while its elongation decreases. Thermogravimetric analysis determined the alloy oxidation kinetics, in the 400 - 800 deg C interval, at 1 atm. oxygen pressure. The results showed that the alloy oxidation rate increases with the temperature and Nb content. It was also observed that the oxidation rate increases considerably for temperatures higher than 600 deg C.(author)

  9. Phase formation in multicomponent monotectic aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje; Groebner, Joachim; Schmid-Fetzer, Rainer [Institute of Metallurgy, Clausthal University of Technology (Germany)

    2008-07-01

    Alloys with a miscibility gap in the liquid state are potential materials for advanced bearings in automotive and other applications. While binary alloys, such as Al-Pb or Al-Bi, are well known, the information available for ternary monotectic Al-alloys is scarce. However, the phase formation in multicomponent alloys is not only more challenging from a scientific aspect, it is also a prerequisite for a focused development of advanced alloys. This motivated our detailed study of monotectic Al-Bi-Cu-Sn alloys including both experimental and computational thermodynamic methods. Based on the initially established systematic classification of monotectic ternary Al-alloys, the first promising monotectic reaction was observed in the ternary Al-Bi-Zn system. Further ternary systems Al-Cu-Sn, Al-Bi-Sn, Al-Bi-Cu and Bi-Cu-Sn were investigated as basis for quaternary Al-Bi-Cu-Sn alloys. Experimental investigations of phase equilibria, enthalpies and solidification microstructures were combined with thermodynamic modeling. The results demonstrate that the developed precise thermodynamic description is vital to reveal the distinct multicomponent monotectic features of pertinent phase diagrams. The solidification paths of ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, were also studied using thermodynamic calculations, revealing specific details of phase formation during solidification of selected alloys.

  10. Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms.

    Science.gov (United States)

    Dutta, Saranga; Talukdar, Bijit; Bharali, Rupjyoti; Rajkhowa, Rangam; Devi, Dipali

    2013-05-01

    This study discusses the possibilities of liquid silk (Silk gland silk) of Muga and Eri silk, the indigenous non mulberry silkworms of North Eastern region of India, as potential biomaterials. Silk protein fibroin of Bombyx mori, commonly known as mulberry silkworm, has been extensively studied as a versatile biomaterial. As properties of different silk-based biomaterials vary significantly, it is important to characterize the non mulberry silkworms also in this aspect. Fibroin was extracted from the posterior silk gland of full grown fifth instars larvae, and 2D film was fabricated using standard methods. The films were characterized using SEM, Dynamic contact angle test, FTIR, XRD, DSC, and TGA and compared with respective silk fibers. SEM images of films reveal presence of some globules and filamentous structure. Films of both the silkworms were found to be amorphous with random coil conformation, hydrophobic in nature, and resistant to organic solvents. Non mulberry silk films had higher thermal resistance than mulberry silk. Fibers were thermally more stable than the films. This study provides insight into the new arena of research in application of liquid silk of non mulberry silkworms as biomaterials. Copyright © 2012 Wiley Periodicals, Inc.

  11. Quasicrystal-reinforced Mg alloys.

    Science.gov (United States)

    Kyun Kim, Young; Tae Kim, Won; Hyang Kim, Do

    2014-04-01

    The formation of the icosahedral phase (I-phase) as a secondary solidification phase in Mg-Zn-Y and Mg-Zn-Al base systems provides useful advantages in designing high performance wrought magnesium alloys. The strengthening in two-phase composites (I-phase + α -Mg) can be explained by dispersion hardening due to the presence of I-phase particles and by the strong bonding property at the I-phase/matrix interface. The presence of an additional secondary solidification phase can further enhance formability and mechanical properties. In Mg-Zn-Y alloys, the co-presence of I and Ca 2 Mg 6 Zn 3 phases by addition of Ca can significantly enhance formability, while in Mg-Zn-Al alloys, the co-presence of the I-phase and Mg 2 Sn phase leads to the enhancement of mechanical properties. Dynamic and static recrystallization are significantly accelerated by addition of Ca in Mg-Zn-Y alloy, resulting in much smaller grain size and more random texture. The high strength of Mg-Zn-Al-Sn alloys is attributed to the presence of finely distributed Mg 2 Sn and I-phase particles embedded in the α -Mg matrix.

  12. Analysis of heavy alloying elements segregation in gravity cast experimental Mg-Al-Zn-RE alloy

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2010-01-01

    Full Text Available Microstructure of experimental AZ91 alloy with an addition of rare earth elements (RE at a level of 4 wt.% was examined by means of light microscopy. The investigated AZ91 + 4 wt.% RE alloy was fabricated by adding cerium rich mish metal to molten commercial AZ91 alloy. In the microstructure of the resulting alloy, besides α solid solution, α + γ eutectic and discontinuous precipitates of γ phase, also the Al11RE3 phase with needle-like morphology and the polygonal Al10RE2Mn7 phase were revealed. No segregation of rare earth elements was found in the investigated gravity cast alloy, which was confirmed by statistical analysis of cerium concentrations in selected parts of the cast. Similar results were obtained for manganese. Ce and Mn concentrations were determined by a spectrophotometric method.

  13. General characteristics of eutectic alloy solidification mechanisms

    International Nuclear Information System (INIS)

    Lemaignan, Clement.

    1977-01-01

    The eutectic alloy sodification was studied in binary systems: solidification of non facetted - non facetted eutectic alloy (theoretical aspects, variation of the lamellar spacing, crystallographic relation between the various phases); solidification of facetted - non facetted eutectic alloy; coupled growth out of eutectic alloy; eutectic nucleation [fr

  14. Mechanical Properties of Low Density Alloys at Cryogenic Temperatures

    International Nuclear Information System (INIS)

    Jiao, X. D.; Liu, H. J.; Li, L. F.; Yang, K.

    2006-01-01

    Low-density alloys include aluminum alloys, titanium alloys and magnesium alloys. Aluminum alloys and titanium alloys have been widely investigated and used as structural materials for cryogenic applications because of their light weight and good low-temperature mechanical properties.For aerospace applications, persistent efforts are being devoted to reducing weight and improving performance. Magnesium alloys are the lightest structural alloys among those mentioned above. Therefore, it is necessary to pay attention to magnesium alloys and to investigate their behaviors at cryogenic temperatures. In this paper, we have investigated the mechanical properties and microstructures of some magnesium alloys at cryogenic temperatures. Experimental results on both titanium and magnesium alloys are taken into account in considering these materials for space application

  15. Modification of Sr on 4004 Aluminum Alloy

    Science.gov (United States)

    Guo, Erjun; Cao, Guojian; Feng, Yicheng; Wang, Liping; Wang, Guojun; Lv, Xinyu

    2013-05-01

    As a brazing foil, 4004 Al alloy has good welding performance. However, the high Si content decreases the plasticity of the alloy. To improve the plasticity of 4004 Al alloy and subsequently improve the productivity of 4004 Al foil or 434 composite foil, 4004 Al alloy was modified by Al-10%Sr master alloy. Modification effects of an additional amount of Sr, modification temperature, and holding time on 4004 aluminum alloy were studied by orthogonal design. The results showed that the greatest impact parameter of 4004 aluminum alloy modification was the additional amount of Sr, followed by holding time and modification temperature. The optimum modification parameters obtained by orthogonal design were as follows: Sr addition of 0.04%, holding time of 60 min, and modification temperature of 760°C. The effect of Sr addition on modification was analyzed in detail based on orthogonal results. With increasing of Sr addition, elongation of 4004 alloy increased at first, and decreased after reaching the maximum value.

  16. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buot, Felix A., E-mail: fbuot@gmu.edu [Computational Materials Science Center, George Mason University, Fairfax, VA 22030 (United States); TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines); C& LB Research Institute, Carmen, Cebu 6005 (Philippines); Otadoy, Roland E.S.; Rivero, Karla B. [TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines)

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  17. Comparison of three Ni-Hard I alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N.; Hawk, Jeffrey A.; Rice, J. (Texaloy Foundry Co., Inc., Floresville, Texas)

    2004-09-01

    This report documents the results of an investigation which was undertaken to reveal the similarities and differences in the mechanical properties and microstructural characteristics of three Ni-Hard I alloys. One alloy (B1) is ASTM A532 class IA Ni-Hard containing 4.2 wt. pct. Ni. The second alloy (B2) is similar to B1 but higher in Cr, Si, and Mo. The third alloy (T1) also falls in the same ASTM specification, but it contains 3.3 wt. pct. Ni. The alloys were evaluated in both as-cast and stress-relieved conditions except for B2, which was evaluated in the stress-relieved condition only. While the matrix of the high Ni alloys is composed of austenite and martensite in both conditions, the matrix of the low Ni alloy consists of a considerable amount of bainite, in addition to the martensite and the retained austenite in as cast condition, and primarily bainite, with some retained austenite, in the stress relieved condition. It was found that the stress relieving treatment does not change the tensile strength of the high Ni alloy. Both the as cast and stress relieved high Ni alloys had a tensile strength of about 350 MPa. On the other hand, the tensile strength of the low Ni alloy increased from 340 MPa to 452 MPa with the stress relieving treatment. There was no significant difference in the wear resistance of these alloys in both as-cast and stressrelieved conditions.

  18. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  19. Fabrication of spherical high-nitrogen stainless steel powder alloys by mechanical alloying and thermal plasma spheroidization

    Science.gov (United States)

    Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.

    2018-04-01

    This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.

  20. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys

    International Nuclear Information System (INIS)

    Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C.

    2007-01-01

    High-entropy alloys are newly developed alloys that are composed, by definition, of at least five principal elements with concentrations in the range of 5-35 at.%. Therefore, the alloying behavior of any given principal element is significantly affected by all the other principal elements present. In order to elucidate this further, the influence of iron, silver and gold addition on the microstructure and hardness of AlCoCrCuNi-based equimolar alloys has been examined. The as-cast AlCoCrCuNi base alloy is found to have a dendritic structure, of which only solid solution FCC and BCC phases can be observed. The BCC dendrite has a chemical composition close to that of the nominal alloy, with a deficiency in copper however, which is found to segregate and form a FCC Cu-rich interdendrite. The microstructure of the iron containing alloys is similar to that of the base alloy. It is found that both of these aforementioned alloys have hardnesses of about 420 HV, which is equated to their similar microstructures. The as-cast ingot forms two layers of distinct composition with the addition of silver. These layers, which are gold and silver in color, are determined to have a hypoeutectic Ag-Cu composition and a multielement mixture of the other principal elements, respectively. This indicates the chemical incompatibility of silver with the other principal elements. The hardnesses of the gold (104 HV) and silver layers (451 HV) are the lowest and highest of the alloy systems studied. This is attributed to the hypoeutectic Ag-Cu composition of the former and the reduced copper content of the latter. Only multielement mixtures, i.e. without copper segregation, form in the gold containing alloy. Thus, it may be said that gold acts as a 'mixing agent' between copper and the other elements. Although several of the atom pairs in the gold containing alloy have positive enthalpies, thermodynamic considerations show that the high entropy contribution is sufficient to counterbalance

  1. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  2. Developing precipitation hardenable high entropy alloys

    Science.gov (United States)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (gamma') and B2 precipitates in Al0.3CoCrFeNi. A detailed investigation of precipitation of the ordered phases in Al0.3CoCrFeNi and their thermal stability is done using atom probe tomography (APT), transmission electron microscopy (TEM) and Synchrotron X-ray in situ and ex situ analyses. The alloy strengthened via grain boundary strengthening following the Hall-Petch relationship offers a large increment of strength with small variation in grain size. Tensile strength of the Al0.3CoFeNi is increased by 50% on precipitation fine-scale gamma' precipitates

  3. A review on magnesium alloys as biodegradable materials

    Science.gov (United States)

    Gu, Xue-Nan; Zheng, Yu-Feng

    2010-06-01

    Magnesium alloys attracted great attention as a new kind of degradable biomaterials. One research direction of biomedical magnesium alloys is based on the industrial magnesium alloys system, and another is the self-designed biomedical magnesium alloys from the viewpoint of biomaterials. The mechanical, biocorrosion properties and biocompatibilities of currently reported Mg alloys were summarized in the present paper, with the mechanical properties of bone tissue, the healing period postsurgery, the pathophysiology and toxicology of the alloying elements being discussed. The strategy in the future development of biomedical Mg alloys was proposed.

  4. INFLUENCE OF MECHANICAL ALLOYING AND LEAD CONTENT ON MICROSTRUCTURE, HARDNESS AND TRIBOLOGICAL BEHAVIOR OF 6061 ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    M. Paidpilli

    2017-03-01

    Full Text Available In the present work, one batch of prealloyed 6061Al powder was processed by mixing and another one was ball milled with varying amount of lead content (0-15 vol. %. These powders were compacted at 300MPa and sintered at 590˚C under N2. The instrumented hardness and the young’s modulus of as-sintered 6061Al-Pb alloys were examined as a function of lead content and processing route. The wear test under dry sliding condition has been performed at varying loads (10-40 N using pin-on-disc tribometer. The microstructure and worn surfaces have been investigated using SEM to evaluate the change in topographical features due to mechanical alloying and lead content. The mechanically alloyed materials showed improved wear characteristics as compared to as-mixed counterpart alloys. Delamination of 6061Al-Pb alloys decreases up to an optimum lead composition in both as-mixed and ball-milled 6061Al-Pb alloys. The results indicated minimum wear rate for as-mixed and ball-milled 6061Al alloy at 5 and 10 vol. % Pb, respectively.

  5. Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.

    Science.gov (United States)

    Lee, Chung-Hyo

    2018-02-01

    We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.

  6. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  7. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  8. Stress corrosion in high-strength aluminum alloys

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  9. Ti-Pt Alloys form mechanical milling

    CSIR Research Space (South Africa)

    Nxumalo, S

    2009-12-01

    Full Text Available C maximum in these alloys. A few researchers have studied the martensitic transformation in TiPt alloys using arc melted cast samples. In this work high temperature shape memory alloys are targeted using powder metallurgy as a processing route....

  10. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  11. The modification of some properties of Al-2%Mg alloy by Ti &Li alloying elements

    Directory of Open Access Journals (Sweden)

    Talib Abdulameer Jasim

    2017-11-01

    Full Text Available Aluminium-Magnisium alloys are light, high strength with resistance to corrosion and good weldability. When the content of magnesium  exceeds 3% there is a tendency to stress corrosion . This work is an attempt is to prepare low density alloy with up to approximately 2.54 g / cm3 by adding different contents of Ti, and lithium to aluminum-2%Magnisium alloy. The lithium is added in two aspects, lithium chloride and pure metal. The casting performed using conventional casting method. Moreover, solution heat treatment (SHT at 520 ºC for 4 hrs, quenching in cold water, and aging at 50ºC for 4 days were done to get better mechanical properties of all samples. Microstructure was inspected by light optical microscope before and after SHT. Alloy3 which contains 1.5%Ti was tested by SEM and EDS spectrometer to exhibit the shape and micro chemical analysis of Al3Ti phase. Hardness, ultimate tensile strength, and modulus of elasticity were tested for all alloys. The results indicated that Al3Ti phase precipitates in alloys contain 0.5%T, 1%Ti, And 1.5%Ti.  The phases Al3Li as well as Al3Ti were precipitated in alloy4 which contains 2%Ti, and 2.24%Li. Mechanical properties test results also showed that the alloy4 has achieved good results, the modulus of elasticity chanced from 310.65GPa before SHT to 521.672GPa, after SHT and aging, the ultimate tensile strength was changed from 365MPa before SHT to 469MPa, after SHT and aging,  and hardness was increased from 128 to 220HV.

  12. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    OpenAIRE

    Olgierd Janusz Goroch; Zbigniew Gulbinowicz

    2017-01-01

    The results of studies concerning friction welding of Weight Heavy Alloy (WHA) with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum i...

  13. Development of high performance ODS alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Lin [Texas A & M Univ., College Station, TX (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States); Garner, Frank [Texas A & M Univ., College Station, TX (United States)

    2018-01-29

    This project aims to capitalize on insights developed from recent high-dose self-ion irradiation experiments in order to develop and test the next generation of optimized ODS alloys needed to meet the nuclear community's need for high strength, radiation-tolerant cladding and core components, especially with enhanced resistance to void swelling. Two of these insights are that ferrite grains swell earlier than tempered martensite grains, and oxide dispersions currently produced only in ferrite grains require a high level of uniformity and stability to be successful. An additional insight is that ODS particle stability is dependent on as-yet unidentified compositional combinations of dispersoid and alloy matrix, such as dispersoids are stable in MA957 to doses greater than 200 dpa but dissolve in MA956 at doses less than 200 dpa. These findings focus attention on candidate next-generation alloys which address these concerns. Collaboration with two Japanese groups provides this project with two sets of first-round candidate alloys that have already undergone extensive development and testing for unirradiated properties, but have not yet been evaluated for their irradiation performance. The first set of candidate alloys are dual phase (ferrite + martensite) ODS alloys with oxide particles uniformly distributed in both ferrite and martensite phases. The second set of candidate alloys are ODS alloys containing non-standard dispersoid compositions with controllable oxide particle sizes, phases and interfaces.

  14. Site preference and elastic properties of ternary alloying additions in B2 YAg alloys by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yurong, E-mail: winwyr@126.com [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China); Xu Longshan [Department of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China)

    2012-09-15

    First-principles calculations were preformed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. In YAg, Ti is found to occupy the Y sublattice whereas V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag sublattice. Due to the addition of 3d transition metals, the lattice parameters of YAg is decreased in the order: Valloy, and Fe is the most effective element to improve the ductility of YAg, while Ti, Ni and V alloying elements can reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni alloying elements can increase the hardness of YAg alloy, and Y{sub 8}Ag{sub 7}V is harder than Y{sub 8}Ag{sub 7}Ni.

  15. Dispersoid reinforced alloy powder and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Terpstra, Robert L.

    2017-12-05

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  16. Dispersoid reinforced alloy powder and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver E.; Terpstra, Robert L.

    2017-10-10

    A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.

  17. Characterization of Dispersion Strengthened Copper Alloy Prepared by Internal Oxidation Combined with Mechanical Alloying

    Science.gov (United States)

    Zhao, Ziqian; Xiao, Zhu; Li, Zhou; Zhu, Mengnan; Yang, Ziqi

    2017-11-01

    Cu-3.6 vol.% Al2O3 dispersion strengthened alloy was prepared by mechanical alloying (MA) of internal oxidation Cu-Al powders. The lattice parameter of Cu matrix decreased with milling time for powders milled in argon, while the abnormal increase of lattice parameter occurred in the air resulting from mechanochemical reactions. With a quantitative analysis, the combined method makes residual aluminum oxidized completely within 10-20 h while mechanical alloying method alone needs longer than 40 h. Lamellar structure formed and the thickness of lamellar structure decreased with milling time. The size of Al2O3 particles decreased from 46 to 22 nm after 40 h milling. After reduction, core-shell structure was found in MAed powders milled in the air. The compacted alloy produced by MAed powders milled in the argon had an average hardness and electrical conductivity of 172.2 HV and 82.1% IACS while the unmilled alloy's were 119.8 HV and 74.1% IACS due to the Al2O3 particles refinement and residual aluminum in situ oxidization.

  18. Recent developments in advanced aircraft aluminium alloys

    International Nuclear Information System (INIS)

    Dursun, Tolga; Soutis, Costas

    2014-01-01

    Highlights: • To compete with composites, performance of aluminium alloys should be increased. • Al–Li alloys have higher strength, fracture and fatigue/corrosion resistance. • Improvements of aerospace Al alloys are due to optimised solute content and ratios. • In selecting new materials, there should be no reduction in the level of safety. • The use of hybrid materials could provide additional opportunities for Al alloys. - Abstract: Aluminium alloys have been the primary material for the structural parts of aircraft for more than 80 years because of their well known performance, well established design methods, manufacturing and reliable inspection techniques. Nearly for a decade composites have started to be used more widely in large commercial jet airliners for the fuselage, wing as well as other structural components in place of aluminium alloys due their high specific properties, reduced weight, fatigue performance and corrosion resistance. Although the increased use of composite materials reduced the role of aluminium up to some extent, high strength aluminium alloys remain important in airframe construction. Aluminium is a relatively low cost, light weight metal that can be heat treated and loaded to relatively high level of stresses, and it is one of the most easily produced of the high performance materials, which results in lower manufacturing and maintenance costs. There have been important recent advances in aluminium aircraft alloys that can effectively compete with modern composite materials. This study covers latest developments in enhanced mechanical properties of aluminium alloys, and high performance joining techniques. The mechanical properties on newly developed 2000, 7000 series aluminium alloys and new generation Al–Li alloys are compared with the traditional aluminium alloys. The advantages and disadvantages of the joining methods, laser beam welding and friction stir welding, are also discussed

  19. Aluminum alloy and associated anode and battery

    International Nuclear Information System (INIS)

    Tarcy, G.P.

    1990-01-01

    This patent describes an aluminum alloy. It comprises: eutectic amounts of at least two alloying elements selected from the group consisting of bismuth, cadmium, scandium, gallium, indium, lead, mercury, thallium, tin, and zinc with the balance being aluminum and the alloying elements being about 0.01 to 3.0 percent by weight of the alloy

  20. Viscosity of Industrially Important Zn-Al Alloys Part II: Alloys with Higher Contents of Al and Si

    Science.gov (United States)

    Nunes, V. M. B.; Queirós, C. S. G. P.; Lourenço, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A.

    2018-05-01

    The viscosity of Zn-Al alloys melts, with industrial interest, was measured for temperatures between 693 K and 915 K, with an oscillating cup viscometer, and estimated expanded uncertainties between 3 and 5 %, depending on the alloy. The influence of minor components, such as Si, Mg and Ce + La, on the viscosity of the alloys is discussed. An increase in the amount of Mg triggers complex melt/solidification processes while the addition of Ce and La renders alloys viscosity almost temperature independent. Furthermore, increases in Al and Si contents decrease melts viscosity and lead to an Arrhenius type behavior. This paper complements a previous study describing the viscosity of Zn-Al alloys with quasi-eutectic compositions.

  1. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    International Nuclear Information System (INIS)

    Yu, J.; Jiang, C.; Zhang, Y.

    2017-01-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  2. Calculations of hydrogen diffusivity in Zr-based alloys: Influence of alloying elements and effect of stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is found that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.

  3. Alloy Effects on the Gas Nitriding Process

    Science.gov (United States)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  4. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying....

  5. Corrosion resistance of titanium alloys for dentistry

    International Nuclear Information System (INIS)

    Laskawiec, J.; Michalik, R.

    2001-01-01

    Titanium and its alloys belong to biomaterials which the application scope in medicine increases. Some properties of the alloys, such as high mechanical strength, low density, low Young's modulus, high corrosion resistance and good biotolerance decide about it. The main areas of the application of titanium and its alloys are: orthopedics and traumatology, cardiosurgery, faciomaxillary surgery and dentistry. The results of investigations concerning the corrosion resistance of the technical titanium and Ti6Al14V alloy and comparatively a cobalt alloy of the Vitallium type in the artificial saliva is presented in the work. Significantly better corrosion resistance of titanium and the Ti6Al14V than the Co-Cr-Mo alloy was found. (author)

  6. Magnetoimpedance effect in Nanoperm alloys

    International Nuclear Information System (INIS)

    Hernando, B.; Alvarez, P.; Santos, J.D.; Gorria, P.; Sanchez, M.L.; Olivera, J.; Perez, M.J.; Prida, V.M.

    2006-01-01

    The influence of isothermal annealing (1 h at 600 deg. C in Ar atmosphere) on the soft magnetic properties and magnetoimpedance (MI) effect has been studied in ribbons of the following Nanoperm alloys: Fe 91 Zr 7 B 2 , Fe 88 Zr 8 B 4 , Fe 87 Zr 6 B 6 Cu 1 and Fe 8 Zr 1 B 1 . A maximum MI ratio of about 27% was measured for the nanocrystalline alloy Fe 87 Zr 6 B 6 Cu 1 at a driving frequency of 0.2 MHz. The thermal annealing led to magnetic softening for this alloy, while a hardening is observed for the Fe 8 Zr 1 B 1 alloy

  7. Technetium and technetium alloys

    International Nuclear Information System (INIS)

    Ijdo, W.L.

    1993-10-01

    This report presents the results of a literature survey on technetium and technetium alloys. The literature has been searched through 1993. The survey was focused on technetium and (binary cubic) technetium alloys, but other important information on technetium has not been omitted from this survey. This report has been written with the aim to collect more information about phase systems which could be of importance in the transmutation process by neutrons of technetium. With the information presented in this report, it should be possible to select a suitable technetium alloy for further investigation regarding to the transmutation process. (orig.)

  8. Carbon Alloys-Multi-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Eiichi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)], E-mail: yasuda.e.aa.@m.titech.ac.jp; Enami, Takashi; Hoteida, Nobuyuki [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Lanticse-Diaz, L.J. [University of the Philippines (Philippines); Tanabe, Yasuhiro [Nagoya University (Japan); Akatsu, Takashi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2008-02-25

    Last decade after our proposal of the 'Carbon Alloys' concept, many different kinds of Carbon Alloys, such as carbon nanotubes, carbon nanofibers, graphene sheet with magnetism, semi-conducting BCN compounds, graphite intercalation compounds, exfoliated carbon fiber, etc. have been found and developed. To extend the concept further, it is important to make it into intelligent materials by incorporating multiple functions. One example of the multi-functionalization is the development of homo-atomic Carbon Alloys from glassy carbon (GC) that exhibits high electrical conductivity and low gas permeability after treatment at critical conditions. Glassy carbon underwent metamorphosis to graphite spheres at HIP condition, and improved resistance to oxidation after alloying with Ta. The other one is shape utilization of the nano-sized carbon by understanding the effect of its large surfaces or interfaces in nanotechnology treatment. Recently carbon nanofiber was produced by polymer blend technology (PB) which was proposed by Prof. A. Oya during the Carbon Alloy project and progressed into intelligent carbon nanofiber (CNF) materials. CNF is combined into the polymer composites which is a candidate material for the bipolar separator in fuel cell. The superior properties, i.e., high electrical conductivity, high modulus, high strength, etc., of the CNF is being utilized in the preparation of this polymer composite.

  9. Daya Hambat Hidrolisis Karbohidrat Oleh Ekstrak Daun Murbei

    Directory of Open Access Journals (Sweden)

    S. Syahrir

    2009-10-01

    Full Text Available Inhibition hydrolysis of carbohydrate by mulberry leaves extract ABSTRACT. Mulberry leaves has a great potential as animal feeds because of its high nutrient content, but has deoxynojirimycin (DNJ active matter. It is potential to inhibit carbohydrate hydrolysis process, come to monosaccharides. The objective of this experiment is to study the inhibiting ability of mulberry leave extract in carbohydrate hydrolysis process. The kinds of carbohydrates were using glucose, maltose, sucrose and starch. This experiment used twenty four of 60 days old male mice (Mus musculus. Diet and water were given ad libitum. Treatment were allocated ina factorial completely randomized design with three replications and two factors containing of completely mulberry leaves extract and variance of carbohydrates. Variable observed were feed consumtion, feed digestibility, body weight gain and blood glucose. The data were analyzed with univariate analysis of variance. The result showed that inclusion of mulberry leaves extract had decrease body weight (P< 0,05 and reduce blood glucose (P< 0,05.

  10. Synthesis of shape memory alloys using electrodeposition

    Science.gov (United States)

    Hymer, Timothy Roy

    Shape memory alloys are used in a variety of applications. The area of micro-electro-mechanical systems (MEMS) is a developing field for thin film shape memory alloys for making actuators, valves and pumps. Until recently thin film shape memory alloys could only be made by rapid solidification or sputtering techniques which have the disadvantage of being "line of sight". At the University of Missouri-Rolla, electrolytic techniques have been developed that allow the production of shape memory alloys in thin film form. The advantages of this techniques are in-situ, non "line of sight" and the ability to make differing properties of the shape memory alloys from one bath. This research focused on the electrodeposition of In-Cd shape memory alloys. The primary objective was to characterize the electrodeposited shape memory effect for an electrodeposited shape memory alloy. The effect of various operating parameters such as peak current density, temperature, pulsing, substrate and agitation were investigated and discussed. The electrodeposited alloys were characterized by relative shape memory effect, phase transformation, morphology and phases present. Further tests were performed to optimize the shape memory by the use of a statistically designed experiment. An optimized shape memory effect for an In-Cd alloy is reported for the conditions of the experiments.

  11. First-principles study on the effect of alloying elements on the elastic deformation response in β-titanium alloys

    International Nuclear Information System (INIS)

    Gouda, Mohammed K.; Gepreel, Mohamed A. H.; Nakamura, Koichi

    2015-01-01

    Theoretical deformation response of hypothetical β-titanium alloys was investigated using first-principles calculation technique under periodic boundary conditions. Simulation was carried out on hypothetical 54-atom supercell of Ti–X (X = Cr, Mn, Fe, Zr, Nb, Mo, Al, and Sn) binary alloys. The results showed that the strength of Ti increases by alloying, except for Cr. The most effective alloying elements are Nb, Zr, and Mo in the current simulation. The mechanism of bond breaking was revealed by studying the local structure around the alloying element atom with respect to volume change. Moreover, the effect of alloying elements on bulk modulus and admissible strain was investigated. It was found that Zr, Nb, and Mo have a significant effect to enhance the admissible strain of Ti without change in bulk modulus

  12. Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Wen, Y.R.; Li, Y.P.; Hirata, A.; Zhang, Y.; Fujita, T.; Furuhara, T.; Liu, C.T.; Chiba, A.; Chen, M.W.

    2013-01-01

    We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe–Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe–Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core–shell nanoprecipitates with a Cu-rich core and a B2 Ni–Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core–shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe–Cu alloys. Reinforcement of the B2 Ni–Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core–shell nanoprecipitates

  13. Requirements of titanium alloys for aeronautical industry

    Science.gov (United States)

    Ghiban, Brânduşa; Bran, Dragoş-Teodor; Elefterie, Cornelia Florina

    2018-02-01

    The project presents the requirements imposed for aeronatical components made from Titanium based alloys. Asignificant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys). For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  14. Mechanical behaviour of aluminium-lithium alloys

    Indian Academy of Sciences (India)

    Aluminium-lithium alloys hold promise of providing a breakthrough response to the crying need for lightweight alloys for use as structurals in aerospace applications. Considerable worldwide research has gone into developing a range of these alloys over the last three decades. As a result, substantial understanding has ...

  15. Corrosion Behaviour of New Zr Alloys

    DEFF Research Database (Denmark)

    Tolksdorf, E.

    1974-01-01

    Corrosion studies have indicated that the most promising replacements for Zicaloy-2 are ZrCrFe, ZrVFe and probably ZrNbTa, provided they are in their optimized condition. These alloys are conventionally manufactured alloys. An internally oxidized ZrMgO alloy is even superior, from the corrosion...

  16. Argon-arc welding of heat resisting aluminium alloys

    International Nuclear Information System (INIS)

    Ryazantsev, V.I.; Fedoseev, V.A.

    1997-01-01

    Welding of aluminium heat resisting alloys of the Al-Cu-Mg system is studied. The hot-shortness of heat-resistant alloys M40, 1150 and 1151 are at the level of aluminium alloys 1201 and by 2-3 times lower as compared to the aluminium alloy AMg6. The M40, 1150 and 1151 alloys have unquestionable advantages against other know aluminium alloys only at temperatures of welded structures operation, beginning with 150-2000 deg C and especially at 250 deg C

  17. Recent research and developments on wrought magnesium alloys

    Directory of Open Access Journals (Sweden)

    Sihang You

    2017-09-01

    Full Text Available Wrought magnesium alloys attract special interests as lightweight structural material due to their homogeneous microstructure and enhanced mechanical properties compared to as-cast alloys. In this contribution, recent research and developments on wrought magnesium alloys are reviewed from the viewpoint of the alloy design, focusing on Mg-Al, Mg-Zn and Mg-rare earth (RE systems. The effects of different alloying elements on the microstructure and mechanical properties are described considering their strengthening mechanisms, e.g. grain refinement, precipitation and texture hardening effect. Finally, the new alloy design and also the future research of wrought magnesium alloys to improve their mechanical properties are discussed.

  18. Effect of alloying elements on σ phase formation in Fe-Cr-Mn alloys

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Hosoi, Yuzo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-01-01

    Alloys of Fe-(8∼12%) Cr-(5∼30%) Mn were solution-treated at 1373 K for 3.6 ks, followed by cold-working of 50% reduction. Both solution-treated and 50% cold-worked materials were aged in the temperature range from 773 to 973 K for 3.6 x 10 3 ks. The identification of σ phase formation was made by using X-ray diffraction from the electrolytically extracted residues of the aged specimens. The region of σ phase formation determined by the present work is wider than that on the phase diagram already reported. It is to be noted that Mn promotes markedly the σ phase formation, and that three different types of σ phase formation are observed depending on Mn content: α→γ + α→γ + α + σ in 10% Mn, α→γ + σ in 15 to 20% Mn alloys, α→χ(Chi) →χ + σ + γ in 25 to 30% Mn alloys. An average electron concentration (e/a) in the σ phase was estimated by quantitative analysis of alloying elements using EPMA. The e/a value in the σ phase formed in Fe-(12∼16%) Cr-Mn alloys aged at 873 K for 3.6 x 10 3 ks is about 7.3, which is independent of Mn content. In order to prevent σ phase formation in Fe-12% Cr-15% Mn alloy, the value of Ni * eq of 11 (Ni * eq = Ni + 30(C) + 25(N)) is required. (author)

  19. Grindability of cast Ti-Cu alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takada, Yukyo; Kiyosue, Seigo; Yoda, Masanobu; Woldu, Margaret; Cai, Zhuo; Okuno, Osamu; Okabe, Toru

    2003-07-01

    The purpose of the present study was to evaluate the grindability of a series of cast Ti-Cu alloys in order to develop a titanium alloy with better grindability than commercially pure titanium (CP Ti), which is considered to be one of the most difficult metals to machine. Experimental Ti-Cu alloys (0.5, 1.0, 2.0, 5.0, and 10.0 mass% Cu) were made in an argon-arc melting furnace. Each alloy was cast into a magnesia mold using a centrifugal casting machine. Cast alloy slabs (3.5 mm x 8.5 mm x 30.5 mm), from which the hardened surface layer (250 microm) was removed, were ground using a SiC abrasive wheel on an electric handpiece at four circumferential speeds (500, 750, 1000, or 1250 m/min) at 0.98 N (100 gf). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 1min. Data were compared to those for CP Ti and Ti-6Al-4V. For all speeds, Ti-10% Cu alloy exhibited the highest grindability. For the Ti-Cu alloys with a Cu content of 2% or less, the highest grindability corresponded to an intermediate speed. It was observed that the grindability increased with an increase in the Cu concentration compared to CP Ti, particularly for the 5 or 10% Cu alloys at a circumferential speed of 1000 m/min or above. By alloying with copper, the cast titanium exhibited better grindability at high speed. The continuous precipitation of Ti(2)Cu among the alpha-matrix grains made this material less ductile and facilitated more effective grinding because small broken segments more readily formed.

  20. Corrosion of cast and non equilibrium magnesium alloys

    International Nuclear Information System (INIS)

    Mathieu, S.; Rapin, C.; Steinmetz, P.; Hazan, J.

    1999-01-01

    Due to their low density, magnesium alloys arc very promising as regards applications in the automotive or aeronautical industry. Their corrosion resistance has however to be increased, particularly for cast alloys which are very often two-phased and thus suffer from internal galvanic corrosion. With use of sputtering methods of elaboration, homogeneous magnesium alloys containing far from equilibrium Al, Zr or valve metals contents can be prepared. Corrosion data for Mg-Al-Zn-Sn alloys and MgZr alloys obtained by sputtering, have been determined and compared to those of cast and thixocast AZ91 alloy. Electrochemical tests have evidenced a significantly better behaviour of non equilibrium alloys which, thanks to XPS measurements, could be correlated to the composition of the superficial oxide scale formed on these alloys. (author)

  1. Effects of alloying elements on nodular and uniform corrosion resistance of zirconium-based alloys

    International Nuclear Information System (INIS)

    Abe, Katsuhiro

    1992-01-01

    The effects of alloying and impurity elements (tin, iron, chromium, nickel, niobium, tantalum, oxygen, aluminum, carbon, nitrogen, silicon, and phosphorus) on the nodular and uniform corrosion resistance of zirconium-based alloys were studied. The improving effect of iron, nickel and niobium in nodular corrosion resistance were observed. The uniform corrosion resistance was also improved by nickel, niobium and tantalum. The effects of impurity elements, nitrogen, aluminum and phosphorus were negligibly small but increasing the silicon content seemed to improve slightly the uniform corrosion resistance. Hydrogen pick-up fraction were not changed by alloying and impurity elements except nickel. Nickel addition increased remarkably hydrogen pick-up fraction. Although the composition of secondary precipitates changed with contents of alloying elements, the correlation of composition of secondary precipitates to corrosion resistance was not observed. (author)

  2. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    Directory of Open Access Journals (Sweden)

    Olgierd Janusz Goroch

    2017-12-01

    Full Text Available The results of studies concerning friction welding of Weight Heavy Alloy (WHA with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum is used for projectile ballistic cup.

  3. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Kim, W.Y.; Kim, H.S.; Kim, S.K.; Ra, T.Y.; Kim, M.S.

    2005-01-01

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb 5 Si 3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb 5 Si 3 . At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  4. Effect of low-temperature thermomechanical treatment on mechanical properties of low-alloying molybdenum alloys with carbide hardening

    International Nuclear Information System (INIS)

    Bernshtejn, L.M.; Zakharov, A.M.; Veller, M.V.

    1978-01-01

    Presented are results of testing low-temperature thermomechanical treatment of low-alloying molybdenum alloys, including quenching from 2100 deg C, 40% deformation by hydroextrusion and aging at the temperature of 1200-1400 deg C. Tensile tests at room temperature with the following processing of results have shown that low-temperature thermomechanical treatment of low-alloying molybdenum alloys of Mo-Zr-C and Mo-Zr-Nb-C systems leads to a significant increase in low-temperature mechanical properties (strength properties - by 30-35%, ductility - by 30-40%) as compared with conventional heat treatment (aging after quenching). The treatment proposed increases resistance to small, as well as large plastic deformations, and leads to a simultaneous rise of strength and plastic properties at all stages of tensile test. Alloying of the Mo-Zr-C system with niobium increases both strength and plastic characteristics as compared with alloys without niobium when testing samples, subjected to low temperature thermomechanical treatment and conventional heat treatment at room temperature

  5. Annex 5 - Fabrication of U-Al alloy

    International Nuclear Information System (INIS)

    Drobnjak, Dj.; Lazarevic, Dj.; Mihajlovic, A.

    1961-01-01

    Alloy U-Al with low content of aluminium is often used for fabrication of fuel elements because it is stable under moderate neutron flux density. Additionally this type of alloys show much better characteristics than pure uranium under reactor operating conditions (temperature, mechanical load, corrosion effect of water). This report contains the analysis of the phase diagram of U-Al alloy with low content of aluminium, applied procedure for alloying and casting with detailed description of equipment. Characteristics of the obtained alloy are described and conclusions about the experiment and procedure are presented [sr

  6. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  7. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    Science.gov (United States)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  8. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  9. Nickel aluminide alloy suitable for structural applications

    Science.gov (United States)

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  10. Effect of alloying elements on the stability of Ni2M in Alloy690 based upon thermodynamic calculation

    International Nuclear Information System (INIS)

    Horiuchi, Toshiaki; Kuwano, Kazuhiro; Satoh, Naohiro

    2012-01-01

    Some researchers recently point out that Ni based alloys used in nuclear power plants have the ordering tendency, which is a potential to decrease mechanical properties within the expected lifetime of the plants. In the present study, authors evaluated the effect of 8 alloying elements on the ordering tendency in Alloy690 based upon thermodynamic calculation by Thermo-Calc. It is clarified that the additive amount of Fe, Cr, Ti and Si, particularly Fe and Cr, was influential for the stability of Ni 2 M, while that of Mn, Cu, B and C had almost no effect for that. Authors therefore designed the Ni 2 M stabilized alloy by no addition of Fe in Alloy690. Ni 2 M is estimated to be stable even at 773 K in the Ni 2 M stabilized alloy. The influence by long range ordering or precipitating of Ni 2 M in Alloy690 for mechanical properties or SCC susceptibility is expected to be clarified by the sample obtained in the present study. (author)

  11. Applications of shape memory alloys in Japan

    International Nuclear Information System (INIS)

    Asai, M.; Suzuki, Y.

    2000-01-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and other field today. (orig.)

  12. Activation analyses for different fusion structural alloys

    International Nuclear Information System (INIS)

    Attaya, H.; Smith, D.

    1991-01-01

    The leading candidate structural materials, viz., the vanadium alloys, the nickel or the manganese stabilized austenitic steels, and the ferritic steels, are analysed in terms of their induced activation in the TPSS fusion power reactor. The TPSS reactor has 1950 MW fusion power and inboard and outboard average neutron wall loading of 3.75 and 5.35 MW/m 2 respectively. The results shows that, after one year of continuous operation, the vanadium alloys have the least radioactivity at reactor shutdown. The maximum difference between the induced radioactivity in the vanadium alloys and in the other iron-based alloys occurs at about 10 years after reactor shutdown. At this time, the total reactor radioactivity, using the vanadium alloys, is about two orders of magnitude less than the total reactor radioactivity utilizing any other alloy. The difference is even larger in the first wall, the FW-vanadium activation is 3 orders of magnitude less than other alloys' FW activation. 2 refs., 7 figs

  13. Corrosion of high-density sintered tungsten alloys

    International Nuclear Information System (INIS)

    Batten, J.J.; Moore, B.T.

    1989-01-01

    In comparative corrosion tests, the corrosion resistance of an Australian tungsten alloy (95% W, 3.5% Ni, 1.5% Fe) was found to be superior to three other tungsten alloys and, under certain conditions, even more corrosion-resistant than pure tungsten. Corrosion resistance was evaluated after immersion in both distilled water and 5% sodium chloride solutions, and in cyclic humidity and salt mist environments. For all but the Australian alloy, the rate of corrosion in sodium chloride solution was markedly less than that in distilated water. In all cases, alloys containing copper had the greatest corrosion rates. Corrosion mechanisms were investigated using a scanning electron microscope, analysis of corrosion products and galvanic corrosion studies. For the alloys, corrosion was attributed primarily to a galvanic reaction. Whether the tungsten or binder phase of the alloy became anodic, and thus was attacked preferentially, depended upon alloy composition and corrosion environment. 16 refs., 4 tabs., 4 figs

  14. Grain Refinement of an Al-2 wt%Cu Alloy by Al3Ti1B Master Alloy and Ultrasonic Treatment

    International Nuclear Information System (INIS)

    Wang, E Q; Wang, G; Dargusch, M S; StJohn, D H; Qian, M; Eskin, D G

    2016-01-01

    Both inoculation by AlTiB master alloys and Ultrasonic Treatment (UT) are effective methods of refining the grain size of aluminium alloys. The present study investigates the influence of UT on the grain refinement of an Al-2 wt% Cu alloy with a range of Al3TilB master alloy additions. When the alloy contains the smallest amount of added master alloy, UT caused significant additional grain refinement compared with that provided by the master alloy only. However, the influence of UT on grain size reduces with increasing addition of the master alloy. Plotting the grain size data versus the inverse of the growth restriction factor (Q) reveals that the application of UT causes both an increase in the number of potentially active nuclei and a decrease in the size of the nucleation free zone due to a reduction in the temperature gradient throughout the melt. Both these factors promote the formation of a fine equiaxed grain structure. (paper)

  15. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    OpenAIRE

    J. Kozana; St. Rzadkosz; M. Piękoś

    2010-01-01

    Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation ...

  16. Refining U-Zr-Nb alloys by remelting

    International Nuclear Information System (INIS)

    Aguiar, B.M.; Kniess, C.T.; Riella, H.G.; Ferraz, W.B.

    2011-01-01

    The high density U-Zr-Nb and U-Nb uranium-based alloys can be employed as nuclear fuel in a PWR reactor due to their high density and nuclear properties. These alloys can stabilize the gamma phase, however, according to TTT diagrams, at the working temperature of a PWR reactor, all gamma phase transforms to α'' phase in a few hours. To avoid this kind of transformation during the nuclear reactor operation, the U-Zr-Nb alloy and U-Nn are used in α'' phase. The stability of α'' phase depends on the alloy composition and cooling rate. The alloy homogenization has to be very effective to eliminate precipitates rich in Zr and Nb to avoid changes in the alloying elements contents in the matrix. The homogenization was obtained by remelting the alloy and keeping it in the liquid state for enough time to promote floating of the precipitates (usually carbides, less dense) and leaving the matrix free of precipitates. However, this floating by density difference may result in segregation between the alloying elements (Nb and Zr, at the top) and uranium (at the bottom). The homogenized alloys were characterized in terms of metallographic techniques, optical microscopy, scanning electronic microscopy, EDS and X-ray diffraction. In this paper, it is shown that the contents of Zr and Nb at the bottom and at the top of the matrix are constant. (author)

  17. Metal-ceramic alloys in dentistry: a review.

    Science.gov (United States)

    Roberts, Howard W; Berzins, David W; Moore, B Keith; Charlton, David G

    2009-02-01

    The purpose of this article is to review basic information about the alloys used for fabricating metal-ceramic restorations in dentistry. Their compositions, properties, advantages, and disadvantages are presented and compared. In addition to reviewing traditional noble-metal and base-metal metal-ceramic alloys, titanium and gold composite alloys are also discussed. A broad search of the published literature was performed using Medline to identify pertinent current articles on metal-ceramic alloys as well as articles providing a historical background about the development of these alloys. Textbooks, the internet, and manufacturers' literature were also used to supplement this information. The review discusses traditional as well as more recently-developed alloys and technologies used in dentistry for fabricating metal-ceramic restorations. Clear advantages and disadvantages for these alloy types are provided and discussed as well as the role that compositional variations have on the alloys' performance. This information should enable clinicians and technicians to easily identify the important physical properties of each type and their primary clinical indications. A number of alloys and metals are available for metal-ceramic use in dentistry. Each has its advantages and disadvantages, primarily based on its specific composition. Continuing research and development are resulting in the production of new technologies and products, giving clinicians even more choices in designing and fabricating metal-ceramic restorations.

  18. Internal chlorination of Ni-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Berztiss, D.; Hennesen, K.; Grabke, H.J. [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    1998-12-31

    In contrast to internal oxidation, sulfidation and carburization, very little information is available regarding internal chlorination, especially diffusion of chlorine in metallic alloys. This paper describes results of experiments on Ni-Cr alloys (<10 wt% Cr) exposed in an atmosphere containing radioactive HCl. The diffusion of chlorine in the alloy can be determined by measurement of residual {beta}-activity from the sample surface. Successively thin layers (0.5-10 {mu}m) of the alloy were removed by lapping and the surface activity was measured to obtain a depth profile. Both single and polycrystalline materials were tested. Through this work it should be determined if there is in fact solubility and diffusion of chlorine in Ni-based alloys as some authors have proposed or if the ingress of chlorine is mainly a grain boundary phenomenon. (orig.)

  19. SINTERED REFRACTORY TUNGSTEN ALLOYS. Gesinterte hochschmelzende wolframlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, R.; Sedlatschek, K.; Braun, H.

    1971-12-15

    Dependence of the melting point of the refractory metals on their positions in the periodic system - alloys of tungsten with other refractory metals - sintering of the alloys - processing of the alloys - technological properties.

  20. Fabrication and mechanical behavior of bulk nanoporous Cu via chemical de-alloying of Cu–Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Xi; Zou, Lijie; Yao, Yao; Lin, Yaojun; Shen, Qiang [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, CA 92697 (United States); Zhang, Lianmeng, E-mail: lmzhang@whut.edu.cn [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2016-04-13

    We report on a study of the influence of microstructure on the mechanical behavior of bulk nanoporous Cu fabricated by chemical de-alloying of Cu{sub 50}Al{sub 50}, Cu{sub 40}Al{sub 60}, Cu{sub 33}Al{sub 67} and Cu{sub 30}Al{sub 70} (at%) alloys. The precursor Cu–Al alloys were fabricated using arc melting and bulk nanoporous Cu was obtained by subsequent de-alloying of Cu–Al alloys in 20 wt% NaOH aqueous solution at a temperature of 65 °C. We studied the microstructure of the precursor Cu–Al alloys, as well as that of the as de-alloyed bulk nanoporous Cu, using X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry. Moreover, the compressive strength of bulk nanoporous Cu was measured and the relationship between microstructure and mechanical properties was studied. Our results show that the microstructure of bulk nanoporous Cu is characterized by bi-continuous interpenetrating ligament-channels with a ligament size of 130±20 nm (for Cu{sub 50}Al{sub 50}), 170±20 nm (for Cu{sub 40}Al{sub 60}) and 160±10 nm (for Cu{sub 33}Al{sub 67}). Interestingly the microstructure of de-alloyed Cu{sub 30}Al{sub 70} is bimodal with nanopores (100's nm) and interspersed featureless regions a few microns in size. The compressive strength increased with decreasing volume fraction of porosity; as porosity increased 56.3±2% to 73.9±2%, the compressive strength decreased from 17.18±1 MPa to 2.71±0.5 MPa.

  1. Nucleation of dislocation loops during irradiation in binary FCC alloys with different alloy compositions

    International Nuclear Information System (INIS)

    Hashimoto, T.; Shigenaka, N.; Fuse, M.

    1992-01-01

    Dislocation loop nucleation is analyzed using a rate theory based model for face-centered cubic (fcc) binary alloys containing A- and B-atoms. In order to calculate the nucleation process in concentrated alloys, the model considers three types of interstitial dumbbells composed of A- and B-atoms, AA-, BB-, and AB-type dumbbells. Conversions between these interstitial dumbbells are newly introduced in the formulation in consideration of dumbbell configurations and movements. The model also includes reactions, such as point defect production by irradiation, mutual recombination of an interstitial and a vacancy, and dislocation loop nucleation and growth. Parameter values are chosen based on the atom size of the alloy component elements, and dislocation loop nucleation kinetics are investigated while varying alloy compositions. Two different types of kinetics are obtained in accordance with the dominant loop nucleus type. The migration energy difference of AA- and BB-type interstitial dumbbells is important in the determination of the dominant loop nucleus type. The present model predicts that the dislocation loop concentration decrease with increasing under sized atoms content, but defect production rate and temperature dependences of loop concentration are insensitive to alloy compositions. (author)

  2. Phase decomposition in a mechanically alloyed Cu-44.5 at%Ni-22.5 at%Fe alloy during isothermal aging

    International Nuclear Information System (INIS)

    Lopez-Hirata, Victor M.; Saucedo-Munoz, Maribel L.; Diaz-Barriga-Arceo, Lucia G.

    2006-01-01

    A supersaturated solid solution of Cu-44.5 at%Ni-22.5 at%Fe alloy was produced by ball milling of a pure chemical elemental mixture for 1080 ks. An fcc supersaturated solid solution with a grain size of about 20 nm was obtained after milling. This alloy was subsequently aged at 803, 898 and 1003 K for different times. The growth kinetics of the modulation wavelength was determined from the X-ray diffraction results and followed the Lifshitz-Slyozov-Wagner theory for a diffusion-controlled coarsening in the MA alloy after aging. The growth kinetics of composition modulation wavelength for the MA alloy was faster at 803 and 898 K than that for the same alloy composition obtained by a conventional processing and then aged at the same temperatures. The activation energy for the decomposed phase coarsening process in the MA alloy was lower than that corresponding to the conventionally-processed alloy. (author)

  3. Ductile transplutonium metal alloys

    Science.gov (United States)

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  4. Protective claddings for high strength chromium alloys

    Science.gov (United States)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  5. United modification of Al-24Si alloy by Al-P and Al-Ti-C master alloys

    Institute of Scientific and Technical Information of China (English)

    韩延峰; 刘相法; 王海梅; 王振卿; 边秀房; 张均艳

    2003-01-01

    The modification effect of a new type of Al-P master alloy on Al-24Si alloys was investigated. It is foundthat excellent modification effect can be obtained by the addition of this new type of A1-P master alloy into Al-24Simelt and the average primary Si grain size is decreased below 47 μm from original 225 μm. It is also found that theTiC particles in the melt coming from Al8Ti2C can improve the modification effect of the Al-P master alloy. Whenthe content of TiC particles in the Al-24Si melt is 0.03 %, the improvement reaches the maximum and keeps steadywith increasing content of TiC particles. Modification effect occurs at 50 min after the addition of the Al-P master al-loy and TiC particles, and keeps stable with prolonging holding time.

  6. Mössbauer and XRD study of the Fe65Si35 alloy obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Vélez, G. Y.; Rodríguez, R. R.; Melo, C. A.; Pérez Alcázar, G. A.; Zamora, Ligia E.; Tabares, J. A.

    2011-01-01

    A study was made on the alloy Fe 65 Si 35 using x-ray diffraction and Mössbauer spectrometry. The alloy was obtained by mechanical alloying in a high energy planetary mill, with milling times of 15, 30, 50, 75 and 100 h. The results show that in the alloys two structural phases are present, a Fe-Si BCC disordered phase and ferromagnetic, and a Fe-Si SC phase, whose nature is paramagnetic and which decreases with milling time. In the temporal evolution of the milling two stages are differentiated: one between 15 and 75 h of milling, in which silicon atoms diffuse into the bcc matrix of iron and its effect is to reduce the hyperfine magnetic field; the other, after 75 h of milling, where the alloy is consolidated, the effect of the milling is only to increase the disorder of the system, increasing the magnetic order.

  7. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  8. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  9. Shape-memory effect in Ti-Nb alloys

    International Nuclear Information System (INIS)

    Peradze, T.; Berikashvili, T.; Chelidze, T.; Gorgadze, K.; Bochorishvili, M.; Taktakishvili, M.

    2009-01-01

    The work deals with the investigation of the binary alloy of titanium with niobium and is aimed at demonstrating the functional-mechanical possibilities of Ti-Nb alloys from the viewpoint of their potential application in practice. The shape-memory effect, super elasticity and reactive stress in alloys of Ti-Nb system were studied. It turned out that the work carried out expanded the interval of Nb content in the investigated alloys from 25.9 to 33.1 wt%. The shape recovery made up not less than 90% at the deformation of 6-8%. The reactive stress reached 350-450 MPa. In the alloys under study another (high-temperature) shape-memory effect was found, and the influence of hydrogen and oxygen on the inelastic properties of alloys was studied. (author)

  10. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lili; Qin, Lin, E-mail: qinlin@tyut.edu.cn; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Highlights: • The Mo alloyed layers were successfully prepared on TLM surface by DG-PSA. • The surface microhardness of TLM is remarkably enhanced by Mo alloying. • The TLM samples after Mo alloying exhibit good wettability. • The Mo alloyed TLM samples show excellent tribological properties. - Abstract: Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  11. Corrosion resistant alloy uses in the power industry

    International Nuclear Information System (INIS)

    Nickerson, J.L.; Hall, F.A.; Asphahani, A.I.

    1989-01-01

    Nickel-base alloys have been used as cost-effective measures in a variety of severely corrosive situations in pollution control units for coal-fired power plants. Cost effectiveness and practical answers to corrosion problems are illustrated (specifically the wallpaper concept/metallic lining technique). Numerous cases of successful use of HASTELLOY alloys in Flue Gas Desulfurization (FGD) systems and hazardous waste treatment incineration scrubber systems are listed. In this paper developments in nickel-base alloys and their use in FGD and other segments of the power industry are discussed. In the Ni-Cr-Mo-W alloy family, the C-22 alloy has the best resistance to localized corrosion in halide environments (chloride/fluoride-containing solutions). This alloy is also used effectively as a universal filler metal to weld less-resistant alloys were weld corrosion may be a problem. Field performance of this alloy in the power industry is described

  12. Multi-functional magnesium alloys containing interstitial oxygen atoms.

    Science.gov (United States)

    Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H

    2016-03-15

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (alloys are expected to open a new paradigm in commercial alloy design.

  13. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys

    International Nuclear Information System (INIS)

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-01-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was ∼2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid γ + Ni 5 Gd eutectic-type reaction at ∼1270 C. The solidification temperature ranges of the alloys varied from ∼100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at ∼1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques

  14. Microstructure and magnetic behavior of Cu–Co–Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chabri, Sumit, E-mail: sumitchabri2006@gmail.com [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Bera, S. [Department of Metallurgical & Materials Engineering, National Institute of Technology, Durgapur 713209 (India); Mondal, B.N. [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Basumallick, A.; Chattopadhyay, P.P. [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2017-03-15

    Microstructure and magnetic behavior of nanocrystalline 50Cu–40Co–10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450–650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  15. Effect of stress on the superconducting transition temperature in indium, indium-alloy, tin, and tin-alloy whisker samples

    International Nuclear Information System (INIS)

    Cook, J.W. Jr.; Davis, W.T.; Chandler, J.H.; Skove, M.J.

    1977-01-01

    The dependence of the superconducting transition temperature (T/sub c/) on stress (sigma) for pure In and Sn samples was found to be in qualitative agreement with earlier work. For convenience T/sub c/ is expressed as a function of the experimentally measured strain (epsilon), which is proportional to sigma. The effect of alloying on the initial dependence of the T/sub c/-vs-epsilon curves, (per. delta T/sub c//per. delta epsilon)/sub epsilon = 0/ = eta, was quite different for the In and Sn alloys. The In samples were alloyed with a maximum of 4.8 at.% Tl, 7.9 at.% Sn, and 6.7 at.% Pd; the Sn samples were alloyed with a maximum of 0.3 at.% Cd, 6.0 at.% In, 0.3 at.% Sb, and 2.2 at.% Bi. The addition of impurities had a large effect on eta for the In alloys, with eta reversing sign for some Sn and Pb alloy contents (chi). The T/sub c/-vs-epsilon curves also became nonlinear for some chi. The possible relationship of the In alloy results to changes in the Fermi surface due to the addition of impurities is discussed. For the Sn alloy samples, there was no change in eta with any impurity. The change in room-temperature resistivity with strain was also measured. There was only a slight decrease in the dependence of resistivity on strain for the In--Sn and In--Pb data and no effect on the In--Tl or Sn alloy data

  16. Thermomechanical treatment of titanium alloys

    International Nuclear Information System (INIS)

    Khorev, A.K.

    1979-01-01

    The problems of the theory and practical application of thermomechanical treatment of titanium alloys are presented. On the basis of the systematic investigations developed are the methods of thermomechanical treatment of titanium alloys, established are the optimum procedures and produced are the bases of their industrial application with an account of alloy technological peculiarities and the procedure efficiency. It is found that those strengthening methods are more efficient at which the contribution of dispersion hardening prevails over the strengthening by phase hardening

  17. Iron-titanium-mischmetal alloys for hydrogen storage

    Science.gov (United States)

    Sandrock, Gary Dale

    1978-01-01

    A method for the preparation of an iron-titanium-mischmetal alloy which is used for the storage of hydrogen. The alloy is prepared by air-melting an iron charge in a clay-graphite crucible, adding titanium and deoxidizing with mischmetal. The resultant alloy contains less than about 0.1% oxygen and exhibits a capability for hydrogen sorption in less than half the time required by vacuum-melted, iron-titanium alloys.

  18. Shape-Memory-Alloy Actuator For Flight Controls

    Science.gov (United States)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  19. Influence of liquid copper-silver brazing alloy on properties of high-strength and heat resistant alloys and steels

    International Nuclear Information System (INIS)

    Semenov, V.N.

    1999-01-01

    The influence of temperature, heating rate, microstructure, the duration of Cu-Ag melt attack during brazing, the thickness and the material of barrier coating on properties of materials (Ni-Cr alloys, Cr-Ni steals, a Fe-Ni base EhJ-702 alloy) being brazed is studied. The tests of specimens with a brazing alloy are carried out in the temperature range of 780-1000 deg C. It is revealed that heat resistant alloys under brazing conditions experience brittle fracture. Multiphase structure coarse grain, increased hydrogen content mechanical stress concentrators are found to intensity embrittlement of the materials. The use of barrier coating displaying a chemical affinity to the brazing alloy results in a decrease of the tendency to embrittlement

  20. The corrosion and passivity of sputtered Mg–Ti alloys

    International Nuclear Information System (INIS)

    Song, Guang-Ling; Unocic, Kinga A.; Meyer, Harry; Cakmak, Ercan; Brady, Michael P.; Gannon, Paul E.; Himmer, Phil; Andrews, Quinn

    2016-01-01

    Highlights: • A supersaturated single phase Mg–Ti alloy can be obtained by magnetron sputtering. • The anodic dissolution of Mg–Ti alloy is inhibited by Ti addition. • The alloy becomes passive when Ti content is high and the alloy has become Ti based. • The formation of a continuous thin passive film is responsible for the passivation of the alloy. - Abstract: This study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. The surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide film was formed on a sputtered Ti–Mg based alloy.

  1. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    Kuijers, F.J.

    1978-01-01

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  2. Machinability of experimental Ti-Ag alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2008-03-01

    This study investigated the machinability of experimental Ti-Ag alloys (5, 10, 20, and 30 mass% Ag) as a new dental titanium alloy candidate for CAD/CAM use. The alloys were slotted with a vertical milling machine and carbide square end mills under two cutting conditions. Machinability was evaluated through cutting force using a three-component force transducer fixed on the table of the milling machine. The horizontal cutting force of the Ti-Ag alloys tended to decrease as the concentration of silver increased. Values of the component of the horizontal cutting force perpendicular to the feed direction for Ti-20% Ag and Ti-30% Ag were more than 20% lower than those for titanium under both cutting conditions. Alloying with silver significantly improved the machinability of titanium in terms of cutting force under the present cutting conditions.

  3. Refining processes of selected copper alloys

    Directory of Open Access Journals (Sweden)

    S. Rzadkosz

    2009-04-01

    Full Text Available The analysis of the refining effectiveness of the liquid copper and selected copper alloys by various micro additions and special refiningsubstances – was performed. Examinations of an influence of purifying, modifying and deoxidation operations performed in a metal bath on the properties of certain selected alloys based on copper matrix - were made. Refining substances, protecting-purifying slag, deoxidation and modifying substances containing micro additions of such elements as: zirconium, boron, phosphor, sodium, lithium, or their compounds introduced in order to change micro structures and properties of alloys, were applied in examinations. A special attention was directed to macro and micro structures of alloys, their tensile and elongation strength and hot-cracks sensitivity. Refining effects were estimated by comparing the effectiveness of micro structure changes with property changes of copper and its selected alloys from the group of tin bronzes.

  4. Refining U-Zr-Nb alloys by remelting

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, B.M.; Kniess, C.T.; Riella, H.G., E-mail: bmaguiar@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ferraz, W.B. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The high density U-Zr-Nb and U-Nb uranium-based alloys can be employed as nuclear fuel in a PWR reactor due to their high density and nuclear properties. These alloys can stabilize the gamma phase, however, according to TTT diagrams, at the working temperature of a PWR reactor, all gamma phase transforms to {alpha}'' phase in a few hours. To avoid this kind of transformation during the nuclear reactor operation, the U-Zr-Nb alloy and U-Nn are used in {alpha}'' phase. The stability of {alpha}'' phase depends on the alloy composition and cooling rate. The alloy homogenization has to be very effective to eliminate precipitates rich in Zr and Nb to avoid changes in the alloying elements contents in the matrix. The homogenization was obtained by remelting the alloy and keeping it in the liquid state for enough time to promote floating of the precipitates (usually carbides, less dense) and leaving the matrix free of precipitates. However, this floating by density difference may result in segregation between the alloying elements (Nb and Zr, at the top) and uranium (at the bottom). The homogenized alloys were characterized in terms of metallographic techniques, optical microscopy, scanning electronic microscopy, EDS and X-ray diffraction. In this paper, it is shown that the contents of Zr and Nb at the bottom and at the top of the matrix are constant. (author)

  5. Order/disorder in electrodeposited aluminum-titanium alloys

    Directory of Open Access Journals (Sweden)

    Stafford G.R.

    2003-01-01

    Full Text Available The composition, morphology, and crystallographic microstructure of Al-Ti alloys electrodeposited from two different chloroaluminate molten salt electrolytes were examined. Alloys containing up to 28 % atomic fraction Ti were electrodeposited at 150 °C from 2:1 AlCl3-NaCl with controlled additions of Ti2+. The apparent limit on alloy composition is proposed to be due to a mechanism by which Al3Ti forms through the reductive decomposition of [Ti(AlCl43]-. The composition of Al-Ti alloys electrodeposited from the AlCl3-EtMeImCl melt at 80 °C is limited by the diffusion of Ti2+ to the electrode surface. Alloys containing up to 18.4 % atomic fraction Ti are only obtainable at high Ti2+ concentrations in the melt and low current densities. Alloys electrodeposited from the higher temperature melt have an ordered L12 crystal structure while alloys of similar composition but deposited at lower temperature are disordered fcc. The appearance of antiphase boundaries in the ordered alloys suggests that the deposit may be disordered initially and then orders in the solid state, subsequent to the charge transfer step and adatom incorporation into the lattice. This is very similar to the disorder-trapping observed in rapidly solidified alloys. The measured domain size is consistent with a mechanism of diffusion-controlled doman growth at the examined deposition temperatures and times.

  6. Magnesium alloy AZ63A reinforcement by alloying with gallium and using high-disperse ZrO2 particles

    Directory of Open Access Journals (Sweden)

    J. Khokhlova

    2016-12-01

    Full Text Available The aim of this work was to obtain an experimental magnesium alloy by remelting standard AZ63A alloy with addition of gallium ligatures and ZrO2 particles. This allowed reinforcement of alloy and increase its hardness and Young's modulus. The chemical analysis of this alloy shows two types of structures which are evenly distributed in volume. Thus we can conclude that reinforcing effect is the result of formation of intermetallic phase Mg5-Ga2.

  7. Engineering data bases for refractory alloys

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Harms, W.O.

    1985-01-01

    Refractory alloys based on niobium, molybdenum, tantalum, and tungsten are required for the multi-100kW(e) space nuclear reactor power concepts that have been assessed in the SP-100 Program because of the extremely high temperatures involved. A review is presented of the technology efforts on the candidate refractory alloys in the areas of availability/fabricability, mechanical properties, irradiation effects, and compatibility. Of the niobium-base alloys, only Nb-1Zr has a data base that is sufficiently comprehensive for the high level of confidence required in the reference-alloy selection process for the reactor concept to be tested in the Ground Engineering System (GES) Phase of the SP-100 Program. Based on relatively short-term tests, the alloy PWC-11 (Nb-1Zr-0.1C) appears to have significantly greater creep strength than Nb-1Zr; however, concerns as to whether this precipitation-hardened alloy will remain thermally stable during seven years of full-power reactor operation need to be resolved. Additional information on the reference GES alloy will be needed for the detailed engineering design of a space power system and the fabrication of prototypical GES test components. Expedient development and demonstration of an adequate total manufacturing capability will be required if a high risk of significant schedule slippages and cost overruns is to be avoided. 4 refs., 1 fig., 3 tabs

  8. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken from a billet of an experimental alloy (alloy 1 and were subsequently hot-rolled and cold-rolled (height reduction, 72% and 70%, respectively. The other used samples, alloys 2 and 3, were taken from cylinders liners. The results from the Laue camera showed texture just in the axial direction of alloy 3. The pole figures also indicated the presence of a typical low intensity deformation texture, especially for alloy 3. The spray formed microstructure, which is very fine, hinders the Al-Si texture formation during mechanical work.

  9. Study of fatigue crack propagation in magnesium alloys

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.; Ostash, O.P.; Kudryashov, V.G.; Elkin, F.M.

    1981-01-01

    Fatigue crack propagation in standard (MA2-1, MA8) and super light (MA21, MA18) alloys has been investigated in the whole range of load amplitude changes-from threshold to critical; the materials have been compared by cyclic crack resistance, fractographic analysis has been made. It is shown that MA2-1 alloy crack resistance is slightly lower than the resistance of the other three alloys. MA8 and MA21 alloys having similar mechanical properties almost do not differ in cyclic crack resistance as well. MA18 alloy has the highest resistance to fatigue crack propagation in the whole range of Ksub(max) changes. The presented results on cyclic crack resistance of MA21 and MA18 alloys agree with the data on statistic fracture toughness. The fractures have been also investigated using a scanning electron microscope. Fracture microrelieves of MA8 and MA21 alloys are very similar. At low crack propagation rates (v - 7 m/cycle) it develops through grains, in MA2-1 alloy fracture intergrain fracture areas can be observed. In MA8 and MA21 alloy fractures groove covered areas can be seen alonside with areas of slipping plane laminatron; their specific weight increases with #betta# decrease. Lower crack propagation rates and higher values of threshold stress intensity factors for MA8 and MA21 alloys than for MA2-1 alloy are caused by the absence of intergrain fracture

  10. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  11. Fatigue crack propagation in aluminum-lithium alloys

    Science.gov (United States)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  12. The effect of remelting various combinations of new and used cobalt-chromium alloy on the mechanical properties and microstructure of the alloy

    Directory of Open Access Journals (Sweden)

    Sharad Gupta

    2012-01-01

    Conclusion: Repeated remelting of base metal alloy for dental casting without addition of new alloy can affect the mechanical properties of the alloy. Microstructure analysis shows deterioration upon remelting. However, the addition of 25% and 50% (by weight of new alloy to the remelted alloy can bring about improvement both in mechanical properties and in microstructure.

  13. First principles analysis of hydrogen chemisorption on Pd-Re alloyed overlayers and alloyed surfaces

    DEFF Research Database (Denmark)

    Pallassana, Venkataraman; Neurock, Matthew; Hansen, Lars Bruno

    2000-01-01

    Gradient corrected periodic density functional theory (DFT-GGA) slab calculations were used to examine the chemisorption of atomic hydrogen on various Pd-Re alloyed overlayers and uniformly alloyed surfaces. Adsorption was examined at 33% surface coverage, where atomic hydrogen preferred the thre...

  14. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  15. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  16. Enthalpies of a binary alloy during solidification

    Science.gov (United States)

    Poirier, D. R.; Nandapurkar, P.

    1988-01-01

    The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.

  17. Influence of the selected alloy additions on limiting the phase formation in Cu-Zn alloys

    Directory of Open Access Journals (Sweden)

    J. Kozana

    2010-01-01

    Full Text Available Influence of the selected alloy additions into copper and zinc alloys was investigated in order to find out the possibility of limiting the precipitation of unfavourable phase . The observation of microstructures and strength tests were performed. The results of metallographic and strength investigations indicate positive influence of small amounts of nickel, cobalt or tellurium. The precise determination of the influence of the selected alloy additions on limiting the gamma phase formation will be the subject of further examinations.

  18. The Influence of Alloy Composition on the Hot Tear Susceptibility of the Al-Zn-Mg-Cu Alloy System

    International Nuclear Information System (INIS)

    Kim, Jee-Hun; Jo, Jae-Sub; Sim, Woo-Jeong; Im, Hang-Joon

    2012-01-01

    Hot tearing was the most significant casting defect when the castability evaluation of the Al- Zn-Mg-Cu alloy system was conducted. It was related to the solidification range of the alloy. Therefore, the hot tear susceptibility of the AA7075 alloy, whose solidification range is the widest, was evaluated. The hot tear susceptibility was evaluated by using a mold for a hot tearing test designed to create the condition for the occurrence of hot tear in 8 steps. According to the tearing location and shape, a hot tear susceptibility index (HTS) score was measured. The solidification range of each alloy and hot tear susceptibility was compared and thereafter the microstructure of a near tear defect was observed. As a result, the HTS of the AA7075 alloy was found to be 67. Also, the HTS in relation to a change in Zn, Mg, Cu composition showed a difference of about 6-11% compared to the AA7075 alloy.

  19. Progress in development of iron base alloys

    International Nuclear Information System (INIS)

    Zackay, V.V.; Parker, E.R.

    1980-01-01

    The ways of development of new iron base high-strength alloys are considered. Perspectiveness of ferritic steel strengthening with intermetallides (TaFe 2 , for instance) is shown. Favourable combination of plasticity, strength and fracture toughness in nickel-free iron-manganese alloys (16-20%) is also pointed out. A strength level of alloyed maraging steels can be achieved by changes in chemical composition and by proper heat treatments of low- and medium-alloyed steels

  20. Properties of boride-added powder metallurgy magnesium alloys

    Science.gov (United States)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi

    2009-06-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB2) or aluminum diboride (AlB2), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB2, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg17Al12, formed in the alloy with AlB2, which was consistent with its higher hardness.

  1. Properties of boride-added powder metallurgy magnesium alloys

    International Nuclear Information System (INIS)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi

    2009-01-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB 2 ) or aluminum diboride (AlB 2 ), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB 2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB 2 , did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg 17 Al 12 , formed in the alloy with AlB 2 , which was consistent with its higher hardness.

  2. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  3. Density of Ni-Cr Alloy in the Mushy State

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The density of Ni-Cr alloy in the mushy state has been measured using the modified sessile drop method. The density of Ni-Cr alloy in the mushy state was found to decrease with increasing temperature and Cr concentration in alloy.The molar volume of Ni-Cr alloy in the mushy state therefore increases with increasing the Cr concentration in alloy.The ratio of the difference of density divided by the temperature difference between liquidus and solidus temperatures decreases with increasing Cr concentration. The density of the alloy increased with the precipitation of a solid phase in alloy during the solidification process. The temperature dependence of the density of alloy in the mushy state was not linear but biquadratic.

  4. Study of fatigue behaviour of 7475 aluminium alloy

    Indian Academy of Sciences (India)

    Unknown

    controlled toughness alloy developed for applications that require a combination of high strength, superior fracture toughness and resistance to fatigue crack propagation both in air and aggressive environment. The 7475 alu- minium alloy is basically a modified version of 7075 alloy. Properties in 7075 alloy are improved by ...

  5. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    Science.gov (United States)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  6. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  7. Gamma rays shielding parameters for white metal alloys

    Science.gov (United States)

    Kaur, Taranjot; Sharma, Jeewan; Singh, Tejbir

    2018-05-01

    In the present study, an attempt has been made to check the feasibility of white metal alloys as gamma rays shielding materials. Different combinations of cadmium, lead, tin and zinc were used to prepare quaternary alloys Pb60Sn20ZnxCd20-x (where x = 5, 10, 15) using melt quench technique. These alloys were also known as white metal alloys because of its shining appearance. The density of prepared alloys has been measured using Archimedes Principle. Gamma rays shielding parameters viz. mass attenuation coefficient (µm), effective atomic number (Zeff), electron density (Nel), Mean free path (mfp), Half value layer (HVL) and Tenth value layer (TVL) has been evaluated for these alloys in the wide energy range from 1 keV to 100 GeV. The WinXCom software has been used for obtaining mass attenuation coefficient values for the prepared alloys in the given energy range. The effective atomic number (Zeff) has been assigned to prepared alloys using atomic to electronic cross section ratio method. Further, the variation of various shielding parameters with photon energy has been investigated for the prepared white metal alloys.

  8. Aeronautical Cast Ti Alloy and Forming Technology Development

    OpenAIRE

    ZHANG Meijuan; NAN Hai; JU Zhongqiang; GAO Fuhui; QIE Xiwang; ZHU Langping

    2016-01-01

    The application and feature of Ti alloy and TiAl alloy for aviation at home and abroad were briefly introduced. According to the patent application status in Ti alloy field, the development of Ti alloy casting technology was analyzed in the recent thirty years, especially the transformation in aviation. Along with the development of aeronautional manufacturing technology and demand of high performance aircraft, Ti alloy casting is changing towards to be large, integral and complicated, and th...

  9. Nota técnica: Influencia de la densidad de plantación en el establecimiento de la morera Technical note: Influence of planting density on mulberry establishment

    Directory of Open Access Journals (Sweden)

    Yolai Noda

    2007-11-01

    Full Text Available Con el objetivo de determinar el efecto de la densidad de plantación en el crecimiento inicial de la morera, durante la etapa de establecimiento, se estudiaron tres marcos de plantación: 1 m x 0,80; 1 m x 0,40; y surcos triples separados a 0,5 m de camellón x 0,40 m de narigón y a 1 m entre surcos triples (12 500; 25 000 y 37 500 planta/ha, respectivamente. Para ello se utilizó un diseño totalmente aleatorizado. El período de evaluación fue de 10 meses. Se seleccionaron cinco plantas al azar en cada parcela y se midió la altura y el número de ramas, mensualmente. En el procesamiento de los datos se utilizó un análisis factorial, mediante la opción One-Way ANOVA correspondiente al paquete estadístico SPSS versión 10.0. En la comparación de las medias se usó la prueba de rangos múltiples de Duncan, para un nivel de significación a PWith the objective of determining the effect of planting density on the initial growth of mulberry, during the establishment stage, three planting frames were studied: 1 m x 0,80; 1 m x 0,40; and triple rows separated at 0,5 m between rows x 0,40 m between plants and at 1 m between triple rows (12 500; 25 000 and 37 500 plants/ha, respectively. For this a completely randomized design was used. The period of evaluation was 10 months. Five plants were randomly selected in each plot and the height and number of branches were measured monthly. In the data processing a factorial analysis was used, by means of the option One-Way ANOVA corresponding to the statistical pack SPSS version 10.0. In the comparison of means Duncan’s multiple range test was used, for a significance level at P<0,05. The results indicated statistical differences in each variant regarding plant height. With the density of 25 000 plants/ha the highest height was reached (90,8 cm; while for 12 500 and 37 500 plants/ha no statistical differences were found. Regarding the number of branches, the highest values were found when using the

  10. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu, E-mail: wangjianqiu@imr.ac.cn

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  11. Research activities of biomedical magnesium alloys in China

    Science.gov (United States)

    Zheng, Yufeng; Gu, Xuenan

    2011-04-01

    The potential application of Mg alloys as bioabsorable/biodegradable implants have attracted much recent attention in China. Advances in the design and biocompatibility evaluation of bio-Mg alloys in China are reviewed in this paper. Bio-Mg alloys have been developed by alloying with the trace elements existing in human body, such as Mg-Ca, Mg-Zn and Mg-Si based systems. Additionally, novel structured Mg alloys such as porous, composited, nanocrystalline and bulk metallic glass alloys were tried. To control the biocorrosion rate of bio-Mg implant to match the self-healing/regeneration rate of the surrounding tissue in vivo, surface modification layers were coated with physical and chemical methods.

  12. High strength cast aluminum alloy development

    Science.gov (United States)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  13. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  14. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  15. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    Orozco M, E.A.

    1976-01-01

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  16. Phonon broadening in high entropy alloys

    Science.gov (United States)

    Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.

    2017-09-01

    Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.

  17. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-01-01

    CoNi alloys including Co 30 Ni 70 , Co 50 Ni 50 and Co 70 Ni 30 were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ B /atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H 2 SO 4 and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H 2 SO 4 and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni x Co 100-x alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions

  18. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  19. Moessbauer effect study on mechanically alloyed amorphous Fe1-xTix alloys

    International Nuclear Information System (INIS)

    Chen Hong; Xu Zuxiong; Ma Ruzhang; Zhao Zhongtao; Ping Jueyun

    1994-01-01

    Amorphous Fe 1-x Ti x (x = 0.50, 0.60) powders were produced by mechanical alloying from pure elemental powders in a vibratory ball-mill. X-ray diffraction (XRD) and Moessbauer effect (ME) were used to study the progress of amorphization and the property of hydrogen absorption in Fe-Ti alloys. The amorphization process and the properties of the amorphous phase are discussed. (orig.)

  20. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  1. Oxide characterization and hydrogen behaviors of Zr-based alloys

    International Nuclear Information System (INIS)

    Kim, Y. S.; Kim, D. J.; Kwon, S. H.; Lee, H. S.; Oh, S. J.; Yim, B. J.; Son, S. B.; Yun, S. P.

    2006-03-01

    The work scope and contents of the research are as follows : basic properties of zirconium alloys, hydrogen pick-up mechanism of zirconium alloy, effects of hydride on the corrosion behaviors of zirconium alloys, estimation on stress of oxide layer in the zirconium alloy, microstructure and characteristic of oxide in pre-hydrided zirconium alloys

  2. Manufacturing of High Entropy Alloys

    Science.gov (United States)

    Jablonski, Paul D.; Licavoli, Joseph J.; Gao, Michael C.; Hawk, Jeffrey A.

    2015-07-01

    High entropy alloys (HEAs) have generated interest in recent years due to their unique positioning within the alloy world. By incorporating a number of elements in high proportion they have high configurational entropy, and thus they hold the promise of interesting and useful properties such as enhanced strength and phase stability. The present study investigates the microstructure of two single-phase face-centered cubic (FCC) HEAs, CoCrFeNi and CoCrFeNiMn, with special attention given to melting, homogenization and thermo-mechanical processing. Large-scale ingots were made by vacuum induction melting to avoid the extrinsic factors inherent in small-scale laboratory button samples. A computationally based homogenization heat treatment was applied to both alloys in order to eliminate segregation due to normal ingot solidification. The alloys fabricated well, with typical thermo-mechanical processing parameters being employed.

  3. Squeeze Casting Method Of AI-Si Alloy For Piston Material

    International Nuclear Information System (INIS)

    Wagiyo, H.; Dani, Muhammad; Sulistioso, G.S.; Pardede, Elman; Handayani, Ari; Teguh, Yulius S.P.P.

    2001-01-01

    The AI-Si alloy is an alloy used as piston material. This alloys could be as AI-Si hypereutectic alloy (Si content more than 12.5 % wt.), as AI-Si eutectic alloy (Si cuntent 12.5 % wt, and as AI-Si hypoeutectic alloy (Si content less than 12.5 % wt.). The synthesize of AI-Si alloy piston generally using the technique of gravity casting in a dies. This method is causing high porousity. By using the squeeze technique, amount ofporousity in AI-Si alloy is possibly reduced and the density of this alloy should be higher. The other factors such as alloying elements of AI-Si alloy (Mg. Cu, Zn) would increase the mechanical properties especially the hardness. The focuses of this research are the microstructure and the maximum hardness during the heat treatment of AI-Si alloy which was added by alloying elments. The result of hardness at test shows the maximum hardness at 94.7 kg/mm 2 obtained at aging temperature of 210 o C for hours with homogenous dendritic microstructure

  4. Decagonal quasicrystalline phase in as-cast and mechanically alloyed Al–Cu–Cr alloys

    International Nuclear Information System (INIS)

    Shevchukov, A.P.; Sviridova, T.A.; Kaloshkin, S.D.; Tcherdyntsev, V.V.; Gorshenkov, M.V.; Churyukanova, M.N.; Zhang, D.; Li, Z.

    2014-01-01

    Highlights: ► Microstructure of as-cast Al–Cu–Cr alloys was investigated. ► Composition of decagonal quasicrystalline phase was determined. ► Single-phase decagonal quasicrystalline powder was obtained. ► Phase composition changes during heating were controlled using DSC and X-ray diffraction. -- Abstract: Microstructure and phase composition of three Al-rich as-cast alloys of Al–Cu–Cr system were investigated by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The decagonal quasicrystalline phase is contained in all alloys under study and has grains with faceted shape, its composition lies in the range of 71–73 at.% Al, 11–12 at.% Cu and 15–18 at.% Cr. The heating in calorimeter of the mechanically alloyed Al 73 Cu 11 Cr 16 powder up to 600 °C leads to the formation of the pure decagonal phase. Total thermal effect in the temperature range 250–600 °C corresponding to the quasicrystalline phase formation is about 15 kJ/mol

  5. Annealing behavior of high permeability amorphous alloys

    International Nuclear Information System (INIS)

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co 71 4 Fe 4 6 Si 9 6 B 14 4 were investigated. Annealing this alloy below 400 0 C results in magnetic hardening; annealing above 400 0 C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation

  6. Investigation of americium-241 metal alloys for target applications

    International Nuclear Information System (INIS)

    Conner, W.V.; Rockwell International Corp., Golden, CO

    1982-01-01

    Several 241 Am metal alloys have been investigated for possible use in the Lawrence Livermore National Laboratory Radiochemical Diagnostic Tracer Program. Several properties were desired for an alloy to be useful for tracer program applications. A suitable alloy would have a fairly high density, be ductile, homogeneous and easy to prepare. Alloys investigated have included uranium-americium, aluminium-americium, and cerium-americium. Uranium-americium alloys with the desired properties proved to be difficult to prepare, and work with this alloy was discontinued. Aluminium-americium alloys were much easier to prepare, but the alloy consisted of an aluminium-americium intermetallic compound (AmAl 4 ) in an aluminum matrix. This alloy could be cast and formed into shapes, but the low density of aluminum, and other problems, made the alloy unsuitable for the intended application. Americium metal was found to have a high solid solubility in cerium and alloys prepared from these two elements exhibited all of the properties desired for the tracer program application. Cerium-americium alloys containing up to 34 wt% americium have been prepared using both co-melting and co-reduction techniques. The latter technique involves co-reduction of cerium tetrafluoride and americium tetrafluoride with calcium metal in a sealed reduction vessel. Casting techniques have been developed for preparing up to eight 2.2 cm (0.87 in) diameter disks in a single casting, and cerium-americium metal alloy disks containing from 10 to 25 wt% 241 Am have been prepared using these techniques. (orig.)

  7. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy

    International Nuclear Information System (INIS)

    Kannan, M Bobby; Orr, Lynnley

    2011-01-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  8. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, M Bobby; Orr, Lynnley, E-mail: bobby.mathan@jcu.edu.au [Discipline of Chemical Engineering, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia)

    2011-08-15

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  9. Characteristics and Influence to Fruit Distillates Quality of Rapid Induction of Ageing Character in the Presence of Mulberry Tree (Morus alba L. Wooden Chips

    Directory of Open Access Journals (Sweden)

    Elena MUDURA

    2016-11-01

    Full Text Available Research on rapid induction of ageing character to double distilled traditional fruit brandies, from Transylvania region was conducted. Mulberry tree chips were used as an alternative to traditional ageing in wooden barrels. The aim of this study was to highlight the factors influencing the chemical composition of fruit brandies, both depending on the type of the wood used and the transformations occurred during the heat treatment. Fruit distillates were produced after the traditional method – double distillation in copper alambic. The evaluation of the brandies consisted in analyzing the chemical parameters and the phenolic compounds after two months of ageing with wood chips. Results were compared with a control sample (unaged distillate, and found that during the ageing process volatile and non-volatile compounds were extracted significantly. The heat treatment influenced the chemical composition of the wooden chips. The chemical composition of finished products varied due to the composition of the wooden chips used and to the heat treatment applied. Evaluation of volatile and non-volatile compounds formed was carried out by comparison with the samples of the unaged distillate. It was demonstrated the improvement of chemical characteristics and polyphenolic compounds content, by rapidly inducing of the ageing character.

  10. Properties of boride-added powder metallurgy magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi [Department of Mechanical Engineering, Tokyo City University 1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557 (Japan)], E-mail: ktakagi@tcu.ac.jp

    2009-06-01

    Magnesium alloys with metallic borides, magnesium diboride (MgB{sub 2}) or aluminum diboride (AlB{sub 2}), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB{sub 2} exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB{sub 2}, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg{sub 17}Al{sub 12}, formed in the alloy with AlB{sub 2}, which was consistent with its higher hardness.

  11. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    Science.gov (United States)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  12. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion Material Applications.

    Science.gov (United States)

    Waseem, Owais Ahmed; Ryu, Ho Jin

    2017-05-16

    The W x TaTiVCr high-entropy alloy with 32at.% of tungsten (W) and its derivative alloys with 42 to 90at.% of W with in-situ TiC were prepared via the mixing of elemental W, Ta, Ti, V and Cr powders followed by spark plasma sintering for the development of reduced-activation alloys for fusion plasma-facing materials. Characterization of the sintered samples revealed a BCC lattice and a multi-phase structure. The selected-area diffraction patterns confirmed the formation of TiC in the high-entropy alloy and its derivative alloys. It revealed the development of C15 (cubic) Laves phases as well in alloys with 71 to 90at.% W. A mechanical examination of the samples revealed a more than twofold improvement in the hardness and strength due to solid-solution strengthening and dispersion strengthening. This study explored the potential of powder metallurgy processing for the fabrication of a high-entropy alloy and other derived compositions with enhanced hardness and strength.

  13. Additive Manufacturing of Metastable Beta Titanium Alloys

    Science.gov (United States)

    Yannetta, Christopher J.

    Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.

  14. Inhibition of Carrageenan-Induced Acute Inflammation in Mice by Oral Administration of Anthocyanin Mixture from Wild Mulberry and Cyanidin-3-Glucoside

    Directory of Open Access Journals (Sweden)

    Neuza Mariko Aymoto Hassimotto

    2013-01-01

    Full Text Available Anthocyanins are flavonoids which demonstrated biological activities in in vivo and in vitro models. Here in the anti-inflammatory properties of an anthocyanin-enriched fraction (AF extracted from wild mulberry and the cyanidin-3-glucoside (C3G, the most abundant anthocyanin in diet, were studied in two acute inflammation experimental models, in the peritonitis and in the paw oedema assays, both of which were induced by carrageenan (cg in mice. In each trial, AF and C3G (4 mg/100 g/animal were orally administered in two distinct protocols: 30 min before and 1 h after cg stimulus. The administration of both AF and C3G suppresses the paw oedema in both administration times (P<0.05. In the peritonitis, AF and C3G reduced the polymorphonuclear leukocytes (PMN influx in the peritoneal exudates when administered 1 h after cg injection. AF was more efficient reducing the PMN when administered 30 min before cg. Both AF and C3G were found to suppress mRNA as well as protein levels of COX-2 upregulated by cg in both protocols, but the inhibitory effect on PGE2 production in the peritoneal exudates was observed when administered 30 min before cg (P<0.05. Our findings suggest that AF and C3G minimize acute inflammation and they present positive contributions as dietary supplements.

  15. Characterization of zinc–nickel alloy electrodeposits obtained from ...

    Indian Academy of Sciences (India)

    Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. Zinc-nickel alloy may also serve as at less toxic substitute for cadmium. In this paper the physico-chemical ...

  16. Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys

    Science.gov (United States)

    Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji

    Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.

  17. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-01-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary

  18. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  19. Studies on the growth of oxide films on alloy 800 and alloy 600 in lithiated water at high temperature

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Bordon, R.

    2007-01-01

    In this work, the oxide films grown on Alloy 800 and Alloy 600 in lithiated (pH 25 C d egrees = 10.2-10.4) water at high temperature, with and without hydrogen overpressure (HO) and an initial oxygen dissolved in the water have been studied. The oxide films were grown at different temperatures (220-350 C degrees) and exposure times with HO, and at 315 C degrees without HO in static autoclaves. Some results are also reported for oxide layers grown on Alloy 800 coupons exposed in a high temperature loop during extended exposure times. The average oxide thickness was determined using descaling procedures. The morphology and composition of the oxide films were analyzed with scanning electron microscopy (SEM), EDS and X-ray diffraction (XRD). For both Alloys, at 350 C degrees with HO, the oxide layers were clearly composed of a double layer: an inner one of very small crystallites and an outer layer formed by bigger crystals scattered over the inner one. The analysis by X-ray diffraction indicated the presence of spinel structures like magnetite (Fe 3 O 4 ) and ferrites and/or nickel chromites. In this case the average oxide thickness was around 0.12 to 0.15 μm for both Alloys. Similar values were found at lower temperatures. The morphology of the oxide layer was similar at lower temperatures for Alloy 800, but a different morphology consisting of platelets or needles was found for Alloy 600. The oxide morphology found at 315 C degrees, without HO and with initial dissolved oxygen in the water, was also very different between both Alloys. The oxide film grown on Alloy 600 with an initial dissolved oxygen in the water, showed clusters of platelets forming structures like flowers that were dispersed on an rather homogeneous layer consisting of smaller platelets or needles. The average oxide film grown in this case was around 0.25 μm for Alloy 600 and 0.18 μm for Alloy 800. (author) [es

  20. Study on improved tribological properties by alloying copper to CP-Ti and Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Ma, Zheng [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Song, Jian [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Copper alloying to titanium and its alloys is believed to show an antibacterial performance. However, the tribological properties of Cu alloyed titanium alloys were seldom studied. Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated in the present study in order to further study the friction and wear properties of titanium alloys with Cu additive. The microstructure, composition and hardness were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and hardness tester. The tribological behaviors were tested with ZrO{sub 2} counterface in 25% bovine serum using a ball-on-disc tribo-tester. The results revealed that precipitations of Ti{sub 2}Cu intermetallic compounds appeared in both Ti–5Cu and Ti–6Al–4V–5Cu alloys. The tribological results showed an improvement in friction and wear resistance for both Ti–5Cu and Ti–6Al–4V–5Cu alloys due to the precipitation of Ti{sub 2}Cu. The results also indicated that both CP-Ti and Ti–5Cu behaved better wear resistance than Ti–6Al–4V and Ti–6Al–4V–5Cu due to different wear mechanisms when articulated with hard zirconia. Both CP-Ti and Ti–5Cu revealed dominant adhesive wear with secondary abrasive wear mechanism while both Ti–6Al–4V and Ti–6Al–4V–5Cu showed severe abrasive wear and cracks with secondary adhesive wear mechanism due to different surface hardness integrated by their microstructures and material types. - Highlights: • Ti–5Cu and Ti–6Al–4V–5Cu alloys were fabricated with Cu additive. • Precipitations of Ti{sub 2}Cu intermetallic compounds appeared after alloying Cu. • The precipitation of Ti{sub 2}Cu improved both friction and wear resistance. • Plowing was the dominant material removal force with severe plowing phenomenon. • Different dominant and secondary wear mechanisms appeared with different hardness.