WorldWideScience

Sample records for mud-rich deep-sea fan

  1. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)

    NARCIS (Netherlands)

    Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.

    2013-01-01

    The Amon mud volcano (MV), located at 1250m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the

  2. Velocity and Attenuation Profiles in the Monterey Deep-Sea Fan

    Science.gov (United States)

    1987-12-01

    a. 11 o n i n and depth. Sol ’^ a 11 e i"i u a 11 o >) a i::> 1 n Ci sediment for each of the f i...i. n c t ion o f f r e q u e n c; y...estimate of sea floor depth was obtained from an oceano - graphic map of the Monterey fan (’Oceanographic Data of the Monterey Deep Sea Fan’, 1st

  3. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan - A Rock-Eval survey

    Science.gov (United States)

    Baudin, François; Stetten, Elsa; Schnyder, Johann; Charlier, Karine; Martinez, Philippe; Dennielou, Bernard; Droz, Laurence

    2017-08-01

    The Congo River, the second largest river in the world, is a major source of organic matter for the deep Atlantic Ocean because of the connection of its estuary to the deep offshore area by a submarine canyon which feeds a vast deep-sea fan. The lobe zone of this deep-sea fan is the final receptacle of the sedimentary inputs presently channelled by the canyon and covers an area of 2500 km². The quantity and the source of organic matter preserved in recent turbiditic sediments from the distal lobe of the Congo deep-sea fan were assessed using Rock-Eval pyrolysis analyses. Six sites, located at approximately 5000 m water-depth, were investigated. The mud-rich sediments of the distal lobe contain high amounts of organic matter ( 3.5 to 4% Corg), the origin of which is a mixture of terrestrial higher-plant debris, soil organic matter and deeply oxidized phytoplanktonic material. Although the respective contribution of terrestrial and marine sources of organic matter cannot be precisely quantified using Rock-Eval analyses, the terrestrial fraction is dominant according to similar hydrogen and oxygen indices of both suspended and bedload sediments from the Congo River and that deposited in the lobe complex. The Rock-Eval signature supports the 70% to 80% of the terrestrial fraction previously estimated using C/N and δ13Corg data. In the background sediment, the organic matter distribution is homogeneous at different scales, from a single turbiditic event to the entire lobe, and changes in accumulation rates only have a limited effect on the quantity and quality of the preserved organic matter. Peculiar areas with chemosynthetic bivalves and/or bacterial mats, explored using ROV Victor 6000, show a Rock-Eval signature similar to background sediment. This high organic carbon content associated to high sedimentation rates (> 2 to 20 mm.yr-1) in the Congo distal lobe complex implies a high burial rate for organic carbon. Consequently, the Congo deep-sea fan represents an

  4. Improved recovery from Gulf of Mexico reservoirs. Volume I (of 4): Task 1, conduct research on mud-rich submarine fans. Final report, February 14, 1995--October 13, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrell, W.C.; Bassiouni, Z.A.; Bourgoyne, A.T.

    1997-01-13

    The objective for this portion of the research involved conducting field studies and laboratory investigations to develop and refine models for mud-rich submarine fan architectures used by seismic analysis and reservoir engineers. These research aspects have been presented in two papers as follows: (1) Bouma, A.H., {open_quotes}Review of Fine-Grained Submarine Fans and Turbidite Systems{close_quotes}; (2) Kirkova, J.T. and Lorenzo, J.M., {open_quotes}Synthetic Seismic Modeling of Measured Submarine Fans Sections, Case Study of the Tanqua Complex, Karoo, South Africa{close_quotes} The {open_quotes}Review of Fine-Grained Submarine Fans and Turbidite Systems{close_quotes} by Arnold Bouma discusses research targeted toward stimulating an increase in oil and gas recovery by developing new and improved geological understanding. The {open_quotes}Synthetic Seismic Modeling of Measured Submarine Fan Sections, Case Study of the Tanqua Complex, Karoo, South Africa{close_quotes} by J.T. Kirkova and J.M. Lorenso discusses the limitations of verticle resolution and how this affects the interpretation and characterization of submarine fan complexes.

  5. Palynofacies reveal fresh terrestrial organic matter inputs in the terminal lobes of the Congo deep-sea fan

    Science.gov (United States)

    Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe

    2017-08-01

    The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.

  6. Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep-sea fan

    Science.gov (United States)

    Baudin, François; Martinez, Philippe; Dennielou, Bernard; Charlier, Karine; Marsset, Tania; Droz, Laurence; Rabouille, Christophe

    2017-08-01

    Geochemical data (total organic carbon-TOC content, δ13Corg, C:N, Rock-Eval analyses) were obtained on 150 core tops from the Angola basin, with a special focus on the Congo deep-sea fan. Combined with the previously published data, the resulting dataset (322 stations) shows a good spatial and bathymetric representativeness. TOC content and δ13Corg maps of the Angola basin were generated using this enhanced dataset. The main difference in our map with previously published ones is the high terrestrial organic matter content observed downslope along the active turbidite channel of the Congo deep-sea fan till the distal lobe complex near 5000 m of water-depth. Interpretation of downslope trends in TOC content and organic matter composition indicates that lateral particle transport by turbidity currents is the primary mechanism controlling supply and burial of organic matter in the bathypelagic depths.

  7. Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan

    Directory of Open Access Journals (Sweden)

    J. Felden

    2013-05-01

    Full Text Available The Amon mud volcano (MV, located at 1250 m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulfate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition, and microbial activities over 3 yr, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulfide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. The low microbial activity in the hydrocarbon-vented areas of Amon MV is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer MV area is limited by hydrocarbon transport.

  8. Ikaite pseudomorphs in the Zaire deep-sea fan: An intermediate between calcite and porous calcite

    Science.gov (United States)

    Jansen, J. H. F.; Woensdregt, C. F.; Kooistra, M. J.; van der Gaast, S. J.

    1987-03-01

    Translucent brown aggregates of calcium-carbonate crystals have been found in cores from the Zaire deep-sea fan (west equatorial Africa). The aggregates are well preserved but very friable. Upon storage they become yellowish white and cloudy and release water. Chemical, mineralogical (XRD), petrographical, crystal-morphological, and stable-isotope data demonstrate that the crystals have passed through three phases: (1) an authigenic carbonate phase, probably calcium carbonate, which is represented by the external habit of the present crystals; (2) a translucent brown ikaite phase (CaCO3·6H2O), unstable at temperatures above 5 °C; and (3) a phase consisting of calcite microcrystals that are poorly cemented and form a porous mass within the crystal form of the morphologically unchanged first phase. The transformation from the first phase into ikaite was probably a kinetic replacement. The transformation from ikaite into the third phase occurred because of storage at room temperature. The presence of ikaite is indicative of a low-temperature, anaerobic, organic-carbon-rich marine environment. Ikaite is probably the precursor of a great number of porous calcite pseudomorphs, and possibly also of many marine authigenic microcrystalline carbonate nodules.

  9. Aliphatic hydrocarbons and triterpenes of the Congo deep-sea fan

    Science.gov (United States)

    Méjanelle, Laurence; Rivière, Béatrice; Pinturier, Laurence; Khripounoff, Alexis; Baudin, François; Dachs, Jordi

    2017-08-01

    Hydrocarbons were analyzed in sediments from the Congo River deep-sea fan, from the Congo River, and in sinking particles collected by sediment traps 40 m above the sediment. Studied sites encompassed three lobes of decreasing age of formation along the canyon: sites A, F and C and a another lobe system, disconnected from the active channel since 4 ka, Site E. Terrestrial long-chain odd n-alkanes were dominant in all sediments of the lobe system. Unsaturated terpenoids sourced by higher plants, such as gammacerene, lupene, ursene and oleanene, were also detected. At site C, characterized by high accumulation rates (10-20 cm yr-1), the organic matter spends less time in the oxic layer than at other sites and high phytadiene concentrations 10-17 μg gOC-1) evidenced recent terrestrial and phytoplanktonic remains reworked in anaerobic conditions. In these sediments, organic carbon-normalized concentrations of terrestrial alkanes and terpenoids were several fold higher than in the lobe sediments with lower accumulation rates (sites A and F), arguing for a more rapid degradation of terrestrial hydrocarbons than bulk organic carbon in the first steps of pre-diagenesis. Ample variations in the contributions of biomarkers from higher plants, ferns, bacteria and angiosperms, indicate an heterogeneous contribution of the soil and vegetation detritus delivered to the Congo lobe sediments. Lower concentrations in terrestrial hydrocarbons at site E, 45 km away from the active canyon, indicated that river particles are still admixed to the dominant marine organic matter. Diploptene and hop-7(21)-ene have a dual origin, from terrestrial and marine microorganisms. Scatter in their relationship to gammacerene argues for a contribution of marine microorganisms, in addition to soils-sourced microorganisms. The close distribution patterns of diploptene, hop-21-ene, hop-7(21)ene and neohop-13(18)-ene is in line with the hypothesis of sequential clay-catalyzed isomerisation of bacterial

  10. Relative Abundance and Diversity of Bacterial Methanotrophs at the Oxic?Anoxic Interface of the Congo Deep-Sea Fan

    OpenAIRE

    Bessette, Sandrine; Moalic, Yann; Gautey, S?bastien; Lesongeur, Fran?oise; Godfroy, Anne; Toffin, Laurent

    2017-01-01

    Sitting at ∼5,000 m water depth on the Congo-Angola margin and ∼760 km offshore of the West African coast, the recent lobe complex of the Congo deep-sea fan receives large amounts of fluvial sediments (3–5% organic carbon). This organic-rich sedimentation area harbors habitats with chemosynthetic communities similar to those of cold seeps. In this study, we investigated relative abundance, diversity and distribution of aerobic methane-oxidizing bacteria (MOB) communities at the oxic–anoxic in...

  11. Fauna and habitat types driven by turbidity currents in the lobe complex of the Congo deep-sea fan

    Science.gov (United States)

    Sen, Arunima; Dennielou, Bernard; Tourolle, Julie; Arnaubec, Aurélien; Rabouille, Christophe; Olu, Karine

    2017-08-01

    /yr) and frequent turbidity currents. Other biological adaptations to the local conditions likely determine the presence and survival of animals in the system: large agglutinated forams are known to be adept at quickly colonizing disturbed sediment and capitalizing on abundant but irregular food sources, and vesicomyid clams have a mobile lifestyle that enables them to maintain their population in the ever changing landscape of sulfide-rich sediment outcrops. Turbiditic systems appear to be intermediate between other energy rich habitats sustaining chemosynthesis in the deep sea, being locally less stable in terms of energy supply than cold seeps, limiting the number of cold-seep specialists able to colonize, but constituting a longer lived habitat than food falls. Turbidite fans therefore represent distinct deep sea habitats that contribute to sustaining populations of both chemosynthesis-based and opportunistic taxa in the deep-sea.

  12. High- and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan

    NARCIS (Netherlands)

    Blanchet, C.; Tjallingii, R.; Frank, M.; Lorenzen, J.; Reitz, A.; Brown, K.; Feseker, T.; Brückmann, W.

    2013-01-01

    Sediments deposited on deep-sea fans are an excellent geological archive to reconstruct past changes in fluvial discharge. Here we present a reconstruction of changes in the regime of the Nile River during the Holocene obtained using bulk elemental composition, grain-size analyses and radiogenic

  13. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin

    NARCIS (Netherlands)

    Figueiredo, J.; Hoorn, C.; van der Ven, P.; Soares, E.

    2009-01-01

    New biostratigraphic, isotopic, and well log data from exploration wells on the outer continental shelf and uppermost Amazon deep-sea fan, Brazil, reveal that the Amazon River was initiated as a transcontinental river between 11.8 and 11.3 Ma ago (middle to late Miocene), and reached its present

  14. Energy transfer in the Congo deep-sea fan: From terrestrially-derived organic matter to chemosynthetic food webs

    Science.gov (United States)

    Pruski, A. M.; Decker, C.; Stetten, E.; Vétion, G.; Martinez, P.; Charlier, K.; Senyarich, C.; Olu, K.

    2017-08-01

    Large amounts of recent terrestrial organic matter (OM) from the African continent are delivered to the abyssal plain by turbidity currents and accumulate in the Congo deep-sea fan. In the recent lobe complex, large clusters of vesicomyid bivalves are found all along the active channel in areas of reduced sediment. These soft-sediment communities resemble those fuelled by chemoautotrophy in cold-seep settings. The aim of this study was to elucidate feeding strategies in these macrofaunal assemblages as part of a greater effort to understand the link between the inputs of terrestrially-derived OM and the chemosynthetic habitats. The biochemical composition of the sedimentary OM was first analysed in order to evaluate how nutritious the available particulate OM is for the benthic macrofauna. The terrestrial OM is already degraded when it reaches the final depositional area. However, high biopolymeric carbon contents (proteins, carbohydrates and lipids) are found in the channel of the recent lobe complex. In addition, about one to two thirds of the nitrogen can be assigned to peptide-like material. Even if this soil-derived OM is poorly digestible, turbiditic deposits contain such high amounts of organic carbon that there is enough biopolymeric carbon and proteacinous nitrogen to support dense benthic communities that contrast with the usual depauperate abyssal plains. Stable carbon and nitrogen isotopes and fatty acid biomarkers were then used to shed light on the feeding strategies allowing the energy transfer from the terrestrial OM brought by the turbidity currents to the abyssal food web. In the non-reduced sediment, surface detritivorous holothurians and suspension-feeding poriferans rely on detritic OM, thereby depending directly on the turbiditic deposits. The sulphur-oxidising symbiont bearing vesicomyids closely depend on the reprocessing of OM with methane and sulphide as final products. Their carbon and nitrogen isotopic signatures vary greatly among sites

  15. Relative Abundance and Diversity of Bacterial Methanotrophs at the Oxic–Anoxic Interface of the Congo Deep-Sea Fan

    Directory of Open Access Journals (Sweden)

    Laurent Toffin

    2017-04-01

    Full Text Available Sitting at ∼5,000 m water depth on the Congo-Angola margin and ∼760 km offshore of the West African coast, the recent lobe complex of the Congo deep-sea fan receives large amounts of fluvial sediments (3–5% organic carbon. This organic-rich sedimentation area harbors habitats with chemosynthetic communities similar to those of cold seeps. In this study, we investigated relative abundance, diversity and distribution of aerobic methane-oxidizing bacteria (MOB communities at the oxic–anoxic interface of sedimentary habitats by using fluorescence in situ hybridization and comparative sequence analysis of particulate mono-oxygenase (pmoA genes. Our findings revealed that sedimentary habitats of the recent lobe complex hosted type I and type II MOB cells and comparisons of pmoA community compositions showed variations among the different organic-rich habitats. Furthermore, the pmoA lineages were taxonomically more diverse compared to methane seep environments and were related to those found at cold seeps. Surprisingly, MOB phylogenetic lineages typical of terrestrial environments were observed at such water depth. In contrast, MOB cells or pmoA sequences were not detected at the previous lobe complex that is disconnected from the Congo River inputs.

  16. Allogenic and Autogenic Signals in the Detrital Zircon U-Pb Record of the Deep-Sea Bengal Fan

    Science.gov (United States)

    Blum, M. D.; Rogers, K. G.; Gleason, J. D.; Najman, Y.

    2017-12-01

    The Himalayan-sourced Ganges-Brahmaputra river system and the deep-sea Bengal Fan represent Earth's largest sediment-dispersal system. This presentation summarizes a new detrital zircon U-Pb (DZ) provenance record from the Bengal Fan from cores collected during IODP Expedition 354, with coring sites located 1350 km downdip from the shelf margin. Each of our 15 samples were collected from medium- to fine-grained turbidite sand and, based on shipboard biostratigraphic analyses, our samples are late Miocene to late Pleistocene in age. Each sample was analyzed by LA-ICPMS at the Arizona Laserchron facility, with an average of n=270 concordant U-Pb ages per sample. Our goals are to use these data to evaluate the influence of allogenic controls vs. autogenic processes on signal propagation from source-to-sink. At the first order, large-scale sediment transfer to the Bengal Fan clearly records the strong tectonic and climatic forcing associated with the Himalayas and Ganges-Brahmaputra system: after up to 2500 km of river transport, and 1350 km of transport in turbidity currents, the DZ record faithfully represents Himalayan source terrains. The sand-rich turbidite part of the record is nevertheless biased towards glacial periods when rivers extended across the shelf in response to climate-forced sea-level fall, and discharged directly to slope canyons. However, only part of the Bengal Fan DZ record represents either the Ganges or the Brahmaputra, with most samples representing varying degrees of mixing of sediments from the two systems: this mixing, or the lack thereof, represents the signal of autogenic avulsions on the delta plain that result in the two river systems delivering sediment separately to the shelf margin, or together as they do today. Within the allogenic framework established by tectonic processes, the climatic system, and global climate-forced sea-level change, the DZ U-Pb record of sediment mixing or the lack thereof provides a fingerprint of autogenic

  17. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan

    Science.gov (United States)

    Olu, K.; Decker, C.; Pastor, L.; Caprais, J.-C.; Khripounoff, A.; Morineaux, M.; Ain Baziz, M.; Menot, L.; Rabouille, C.

    2017-08-01

    Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densities of macrofauna for this depth, enhanced by a factor 7-8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical

  18. Evidence and age estimation of mass wasting at the distal lobe of the Congo deep-sea fan

    Science.gov (United States)

    Croguennec, Claire; Ruffine, Livio; Dennielou, Bernard; Baudin, François; Caprais, Jean-Claude; Guyader, Vivien; Bayon, Germain; Brandily, Christophe; Le Bruchec, Julie; Bollinger, Claire; Germain, Yoan; Droz, Laurence; Babonneau, Nathalie; Rabouille, Christophe

    2017-08-01

    On continental margins, sulfate reduction occurs within the sedimentary column. It is coupled with the degradation of organic matter and the anaerobic oxidation of methane. These processes may be significantly disturbed by sedimentary events, leading to transient state profiles for the involved chemical species. Yet, little is known about the impact of turbidity currents and mass wasting on the migration of chemical species and the redox reactions in which they are involved. Due to its connection to the River, the Congo deep-sea fan continuously receives huge amount of organic matter-rich sediments primarily transported by turbidity currents, which impact on the development of the associated ecosystems (Rabouille et al., 2017). Thus, it is well suited to better understand causal relationships between sedimentary events and fluid flow path, with consequences on the zonation of early diagenesis sequences. Here, we combined sedimentological observations with geochemical analyses of pore-water and sediment samples to explore how sedimentary instabilities affected the migration of methane and the distribution of organic matter within the sedimentary column. The results unveiled mass wasting processes affecting recent turbiditic and pelagic deposits, and are interpreted as being slides/ slumps and debrites. Two slides were responsible for the exhumation of an organic matter-rich sedimentary block of more than 5 m thick and the movement of a methane-rich sedimentary block, while turbidity currents enable the intercalation of sandy intervals within a pelagic clay layer. The youngest slide promoted the development of two Sulfate Methane Transition Zones (SMTZ), and may have possibly triggered a lateral migration of methane. Numerical simulation of the sulfate profile indicates that the youngest sedimentary event has occurred around a century ago. Our study emphasizes that turbidity currents and sedimentary instabilities can significantly affect the transport paths and the

  19. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part II - Iron-sulfur coupling

    Science.gov (United States)

    Taillefert, Martial; Beckler, Jordon S.; Cathalot, Cécile; Michalopoulos, Panagiotis; Corvaisier, Rudolph; Kiriazis, Nicole; Caprais, Jean-Claude; Pastor, Lucie; Rabouille, Christophe

    2017-08-01

    Deep-sea fans are well known depot centers for organic carbon that should promote sulfate reduction. At the same time, the high rates of deposition of unconsolidated metal oxides from terrigenous origin may also promote metal-reducing microbial activity. To investigate the eventual coupling between the iron and sulfur cycles in these environments, shallow sediment cores (Congo River deep-sea fan ( 5000 m) were profiled using a combination of geochemical methods. Interestingly, metal reduction dominated suboxic carbon remineralization processes in most of these sediments, while dissolved sulfide was absent. In some 'hotspot' patches, however, sulfate reduction produced large sulfide concentrations which supported chemosynthetic-based benthic megafauna. These environments were characterized by sharp geochemical boundaries compared to the iron-rich background environment, suggesting that FeS precipitation efficiently titrated iron and sulfide from the pore waters. A companion study demonstrated that methanogenesis was active in the deep sediment layers of these patchy ecosystems, suggesting that sulfate reduction was promoted by alternative anaerobic processes. These highly reduced habitats could be fueled by discrete, excess inputs of highly labile natural organic matter from Congo River turbidites or by exhumation of buried sulfide during channel flank erosion and slumping. Sulfidic conditions may be maintained by the mineralization of decomposition products from local benthic macrofauna or bacterial symbionts or by the production of more crystalline Fe(III) oxide phases that are less thermodynamically favorable than sulfate reduction in these bioturbated sediments. Overall, the iron and sulfur biogeochemical cycling in this environment is unique and much more similar to a coastal ecosystem than a deep-sea environment.

  20. Trace Fossils as Indicators of Depositional Sequence Boundaries in Lower Carboniferous Deep-Sea Fan Environment Moravice Formation, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Lehotský, T.; Bábek, O.; Mikuláš, Radek; Zapletal, J.

    2002-01-01

    Roč. 14, - (2002), s. 59-60 ISSN 1210-9606. [Áelazno 2002. Meeting of the Czech Tectonic Studies Group /7./. Áelazno, 09.05.2002-12.05.2002] R&D Projects: GA ČR GA205/00/0118 Keywords : trace fossils * Carboniferous * Deep- Sea Environment Subject RIV: DB - Geology ; Mineralogy http://geolines.gli.cas.cz/fileadmin/volumes/volume14/G14-059.pdf

  1. The Congolobe project, a multidisciplinary study of Congo deep-sea fan lobe complex: Overview of methods, strategies, observations and sampling

    Science.gov (United States)

    Rabouille, C.; Olu, K.; Baudin, F.; Khripounoff, A.; Dennielou, B.; Arnaud-Haond, S.; Babonneau, N.; Bayle, C.; Beckler, J.; Bessette, S.; Bombled, B.; Bourgeois, S.; Brandily, C.; Caprais, J. C.; Cathalot, C.; Charlier, K.; Corvaisier, R.; Croguennec, C.; Cruaud, P.; Decker, C.; Droz, L.; Gayet, N.; Godfroy, A.; Hourdez, S.; Le Bruchec, J.; Saout, J.; Le Saout, M.; Lesongeur, F.; Martinez, P.; Mejanelle, L.; Michalopoulos, P.; Mouchel, O.; Noel, P.; Pastor, L.; Picot, M.; Pignet, P.; Pozzato, L.; Pruski, A. M.; Rabiller, M.; Raimonet, M.; Ragueneau, O.; Reyss, J. L.; Rodier, P.; Ruesch, B.; Ruffine, L.; Savignac, F.; Senyarich, C.; Schnyder, J.; Sen, A.; Stetten, E.; Sun, Ming Yi; Taillefert, M.; Teixeira, S.; Tisnerat-Laborde, N.; Toffin, L.; Tourolle, J.; Toussaint, F.; Vétion, G.; Jouanneau, J. M.; Bez, M.; Congolobe Group:

    2017-08-01

    The presently active region of the Congo deep-sea fan (around 330,000 km2), called the terminal lobes or lobe complex, covers an area of 2500 km2 at 4700-5100 m water depth and 750-800 km offshore. It is a unique sedimentary area in the world ocean fed by a submarine canyon and a channel-levee system which presently deliver large amounts of organic carbon originating from the Congo River by turbidity currents. This particularity is due to the deep incision of the shelf by the Congo canyon, up to 30 km into the estuary, which funnels the Congo River sediments into the deep-sea. The connection between the river and the canyon is unique for major world rivers. In 2011, two cruises (WACS leg 2 and Congolobe) were conducted to simultaneously investigate the geology, organic and inorganic geochemistry, and micro- and macro-biology of the terminal lobes of the Congo deep-sea fan. Using this multidisciplinary approach, the morpho-sedimentary features of the lobes were characterized along with the origin and reactivity of organic matter, the recycling and burial of biogenic compounds, the diversity and function of bacterial and archaeal communities within the sediment, and the biodiversity and functioning of the faunal assemblages on the seafloor. Six different sites were selected for this study: Four distributed along the active channel from the lobe complex entrance to the outer rim of the sediment deposition zone, and two positioned cross-axis and at increasing distance from the active channel, thus providing a gradient in turbidite particle delivery and sediment age. This paper aims to provide the general context of this multidisciplinary study. It describes the general features of the site and the overall sampling strategy and provides the initial habitat observations to guide the other in-depth investigations presented in this special issue. Detailed bathymetry of each sampling site using 0.1-1 m resolution multibeam obtained with a remotely operated vehicle (ROV

  2. Distributary channel meandering and bifurcation patterns on the Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA)

    Science.gov (United States)

    Damuth, John E.; Kolla, Venkatarathnam; Flood, Roger D.; Kowsmann, Renato O.; Monteiro, Marcelo C.; Gorini, Marcus A.; Palma, Jorge J. C.; Belderson, Robert H.

    1983-02-01

    We mapped the distributary channel system of the Amazon deep-sea fan using the GLORIA long-range side-scan sonar. Individual channels were continuously traced for distances of up to 150 km. Channel bifurcation, although observed in only a few places, results in many cases from breaching of channel levees on the outsides of meander loops. Whether both channels remain active after branching or the original channel is abandoned by avulsion generally cannot be determined. The most striking channel characteristic is high sinuosity that results in extensive, intricate, often recurving meanders. Cutoffs and abandoned meander loops (oxbows) are observed in a few places. These meandering channels are comparable in size and appearance to those of mature fluvial systems on land, such as on the lower Mississippi River. The formation, maintenance, and modification of such extensive, well-developed meander systems would seem to require large volumes of continuous turbidity flow through the channels for relatively long time periods. This may challenge the traditional concept that channel formation and modification are accomplished by intermittent or sporadic turbidity-current events. *Present address: Superior Oil Company, 12401 Westheimer, Houston, Texas 77077

  3. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part III - Sulfate- and methane- based microbial processes

    Science.gov (United States)

    Pastor, L.; Toffin, L.; Decker, C.; Olu, K.; Cathalot, C.; Lesongeur, F.; Caprais, J.-C.; Bessette, S.; Brandily, C.; Taillefert, M.; Rabouille, C.

    2017-08-01

    Geochemical profiles (SO42-, H2S, CH4, δ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats. Sulfide uptake rates by vesicomyids measured in sulfide-rich sea water (90±18 mmol S m-2 d-1) were similar to sulfide production rates obtained by modelling the sulfate profile with different bioirrigation constants, highlighting the major control of vesicomyids on sulfur cycle in their habitats.

  4. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C; Damare, S.R.

    significant in terms of carbon sequestration (5, 8). In light of this, the diversity, abundance, and role of fungi in deep-sea sediments may form an important link in the global C biogeochemistry. This review focuses on issues related to collection...

  5. Early diagenesis in the Congo deep-sea fan sediments dominated by massive terrigenous deposits: Part I - Oxygen consumption and organic carbon mineralization using a micro-electrode approach

    Science.gov (United States)

    Pozzato, Lara; Cathalot, Cécile; Berrached, Chabha; Toussaint, Flora; Stetten, Elsa; Caprais, Jean-Claude; Pastor, Lucie; Olu, Karine; Rabouille, Christophe

    2017-08-01

    Organic matter (OM) transfer from the continent to the ocean occurs across margins which constitute a major area of OM recycling and burial. The lobe complex of the Congo deep-sea fan is connected to the river mouth by a canyon and alimented by recurrent turbidity currents, containing a large proportion of labile terrigenous OM and producing high sedimentation rates. These inputs support the development of ecosystems harboring rich assemblages of vesicomyid bivalves and bacterial mats, called Habitats. Here, we present O2 microprofiles and diffusive oxygen uptake rates (DOUs) obtained during the CONGOLOBE project at six sites of this active lobe complex by in situ and on-board methods based on micro-electrode profiling. The dataset is used to determine remineralization rates and study the biogeochemical dynamics of different ecosystems of the lobe area, in order to compare levee and background sediments to the Habitats developed on the flanks of the main turbiditic channel. Levee and background sediments are characterized by significantly higher DOUs than abyssal sediments at 5000 m meters depth (2-5 mmol O2 m-2 d-1versus 1.5-2.5 mmol O2 m-2 d-1) and the Habitats are hotspots of OM remineralization with DOU values ranging between 8 and 40 mmol O2 m-2 d-1. By comparing sites near the active channel to a site located 50 km away, we show that the lobe connection to the main turbiditic channel is vital to the dense benthic communities.

  6. Deep sea biophysics

    International Nuclear Information System (INIS)

    Yayanos, A.A.

    1982-01-01

    A collection of deep-sea bacterial cultures was completed. Procedures were instituted to shelter the culture collection from accidential warming. A substantial data base on the rates of reproduction of more than 100 strains of bacteria from that collection was obtained from experiments and the analysis of that data was begun. The data on the rates of reproduction were obtained under conditions of temperature and pressure found in the deep sea. The experiments were facilitated by inexpensively fabricated pressure vessels, by the streamlining of the methods for the study of kinetics at high pressures, and by computer-assisted methods. A polybarothermostat was used to study the growth of bacteria along temperature gradients at eight distinct pressures. This device should allow for the study of microbial processes in the temperature field simulating the environment around buried HLW. It is small enough to allow placement in a radiation field in future studies. A flow fluorocytometer was fabricated. This device will be used to determine the DNA content per cell in bacteria grown in laboratory culture and in microorganisms in samples from the ocean. The technique will be tested for its rapidity in determining the concentration of cells (standing stock of microorganisms) in samples from the ocean

  7. Deep sea radionuclides

    International Nuclear Information System (INIS)

    Kanisch, G.; Vobach, M.

    1993-01-01

    Every year since 1979, either in sping or in summer, the fishing research vessel 'Walther Herwig' goes to the North Atlantic disposal areas of solid radioactive wastes, and, for comparative purposes, to other areas, in order to collect water samples, plankton and nekton, and, from the deep sea bed, sediment samples and benthos organisms. In addition to data on the radionuclide contents of various media, information about the plankton, nekton and benthos organisms living in those areas and about their biomasses could be gathered. The investigations are aimed at acquiring scientifically founded knowledge of the uptake of radioactive substances by microorganisms, and their migration from the sea bottom to the areas used by man. (orig.) [de

  8. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan: impact of the Nile freshwater inflow for the Mediterranean thermo-haline circulation

    Science.gov (United States)

    Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine

    2014-05-01

    eastern Mediterranean. We propose that the large hydrological change in Ethiopian latitude could be a trigger for the 8.2 ka cooling event recorded in high latitude. Revel R., Colin C., Bernasconi S., Combourieu-Nebout N., Ducassou E., Grousset F.E., Rolland Y., Migeon S., Brunet P., Zhaa Y., Bosch D., Mascle J.,. "21,000 years of Ethiopian African moonsoon variability recorded in sediments of the western Nile deep sea fan", Regional Environmental Change, in press.

  9. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    Science.gov (United States)

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation.

  10. A Deep-Sea Simulation.

    Science.gov (United States)

    Montes, Georgia E.

    1997-01-01

    Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)

  11. Deep-sea environment and biodiversity of the West African Equatorial margin

    OpenAIRE

    Sibuet, Myriam; Vangriesheim, Annick

    2009-01-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites...

  12. Ploughing the deep sea floor.

    Science.gov (United States)

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land.

  13. Vision in the deep sea.

    Science.gov (United States)

    Warrant, Eric J; Locket, N Adam

    2004-08-01

    The deep sea is the largest habitat on earth. Its three great faunal environments--the twilight mesopelagic zone, the dark bathypelagic zone and the vast flat expanses of the benthic habitat--are home to a rich fauna of vertebrates and invertebrates. In the mesopelagic zone (150-1000 m), the down-welling daylight creates an extended scene that becomes increasingly dimmer and bluer with depth. The available daylight also originates increasingly from vertically above, and bioluminescent point-source flashes, well contrasted against the dim background daylight, become increasingly visible. In the bathypelagic zone below 1000 m no daylight remains, and the scene becomes entirely dominated by point-like bioluminescence. This changing nature of visual scenes with depth--from extended source to point source--has had a profound effect on the designs of deep-sea eyes, both optically and neurally, a fact that until recently was not fully appreciated. Recent measurements of the sensitivity and spatial resolution of deep-sea eyes--particularly from the camera eyes of fishes and cephalopods and the compound eyes of crustaceans--reveal that ocular designs are well matched to the nature of the visual scene at any given depth. This match between eye design and visual scene is the subject of this review. The greatest variation in eye design is found in the mesopelagic zone, where dim down-welling daylight and bio-luminescent point sources may be visible simultaneously. Some mesopelagic eyes rely on spatial and temporal summation to increase sensitivity to a dim extended scene, while others sacrifice this sensitivity to localise pinpoints of bright bioluminescence. Yet other eyes have retinal regions separately specialised for each type of light. In the bathypelagic zone, eyes generally get smaller and therefore less sensitive to point sources with increasing depth. In fishes, this insensitivity, combined with surprisingly high spatial resolution, is very well adapted to the

  14. NESTOR Deep Sea Neutrino Telescope

    International Nuclear Information System (INIS)

    Aggouras, G.; Anassontzis, E.G.; Ball, A.E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L.K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Tzamarias, S.; Zhukov, V.A.

    2006-01-01

    One module of NESTOR, the Mediterranean deep-sea neutrino telescope, was deployed at a depth of 4000m, 14km off the Sapienza Island, off the South West coast of Greece. The deployment site provides excellent environmental characteristics. The deployed NESTOR module is constructed as a hexagonal star like latticed titanium star with 12 Optical Modules and an one-meter diameter titanium sphere which houses the electronics. Power and data were transferred through a 30km electro-optical cable to the shore laboratory. In this report we describe briefly the detector and the detector electronics and discuss the first physics data acquired and give the zenith angular distribution of the reconstructed muons

  15. Deep-Sea Soft Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  16. Deep-Sea Stony Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  17. Methods in mooring deep sea sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Fernando, V.; Rajaraman, V.S.; Janakiraman, G.

    The experience gained during the process of deployment and retrieval of nearly 39 sets of deep sea sediment trap moorings on various ships like FS Sonne, ORV Sagarkanya and DSV Nand Rachit are outlined. The various problems encountered...

  18. Biodiversity loss from deep-sea mining

    OpenAIRE

    C. L. Van Dover; J. A. Ardron; E. Escobar; M. Gianni; K. M. Gjerde; A. Jaeckel; D. O. B. Jones; L. A. Levin; H. Niner; L. Pendleton; C. R. Smith; T. Thiele; P. J. Turner; L. Watling; P. P. E. Weaver

    2017-01-01

    The emerging deep-sea mining industry is seen by some to be an engine for economic development in the maritime sector. The International Seabed Authority (ISA) – the body that regulates mining activities on the seabed beyond national jurisdiction – must also protect the marine environment from harmful effects that arise from mining. The ISA is currently drafting a regulatory framework for deep-sea mining that includes measures for environmental protection. Responsible mining increasingly stri...

  19. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  20. In Brief: Deep-sea observatory

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  1. Stable isotope geochemistry of deep sea cherts

    Energy Technology Data Exchange (ETDEWEB)

    Kolodny, Y; Epstein, S [California Inst. of Tech., Pasadena (USA). Div. of Geological Sciences

    1976-10-01

    Seventy four samples of DSDP (Deep Sea Drilling Project) recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. delta/sup 18/0 of chert ranges between 27 and 39 parts per thousand relative to SMOW, delta/sup 18/0 of porcellanite - between 30 and 42 parts per thousand. The consistent enrichment of opal-CT in porcellanites in /sup 18/0 with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. delta/sup 18/0 of deep sea cherts generally decrease with increasing age, indicating an overall cooling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas et al., Initial Reports of the Deep Sea Drilling Project; 32:509(1975)) indicates the possibility of delta/sup 18/0 in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of delta/sup 18/0 values, increasing diagenesis being reflected in a lowering of delta/sup 18/0. Drusy quartz has the lowest delta/sup 18/0 values. On land exposed cherts are consistently depleted in /sup 18/0 in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt%. deltaD of this water ranges between -78 and -95 parts per thousand and is not a function of delta/sup 18/0 of the cherts (or the temperature of their formation).

  2. Deep-sea environment and biodiversity of the West African Equatorial margin

    Science.gov (United States)

    Sibuet, Myriam; Vangriesheim, Annick

    2009-12-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites ranging from 350 to 4800 m water depth inside or near the channel and away from its influence. Ifremer conducted eight deep-sea cruises on board research vessels between 2000 and 2005. Standardized methods of sampling together with new technologies such as the ROV Victor 6000 and its associated instrumentation were used to investigate this poorly known continental margin. In addition to the study of sedimentary environments more or less influenced by turbidity events, the discovery of one of the largest cold seeps near the Congo channel and deep coral reefs extends our knowledge of the different habitats of this margin. This paper presents the background, objectives and major results of the BIOZAIRE Program. It highlights the work achieved in the 16 papers in this special issue. This synthesis paper describes the knowledge acquired at a regional and local scale of the Equatorial East Atlantic margin, and tackles new interdisciplinary questions to be answered in the various domains of physics, chemistry, taxonomy and ecology to better understand the deep-sea environment in the Gulf of Guinea.

  3. Assessing Deep Sea Communities Through Seabed Imagery

    Science.gov (United States)

    Matkin, A. G.; Cross, K.; Milititsky, M.

    2016-02-01

    The deep sea still remains virtually unexplored. Human activity, such as oil and gas exploration and deep sea mining, is expanding further into the deep sea, increasing the need to survey and map extensive areas of this habitat in order to assess ecosystem health and value. The technology needed to explore this remote environment has been advancing. Seabed imagery can cover extensive areas of the seafloor and investigate areas where sampling with traditional coring methodologies is just not possible (e.g. cold water coral reefs). Remotely operated vehicles (ROVs) are an expensive option, so drop or towed camera systems can provide a more viable and affordable alternative, while still allowing for real-time control. Assessment of seabed imagery in terms of presence, abundance and density of particular species can be conducted by bringing together a variety of analytical tools for a holistic approach. Sixteen deep sea transects located offshore West Africa were investigated with a towed digital video telemetry system (DTS). Both digital stills and video footage were acquired. An extensive data set was obtained from over 13,000 usable photographs, allowing for characterisation of the different habitats present in terms of community composition and abundance. All observed fauna were identified to the lowest taxonomic level and enumerated when possible, with densities derived after the seabed area was calculated for each suitable photograph. This methodology allowed for consistent assessment of the different habitat types present, overcoming constraints, such as specific taxa that cannot be enumerated, such as sponges, corals or bryozoans, the presence of mobile and sessile species, or the level of taxonomic detail. Although this methodology will not enable a full characterisation of a deep sea community, in terms of species composition for instance, itt will allow a robust assessment of large areas of the deep sea in terms of sensitive habitats present and community

  4. A Moessbauer study of deep sea sediments

    International Nuclear Information System (INIS)

    Minai, Y.; Tominaga, T.; Furuta, T.; Kobayashi, K.

    1981-01-01

    In order to determine the chemical states of iron in deep sea sediments, Moessbauer spectra of the sediments collected from various areas of the Pacific have been measured. The Moessbauer spectra were composed of paramagnetic ferric, high-spin ferrous, and magnetic components. The correlation of their relative abundance to the sampling location and the kind of sediments may afford clues to infer the origin of each iron-bearing phase. (author)

  5. Microplastic pollution in deep-sea sediments

    International Nuclear Information System (INIS)

    Van Cauwenberghe, Lisbeth; Vanreusel, Ann; Mees, Jan; Janssen, Colin R.

    2013-01-01

    Microplastics are small plastic particles ( 3 was observed. •The depths from where these microplastics were recovered range from 1176 to 4843 m. •The sizes of the particles range from 75 to 161 μm at their largest cross-section. -- Here, we demonstrate that microplastics have invaded the marine environment to an extent that they appear to even be present in the remote deep sea

  6. Unraveling the channel–lobe transition zone with high-resolution AUV bathymetry: Navy Fan, offshore Baja California, Mexico

    Science.gov (United States)

    Carvajal, Cristian; Paull, Charles K.; Caress, David W.; Fildani, Andrea; Lundsten, Eve M.; Anderson, Krystle; Maier, Katherine L.; McGann, Mary; Gwiazda, Roberto; Herguera, Juan Carlos

    2017-01-01

    Ultra-high-resolution (1 m * 1 m * 0.25 m) bathymetry was acquired with an autonomous underwater vehicle (AUV) over a sector of the Navy Fan offshore Baja California. The survey specifically targeted an area where the former interpretation of the fan showed a channel–lobe transition; however, the lobe and the transition were not recognized. Instead, the newly acquired bathymetry shows that the previously identified channel continues basinward changing its overall morphology and stratigraphic architecture, becoming gradually but significantly wider (650–1000 m) and of lower relief (3–4 m). Cores from the channel thalweg recovered mud-poor (< 5%) well-sorted sands, interpreted as deposited by fully turbulent flows. The cores also show several mud-rich (9–18%) poorly sorted sands, probably indicating deposition from more cohesive flows.The high-resolution bathymetry shows large sectors of the seafloor sculpted by elaborate bedforms and scours. The overbank area north of the channel exhibits the most numerous and prominent scours, interpreted to have been largely generated by flow stripping at a bend in the channel. Along high-gradient sectors (more than approximately 1¯) of this area, the scours are largest and deepest. Some of these scours show an erosional headwall and a distal upflow-dipping depositional bulge, forming repetitive bedforms interpreted as erosional cyclic steps associated with locked-in-place trains of hydraulic jumps. The scours seem to coalesce to form an incipient channel, which would likely drive the avulsion of the main channel. Further basinward, average gradients decrease (< 0.6¯ ) and scours become smaller and less deep suggesting a gradient control on erosion. The southern channel margin and adjacent overbank area exhibit a trend of scours that are elongated transverse to flow, that successively repeat themselves basinwards, and that at times merge with sediment waves. Probably these scours are genetically linked to sediment waves

  7. The deep sea Acoustic Detection system AMADEUS

    International Nuclear Information System (INIS)

    Naumann, Christopher Lindsay

    2008-01-01

    As a part of the ANTARES neutrino telescope, the AMADEUS (ANTARES Modules for Acoustic Detection Under the Sea) system is an array of acoustical sensors designed to investigate the possibilities of acoustic detection of ultra-high energy neutrinos in the deep sea. The complete system will comprise a total of 36 acoustic sensors in six clusters on two of the ANTARES detector lines. With an inter-sensor spacing of about one metre inside the clusters and between 15 and 340 metres between the different clusters, it will cover a wide range of distances as will as provide a considerable lever arm for point source triangulation. Three of these clusters have already been deployed in 2007 and have been in operation since, currently yielding around 2GB of acoustic data per day. The remaining three clusters are scheduled to be deployed in May 2008 together with the final ANTARES detector line. Apart from proving the feasibility of operating an acoustic detection system in the deep sea, the main aim of this project is an in-depth survey of both the acoustic properties of the sea water and the acoustic background present at the detector site. It will also serve as a platform for the development and refinement of triggering, filtering and reconstruction algorithms for acoustic particle detection. In this presentation, a description of the acoustic sensor and read-out system is given, together with examples for the reconstruction and evaluation of the acoustic data.

  8. A new procedure for deep sea mining tailings disposal

    NARCIS (Netherlands)

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal

  9. The dynamics of biogeographic ranges in the deep sea.

    Science.gov (United States)

    McClain, Craig R; Hardy, Sarah Mincks

    2010-12-07

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.

  10. Ion transport in deep-sea sediments

    International Nuclear Information System (INIS)

    Heath, G.R.

    1979-01-01

    Initial assessment of the ability of deep-sea clays to contain nuclear waste is optimistic. Yet, the investigators have no delusions about the complexity of the natural geochemical system and the perturbations that may result from emplacement of thermally-hot waste cannisters. Even though they may never be able to predict the exact nature of all these perturbations, containment of the nuclides by the waste form/cannister system until most of the heat has decayed, and burial of the waste to a sufficient depth that the altered zone can be treated as a black box source of dissolved nuclides to the enclosing unperturbed sediment, encourage them to believe that ion migration in the deep seabed can be modeled accurately and that our preliminary estimates of migration rates are likely to be reasonably realistic

  11. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  12. Light at deep sea hydrothermal vents

    Science.gov (United States)

    Van Dover, Cindy Lee; Cann, J. R.; Cavanaugh, Colleen; Chamberlain, Steven; Delaney, John R.; Janecky, David; Imhoff, Johannes; Tyson, J. Anthony

    We usually think of the bottom of the sea as a dark environment, lit only by flashes of bioluminescent light. Discovery of light associated with geothermal processes at deep sea hydrothermal vents forces us to qualify our textbook descriptions of the seafloor as a uniformly dark environment. While a very dim glow emitted from high temperature (350°) vents (black smokers) at mid-oceanic ridge spreading centers has been documented [Van Dover et al, 1988], the source of this light and its role, if any, in the evolution and adaptation of photobiochemical processes have yet to be determined. Preliminary studies indicate that thermal radiation alone may account for the “glow” ]Smith and Delaney, 1989] and that a novel photoreceptor in shrimp-colonizing black smoker chimneys may detect this “glow” [Van Dover et al., 1989; Pelli and Chamberlain, 1989]. A more controversial question, posed by C. L. Van Dover, J. R. Cann, and J. R. Delaney at the 1993 LITE Workshop at the Woods Hole Oceanographic Institution in Massachusetts, is whether there may be sufficient light of appropriate wavelengths to support geothermally driven photosynthesis by microorganisms.

  13. Nuclear wastes beneath the deep sea floor

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hollister, C.D.

    1974-01-01

    Projections of energy demands for the year 2000 show that nuclear power will likely be one of our energy sources. But the benefits of nuclear power must be balanced against the drawbacks of its by-product: high-level wastes. While it may become possible to completely destroy or eliminate these wastes, it is at least equally possible that we may have to dispose of them on earth in such a way as to assure their isolation from man for periods of the order of a million years. Undersea regions in the middle of tectonic plates and in the approximate center of major current gyres offer some conceptual promise for waste disposal because of their geologic stability and comparatively low organic productivity. The advantages of this concept and the types of detailed information needed for its accurate assessment are discussed. The technical feasibility of permanent disposal beneath the deep sea floor cannot be accurately assessed with present knowledge, and there is a need for a thorough study of the types and rates of processes that affect this part of the earth's surface. Basic oceanographic research aimed at understanding these processes is yielding answers that apply to this societal need. (U.S.)

  14. Deep-Sea Corals: A New Oceanic Archive

    National Research Council Canada - National Science Library

    Adkins, Jess

    1998-01-01

    Deep-sea corals are an extraordinary new archive of deep ocean behavior. The species Desmophyllum cristagalli is a solitary coral composed of uranium rich, density banded aragonite that I have calibrated for several paleoclimate tracers...

  15. Deep Sea Coral National Observation Database, Northeast Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The national database of deep sea coral observations. Northeast version 1.0. * This database was developed by the NOAA NOS NCCOS CCMA Biogeography office as part of...

  16. The MEUST deep sea infrastructure in the Toulon site

    Directory of Open Access Journals (Sweden)

    Lamare Patrick

    2016-01-01

    Full Text Available The MEUST infrastructure (Mediterranean Eurocentre for Underwater Sciences and Technologies is a permanent deep sea cabled infrastructure currently being deployed off shore of Toulon, France. The design and the status of the infrastructure are presented.

  17. Deep-sea impact experiments and their future requirements

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    In recent years, several experiments to assess the potential impacts due to deep-sea mining in the Pacific as well as the Indian Oceans have indicated the immediate changes and restoration patterns of environmental conditions in the marine ecosystem...

  18. Call to protect deep-sea coral, sponge ecosystems

    Science.gov (United States)

    Showstack, Randy

    2004-03-01

    More than 1100 scientists are signatories to a 15 February consensus statement calling for the protection of deep sea coral and sponge ecosystems. The statement indicates that ``the greatest human threat'' to these ecosystems ``is commercial fishing, especially bottom trawling.''

  19. Diversity and adaptations of deep-sea microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    -tolerant enzymes, natural products of potential use in human health management and environmental bioremediation using solvent-tolerant microorganisms are some of the potential biotechnological applications of these deep-sea microbes....

  20. A new procedure for deep sea mining tailings disposal

    OpenAIRE

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal methods which exist in on-land mining and the coastal mining fields, a new tailings disposal procedure, i.e., the submarine–backfill–dam–reuse (SBDR) tailings disposal procedure, is proposed. It com...

  1. Erbium-doped fiber lasers as deep-sea hydrophones

    International Nuclear Information System (INIS)

    Bagnoli, P.E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-01-01

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos

  2. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  3. U.V. repair in deep-sea bacteria

    International Nuclear Information System (INIS)

    Lutz, L.; Yayanos, A.A.

    1986-01-01

    Exposure of cells to light of less than 320 nanometers wavelengths may lead to lethal lesions and perhaps carcinogenesis. Many organisms have evolved mechanisms to repair U.V. light-induced damage. Organisms such as deep-sea bacteria are presumably never exposed to U.V. light and perhaps occasionally to visible from bioluminescence. Thus, the repair of U.V. damage in deep-sea bacterial DNA might be inefficient and repair by photoreactivation unlikely. The bacteria utilized in this investigation are temperature sensitive and barophilic. Four deep-sea isolates were chosen for this study: PE-36 from 3584 m, CNPT-3 from 5782 m, HS-34 from 5682 m, and MT-41 from 10,476 m, all are from the North Pacific ocean. The deep-sea extends from 1100 m to depths greater than 7000 m. It is a region of relatively uniform conditions. The temperature ranges from 5 to -1 0 C. There is no solar light in the deep-sea. Deep-sea bacteria are sensitive to U.V. light; in fact more sensitive than a variety of terrestrial and sea-surface bacteria. All four isolates demonstrate thymine dimer repair. Photoreactivation was observed in only MT-41. The other strains from shallower depths displayed no photoreactivation. The presence of DNA sequences homologous to the rec A, uvr A, B, and C and phr genes of E. coli have been examined by Southern hybridization techniques

  4. Evolutionary process of deep-sea bathymodiolus mussels.

    Science.gov (United States)

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  5. Evolutionary process of deep-sea bathymodiolus mussels.

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Miyazaki

    Full Text Available BACKGROUND: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. METHODOLOGY/PRINCIPAL FINDING: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI and NADH dehydrogenase subunit 4 (ND4 genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. CONCLUSIONS/SIGNIFICANCE: The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of

  6. The biomass of the deep-sea benthopelagic plankton

    Science.gov (United States)

    Wishner, K. F.

    1980-04-01

    Deep-sea benthopelagic plankton samples were collected with a specially designed opening-closing net system 10 to 100 m above the bottom in five different oceanic regions at depths from 1000 to 4700 m. Benthopelagic plankton biomasses decrease exponentially with depth. At 1000 m the biomass is about 1% that of the surface zooplankton, at 5000 m about 0.1%. Effects of differences in surface primary productivity on deep-sea plankton biomass are much less than the effect of depth and are detectable only in a few comparisons of extreme oceanic regions. The biomass at 10 m above the bottom is greater than that at 100 m above the bottom (in a three-sample comparison), which could be a consequence of an enriched near-bottom environment. The deep-sea plankton biomass in the Red Sea is anomalously low. This may be due to increased decomposition rates in the warm (22°C) deep Red Sea water, which prevent much detritus from reaching the deep sea. A model of organic carbon utilization in the benthic boundary layer (bottom 100 m), incorporating results from deep-sea sediment trap and respiration studies, indicates that the benthopelagic plankton use only a small amount of the organic carbon flux. A large fraction of the flux is unaccounted for by present estimates of benthic and benthopelagic respiration.

  7. 40Ar/39Ar studies of deep sea igneous rocks

    International Nuclear Information System (INIS)

    Seidemann, D.

    1978-01-01

    An attempt to date deep-sea igneous rocks reliably was made using the 40 Ar/ 39 Ar dating technique. It was determined that the 40 Ar/ 39 Ar incremental release technique could not be used to eliminate the effects of excess radiogenic 40 Ar in deep-sea basalts. Excess 40 Ar is released throughout the extraction temperature range and cannot be distinguished from 40 Ar generated by in situ 40 K decay. The problem of the reduction of K-Ar dates associated with sea water alteration of deep-sea igneous rocks could not be resolved using the 40 Ar/ 39 Ar technique. Irradiation induced 39 Ar loss and/or redistribution in fine-grained and altered igneous rocks results in age spectra that are artifacts of the experimental procedure and only partly reflect the geologic history of the sample. Therefore, caution must be used in attributing significance to age spectra of fine grained and altered deep-sea igneous rocks. Effects of 39 Ar recoil are not important for either medium-grained (or coarser) deep-sea rocks or glasses because only a small fraction of the 39 Ar recoils to channels of easy diffusion, such as intergranular boundaries or cracks, during the irradiation. (author)

  8. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  9. Species distribution models of tropical deep-sea snappers.

    Directory of Open Access Journals (Sweden)

    Céline Gomez

    Full Text Available Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We used bathymetric and water temperature data to develop presence-only species distribution models for the commercially exploited deep-sea snappers Etelis Cuvier 1828, Pristipomoides Valenciennes 1830, and Aphareus Cuvier 1830. We evaluated the performance of four different algorithms (CTA, GLM, MARS, and MAXENT within the BIOMOD framework to obtain an ensemble of predicted distributions. We projected these predictions across the Western Central Pacific Ocean to produce maps of potential deep-sea snapper distributions in 32 countries and territories. Depth was consistently the best predictor of presence for all species groups across all models. Bathymetric slope was consistently the poorest predictor. Temperature at depth was a good predictor of presence for GLM only. Model precision was highest for MAXENT and CTA. There were strong regional patterns in predicted distribution of suitable habitat, with the largest areas of suitable habitat (> 35% of the Exclusive Economic Zone predicted in seven South Pacific countries and territories (Fiji, Matthew & Hunter, Nauru, New Caledonia, Tonga, Vanuatu and Wallis & Futuna. Predicted habitat also varied among species, with the proportion of predicted habitat highest for Aphareus and lowest for Etelis. Despite data paucity, the relationship between deep-sea snapper presence and their environments was sufficiently strong to predict their distribution across a large area of the Pacific Ocean. Our results therefore provide a strong baseline for designing monitoring programs that balance resource exploitation and

  10. Studies of the reproductive biology of deep-sea megabenthos

    International Nuclear Information System (INIS)

    Tyler, P.A.

    1987-07-01

    The final report describes the general biology and ecology of the 15 holothurians, 3 asteroids, 2 zoanthids and 1 crustacea species studied in Reports I-XIII, the sampling methods used and the station data. A summary of the histological, histochemical and biochemical results for the species examined is given. The data suggest that the reproductive processes in the deep-sea species examined are highly unlikely to be part of a pathway for the transfer of radionuclides from the deep-sea back to man. (author)

  11. Bipolar gene flow in deep-sea benthic foraminifera

    DEFF Research Database (Denmark)

    Pawlowski, J.; Fahrni, J.; Lecroq, B.

    2007-01-01

    Despite its often featureless appearance, the deep-ocean floor includes some of the most diverse habitats on Earth. However, the accurate assessment of global deep-sea diversity is impeded by a paucity of data on the geographical ranges of bottom-dwelling species, particularly at the genetic leve...

  12. Phosphate solubilizing bacteria: Comparison between coastal and deep sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Biche, S.; Pandey, S.; Gonsalves, M.J.B.D.; Das, A.; Mascarenhas-Pereira, M.B.L.; LokaBharathi, P.A.

    in the CIB sediments (r=0.59) than in the coastal sediments (r= 0.22). It is apparent that the enzyme activity in the coastal sediments could be more for P mobilization and in the oligotrophic deep sea it could be both for P and C mobilization....

  13. Fungi and macroaggregation in deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Raghukumar, C.

    Whereas fungi in terrestrial soils have been well studied, little is known of them in deep-sea sediments. Recent studies have demonstrated the presence of fungal hyphae in such sediments but in low abundance. We present evidence in this study...

  14. Radio-active waste disposal and deep-sea biology

    International Nuclear Information System (INIS)

    Rice, A.L.

    1978-01-01

    The deep-sea has been widely thought of as a remote, sparsely populated, and biologically inactive environment, well suited to receive the noxious products of nuclear fission processes. Much of what is known of abyssal biology tends to support this view, but there are a few disquieting contra-indications. The realisation, in recent years, that many animal groups show a previously unsuspected high species diversity in the deep-sea emphasized the paucity of our knowledge of this environment. More dramatically, the discovery of a large, active, and highly mobile abysso-bentho-pelagic fauna changed the whole concept of abyssal life. Finally, while there is little evidence for the existence of vertical migration patterns linking the deep-sea bottom communities with those of the overlying water layers, there are similarly too few negative results for the possibility of such transport mechanisms to be dismissed. In summary, biological knowledge of the abyss is insufficient to answer the questions raised in connection with deep-sea dumping, but in the absence of adequate answers it might be dangerous to ignore the questions

  15. Species diversity variations in Neogene deep-sea benthic

    Indian Academy of Sciences (India)

    Some species of benthic foraminifera are sensitive to changes in water mass properties whereas others are sensitive to organic fluxes and deep-sea oxygenation. Benthic faunal diversity has been found closely linked to food web, bottom water oxygen levels, and substrate and water mass stability. The present study is ...

  16. Ecosystem function and services provided by the deep sea

    Science.gov (United States)

    Thurber, A. R.; Sweetman, A. K.; Narayanaswamy, B. E.; Jones, D. O. B.; Ingels, J.; Hansman, R. L.

    2014-07-01

    The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbors processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In

  17. Age-dependent mixing of deep-sea sediments

    International Nuclear Information System (INIS)

    Smith, C.R.; Maggaard, L.; Pope, R.H.; DeMaster, D.J.

    1993-01-01

    Rates of bioturbation measured in deep-sea sediments commonly are tracer dependent; in particular, shorter lived radiotracers (such as 234 Th) often yield markedly higher diffusive mixing coefficients than their longer-lived counterparts (e.g., 210 Pb). At a single station in the 1,240-m deep Santa Catalina Basin, the authors document a strong negative correlation between bioturbation rate and tracer half-life. Sediment profiles of 234 Th (half-life = 24 days) yield an average mixing coefficient (60 cm 2 y -1 ) two orders of magnitude greater than that for 210 Pb (half-life = 22 y, mean mixing coefficient = 0.4 cm 2 y -1 ). A similar negative relationship between mixing rate and tracer time scale is observed at thirteen other deep-sea sites in which multiple radiotracers have been used to assess diffusive mixing rates. This relationship holds across a variety of radiotracer types and time scales. The authors hypothesize that this negative relationship results from age-dependent mixing, a process in which recently sedimented, food-rich particles are ingested and mixed at higher rates by deposit feeders than are older, food-poor particles. Results from an age-dependent mixing model demonstrate that this process indeed can yield the bioturbation-rate vs. tracer-time-scale correlations observed in deep-sea sediments. Field data on mixing rates of recently sedimented particles, as well as the radiotracer activity of deep-sea deposit feeders, provide strong support for the age-dependent mixing model. The presence of age-dependent mixing in deep-sea sediments may have major implications for diagenetic modeling, requiring a match between the characteristic time scales of mixing tracers and modeled reactants. 102 refs., 6 figs., 5 tabs

  18. Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos

    DEFF Research Database (Denmark)

    Sinniger, Frédéric; Pawlowski, Jan; Harii, Saki

    2016-01-01

    in 39 deep-sea sediment samples from bathyal and abyssal depths worldwide. The eDNA dataset was dominated by meiobenthic taxa and we identified all animal phyla commonly found in the deep-sea benthos; yet, the diversity within these phyla remains largely unknown. The large numbers of taxonomically...... for pure and applied deep-sea environmental research but also emphasizes the necessity to integrate such new approaches with traditional morphology-based examination of deep-sea organisms....

  19. Monitoring the impact of simulated deep-sea mining in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.; Jaisankar, S.

    Monitoring the Impact of Simulated Deep-sea Mining in Central Indian Basin R. SHARMA, B. NAGENDER NATH, AND S. JAI SANKAR National Institute of Oceanography, Dona Paula, Goa, India Monitoring of deep-sea disturbances, natural or man-made, has gained... has shown a partial recovery of the benthic ecosystem, with indications of restoration and recolonization. Keywords deep-sea mining, environmental impact, Central Indian Basin Deep-sea mineral deposits such as the polymetallic nodules and crusts...

  20. Indian deep-sea environment experiment (INDEX): Monitoring the restoration of marine enviroment after artificial disturbance to simulate deep-sea mining in central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    the restoration of marine environment after artificial disturbance to simulate deep-sea mining in Central Indian Basin Guest Editor Rahul Sharma Note from guest editor A special issue on Indian Deep-sea Environment Experiment (INDEX) conducted by the scientists... in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. Nagender Nath, G. Parthiban, S. Banaulikar, and Subhadeep Sarkar Marine Georesources and Geotechnology, 24:61–62, 2006 Copyright # Taylor & Francis Group, LLC ISSN: 1064-119X print/1521...

  1. Geometry of sandy deposits at the distal edge of the Mississippi Fan, Gulf of Mexico

    Science.gov (United States)

    Twichell, D.C.; Schwab, W.C.; Kenyon, Neil H.

    1995-01-01

    Sidescan sonar provides a map of the seafloor that has greatly improved the understanding of depositional processes on modern deep-sea fans (e.g. Mutti and Normark 1991). Here, we present a sidescan-sonar mosaic from the eastern Gulf of Mexico that images the distal reaches of a channel on the Mississippi Fan and the deposits associated with it (Fig. 41.1). This area is one of several deep-sea fan systems that had not previously been imaged by high-resolution sidescan systems. The mosaic highlights the complexity of the spatial relationships of channels and deposits at ends of channels on this large, modern, passive-margin deep-sea fan (Figs 41.2 and 41.3).

  2. The deep-sea hub of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Anghinolfi, M. [INFN Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Calzas, A. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Dinkespiler, B. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Cuneo, S. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Favard, S. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Hallewell, G. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France)]. E-mail: gregh@cppm.in2p3.fr; Jaquet, M. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Musumeci, M. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Papaleo, R. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Raia, G. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Valdy, P. [IFREMER - Institut francais de recherche pour l' exploitation de la mer, Centre de La Seyne, 83500 La Seyne sur mer (France); Vernin, P. [DSM-DAPNIA, CEA SACLAY, 91191 Gif sur Yvette Cedex (France)

    2006-11-15

    The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub.

  3. The deep-sea hub of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Anghinolfi, M.; Calzas, A.; Dinkespiler, B.; Cuneo, S.; Favard, S.; Hallewell, G.; Jaquet, M.; Musumeci, M.; Papaleo, R.; Raia, G.; Valdy, P.; Vernin, P.

    2006-01-01

    The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub

  4. Sorption of americium and neptunium by deep-sea sediments

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Rees, L.V.C.; Cronan, D.S.

    1983-01-01

    The sorption and desorption of americium and neptunium by a wide range of deep-sea sediments from natural sea water at 4 0 C has been studied using a carefully controlled batch technique. All the sediments studied should form an excellent barrier to the migration of americium since distribution coefficients were uniformly greater than 10 5 and the sorption-desorption reaction may not be reversible. The sorption of neptunium was reversible and, except for one red clay, the distribution coefficients were greater than 10 3 for all the sediments investigated. Nevertheless the migration of neptunium should also be effectively retarded by most deep-sea sediments even under relatively oxidizing conditions. The neptunium in solution remained in the V oxidation state throughout the experiments. Under the experimental conditions used colloidal americium was trapped by the sediment and solubility did not seem to be the controlling factor in the desorption of americium. (Auth.)

  5. Plastic microfibre ingestion by deep-sea organisms

    Science.gov (United States)

    Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.

    2016-09-01

    Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics.

  6. Far red bioluminescence from two deep-sea fishes.

    Science.gov (United States)

    Widder, E A; Latz, M I; Herring, P J; Case, J F

    1984-08-03

    Spectral measurements of red bioluminescence were obtained from the deep-sea stomiatoid fishes Aristostomias scintillans (Gilbert) and Malacosteus niger (Ayres). Red luminescence from suborbital light organs extends to the near infrared, with peak emission at approximately 705 nanometers in the far red. These fishes also have postorbital light organs that emit blue luminescence with maxima between 470 and 480 nanometers. The red bioluminescence may be due to an energy transfer system and wavelength-selective filtering.

  7. How deep-sea wood falls sustain chemosynthetic life.

    Directory of Open Access Journals (Sweden)

    Christina Bienhold

    Full Text Available Large organic food falls to the deep sea--such as whale carcasses and wood logs--are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals.

  8. How Deep-Sea Wood Falls Sustain Chemosynthetic Life

    Science.gov (United States)

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea – such as whale carcasses and wood logs – are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  9. Late Eocene impact events recorded in deep-sea sediments

    Science.gov (United States)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  10. Research on the usage of a deep sea fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Otsubo, Akira; Kowata, Yasuki [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-09-01

    Many new types of fast reactors have been studied in PNC. A deep sea fast reactor has the highest realization probability of the reactors studied because its development is desired by many specialists of oceanography, meteorology, deep sea bottom oil field, seismology and so on and because the development does not cost big budget and few technical problems remain to be solved. This report explains the outline and the usage of the reactor of 40 kWe and 200 to 400 kWe. The reactor can be used as a power source at an unmanned base for long term climate prediction and the earth science and an oil production base in a deep sea region. On the other hand, it is used for heat and electric power supply to a laboratory in the polar region. In future, it will be used in the space. At the present time, a large FBR development plan does not proceed successfully and a realization goal time of FBR has gone later and later. We think that it is the most important to develop the reactor as fast as possible and to plant a fast reactor technique in our present society. (author)

  11. Taxonomic research on deep-sea macrofauna in the South China Sea using the Chinese deep-sea submersible Jiaolong.

    Science.gov (United States)

    Li, Xinzheng

    2017-07-01

    This paper reviews the taxonomic and biodiversity studies of deep-sea invertebrates in the South China Sea based on the samples collected by the Chinese manned deep-sea submersible Jiaolong. To date, 6 new species have been described, including the sponges Lophophysema eversa, Saccocalyx microhexactin and Semperella jiaolongae as well as the crustaceans Uroptychus jiaolongae, Uroptychus spinulosus and Globospongicola jiaolongi; some newly recorded species from the South China Sea have also been reported. The Bathymodiolus platifrons-Shinkaia crosnieri deep-sea cold seep community has been reported by Li (2015), as has the mitochondrial genome of the glass sponge L. eversa by Zhang et al. (2016). The population structures of two dominant species, the shrimp Shinkaia crosnieri and the mussel Bathymodiolus platifrons, from the cold seep Bathymodiolus platifrons-Shinkaia crosnieri community in the South China Sea and the hydrothermal vents in the Okinawa Trough, were compared using molecular analysis. The systematic position of the shrimp genus Globospongicola was discussed based on 16S rRNA gene sequences. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  12. Observations of Deep-Sea Coral and Sponge Occurrences from the NOAA National Deep-Sea Coral and Sponge Database, 1842-Present (NCEI Accession 0145037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA’s Deep-Sea Coral Research and Technology Program (DSC-RTP) compiles a national database of the known locations of deep-sea corals and sponges in U.S....

  13. Deep-sea Lebensspuren of the Australian continental margins

    Science.gov (United States)

    Przeslawski, Rachel; Dundas, Kate; Radke, Lynda; Anderson, Tara J.

    Much of the deep sea comprises soft-sediment habitats dominated by comparatively low abundances of species-rich macrofauna and meiofauna. Although often not observed, these animals bioturbate the sediment during feeding and burrowing, leaving signs of their activities called Lebensspuren ('life traces'). In this study, we use still images to quantify Lebensspuren from the eastern (1921 images, 13 stations, 1300-2200 m depth) and western (1008 images, 11 stations, 1500-4400 m depth) Australian margins using a univariate measure of trace richness and a multivariate measure of Lebensspuren assemblages. A total of 46 Lebensspuren types were identified, including those matching named trace fossils and modern Lebensspuren found elsewhere in the world. Most traces could be associated with waste, crawling, dwellings, organism tests, feeding, or resting, but the origin of 15% of trace types remains unknown. Assemblages were significantly different between the two regions and depth profiles, with five Lebensspuren types accounting for over 95% of the differentiation (ovoid pinnate trace, crater row, spider trace, matchstick trace, mesh trace). Lebensspuren richness showed no strong relationships with depth, total organic carbon, or mud, although there was a positive correlation to chlorin index (i.e., organic freshness) in the eastern margin, with richness increasing with organic freshness. Lebensspuren richness was not related to epifauna either, indicating that epifauna may not be the primary source of Lebensspuren. Despite the abundance and distinctiveness of several traces both in the current and previous studies (e.g., ovoid pinnate, mesh, spider), their origin and distribution remains a mystery. We discuss this and several other considerations in the identification and quantification of Lebensspuren. This study represents the first comprehensive catalogue of deep-sea Lebensspuren in Australian waters and highlights the potential of Lebensspuren as valuable and often

  14. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  15. Deep-sea benthic footprint of the deepwater horizon blowout.

    Directory of Open Access Journals (Sweden)

    Paul A Montagna

    Full Text Available The Deepwater Horizon (DWH accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km(2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km(2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.

  16. Deep sea AUV navigation using multiple acoustic beacons

    Science.gov (United States)

    Ji, Da-xiong; Song, Wei; Zhao, Hong-yu; Liu, Jian

    2016-04-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  17. Four new species of deep water agglutinated foraminifera from the Oligocene-Miocene of the Congo Fan (offshore Angola)

    OpenAIRE

    Kender, S.; Kaminski, M. A.; Jones, R. W.

    2006-01-01

    Four new species of deep-water agglutinated benthic foraminifera are described from the Oligocene and Miocene of the Congo Fan, offshore Angola. Scherochorella congoensis n.sp., Paratrochamminoides goroyskiformis n.sp., Haplophragmoides nauticus n.sp. and Portatrochammina profunda n.sp. all occur in deep-sea turbiditic shales and sands from the distal section of the Congo Fan.

  18. Turbidites and Benthic Faunal Succession in the Deep Sea: An Ecological Paradox

    National Research Council Canada - National Science Library

    Young, David

    2001-01-01

    Characteristics of benthic faunal succession following turbidity flows in the deep sea will vary according to the composition of turbidite materials, the spatial scales of deposition, the structure...

  19. Deep-sea Hexactinellida (Porifera) of the Weddell Sea

    Science.gov (United States)

    Janussen, Dorte; Tabachnick, Konstantin R.; Tendal, Ole S.

    2004-07-01

    New Hexactinellida from the deep Weddel Sea are described. This moderately diverse hexactinellid fauna includes 14 species belonging to 12 genera, of which five species and one subgenus are new to science: Periphragella antarctica n. sp., Holascus pseudostellatus n. sp., Caulophacus (Caulophacus) discohexactinus n. sp., C. ( Caulodiscus) brandti n. sp., C. ( Oxydiscus) weddelli n. sp., and C. ( Oxydiscus) n. subgen. So far, 20 hexactinellid species have been reported from the deep Weddell Sea, 15 are known from the northern part and 10 only from here, while 10 came from the southern area, and five of these only from there. However, this apparent high "endemism" of Antarctic hexactinellid sponges is most likely the result of severe undersampling of the deep-sea fauna. We find no reason to believe that a division between an oceanic and a more continental group of species exists. The current poor database indicates that a substantial part of the deep hexactinellid fauna of the Weddell Sea is shared with other deep-sea regions, but it does not indicate a special biogeographic relationship with any other ocean.

  20. Age, growth rates, and paleoclimate studies of deep sea corals

    Science.gov (United States)

    Prouty, Nancy G; Roark, E. Brendan; Andrews, Allen; Robinson, Laura; Hill, Tessa; Sherwood, Owen; Williams, Branwen; Guilderson, Thomas P.; Fallon, Stewart

    2015-01-01

    Deep-water corals are some of the slowest growing, longest-lived skeletal accreting marine organisms. These habitat-forming species support diverse faunal assemblages that include commercially and ecologically important organisms. Therefore, effective management and conservation strategies for deep-sea corals can be informed by precise and accurate age, growth rate, and lifespan characteristics for proper assessment of vulnerability and recovery from perturbations. This is especially true for the small number of commercially valuable, and potentially endangered, species that are part of the black and precious coral fisheries (Tsounis et al. 2010). In addition to evaluating time scales of recovery from disturbance or exploitation, accurate age and growth estimates are essential for understanding the life history and ecology of these habitat-forming corals. Given that longevity is a key factor for population maintenance and fishery sustainability, partly due to limited and complex genetic flow among coral populations separated by great distances, accurate age structure for these deep-sea coral communities is essential for proper, long-term resource management.

  1. Global ocean conveyor lowers extinction risk in the deep sea

    Science.gov (United States)

    Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Wienberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Mélanie; Morrison, Cheryl L.; López Correa, Matthias; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray

    2014-06-01

    General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth's largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium-thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.

  2. Deep sea mega-geomorphology: Progress and problems

    Science.gov (United States)

    Bryan, W. B.

    1985-01-01

    Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.

  3. Magnetically tunable oil droplet lens of deep-sea shrimp

    Science.gov (United States)

    Iwasaka, M.; Hirota, N.; Oba, Y.

    2018-05-01

    In this study, the tunable properties of a bio-lens from a deep-sea shrimp were investigated for the first time using magnetic fields. The skin of the shrimp exhibited a brilliantly colored reflection of incident white light. The light reflecting parts and the oil droplets in the shrimp's skin were observed in a glass slide sample cell using a digital microscope that operated in the bore of two superconducting magnets (maximum strengths of 5 and 13 T). In the ventral skin of the shrimp, which contained many oil droplets, some comparatively large oil droplets (50 to 150 μm in diameter) were present. A distinct response to magnetic fields was found in these large oil droplets. Further, the application of the magnetic fields to the sample cell caused a change in the size of the oil droplets. The phenomena observed in this work indicate that the oil droplets of deep sea shrimp can act as lenses in which the optical focusing can be modified via the application of external magnetic fields. The results of this study will make it possible to fabricate bio-inspired soft optical devices in future.

  4. Deep Sea Coral voucher sequence dataset - Identification of deep-sea corals collected during the 2009 - 2014 West Coast Groundfish Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data for this project resides in the West Coast Groundfish Bottom Trawl Survey Database. Deep-sea corals are often components of trawling bycatch, though their...

  5. Multi-scale mass movements: example of the Nile deep-sea fan (NDSF)

    Science.gov (United States)

    Loncke, L.; Droz, L.; Bellaiche, G.; Gaullier, V.; Mascle, J.; Migeon, S.

    2003-04-01

    The almost 90 000 km2 NDSF, fed by one of the major river in the world, has been nearly entirely surveyed by swath bathymetry and back-scatter imagery during the last four years. Seismic-reflection and 3-5 kHz profiles, and in some places, high resolution data were collected. Some profiles have been provided by BP-Egypt. Using this set of data, we have conducted a multi-scale regional synthesis which stresses the importance of gravity processes in the edification and evolution of this major deep turbidite system. Gravity processes range from regional gravity-driven spreading and gliding of the Plio-Pleistocene sediments above the Messinian mobile evaporites, to huge collapses of large areas of the upper continental slope as well as very localized levee destabilizations and related avulsion mechanisms. The Eastern - tectonized - area of the NDSF is characterized by lens-shaped transparent bodies, likely indicating debris-flow deposits, settled at crestal graben flanks, themselves generated by reactive diapir rise. Debris flows are probably triggered by local readjustments of salt-related tectonic features destabilizing their sedimentary cover. In contrast, within the poorly deformed Western part of the NDSF, we mainly observe recent slumping and gliding phenomenons, incising the upper slope where salt layers are absent. These slumps and glidings evolved downslope to large debris flows. Some of them exhibit volumes up to 1900 km3 and are covered by recent stacked channel-levees units. Smaller scale debris-flows are inter-fingered within these constructional units and led to numerous channel migrations and avulsions, characterized by typical HARP's seismic facies. Recent sedimentary destabilizations seem to be associated with gas seeping or under-compacted mud ascents: in the Central NDSF, the association between pock-marks (or mounds) and destabilizated masses suggest the existence of gas hydrates. Given the variety of processes (either triggered by tectonics, sedimentary overloading, sea-level fluctations, or fluids) and scales of the identified destabilizations, the NDSF appears as an excellent natural laboratory to study mass movement processes.

  6. NOAA National Deep-Sea Coral and Sponge Database 1842-Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's Deep-Sea Coral Research and Technology Program (DSC-RTP) is compiling a national geodatabase of the known locations of deep-sea corals and sponges in U.S....

  7. Authigenic gypsum in a deep sea core from Southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.

    Authigenic gypsum has been encountered in a deep sea core RC9-157 from the southeastern Arabian Sea at a depth of 4111 m which is a zone of lysocline. The formation of gypsum in the deep sea region is attributed to the prevailing sulphate rich...

  8. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1986-01-01

    This report reviews the present knowledge of oceanic processes by which substances might be transferred from a deep-sea dump site back to man or his food chain and recommends pragmatic ways to calculate such transfers in order that deep-sea dumping of contaminants may be regulated effectively. The recommendations as to the currently most appropriate models are given

  9. An interactive end-user software application for a deep-sea photographic database

    Digital Repository Service at National Institute of Oceanography (India)

    Jaisankar, S.; Sharma, R.

    . The software is the first of its kind in deep-sea applications and it also attempts to educate the user about deep-sea photography. The application software is developed by modifying established routines and by creating new routines to save the retrieved...

  10. Deep-sea disposal: Protecting fish and man

    International Nuclear Information System (INIS)

    Hagen, A.

    1988-01-01

    The definition of radioactive waste unsuitable for dumping at sea is based on the protection of man. See IAEA Safety Series No. 78. The development of criteria for assessing the impact on deep sea marine organisms at the population level has been attempted in a report recently published by the IAEA. See IAEA Technical Reports Series, No. 228 (1988). The report indicates that certain radionuclides may give rise to high dose rates to marine organisms if dumping is carried out with the assumptions of instantaneous release at the sea floor and dumping over long periods of time. In the report, a hypothetical dose rate to molluscs from zinc-65, which poses no significant harm to man, has the potential for giving high doses to bottom-dwelling molluscs

  11. Dynamics of a deep-sea cable system

    International Nuclear Information System (INIS)

    Gulyaev, V.I.; Koshkin, V.L.; Serpak, I.O.

    1995-01-01

    We consider the problem of the dynamics of a deep-sea cable system consisting of branches of constant and variable length, interacting with an undercurrent which is variable in depth and direction. We construct a mathematical model for the motion of the element of the cable system. The cables are modeled as inextensible, flexible filaments of variable length. For numerical realization of the problem, we suggest special regularizing transformations of the variables, making it possible (without additional simplifications) to take into account all the characteristic features of the motion of the filaments and to avoid difficulties in the integration of the equations of motion connected with the variability of the length of the branches of the cable system. The proposed mathematical model and the technique for its numerical analysis is applicable for the investigation of the dynamics of a complex for mining minerals from the ocean floor

  12. Potential Health Benefits of Deep Sea Water: A Review

    Directory of Open Access Journals (Sweden)

    Samihah Zura Mohd Nani

    2016-01-01

    Full Text Available Deep sea water (DSW commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.

  13. Consolidation properties and stress history of some deep sea sediments

    International Nuclear Information System (INIS)

    Silva, A.J.; Jordan, S.A.

    1983-09-01

    This paper summarizes results of 180 consolidation tests on samples from 52 cores taken with a variety of samplers in deep sea regimes of the North Western Atlantic and North Central Pacific. Most of the samplers were of large cross sectional area (over 10-cm dia) and attention was given to improving field techniques and reducing structural disturbance to the sediments. Good quality samples have been recovered to depths in excess of 25 m in several locations. The sediments were primarily fine-grained clays and silty clays with the predominant clay mineral being illite; however, the presence of smectite and calcium carbonate in some samples had significant influence on the properties. 34 references, 11 figures, 2 tables

  14. Deep-Sea Microbes: Linking Biogeochemical Rates to -Omics Approaches

    Science.gov (United States)

    Herndl, G. J.; Sintes, E.; Bayer, B.; Bergauer, K.; Amano, C.; Hansman, R.; Garcia, J.; Reinthaler, T.

    2016-02-01

    Over the past decade substantial progress has been made in determining deep ocean microbial activity and resolving some of the enigmas in understanding the deep ocean carbon flux. Also, metagenomics approaches have shed light onto the dark ocean's microbes but linking -omics approaches to biogeochemical rate measurements are generally rare in microbial oceanography and even more so for the deep ocean. In this presentation, we will show by combining metagenomics, -proteomics and biogeochemical rate measurements on the bulk and single-cell level that deep-sea microbes exhibit characteristics of generalists with a large genome repertoire, versatile in utilizing substrate as revealed by metaproteomics. This is in striking contrast with the apparently rather uniform dissolved organic matter pool in the deep ocean. Combining the different -omics approaches with metabolic rate measurements, we will highlight some major inconsistencies and enigmas in our understanding of the carbon cycling and microbial food web structure in the dark ocean.

  15. Alchemy or Science? Compromising Archaeology in the Deep Sea

    Science.gov (United States)

    Adams, Jonathan

    2007-06-01

    In the torrid debate between archaeology and treasure hunting, compromise is often suggested as the pragmatic solution, especially for archaeology carried out either in deep water or beyond the constraints that commonly regulate such activities in territorial seas. Both the wisdom and the need for such compromise have even been advocated by some archaeologists, particularly in forums such as the internet and conferences. This paper argues that such a compromise is impossible, not in order to fuel confrontation but simply because of the nature of any academic discipline. We can define what archaeology is in terms of its aims, theories, methods and ethics, so combining it with an activity founded on opposing principles must transform it into something else. The way forward for archaeology in the deep sea does not lie in a contradictory realignment of archaeology’s goals but in collaborative research designed to mesh with emerging national and regional research and management plans.

  16. Activity syndromes and metabolism in giant deep-sea isopods

    Science.gov (United States)

    Wilson, Alexander D. M.; Szekeres, Petra; Violich, Mackellar; Gutowsky, Lee F. G.; Eliason, Erika J.; Cooke, Steven J.

    2017-03-01

    Despite growing interest, the behavioural ecology of deep-sea organisms is largely unknown. Much of this scarcity in knowledge can be attributed to deepwater animals being secretive or comparatively 'rare', as well as technical difficulties associated with accessing such remote habitats. Here we tested whether two species of giant marine isopod (Bathynomus giganteus, Booralana tricarinata) captured from 653 to 875 m in the Caribbean Sea near Eleuthera, The Bahamas, exhibited an activity behavioural syndrome across two environmental contexts (presence/absence of food stimulus) and further whether this syndrome carried over consistently between sexes. We also measured routine metabolic rate and oxygen consumption in response to a food stimulus in B. giganteus to assess whether these variables are related to individual differences in personality. We found that both species show an activity syndrome across environmental contexts, but the underlying mechanistic basis of this syndrome, particularly in B. giganteus, is unclear. Contrary to our initial predictions, neither B. giganteus nor B. tricarinata showed any differences between mean expression of behavioural traits between sexes. Both sexes of B. tricarinata showed strong evidence of an activity syndrome underlying movement and foraging ecology, whereas only male B. giganteus showed evidence of an activity syndrome. Generally, individuals that were more active and bolder, in a standard open arena test were also more active when a food stimulus was present. Interestingly, individual differences in metabolism were not related to individual differences in behaviour based on present data. Our study provides the first measurements of behavioural syndromes and metabolism in giant deep-sea isopods.

  17. Global diversity and biogeography of deep-sea pelagic prokaryotes

    KAUST Repository

    Salazar, Guillem

    2015-08-07

    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean\\'s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (∼3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.

  18. Global diversity and biogeography of deep-sea pelagic prokaryotes

    KAUST Repository

    Salazar, Guillem; Cornejo-Castillo, Francisco M.; Bení tez-Barrios, Veró nica; Fraile-Nuez, Eugenio; Á lvarez-Salgado, X. Antó n; Duarte, Carlos M.; Gasol, Josep M.; Acinas, Silvia G.

    2015-01-01

    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean's microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (∼3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.

  19. First biological measurements of deep-sea corals from the Red Sea.

    Science.gov (United States)

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  20. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  1. 75 FR 49420 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-08-13

    .... 100513223-0289-02] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine...-sea (DAS) allocation for the Atlantic deep- sea red crab fishery that were implemented in May 2010...

  2. 75 FR 35435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-06-22

    .... 100513223-0254-01] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine... deep-sea red crab fishery, including a target total allowable catch (TAC) and a fleet-wide days-at-sea...

  3. 75 FR 7435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-02-19

    .... 100105009-0053-01] RIN 0648-AY51 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications AGENCY: National Marine Fisheries Service (NMFS... comments. SUMMARY: NMFS proposes 2010 specifications for the Atlantic deep-sea red crab fishery, including...

  4. Sources and distributions of branched and isoprenoid tetraether lipids on the Amazon shelf and fan : Implications for the use of GDGT-based proxies in marine sediments

    NARCIS (Netherlands)

    Zell, Claudia; Kim, Jung-Hyun; Hollander, David; Lorenzoni, Laura; Baker, Paul; Silva, Cleverson Guizan; Nittrouer, Charles; Sinninghe Damsté, Jaap S.

    2014-01-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) in river fan sediments have been used successfully to reconstruct mean annual air temperature (MAAT) and soil pH of the Congo River drainage basin. However, in a previous study of Amazon deep-sea fan sediments the reconstructed MAATs were ca.

  5. Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance

    Science.gov (United States)

    Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut

    2017-10-01

    Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially

  6. First biological measurements of deep-sea corals from the Red Sea

    OpenAIRE

    C. Roder; M. L. Berumen; J. Bouwmeester; E. Papathanassiou; A. Al-Suwailem; C. R. Voolstra

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ?deep-sea? and ?cold-water? corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20?C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the ...

  7. Restoration of deep-sea macrofauna after simulated benthic disturbance in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Pavithran, S.; Ansari, Z.A.

    feeding by holoyhurians in the deep sea: some observations and comments. Progress in Oceanography 50, 407-421. Glasby, G.P., 1977. Marine manganese deposits. Elsevier, Amsterdam, pp.523. Grassle, J.F. and Sanders, H.L., 1973. Life histories and role... gesamten Hydrobiologie 77, 331-339. Thiel, H., 2001. Use and protection of the deep sea - an introduction. Deep-Sea Research II 48, (17-18), 3427-3431. Trueblood, D., Ozturgut, E., Pilipchuk, M., Gloumov, I. 1997. The ecological impacts of the joint U...

  8. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    Science.gov (United States)

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Food web transport of trace metals and radionuclides from the deep sea: a review

    International Nuclear Information System (INIS)

    Young, J.S.

    1979-06-01

    This report summarizes aspects of the potential distribution pathways of metals and radionuclides, particularly Co and Ni, through a biological trophic framework after their deposition at 4000 to 5000 meters in the North Atlantic or North Pacific. It discusses (a) the basic, deep-sea trophic structure of eutrophic and oligotrophic regions; (b) the transport pathways of biologically available energy to and from the deep sea, pathways that may act as accumulators and vectors of radionuclide distribution, and (c) distribution routes that have come into question as potential carriers of radionuclides from the deep-sea bed to man

  10. ASSESSMENT OF THE DEEP SEA WRECK USS INDEPENDENCE

    Directory of Open Access Journals (Sweden)

    Lisa C. Symons

    2016-07-01

    Full Text Available As part of ongoing efforts to better understand the nature of shipwrecks in National Marine Sanctuaries which may pose some level of pollution risk, and in this case, to definitively locate what is likely the only shipwreck in a sanctuary involved in both nuclear testing and nuclear waste disposal, NOAA’s Office of National Marine Sanctuaries collaborated with NOAA’s Office of Ocean Exploration and The Boeing Company, which provided their autonomous underwater vehicle, Echo Ranger, to conduct the first deep-water archaeological survey of the scuttled aircraft carrier USS Independence in the waters of Monterey Bay National Marine Sanctuary (MBNMS in March 2015. The presence of the deep-sea scuttled radioactive aircraft carrier USS Independence off the California coast has been the source of consistent media speculation and public concern for decades. The survey confirmed that a sonar target charted at the location was Independence, and provided details on the condition of the wreck, and revealed no detectable levels of radioactivity. At the same time, new information from declassified government reports provided more detail on Independence’s use as a naval test craft for radiological decontamination as well as its use as a repository for radioactive materials at the time of its scuttling in 1951. While further surveys may reveal more, physical assessment and focused archival work has demonstrated that the level of concern and speculation of danger from either a radioactive or oil pollution threat posed may be exaggerated.

  11. Real-Time Visualization System for Deep-Sea Surveying

    Directory of Open Access Journals (Sweden)

    Yujie Li

    2014-01-01

    Full Text Available Remote robotic exploration holds vast potential for gaining knowledge about extreme environments, which is difficult to be accessed by humans. In the last two decades, various underwater devices were developed for detecting the mines and mine-like objects in the deep-sea environment. However, there are some problems in recent equipment, like poor accuracy of mineral objects detection, without real-time processing, and low resolution of underwater video frames. Consequently, the underwater objects recognition is a difficult task, because the physical properties of the medium, the captured video frames, are distorted seriously. In this paper, we are considering use of the modern image processing methods to determine the mineral location and to recognize the mineral actually within a little computation complex. We firstly analyze the recent underwater imaging models and propose a novel underwater optical imaging model, which is much closer to the light propagation model in the underwater environment. In our imaging system, we remove the electrical noise by dual-tree complex wavelet transform. And then we solve the nonuniform illumination of artificial lights by fast guided trilateral bilateral filter and recover the image color through automatic color equalization. Finally, a shape-based mineral recognition algorithm is proposed for underwater objects detection. These methods are designed for real-time execution on limited-memory platforms. This pipeline is suitable for detecting underwater objects in practice by our experiences. The initial results are presented and experiments demonstrate the effectiveness of the proposed real-time visualization system.

  12. Sungsanpin, a lasso peptide from a deep-sea streptomycete.

    Science.gov (United States)

    Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2013-05-24

    Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.

  13. The permeability and consolidation of deep-sea sediments

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; Gunn, D.E.

    1985-01-01

    This report presents permeability and consolidation data for a wide range of sediment types. Permeability is one of the two parameters which are needed to directly quantify pore water advection in deep sea sediments and which are being investigated in high-level radioactive waste study areas. While it is desirable that these parameters should be measured in situ it is argued that values of permeability can be measured sufficiently accurately in the laboratory from core samples. Consequently, an apparatus has been developed which enables sediment permeability to be measured at decreasing void ratios during a back-pressured consolidation test. Data presented in this report from over 60 samples have established the major differences in permeability between various sediment types and how permeability changes as a function of burial depth and void ratio. Samples from two study areas in the North Atlantic Ocean, King's Trough Flank (KTF) and Great Meteor East (GME), have been compared with samples of Red Clay (RC) obtained from the NW Pacific Ocean. Results are presented and discussed. (author)

  14. Hydration of high-silica glasses in the deep sea

    International Nuclear Information System (INIS)

    Federman, A.N.

    1986-01-01

    Natural analogs of nuclear waste glasses are important because they provide information of the one variable that is not controllable in the laboratory - long intervals of time in the actual environment of storage. Some natural glasses have persisted for millions of years in deep-sea sediments in the form of disseminated particles and distinct tephra layers, while other apparently similar specimens have been completely altered to clay assemblages relatively quickly. Geologists have reached no firm conclusions as to why these differences exist, and more research is certainly warranted. These glasses vary in age, composition, and in the in-situ conditions they have experienced. They may provide important information for two different aspects of nuclear waste glass research: First, the chemical composition and especially the water content of these glasses as a function of time may give an understanding of the mechanisms and rates of diffusion in glasses in the natural environment. Second, the apparent differing durability of these glasses in different environmental conditions may suggest the optimal characteristics of a nuclear waste glass depository

  15. Virtual Investigations of an Active Deep Sea Volcano

    Science.gov (United States)

    Sautter, L.; Taylor, M. M.; Fundis, A.; Kelley, D. S.; Elend, M.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca spreading ridge 300 miles off the Oregon coast, is an active volcano whose summit caldera lies 1500 m beneath the sea surface. Ongoing construction of the Regional Scale Nodes (RSN) cabled observatory by the University of Washington (funded by the NSF Ocean Observatories Initiative) has allowed for exploration of recent lava flows and active hydrothermal vents using HD video mounted on the ROVs, ROPOS and JASON II. College level oceanography/marine geology online laboratory exercises referred to as Online Concept Modules (OCMs) have been created using video and video frame-captured mosaics to promote skill development for characterizing and quantifying deep sea environments. Students proceed at their own pace through a sequence of short movies with which they (a) gain background knowledge, (b) learn skills to identify and classify features or biota within a targeted environment, (c) practice these skills, and (d) use their knowledge and skills to make interpretations regarding the environment. Part (d) serves as the necessary assessment component of the laboratory exercise. Two Axial Seamount-focused OCMs will be presented: 1) Lava Flow Characterization: Identifying a Suitable Cable Route, and 2) Assessing Hydrothermal Vent Communities: Comparisons Among Multiple Sulfide Chimneys.

  16. Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools.

    Science.gov (United States)

    Licht, Stephen; Collins, Everett; Mendes, Manuel Lopes; Baxter, Christopher

    2017-12-01

    In this work we experimentally demonstrate (a) that the holding strength of universal jamming grippers increases as a function of the jamming pressure to greater than three atmospheres, and (b) that jamming grippers can be operated in the deep sea in ambient pressures exceeding one hundred atmospheres, where such high jamming pressures can be readily achieved. Laboratory experiments in a pressurized, water-filled test cell are used to measure the holding force of a "universal" style jamming gripper as a function of the pressure difference between internal membrane pressure and ambient pressure. Experiments at sea are used to demonstrate that jamming grippers can be installed on, and operated from, remotely operated vehicles at depths in excess of 1200 m. In both experiments, the jamming gripper consists of a latex balloon filled with a mixture of fresh water and ∼200 μm glass beads, which are cheaply available in large quantities as sand blasting media. The use of a liquid, rather than a gas, as the fluid media allows operation of the gripper with a closed-loop fluid system; jamming pressure is controlled with an electrically driven water hydraulic cylinder in the laboratory and with an oil hydraulic-driven large-bore water hydraulic cylinder at sea.

  17. The fluid dynamics of deep-sea mining

    Science.gov (United States)

    Peacock, Thomas; Rzeznik, Andrew

    2017-11-01

    With vast mineral deposits on the ocean floor, deep-sea nodule mining operations are expected to commence in the next decade. Among several fundamental fluid dynamics problems, this could involve plans for dewatering plumes to be released into the water column by surface processing vessels. To study this scenario, we consider the effects of non-uniform, realistic stratifications on forced compressible plumes with finite initial size. The classical plume model is developed to take into account the influence of thermal conduction through the dewatering pipe and also compressibility effects, for which a dimensionless number is introduced to determine their importance compared to the background stratification. Among other things, our results show that small-scale features of a realistic stratification can have a large effect on plume dynamics compared to smoothed profiles and that for any given set of environmental parameters there is a discharge flow rate that minimizes the plume vertical extent. Our findings are put in the context of nodule mining plumes for which the rapid and efficient re-sedimentation of waste material has important environmental consequences.

  18. Seafloor geological studies of active gas chimneys offshore Egypt (central Nile Fan).

    NARCIS (Netherlands)

    Dupre, S.; Woodside, J.M.; Foucher, J.-P.; de Lange, G.; Mascle, J.; Boetius, A.; Mastalerz, V.; Stadnitskaia, A.; Ondreas, H.; Huguen, C.; Harmegnies, F.; Gontharet, S.; Loncke, L; Deville, E.; Niemann, H.; Omoregie, E.; Olu-Le Roy, K; Fiala-Medioni, A.; Dahlmann, A.; Caprais, J.-C.; Prinzhofer, A.; Sibuet, M.; Pierre, C.

    2007-01-01

    Four mud volcanoes of several kilometres diameter named Amon, Osiris, Isis, and North Alex and located above gas chimneys on the Central Nile Deep Sea Fan, were investigated for the first time with the submersible Nautile. One of the objectives was to characterize the seafloor morphology and the

  19. Studies of the reproductive biology of deep sea megabenthos VIII. Biochemical and calorific content of the reproductive organs of deep sea holothurians

    International Nuclear Information System (INIS)

    Tyler, P.A.; Walker, M.

    1987-01-01

    The data for protein, lipid, carbohydrate and ash content of the ovary, testes, gut and body wall of a variety of deep sea holothurians are presented. The dominant biochemical is insoluble protein in all tissues followed by lipid in the ovary. The ash content was lowest in the gonads and highest in the body wall of most species. The mean calorific content of the species studied is 25.08Jmg -1 thus representing a significant energy store in the deep sea. The data suggest active metabolic pathways in these species which may pass radionuclides to the developing gametes and after spawning to dispersal in deep waters. (author)

  20. Ship Sensor Observations for Deep Sea Medicines 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the NOAA ship Ronald H. Brown during the "Deep Sea Medicines 2003: Exploration of the Gulf of Mexico" expedition...

  1. Recovery of deep-sea meiofauna after artificial disturbance in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Goltekar, N.R.; Gonsalves, S.; Ansari, Z.A.

    -1 1 Recovery of Deep-sea Meiofauna after Artificial Disturbance in the Central Indian Basin INGOLE B.S*., R. GOLTEKAR, S. GONSALVES and Z. A. ANSARI Biological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa; 403004...

  2. Bacterial Diversity in Deep-Sea Sediments from Afanasy Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Meena, R.M.; Deobagkar, D.D.

    Deep-sea sediments can reveal much about the last 200 million years of Earth history, including the history of ocean life and climate. Microbial diversity in Afanasy Nikitin seamount located at Equatorial East Indian Ocean (EEIO) was investigated...

  3. AFSC/RACE/GAP/Rooper: Deep sea coral and sponge distribution

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of a series of ongoing research projects, the AFSC has been mapping and modeling the distribution of deep-sea coral and sponge communities throughout Alaska....

  4. Ship Track for Deep Sea Medicines 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the Ronald H. Brown during the "Deep Sea Medicines 2003: Exploring the Gulf of Mexico" expedition sponsored by the National Oceanic and Atmospheric...

  5. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege; Kaartvedt, Stein

    2015-01-01

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013

  6. Deep-sea fungi as a source of alkaline and cold-tolerant proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Raghukumar, C.; Muraleedharan, U.; Raghukumar, S.

    ,5]. Fungi and their enzymes from the deep-sea environment have received scant attention. Proteins and peptides constitute a substantial portion of the organic nutrients present in the deep-sea sediments as well as suspended particulate matter [6... alkaline protease using a qualitative plate assay on Czapek Dox agar (CDA) supplemented with 1% skimmed milk powder (Trade name Sagar, India). Clearance zone produced around the fungal colonies in plates indicated protease positive reaction [19...

  7. Environmental studies for mining of deep-sea polymetallic nodules - Accomplishments and future plans

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    on marine ecosystem, the project on ‘EIA studies for nodule mining in CIB’ was initiated in 1996, under the national programme on polymetallic nodules funded by the Dept. of Ocean Development. Mining of the deep-sea minerals [1] is expected to alter... for the future • Development of predictive ecosystem models • Creation of environmental database • Evaluating the biogeochemical coupling of biota with deep-sea ecosystem • Development of environment management plan for nodule mining References...

  8. Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss

    OpenAIRE

    Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Fraschetti, Simonetta; Vanreusel, Ann; Vincx, Magda; Gooday, Andrew J.

    2008-01-01

    BackgroundRecent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking.ResultsHere, we present a global-scale study based on 116 deep-sea sites that relates benthic biodi...

  9. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.

    Science.gov (United States)

    Lan, Yi; Sun, Jin; Xu, Ting; Chen, Chong; Tian, Renmao; Qiu, Jian-Wen; Qian, Pei-Yuan

    2018-05-24

    High hydrostatic pressure and low temperatures make the deep sea a harsh environment for life forms. Actin organization and microtubules assembly, which are essential for intracellular transport and cell motility, can be disrupted by high hydrostatic pressure. High hydrostatic pressure can also damage DNA. Nucleic acids exposed to low temperatures can form secondary structures that hinder genetic information processing. To study how deep-sea creatures adapt to such a hostile environment, one of the most straightforward ways is to sequence and compare their genes with those of their shallow-water relatives. We captured an individual of the fish species Aldrovandia affinis, which is a typical deep-sea inhabitant, from the Okinawa Trough at a depth of 1550 m using a remotely operated vehicle (ROV). We sequenced its transcriptome and analyzed its molecular adaptation. We obtained 27,633 protein coding sequences using an Illumina platform and compared them with those of several shallow-water fish species. Analysis of 4918 single-copy orthologs identified 138 positively selected genes in A. affinis, including genes involved in microtubule regulation. Particularly, functional domains related to cold shock as well as DNA repair are exposed to positive selection pressure in both deep-sea fish and hadal amphipod. Overall, we have identified a set of positively selected genes related to cytoskeleton structures, DNA repair and genetic information processing, which shed light on molecular adaptation to the deep sea. These results suggest that amino acid substitutions of these positively selected genes may contribute crucially to the adaptation of deep-sea animals. Additionally, we provide a high-quality transcriptome of a deep-sea fish for future deep-sea studies.

  10. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    OpenAIRE

    Takai, K; Horikoshi, K

    1999-01-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the...

  11. A review on deep-sea fungi: Occurrence, diversity and adaptions

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Damare, S.R.; Singh, P.

    soil. In contrast to land, however, most studies on deep-sea sediments have focused exclusively on bacteria and have demonstrated their intense metabolic activities therein (Turley and Dixon 2002). The fungi and their role in the deep-sea sediments... polymerization and form brown-coloured products, constituting humus (Tisdall and Oades 1982). The humic material combines with soil particles to form microaggregates. Fungal hyphae further act as binding agents to form macroaggregates by trapping fine particles...

  12. Deep-sea genetic resources: New frontiers for science and stewardship in areas beyond national jurisdiction

    Science.gov (United States)

    Harden-Davies, Harriet

    2017-03-01

    The deep-sea is a large source of marine genetic resources (MGR), which have many potential uses and are a growing area of research. Much of the deep-sea lies in areas beyond national jurisdiction (ABNJ), including 65% of the global ocean. MGR in ABNJ occupy a significant gap in the international legal framework. Access and benefit sharing of MGR is a key issue in the development of a new international legally-binding instrument under the United Nations Convention on the Law of the Sea (UNCLOS) for the conservation and sustainable use of marine biological diversity in ABNJ. This paper examines how this is relevant to deep-sea scientific research and identifies emerging challenges and opportunities. There is no internationally agreed definition of MGR, however, deep-sea genetic resources could incorporate any biological material including genes, proteins and natural products. Deep-sea scientific research is the key actor accessing MGR in ABNJ and sharing benefits such as data, samples and knowledge. UNCLOS provides the international legal framework for marine scientific research, international science cooperation, capacity building and marine technology transfer. Enhanced implementation could support access and benefit sharing of MGR in ABNJ. Deep-sea scientific researchers could play an important role in informing practical new governance solutions for access and benefit sharing of MGR that promote scientific research in ABNJ and support deep-sea stewardship. Advancing knowledge of deep-sea biodiversity in ABNJ, enhancing open-access to data and samples, standardisation and international marine science cooperation are significant potential opportunity areas.

  13. An abyssal mobilome: Viruses, plasmids and vesicles from deep-sea hydrothermal vents

    OpenAIRE

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-01-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here...

  14. Fossil manganese nodules from Timor: geochemical and radiochemical evidence for deep-sea origin

    International Nuclear Information System (INIS)

    Margolis, S.V.; Fein, C.D.; Glasby, G.P.; Audley-Charles, M.G.

    1978-01-01

    Fossil Mn nodules of Cretaceous age from western Timor exhibit chemical, structural and radioisotope compositions consistent with their being of deep-sea origin. These nodules show characteristics similar to nodules now found at depths of 3,500-5,000 m in the Pacific and Indian Oceans. Slight differences in the fine structure and chemistry of these nodules and modern deep-sea nodules are attributed to diagenetic alteration after uplift of enclosing sediments

  15. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti

    OpenAIRE

    Tavormina, Patricia L.; Kellermann, Matthias Y.; Antony, Chakkiath Paul; Tocheva, Elitza I.; Dalleska, Nathan F.; Jensen, Ashley J.; Valentine, David L.; Hinrichs, Kai-Uwe; Jensen, Grant J.; Dubilier, Nicole; Orphan, Victoria J.

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid...

  16. Species-energy relationship in the deep sea: A test using the Quaternary fossil record

    Science.gov (United States)

    Hunt, G.; Cronin, T. M.; Roy, K.

    2005-01-01

    Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.

  17. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  18. Potential impact of global climate change on benthic deep-sea microbes.

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. The Age of Human-Robot Collaboration: Deep Sea Exploration

    KAUST Repository

    Khatib, Oussama

    2018-01-18

    The promise of oceanic discovery has intrigued scientists and explorers for centuries, whether to study underwater ecology and climate change, or to uncover natural resources and historic secrets buried deep at archaeological sites. Reaching these depth is imperative since factors such as pollution and deep-sea trawling increasingly threaten ecology and archaeological sites. These needs demand a system deploying human-level expertise at the depths, and yet remotely operated vehicles (ROVs) are inadequate for the task. To meet the challenge of dexterous operation at oceanic depths, in collaboration with KAUSTメs Red Sea Research Center and MEKA Robotics, Oussama Khatib and the team developed Ocean One, a bimanual humanoid robot that brings immediate and intuitive haptic interaction to oceanic environments. Introducing Ocean One, the haptic robotic avatar During this lecture, Oussama Khatib will talk about how teaming with the French Ministry of Cultureメs Underwater Archaeology Research Department, they deployed Ocean One in an expedition in the Mediterranean to Louis XIVメs flagship Lune, lying off the coast of Toulon at ninety-one meters. In the spring of 2016, Ocean One became the first robotic avatar to embody a humanメs presence at the seabed. Ocean Oneメs journey in the Mediterranean marks a new level of marine exploration: Much as past technological innovations have impacted society, Ocean Oneメs ability to distance humans physically from dangerous and unreachable work spaces while connecting their skills, intuition, and experience to the task promises to fundamentally alter remote work. Robotic avatars will search for and acquire materials, support equipment, build infrastructure, and perform disaster prevention and recovery operations - be it deep in oceans and mines, at mountain tops, or in space.

  20. Seawater Carbonate Chemistry of Deep-sea Coral Beds off the Northwestern Hawaiian Islands

    Science.gov (United States)

    Brooks, J.; Shamberger, K.; Roark, E. B.; Miller, K.; Baco-Taylor, A.

    2016-02-01

    Many species of deep-sea octocorals produce calcium carbonate (CaCO3) skeletons and form coral beds that support diverse ecosystems crucial to fisheries. The geochemistry of deep-sea coral skeletons can provide valuable paleoceanographic information on ocean circulation and nutrient cycling. Deep-sea corals in the older bottom waters of the Pacific are naturally exposed to higher carbon dioxide (CO2) concentrations and lower pH than in the Atlantic where much of the previous deep-sea coral work has occurred. Therefore, some Pacific deep-sea corals may live and calcify in waters that are corrosive to their skeletons, but there have been few current seawater carbonate chemistry measurements of the waters surrounding deep-sea coral beds to assess this. The input of anthropogenic atmospheric CO2 known as ocean acidification (OA) lowers ocean pH and causes an expansion of these corrosive waters. Seawater carbonate chemistry must be characterized before accurate predictions can be made for the effects of OA on these important ecosystems. Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) samples were collected in the fall of 2014 and 2015 from the surface to 1450 m depth off the Northwestern Hawaiian Island chain where deep-sea octocorals are found. The partial pressure of CO2 increased and pH, calcite saturation state (Ωca) and aragonite saturation state (Ωar) decreased with increasing latitude and depth. Notably, waters were undersaturated with respect to calcite and aragonite (Ωca and Ωar less than 1) below 800 m and 500 m, respectively. Therefore, deep-sea corals below these depths must calcify in waters that are thermodynamically favorable for CaCO3 dissolution. How deep-sea octocorals cope with such adverse seawater chemistry is critical to understanding future effects of OA. It is not known whether OA is currently negatively impacting deep-sea octocorals, but their naturally acidified environments could make them particularly susceptible to OA.

  1. Man and the last great wilderness: human impact on the deep sea.

    Directory of Open Access Journals (Sweden)

    Eva Ramirez-Llodra

    Full Text Available The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008. A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past to exploitation (present. We predict that from now and into the future, increases in atmospheric CO(2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this

  2. Stakeholder perspectives on the importance of rare-species research for deep-sea environmental management

    Science.gov (United States)

    Turner, Phillip J.; Campbell, Lisa M.; Van Dover, Cindy L.

    2017-07-01

    The apparent prevalence of rare species (rarity) in the deep sea is a concern for environmental management and conservation of biodiversity. Rare species are often considered at risk of extinction and, in terrestrial and shallow water environments, have been shown to play key roles within an ecosystem. In the deep-sea environment, current research focuses primarily on abundant species and deep-sea stakeholders are questioning the importance of rare species in ecosystem functioning. This study asks whether deep-sea stakeholders (primarily scientists) view rare-species research as a priority in guiding environmental management. Delphi methodology (i.e., an iterative survey approach) was used to understand views about whether or not 'deep-sea scientists should allocate more resources to research on rare species in the deep sea, even if this means less resources might be available for abundant-species research.' Results suggest little consensus regarding the prioritization of resources for rare-species research. From Survey 1 to Survey 3, the average participant response shifted toward a view that rare-species research is not a priority if it comes at a cost to research on abundant species. Participants pointed to the need for a balanced approach and highlighted knowledge gaps about even the most fundamental questions, including whether rare species are truly 'rare' or simply under-sampled. Participants emphasized the lack of basic biological knowledge for rare and abundant species, particularly abundant meio- and microscopic species, as well as uncertainty in the roles rare and abundant species play in ecosystem processes. Approaches that jointly consider the role of rare and abundant species in ecosystem functioning (e.g., biological trait analysis) may help to clarify the extent to which rare species need to be incorporated into deep-sea environment management in order to maintain ecosystem functioning.

  3. Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Science.gov (United States)

    Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short

  4. Advances in deep-sea biology: biodiversity, ecosystem functioning and conservation. An introduction and overview

    Science.gov (United States)

    Cunha, Marina R.; Hilário, Ana; Santos, Ricardo S.

    2017-03-01

    Once considered as monotonous and devoid of life, the deep sea was revealed during the last century as an environment with a plethora of life forms and extremely high species richness (Rex and Etter, 2010). Underwater vehicle developments allowed direct observations of the deep, disclosing unique habitats and diverse seascapes, and other technological advances enabled manipulative experimentation and unprecedented prospects to pursue novel research topics (Levin and Sibuet, 2012; Danovaro et al., 2014). Alongside, the growing human population greatly increased the pressure on deep-sea ecosystems and the services they provide (Ramirez-Llodra et al., 2011; Thurber et al., 2014; Levin et al., 2016). Societal changes further intensified worldwide competition for natural resources, extending the present footprint of impacts over most of the global ocean (Halpern et al., 2008). In this socio-economic context, and in tandem with cutting edge technological advances and an unclear legal framework to regulate access to natural resources (Boyes and Elliott, 2014), the deep sea has emerged as a new opportunity for industrial exploitation and novel economic activities. The expanding use of the deep sea prompted a rapid reply from deep-sea scientists that recommended "a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration" and proposed "three directions to advance deep-ocean stewardship: i) protection and mitigation, ii) research, and iii) collaborative governance" (Mengerink et al., 2014). The European Marine Board position paper 22 (Rogers et al., 2015) further examined the key societal and environmental drivers confronting the deep sea and the role of deep-sea research to deliver future knowledge needs for science and society; a clear

  5. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  6. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Takai, K; Horikoshi, K

    1999-08-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.

  7. The KM3NeT deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Margiotta, Annarita

    2014-12-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about 100 Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are presented and discussed. - Highlights: • A deep-sea research infrastructure is being built in the Mediterranean Sea. • It will host a km{sup 3}-size neutrino telescope and a deep-sea multidisciplinary observatory. • The main goal of the neutrino telescope is the search for Galactic neutrino sources. • A major innovation is adopted in the design of the optical module. • 31 3 in. photomultiplier tubes (PMTs) will be hosted in the same glass sphere.

  8. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  9. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.

    Science.gov (United States)

    Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges

    2015-11-01

    Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Characteristics of a sandy depositional lobe on the outer Mississippi fan from SeaMARC IA sidescan sonar images

    Science.gov (United States)

    Twichell, David C.; Schwab, William C.; Nelson, C. Hans; Kenyon, Neil H.; Lee, Homa J.

    1992-01-01

    SeaMARC IA sidescan sonar images of the distal reaches of a depositional lobe on the Mississippi Fan show that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. Overbank sheet flow of sands was not an important process in the transport and deposition of the sandy and silty sediment found on this fan. The dendritic distributary pattern and the high order of splaying of the channels, only one of which appears to have been active at a time, suggest that coarse-grained deposits on this fan are laterally discontinuous.

  11. Characteristics of a sandy depositional lobe on the outerMississippi Fan from Sea MARC 1A sidescan sonar images

    Science.gov (United States)

    Twichell, D.C.; Schwab, W.C.; Nelson, C.H.; Kenyon, Neil H.; Lee, H.J.

    1992-01-01

    Shows that channelized rather than unconfined transport was the dominant transport mechanism for coarse-grained sediment during the formation of this part of the deep-sea fan. The dendritic distributary pattern and the high order of splaying of the channels, only one of which appears to have been active at a time, suggest that coarse- grained deposits on this fan are laterally discontinuous. -from Authors

  12. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1983-06-01

    The report presents results of IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP joint group of experts on the scientific aspects of marine pollution (GESAMP) to provide advice on the most suitable oceanographic modelling techniques to be applied to the deep-sea dumping of both radioactive and non-radioactive substances. There are four main parts of the work: the present knowledge of oceanic processes that may transfer substances from a deep-sea dump site back to man or his food chain, methods and models presently available for estimating or calculating concentration distributions of contaminants arising from releases from deep-sea dump sites and recommendations as to the presently most appropriate models, the reliability of the concentration distributions obtained using these models and recommended areas for further improvements including research needs

  13. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  14. Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea)

    DEFF Research Database (Denmark)

    Lecroq, Beatrice; Gooday, Andrew John; Cedhagen, Tomas

    2009-01-01

    Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between the tubu......Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between...... suggest strongly that komokiaceans, and probably many other large testate protists, provide a habitat structure for a large spectrum of eukaryotes, significantly contributing to maintaining the biodiversity of micro- and meiofaunal communities in the deep sea....

  15. A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Kwang-Tsao Shao

    2014-12-01

    Full Text Available The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia fig, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish. However, in the past, no research vessels were employed to collect fish data on site. Only specimens, caught by bottom trawl fishing in the waters hundreds of meters deep and missing precise locality information, were collected from Dasi and Donggang fishing harbors. Began in 2001, with the support of National Science Council, research vessels were made available to take on the task of systematically collecting deep-sea fish specimens and occurrence records in the waters surrounding Taiwan. By the end of 2006, a total of 3,653 specimens, belonging to 26 orders, 88 families, 198 genera and 366 species, were collected in addition to data such as sampling site geographical coordinates and water depth, and fish body length and weight. The information, all accessible from the “Database of Taiwan’s Deep-Sea Fauna and Its Distribution (http://deepsea.biodiv.tw/” as part of the “Fish Database of Taiwan,” can benefit the study of temporal and spatial changes in distribution and abundance of fish fauna in the context of global deep-sea biodiversity.

  16. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.

    Science.gov (United States)

    Taylor, M L; Roterman, C N

    2017-10-01

    Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  17. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Directory of Open Access Journals (Sweden)

    Itsumi Nakamura

    Full Text Available We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes, indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  18. Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities

    Science.gov (United States)

    Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra

    2016-01-01

    Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.

  19. Cosmopolitanism and Biogeography of the Genus Manganonema (Nematoda: Monhysterida in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    2011-09-01

    Full Text Available Spatial patterns of species diversity provide information about the mechanisms that regulate biodiversity and are important for setting conservation priorities. Present knowledge of the biogeography of meiofauna in the deep sea is scarce. This investigation focuses on the distribution of the deep-sea nematode genus Manganonema, which is typically extremely rare in deep-sea sediment samples. Forty-four specimens of eight different species of this genus were recorded from different Atlantic and Mediterranean regions. Four out of the eight species encountered are new to science. We report here that this genus is widespread both in the Atlantic and in the Mediterranean Sea. These new findings together with literature information indicate that Manganonema is a cosmopolitan genus, inhabiting a variety of deep-sea habitats and oceans. Manganonema shows the highest diversity at water depths >4,000 m. Our data, therefore, indicate that this is preferentially an abyssal genus that is able, at the same time, to colonize specific habitats at depths shallower than 1,000 m. The analysis of the distribution of the genus Manganonema indicates the presence of large differences in dispersal strategies among different species, ranging from locally endemic to cosmopolitan. Lacking meroplanktonic larvae and having limited dispersal ability due to their small size, it has been hypothesized that nematodes have limited dispersal potential. However, the investigated deep-sea nematodes were present across different oceans covering macro-scale distances. Among the possible explanations (hydrological conditions, geographical and geological pathways, long-term processes, specific historical events, their apparent preference of colonizing highly hydrodynamic systems, could suggest that these infaunal organisms are transported by means of deep-sea benthic storms and turbidity currents over long distances.

  20. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  1. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Science.gov (United States)

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  2. Predicted deep-sea coral habitat suitability for the U.S. West coast.

    Directory of Open Access Journals (Sweden)

    John M Guinotte

    Full Text Available Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington. Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH and identify suitable habitat within U.S. National Marine Sanctuaries (NMS. Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.

  3. The National Deep-Sea Coral and Sponge Database: A Comprehensive Resource for United States Deep-Sea Coral and Sponge Records

    Science.gov (United States)

    Dornback, M.; Hourigan, T.; Etnoyer, P.; McGuinn, R.; Cross, S. L.

    2014-12-01

    Research on deep-sea corals has expanded rapidly over the last two decades, as scientists began to realize their value as long-lived structural components of high biodiversity habitats and archives of environmental information. The NOAA Deep Sea Coral Research and Technology Program's National Database for Deep-Sea Corals and Sponges is a comprehensive resource for georeferenced data on these organisms in U.S. waters. The National Database currently includes more than 220,000 deep-sea coral records representing approximately 880 unique species. Database records from museum archives, commercial and scientific bycatch, and from journal publications provide baseline information with relatively coarse spatial resolution dating back as far as 1842. These data are complemented by modern, in-situ submersible observations with high spatial resolution, from surveys conducted by NOAA and NOAA partners. Management of high volumes of modern high-resolution observational data can be challenging. NOAA is working with our data partners to incorporate this occurrence data into the National Database, along with images and associated information related to geoposition, time, biology, taxonomy, environment, provenance, and accuracy. NOAA is also working to link associated datasets collected by our program's research, to properly archive them to the NOAA National Data Centers, to build a robust metadata record, and to establish a standard protocol to simplify the process. Access to the National Database is provided through an online mapping portal. The map displays point based records from the database. Records can be refined by taxon, region, time, and depth. The queries and extent used to view the map can also be used to download subsets of the database. The database, map, and website is already in use by NOAA, regional fishery management councils, and regional ocean planning bodies, but we envision it as a model that can expand to accommodate data on a global scale.

  4. Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia; Limidae)

    DEFF Research Database (Denmark)

    Hammer, Karen M.; Kristiansen, Erlend; Zachariassen, Karl Erik

    2011-01-01

    The option of storing CO(2) in subsea rock formations to mitigate future increases in atmospheric CO(2) may induce problems for animals in the deep sea. In the present study the deep-sea bivalve Acesta excavata was subjected to environmental hypercapnia (pHSW 6.35, P(CO2), =33,000 mu atm...... extracellular pH remained significantly lower during recovery. Intracellular non-bicarbonate buffering capacity of the posterior adductor muscle of hypercapnic animals was significantly lower than control values, but this was not the case for the remaining tissues analyzed. Oxygen consumption initially dropped...

  5. Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Khadge, N.H.; Nabar, S.; Raghukumar, C.; Ingole, B.S.; Valsangkar, A.B.; Sharma, R.; Srinivas, K.

    1 Author version: Environ. Monit. Assess., vol.184; 2012; 2829-2844 Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment B. Nagender Nath * , N.H. Khadge, Sapana Nabar, C. Raghu Kumar, B.S. Ingole... community two years after an artificial rapid deposition event. Publication of Seto Marine Biological Laboratory, 39(1), 17-27. Gage, J.D. (1978). Animals in deep-sea sediments. Proceedings of Royal Society of Edinburgh, 768, 77-93. Gage, J.D., & Tyler...

  6. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    Full Text Available Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth, including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components

  7. Uptake and distribution of organo-iodine in deep-sea corals.

    Science.gov (United States)

    Prouty, Nancy G; Roark, E Brendan; Mohon, Leslye M; Chang, Ching-Chih

    2018-07-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon ( 14 C) measurements. These results hold promise for developing chronologies independent of 14 C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129 I/ 127 I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129 I composition provides further evidence that iodine composition and isotope

  8. Uptake and distribution of organo-iodine in deep-sea corals

    Science.gov (United States)

    Prouty, Nancy G.; Roark, E. Brendan; Mohon, Leslye M.; Chang, Ching-Chih

    2018-01-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon (14C) measurements. These results hold promise for developing chronologies independent of 14C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129I/127I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129I composition provides further evidence that iodine composition and isotope

  9. Revealing Holobiont Structure and Function of Three Red Sea Deep-Sea Corals

    KAUST Repository

    Yum, Lauren

    2014-12-01

    Deep-sea corals have long been regarded as cold-water coral; however a reevaluation of their habitat limitations has been suggested after the discovery of deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further insight into the biology of deep-sea corals at these temperatures, the work in this PhD employed a holotranscriptomic approach, looking at coral animal host and bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition was analyzed via amplicon-based 16S surveys and cultured bacterial strains were subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated microbes. Coral host transcriptome data suggest that coral can employ mitochondrial hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the microbial community associated with these corals, ribokinases and retron-type reverse transcriptases are abundantly expressed. In its first application to deep-sea coral associated microbial communities, 16S-based next-generation sequencing found that a single operational taxonomic unit can comprise the majority of sequence reads and that a large number of low abundance populations are present, which cannot be visualized with first generation sequencing. Bioactivity testing of selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a variety of signaling cascades. Some of these cytological profiles were similar to those of several reference pharmacologically active compounds, which suggest that the bacteria isolates produce compounds with similar mechanisms of action as the reference compounds. The sum of this work offers several mechanisms by which Red Sea deep-sea corals cope with environmental

  10. Rose George: Deep Sea and Foreign Going: Inside Shipping, the Invisible Industry that Brings you 90% of Everything

    DEFF Research Database (Denmark)

    Taudal Poulsen, René

    2014-01-01

    Book review of: Rose George: Deep Sea and Foreign Going: Inside Shipping, the Invisible Industry that Brings you 90% of Everything. London :Portobello Books, 2013. 320 pp. ISBN 9781846272639......Book review of: Rose George: Deep Sea and Foreign Going: Inside Shipping, the Invisible Industry that Brings you 90% of Everything. London :Portobello Books, 2013. 320 pp. ISBN 9781846272639...

  11. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  12. 76 FR 36511 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3

    Science.gov (United States)

    2011-06-22

    ...-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3 AGENCY... the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP) (Amendment 3), incorporating a draft... current trap limit regulations state that red crab may not be harvested from gear other than a marked red...

  13. 76 FR 60379 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3

    Science.gov (United States)

    2011-09-29

    .... 100903433-1531-02] RIN 0648-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab... approved in Amendment 3 to the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP). The New England... ABC control rule.'' The NS1 guidelines further state that ``ABC may not exceed OFL,'' and that ``the...

  14. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.

    Science.gov (United States)

    Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua

    2013-11-01

    We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.

  15. Dynamic and static elastic moduli of North Sea and deep sea chalk

    DEFF Research Database (Denmark)

    Gommesen, Lars; Fabricius, Ida Lykke

    2001-01-01

    We have established an empirical relationship between the dynamic and the static mechanical properties of North Sea and deep sea chalk for a large porosity interval with respect to porosity, effective stress history and textural composition. The chalk investigated is from the Tor and Hod Formatio...

  16. Deep-sea mining: Economic, technical, technological, and environmental considerations for sustainable development

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    investment of $1.95 billion as capital expenditure and $9 billion as operating expenditure for a single deep-sea mining venture. In view of high investment, technological challenges and economic considerations, private-public cooperation could be an effective...

  17. Clay as indicator of sediment plume movement in deep-sea environment

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    artificially disturbed and resuspended 5 m above the seabed in 1997 during the Indian Deep-Sea Experiment. Initial studies have shown that the clay content during monitoring-1 phase significantly increased compared to post-disturbance, by 15 and 24...

  18. Technological and profitable analysis of airlifting in deep sea mining systems

    NARCIS (Netherlands)

    Ma, W.; van Rhee, C.; Schott, D.L.

    2017-01-01

    Airlifting technology utilized in deep-sea mining (DSM) industry was proposed in the 70s of last century, which was triggered by the discovery of vast amounts of mineral resources on the seabed. The objective of this paper is to assess the technological feasibility and profitability analyses in

  19. Similar rapid response to phytodetritus deposition in shallow and deep-sea sediments

    NARCIS (Netherlands)

    Moodley, L.; Middelburg, J.J.; Soetaert, K.E.R.; Boschker, H.T.S.; Herman, P.M.J.; Heip, C.H.R.

    2005-01-01

    The short-term benthic response to an input of fresh organic matter was examined in vastly contrasting benthic environments (estuarine intertidal to deep-sea) using 13C-labeled diatoms as a tracer of labile carbon. Benthic processing was assessed in major compartments through 13C-enrichment in CO2,

  20. Modeling food web interactions in benthic deep-sea ecosystems. A practical guide

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Van Oevelen, D.J.

    2009-01-01

    Deep-sea benthic systems are notoriously difficult to sample. Even more than for other benthic systems, many flows among biological groups cannot be directly measured, and data sets remain incomplete and uncertain. In such cases, mathematical models are often used to quantify unmeasured biological

  1. Chemosynthesis in deep-sea red-clay: Linking concepts to probable martian life

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Mourya, B.S.; Mamatha, S.S.; Khadge, N.H.; LokaBharathi, P.A.

    of microbial biogeochemistry are used in the pres- ent deep-sea analogue studies and would be imple- mented for actual Martian soil samples in future: Microbial abundance in terms of total counts » Diversity of culture dependent and independent Chemos... soils done earlier by Viking I robots [5, Bianciardi et. al, 2012

  2. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    NARCIS (Netherlands)

    Tamburini, C.; Canals, M.; de Madron, X.D.; Houpert, L.; Lefevre, D.; Martini, V.; D'Ortenzio, F.; Robert, A.; Testor, P.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.L.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, P.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, H.Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.N.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, V.G.; Salesa, F.; Sanchez-Losa, A.; Sapienza, P.; Schock, F.; Schuller, J.P.; Schussler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.G.F.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June

  3. An approach for in situ studies of deep-sea amphipods and their microbial gut flora

    Science.gov (United States)

    Jannasch, H. W.; Cuhel, R. L.; Wirsen, C. O.; Taylor, C. D.

    1980-10-01

    A technique has been developed and field-tested for the trapping, feeding, and timed incubation of amphipods on the deep-sea floor. Data obtained from experiments using radiolabeled foodstuffs indicate that shifts within the labeled fractions of the major biological polymers make it possible to distinguish between the metabolism of the amphipods and that of their intestinal microflora.

  4. Ciliatamides A-C, bioactive lipopeptides from the deep-sea sponge Aaptos ciliata

    NARCIS (Netherlands)

    Nakao, Y.; Kawatsu, S.; Okamoto, C.; Okamoto, M.; Matsumoto, Y.; Matsunaga, S.; van Soest, R.W.M.; Fusetani, N.

    2008-01-01

    Three lipopeptides, ciliatamides A−C, were isolated from the deep-sea sponge Aaptos ciliata, and their structures were elucidated on the basis of spectroscopic and chemical methods. Ciliatamides A and B were found to be antileishmanial, while B also exhibited marginal cytotoxicity to HeLa cells.

  5. Ciliatamides A-C, bioactive lipopeptides from the deep-sea sponge Aaptos ciliata.

    Science.gov (United States)

    Nakao, Yoichi; Kawatsu, Shizuka; Okamoto, Chikane; Okamoto, Masaaki; Matsumoto, Yoshitsugu; Matsunaga, Shigeki; van Soest, Rob W M; Fusetani, Nobuhiro

    2008-03-01

    Three lipopeptides, ciliatamides A-C ( 1- 3), were isolated from the deep-sea sponge Aaptos ciliata, and their structures were elucidated on the basis of spectroscopic and chemical methods. Ciliatamides A ( 1) and B ( 2) were found to be antileishmanial, while 2 also exhibited marginal cytotoxicity to HeLa cells.

  6. Correlation of the Eemian (interglacial) Stage and the deep-sea oxygen-isotope stratigraphy

    International Nuclear Information System (INIS)

    Mangerud, J.; Soenstegaard, E.; Sejrup, H.-P.

    1979-01-01

    A complete interglacial sequence in coastal marine sediments in western Norway is here correlated with the Eemian Stage by means of pollen stratigraphy, and with deep-sea cores by means of marine fossils. The Eemian is correlated with isotope stage 5e. (author)

  7. Biological responses to disturbance from simulated deep-sea polymetallic nodulemining

    NARCIS (Netherlands)

    Jones, D.O.B.; Kaiser, S.; Sweetman, A.K.; Smith, C.R.; Menot, L.; Vink, A.; Trueblood, D.; Greinert, J.; Billett, D.S.M.; Martinez Arbizu, P.; Radziejewska, T.; Singh, R.; Ingole, B.; Stratmann, T.; Simon-Lledó, E.; Durden, J.M.; Clack, M.R.

    2017-01-01

    Commercial-scale mining for polymetallic nodules could have a major impact on the deepseaenvironment, but the effects of these mining activities on deep-sea ecosystems are verypoorly known. The first commercial test mining for polymetallic nodules was carried out in1970. Since then a number of

  8. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria.

    Science.gov (United States)

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-05-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.

  9. State of the deep-sea shrimp stock of Angola | Djama | Journal of the ...

    African Journals Online (AJOL)

    Journal of the Cameroon Academy of Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 3 (2001) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. State of the deep-sea shrimp stock of Angola.

  10. Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific.

    Directory of Open Access Journals (Sweden)

    Sayaka eMino

    2013-04-01

    Full Text Available Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 P. hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough. Although the strains share > 98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types, indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria.

  11. Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species

    Science.gov (United States)

    Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann

    2018-02-01

    Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment

  12. Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

    Directory of Open Access Journals (Sweden)

    Holly J. Niner

    2018-03-01

    Full Text Available Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs for another (e.g., abyssal nodule fields have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate. We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics, play an essential role in regulatory services (e.g., carbon sequestration and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement

  13. Model output for deep-sea coral habitat suitability in the U.S. North and Mid-Atlantic from 2013 (NCEI Accession 0145923)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset was created for potential use as an environmental predictor in spatial predictive models of deep-sea coral habitat suitability. Deep-sea corals are of...

  14. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau

    Science.gov (United States)

    Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori

    2017-12-01

    We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.

  15. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    Science.gov (United States)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  16. Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations.

    Directory of Open Access Journals (Sweden)

    Jon M Yearsley

    Full Text Available BACKGROUND: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. PRINCIPAL FINDINGS: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore larvae of polyplacophoran molluscs (chitons, we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. CONCLUSIONS/SIGNIFICANCE: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.

  17. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    OpenAIRE

    Yum, L. K.; Baumgarten, S.; Röthig, T.; Roder, C.; Roik, Anna; Michell, C.; Voolstra, C. R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20??C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studie...

  18. Bedforms, Channel Formation, and Flow Stripping in the Navy Fan, Offshore Baja California

    Science.gov (United States)

    Carvajal, C.; Paull, C. K.; Caress, D. W.; Fildani, A.; Lundsten, E. M.; Anderson, K.; Maier, K. L.; McGann, M.; Gwiazda, R.; Herguera, J. C.

    2017-12-01

    Deep-sea fans store some of the largest volumes of siliciclastic sediment in marine basins. These sandy accumulations record the history of sediment transfer from land to sea, serving as direct records of the geologic history of the continents. Despite their importance, deep-sea fans are difficult to study due to their remote locations in thousands of meters of water depth. In addition, deep-sea fans have a low relief, and geomorphological changes important for the evolution of the fan are often too subtle to be adequately resolved by 3D seismic data or surface-ship bathymetry. To improve our understanding of deep-sea fans, an autonomous underwater vehicle (AUV) was used to acquire high-resolution bathymetry and sub-bottom CHIRP profiles in the proximal sectors of the Navy Fan, offshore Baja California. A remotely operated vehicle was also used to acquire vibracores. The 1-m grid resolution bathymetry shows the seafloor geomorphology in extreme detail revealing different kinds of bedforms, which in combination with the vibracores help to interpret the sedimentary processes active during the Holocene. Morphological elements in the survey area include a main channel, numerous scours, an incipient channel, sediment waves, and a fault escarpment. Several of the scours are interpreted to result from flow stripping at a bend in the main channel. Along high gradient sectors (e.g. > 1o), the scours form bedforms with an erosionally truncated headwall immediately followed down-dip by an upflow accreting sedimentary bulge. These bedforms, the presence of clean sands in the scours and the high gradients suggest that these scours are net-erosional cyclic steps. Scours seem to coalesce along the sediment transport direction to form an incipient channel with abundant rip-up clast gravels. Elsewhere in the survey area, scours are elongated and intimately associated with sediment waves. The acquired dataset illustrates that deep-sea fans may show a variety of processes and

  19. weiqiang fan

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. WEIQIANG FAN. Articles written in Journal of Genetics. Volume 96 Issue 6 December 2017 pp 867-872 RESEARCH ARTICLE. A genetic variant in COL11A1 is functionally associated with lumbar disc herniation in Chinese population · WENJUN LIU GUISEN SUN LONGSHENG GUO ...

  20. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses.

    Science.gov (United States)

    Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris

    2017-10-01

    Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that

  1. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil.

    Science.gov (United States)

    Olsen, Gro Harlaug; Coquillé, Nathalie; Le Floch, Stephane; Geraudie, Perrine; Dussauze, Matthieu; Lemaire, Philippe; Camus, Lionel

    2016-04-01

    In the context of an oil spill accident and the following oil spill response, much attention is given to the use of dispersants. Dispersants are used to disperse an oil slick from the sea surface into the water column generating a cloud of dispersed oil droplets. The main consequence is an increasing of the sea water-oil interface which induces an increase of the oil biodegradation. Hence, the use of dispersants can be effective in preventing oiling of sensitive coastal environments. Also, in case of an oil blowout from the seabed, subsea injection of dispersants may offer some benefits compared to containment and recovery of the oil or in situ burning operation at the sea surface. However, biological effects of dispersed oil are poorly understood for deep-sea species. Most effects studies on dispersed oil and also other oil-related compounds have been focusing on more shallow water species. This is the first approach to assess the sensitivity of a macro-benthic deep-sea organism to dispersed oil. This paper describes a toxicity test which was performed on the macro-benthic deep-sea amphipod (Eurythenes gryllus) to determine the concentration causing lethality to 50% of test individuals (LC50) after an exposure to dispersed Brut Arabian Light (BAL) oil. The LC50 (24 h) was 101 and 24 mg L(-1) after 72 h and 12 mg L(-1) at 96 h. Based on EPA scale of toxicity categories to aquatic organisms, an LC50 (96 h) of 12 mg L(-1) indicates that the dispersed oil was slightly to moderately toxic to E. gryllus. As an attempt to compare our results to others, a literature study was performed. Due to limited amount of data available for dispersed oil and amphipods, information on other crustacean species and other oil-related compounds was also collected. Only one study on dispersed oil and amphipods was found, the LC50 value in this study was similar to the LC50 value of E. gryllus in our study. Since toxicity data are important input to risk assessment and net environmental

  2. Deep-sea pennatulaceans (sea pens) - recent discoveries, morphological adaptations, and responses to benthic oceanographic parameters

    Science.gov (United States)

    Williams, G. C.

    2015-12-01

    Pennatulaceans are sessile, benthic marine organisms that are bathymetrically wide-ranging, from the intertidal to approximately 6300 m in depth, and are conspicuous constituents of deep-sea environments. The vast majority of species are adapted for anchoring in soft sediments by the cylindrical peduncle - a muscular hydrostatic skeleton. However, in the past decade a few species ("Rockpens") have been discovered and described that can attach to hard substratum such as exposed rocky outcrops at depths between 669 and 1969 m, by a plunger-like adaptation of the base of the peduncle. Of the thirty-six known genera, eleven (or 30%) have been recorded from depths greater than 1000 m. The pennatulacean depth record holders are an unidentified species of Umbellula from 6260 m in the Peru-Chile Trench and a recently-discovered and described genus and species, Porcupinella profunda, from 5300 m the Porcupine Abyssal Plain of the northeastern Atlantic. A morphologically-differentiated type of polyp (acrozooid) have recently been discovered and described in two genera of shallow-water coral reef sea pens. Acrozooids apparently represent asexual buds and presumably can detach from the adult to start clonal colonies through asexual budding. Acrozooids are to be expected in deep-sea pennatulaceans, but so far have not been observed below 24 m in depth. Morphological responses at depths greater than 1000 m in deep-sea pennatulaceas include: fewer polyps, larger polyps, elongated stalks, and clustering of polyps along the rachis. Responses to deep-ocean physical parameters and anthropogenic changes that could affect the abundance and distribution of deep-sea pennatulaceans include changes in bottom current flow and food availability, changes in seawater temperature and pH, habitat destruction by fish trawling, and sunken refuse pollution. No evidence of the effects of ocean acidification or other effects of anthropogenic climate change in sea pens of the deep-sea has been

  3. Postcolonial partnerships: deep sea research, media coverage and (inter)national narratives on the Galathea Deep Sea Expedition from 1950 to 1952.

    Science.gov (United States)

    Nielsen, Kristian Hvidtfelt

    2010-03-01

    The Danish Galathea Deep Sea Expedition between 1950 and 1952 combined scientific and official objectives with the production of national and international narratives distributed through the daily press and other media. Dispatched by the Danish government on a newly acquired naval ship, the expedition undertook groundbreaking deep sea research while also devoting efforts to showing the flag, public communication of science, and international cooperation. The expedition was conceived after the war as a way in which to rehabilitate Denmark's reputation internationally and to rebuild national pride. To this end, the expedition included an onboard press section reporting the expedition to the Danish public and to an international audience. The press section mediated the favourable, post-war and postcolonial image of Denmark as an internationalist, scientific, modernizing and civilizing nation for which the expedition planners and many others were hoping. The expedition, therefore, was highly relevant to, indeed fed on, the emerging internationalist agenda in Denmark's foreign policy. Bringing out these aspects of the historical context of the expedition, this paper adds important perspectives to our knowledge about the expedition in particular and, more generally, about scientific exploration in the immediate post-war and postcolonial period.

  4. Studies of the reproductive biology of deep-sea megabenthos III. The deep-sea commensal species Epizoanthus paguriphilus (zoanthidea, anthozoa) and Parapagurus pilosimanus (paguroidea, crustacea)

    International Nuclear Information System (INIS)

    Muirhead, A.; Tyler, P.A.

    1984-01-01

    This report is the third in a series concerned with the biological processes of deep-sea megainvertebrates. The research programme aims to aid long term planning of nuclear waste disposal by providing information on the nature and rates of reproductive activities of deep sea invertebrates from several different phylogenetic groups. This information serves three functions:- Firstly, baseline information is provided concerning processes at or around the sediment/water interface. Secondly, knowledge of the actual mode of reproduction indicates the extent to which the biota could be involved in recycling leaked radioactive heavy metals to different areas of the environment via their reproductive processes. The third function fulfilled by this programme is to provide information on the rates at which these processes occur. Evaluation of these aspects of the life cycles of the megainvertebrates of a specific site will indicate the potential role of a large proportion of the biota inhabiting that site following leakage of dumped material. This report is concerned with the growth and modes of reproduction of a hermit crab, Parapagurus pilosimanus and the zoanthids Epizoanthus paguriphilus and E. abyssorum with which it lives at different depths of the N. Atlantic. (U.K.)

  5. Can the hemoglobin characteristics of vesicomyid clam species influence their distribution in deep-sea sulfide-rich sediments? A case study in the Angola Basin

    Science.gov (United States)

    Decker, C.; Zorn, N.; Le Bruchec, J.; Caprais, J. C.; Potier, N.; Leize-Wagner, E.; Lallier, F. H.; Olu, K.; Andersen, A. C.

    2017-08-01

    Vesicomyids live in endosymbiosis with sulfur-oxidizing bacteria and therefore need hydrogen sulfide to survive. They can nevertheless live in a wide range of sulfide and oxygen levels and depths, which may explain the exceptional diversity of this clam family in deep-sea habitats. In the Gulf of Guinea, nine species of vesicomyid clams are known to live in cold-seep areas with pockmarks from 600 to 3200 m deep, as well as in the organic-rich sediments of the Congo deep-sea fan at 5000 m deep. Our previous study showed that two species living in a giant pockmark have different oxygen carriers, suggesting different adaptations to hypoxia. Here, we studied the hemoglobin structure and oxygen affinity in three other species, Calyptogena valdiviae, Elenaconcha guiness and Abyssogena southwardae to determine whether the characteristics of their oxygen carriers contribute to their distribution in sulfide-rich sediments at a regional scale. Documenting pairwise species associations in various proportions, we give a semi-quantitative account of their local distribution and oxygen and sulfide measurements at seven sites. Mass spectrometry showed that each vesicomyid species has four intracellular monomeric hemoglobin molecules of 15-16 kDa, all differing in their molecular mass. As expected, the monomers showed no cooperativity in oxygen binding. Their oxygen affinities were very high (below 1 Torr), but differed significantly. C. valdiviae had the highest affinity and was dominant in the Harp pockmark, the site with the lowest oxygen content (half the value of fully oxygenated water). A. southwardae dominated in the Congo Lobe area, the site with the deepest sulfides. We discuss how hemoglobin may favor an active, vertical distribution of vesicomyids in sulfide-rich sediments.

  6. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    Science.gov (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-05-15

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The complete mitochondrial genome of the deep-sea sponge Poecillastra laminaris (Astrophorida, Vulcanellidae).

    Science.gov (United States)

    Zeng, Cong; Thomas, Leighton J; Kelly, Michelle; Gardner, Jonathan P A

    2016-05-01

    The complete mitochondrial genome of a New Zealand specimen of the deep-sea sponge Poecillastra laminaris (Sollas, 1886) (Astrophorida, Vulcanellidae), from the Colville Ridge, New Zealand, was sequenced using the 454 Life Science pyrosequencing system. To identify homologous mitochondrial sequences, the 454 reads were mapped to the complete mitochondrial genome sequence of Geodia neptuni (GeneBank No. NC_006990). The P. laminaris genome is 18,413 bp in length and includes 14 protein-coding genes, 24 transfer RNA genes and 2 ribosomal RNA genes. Gene order resembled that of other demosponges. The base composition of the genome is A (29.1%), T (35.2%), C (14.0%) and G (21.7%). This is the second published mitogenome for a sponge of the order Astrophorida and will be useful in future phylogenetic analysis of deep-sea sponges.

  8. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  9. Paleocorrosion studies in deep sea sediments and the geological disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Fehrenbach, L.; Maurette, M.; Guichard, F.; Havette, A.; Monaco, A.

    1984-01-01

    Uncertainties still surround assessment of the safety of disposal of nuclear wastes incorporated into 'radwaste' matrices. This is mostly due to the long time required for radioactive decay of 237 Np. The present work explores the usefulness of an experimental approach in 'paleocorrosion', which should help in minimizing such uncertainties. In this approach, polished sections of sediments containing high concentrations of natural analogues of radwaste matrices are subjected to element micromapping. Thus it is possible to characterize the long-term interactions of such analogues in their geological repositories, and to identify which generate reaction aureoles and protective and/or unprotective coatings. These analogues include grains incorporated in deep sea sediments (uraninite and quartz from the Oklo uranium ore deposit; volcanic ash particles; magnetic cosmic spherules). The present results indicate that uraninite should be a much more durable radwaste matrix than any type of glass in deep sea sediments. (orig./TWO)

  10. From Exploration to Exploitation? Opportunities and Imperatives in the Deep Sea

    KAUST Repository

    Van Dover, Cindy Lee

    2017-01-16

    We may think of the depths of the ocean as unseen, unfathomable, but there have been breakthroughs in technology that allow scientists access to the deep sea and that bring the deep sea directly to the public through live video feeds and data links. We can now map the seafloor to resolve features the size of a football and smaller using sound waves, while at the same time, sensors report to us the chemical nature of the surrounding environment. We will look at examples of robots and other assets that we use to explore the seafloor and at some of the discoveries that arise from our expanding capabilities. We will look at some of the blank places on the map and wonder what might be located there. And finally, we will explore the growing interest in mining the seabed and the potential for a Blue Economy in the deep ocean.

  11. Estimation of the iron loss in deep-sea permanent magnet motors considering seawater compressive stress.

    Science.gov (United States)

    Xu, Yongxiang; Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  12. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    Directory of Open Access Journals (Sweden)

    Yongxiang Xu

    2014-01-01

    Full Text Available Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM. The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  13. Bacterial diversity and biogeography in deep-sea sediments of the South Atlantic Ocean

    DEFF Research Database (Denmark)

    Schauer, Regina; Bienhold, Christina; Ramette, Alban

    2010-01-01

    in 1051 sequences. Phylotypes affiliated with Gammaproteobacteria, Deltaproteobacteria and Acidobacteria were present in all three basins. The distribution of these shared phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water masses, suggesting a high dispersal......Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial...... communities in three basins of the eastern South Atlantic Ocean to determine diversity and biogeography of bacterial communities in deep-sea surface sediments. The analysis of 16S ribosomal RNA (rRNA) gene clone libraries in each basin revealed a high diversity, representing 521 phylotypes with 98% identity...

  14. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.

    Science.gov (United States)

    Cerqueira, Teresa; Barroso, Cristina; Froufe, Hugo; Egas, Conceição; Bettencourt, Raul

    2018-01-21

    The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.

  15. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  16. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Directory of Open Access Journals (Sweden)

    Niels Jobstvogt

    Full Text Available Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  17. Deep-Sea Trench Microbiology Down to 10.9 Kilometers Below the Surface

    Science.gov (United States)

    Bartlett, D. H.

    2012-12-01

    Deep-sea trenches, extending to more than 10.9 km below the sea surface, are among the most remote and infrequently sampled habitats. As a result a global perspective of microbial diversity and adaptation is lacking in these extreme settings. I will present the results of studies of deep-sea trench microbes collected in the Puerto Rico Trench (PRT), Tonga Trench, New Britain Trench and Mariana Trench. The samples collected include sediment, seawater and animals in baited traps. The analyses to be described include microbial community activity and viability measurements as a function of hydrostatic pressure, microbial culturing at high pressure under various physiological conditions, phylogenetics and metagenome and single-cell genome characterizations. Most of the results to date stem from samples recovered from the PRT. The deep-sea PRT Trench microbes have more in common at the species level with other deep-sea microbial communities previously characterized in the Pacific Ocean and the Mediterranean Sea than with the microbial populations above them in shallow waters. They also harbor larger genomes with more genes assigned to signal transduction, transcription, replication, recombination and repair and inorganic ion transport. The overrepresented transporters in the PRT metagenome include di- and tri-carboxylate transporters that correspond to the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. But, perhaps the most dramatic adaptational feature of the PRT microbes is heavy metal resistance, as reflected in the high numbers of metal efflux systems present. Single-cell genomics approaches have proven particularly useful for placing PRT metagenomic data into context.

  18. The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity

    Digital Repository Service at National Institute of Oceanography (India)

    Vanreusel, A.; Fonseca, G.; Danovaro, R.; DaSilva, M.C.; Esteves, A.M.; Ferrero, T.; Gad, G.; Galtsova, V.; Gambi, C.; Genevois, V.F.; Ingels, J.; Ingole, B.S.; Lampadariou, N.; Merckx, B.; Miljutina, M.; Muthumbi, A.; Netto, S.; Portnova, D.; Radziejewska, T.; Raes, M.; Tchesunov, A.; Vanaverbeke, J.; Van Gaever, S.; Venekey, V.; Bezerra, T.N.; Flint, H; Copley, J.; Pape, E; Zeppilli, D.; Martinez, P.A.; Galeron, J.

    An edited version of this paper was published by Blackwell Verlag GmbH. Copyright [2010] Abstract : The great variety of geological and hydrological settings in the deep-sea generates many different habitats, some of them only recently explored whereas... were assumed to be the main driving factors for differences in benthic standing stock, biodiversity and community composition of the benthos (Grassle, 1989; Gage and Tyler, 1991). However, through increasing exploration by means of bathymetric...

  19. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Science.gov (United States)

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  20. Alterations in geochemical associations in artificially disturbed deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Parthiban, G.; Banaulikar, S.; Sarkar, S.

    Alterations in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. NAGENDER NATH, G. PARTHIBAN, AND S. BANAULIKAR National Institute of Oceanography, Dona Paula, Goa, India SUBHADEEP SARKAR Department of Geology and Geophysics, Indian... the lithogenic component by transporting it from other locations within the Basin during commercial mining operations. Keywords manganese nodule mining, artificial benthic disturbance experiment, environmental impact assessment, metals Trace metals in marine...

  1. Trophic ecology of deep-sea Asteroidea (Echinodermata) from eastern Canada

    Science.gov (United States)

    Gale, Katie S. P.; Hamel, Jean-François; Mercier, Annie

    2013-10-01

    Asteroids (sea stars) can be important predators in benthic communities and are often present in ecologically important and vulnerable deep-sea coral and sponge habitats. However, explicit studies on the trophic ecology of deep-sea asteroids are rare. We investigated the diets of seven species of deep-sea asteroid from the bathyal zone of Newfoundland and Labrador, eastern Canada. A multifaceted approach including live animal observations, stomach content analysis, and stable isotope analysis revealed the asteroids to be either top predators of megafauna or secondary consumers (mud ingesters, infaunal predators, and suspension feeders). The stable isotope signatures of Ceramaster granularis, Hippasteria phrygiana, and Mediaster bairdi are characteristic of high-level predators, having δ15N values 4.4‰ (more than one trophic level) above Ctenodiscus crispatus, Leptychaster arcticus, Novodinia americana, and Zoroaster fulgens. We present strong evidence that corals and sponges are common food items for two of the predatory species, C. granularis and H. phrygiana. During laboratory feeding trials, live H. phrygiana fed on several species of soft coral and C. granularis fed on sponges. Stomach content analysis of wild-caught individuals revealed sclerites from sea pens (e.g. Pennatula sp.) in the stomachs of both asteroid species; H. phrygiana also contained sclerites from at least two other species of octocoral and siliceous sponge spicules were present in the stomachs of C. granularis. The stomach contents of the secondary consumers contained a range of invertebrate material. Leptychaster arcticus and Ctenodiscus crispatus feed infaunally on bulk sediment and molluscs, Zoroaster fulgens is a generalist infaunal predator, and the brisingid Novodinia americana is a specialist suspension feeder on benthopelagic crustaceans. This study provides a foundation for understanding the ecological roles of bathyal asteroids, and suggests that some species may have the

  2. The Current State of Global Activities Related to Deep-sea Mineral Exploration and Mining

    OpenAIRE

    Petersen, Sven; Krätschell, Anna; Hannington, Mark D.

    2016-01-01

    Deep-sea mining is seen as a potential way to provide future secure metal supply to global markets. The current rush to the seafloor in areas beyond national jurisdiction indicates that sound knowledge of the geological characteritics of the various commodities, a realistic resource assessment, and a social and political discussion about the cons and pros of their exploitation that is based on facts, not myths, is required. This contribution provides the most recent information on...

  3. Distribution of deep-sea benthos in the proposed mining area of Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.

    . 1997. Imediate response of benthic meio and megafauna to disturbancecaused by polymetallic nodule miner simulator. Proceedings,International Symposiumon Environmental Studies for Deep-Sea Mining, Tokyo,Japan,November 20–21. Pp.223–235.Reghukumar... in the western Pacific in rela-tion to environmental factors. Oceanologia Acta7:113–121. Shirayama,Y.,and T. Fukushima. 1997. Response of a meiobenthic community to rapidresedimentation. In:Proceedings,International Symposium on Environmental Studies for...

  4. Structure elucidation of the new citharoxazole from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae.

    Science.gov (United States)

    Genta-Jouve, Grégory; Francezon, Nellie; Puissant, Alexandre; Auberger, Patrick; Vacelet, Jean; Pérez, Thierry; Fontana, Angelo; Mourabit, Ali Al; Thomas, Olivier P

    2011-08-01

    Citharoxazole (1), a new batzelline derivative featuring a benzoxazole moiety, was isolated from the Mediterranean deep-sea sponge Latrunculia (Biannulata) citharistae Vacelet, 1969, together with the known batzelline C (2). This is the first chemical study of a Mediterranean Latrunculia species and the benzoxazole moiety is unprecedented for this family of marine natural products. The structure was mainly elucidated by the interpretation of NMR spectra and especially HMBC correlations. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Life on wood - the carnivorous deep-sea mussel Idas argenteus (Bathymodiolinae, Mytilidae, Bivalvia

    DEFF Research Database (Denmark)

    Ockelmann, Kurt W.; Dinesen, Grete E.

    2011-01-01

    to an ephemeral habitat in the deep sea of both species are described herein. Although larviphagi is known to occur in some filter-feeding bivalves, Idas argenteus is the first mytilid known to be specifically adapted to a carnivorous life. Further, it is argued that the modifications of I. argenteus with regard...... to its shell development, alimentary system, gill anatomy and life habits provide important clues to the evolution of the Bathymodiolinae....

  6. High levels of natural radionuclides in a deep-sea infaunal xenophyophore

    Energy Technology Data Exchange (ETDEWEB)

    Swinbanks, D D; Shirayama, Y

    1986-03-27

    The paper concerns the high levels of natural radionuclides in a deep-sea infaunal xenophyophore from the Izu-Ogasawara Trench. Measured /sup 210/Po activities and barium contents of various parts of Occultammina profunda and the surrounding sediment are given, together with their estimated /sup 210/Pb and /sup 226/Ra activities. The data suggest that xenophyphores are probably subject to unusually high levels of natural radiation.

  7. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation.

    Science.gov (United States)

    Campeão, Mariana E; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L; Thompson, Cristiane C

    2017-01-01

    One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae , and Alcanivoracaceae ), archaea (e.g., Halobacteriaceae, Desulfurococcaceae , and Methanobacteriaceae ), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  8. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    OpenAIRE

    Tecchio, S.; Coll, Marta; Sarda, F.

    2015-01-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloo...

  9. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation

    Directory of Open Access Journals (Sweden)

    Mariana E. Campeão

    2017-06-01

    Full Text Available One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C. We collected deep-sea samples in the field (about 2570 m below the sea surface, transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae, archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae, and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  10. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea

    OpenAIRE

    Tecchio, Samuele; Coll, Marta; Christensen, Villy; Company, Joan B.; Ramirez-Llodra, Eva; Sarda, Francisco

    2013-01-01

    There is increasing fishing pressure on the continental margins of the oceans, and this raises concerns about the vulnerability of the ecosystems thriving there. The current knowledge of the biology of deep-water fish species identifies potential reduced resilience to anthropogenic disturbance. However, there are extreme difficulties in sampling the deep sea, resulting in poorly resolved and indirectly obtained food-web relationships. Here, we modelled the flows and biomasses of a Mediterrane...

  11. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  12. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    Science.gov (United States)

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  13. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Zeenatul Basher

    2016-02-01

    Full Text Available Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.

  14. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province.

    Science.gov (United States)

    Dong, Yi; Li, Jinhua; Zhang, Wuchang; Zhang, Wenyan; Zhao, Yuan; Xiao, Tian; Wu, Long-Fei; Pan, Hongmiao

    2016-04-01

    Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Harpacticoid copepod diversity at two physically reworked sites in the deep sea

    Science.gov (United States)

    Thistle, David

    1998-01-01

    Grassle's and Jumars' theories of diversity maintenance in the quiescent deep sea view millimeter-to-meter-scale patchiness (mostly of biological origin) as crucial. In other deep-sea regions, episodes of strong near-bottom flow put the surficial sediment layers into motion, obliterating the biologically produced, millimeter-to-meter-scale patchiness. Under these theories, sites eroded so frequently that such patchiness is eliminated almost as soon as it is created should have lower diversities than sites where the time between erosive events is sufficient for this type of patchiness to be produced and exploited. I tested this prediction by comparing the diversities of harpacticoid copepods at two sites on Fieberling Guyot to determine whether Grassle's and Jumars' theories can be extended to the portion of the deep sea that experiences episodic erosive flows. At White Sand Swale (=WSS) (32°27.581'N, 127°47.839'W), strong near-bottom flows erode the surficial sediment daily. At Sea Pen Rim (=SPR) (32°27.631'N, 127°49.489'W), strong near-bottom flows erode the surficial sediment a few times annually. Contrary to expectation, the diversity of harpacticoid copepods was significantly greater at WSS than at SPR. However, the erosion regime at WSS may create small-scale patchiness that promotes harpacticoid diversity.

  16. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents.

    Science.gov (United States)

    Miroshnichenko, Margarita L; Bonch-Osmolovskaya, Elizaveta A

    2006-04-01

    The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000-2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.

  17. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    Science.gov (United States)

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.

  18. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2016-09-01

    Full Text Available Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  19. Genetic homogeneity in the deep-sea grenadier Macrourus berglax across the North Atlantic Ocean

    Science.gov (United States)

    Coscia, Ilaria; Castilho, Rita; Massa-Gallucci, Alexia; Sacchi, Carlotta; Cunha, Regina L.; Stefanni, Sergio; Helyar, Sarah J.; Knutsen, Halvor; Mariani, Stefano

    2018-02-01

    Paucity of data on population structure and connectivity in deep sea species remains a major obstacle to their sustainable management and conservation in the face of ever increasing fisheries pressure and other forms of impacts on deep sea ecosystems. The roughhead grenadier Macrourus berglax presents all the classical characteristics of a deep sea species, such as slow growth and low fecundity, which make them particularly vulnerable to anthropogenic impact, due to their low resilience to change. In this study, the population structure of the roughhead grenadier is investigated throughout its geographic distribution using two sets of molecular markers: a partial sequence of the Control Region of mitochondrial DNA and species-specific microsatellites. No evidence of significant structure was found throughout the North Atlantic, with both sets of molecular markers yielding the same results of overall homogeneity. We posit two non-mutually exclusive scenarios that can explain such outcome: i) substantial high gene flow among locations, possibly maintained by larval stages, ii) very large effective size of post-glacially expanded populations. The results can inform management strategies in this by-caught species, and contribute to the broader issue of biological connectivity in the deep ocean.

  20. The secret to successful deep-sea invasion: does low temperature hold the key?

    Directory of Open Access Journals (Sweden)

    Kathryn E Smith

    Full Text Available There is a general consensus that today's deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients.

  1. Predictive modeling of deep-sea fish distribution in the Azores

    Science.gov (United States)

    Parra, Hugo E.; Pham, Christopher K.; Menezes, Gui M.; Rosa, Alexandra; Tempera, Fernando; Morato, Telmo

    2017-11-01

    Understanding the link between fish and their habitat is essential for an ecosystem approach to fisheries management. However, determining such relationship is challenging, especially for deep-sea species. In this study, we applied generalized additive models (GAMs) to relate presence-absence and relative abundance data of eight economically-important fish species to environmental variables (depth, slope, aspect, substrate type, bottom temperature, salinity and oxygen saturation). We combined 13 years of catch data collected from systematic longline surveys performed across the region. Overall, presence-absence GAMs performed better than abundance models and predictions made for the observed data successfully predicted the occurrence of the eight deep-sea fish species. Depth was the most influential predictor of all fish species occurrence and abundance distributions, whereas other factors were found to be significant for some species but did not show such a clear influence. Our results predicted that despite the extensive Azores EEZ, the habitats available for the studied deep-sea fish species are highly limited and patchy, restricted to seamounts slopes and summits, offshore banks and island slopes. Despite some identified limitations, our GAMs provide an improved knowledge of the spatial distribution of these commercially important fish species in the region.

  2. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti.

    Science.gov (United States)

    Tavormina, Patricia L; Kellermann, Matthias Y; Antony, Chakkiath Paul; Tocheva, Elitza I; Dalleska, Nathan F; Jensen, Ashley J; Valentine, David L; Hinrichs, Kai-Uwe; Jensen, Grant J; Dubilier, Nicole; Orphan, Victoria J

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid analysis, RNA analysis, and electron cryotomography, it was shown that M. sedimenti undergoes discrete cellular shifts in response to methane starvation, including changes in headgroup-specific fatty acid saturation levels, and reductions in cytoplasmic storage granules. Methane starvation is associated with a significant increase in the abundance of gene transcripts pertinent to methane oxidation. Methane reintroduction to starved cells stimulates a rapid, transient extracellular accumulation of methanol, revealing a way in which methane-derived carbon may be routed to community members. This study provides new understanding of methanotrophic responses to methane starvation and recovery, and lays the initial groundwork to develop Methyloprofundus as a model chemosynthesizing bacterium from the deep sea. © 2016 John Wiley & Sons Ltd.

  3. Feeding in deep-sea demosponges: Influence of abiotic and biotic factors

    Science.gov (United States)

    Robertson, Leah M.; Hamel, Jean-François; Mercier, Annie

    2017-09-01

    In shallow benthic communities, sponges are widely recognized for their ability to contribute to food webs by cycling nutrients and mediating carbon fluxes through filter feeding. In comparison, little is known about filter feeding in deep-sea species and how it may be modulated by environmental conditions. Here, a rare opportunity to maintain live healthy deep-sea sponges for an extended period led to a preliminary experimental study of their feeding metrics. This work focused on demosponges collected from the continental slope of eastern Canada at 1000 m depth. Filtration rates (as clearance of phytoplankton cells) at holding temperature (6 °C) were positively correlated with food particle concentration, ranging on average from 18.8 to 160.6 cells ml-1 h-1 at nominal concentrations of 10,000-40,000 cells ml-1. Cell clearance was not significantly affected by decreasing seawater temperature, from 6 °C to 3 °C or 0 °C, although two of the sponges showed decreased filtration rates. Low pH ( 7.5) and the presence of a predatory sea star markedly depressed or inhibited feeding activity in all sponges tested. While performed under laboratory conditions on a limited number of specimens, this work highlights the possible sensitivity of deep-sea demosponges to various types and levels of biotic and abiotic factors, inferring a consequent vulnerability to natural and anthropogenic disturbances.

  4. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  5. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  6. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  7. Draft Genome Sequence of Deep-Sea Alteromonas sp. Strain V450 Isolated from the Marine Sponge Leiodermatium sp.

    Science.gov (United States)

    Wang, Guojun; Barrett, Nolan H; McCarthy, Peter J

    2017-02-02

    The proteobacterium Alteromonas sp. strain V450 was isolated from the Atlantic deep-sea sponge Leiodermatium sp. Here, we report the draft genome sequence of this strain, with a genome size of approx. 4.39 Mb and a G+C content of 44.01%. The results will aid deep-sea microbial ecology, evolution, and sponge-microbe association studies. Copyright © 2017 Wang et al.

  8. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  9. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea.

    Science.gov (United States)

    Brown, Alastair; Thatje, Sven; Hauton, Chris

    2017-09-05

    Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.

  10. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren

    2017-07-19

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  11. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals.

    Science.gov (United States)

    Yum, Lauren K; Baumgarten, Sebastian; Röthig, Till; Roder, Cornelia; Roik, Anna; Michell, Craig; Voolstra, Christian R

    2017-07-25

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  12. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren; Baumgarten, Sebastian; Rö thig, Till; Roder, Cornelia; Roik, Anna Krystyna; Michell, Craig; Voolstra, Christian R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  13. Borders of life: lessons from Microbiology of deep-sea hydrothermal vents

    Science.gov (United States)

    Prieur, D.

    Thirty years ago, the deep-sea was known as a low density biotope due to coldness, darkness and famine-like conditions. The discovery of deep-sea hydrothermal vents in the Eastern Pacific in 1977 and the associated black smokers in 1979 considerably changed our views about life on Earth. For the first time, an ecosystem almost independent (at least for tens of years) of solar nergy was discovered. Besides the spectacular and unexpected communities of invertebrates based on symbiotic associations with chemo-litho-autotrophic bacteria, prokaryotic communities associated with high temperature black smokers fascinated microbiologists of extreme environments. Within mineral structures where temperature gradients may fluctuate from ambient seawater temperatures (2°C) up to 350°C, thermophilic (optimal growth above 60°C) and hyperthermophilic (optimal growth above 80°C) microorganisms thrived under very severe conditions due to elevated hydrostatic pressure, toxic compounds or strong ionizing radiations. These organisms belong to both domains of Bacteria and Archaea and live aerobically but mostly anaerobically, using a variety of inorganic and organic carbon sources, and a variety of electron donnors and acceptors as well. The most thermophilic organism known on Earth was isolated from a mid-Atlantic-Ridge hydrotermal vent: Pyrolobus fumarii grows optimally at 110°c and its upper temperature limit for life is 113°C. Such an organism survived to autoclaving conditions currently used for sterilization procedures. Many other hyperthermophilic organisms were isolated and described, including fermenters, sulphate and sulphur reducers, hydrogen oxidizers, nitrate reducers, methanogens, etc. Although most of anaerobes are killed when exposed to oxygen, several deep-sea hyperthermophiles appeared to survive to both oxygen and starvation exposures, indicating that they probably can colonize rather distant environments Because of elevated hydrostatic pressure that exists at

  14. Ecosystem Services: a Framework for Environmental Management of the Deep Sea

    Science.gov (United States)

    Le, J. T.; Levin, L. A.; Carson, R. T.

    2016-02-01

    As demand for deep-sea resources rapidly expands in the food, energy, mineral, and pharmaceutical sectors, it has become increasingly clear that a regulatory structure for extracting these resources is not yet in place. There are jurisdictional gaps and a lack of regulatory consistency regarding what aspects of the deep sea need protection and what requirements might help guarantee that protection. Given the mining sector's intent to exploit seafloor massive sulphides, Mn nodules, cobalt crusts, and phosphorites in the coming years, there is an urgent need for deep-ocean environmental management. Here, we propose an ecosystem services-based framework to inform decisions and best practices regarding resource exploitation, and to guide baseline studies, preventative actions, monitoring, and remediation. With policy in early stages of development, an ecosystem services approach has the potential to serve as an overarching framework that takes protection of natural capital provided by the environment into account during the decision-making process. We show how an ecosystem services approach combined with economic tools, such as benefit transfer techniques, should help illuminate issues where there are direct conflicts among different industries, and between industry and conservation. We argue for baseline and monitoring measurements and metrics that inform about deep-sea ecosystem services that would be impaired by mining, and discuss ways to incorporate the value of those losses into decision making, mitigation measures, and ultimately product costs. This proposal is considered relative to current International Seabed Authority recommendations and contractor practices, and new actions are proposed. An ecosystem services-based understanding of how these systems work and their value to society can improve sustainability and stewardship of the deep ocean.

  15. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter.

    Science.gov (United States)

    Jiang, Lijing; Xu, Hongxiu; Zeng, Xiang; Wu, Xiaobing; Long, Minnan; Shao, Zongze

    2015-11-01

    Hydrogen is an important energy source for deep-sea hydrothermal vent ecosystems. However, little is known about microbes and their role in hydrogen turnover in the environment. In this study, the diversity and physiological characteristics of fermentative hydrogen-producing microbes from deep-sea hydrothermal vent fields were described for the first time. Seven enrichments were obtained from hydrothermal vent sulfides collected from the Southwest Indian Ocean, East Pacific and South Atlantic. 16S rRNA gene analysis revealed that members of the Caloranaerobacter genus were the dominant component in these enrichments. Subsequently, three thermophilic hydrogen producers, strains H363, H53214 and DY22619, were isolated. They were phylogenetically related to species of the genus Caloranaerobacter. The H2 yields of strains H363, H53214, DY22619 and MV107, which was the type species of genus Caloranaerobacter, were 0.11, 1.21, 3.13 and 2.85 mol H2/mol glucose, respectively. Determination of the main soluble metabolites revealed that strains H363, H53214 and MV107 performed heterolactic fermentations, while strain DY22619 performed butyric acid fermentation, indicating distinct fermentation patterns among members of the genus. Finally, a diversity of forms of [FeFe]-hydrogenase with different modular structures was revealed based on draft genomic data of Caloranaerobacter strains. This highlights the complexity of hydrogen metabolism in Caloranaerobacter, reflecting adaptations to environmental conditions in hydrothermal vent systems. Collectively, results suggested that Caloranaerobacter species might be ubiquitous and play a role in biological hydrogen generation in deep-sea hydrothermal vent fields. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani.

    Directory of Open Access Journals (Sweden)

    Ramón Alberto Batista-García

    Full Text Available Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (<5°C and high pressure, however marine sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12 were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50-70°C and pH 5-8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials.

  17. Molecular Characterization of a Novel N-Acetylneuraminate Lyase from a Deep-Sea Symbiotic Mycoplasma

    Directory of Open Access Journals (Sweden)

    Shao-lu Wang

    2018-03-01

    Full Text Available N-acetylneuraminic acid (Neu5Ac based novel pharmaceutical agents and diagnostic reagents are highly required in medical fields. However, N-acetylneuraminate lyase(NAL)for Neu5Ac synthesis is not applicable for industry due to its low catalytic efficiency. In this study, we biochemically characterized a deep-sea NAL enzyme (abbreviated form: MyNal from a symbiotic Mycoplasma inhabiting the stomach of a deep-sea isopod, Bathynomus jamesi. Enzyme kinetic studies of MyNal showed that it exhibited a very low Km for both cleavage and synthesis activities compared to previously described NALs. Though it favors the cleavage process, MyNal out-competes the known NALs with respect to the efficiency of Neu5Ac synthesis and exhibits the highest kcat/Km values. High expression levels of recombinant MyNal could be achieved (9.56 mol L−1 culture with a stable activity in a wide pH (5.0–9.0 and temperature (40–60 °C range. All these features indicated that the deep-sea NAL has potential in the industrial production of Neu5Ac. Furthermore, we found that the amino acid 189 of MyNal (equivalent to Phe190 in Escherichia coli NAL, located in the sugar-binding domain, GX189DE, was also involved in conferring its enzymatic features. Therefore, the results of this study improved our understanding of the NALs from different environments and provided a model for protein engineering of NAL for biosynthesis of Neu5Ac.

  18. Long-term viability of carbon sequestration in deep-sea sediments

    Science.gov (United States)

    Teng, Y.; Zhang, D.

    2017-12-01

    Sequestration of carbon dioxide in deep-sea sediments has been proposed for the long-term storage of anthropogenic CO2, due to the negative buoyancy effect and hydrate formation under conditions of high pressure and low temperature. However, the multi-physics process of injection and post-injection fate of CO2 and the feasibility of sub-seabed disposal of CO2 under different geological and operational conditions have not been well studied. On the basis of a detailed study of the coupled processes, we investigate whether storing CO2 into deep-sea sediments is viable, efficient, and secure over the long term. Also studied are the evolution of the multiphase and multicomponent flow and the impact of hydrate formation on storage efficiency during the upward migration of the injected CO2. It is shown that low buoyancy and high viscosity slow down the ascending plume and the forming of the hydrate cap effectively reduces the permeability and finally becomes an impermeable seal, thus limiting the movement of CO2 towards the seafloor. Different flow patterns at varied time scales are identified through analyzing the mass distribution of CO2 in different phases over time. Observed is the formation of a fluid inclusion, which mainly consists of liquid CO2 and is encapsulated by an impermeable hydrate film in the diffusion-dominated stage. The trapped liquid CO2 and CO2 hydrate finally dissolve into the pore water through diffusion of the CO2 component. Sensitivity analyses are performed on storage efficiency under variable geological and operational conditions. It is found that under a deep-sea setting, CO2 sequestration in intact marine sediments is generally safe and permanent.

  19. Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin

    Science.gov (United States)

    Prouty, Nancy G.; Roark, E. Brendan; Koenig, Alan E.; Demopoulos, Amanda W. J.; Batista, Fabian C.; Kocar, Benjamin D.; Selby, David; McCarthy, Matthew D.; Mienis, Furu

    2014-01-01

    One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here we present a novel approach, coupling a new tracer of agro-industrialization to a multiproxy record of nutrient loading in long-lived deep-sea corals collected in the Gulf of Mexico. We found that coral bulk δ15N values are enriched over the last 150–200 years relative to the last millennia, and compound-specific amino acid δ15N data indicate a strong increase in baseline δ15N of nitrate as the primary cause. Coral rhenium (Re) values are also strongly elevated during this period, suggesting that 34% of Re is of anthropogenic origin, consistent with Re enrichment in major world rivers. However, there are no pre-anthropogenic measurements of Re to confirm this observation. For the first time, an unprecedented record of natural and anthropogenic Re variability is documented through coral Re records. Taken together, these novel proxies link upstream changes in water quality to impacts on the deep-sea coral ecosystem.

  20. Fish food in the deep sea: revisiting the role of large food-falls.

    Directory of Open Access Journals (Sweden)

    Nicholas D Higgs

    Full Text Available The carcasses of large pelagic vertebrates that sink to the seafloor represent a bounty of food to the deep-sea benthos, but natural food-falls have been rarely observed. Here were report on the first observations of three large 'fish-falls' on the deep-sea floor: a whale shark (Rhincodon typus and three mobulid rays (genus Mobula. These observations come from industrial remotely operated vehicle video surveys of the seafloor on the Angola continental margin. The carcasses supported moderate communities of scavenging fish (up to 50 individuals per carcass, mostly from the family Zoarcidae, which appeared to be resident on or around the remains. Based on a global dataset of scavenging rates, we estimate that the elasmobranch carcasses provided food for mobile scavengers over extended time periods from weeks to months. No evidence of whale-fall type communities was observed on or around the carcasses, with the exception of putative sulphide-oxidising bacterial mats that outlined one of the mobulid carcasses. Using best estimates of carcass mass, we calculate that the carcasses reported here represent an average supply of carbon to the local seafloor of 0.4 mg m(-2d(-1, equivalent to ∼ 4% of the normal particulate organic carbon flux. Rapid flux of high-quality labile organic carbon in fish carcasses increases the transfer efficiency of the biological pump of carbon from the surface oceans to the deep sea. We postulate that these food-falls are the result of a local concentration of large marine vertebrates, linked to the high surface primary productivity in the study area.

  1. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani.

    Science.gov (United States)

    Batista-García, Ramón Alberto; Sutton, Thomas; Jackson, Stephen A; Tovar-Herrera, Omar Eduardo; Balcázar-López, Edgar; Sánchez-Carbente, María Del Rayo; Sánchez-Reyes, Ayixon; Dobson, Alan D W; Folch-Mallol, Jorge Luis

    2017-01-01

    Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (<5°C) and high pressure, however marine sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12) were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50-70°C and pH 5-8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials.

  2. Colonization of habitat islands in the deep sea: recruitment to glass sponge stalks

    Science.gov (United States)

    Beaulieu, Stace E.

    2001-04-01

    Biogenic structures in the deep sea often act as hard substratum 'islands' for the attachment of encrusting fauna. At an abyssal station in the NE Pacific, stalks of hexactinellid sponges in the genus Hyalonema are habitat islands for species-rich epifaunal communities. An experimental study was conducted to (1) determine the colonization rates of artificial Hyalonema stalks, (2) compare the species composition and diversity of recruits to newly available substrata to that of the natural communities, and (3) examine the vertical distribution of recruits. Four sets of six artificial sponge stalks, constructed of Hyalonema spicules, were deployed at 4100 m depth for 3- to 5-month periods. There was no difference in net colonization or immigration rate among the four deployments. Colonization rates were similar to those reported for other deep-sea, hard substratum recruitment experiments. The taxa that recruited to the artificial stalks were a subset of the taxa found in natural communities. However, several taxa important in structuring natural communities did not recruit to the artificial stalks. The two taxa with the highest invasion rates, a calcareous foraminiferan ( Cibicides lobatulus) and a serpulid polychaete ( Bathyvermilia sp.), also were the two taxa with greatest relative abundance in natural communities. Vertical distributions of Cibicides and an agglutinated foraminiferan ( Telammina sp.) were skewed towards the top of the artificial stalks, potentially because of active habitat selection. These results have several implications for natural Hyalonema stalk communities. Most importantly, species composition and abundance of individuals in the stalk communities appear to be maintained by frequent recruitment of a few common taxa and infrequent recruitment of many rare taxa. An argument is presented for temporal-mosaic maintenance of diversity in these deep-sea, hard substratum communities.

  3. Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Cordes, Erik E.; Stamler, Katherine

    2016-01-01

    Cold-water corals support distinct populations of infauna within surrounding sediments that provide vital ecosystem functions and services in the deep sea. Yet due to their sedentary existence, infauna are vulnerable to perturbation and contaminant exposure because they are unable to escape disturbance events. While multiple deep-sea coral habitats were injured by the 2010 Deepwater Horizon (DWH) oil spill, the extent of adverse effects on coral-associated sediment communities is unknown. In 2011, sediments were collected adjacent to several coral habitats located 6 to 183 km from the wellhead in order to quantify the extent of impact of the DWH spill on infaunal communities. Higher variance in macrofaunal abundance and diversity, and different community structure (higher multivariate dispersion) were associated with elevated hydrocarbon concentrations and contaminants at sites closest to the wellhead (MC294, MC297, and MC344), consistent with impacts from the spill. In contrast, variance in meiofaunal diversity was not significantly related to distance from the wellhead and no other community metric (e.g. density or multivariate dispersion) was correlated with contaminants or hydrocarbon concentrations. Concentrations of polycyclic aromatic hydrocarbons (PAH) provided the best statistical explanation for observed macrofaunal community structure, while depth and presence of fine-grained mud best explained meiofaunal community patterns. Impacts associated with contaminants from the DWH spill resulted in a patchwork pattern of infaunal community composition, diversity, and abundance, highlighting the role of variability as an indicator of disturbance. These data represent a useful baseline for tracking post-spill recovery of these deep-sea communities.

  4. Feeding strategies and resource partitioning among elasmobranchs and cephalopods in Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Valls, Maria; Rueda, Lucía; Quetglas, Antoni

    2017-10-01

    Cephalopods and elasmobranchs are important components of marine ecosystems, whereby knowing the ecological role they play in the structure and dynamics of trophic networks is paramount. With this aim, stomach contents and stable isotopes of the most abundant elasmobranch and cephalopod species (5 and 18 species, respectively) inhabiting deep-sea ecosystems from the western Mediterranean were analyzed. The predators investigated encompassed different taxonomic groups, such as rays and sharks within elasmobranchs, and squids, octopuses and cuttlefishes within cephalopods. Specifically, we investigated ontogenetic shifts in diet, feeding strategies and prey consumption, trophic structure and potential dietary overlap between and within both taxonomical groups. Stable isotope analysis revealed ontogenetic shifts in diet in three elasmobranch (rays and sharks) and two cephalopod (octopuses and squids) species. Isotopic data showed a contrasting food source gradient (δ13C), from pelagic (squids and cuttlefishes) to benthic (octopuses and elasmobranchs). Stomach data highlighted a great variety of trophic guilds which could be further aggregated into three broad categories: benthic, benthopelagic and pelagic feeders. The combination of both stomach content and stable isotope analyses revealed a clear food partitioning among species. Mesopelagic prey were found to be an important food resource for deep-sea elasmobranchs and cephalopods, which could be related to the strong oligotrophic conditions in the area. The observed differences in feeding strategies within cephalopods and elasmobranchs should be taken into account when defining functional groups in trophodynamic models from the western Mediterranean. Our results also revealed that cephalopods play a key role for the benthopelagic coupling, whereas demersal elasmobranchs contribute primarily to a one-way flux accumulating energy resources into deep-sea ecosystems.

  5. Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin

    Science.gov (United States)

    Prouty, N.; Roark, B.; Koenig, A.; Batista, F. C.; Kocar, B. D.; Selby, D. S.; Mccarthy, M. D.; Mienis, F.; Ross, S. W.; Demopoulos, A. W.

    2015-12-01

    One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here we present a novel approach, coupling a new tracer of agro-industrialization to a multiproxy record of nutrient loading in long-lived deep-sea corals collected in the Gulf of Mexico. We found that coral bulk δ15N values are enriched over the last 150-200 years relative to the last millennia, and compound-specific amino acid δ15N data indicate a strong increase in baseline δ15N of nitrate as the primary cause. Coral rhenium (Re) values are also strongly elevated during this period, suggesting that 34% of Re is of anthropogenic origin, consistent with Re enrichment in major world rivers. However, there are no pre-anthropogenic measurements of Re to confirm this observation. For the first time, an unprecedented record of natural and anthropogenic Re variability is documented through coral Re records. Taken together, these novel proxies link upstream changes in water quality to impacts on the deep-sea coral ecosystem.

  6. Southern Ocean Circulation: a High Resolution Examination of the Last Deglaciation from Deep-Sea Corals

    Science.gov (United States)

    Robinson, L. F.; Li, T.; Chen, T.; Burke, A.; Pegrum Haram, A.; Stewart, J.; Rae, J. W. B.; van de Flierdt, T.; Struve, T.; Wilson, D. J.

    2017-12-01

    Two decades ago it was first noted that the skeletal remains of deep-sea corals had the potential to provide absolutely dated archives of past ocean conditions. In the intervening twenty years this field has developed to the point where strategic collections and high throughput dating techniques now allow high resolution, well dated records of past deep sea behaviour to be produced. Likewise, efforts to improve understanding of biomineralisation and growth rates are leading to refinements in proxy tools useful for examining circulation, nutrient and carbon cycling, temperature and weathering processes. Deep-sea corals are particularly valuable archives in high latitude regions where radiocarbon-based age models are susceptible to large changes in surface reservoir ages. In this presentation we show new high resolution multiproxy records of the Southern Ocean (Drake Passage) made on U-Th dated corals spanning the last glacial cycle. With more than seventeen hundred reconnaissance ages, and around 200 precise isotope dilution U-Th ages, subtle changes in ocean behaviour can be identified during times of abrupt climate change. The geochemical signature of corals from the deepest sites, closest to modern day Lower Circumpolar Deep Waters, typically show a gradual shift from glacial to Holocene values during deglaciation, likely related to ventilation of the deep ocean. By contrast for the samples collected shallower in the water column (within sites currently bathed by Upper Circumpolar Deep Waters and Antarctic Intermediate and Mode Waters) the evidence points to a more complicated picture. Vertical zonation in the geochemical data suggests that periods of stratification are interspersed with mixing events within the upper 1500m of the water column. At the same time comparison to U-Th dated records from the low latitude Pacific and Atlantic points to an important role for the Southern Ocean in feeding the intermediate waters of both ocean basins throughout the

  7. Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume.

    Science.gov (United States)

    Kleindienst, Sara; Grim, Sharon; Sogin, Mitchell; Bracco, Annalisa; Crespo-Medina, Melitza; Joye, Samantha B

    2016-02-01

    The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico's deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf's deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4-V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1-C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations.

  8. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    Science.gov (United States)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  9. Benthic Foraminifera, Food in the Deep Sea, and Limits to Bentho-Pelagic Coupling

    Science.gov (United States)

    Thomas, E.; Boscolo-Galazzo, F.; Arreguin-Rodrigu, G. J.; Ortiz, S.; Alegret, L.

    2015-12-01

    The deep-sea is the largest habitat on Earth, contains highly diverse biota, but is very little known. Many of its abundant benthic biota (e.g., nematodes) are not preserved in the fossil record. Calcareous and agglutinated benthic foraminifera (unicellular eukaryotes, Rhizaria; efficient dispersers) and ostracodes (Animalia, Crustacea; non-efficient dispersers) are the most common organisms providing a fossil record of deep-sea environments. Very little food is supplied to the deep-sea, because organic matter produced by photosynthesis is largely degraded before it arrives at the seafloor. Only a few % of organic matter is carried to the ocean bottom by 'marine snow', with its particle size and behavior in the water column controlled by surface ecosystem structure, including type of dominant primary producers (diatoms, cyanobacteria). Food supply and its seasonality are generally seen as the dominant control on benthic assemblages (combined with oxygenation), providing bentho-pelagic coupling between primary and benthic productivity. Benthic foraminiferal assemblages (composition and density) thus are used widely to estimate past productivity, especially during episodes of global climate change, ocean acidification, and mass extinction of primary producers. We show that some environmental circumstances may result in interrupting bentho-pelagic coupling, e.g. through lateral supply of organic matter along continental margins (adding more refractory organic matter), through trophic focusing and/or fine particle winnowing on seamounts (giving an advantage to suspension feeders), and through carbonate undersaturation (giving advantage to infaunal over epifaunal calcifyers). In addition, increased remineralization of organic matter combined with increased metabolic rates may cause assemblages to reflect more oligotrophic conditions at stable primary productivity during periods of global warming. As a result, benthic foraminiferal accumulation rates must be carefully

  10. Support of Publication Costs, Atlantic Meridional Overturning Circulation Special Issue of Deep Sea Research II Journal

    Energy Technology Data Exchange (ETDEWEB)

    Amy Honchar

    2012-11-12

    The contribution of funds from DOE supported publication costs of a special issue of Deep Sea Research arising from presentations at the First U.S. Atlantic Meridional Overturning Circulation (AMOC) Meeting held 4-6 May, 2009 to review the US implementation plan and its coordination with other monitoring activities. The special issue includes a total of 16 papers, including publications from three DOE-supported investigators (ie Sevellec, F., and A.V. Fedorov; Hu et. al., and Wan et. al.,). The special issue addresses DOE interests in understanding and simulation/modeling of abrupt climate change.

  11. Draft genome of bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water.

    Science.gov (United States)

    Wen, Jian; Ren, Chong; Huang, Nan; Liu, Yang; Zeng, Runying

    2015-02-01

    Bacillus aryabhattai GZ03 was isolated from deep sea water of the South China Sea, which can produce glucose and fructose by degrading bagasse at 25 °C. Here we report the draft genome sequence of Bacillus aryabhattai GZ03. The data obtained revealed 37 contigs with genome size of 5,105,129 bp and G+C content of 38.09%. The draft genome of B. aryabhattai GZ03 may provide insights into the mechanism of microbial carbohydrate and lignocellulosic material degradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    International Nuclear Information System (INIS)

    McCulloch, Malcolm; Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro; Montagna, Paolo; Mortimer, Graham

    2010-01-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short (∼ 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had Δ 14 C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 ± 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had Δ 14 C values falling significantly below the marine curve. Using a refined approach, isolation ages (T isol ) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low Δ 14 C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at ∼ 10, 900 years BP, with many of the coral-bearing mounds on the continental slopes being draped in

  13. Systems analysis for disposal of radioactive wastes in deep sea bottom

    International Nuclear Information System (INIS)

    Karpf, A.D.

    1988-12-01

    Part I of the report outlines substantial fundamentals and results that impart sufficient knowledge to understand the resepctive calculations, the influence of essential parameters and to allow unambiguous conclusions as regards the potential riks of a repository in the deep sea bottom. In addition, significant features of the developed programme are described and an overview of international cooperation in this field is given. The more detailed parts II and III deal with the actual repository in the sea sediment layer and its sea biosphere, respectively. (orig./DG) [de

  14. Deep-sea polymetallic nodule mining: Challenges ahead for technologists and environmentalists

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    occur beyond 4800m water depths. For over 30 years, deep-sea polymetallic nodule mining has been a subject of interest to many research groups in the world because of its identified potential for the economic recovery of large reserves of minerals... PolymetallicnoduleswerefirstdiscoveredduringthevoyagesofH.M.S.Challengerin 1873–76, (Murray and Renard 1891) but their economic value as potential ores of Ni, Cu,andCobaltwasnotrealizeduntilthelate1950s(Mero1958).Thenodulesarealso valuable for other applications such as a sorbent in gas purification...

  15. Evolution in the deep sea: biological traits, ecology and phylogenetics of pelagic copepods.

    Science.gov (United States)

    Laakmann, Silke; Auel, Holger; Kochzius, Marc

    2012-11-01

    Deep-sea biodiversity has received increasing interest in the last decade, mainly focusing on benthic communities. In contrast, studies of zooplankton in the meso- to bathypelagic zones are relatively scarce. In order to explore evolutionary processes in the pelagic deep sea, the present study focuses on copepods of two clausocalanoid families, Euchaetidae and Aetideidae, which are abundant and species-rich in the deep-sea pelagic realm. Molecular phylogenies based on concatenated-portioned data on 18S, 28S and internal transcribed spacer 2 (ITS2), as well as mitochondrial cytochrome c oxidase subunit I (COI), were examined on 13 species, mainly from Arctic and Antarctic regions, together with species-specific biological traits (i.e. vertical occurrence, feeding behaviour, dietary preferences, energy storage, and reproductive strategy). Relationships were resolved on genus, species and even sub-species levels, the latter two established by COI with maximum average genetic distances ranging from ≤5.3% at the intra-specific, and 20.6% at the inter-specific level. There is no resolution at a family level, emphasising the state of Euchaetidae and Aetideidae as sister families and suggesting a fast radiation of these lineages, a hypothesis which is further supported by biological parameters. Euchaetidae were similar in lipid-specific energy storage, reproductive strategy, as well as feeding behaviour and dietary preference. In contrast, Aetideidae were more diverse, comprising a variety of characteristics ranging from similar adaptations within Paraeuchaeta, to genera consisting of species with completely different reproductive and feeding ecologies. Reproductive strategies were generally similar within each aetideid genus, but differed between genera. Closely related species (congeners), which were similar in the aforementioned biological and ecological traits, generally occurred in different depth layers, suggesting that vertical partitioning of the water column

  16. Molecular Phylogeny Of Microbes In The Deep-Sea Sediments From Tropical West Pacific Warm Pool

    Science.gov (United States)

    Wang, F.; Xiao, X.; Wang, P.

    2005-12-01

    The presence and phylogeny of bacteria and archaea in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1cm-, 3cm-, 6cm-, 10cm-, 12cm- layer) of the 12-cm sediment core of WP-0 were checked and compared. The microbial diversity in the five deep-sea sediments were similar as revealed by denaturing gradient gel electrophoresis, and all of them contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. The composition of methylotrophs including methanotrophs, sulfate reducing bacteria in the WP-0 sediment core were further investigated by molecular marker based analysis of mxaF, pmoA, dsrAB, specific anoxic methane oxidation archaeal and sulfate reducing bacterial 16S rRNA genes. From MxaF amino acid sequence analysis, it was demonstrated that microbes belonging to α - Proteobacteria most related to Hyphomicrobium and Methylobacterium were dominant aerobic methylotrophs in this deep-sea sediment; and small percentage of type II methanotrophs affiliating closest to Methylocystis and Methylosinus were also detected in this environment. mxaF quantitative PCR results showed that in the west Pacific WP sediment there existed around 3× 10 4-5 methylotrophs per gram sediment, 10-100 times more than that in samples collected from several other deep-sea Pacific sediment sample, but about 10 times less than that present in samples collected from rice and flower garden soil. Diverse groups of novel archaea (named as WPA), not belonging to any known archaeal lineages were checked out. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. Possible sulfate reducing bacterial related with Desulfotomaculum, Desulfacinum, Desulfomonile and Desulfanuticus were also detected in our study. The vertical distributions of WPA

  17. Are deep-sea ecosystems surrounding Madagascar threatened by land-use or climate change?

    Science.gov (United States)

    Fontanier, Christophe; Mamo, Briony; Toucanne, Samuel; Bayon, Germain; Schmidt, Sabine; Deflandre, Bruno; Dennielou, Bernard; Jouet, Gwenael; Garnier, Eline; Sakai, Saburo; Lamas, Ruth Martinez; Duros, Pauline; Toyofuku, Takashi; Salé, Aurélien; Belleney, Déborah; Bichon, Sabrina; Boissier, Audrey; Chéron, Sandrine; Pitel, Mathilde; Roubi, Angélique; Rovere, Mickaël; Grémare, Antoine; Dupré, Stéphanie; Jorry, Stéphan J.

    2018-01-01

    In this short communication, we present a multidisciplinary study of sedimentary records collected from a deep-sea interfluve proximal to the mouths of major northwestern Madagascan rivers. For the last 60 years, the seafloor has been repeatedly disturbed by the deposition of organic rich, tropical, terrestrial sediments causing marked reductions in benthic biodiversity. Increased soil erosion due to local land-use, deforestation and intensifying tropical cyclones are potential causes for this sedimentary budget and biodiversity shift. Our marine sedimentary records indicate that until now, these conditions have not occurred within the region for at least 20,000 years.

  18. Microfabric of illitic clays from the Pacific deep-sea basin

    International Nuclear Information System (INIS)

    Burkett, D.J.; Bennett, R.H.; Bryant, W.R.

    1990-01-01

    The microfabric of deep-sea illitic clays was investigated using electron microscopy in support of the In-Situ Heat Transfer Experiment (ISHTE) Simulation test (ISIMU) and the Subseabed Disposal Program (SDP). Sandia National Laboratories, ISHTE and the field exercises were designed to investigate the thermal, fluid, and mechanical response of the sediment to the emplacement of radioactive waste in the seabed. Clay fabric of an undisturbed core sample, designated RAMA, was compared to dredge, remolded, reconsolidated material in order to investigate the effects of mechanical disturbances from sediment remolding and heater probe insertion and effects of induced thermal gradients caused by heating of the sediment

  19. A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample.

    Science.gov (United States)

    Li, Yan; Ye, Dezan; Shao, Zongze; Cui, Chengbin; Che, Yongsheng

    2012-02-01

    A new polyoxygenated sterol, sterolic acid (1), three new breviane spiroditerpenoids, breviones I-K (2-4), and the known breviones (5-8), were isolated from the crude extract of a Penicillium sp. obtained from a deep sea sediment sample that was collected at a depth of 5115 m. The structures of 1-4 were elucidated primarily by NMR experiments, and 1 was further confirmed by X-ray crystallography. The absolute configurations of 2 and 3 were deduced by comparison of their CD spectra with those of the model compounds. Compounds 2 and 5 showed significant cytotoxicity against MCF-7 cells, which is comparable to the positive control cisplatin.

  20. Experimental studies on the geochemical behaviour of 54-Mn considering coastal and deep sea sediments

    International Nuclear Information System (INIS)

    Guegueniat, P.; Boust, D.; Aprosi, G.

    1986-01-01

    In order to study the geochemical behaviour of 54-Mn in the marine environment (Mn 2+ ) 200 sediments gathered in deep sea and in coastal waters were contaminated experimentally. To correlate the various results, the oxidation processes occuring with or without sediments should be specified. Without sediments, in 'blanks', the deposition rate of 54-Mn on the walls brings into play oxidation developing approximately according to a single order linear function. Consequently, it is characterized by a half-life (time for half 54-Mn to be retained) very similar to a residence time (Tsub(R)). In our water samples, Tsub(R) ranged from 12 to 150 days. (author)

  1. Behaviour of long-lived radionuclides associated with deep-sea disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1986-04-01

    The IAEA sponsored this Coordinated Research Programme to improve knowledge of various long-lived radionuclides likely to be dumped in the deep sea. During the three years of this programme the state of knowledge has advanced significantly in this area, and this document provides a review of the progress. The isotopes studied were mainly 238 Pu, 239 Pu, 240 Pu, 241 Am, 226 Ra, 210 Po, 90 Sr, 137 Cs, 60 Co, and 99 Tc. A separate abstract was prepared for each of the 15 papers

  2. Chemosynthetic activity prevails in deep-sea sediments of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Sujith, P.P.; Mourya, B.S.; Biche, S.U.; LokaBharathi, P.A.

    difference between the results at 4±2°C, 1 atm and 4±2°C, 500 atm. The difference could not be discerned in the time frame used for the experiment (Table 1). C/N ratios, TOC, TIC, LOM and bacterial counts In the CIB sediments, elemental C/N ratios... varied from 0.7 to infinitely large values due to very low levels of total nitrogen. TOC varied from <0.05-1.54%, TIC varied from non detectable in most of the deep-sea sediment to 10% in carbonaceous oozes. LOM varied from 0.025-0.14%. Bacterial...

  3. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Malcolm [ARC Centre of Excellence for Coral Reef Studies, School of Earth and Environment, The University of Western Australian, Crawley, 6009, Western Australia (Australia); Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia); Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro [ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Montagna, Paolo [LSCE, Av. de la Terrasse, 91198 Gif-sur-Yvette, France, ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Mortimer, Graham [Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia)

    2010-07-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short ({approx} 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had {Delta}{sup 14}C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 {+-} 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had {Delta}{sup 14}C values falling significantly below the marine curve. Using a refined approach, isolation ages (T{sub isol}) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low {Delta}{sup 14}C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at {approx} 10, 900 years BP, with many of the coral-bearing mounds

  4. 'Yellow lens' eyes of a stomiatoid deep-sea fish, Malacosteus niger.

    Science.gov (United States)

    Somiya, H

    1982-07-22

    Bright yellow lenses were found in the eyes of the stomiatoid deep-sea fish, Malacosteus niger Ayres. The optical properties of the yellow lens and the retinal specializations in the eyes were examined. Absorption spectra of the yellow lens revealed two peaks at wavelengths 425 and 460 nm. The photoreceptors were all rods and were arranged in two superimposed layers. An astaxanthin-type retinal tapetum was observed in the pigment epithelium. Some chemical evidence is presented showing that the tapetal material is an astaxanthin ester. The ecological significance of the yellow lens is discussed in connection with that of Malacosteus' orbital light organ which has a reddish filter.

  5. Biscogniauxone, a New Isopyrrolonaphthoquinone Compound from the Fungus Biscogniauxia mediterranea Isolated from Deep-Sea Sediments

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2016-11-01

    Full Text Available The properties and the production of new metabolites from the fungal strain LF657 isolated from the Herodotes Deep (2800 m depth in the Mediterranean Sea are reported in this study. The new isolate was identified as Biscogniauxia mediterranea based on ITS1-5.8S-ITS2 and 28S rRNA gene sequences. A new isopyrrolonaphthoquinone with inhibitory activity against glycogen synthase kinase (GSK-3β was isolated from this fungus. This is the first report of this class of compounds from a fungus isolated from a deep-sea sediment, as well as from a Biscogniauxia species.

  6. Bacterial Sulfate Reduction Above 100-Degrees-C in Deep-Sea Hydrothermal Vent Sediments

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; ISAKSEN, MF; JANNASCH, HW

    1992-01-01

    -reducing bacteria was done in hot deep-sea sediments at the hydrothermal vents of the Guaymas Basin tectonic spreading center in the Gulf of California. Radiotracer studies revealed that sulfate reduction can occur at temperatures up to 110-degrees-C, with an optimum rate at 103-degrees to 106-degrees......-C. This observation expands the upper temperature limit of this process in deep-ocean sediments by 20-degrees-C and indicates the existence of an unknown groUp of hyperthermophilic bacteria with a potential importance for the biogeochemistry of sulfur above 100-degrees-C....

  7. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  8. Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation

    Directory of Open Access Journals (Sweden)

    I. Tsandev

    2010-06-01

    Full Text Available The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep-sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.

  9. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  10. Hydrocarbons, PCBs and DDT in the NW Mediterranean deep-sea fish Mora moro

    Science.gov (United States)

    Solé, Montserrat; Porte, Cinta; Albaigés, Joan

    2001-02-01

    Data on aliphatic and polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDTs in the deep-sea fish Mora moro are reported in relation to the animal's weight/size and tissues (muscle, liver, digestive tube and gills). Fish samples were collected in the Gulf of Lions (NW Mediterranean) at an approximate depth of 1000 m. The concentrations of these organic pollutants followed the trend musclelipid content of the organs. No clear bioaccumulation dependence on fish weight/size was observed for gills, digestive tube and liver when the fat contents of these tissues were taken into account. However, the concentrations in muscle decreased with size, possibly implying a simple dilution effect by the increase of body weight. Hydrocarbons, and particularly PAHs, were strongly depleted in all tissues with respect to organochlorinated compounds if compared with the amounts present in bottom waters and sediment. Smaller specimens displayed for most pollutants qualitatively different patterns than larger fish, which could be attributed to their particular habitat/diet. The aliphatic hydrocarbon profiles suggested that Mora moro was exposed to a more predominant intake of biogenic rather than petrogenic hydrocarbons. The entrance and storage organs exhibited characteristic PAH and PCB distributions, reflecting different bioaccumulation and metabolic pathways. Compared with the profiles currently found in surface fish species, a relatively higher contribution of heavier components, namely hepta- and octochlorinated PCBs, and 4-6-ringed PAHs, was found in the deep-sea fish.

  11. Physiological compensation for environmental acidification is limited in the deep-sea urchin Strongylocentrotus fragilis

    Science.gov (United States)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2013-05-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals - particularly, calcifiers - are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of hypercapnia and hypoxia on the deep-sea urchin Strongylocentrotus fragilis, during two long-term exposure experiments (1 month and 4 month) at three levels of reduced pH at in situ O2 levels of approx. 10% saturation, and also to control pH at 100% O2 saturation. During the first experiment, internal acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by reduced pH, due in part to low non-bicarbonate extracellular fluid buffering capacity. During the second experiment, longer-term effects of hypercapnia and variable O2 on locomotion, feeding, growth, and gonadosomatic index (GSI) were investigated; results show significant mortality and correlation of all measured parameters with environmental acidification at pH 6.6. Transient adverse effects on locomotion and feeding were seen at pH 7.2, without compromise of growth or GSI. Based on the expected changes in ocean pH and oxygen, results suggest extinction of S. fragilis in the eastern North Pacific is unlikely. Rather, we expect a shoaling and contraction of its bathymetric range.

  12. Chronicles of the deep : ageing deep-sea corals in New Zealand waters

    International Nuclear Information System (INIS)

    Tracey, D.; Neil, H.; Gordon, D.; O'Shea, S.

    2003-01-01

    How old is a coral? Finding the answer requires some rather complex steps. We need to understand: the source of carbonate; the effects of climatic events; how to interpret growth zones; the effect of 14 C and biological processes such as feeding and reproduction; and how to overcome the lack of deep-sea environmental data records. We also need to find out where on the coral we should be sampling to get the best estimates of age. At the moment we know little about how deep-sea corals deposit their calcite, but we will be exploring this further so that we can have greater confidence in our age estimates. To confirm and validate age and growth, it will be necessary to use a combination of some of the the possible methods for ageing coral. In addition to ageing the corals, this work should yield a high-resolution record of ocean temperature during the past 100 years by using stable-isotope signatures preserved in the corals' carbonate skeletons. (author). 4 figs

  13. Precise Th/U-dating of small and heavily coated samples of deep sea corals

    Science.gov (United States)

    Lomitschka, Michael; Mangini, Augusto

    1999-07-01

    Marine carbonate skeletons like deep-sea corals are frequently coated with iron and manganese oxides/hydroxides which adsorb additional thorium and uranium out of the sea water. A new cleaning procedure has been developed to reduce this contamination. In this further cleaning step a solution of Na 2EDTA (Na 2H 2T B) and ascorbic acid is used which composition is optimised especially for samples of 20 mg of weight. It was first tested on aliquots of a reef-building coral which had been artificially contaminated with powdered ferromanganese nodule. Applied on heavily contaminated deep-sea corals (scleractinia), it reduced excess 230Th by another order of magnitude in addition to usual cleaning procedures. The measurement of at least three fractions of different contamination, together with an additional standard correction for contaminated carbonates results in Th/U-ages corrected for the authigenic component. A good agreement between Th/U- and 14C-ages can be achieved even for extremely coated corals.

  14. Dispersal of volcaniclasts during deep-sea eruptions: Settling velocities and entrainment in buoyant seawater plumes

    Science.gov (United States)

    Barreyre, Thibaut; Soule, S. Adam; Sohn, Robert A.

    2011-08-01

    We use tank experiments to measure settling rates of deep-sea volcaniclastic material recovered from the Arctic (85°E Gakkel Ridge) and Pacific (Juan de Fuca Ridge, Loihi seamount) Oceans. We find that clast size and shape exert a strong influence on settling velocity, with velocities of ~ 30 cm/s for large (~ 8 mm), blocky clasts, compared to velocities of ~ 2.5 cm/s for small (Pele) entrained in a megaplume could be advected as far as a few kilometers from a source region. These results indicate that entrainment in buoyant seawater plumes during an eruption may play an important role in clast dispersal, but it is not clear if this mechanism can explain the distribution of volcaniclastic material at the sites on the Gakkel and Juan de Fuca Ridges where our samples were acquired. In order to understand the dispersal of volcaniclastic material in the deep-sea it will be necessary to rigorously characterize existing deposits, and develop models capable of incorporating explosive gas phases into the eruption plume.

  15. Supernova-produced radionuclides in deep-sea sediments measured with AMS

    International Nuclear Information System (INIS)

    Feige, J.

    2014-01-01

    This thesis is dedicated to computational micromagnetics, where several new numerical methods are In this work a set of long-lived radionuclides is measured to detect supernova-traces presumably deposited on Earth 2-3 Myr ago. Approximately 100 samples of four deep-sea sediment cores (Indian Ocean) were analyzed for 26 Al, 53Mn, and 60 Fe with accelerator mass spectrometry (AMS). Additionally, 10 Be was measured to confirm the existing paleomagnetic chronology of the sediments. A signal of extraterrestrial 60 Fe, which is not produced in-situ on Earth, was detected in a time period of 1.7-3.2 Myr in the sediments used for this work. 60 Fe/ 26 Al ratios were used to calculate limits on theoretical nucleosynthesis models. A supernova-signature of 26 Al is hidden behind a terrestrial background. The measured 26 Al/ 10 Be ratios indicate, that the major source of 26 Al detected in the sediments is of atmospheric origin. Because of the extraordinarily good depth profile for the deep-sea sediments from the measured 26 Al data, this radionuclide was used for dating. (author) [de

  16. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    Science.gov (United States)

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  17. A Simple and Efficient RNA Extraction Method from Deep-Sea Hydrothermal Vent Chimney Structures.

    Science.gov (United States)

    Muto, Hisashi; Takaki, Yoshihiro; Hirai, Miho; Mino, Sayaka; Sawayama, Shigeki; Takai, Ken; Nakagawa, Satoshi

    2017-12-27

    RNA-based microbiological analyses, e.g., transcriptome and reverse transcription-quantitative PCR, require a relatively large amount of high quality RNA. RNA-based analyses on microbial communities in deep-sea hydrothermal environments often encounter methodological difficulties with RNA extraction due to the presence of unique minerals in and the low biomass of samples. In the present study, we assessed RNA extraction methods for deep-sea vent chimneys that had complex mineral compositions. Mineral-RNA adsorption experiments were conducted using mock chimney minerals and Escherichia coli total RNA solution, and showed that detectable RNA significantly decreased possibly due to adsorption onto minerals. This decrease in RNA was prevented by the addition of sodium tripolyphosphate (STPP), deoxynucleotide triphosphates (dNTPs), salmon sperm DNA, and NaOH. The addition of STPP was also effective for RNA extraction from the mixture of E. coli cells and mock chimney minerals when TRIzol reagent and the RNeasy column were used, but not when the RNeasy PowerSoil total RNA kit was used. A combination of STPP, TRIzol reagent, the RNeasy column, and sonication resulted in the highest RNA yield from a natural chimney. This indirect extraction procedure is simple, rapid, inexpensive, and may be used for large-scale RNA extraction.

  18. Defying Dissolution: Discovery of Deep-Sea Scleractinian Coral Reefs in the North Pacific.

    Science.gov (United States)

    Baco, Amy R; Morgan, Nicole; Roark, E Brendan; Silva, Mauricio; Shamberger, Kathryn E F; Miller, Kelci

    2017-07-14

    Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535-732 m and aragonite saturation state (Ω arag ) values of 0.71-1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.

  19. Biomagnification of persistent organic pollutants in a deep-sea, temperate food web.

    Science.gov (United States)

    Romero-Romero, Sonia; Herrero, Laura; Fernández, Mario; Gómara, Belén; Acuña, José Luis

    2017-12-15

    Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were measured in a temperate, deep-sea ecosystem, the Avilés submarine Canyon (AC; Cantabrian Sea, Southern Bay of Biscay). There was an increase of contaminant concentration with the trophic level of the organisms, as calculated from stable nitrogen isotope data (δ 15 N). Such biomagnification was only significant for the pelagic food web and its magnitude was highly dependent on the type of top predators included in the analysis. The trophic magnification factor (TMF) for PCB-153 in the pelagic food web (spanning four trophic levels) was 6.2 or 2.2, depending on whether homeotherm top predators (cetaceans and seabirds) were included or not in the analysis, respectively. Since body size is significantly correlated with δ 15 N, it can be used as a proxy to estimate trophic magnification, what can potentially lead to a simple and convenient method to calculate the TMF. In spite of their lower biomagnification, deep-sea fishes showed higher concentrations than their shallower counterparts, although those differences were not significant. In summary, the AC fauna exhibits contaminant levels comparable or lower than those reported in other systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. In situ radionuclide transfers in the deep-sea Lysianassidae amphipod Eurythenes gryllus

    International Nuclear Information System (INIS)

    Calmet, D.; Charmasson, S.

    1989-01-01

    Previous studies at the NEA dumpsite confirmed the existence of the scavenging amphipod Eurythenes gryllus. The aim of this study was to inquire if, under deep-sea conditions of low temperature and high pressure, this species of crustacean would retain artificial radionuclides in the same organ as those observed in similar coastal species of the same family. This necrophagous species is easily attracted by bait. It can ingest 30 to 60% of its body weight in 30 ± 10 min. In addition, this species can store ingested food for several weeks. Thus, the ingestion of radiolabelled food over a period of several days could be considered as a single-meal contamination experiment. For all these reasons Eurythenes gryllus appeared to be a good test animal to compare laboratory experiments on coastal species with in situ radionuclide retention studies on deep-sea fauna. In order to prevent any disturbance of their physiological conditions, a special device was used to attract and feed the animals with radiolabelled baits, in situ at a depth of 4000 m, rather than recovering amphipods without decompression and keeping them alive aboard ship. Qualitatively speaking results yielded by in situ experiments support those obtained from laboratory studies with coastal animals and the same radionuclides

  1. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    Science.gov (United States)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  2. Accelerated degradation of polyetheretherketone and its composites in the deep sea.

    Science.gov (United States)

    Liu, Hao; Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan

    2018-04-01

    The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ . The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.

  3. A green fluorescent protein with photoswitchable emission from the deep sea.

    Directory of Open Access Journals (Sweden)

    Alexander Vogt

    Full Text Available A colorful variety of fluorescent proteins (FPs from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that approximately 15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37 degrees C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins.

  4. Experimental studies on the geochemical behaviour of 54-Mn considering coastal and deep sea sediments

    International Nuclear Information System (INIS)

    Guegueniat, P.; Boust, D.; Dupont, J.P.; Aprosi, G.

    1985-01-01

    In order to study the geochemical behaviour of 54-Mn in the marine environment (Mn/sup 2+/) 200 sediments gathered in deep sea and in coastal waters were contaminated experimentally. To correlate the various results, the oxidation processes occurring with or without sediments should be specified. During this experimental work, the geochemical behaviour of manganese is dealt with using a radioactive tracer (54-Mn) in the divalent state and sediments collected on french littoral (160) in deep sea (30). The latest data published offer an excellent assessment of research findings on manganese in marine and estuary environments and testify to the interest constantly generated by this subject. It is difficult to establish a priori any predictions on the behaviour of manganese based on the properties of a given environment, notably as concerns redox conditions. The oxidation of manganese was found to be governed by a very slow autocatalysis mechanism capable of being concealed by surface catalyses on mineral phases in suspension or oxidation due to bacteria. The residence time in sea water vary considerably depending on the case from a few days to some tens of years

  5. Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals

    Directory of Open Access Journals (Sweden)

    T. P. Guilderson

    2013-09-01

    Full Text Available δ15N and δ13C data obtained from samples of proteinaceous deep-sea corals collected from the North Pacific Subtropical Gyre (Hawaiian Archipelago and the central equatorial Pacific (Line Islands document multidecadal to century-scale variability in the isotopic composition of surface-produced particulate organic matter exported to the deep sea. Comparison of the δ13C data, where Line Islands samples are 0.6‰ more positive than the Hawaiian samples, supports the contention that the North Pacific Subtropical Gyre is more efficient than the tropical upwelling system at trapping and/or recycling nutrients within the mixed layer. δ15N values from the Line Islands samples are also more positive than those from the central gyre, and within the Hawaiian samples there is a gradient with more positive δ15N values in samples from the main Hawaiian Islands versus the French Frigate Shoals in the Northwestern Hawaiian Islands. The gradient in the Hawaiian samples likely reflects the relative importance of algal acquisition of metabolic N via dissolved seawater nitrate uptake versus nitrogen fixation. The Hawaiian sample set also exhibits a strong decrease in δ15N values from the mid-Holocene to present. We hypothesize that this decrease is most likely the result of decreasing trade winds, and possibly a commensurate decrease in entrainment of more positive δ15N-NO3 subthermocline water masses.

  6. Global latitudinal species diversity gradient in deep-sea benthic foraminifera

    Science.gov (United States)

    Culver, Stephen J.; Buzas, Martin A.

    2000-02-01

    Global scale patterns of species diversity for modern deep-sea benthic foraminifera, an important component of the bathyal and abyssal meiofauna, are examined using comparable data from five studies in the Atlantic, ranging over 138° of latitude from the Norwegian Sea to the Weddell Sea. We show that a pattern of decreasing diversity with increasing latitude characterises both the North and South Atlantic. This pattern is confirmed for the northern hemisphere by independent data from the west-central North Atlantic and the Arctic basin. Species diversity in the North Atlantic northwards from the equator is variable until a sharp fall in the Norwegian Sea (ca. 65°N). In the South Atlantic species diversity drops from a maximum in latitudes less than 30°S and then decreases slightly from 40 to 70°S. For any given latitude, North Atlantic diversity is generally lower than in the South Atlantic. Both ecological and historical factors related to food supply are invoked to explain the formation and maintenance of the latitudinal gradient of deep-sea benthic foraminiferal species diversity. The gradient formed some 36 million years ago when global climatic cooling led to seasonally fluctuating food supply in higher latitudes.

  7. Nematode assemblages in the deep-sea benthos of the Norwegian Sea

    Science.gov (United States)

    Jensen, Preben

    1988-07-01

    The deep-sea benthos of the Norwegian Sea contains 20-204 nematodes per 10 cm 2 down to 3 cm depth at seven stations sampled between 970 and 3294 m water depth. The majority of nematodes occur in the uppermost cm. Biomass varies from 3 to 73 μg C per 10 cm 2. Individual adult weight of the most dominant species differs by a factor of almost 1000, i.e. from 3-4 ng C to 3400 ng C; however, the majority of the nematodes is small-sized. Species diversity and evenness are high at all stations and each station harbours its specific fauna with little overlap between stations. Analysis of trophic group composition suggests that microbial feeding types (deposit and epistrate feeders) prevail in the deep-sea benthos; predators and scavengers are scarce. It is concluded that the nematode assemblage at each station consists of a mosaic of many microhabitats. The small nematode body weight probably results from limited food supply and/or poor food quality.

  8. Compilation of selected deep-sea biological data for the US subseabed disposal project

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Jackson, D.W.

    1987-03-01

    The US Subseabed Disposal Project (SDP) has compiled an extensive deep-sea biological data base to be used in calculating biological parameters of state and rate included in mathematical models of oceanographic transport of radionuclides. The data base is organized around a model deep-sea ecosystem which includes the following components: zooplankton, fish and other nekton, invertebrate benthic megafauna, benthic macrofauna, benthic meiofauna, heterotrophic microbiota, as well as suspended and sediment particulate organic carbon. Measurements of abundance and activity rates (e.g., respiration, production, sedimentation, etc.) reported in the international oceanographic literature are summarized in 23 tables. Included in these tables are the latitudinal position of the studies, as well as information describing sampling techniques and any special notes needed to better assess the data presented. This report has been prepared primarily as a resource document to be used in calculating parameter values for various modeling applications, and for preparing historical data reviews for other SDP reports. Depending on the intended use, these data will require further reduction and unit conversion

  9. Accelerated degradation of polyetheretherketone and its composites in the deep sea

    Science.gov (United States)

    Liu, Hao; Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan

    2018-04-01

    The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ. The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.

  10. The "island rule" and deep-sea gastropods: re-examining the evidence.

    Directory of Open Access Journals (Sweden)

    John J Welch

    2010-01-01

    Full Text Available One of the most intriguing patterns in mammalian biogeography is the "island rule", which states that colonising species have a tendency to converge in body size, with larger species evolving decreased sizes and smaller species increased sizes. It has recently been suggested that an analogous pattern holds for the colonisation of the deep-sea benthos by marine Gastropoda. In particular, a pioneering study showed that gastropods from the Western Atlantic showed the same graded trend from dwarfism to gigantism that is evident in island endemic mammals. However, subsequent to the publication of the gastropod study, the standard tests of the island rule have been shown to yield false positives at a very high rate, leaving the result open to doubt.The evolution of gastropod body size in the deep sea is reexamined. Using an extended and updated data set, and improved statistical methods, it is shown that some results of the previous study may have been artifactual, but that its central conclusion is robust. It is further shown that the effect is not restricted to a single gastropod clade, that its strength increases markedly with depth, but that it applies even in the mesopelagic zone.The replication of the island rule in a distant taxonomic group and a partially analogous ecological situation could help to uncover the causes of the patterns observed--which are currently much disputed. The gastropod pattern is evident at intermediate depths, and so cannot be attributed to the unique features of abyssal ecology.

  11. Vertical migrations of a deep-sea fish and its prey.

    Directory of Open Access Journals (Sweden)

    Pedro Afonso

    Full Text Available It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL. This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel as well as long-term (seasonal scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.

  12. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    Directory of Open Access Journals (Sweden)

    Premila D. Thongbam

    2011-04-01

    Full Text Available Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  13. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.

    Science.gov (United States)

    Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L

    2016-01-01

    Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  14. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea

    Directory of Open Access Journals (Sweden)

    Beth L. Mindel

    2016-09-01

    Full Text Available Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300–2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  15. Ceramic Spheres—A Novel Solution to Deep Sea Buoyancy Modules

    Science.gov (United States)

    Jiang, Bo; Blugan, Gurdial; Sturzenegger, Philip N.; Gonzenbach, Urs T.; Misson, Michael; Thornberry, John; Stenerud, Runar; Cartlidge, David; Kuebler, Jakob

    2016-01-01

    Ceramic-based hollow spheres are considered a great driving force for many applications such as offshore buoyancy modules due to their large diameter to wall thickness ratio and uniform wall thickness geometric features. We have developed such thin-walled hollow spheres made of alumina using slip casting and sintering processes. A diameter as large as 50 mm with a wall thickness of 0.5–1.0 mm has been successfully achieved in these spheres. Their material and structural properties were examined by a series of characterization tools. Particularly, the feasibility of these spheres was investigated with respect to its application for deep sea (>3000 m) buoyancy modules. These spheres, sintered at 1600 °C and with 1.0 mm of wall thickness, have achieved buoyancy of more than 54%. As the sphere’s wall thickness was reduced (e.g., 0.5 mm), their buoyancy reached 72%. The mechanical performance of such spheres has shown a hydrostatic failure pressure above 150 MPa, corresponding to a rating depth below sea level of 5000 m considering a safety factor of 3. The developed alumina-based ceramic spheres are feasible for low cost and scaled-up production and show great potential at depths greater than those achievable by the current deep-sea buoyancy module technologies. PMID:28773651

  16. Conquered from the deep sea? A new deep-sea isopod species from the Antarctic shelf shows pattern of recent colonization.

    Directory of Open Access Journals (Sweden)

    Torben Riehl

    Full Text Available The Amundsen Sea, Antarctica, is amongst the most rapidly changing environments of the world. Its benthic inhabitants are barely known and the BIOPEARL 2 project was one of the first to biologically explore this region. Collected during this expedition, Macrostylis roaldi sp. nov. is described as the first isopod discovered on the Amundsen-Sea shelf. Amongst many characteristic features, the most obvious characters unique for M. roaldi are the rather short pleotelson and short operculum as well as the trapezoid shape of the pleotelson in adult males. We used DNA barcodes (COI and additional mitochondrial markers (12S, 16S to reciprocally illuminate morphological results and nucleotide variability. In contrast to many other deep-sea isopods, this species is common and shows a wide distribution. Its range spreads from Pine Island Bay at inner shelf right to the shelf break and across 1,000 m bathymetrically. Its gene pool is homogenized across space and depth. This is indicative for a genetic bottleneck or a recent colonization history. Our results suggest further that migratory or dispersal capabilities of some species of brooding macrobenthos have been underestimated. This might be relevant for the species' potential to cope with effects of climate change. To determine where this species could have survived the last glacial period, alternative refuge possibilities are discussed.

  17. GEOSTAR deep sea floor missions: magnetic data analysis and 1D geo electric structure underneath the Southern Tyrrhenian Sea

    International Nuclear Information System (INIS)

    Vitale, S.; De Santis, A.; Di Mauro, D.; Cafarella, L.; Palangio, P.; Beranzoli, L.; Favali, P.

    2009-01-01

    From 2000 to 2005 two geophysical exploration missions were undertaken in the Tyrrenian deep sea floor at depth between -2000 and -3000 m in the framework of the European-funded GEOSTAR Projects. The considered missions in this work are GEOSTAR-2 and ORION-GEOSTAR-3 with the main scientific objective of investigating the deep-sea floor by means of an automatic multiparameter benthic observatory station working continuously from around 5 to 12 months each time. During the two GEOSTAR deep sea floor missions, scalar and vector magnetometers acquired useful magnetic data both to improve global and regional geomagnetic reference models and to infer specific geo electric information about the two sites of magnetic measurements by means of a forward modelling.

  18. Unveiling the Biodiversity of Deep-Sea Nematodes through Metabarcoding: Are We Ready to Bypass the Classical Taxonomy?

    Science.gov (United States)

    Dell'Anno, Antonio; Carugati, Laura; Corinaldesi, Cinzia; Riccioni, Giulia; Danovaro, Roberto

    2015-01-01

    Nematodes inhabiting benthic deep-sea ecosystems account for >90% of the total metazoan abundances and they have been hypothesised to be hyper-diverse, but their biodiversity is still largely unknown. Metabarcoding could facilitate the census of biodiversity, especially for those tiny metazoans for which morphological identification is difficult. We compared, for the first time, different DNA extraction procedures based on the use of two commercial kits and a previously published laboratory protocol and tested their suitability for sequencing analyses of 18S rDNA of marine nematodes. We also investigated the reliability of Roche 454 sequencing analyses for assessing the biodiversity of deep-sea nematode assemblages previously morphologically identified. Finally, intra-genomic variation in 18S rRNA gene repeats was investigated by Illumina MiSeq in different deep-sea nematode morphospecies to assess the influence of polymorphisms on nematode biodiversity estimates. Our results indicate that the two commercial kits should be preferred for the molecular analysis of biodiversity of deep-sea nematodes since they consistently provide amplifiable DNA suitable for sequencing. We report that the morphological identification of deep-sea nematodes matches the results obtained by metabarcoding analysis only at the order-family level and that a large portion of Operational Clustered Taxonomic Units (OCTUs) was not assigned. We also show that independently from the cut-off criteria and bioinformatic pipelines used, the number of OCTUs largely exceeds the number of individuals and that 18S rRNA gene of different morpho-species of nematodes displayed intra-genomic polymorphisms. Our results indicate that metabarcoding is an important tool to explore the diversity of deep-sea nematodes, but still fails in identifying most of the species due to limited number of sequences deposited in the public databases, and in providing quantitative data on the species encountered. These aspects

  19. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic

    Science.gov (United States)

    Baker, Philip; Minzlaff, Ulrike; Schoenle, Alexandra; Schwabe, Enrico; Hohlfeld, Manon; Jeuck, Alexandra; Brenke, Nils; Prausse, Dennis; Rothenbeck, Marcel; Brix, Saskia; Frutos, Inmaculada; Jörger, Katharina M.; Neusser, Timea P.; Koppelmann, Rolf; Devey, Colin; Brandt, Angelika; Arndt, Hartmut

    2018-02-01

    Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07-3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024-0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link

  20. Do larval supply and recruitment vary among chemosynthetic environments of the deep sea?

    Directory of Open Access Journals (Sweden)

    Anna Metaxas

    Full Text Available BACKGROUND: The biological communities that inhabit chemosynthetic environments exist in an ephemeral and patchily distributed habitat with unique physicochemical properties that lead to high endemicity. Consequently, the maintenance and recovery from perturbation of the populations in these habitats is, arguably, mainly regulated by larval supply and recruitment. METHODOLOGY/PRINCIPAL FINDINGS: WE USE DATA FROM THE PUBLISHED SCIENTIFIC LITERATURE TO: (1 compare the magnitudes of and variability in larval supply and settlement and recruitment at hydrothermal vents, seeps, and whale, wood and kelp falls; (2 explore factors that affect these life history processes, when information is available; and (3 explore taxonomic affinities in the recruit assemblages of the different chemosynthetic habitats, using multivariate statistical techniques. Larval supply at vents can vary across segments by several orders of magnitude for gastropods; for bivalves, supply is similar at vents on different segments, and at cold seeps. The limited information on larval development suggests that dispersal potential may be highest for molluscs from cold seeps, intermediate for siboglinids at vents and lowest for the whale-bone siboglinid Osedax. Settlement is poorly studied and only at vents and seeps, but tends to be highest near an active source of emanating fluid in both habitats. Rate of recruitment at vents is more variable among studies within a segment than among segments. Across different chemosynthetic habitats, recruitment rate of bivalves is much more variable than that of gastropods and polychaetes. Total recruitment rate ranges only between 0.1 and 1 ind dm(-2 d(-1 across all chemosynthetic habitats, falling above rates in the non-reducing deep sea. The recruit assemblages at vents, seeps and kelp falls have lower taxonomic breadth, and include more families and genera that have many species more closely related to each other than those at whale and wood

  1. Late Miocene climate and time scale reconciliation: Accurate orbital calibration from a deep-sea perspective

    Science.gov (United States)

    Drury, Anna Joy; Westerhold, Thomas; Frederichs, Thomas; Tian, Jun; Wilkens, Roy; Channell, James E. T.; Evans, Helen; John, Cédric M.; Lyle, Mitch; Röhl, Ursula

    2017-10-01

    Accurate age control of the late Tortonian to early Messinian (8.3-6.0 Ma) is essential to ascertain the origin of benthic foraminiferal δ18O trends and the late Miocene carbon isotope shift (LMCIS), and to examine temporal relationships between the deep-sea, terrasphere and cryosphere. The current Tortonian-Messinian Geological Time Scale (GTS2012) is based on astronomically calibrated Mediterranean sections; however, no comparable non-Mediterranean stratigraphies exist for 8-6 Ma suitable for testing the GTS2012. Here, we present the first high-resolution, astronomically tuned benthic stable isotope stratigraphy (1.5 kyr resolution) and magnetostratigraphy from a single deep-sea location (IODP Site U1337, equatorial Pacific Ocean), which provides unprecedented insight into climate evolution from 8.3-6.0 Ma. The astronomically calibrated magnetostratigraphy provides robust ages, which differ by 2-50 kyr relative to the GTS2012 for polarity Chrons C3An.1n to C4r.1r, and eliminates the exceptionally high South Atlantic spreading rates based on the GTS2012 during Chron C3Bn. We show that the LMCIS was globally synchronous within 2 kyr, and provide astronomically calibrated ages anchored to the GPTS for its onset (7.537 Ma; 50% from base Chron C4n.1n) and termination (6.727 Ma; 11% from base Chron C3An.2n), confirming that the terrestrial C3:C4 shift could not have driven the LMCIS. The benthic records show that the transition into the 41-kyr world, when obliquity strongly influenced climate variability, already occurred at 7.7 Ma and further strengthened at 6.4 Ma. Previously unseen, distinctive, asymmetric saw-tooth patterns in benthic δ18O imply that high-latitude forcing played an important role in late Miocene climate dynamics from 7.7-6.9 Ma. This new integrated deep-sea stratigraphy from Site U1337 can act as a new stable isotope and magnetic polarity reference section for the 8.3-6.0 Ma interval.

  2. Organic matter assimilation and selective feeding by holothurians in the deep sea: some observations and comments

    Science.gov (United States)

    Ginger, Michael L.; Billett, David S. M.; Mackenzie, Karen L.; Konstandinos Kiriakoulakis; Neto, Renato R.; K. Boardman, Daniel; Santos, Vera L. C. S.; Horsfall, Ian M.; A. Wolff, George

    The selective feeding behaviour and assimilation efficiencies of deep-sea holothurians were investigated in order to assess their impact on carbon and nitrogen remineralisation on the Porcupine Abyssal Plain (PAP; ˜ 49°N 16°W, ˜ 4850 m water depth). Unfortunately, reliable determination of organic matter in the gut contents of the organisms proved to be difficult, because of the lysis of cells associated with the death of the animals on recovery. This was expressed in high levels of free fatty acids in the gut contents of Oneirophanta mutabilis, which we ascribe to unregulated lipolysis of phospholipids and triacylglycerides. It was not possible to estimate accurately the contribution that such material made to the gut contents, but based on the distributions of sterols in the gut sediments, it is likely to have been substantial. Therefore, all assimilation efficiencies calculated for holothurians in the deep sea should be treated with caution. Fortuitously, a bloom of holothurians that feed on the sediment surface (namely Amperima rosea and Ellipinion molle) during the period of study provided an opportunity indirectly to assess the impact of megafauna on organic matter cycling at the PAP. Observations suggest that the depletion of phytosterols from the surficial sediments between July and October 1997 resulted from the selective uptake of fresh phytodetritus by the blooming species. Deep-sea holothurians do not biosynthesise sterols de novo and an estimate of the sterol required by the increased population of A. rosea and E. molle is equivalent to the sterol flux to the seafloor during the spring/summer of 1997. The implications are dramatic. Firstly, these and other megafauna apparently turned over and selectively removed phytosterols from the freshly arrived phytodetritus and the surficial sediment (0-5 mm) at the PAP in less than four months. Secondly, their action impacted the food resource available to other organisms. Finally, as phytosterols are

  3. Submarine fans: A critical retrospective (1950–2015

    Directory of Open Access Journals (Sweden)

    G. Shanmugam

    2016-04-01

    , and the long-standing belief that submarine fans are composed of turbidites, in particular, of gravelly and sandy high-density turbidites, is a myth. This is because there are no empirical data to validate the existence of gravelly and sandy high-density turbidity currents in the modern marine environments. Also, there are no experimental documentation of true turbidity currents that can transport gravels and coarse sands in turbulent suspension. Mass-transport processes, which include slides, slumps, and debris flows (but not turbidity currenrs, are the most viable mechanisms for transporting gravels and sands into the deep sea. The prevailing notion that submarine fans develop during periods of sea-level lowstands is also a myth. The geologic reality is that frequent short-term events that last for only a few minutes to several hours or days (e.g., earthquakes, meteorite impacts, tsunamis, tropical cyclones, etc. are more important in controlling deposition of deep-water sands than sporadic long-term events that last for thousands to millions of years (e.g., lowstand systems tract. Submarine fans are still in a stage of muddled turbidite paradigm because the concept of high-density turbidity currents is incommensurable.

  4. [Secondary metabolites from a deep-sea-derived actinomycete Micrococcus sp. R21].

    Science.gov (United States)

    Peng, Kun; Su, Rui-qiang; Zhang, Gai-yun; Cheng, Xuan-xuan; Yang, Quan; Liu, Yong-hong; Yang, Xian-wen

    2015-06-01

    To investigate cytotoxic secondary metabolites of Micrococcus sp. R21, an actinomycete isolated from a deep-sea sediment (-6 310 m; 142 degrees 19. 9' E, 10 degrees 54. 6' N) of the Western Pacific Ocean, column chromatography was introduced over silica gel, ODS, and Sephadex LH-20. As a result, eight compounds were obtained. By mainly detailed analysis of the NMR data, their structures were elucidated as cyclo(4-hydroxy-L-Pro-L-leu) (1), cyclo(L-Pro-L-Gly) (2), cyclo( L-Pro-L-Ala) (3), cyclo( D-Pro-L-Leu) (4), N-β-acetyltryptamine (5), 2-hydroxybenzoic acid (6), and phenylacetic acid (7). Compound 1 exhibited weak cytotoxic activity against RAW264. 7 cells with IC50 value of 9.1 μmol x L(-1).

  5. Digital and Analog Electronics for an autonomous, deep-sea, Gamma Ray Burst Neutrino prototype detector

    Directory of Open Access Journals (Sweden)

    Manolopoulos K.

    2016-01-01

    Full Text Available GRBNeT is a Gamma Ray Burst Neutrino Telescope made of autonomously operated arrays of deep-sea light detectors, anchored to the sea-bed without any cabled connection to the shore. This paper presents the digital and analog electronics that we have designed and developed for the GRBNeT prototype. We describe the requirements for these electronics and present their design and functionality. We present low-power analog electronics for the PMTs utilized in the GRBNeT prototype and the FPGA based digital system for data selection and storage. We conclude with preliminary performance measurements of the electronics systems for the GRBNeT prototype.

  6. Cytoglobosins H and I, New Antiproliferative Cytochalasans from Deep-Sea-Derived Fungus Chaetomium globosum

    Directory of Open Access Journals (Sweden)

    Zhihan Zhang

    2016-12-01

    Full Text Available Cytoglobosins H (1 and I (2, together with seven known cytochalasan alkaloids (3–9, were isolated from the deep-sea-derived fungus Chaetomium globosum. The structures of new compounds 1 and 2 were elucidated by extensive 1D and 2D NMR and mass spectroscopic data. All the compounds were evaluated for their antiproliferative activities against MDA-MB-231 human breast cancer cells, LNCaP human prostate cancer cells, and B16F10 mouse melanoma cells. Compound 6 showed significant antiproliferative activity against LNCaP and B16F10 cell lines with IC50 values of 0.62 and 2.78 μM, respectively. Further testing confirmed that compound 6 inhibited the growth of LNCaP cells by inducing apoptosis.

  7. Siderophile element concentrations in magnetic spherules from deep sea sediments revealed by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nogami, Ken-ichi; Shimamura, Tadashi; Tazawa, Yuji; Yamakoshi, Kazuo.

    1980-01-01

    For the purpose of deciding the extraterrestrial origin of the magnetic spherules found in deep sea sediments, the siderophile elements Co, Ni, Ir and/or Au etc., were measured by instrumental neutron activation analysis. Spherules were collected from red clay samples which were dredged from Mid Pacific Ocean. Only spherules which had smooth surfaces and relatively high specific gravities were chosen for analysis. Existence of Co, Ni and Ir in most spherules suggests the possibility of an extraterrestrial origin for these spherules. It is not clear whether these spherules are droplets ablated from iron meteorites entering into the Earth's atmosphere or they are cosmic iron grains themselves. X-ray diffraction analysis suggested that these spherules are the products of rapid cooling materials. (author)

  8. Biosynthesis of coelenterazine in the deep-sea copepod, Metridia pacifica

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Yuichi; Kato, Shin-ichi; Ojika, Makoto [Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-860 (Japan); Inouye, Satoshi, E-mail: sinouye@chisso.co.jp [Yokohama Research Center, Chisso Co., 5-1 Okawa, Kanazawa-ku, Yokohama 236-8605 (Japan)

    2009-12-18

    Coelenterazine is an imidazopyrazinone compound (3,7-dihydroimidazopyrazin-3-one structure) that is widely distributed in marine organisms and used as a luciferin for various bioluminescence reactions. We have used electrospray ionization-ion trap-mass spectrometry to investigate whether the deep-sea luminous copepod Metridia pacifica is able to synthesize coelenterazine. By feeding experiments using deuterium labeled amino acids of L-tyrosine and L-phenylalanine, we have shown that coelenterazine can be synthesized from two molecules of L-tyrosine and one molecule of L-phenylalanine in M. pacifica. This is the first demonstration that coelenterazine is biosynthesized from free L-amino acids in a marine organism.

  9. Application of Moessbauer spectroscopy to the study of neptunium adsorbed on deep-sea sediments

    International Nuclear Information System (INIS)

    Bennett, B.A.; Rees, L.V.C.

    1987-03-01

    A Neptunium Moessbauer spectrometer (the first in Great Britain) was constructed and the Moessbauer spectra of NpAl Laves phase alloy obtained. Neptunium was sorbed onto a calcareous deep-sea sediment from sea water, using a successive-loading technique. Sorption appeared to be by an equilibrium reaction, and because of the low solubility of neptunium in seawater, this meant that the maximum loading that could be achieved was 8mg 237 Np/g sediment. This proved to be an adequate concentration for Moessbauer measurements and a Moessbauer spectrum was obtained. This showed that most of the neptunium was in exchange sites and not present as precipitates of neptunium compounds. It was probably in the 4+ state indicating that reduction had occurred during sorption. This work has demonstrated that Moessbauer Spectroscopy has great potential as an aid to understanding the mechanism of actinide sorption in natural systems. (author)

  10. Brevianamides and Mycophenolic Acid Derivatives from the Deep-Sea-Derived Fungus Penicillium brevicompactum DFFSCS025

    Directory of Open Access Journals (Sweden)

    Xinya Xu

    2017-02-01

    Full Text Available Four new compounds (1–4, including two brevianamides and two mycochromenic acid derivatives along with six known compounds were isolated from the deep-sea-derived fungus Penicillium brevicompactum DFFSCS025. Their structures were elucidated by spectroscopic analysis. Moreover, the absolute configurations of 1 and 2 were determined by quantum chemical calculations of the electronic circular dichroism (ECD spectra. Compound 9 showed moderate cytotoxicity against human colon cancer HCT116 cell line with IC50 value of 15.6 μM. In addition, 3 and 5 had significant antifouling activity against Bugula neritina larval settlement with EC50 values of 13.7 and 22.6 μM, respectively. The NMR data of 6, 8, and 9 were assigned for the first time.

  11. Design of self-contained sensor for monitoring of deep-sea offshore platform

    Science.gov (United States)

    Song, Yang; Yu, Yan; Zhang, Chunwei; Dong, Weijie; Ou, Jinping

    2013-04-01

    Offshore platform, which is the base of the production and living in the sea, is the most important infrastructure for developing oil and gas resources. At present, there are almost 6500 offshore platforms servicing in the 53 countries' sea areas around the world, creating great wealth for the world. In general, offshore platforms may work for 20 years, however, offshore platforms are expensive, complex, bulky, and so many of them are on extended active duty. Because of offshore platforms servicing in the harsh marine environment for a long time, the marine environment have a great impact on the offshore platforms. Besides, with the impact and erosion of seawater, and material aging, the offshore platform is possible to be in unexpected situations when a badly sudden situation happens. Therefore, it is of great significance to monitor the marine environment and offshore platforms. The self-contained sensor for deep-sea offshore platform with its unique design, can not only effectively extend the working time of the sensor with the capability of converting vibration energy to electrical energy, but also simultaneously collect the data of acceleration, inclination, temperature and humidity of the deep sea, so that we can achieve the purpose of monitoring offshore platforms through analyzing the collected data. The self-contained sensor for monitoring of deep-sea offshore platform includes sensing unit, data collecting and storage unit, the energy supply unit. The sensing unit with multi-variables, consists of an accelerometer LIS344ALH, an inclinometer SCA103T and a temperature and humidity sensor SHT11; the data collecting and storage unit includes the MSP430 low-power MCU, large capacity memory, clock circuit and the communication interface, the communication interface includes USB interface, serial ports and wireless interface; in addition, the energy supply unit, converting vibration to electrical energy to power the overall system, includes the electromagnetic

  12. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    International Nuclear Information System (INIS)

    Craig, Jessica; Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G.

    2011-01-01

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  13. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica, E-mail: j.craig@abdn.ac.u [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom); Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom)

    2011-01-21

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  14. Biosynthesis of coelenterazine in the deep-sea copepod, Metridia pacifica

    International Nuclear Information System (INIS)

    Oba, Yuichi; Kato, Shin-ichi; Ojika, Makoto; Inouye, Satoshi

    2009-01-01

    Coelenterazine is an imidazopyrazinone compound (3,7-dihydroimidazopyrazin-3-one structure) that is widely distributed in marine organisms and used as a luciferin for various bioluminescence reactions. We have used electrospray ionization-ion trap-mass spectrometry to investigate whether the deep-sea luminous copepod Metridia pacifica is able to synthesize coelenterazine. By feeding experiments using deuterium labeled amino acids of L-tyrosine and L-phenylalanine, we have shown that coelenterazine can be synthesized from two molecules of L-tyrosine and one molecule of L-phenylalanine in M. pacifica. This is the first demonstration that coelenterazine is biosynthesized from free L-amino acids in a marine organism.

  15. Deep-Sea Astronomy: Searching for Signals of Recent Nucleosynthesis in the Local Universe with AMS

    International Nuclear Information System (INIS)

    Feige, J.

    2012-01-01

    Stars with masses larger than 8 Msun end their life in a supernova (SN) explosion. The nuclides, which are created in the late burning phases of such stars and also during the explosion are ejected and entrained in the SN-shell. This material expands rapidly into the surrounding interstellar medium. Such events happened in the recent history in our solar neighborhood and led to the formation of the Local Bubble, characterized as a hot void embedding our solar system. Minute traces of close-by SN ejects might be found in terrestrial archives and can potentially be detected by accelerator mass spectrometry (AMS). I will report on the search for SN-ejected long-lived radionuclides in two deep-sea sediment cores from the Indian Ocean. (author)

  16. Burial diagenesis of deep sea chalk as reflected in Biot's coefficient

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke; Alam, Mohammad Monzurul

    2013-01-01

    to limestone as burial increases and porosity decreases. The porosity decrease is accompanied by an increasing velocity to elastic waves, and consequently a decreasing Biot's coefficient, as estimated from velocity and density of core samples. When the effective burial stress is normalized to total horizontal....... In the ooze, we find that the natural compaction causes an increasing stress on grain contact area, indicating that the ooze particles become strongly strained. In the chalk section, contact cement is probably the reason why particles become less strained as porosity declines. In the limestone, stress...... on particles apparently is low and not correlated with porosity, probably because the pore-filling cementation in this interval causes Biot's coefficient to decline as burial increases. Limestone from the water zone of the North sea Chalk Group follows the same stress trend as deep sea limestone. These results...

  17. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes

    KAUST Repository

    Antunes, Andre

    2011-05-30

    Summary: The Red Sea harbours approximately 25 deep-sea anoxic brine pools. They constitute extremely unique and complex habitats with the conjugation of several extreme physicochemical parameters rendering them some of the most inhospitable environments on Earth. After 50 years of research mostly driven by chemists, geophysicists and geologists, the microbiology of the brines has been receiving increased interest in the last decade. Recent molecular and cultivation-based studies have provided us with a first glimpse on the enormous biodiversity of the local microbial communities, the identification of several new taxonomic groups, and the isolation of novel extremophiles that thrive in these environments. This review presents a general overview of these unusual biotopes and compares them with other similar environments in the Mediterranean Sea and the Gulf of Mexico, with a focus on their microbial ecology. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. New Polyphenols from a Deep Sea Spiromastix sp. Fungus, and Their Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    Siwen Niu

    2015-04-01

    Full Text Available Eleven new polyphenols namely spiromastols A–K (1–11 were isolated from the fermentation broth of a deep sea-derived fungus Spiromastix sp. MCCC 3A00308. Their structures were determined by extensive NMR data and mass spectroscopic analysis in association with chemical conversion. The structures are classified as diphenyl ethers, diphenyl esters and isocoumarin derivatives, while the n-propyl group in the analogues is rarely found in natural products. Compounds 1–3 exhibited potent inhibitory effects against a panel of bacterial strains, including Xanthomanes vesicatoria, Pseudomonas lachrymans, Agrobacterium tumefaciens, Ralstonia solanacearum, Bacillus thuringensis, Staphylococcus aureus and Bacillus subtilis, with minimal inhibitory concentration (MIC values ranging from 0.25 to 4 µg/mL. The structure-activity relationships are discussed, while the polychlorinated analogues 1–3 are assumed to be a promising structural model for further development as antibacterial agents.

  19. Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals.

    Science.gov (United States)

    Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Ikehara, Minoru; Kato, Yasuhiro

    2017-09-12

    Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene-Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations.

  20. Microbial processes in North Atlantic pelagic sediments, and potential risks of deep-sea waste disposal

    International Nuclear Information System (INIS)

    Bolliger, R.; Hanselmann, K.W.; Bachofen, R.

    1989-01-01

    From the results for waste disposal on deep sea sediments, it was concluded: As waste canisters are buried in the sediment to a depth of 15 to 20 cm, they are in contact with the zone that contains the highest potential bacterial activity through a relatively large surface. An input of oxidizable organic matter to the sediment surface zone will stimulate microbial activity and therefore increase the risk for solubilization and redistribution of elements in the ocean water. Waste canisters lying on the sediment surface cut off the oxygen supply from the ocean water and ease the shift to anaerobiosis. This initiates microbial activities through which metals are changed into their mobile species as a consequence of the altered environmental redox potential. The risk for steel corrosion by hydrogen sulfide, which could be produced by sulfate reducing bacteria, is minimal since this physiological group is not active in the North Atlantic sediments examined

  1. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege

    2015-02-26

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.

  2. Physiological effects of environmental acidification in the deep-sea urchin Strongylocentrotus fragilis

    Science.gov (United States)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2014-03-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of elevated pCO2 and variable O2 on the deep-sea urchin Strongylocentrotus fragilis, a species whose range of 200-1200 m depth includes the OMZ and spans a pCO2 range of approx. 600-1200 μatm (approx. pH 7.6 to 7.8). Individuals were evaluated during two exposure experiments (1-month and 4 month) at control and three levels of elevated pCO2 at in situ O2 levels of approx. 10% air saturation. A treatment of control pCO2 at 100% air saturation was also included in experiment two. During the first experiment, perivisceral coelomic fluid (PCF) acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by elevated pCO2, due in part to low non-bicarbonate PCF buffering capacity. During the second experiment, individuals were separated into fed and fasted experimental groups, and longer-term effects of elevated pCO2 and variable O2 on righting time, feeding, growth, and gonadosomatic index (GSI) were investigated for both groups. Results suggest that the acidosis found during experiment one does not directly correlate with adverse effects during exposure to realistic future pCO2 levels.

  3. Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico

    Science.gov (United States)

    Prouty, N.G.; Roark, E.B.; Buster, N.A.; Ross, Steve W.

    2011-01-01

    Black corals (order Antipatharia) are important long-lived, habitat-forming, sessile, benthic suspension feeders that are found in all oceans and are usually found in water depths greater than 30 m. Deep-water black corals are some of the slowest-growing, longest-lived deep-sea corals known. Previous age dating of a limited number of black coral samples in the Gulf of Mexico focused on extrapolated ages and growth rates based on skeletal 210Pb dating. Our results greatly expand the age and growth rate data of black corals from the Gulf of Mexico. Radiocarbon analysis of the oldest Leiopathes sp. specimen from the upper De Soto Slope at 300 m water depth indicates that these animals have been growing continuously for at least the last 2 millennia, with growth rates ranging from 8 to 22 µm yr–1. Visual growth ring counts based on scanning electron microscopy images were in good agreement with the 14C-derived ages, suggestive of annual ring formation. The presence of bomb-derived 14C in the outermost samples confirms sinking particulate organic matter as the dominant carbon source and suggests a link between the deep-sea and surface ocean. There was a high degree of reproducibility found between multiple discs cut from the base of each specimen, as well as within duplicate subsamples. Robust 14C-derived chronologies and known surface ocean 14C reservoir age constraints in the Gulf of Mexico provided reliable calendar ages with future application to the development of proxy records.

  4. Major impacts of climate change on deep-sea benthic ecosystems

    Directory of Open Access Journals (Sweden)

    Andrew K. Sweetman

    2017-02-01

    Full Text Available The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units. O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction to further impact deep-seafloor ecosystems and discuss the possible societal implications.

  5. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining.

    Directory of Open Access Journals (Sweden)

    Daniel O B Jones

    Full Text Available Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.

  6. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining.

    Science.gov (United States)

    Jones, Daniel O B; Kaiser, Stefanie; Sweetman, Andrew K; Smith, Craig R; Menot, Lenaick; Vink, Annemiek; Trueblood, Dwight; Greinert, Jens; Billett, David S M; Arbizu, Pedro Martinez; Radziejewska, Teresa; Singh, Ravail; Ingole, Baban; Stratmann, Tanja; Simon-Lledó, Erik; Durden, Jennifer M; Clark, Malcolm R

    2017-01-01

    Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.

  7. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    Directory of Open Access Journals (Sweden)

    Magdalena Guardiola

    Full Text Available Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp. We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m. We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla, Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm of sediment was significantly different from deeper layers. We found that qualitative (presence-absence and quantitative (relative number of reads data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation

  8. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  9. Bioprospecting Deep-Sea Actinobacteria for Novel Anti-infective Natural Products

    Directory of Open Access Journals (Sweden)

    Dongbo Xu

    2018-04-01

    Full Text Available The global prevalence of drug resistance has created an urgent need for the discovery of novel anti-infective drugs. The major source of antibiotics in current clinical practice is terrestrial actinobacteria; the less-exploited deep-sea actinobacteria may serve as an unprecedented source of novel natural products. In this study, we evaluated 50 actinobacteria strains derived from diverse deep water sponges and environmental niches for their anti-microbial activities against a panel of pathogens including Candida albicans, Clostridium difficile, Staphylococcus aureus, and methicillin-resistant S. aureus (MRSA, and Pseudomonas aeruginosa. More than half of the tested strains (27 were identified as active in at least one assay. The rare earth salt lanthanum chloride (LaCl3 was shown to be as an effective elicitor. Among the 27 strains, the anti-microbial activity of 15 were induced or enhanced by the addition of LaCl3. This part of study focused on one strain R818, in which potent antifungal activity was induced by the addition of LaCl3. We found that the LaCl3-activated metabolites in R818 are likely antimycin-type compounds. One of them, compound 1, has been purified. Spectroscopic analyses including HR-MS and 1D NMR indicated that this compound is urauchimycin D. The antifungal activity of compound 1 was confirmed with a minimal inhibitory concentration (MIC of 25 μg/mL; the purified compound also showed a moderate activity against C. difficile. Additional notable strains are: strain N217 which showed both antifungal and antibacterial (including P. aeruginosa activities and strain M864 which showed potent activity against C. difficile with an MIC value (0.125 μg/mL lower than those of vancomycin and metronidazole. Our preliminary studies show that deep-sea actinobacteria is a promising source of anti-infective natural products.

  10. Astronomical calibration of the first Toba super-eruption from deep-sea sediments

    Science.gov (United States)

    Lee, M.; Chen, C.; Wei, K.; Iizuka, Y.

    2003-04-01

    Correlations between tephra layers interbedded within deep-sea cores and radiometrically dated volcanic eruptions provide an independent means of verifying dating techniques developed for sediment cores. Alternatively, the chronostratigraphic framework developed from marine sediments can be used to calibrate ages of land-base eruptions, if geochemical correlations can be established. In this study, we examined three deep-sea cores along an east-west transection across the South China Sea, with a distance of ~1800 to 2500 km away from the Toba caldera. The occurrence of the Oldest Toba Tuff was recognized on the basis of its geochemical characteristics, such as a high-silicate, high-potassium content and a distinct strontium isotope composition. The correlative tephra layer occurs slightly above the Australasian microtektite layer and below the Brunhes/Matuyama boundary, which in constitute three time-parallel markers for correlation and dating of Quaternary stratigraphic records. Against the astronomically tuned oxygen isotope chronostratigraphy, the rhyolitic ignimbrite erupted during the transition from marine isotope stage 20 (glacial) to stage 19 (interglacial) with an estimated age of 788 ka. The refined age is in good agreement with the radiometric age of 800+20 ka for Layer D of ODP Site 758 (Hall and Farrell, 1995), but significantly younger than the commonly referred age of 840+30 ka (Diehl et al., 1987). The mid-Pleistocene eruption expelled at least 800-1000 km3 dense-rock-equivalent of rhyolitic magma taking into account the widespread ashfall deposits in the Indian Ocean and the South China Sea basins. In spite of its exceptional magnitude, the timing of the first Toba super-eruption disputes a possible causal linkage between a major volcanic eruption and a long-term global climatic deterioration.

  11. Ancient deep-sea sponge grounds on the Flemish Cap and Grand Bank, northwest Atlantic.

    Science.gov (United States)

    Murillo, F J; Kenchington, E; Lawson, J M; Li, G; Piper, D J W

    Recent studies on deep-sea sponges have focused on mapping contemporary distributions while little work has been done to map historical distributions; historical distributions can provide valuable information on the time frame over which species have co-evolved and may provide insight into the reasons for their persistence or decline. Members of the sponge family Geodiidae are dominant members of deep-sea sponge assemblages in the northwestern Atlantic. They possess unique spicules called sterrasters, which undergo little transport in sediment and can therefore indicate the Geodiidae sponge historical presence when found in sediment cores. This study focuses on the slopes of Flemish Cap and Grand Bank, important fishing grounds off the coast of Newfoundland, Canada, in international waters. Sediment cores collected in 2009 and 2010 were visually inspected for sponge spicules. Cores containing spicules were sub-sampled and examined under a light microscope for the presence of sterrasters. These cores were also dated using X-radiographs and grouped into five time categories based on known sediment horizons, ranging from 17,000 years BP to the present. Chronological groupings identified Geodiidae sponges in four persistent sponge grounds. The oldest sterrasters were concentrated in the eastern region of the Flemish Cap and on the southeastern slope of the Grand Bank. Opportunistic sampling of a long core in the southeastern region of the Flemish Cap showed the continuous presence of sponge spicules to more than 130 ka BP. Our results indicate that the geodiids underwent a significant range expansion following deglaciation, and support a contemporary distribution that is not shaped by recent fishing activity.

  12. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2009-01-01

    Only 13 years after realizing, during a repair of a telegraph cable pulled out from the deep sea, that the depth of the ocean is plentifully populated with a highly diverse fauna and flora, the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges (Hexactinellida). They had been described by Schulze and represent the phylogenetically oldest class of siliceous sponges (phylum Porifera); they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Soon after, during the German Deep Sea Expedition "Valdivia" (1898-1899), Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3-m high Monorhaphis chuni, which develops the equally largest bio-silica structure, the giant basal spicules (3 mx10 mm). Using these spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be achieved. They are formed by a proteinaceous scaffold (composed of a 27-kDa protein), which mediates the formation of the siliceous lamellae, into which the proteins are encased. The high number of 800 of 5-10 microm thick lamellae is concentrically arranged around the axial canal. The silica matrix is composed of almost pure silicon oxide, providing it with unusually optophysical properties, which are superior to those of man-made waveguides. Experiments might suggest that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules have exceptional mechanical properties, combining mechanical stability with strength and stiffness. Like demosponges, also the hexactinellids synthesize their silica enzymatically, via the enzyme silicatein (27-kDa protein). It is suggested that these basic insights will surely contribute to a further applied utilization and exploration of silica in bio-material/biomedical science.

  13. Exploring the Ecology of Deep-Sea Hydrothermal Vents in a Metacommunity Framework

    Directory of Open Access Journals (Sweden)

    Lauren S. Mullineaux

    2018-02-01

    Full Text Available Species inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates catastrophic disturbances that can eradicate entire communities. The patches of vent habitat host a network of communities (a metacommunity connected by dispersal of planktonic larvae. The dynamics of the metacommunity are influenced not only by birth rates, death rates and interactions of populations at the local site, but also by regional influences on dispersal from different sites. The connections to other communities provide a mechanism for dynamics at a local site to affect features of the regional biota. In this paper, we explore the challenges and potential benefits of applying metacommunity theory to vent communities, with a particular focus on effects of disturbance. We synthesize field observations to inform models and identify data gaps that need to be addressed to answer key questions including: (1 what is the influence of the magnitude and rate of disturbance on ecological attributes, such as time to extinction or resilience in a metacommunity; (2 what interactions between local and regional processes control species diversity, and (3 which communities are “hot spots” of key ecological significance. We conclude by assessing our ability to evaluate resilience of vent metacommunities to human disturbance (e.g., deep-sea mining. Although the resilience of a few highly disturbed vent systems in the eastern Pacific has been quantified, these values cannot be generalized to remote locales in the western Pacific or mid Atlantic where disturbance rates are different and information on local controls is missing.

  14. Microbial stowaways: Addressing oil spill impacts and the artificial reef effect on deep-sea microbiomes

    Science.gov (United States)

    Hamdan, L. J.; Salerno, J. L.; Blackwell, C. A.; Little, B.; McGown, C.; Fitzgerald, L. A.; Damour, M.

    2016-02-01

    Shipwrecks enhance macro-biological diversity in the deep ocean, but, to date, studies have not explored the reef effect on deep-sea microbiological diversity. This is an important concept to address in a restoration framework, as microbial biogeochemical function impacts recruitment and adhesion of higher trophic levels on artificial reefs. In addition, microbial biofilms influence the preservation of shipwrecks through biologically mediated corrosion. Oil and gas-related activities have potential to disrupt the base of the reef trophic web; therefore, bacterial diversity and gene function at six shipwrecks (3 steel-hulled; 3 wood-hulled) in the northern Gulf of Mexico was investigated as part of the GOM-SCHEMA (Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology) project. Sites were selected based on proximity to the Deepwater Horizon spill's subsurface plume, depth, hull type, and existing archaeological data. Classification of taxa in sediments adjacent to and at distance from wrecks, in water, and on experimental steel coupons was used to evaluate how the presence of shipwrecks and spill contaminants in the deep biosphere influenced diversity. At all sites, and in all sample types, Proteobacteria were most abundant. Biodiversity was highest in surface sediments and in coupon biofilms adjacent to two steel-hulled wrecks in the study (Halo and Anona) and decreased with sediment depth and distance from the wrecks. Sequences associated with the iron oxidizing Mariprofundus genus were elevated at steel-hulled sites, indicating wreck-specific environmental selection. Despite evidence of the reef effect on microbiomes, bacterial composition was structured primarily by proximity to the spill and secondarily by hull material at all sites. This study provides the first evidence of an artificial reef effect on deep-sea microbial communities and suggests that biodiversity and function of primary colonizers of shipwrecks may be impacted by the spill.

  15. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Tecchio, Samuele; Coll, Marta; Sardà, Francisco

    2015-06-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate

  16. 75 FR 27219 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-05-14

    .... Whereas a limited market has been responsible for the shortfall in landings compared to the target TAC... final specifications for the 2010 Atlantic deep- sea red crab fishery, including a target total... specify the target TAC and other management measures in order to manage the red crab resource for fishing...

  17. Archive of Core and Site/Hole Data and Photographs from the Deep Sea Drilling Project (DSDP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Sea Drilling Project (DSDP) operated the D/V GLOMAR CHALLENGER from 1968-1983, drilling 1,112 holes at 624 sites worldwide. The DSDP was funded by the US...

  18. Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre

    2011-09-01

    We present the draft genome of Halorhabdus tiamatea, the first member of the Archaea ever isolated from a deep-sea anoxic brine. Genome comparison with Halorhabdus utahensis revealed some striking differences, including a marked increase in genes associated with transmembrane transport and putative genes for a trehalose synthase and a lactate dehydrogenase.

  19. Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre; Alam, Intikhab; El Dorry, Hamza; Siam, Rania; Robertson, Anthony J.; Bajic, Vladimir B.; Stingl, Ulrich

    2011-01-01

    We present the draft genome of Haloplasma contractile, isolated from a deep-sea brine and representing a new order between Firmicutes and Mollicutes. Its complex morphology with contractile protrusions might be strongly influenced by the presence of seven MreB/Mbl homologs, which appears to be the highest copy number ever reported.

  20. Micrometer- and nanometer-sized platinum group nuggets in micrometeorites from deep-sea sediments of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Parashar, K.; ShyamPrasad, M.

    We examined 378 micrometeorites collected from deep-sea sediments of the Indian Ocean of which 175, 180, and 23 are I-type, S-type, and G-type, respectively. Of the 175 I-type spherules, 13 contained platinum group element nuggets (PGNs...

  1. Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis

    NARCIS (Netherlands)

    van der Horst, M.A.; Stalcup, T.P.; Kaledhonkar, S.; Kumauchi, M.; Hara, M.; Xie, A.; Hellingwerf, K.J.; Hoff, W.D.

    2009-01-01

    Idiomarina loihiensis is a heterotrophic deep sea bacterium with no known photobiology. We show that light suppresses biofilm formation in this organism. The genome of I. loihiensis encodes a single photoreceptor protein: a homologue of photoactive yellow protein (PYP), a blue light receptor with

  2. Precision-cut liver slices to investigate responsiveness of deep-sea fish to contaminants at high pressure.

    Science.gov (United States)

    Lemaire, Benjamin; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Stegeman, John; Mork, Jarle; Rees, Jean François

    2012-09-18

    While deep-sea fish accumulate high levels of persistent organic pollutants (POPs), the toxicity associated with this contamination remains unknown. Indeed, the recurrent collection of moribund individuals precludes experimental studies to investigate POP effects in this fauna. We show that precision-cut liver slices (PCLS), an in vitro tool commonly used in human and rodent toxicology, can overcome such limitation. This technology was applied to individuals of the deep-sea grenadier Coryphaenoides rupestris directly upon retrieval from 530-m depth in Trondheimsfjord (Norway). PCLS remained viable and functional for 15 h when maintained in an appropriate culture media at 4 °C. This allowed experimental exposure of liver slices to the model POP 3-methylcholanthrene (3-MC; 25 μM) at levels of hydrostatic pressure mimicking shallow (0.1 megapascal or MPa) and deep-sea (5-15 MPa; representative of 500-1500 m depth) environments. As in shallow water fish, 3-MC induced the transcription of the detoxification enzyme cytochrome P4501A (CYP1A; a biomarker of exposure to POPs). This induction was diminished at elevated pressure, suggesting a limited responsiveness of C. rupestris toward POPs in its native environment. This very first in vitro toxicological investigation on a deep-sea fish opens the route for understanding pollutants effects in this highly exposed fauna.

  3. Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum

    NARCIS (Netherlands)

    Bochdansky, A.B.; Clouse, M.A.; Herndl, G.

    2016-01-01

    Particles are the major vector for the transfer of carbon from the upper ocean to the deep sea. However, little is known about their abundance, composition and role at depths greater than 2000?m. We present the first number-size spectrum of bathy- and abyssopelagic particles to a depth of 5500?m

  4. Impressions of the turbulence variability in a weakly stratified, flat-bottom deep-sea ‘boundary layer’

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    The character of turbulent overturns in a weakly stratified deep-sea is investigated in some detail using 144 high-resolution temperature sensors at 0.7 m intervals, starting 5 m above the bottom. A 9-day, 1 Hz sampled record from the 912 m depth flat-bottom (<0.5% bottom-slope) mooring site in the

  5. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    Science.gov (United States)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  6. Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre

    2011-09-01

    We present the draft genome of Haloplasma contractile, isolated from a deep-sea brine and representing a new order between Firmicutes and Mollicutes. Its complex morphology with contractile protrusions might be strongly influenced by the presence of seven MreB/Mbl homologs, which appears to be the highest copy number ever reported.

  7. Mesonerilla neridae, n. sp. (Nerillidae): First meiofaunal annelid from deep-sea hydrothermal vents

    DEFF Research Database (Denmark)

    Worsaae, Katrine; Rouse, Greg W

    2009-01-01

    Though most common in coastal sandy bottoms, nerillid annelids have been found in a broad variety of habitats around the world and two genera have previously been reported from the deep sea. During a cruise to the southern East Pacific Rise and northern Pacific Antarctic Ridge (near Easter Island...

  8. Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre; Alam, Intikhab; Bajic, Vladimir B.; Stingl, Ulrich

    2011-01-01

    We present the draft genome of Halorhabdus tiamatea, the first member of the Archaea ever isolated from a deep-sea anoxic brine. Genome comparison with Halorhabdus utahensis revealed some striking differences, including a marked increase in genes associated with transmembrane transport and putative genes for a trehalose synthase and a lactate dehydrogenase.

  9. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.

    Science.gov (United States)

    Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue

    2016-12-01

    Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.

  10. Deep-Sea Turbidites as Guides to Holocene Earthquake History at the Cascadia Subduction Zone—Alternative Views for a Seismic-Hazard Workshop

    Science.gov (United States)

    Atwater, Brian F.; Griggs, Gary B.

    2012-01-01

    This report reviews the geological basis for some recent estimates of earthquake hazards in the Cascadia region between southern British Columbia and northern California. The largest earthquakes to which the region is prone are in the range of magnitude 8-9. The source of these great earthquakes is the fault down which the oceanic Juan de Fuca Plate is being subducted or thrust beneath the North American Plate. Geologic evidence for their occurrence includes sedimentary deposits that have been observed in cores from deep-sea channels and fans. Earthquakes can initiate subaqueous slumps or slides that generate turbidity currents and which produce the sedimentary deposits known as turbidites. The hazard estimates reviewed in this report are derived mainly from deep-sea turbidites that have been interpreted as proxy records of great Cascadia earthquakes. The estimates were first published in 2008. Most of the evidence for them is contained in a monograph now in press. We have reviewed a small part of this evidence, chiefly from Cascadia Channel and its tributaries, all of which head offshore the Pacific coast of Washington State. According to the recent estimates, the Cascadia plate boundary ruptured along its full length in 19 or 20 earthquakes of magnitude 9 in the past 10,000 years; its northern third broke during these giant earthquakes only, and southern segments produced at least 20 additional, lesser earthquakes of Holocene age. The turbidite case for full-length ruptures depends on stratigraphic evidence for simultaneous shaking at the heads of multiple submarine canyons. The simultaneity has been inferred primarily from turbidite counts above a stratigraphic datum, sandy beds likened to strong-motion records, and radiocarbon ages adjusted for turbidity-current erosion. In alternatives proposed here, this turbidite evidence for simultaneous shaking is less sensitive to earthquake size and frequency than previously thought. Turbidites far below a channel

  11. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge

    Science.gov (United States)

    Xu, Wei; Gong, Lin-feng; Pang, Ka-Lai; Luo, Zhu-Hua

    2018-01-01

    Deep-sea hydrothermal sediment is known to support remarkably diverse microbial consortia. In deep sea environments, fungal communities remain less studied despite their known taxonomic and functional diversity. High-throughput sequencing methods have augmented our capacity to assess eukaryotic diversity and their functions in microbial ecology. Here we provide the first description of the fungal community diversity found in deep sea sediments collected at the Southwest Indian Ridge (SWIR) using culture-dependent and high-throughput sequencing approaches. A total of 138 fungal isolates were cultured from seven different sediment samples using various nutrient media, and these isolates were identified to 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. Using illumina HiSeq sequencing, a total of 757,467 fungal ITS2 tags were recovered from the samples and clustered into 723 operational taxonomic units (OTUs) belonging to 79 taxa (Ascomycota and Basidiomycota contributed to 99% of all samples) based on 97% sequence similarity. Results from both approaches suggest that there is a high fungal diversity in the deep-sea sediments collected in the SWIR and fungal communities were shown to be slightly different by location, although all were collected from adjacent sites at the SWIR. This study provides baseline data of the fungal diversity and biogeography, and a glimpse to the microbial ecology associated with the deep-sea sediments of the hydrothermal vent system of the Southwest Indian Ridge.

  12. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.

    Directory of Open Access Journals (Sweden)

    Alex D Rogers

    2012-01-01

    Full Text Available Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp., stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae, bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more

  13. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    Science.gov (United States)

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  14. Silicon Isotope Variations in Giant Spicules of the Deep-sea Sponge Monorhaphis chuni

    Science.gov (United States)

    Jochum, K. P.; Schuessler, J. A.; Wang, X.; Müller, W. E.; Andreae, M. O.

    2012-12-01

    The astonishing longevity of the deep-sea sponge Monorhaphis chuni and the stability of their spicules (Wang et al. 2009) provide the potential that single giant basal spicules can be used as paleoenvironmental archives spanning the entire Holocene (Jochum et al. 2012). According to Wille et al. (2010), the Si isotope fractionation is influenced by seawater Si concentration with lower values associated with sponges collected from waters high in Si. In order to track possible secular variations during the last 10000 years in the deep sea, we have therefore determined Si isotope ratios and trace element ratios along center-to-surface sections at a high resolution by femtosecond LA-(MC)-ICP-MS. Samples came from different locations of the East and South China Sea as well as the South Pacific Ocean (near New Caledonia) and were collected at depths between 1100 m and 2100 m. The external reproducibility of the fs LA-(MC)-ICP-MS method was found to be 0.14 ‰ and 0.27 ‰ (2 SD) for δ29Si and δ30Si, respectively. The relative uncertainty on trace element abundance ratios, such as Mg/Ca, is about 5 % (RSD). Significant variations in Si isotope ratios were observed in the giant spicules Q-B and SCS-4 from the East and South China Sea, respectively. The δ30Si values for the largest spicule collected so far (SCS-4, 2.5 m long) from a depth of 2100 m in the South China Sea, span a large range from -1.9 to -3.7 ‰. No obvious trend in Si isotope variability outside external reproducibility could be identified in smaller and presumably younger spicules; average δ30Si values of 4 different segments of the spicule MC from the South China Sea are about -1.3 ‰. Low δ30Si values of about -0.88 ‰ are found in the giant spicule V from the South Pacific. Mg/Ca ratios of most spicules show small, but significant trends from higher values at the rim to lower values in the core, which can be interpreted as an increase in seawater temperature of several degrees Celsius during

  15. Deep-sea benthic community and environmental impact assessment at the Atlantic Frontier

    Science.gov (United States)

    Gage, John D.

    2001-05-01

    The seabed community provides a sensitive litmus for environmental change. North Sea analysis of benthic populations provides an effective means for monitoring impacts from man's interventions, such as offshore oil exploitation and fishing, against baseline knowledge of the environment. Comparable knowledge of the benthic biology in the deep waters of the Atlantic Frontier beyond the N.E. Atlantic shelf edge is poorly developed. But uncertainties should not encourage assumptions and extrapolations from the better-known conditions on the continental shelf. While sampling at present still provides the best means to assess the health of the deepwater benthic habitat, protocols developed for deep-sea fauna should be applied. These are necessary because of (a) lower faunal densities, (b) higher species richness, (c) smaller body size, and (d) to ensure comparability with other deep-sea data. As in the North Sea, species richness and relative abundance can be analysed from quantitative samples in order to detect impacts. But analysis based on taxonomic sufficiency above species level is premature, even if arguably possible for coastal communities. Measures also need to ensure identifications are not forced to more familiar coastal species without proper study. Species-level analysis may be applied to seabed photographs of megafauna in relation to data on bottom environment, such as currents and the sediment, to monitor the health of the deep-water community. Although the composition of higher taxa in the benthic community is broadly similar to soft sediments on the shelf, concordance in sensitivities is speculative. Moreover, new organisms occur, such as giant protozoan xenophyophores, unknown on the continental shelf, whose sensitivities remain conjectural. Past knowledge of the benthic biology of the deep-water areas off Scotland is based on scattered stations and some more focussed, multidisciplinary studies, and should be significantly augmented by the results from

  16. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M.Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-01-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.). PMID:28397791

  17. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: Literature review and own experiments

    Science.gov (United States)

    Živaljić, Suzana; Schoenle, Alexandra; Nitsche, Frank; Hohlfeld, Manon; Piechocki, Julia; Reif, Farina; Shumo, Marwa; Weiss, Alexandra; Werner, Jennifer; Witt, Madeleine; Voss, Janine; Arndt, Hartmut

    2018-02-01

    Although the abyssal seafloor represents the most common benthic environment on Earth, eukaryotic microbial life at abyssal depths is still an uncharted territory. This is in striking contrast to their potential importance regarding the material flux and bacteria consumption in the deep sea. Flagellate genotypes determined from sedimentary DNA deep-sea samples might originate from vital deep-sea populations or from cysts of organisms sedimented down from surface waters. The latter one may have never been active under deep-sea conditions. We wanted to analyze the principal ability of cultivable heterotrophic flagellates of different phylogenetic groups (choanoflagellates, ancyromonads, euglenids, kinetoplastids, bicosoecids, chrysomonads, and cercozoans) to survive exposure to high hydrostatic pressure (up to 670 bar). We summarized our own studies and the few available data from literature on pressure tolerances of flagellates isolated from different marine habitats. Our results demonstrated that many different flagellate species isolated from the surface waters and deep-sea sediments survived drastic changes in hydrostatic pressure. Barophilic behavior was also recorded for several species isolated from the deep sea indicating their possible genetic adaptation to high pressures. This is in accordance with records of heterotrophic flagellates present in environmental DNA surveys based on clone libraries established for deep-sea environments.

  18. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.

    Science.gov (United States)

    He, Tianliang; Li, Hongyun; Zhang, Xiaobo

    2017-07-11

    Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found

  19. Analysis of hyper-baric biofilms on engineering surfaces formed in the Deep Sea

    Science.gov (United States)

    Meier, A.; Tsaloglou, N. M.; Connelly, D.; Keevil, B.; Mowlem, M.

    2012-04-01

    Long-term monitoring of the environment is essential to our understanding of global processes, such as global warming, and their impact. As biofilm formation occurs after only short deployment periods in the marine environment, it is a major problem in long-term operation of environmental sensors. This makes the development of anti-fouling strategies for in situ sensors critical to their function. The effects on sensors can range from measurement drift, which can be compensated, to blockage of channels and material degradation, rendering them inoperative. In general, the longer the deployment period the more severe the effects of the biofouling become. Until now, biofilm research has focused mainly on the eutrophic and euphotic zones of the oceans. Hyper-baric biofilms are poorly understood due to difficulties in experimental setup and the assumption that biofouling in these oligotrophic regions could be regarded as insignificant. Our study shows significant biofilm formation occurs in the deep sea. We deployed a variety of materials, typically used in engineering structures, on a 4500 metre deep mooring during a cruise to the Cayman Trough, for 10 days. The materials were clear plain glass, poly-methyl methacrylate (PMMA), Delrin™, and copper, a known antifouling agent. The biofilms were studied by fluorescence microscopy and molecular analysis. For microscopy the nucleic acid stain, SYTO©9, was used and surface coverage was quantified by using a custom MATLAB™ program. Further molecular analyses, including UV Vis spectrometric quantification of DNA, nucleic acid amplification using Polymerase Chain Reaction (PCR), and Denaturing Gradient Gel Electrophoresis (DGGE), were utilised for the analysis of the microbial community composition of these biofilms. Six 16S/18S universal primer sets representative for the three kingdoms, Archea, Bacteria, and Eukarya were used for the PCR and DGGE. Preliminary results from fluorescence microscopy showed that the biofilm

  20. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    International Nuclear Information System (INIS)

    Naumann, C.L.

    2007-01-01

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called ''equivalent circuit diagram (=ECD) model'' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/μPa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/√(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with exemplary results for

  1. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls

    Science.gov (United States)

    Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E.; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time

  2. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls.

    Directory of Open Access Journals (Sweden)

    Petra Pop Ristova

    Full Text Available Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100-1700 m, but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were

  3. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L.

    2007-09-17

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called 'equivalent circuit diagram (=ECD) model' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/{mu}Pa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/{radical}(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with

  4. Countermeasure Study on Deep-sea Oil Exploitation in the South China Sea——A Comparison between Deep-sea Oil Exploitation in the South China Sea and the Gulf of Mexico

    Science.gov (United States)

    Zhao, Hui; Qiu, Weiting; Qu, Weilu

    2018-02-01

    The unpromising situation of terrestrial oil resources makes the deep-sea oil industry become an important development strategy. The South China Sea has a vast sea area with a wide distribution of oil and gas resources, but there is a phenomenon that exploration and census rates and oil exploitation are low. In order to solve the above problems, this article analyzes the geology, oil and gas exploration and exploration equipment in the South China Sea and the Gulf of Mexico. Comparing the political environment of China and the United States energy industry and the economic environment of oil companies, this article points out China’s deep-sea oil exploration and mining problems that may exist. Finally, the feasibility of oil exploration and exploitation in the South China Sea is put forward, which will provide reference to improve the conditions of oil exploration in the South China Sea and promoting the stable development of China’s oil industry.

  5. Self-recognition in corals facilitates deep-sea habitat engineering

    Science.gov (United States)

    Hennige, Sebastian J; Morrison, Cheryl L.; Form, Armin U.; Buscher, Janina; Kamenos, Nicholas A.; Roberts, J. Murray

    2014-01-01

    The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.

  6. Spawn in two deep-sea volute gastropods (Neogastropoda: Volutidae) from southwestern Atlantic waters

    Science.gov (United States)

    Penchaszadeh, Pablo E.; Teso, Valeria; Pastorino, Guido

    2017-12-01

    The gastropods Odontocymbiola pescalia and Provocator corderoi and their egg capsules were collected by the R/V Puerto Deseado from the Mar del Plata Submarine Canyon ( 37°53‧S, at depths of 291-1404 m) and from Burdwood Bank ( 54°27‧S, 128-785 m). Odontocymbiola pescalia egg capsules measured 15.67 ± 3.38 mm in diameter. They were subspherical in shape with an external calcareous layer. Each egg capsule contained 3-5 embryos and white material as extra embryonic food. Embryos grew to a size of up to 9.3 ± 1.1 mm in mean shell length before hatching as crawling juveniles. The spawn of P. corderoi consisted of a single dome shaped egg capsule of 14.17 ± 1.5 mm in diameter, attached to hard substrata by a basal membrane with a rounded outline. A curved semilunar furrow (seam) on one side of the capsules was always present. The number of embryos per capsule was 2-6. Embryos hatched as crawling juveniles with a shell length of 5.9 ± 0.6 mm. The size and number of whorls in the hatchling shell suggested a slow rate of development, akin to many other deep-sea invertebrates. The egg capsules and reproductive development strategies of both species were compared with those from other congeneric representatives.

  7. Time-response of cultured deep-sea benthic foraminifera to different algal diets

    Science.gov (United States)

    Heinz, P.; Hemleben, Ch; Kitazato, H.

    2002-03-01

    The vertical distribution of benthic foraminifera in the surface sediment is influenced by environmental factors, mainly by food and oxygen supply. An experiment of three different time series was performed to investigate the response of deep-sea benthic foraminifera to simulated phytodetritus pulses under stable oxygen concentrations. Each series was fed constantly with one distinct algal species in equivalent amounts. The temporal reactions of the benthic foraminifera with regard to the vertical distribution in the sediment, the total number, and the species composition were observed and compared within the three series. Additionally, oxygen contents and bacterial cell numbers were measured to ensure that these factors were invariable and did not influence foraminiferal communities. The addition of algae leads to higher population densities 21 days after food was added. Higher numbers of individuals were probably caused by higher organic levels, which in turn induced reproduction. A stronger response is found after feeding with Amphiprora sp. and Pyramimonas sp., compared to Dunaliella tertiolecta. At a constant high oxygen supply, no migration to upper layers was observed after food addition, and more individuals were found in deeper layers. The laboratory results thus agree with the predictions of the TROX-model. An epifaunal microhabitat preference was shown for Adercotryma glomerata. Hippocrepina sp. was spread over the entire sediment depth with a shallow infaunal maximum. Melonis barleeanum preferred a deeper infaunal habitat. Bacterial cell concentrations were stable during the laboratory experiments and showed no significant response to higher organic fluxes.

  8. Poecillastrosides, Steroidal Saponins from the Mediterranean Deep-Sea Sponge Poecillastra compressa (Bowerbank, 1866

    Directory of Open Access Journals (Sweden)

    Kevin Calabro

    2017-06-01

    Full Text Available The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866 led to the identification of seven new steroidal saponins named poecillastrosides A–G (1–7. All saponins feature an oxidized methyl at C-18 into a primary alcohol or a carboxylic acid. While poecillastrosides A–D (1–4 all contain an exo double bond at C-24 of the side-chain and two osidic residues connected at O-2′, poecillastrosides E–G (5–7 are characterized by a cyclopropane on the side-chain and a connection at O-3′ between both sugar units. The chemical structures were elucidated through extensive spectroscopic analysis (High-Resolution Mass Spectrometry (HRESIMS, 1D and 2D NMR and the absolute configurations of the sugar residues were assigned after acidic hydrolysis and cysteine derivatization followed by LC-HRMS analyses. Poecillastrosides D and E, bearing a carboxylic acid at C-18, were shown to exhibit antifungal activity against Aspergillus fumigatus.

  9. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2

    Energy Technology Data Exchange (ETDEWEB)

    Scott, K M; Sievert, S M; Abril, F N; Ball, L A; Barrett, C J; Blake, R A; Boller, A J; Chain, P G; Clark, J A; Davis, C R; Detter, C; Do, K F; Dobrinski, K P; Faza, B I; Fitzpatrick, K A; Freyermuth, S K; Harmer, T L; Hauser, L J; Hugler, M; Kerfeld, C A; Klotz, M G; Kong, W W; Land, M; Lapidus, A; Larimer, F W; Longo, D L; Lucas, S; Malfatti, S A; Massey, S E; Martin, D D; McCuddin, Z; Meyer, F; Moore, J L; Ocampo Jr., L H; Paul, J H; Paulsen, I T; Reep, D K; Ren, Q; Ross, R L; Sato, P Y; Thomas, P; Tinkham, L E; Zerugh, G T

    2007-01-10

    Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 bp), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of CDSs encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. T. crunogena XCL-2 is unusual among obligate sulfur oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. A 38 kb prophage is present, and a high level of prophage induction was observed, which may play a role in keeping competing populations of close relatives in check. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.

  10. Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope

    Science.gov (United States)

    André, M.; Caballé, A.; van der Schaar, M.; Solsona, A.; Houégnigan, L.; Zaugg, S.; Sánchez, A. M.; Castell, J. V.; Solé, M.; Vila, F.; Djokic, D.; Adrián-Martínez, S.; Albert, A.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zuñiga, J.

    2017-01-01

    Despite dedicated research has been carried out to adequately map the distribution of the sperm whale in the Mediterranean Sea, unlike other regions of the world, the species population status is still presently uncertain. The analysis of two years of continuous acoustic data provided by the ANTARES neutrino telescope revealed the year-round presence of sperm whales in the Ligurian Sea, probably associated with the availability of cephalopods in the region. The presence of the Ligurian Sea sperm whales was demonstrated through the real-time analysis of audio data streamed from a cabled-to-shore deep-sea observatory that allowed the hourly tracking of their long-range echolocation behaviour on the Internet. Interestingly, the same acoustic analysis indicated that the occurrence of surface shipping noise would apparently not condition the foraging behaviour of the sperm whale in the area, since shipping noise was almost always present when sperm whales were acoustically detected. The continuous presence of the sperm whale in the region confirms the ecological value of the Ligurian sea and the importance of ANTARES to help monitoring its ecosystems. PMID:28401960

  11. Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab.

    Directory of Open Access Journals (Sweden)

    Andrew R Thurber

    Full Text Available Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws, chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs on its 3(rd maxilliped (a mouth appendage which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.

  12. Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab.

    Science.gov (United States)

    Thurber, Andrew R; Jones, William J; Schnabel, Kareen

    2011-01-01

    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3(rd) maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.

  13. Scientific Considerations for the Assessment and Management of Mine Tailings Disposal in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Lindsay L. Vare

    2018-02-01

    Full Text Available Deep-sea tailings disposal (DSTD and its shallow water counterpart, submarine tailings disposal (STD, are practiced in many areas of the world, whereby mining industries discharge processed mud- and rock-waste slurries (tailings directly into the marine environment. Pipeline discharges and other land-based sources of marine pollution fall beyond the regulatory scope of the London Convention and the London Protocols (LC/LP. However, guidelines have been developed in Papua New Guinea (PNG to improve tailings waste management frameworks in which mining companies can operate. DSTD can impact ocean ecosystems in addition to other sources of stress, such as from fishing, pollution, energy extraction, tourism, eutrophication, climate change and, potentially in the future, from deep-seabed mining. Environmental management of DSTD may be most effective when placed in a broader context, drawing expertise, data and lessons from multiple sectors (academia, government, society, industry, and regulators and engaging with international deep-ocean observing programs, databases and stewardship consortia. Here, the challenges associated with DSTD are identified, along with possible solutions, based on the results of a number of robust scientific studies. Also highlighted are the key issues, trends of improved practice and techniques that could be used if considering DSTD (such as increased precaution if considering submarine canyon locations, likely cumulative impacts, and research needed to address current knowledge gaps.

  14. Radioisotope mobility across the sediment/water interface in the deep sea

    International Nuclear Information System (INIS)

    ten Brink, M.R.B.

    1987-01-01

    The removal of radiotracers from water to sediments and their partitioning between phases were used to study the rates and mechanisms of transfer for trace elements across the sediment/water interface in the deep sea. The in situ mobility of 22 Na, 134 Cs, 133 Ba, 65 Zn, 125 Sb, 7 Be, 203 Hg, 54 Mn, 60 Co, 59 Fe, 113 Gd, and 141 Ce was measured using MANOP Lander benthic chambers in the N. equatorial Pacific and in San Clemente Basin. The contributions to mobility of diffusion, bioturbation, advection of pore waters, and transport across the diffusive boundary layer was assessed. The penetration of particle reactive tracers in the upper cm suggested a mixing rate of ≤10 -7 cm 2 /s at Sites C and S and ≤10 -5 cm 2 /s at Sites M and H. Greater penetration could be correlated with worm tubes but no evidence of irrigation was found. The presence of nodules did not prevent transport of soluble tracers to the underlying sediment or concentrate tracers. Diffusion was the predominant mode of transport for radiotracers in the short-term in situ experiments

  15. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (HAUSGARTEN, Fram Strait).

    Science.gov (United States)

    Buttigieg, Pier Luigi; Ramette, Alban

    2014-01-01

    Marine bacteria colonizing deep-sea sediments beneath the Arctic ocean, a rapidly changing ecosystem, have been shown to exhibit significant biogeographic patterns along transects spanning tens of kilometers and across water depths of several thousand meters (Jacob et al., 2013). Jacob et al. (2013) adopted what has become a classical view of microbial diversity - based on operational taxonomic units clustered at the 97% sequence identity level of the 16S rRNA gene - and observed a very large microbial community replacement at the HAUSGARTEN Long Term Ecological Research station (Eastern Fram Strait). Here, we revisited these data using the oligotyping approach and aimed to obtain new insight into ecological and biogeographic patterns associated with bacterial microdiversity in marine sediments. We also assessed the level of concordance of these insights with previously obtained results. Variation in oligotype dispersal range, relative abundance, co-occurrence, and taxonomic identity were related to environmental parameters such as water depth, biomass, and sedimentary pigment concentration. This study assesses ecological implications of the new microdiversity-based technique using a well-characterized dataset of high relevance for global change biology.

  16. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (Hausgarten, Fram Strait

    Directory of Open Access Journals (Sweden)

    Pier Luigi eButtigieg

    2015-01-01

    Full Text Available Marine bacteria colonising deep-sea sediments beneath the Arctic ocean, a rapidly changing ecosystem, have been shown to exhibit significant biogeographic patterns along transects spanning tens of kilometres and across water depths reaching several thousands of metres (Jacob et al., 2013. Jacob et al. adopted what has become a classical view of microbial diversity based on operational taxonomic units clustered at the 97% sequence identity level of the 16S rRNA gene and observed a very large microbial community replacement at the Hausgarten Long-Term Ecological Research station (Eastern Fram Strait. Here, we revisited these data using the oligotyping approach with the aims of obtaining new insights into ecological and biogeographic patterns associated with bacterial microdiversity in marine sediments and of assessing the level of concordance of these insights with previously obtained results. Variation in oligotype dispersal range, relative abundance, co-occurrence, and taxonomic identity were related to environmental parameters such as water depth, biomass, and sedimentary pigment concentration. This study assesses ecological implications of the new microdiversity-based technique using a well-characterised dataset of high relevance for global change biology.

  17. Enhancement of Immune Activation Activities of Spirulina maxima Grown in Deep-Sea Water

    Science.gov (United States)

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2013-01-01

    In this study, the immuno-modulatory and anticancer activities of marine algae, Spirulina maxima grown in deep-sea water (DSW), were investigated. It was found that the extract of S. maxima, cultured in DSW, effectively suppressed the expression of Bcl2 in A549 cells as well as inhibiting various human cancer cells with concentration dependency, which possibly implies that the extracts may play more important roles in controlling cancer cell growth. The secretion of cytokines IL-6 and TNF-α from human B cells was also greatly increased, compared to those of the extract grown in conventional sea-water. The growth of Human Natural Killer (NK) cells in the presence of the extracts from DSW was significantly higher (12.2 × 104 viable cells/mL) when compared to the control (1.1 × 104 viable cells/mL). Based on HPLC analysis, the increase in the biological activities of the extracts from DSW was caused by considerably high amounts of β-carotene and ascorbic acid because the DSW contained high concentrations and good ratios of several key minerals for biosynthesizing β-carotene and ascorbic acid, as well as maintaining high cell growth. PMID:23743830

  18. Small fractures in deep sea sediments: indicators of pore fluid migration along compaction faults

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1989-01-01

    A long piston core taken from the Southern Nares Abyssal Plain, intersected four fractures in plastic sediments between 17 and 25 m below the sea floor. Faults have been identified from seismic reflection surveys of sediments in this area. The sampled fractures all occurred in oxidized brown clays. Each fracture consisted of a simple plane having apparent dips ranging from 52-63 0 . One fracture had a well developed pale brown alteration halo extending out to 1.5 cm along this plane. Two fractures had no apparent alteration halo, but one fracture appeared to have fine-scale anastomosing features surrounding the main slip plane. Selective chemical tests for labile metal content in sediments surrounding the fractures revealed that about 70% of the reducible manganese, and 40% of the reducible iron had been leached from the sediments in the alteration halo surrounding the fracture plane. These results suggest that reducing pore fluids had migrated along the fracture plane to cause the observed effects. Implications of this study are that compaction faults may act as episodic conduits for vertical advection of pore water during dewatering of unconsolidated sediments. This may be a significant factor to be considered in assessing the effectiveness of deep sea sediment barriers for radioactive waste disposal. (author)

  19. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2015-01-01

    Environmental gradients generate countless ecological niches in deep-sea hydrothermal vent systems, which foster diverse microbial communities. The majority of distinct microbial lineages in these communities occur in very low abundance. However, the ecological role and distribution of rare and abundant lineages, particularly in deep, hot subsurface environments, remain unclear. Here, we use 16S rRNA tag sequencing to describe biogeographic patterning and microbial community structure of both rare and abundant archaea and bacteria in hydrothermal vent systems. We show that while rare archaeal lineages and almost all bacterial lineages displayed geographically restricted community structuring patterns, the abundant lineages of archaeal communities displayed a much more cosmopolitan distribution. Finally, analysis of one high-volume, high-temperature fluid sample representative of the deep hot biosphere described a unique microbial community that differed from microbial populations in diffuse flow fluid or sulfide samples, yet the rare thermophilic archaeal groups showed similarities to those that occur in sulfides. These results suggest that while most archaeal and bacterial lineages in vents are rare and display a highly regional distribution, a small percentage of lineages, particularly within the archaeal domain, are successful at widespread dispersal and colonization. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. A numerical calculation method of environmental impacts for the deep sea mining industry - a review.

    Science.gov (United States)

    Ma, Wenbin; van Rhee, Cees; Schott, Dingena

    2018-03-01

    Since the gradual decrease of mineral resources on-land, deep sea mining (DSM) is becoming an urgent and important emerging activity in the world. However, until now there has been no commercial scale DSM project in progress. Together with the reasons of technological feasibility and economic profitability, the environmental impact is one of the major parameters hindering its industrialization. Most of the DSM environmental impact research focuses on only one particular aspect ignoring that all the DSM environmental impacts are related to each other. The objective of this work is to propose a framework for the numerical calculation methods of the integrated DSM environmental impacts through a literature review. This paper covers three parts: (i) definition and importance description of different DSM environmental impacts; (ii) description of the existing numerical calculation methods for different environmental impacts; (iii) selection of a numerical calculation method based on the selected criteria. The research conducted in this paper provides a clear numerical calculation framework for DSM environmental impact and could be helpful to speed up the industrialization process of the DSM industry.

  1. Ecological and evolutionary consequences of benthic community stasis in the very deep sea (>1500 m)

    Science.gov (United States)

    Buzas, Martin A.; Hayek, Lee-Ann C.; Culver, Stephen J.; Hayward, Bruce W.; Osterman, Lisa E.

    2014-01-01

    An enigma of deep-sea biodiversity research is that the abyss with its low productivity and densities appears to have a biodiversity similar to that of shallower depths. This conceptualization of similarity is based mainly on per-sample estimates (point diversity, within-habitat, or α-diversity). Here, we use a measure of between-sample within-community diversity (β1H) to examine benthic foraminiferal diversity between 333 stations within 49 communties from New Zealand, the South Atlantic, the Gulf of Mexico, the Norwegian Sea, and the Arctic. The communities are grouped into two depth categories: 200–1500 m and >1500 m. β1H diversity exhibits no evidence of regional differences. Instead, higher values at shallower depths are observed worldwide. At depths of >1500 m the average β1H is zero, indicating stasis or no biodiversity gradient. The difference in β1H-diversity explains why, despite species richness often being greater per sample at deeper depths, the total number of species is greater at shallower depths. The greater number of communities and higher rate of evolution resulting in shorter species durations at shallower depths is also consistent with higher β1H values.

  2. Benthic Bioprocessing of Hydrocarbons in the Natural Deep-Sea Environment

    Science.gov (United States)

    Sultan, N.; MacDonald, I. R.; Bohrmann, G.; Schubotz, F.; Johansen, C.

    2017-12-01

    Science is accustomed to quantifying ecosystem processes that consume carbon from primary production as it drifts downward through the photic zone. Comparably efficient processes operate in reverse, as living and non-living components sequester and re-mineralize a large fraction of hydrocarbons that migrate out of traps and reservoirs to the seafloor interface. Together, they comprise a sink that prevents these hydrocarbons from escaping upward into the water column. Although quantification of the local or regional magnitude of this sink poses steep challenges, we can make progress by classifying and mapping the biological communities and geological intrusions that are generated from hydrocarbons in the deep sea. Gulf of Mexico examples discussed in this presentation extend across a broad range of depths (550, 1200, and 3200 m) and include major differences in hydrocarbon composition (from gas to liquid oil to asphaltene-dominated solids). Formation of gas hydrate is a dynamic process in each depth zone. At upper depths, gas hydrate is unstable at a timescale of months to years and serves as a substrate for microbial consortia and mussel symbiosis. At extreme depths, gas hydrate supports large and dense tubeworm colonies that conserve the material from decomposition. Timescales for biogeochemical weathering of oil and asphalts are decadal or longer, as shown by sequential alterations and changing biological colonization. Understanding these processes is crucial as we prepare for wider and deeper energy exploitation in the Gulf of Mexico and beyond.

  3. Cutting the Umbilical: New Technological Perspectives in Benthic Deep-Sea Research

    Directory of Open Access Journals (Sweden)

    Angelika Brandt

    2016-05-01

    Full Text Available Many countries are very active in marine research and operate their own research fleets. In this decade, a number of research vessels have been renewed and equipped with the most modern navigation systems and tools. However, much of the research gear used for biological sampling, especially in the deep-sea, is outdated and dependent on wired operations. The deployment of gear can be very time consuming and, thus, expensive. The present paper reviews wire-dependent, as well as autonomous research gear for biological sampling at the deep seafloor. We describe the requirements that new gear could fulfil, including the improvement of spatial and temporal sampling resolution, increased autonomy, more efficient sample conservation methodologies for morphological and molecular studies and the potential for extensive in situ real-time studies. We present applicable technologies from robotics research, which could be used to develop novel autonomous marine research gear, which may be deployed independently and/or simultaneously with traditional wired equipment. A variety of technological advancements make such ventures feasible and timely. In proportion to the running costs of modern research vessels, the development of such autonomous devices might be already paid off after a discrete number of pioneer expeditions.

  4. The visual ecology of a deep-sea fish, the escolar Lepidocybium flavobrunneum (Smith, 1843)†

    Science.gov (United States)

    Landgren, Eva; Fritsches, Kerstin; Brill, Richard; Warrant, Eric

    2014-01-01

    Escolar (Lepidocybium flavobrunneum, family Gempylidae) are large and darkly coloured deep-sea predatory fish found in the cold depths (more than 200 m) during the day and in warm surface waters at night. They have large eyes and an overall low density of retinal ganglion cells that endow them with a very high optical sensitivity. Escolar have banked retinae comprising six to eight layers of rods to increase the optical path length for maximal absorption of the incoming light. Their retinae possess two main areae of higher ganglion cell density, one in the ventral retina viewing the dorsal world above (with a moderate acuity of 4.6 cycles deg−1), and the second in the temporal retina viewing the frontal world ahead. Electrophysiological recordings of the flicker fusion frequency (FFF) in isolated retinas indicate that escolar have slow vision, with maximal FFF at the highest light levels and temperatures (around 9 Hz at 23°C) which fall to 1–2 Hz in dim light or cooler temperatures. Our results suggest that escolar are slowly moving sit-and-wait predators. In dim, warm surface waters at night, their slow vision, moderate dorsal resolution and highly sensitive eyes may allow them to surprise prey from below that are silhouetted in the downwelling light. PMID:24395966

  5. Modern Deep-sea Sponges as Recorders of Bottom Water Silicon Isotopes

    Science.gov (United States)

    Hendry, K. R.; Georg, R. B.; Rickaby, R. E.; Robinson, L. F.; Halliday, A. N.

    2008-12-01

    Major zones of opal accumulation in the world oceans have experienced geographical shifts during the Cenozoic coincident with times of transition in oceanic circulation and climate. The global marine silica cycle is likely to respond to various large-scale changes including the distillation of Si and other nutrients in ocean basins; weathering and continental inputs; and biological productivity in surface waters. These processes could potentially be distinguished by their impact on the isotopic composition of dissolved silica in the world oceans. Although diatoms dominate uptake of silica in surface waters, box-modelling (de la Rocha and Bickle, 2005) suggests that sponges spicules have a greater potential to reflect whole ocean changes in the silica cycle, by recording deep-water silicon isotopes. Here, we introduce a new calibration study of modern deep- sea sponges collected on a transect cruise across the Drake Passage, in the Southern Ocean, from a range of depths and seawater silicic acid concentrations. Sponges were collected by benthic trawling, and dried immediately. The spicules were later isolated from cellular material and cleaned for surface contaminants, before dissolution and analysis by NuPlasma HR MC-ICP-MS in medium resolution mode. We discuss our preliminary data, the extent to which inter and intraspecies variations reflect environmental conditions, and the implications for palaeoreconstructions of the marine silicon cycle. de la Rocha, C. and M. Bickle (2005). Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Marine Geology 217, 267-282.

  6. A Novel Cold Active Esterase from a Deep Sea Sponge Stelletta normani Metagenomic Library

    Directory of Open Access Journals (Sweden)

    Erik Borchert

    2017-09-01

    Full Text Available Esterases catalyze the hydrolysis of ester bonds in fatty acid esters with short-chain acyl groups. Due to the widespread applications of lipolytic enzymes in various industrial applications, there continues to be an interest in novel esterases with unique properties. Marine ecosystems have long been acknowledged as a significant reservoir of microbial biodiversity and in particular of bacterial enzymes with desirable characteristics for industrial use, such as for example cold adaptation and activity in the alkaline pH range. We employed a functional metagenomic approach to exploit the enzymatic potential of one particular marine ecosystem, namely the microbiome of the deep sea sponge Stelletta normani. Screening of a metagenomics library from this sponge resulted in the identification of a number of lipolytic active clones. One of these encoded a highly, cold-active esterase 7N9, and the recombinant esterase was subsequently heterologously expressed in Escherichia coli. The esterase was classified as a type IV lipolytic enzyme, belonging to the GDSAG subfamily of hormone sensitive lipases. Furthermore, the recombinant 7N9 esterase was biochemically characterized and was found to be most active at alkaline pH (8.0 and displays salt tolerance over a wide range of concentrations. In silico docking studies confirmed the enzyme's activity toward short-chain fatty acids while also highlighting the specificity toward certain inhibitors. Furthermore, structural differences to a closely related mesophilic E40 esterase isolated from a marine sediment metagenomics library are discussed.

  7. Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge.

    Science.gov (United States)

    Romanenko, Lyudmila A; Uchino, Masataka; Tanaka, Naoto; Frolova, Galina M; Mikhailov, Valery V

    2008-02-01

    An aerobic, Gram-negative bacterium, strain KMM 329(T), was isolated from a deep-sea sponge specimen from the Philippine Sea and subjected to a polyphasic taxonomic investigation. Comparative 16S rRNA gene sequence analysis showed that strain KMM 329(T) clustered with the species of the genus Lysobacter. The highest level of 16S rRNA gene sequence similarity (97.0 %) was found with respect to Lysobacter concretionis KCTC 12205(T); lower values (96.4-95.2 %) were obtained with respect to the other recognized Lysobacter species. The value for DNA-DNA relatedness between strain KMM 329(T) and L. concretionis KCTC 12205(T) was 47 %. Branched fatty acids 16 : 0 iso, 15 : 0 iso, 11 : 0 iso 3-OH and 17 : 1 iso were found to be predominant. Strain KMM 329(T) had a DNA G+C content of 69.0 mol%. On the basis of the phenotypic, chemotaxonomic, DNA-DNA hybridization and phylogenetic data, strain KMM 329(T) represents a novel species of the genus Lysobacter, for which the name Lysobacter spongiicola sp. nov. is proposed. The type strain is KMM 329(T) (=NRIC 0728(T) =JCM 14760(T)).

  8. Poecillastrosides, Steroidal Saponins from the Mediterranean Deep-Sea Sponge Poecillastra compressa (Bowerbank, 1866).

    Science.gov (United States)

    Calabro, Kevin; Kalahroodi, Elaheh Lotfi; Rodrigues, Daniel; Díaz, Caridad; Cruz, Mercedes de la; Cautain, Bastien; Laville, Rémi; Reyes, Fernando; Pérez, Thierry; Soussi, Bassam; Thomas, Olivier P

    2017-06-26

    The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866) led to the identification of seven new steroidal saponins named poecillastrosides A-G ( 1 - 7 ). All saponins feature an oxidized methyl at C-18 into a primary alcohol or a carboxylic acid. While poecillastrosides A-D ( 1 - 4 ) all contain an exo double bond at C-24 of the side-chain and two osidic residues connected at O-2', poecillastrosides E-G ( 5 - 7 ) are characterized by a cyclopropane on the side-chain and a connection at O-3' between both sugar units. The chemical structures were elucidated through extensive spectroscopic analysis (High-Resolution Mass Spectrometry (HRESIMS), 1D and 2D NMR) and the absolute configurations of the sugar residues were assigned after acidic hydrolysis and cysteine derivatization followed by LC-HRMS analyses. Poecillastrosides D and E, bearing a carboxylic acid at C-18, were shown to exhibit antifungal activity against Aspergillus fumigatus .

  9. On the Milankovitch sensitivity of the Quaternary deep-sea record

    Directory of Open Access Journals (Sweden)

    W. H. Berger

    2013-08-01

    Full Text Available The response of the climate system to external forcing (that is, global warming has become an item of prime interest, especially with respect to the rate of melting of land-based ice masses. The deep-sea record of ice-age climate change has been useful in assessing the sensitivity of the climate system to a different type of forcing; that is, to orbital forcing, which is well known for the last several million years. The expectation is that the response to one type of forcing will yield information about the likely response to other types of forcing. When comparing response and orbital forcing, one finds that sensitivity to this type of forcing varies greatly through time, evidently in dependence on the state of the system and the associated readiness of the system for change. The changing stability of ice masses is here presumed to be the chief underlying cause for the changing state of the system. A buildup of vulnerable ice masses within the latest Tertiary, when going into the ice ages, is thus here conjectured to cause a stepwise increase of climate variability since the early Pliocene.

  10. Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope

    Science.gov (United States)

    André, M.; Caballé, A.; van der Schaar, M.; Solsona, A.; Houégnigan, L.; Zaugg, S.; Sánchez, A. M.; Castell, J. V.; Solé, M.; Vila, F.; Djokic, D.; Adrián-Martínez, S.; Albert, A.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zuñiga, J.

    2017-04-01

    Despite dedicated research has been carried out to adequately map the distribution of the sperm whale in the Mediterranean Sea, unlike other regions of the world, the species population status is still presently uncertain. The analysis of two years of continuous acoustic data provided by the ANTARES neutrino telescope revealed the year-round presence of sperm whales in the Ligurian Sea, probably associated with the availability of cephalopods in the region. The presence of the Ligurian Sea sperm whales was demonstrated through the real-time analysis of audio data streamed from a cabled-to-shore deep-sea observatory that allowed the hourly tracking of their long-range echolocation behaviour on the Internet. Interestingly, the same acoustic analysis indicated that the occurrence of surface shipping noise would apparently not condition the foraging behaviour of the sperm whale in the area, since shipping noise was almost always present when sperm whales were acoustically detected. The continuous presence of the sperm whale in the region confirms the ecological value of the Ligurian sea and the importance of ANTARES to help monitoring its ecosystems.

  11. ESR studies on CaCO3 of deep-sea sediments

    International Nuclear Information System (INIS)

    Mangini, A.; Segl, M.; Schmitz, W.

    1983-01-01

    We have measured depth profiles of the ESR signals on the calcite fraction in 3 deep-sea sediments with a well-established age stratigraphy and CaCO 3 contents around 50 percent. In the ESR spectra of the foraminifera we observe 3 lines (A, B and C, following Ikeya's notation) two of which (A and C) were analysed as depth profiles. The A signal displays a continuous increase with depth over the time periods covered by the sediment cores of 400,000 and 800,000 a B.P. This suggests that a) the lifetime of the electron traps is long compared to these time intervals and b) the traps as yet unsaturated with electrons. Despite our present ignorance of the nature of the traps, these results might indicate the possible future applicability of ESR as a tool for dating sediment cores over time periods up to 1 Ma. The more prominent C signal displays a linear increase over time periods of 100,000 to 200,000 a. Beyond this age we find an overall increase, on which is superimposed short-term noise of similar amplitude that is unrelated to the 232 Th and CaCO 3 contents. (author)

  12. A simple model for the dispersion of radioactive wastes dumped on the deep-sea bed

    International Nuclear Information System (INIS)

    Shepherd, J.G.

    1976-01-01

    A simple model has been developed for the dispersion of radioactive materials in a closed and finite ocean. It allows for the simultaneous action of both diffusion and horizontal (but not vertical) advection, and thus avoids the major limitations of previous models. It is sufficiently versatile to handle non-Fickian diffusion and radioactive decay, but requires numerical integration using some semi-empirical form for the Green function of diffusion from a point source. The model has been used to estimate equilibrium concentrations of radioactive materials in sea water arising from the continuous release of material from a dump on the bottom of the deep ocean, using parameters appropriate for the North Atlantic. It is found that except under rather extreme conditions the surface concentrations do not exceed the long-term average value which would be established in a perfectly mixed ocean. The concentrations are also rather insensitive to the values of the diffusion and advection parameters used, except for that for vertical diffusion, but depend strongly on the overall removal rate of material from the ocean, including processes other than radioactive decay. It is suggested that safety assessments of deep-sea dumping should utilize estimates of the environmental capacities of the oceans based on the long-term 'well-mixed' average concentrations (which are very easily calculated) using a safety factor of no more than ten to allow for the possible effects of pluming and upwelling. (author)

  13. First report of ciliate (Protozoa) epibionts on deep-sea harpacticoid copepods

    Science.gov (United States)

    Sedlacek, Linda; Thistle, David; Fernandez-Leborans, Gregorio; Carman, Kevin R.; Barry, James P.

    2013-08-01

    We report the first observations of ciliate epibionts on deep-sea, benthic harpacticoid copepods. One ciliate epibiont species belonged to class Karyorelictea, one to subclass Suctoria, and one to subclass Peritrichia. Our samples came from the continental rise off central California (36.709°N, 123.523°W, 3607 m depth). We found that adult harpacticoids carried ciliate epibionts significantly more frequently than did subadult copepodids. The reason for the pattern is unknown, but it may involve differences between adults and subadult copepodids in size or in time spent swimming. We also found that the ciliate epibiont species occurred unusually frequently on the adults of two species of harpacticoid copepod; a third harpacticoid species just failed the significance test. When we ranked the 57 harpacticoid species in our samples in order of abundance, three species identified were, as a group, significantly more abundant than expected by chance if one assumes that the abundance of the group and the presence of ciliate epibionts on them were uncorrelated. High abundance may be among the reasons a harpacticoid species carries a ciliate epibiont species disproportionately frequently. For the combinations of harpacticoid species and ciliate epibiont species identified, we found one in which males and females differed significantly in the proportion that carried epibionts. Such a sex bias has also been reported for shallow-water, calanoid copepods.

  14. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    KAUST Repository

    Agusti, Susana

    2015-07-09

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean.

  15. Sterilization of Exopolysaccharides Produced by Deep-Sea Bacteria: Impact on Their Stability and Degradation

    Directory of Open Access Journals (Sweden)

    Sylvia Colliec-Jouault

    2011-02-01

    Full Text Available Polysaccharides are highly heat-sensitive macromolecules, so high temperature treatments are greatly destructive and cause considerable damage, such as a great decrease in both viscosity and molecular weight of the polymer. The technical feasibility of the production of exopolysaccharides by deep-sea bacteria Vibrio diabolicus and Alteromonas infernus was previously demonstrated using a bioproduct manufacturing process. The objective of this study was to determine which sterilization method, other than heat sterilization, was the most appropriate for these marine exopolysaccharides and was in accordance with bioprocess engineering requirements. Chemical sterilization using low-temperature ethylene oxide and a mixture of ionized gases (plasmas was compared to the sterilization methods using gamma and beta radiations. The changes to both the physical and chemical properties of the sterilized exopolysaccharides were analyzed. The use of ethylene oxide can be recommended for the sterilization of polysaccharides as a weak effect on both rheological and structural properties was observed. This low-temperature gas sterilizing process is very efficient, giving a good Sterility Assurance Level (SAL, and is also well suited to large-scale compound manufacturing in the pharmaceutical industry.

  16. Sorption of redox-sensitive radionuclides to deep-sea sediments in the absence of oxygen

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Rees, L.V.C.; Cronan, D.S.; Cole, T.G.

    1986-03-01

    Sediments were recovered from the GME area of the mid-Atlantic and stored in an inert atmosphere from the time of collection Pore-water analysis showed them to be post-oxic. Sorption tests in an inert atmosphere showed that they were not sufficiently reducing to affect the distribution ratios of the redox-sensitive elements, technetium and neptunium. This may mean that previous results obtained under oxic conditions can be used in modelling. Ferrous iron was strongly sorbed onto the sediments but this iron had no effect on technetium sorption, which was negligible. Only if a large excess of Fe ++ was added so that the concentration of Fe ++ in solution exceeded 100um (Eh probably < -0.2V) was the technetium reduced and adsorption appreciable. The indications are, therefore, that ferrous iron from dissolved canisters will not increase the sorption of technetium to deep-sea sediments. Moessbauer analysis showed that a high proportion (up to 15%) of the iron in the high-carbonate turbidites was in the ferrous state but that all the iron in the clay-rich layer, containing less carbonate, was in the ferric state. This may explain the fact that, in general, neptunium is more strongly adsorbed by high-carbonate than by other types of sediment. (author)

  17. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific.

    Science.gov (United States)

    Deng, Yinan; Ren, Jiangbo; Guo, Qingjun; Cao, Jun; Wang, Haifeng; Liu, Chenhui

    2017-11-28

    Deep-sea sediments contain high concentrations of rare earth element (REE) which have been regarded as a huge potential resource. Understanding the marine REE cycle is important to reveal the mechanism of REE enrichment. In order to determine the geochemistry characteristics and migration processes of REE, seawater, porewater and sediment samples were systematically collected from the western Pacific for REE analysis. The results show a relatively flat REE pattern and the HREE (Heavy REE) enrichment in surface and deep seawater respectively. The HREE enrichment distribution patterns, low concentrations of Mn and Fe and negative Ce anomaly occur in the porewater, and high Mn/Al ratios and low U concentrations were observed in sediment, indicating oxic condition. LREE (Light REE) and MREE (Middle REE) enrichment in upper layer and depletion of MREE in deeper layer were shown in porewater profile. This study suggests that porewater flux in the western Pacific basin is a minor source of REEs to seawater, and abundant REEs are enriched in sediments, which is mainly caused by the extensive oxic condition, low sedimentation rate and strong adsorption capacity of sediments. Hence, the removal of REEs of porewater may result in widespread REE-rich sediments in the western Pacific basin.

  18. Long-term measurements of acoustic background noise in very deep sea

    International Nuclear Information System (INIS)

    Riccobene, G.

    2009-01-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration installed, 25 km E offshore the port of Catania (Sicily) at 2000 m depth, an underwater laboratory to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino km 3 -scale detector in the Mediterranean Sea. In this framework the Collaboration deployed and successfully operated for about two years, starting from January 2005, an experimental apparatus for on-line monitoring of deep-sea noise. The station was equipped with four hydrophones and it is operational in the range 30 Hz-43 kHz. This interval of frequencies matches the range suitable for the proposed acoustic detection technique of high energy neutrinos. Hydrophone signals were digitized underwater at 96 kHz sampling frequency and 24 bits resolution. The stored data library, consisting of more than 2000 h of recordings, is a unique tool to model underwater acoustic noise at large depth, to characterize its variations as a function of environmental parameters, biological sources and human activities (ship traffic, etc.), and to determine the presence of cetaceans in the area.

  19. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis.

    Science.gov (United States)

    Robison, Bruce H; Reisenbichler, Kim R; Hunt, James C; Haddock, Steven H D

    2003-10-01

    The archaic, deep-sea cephalopod Vampyroteuthis infernalis occurs in dark, oxygen-poor waters below 600 m off Monterey Bay, California. Living specimens, collected gently with a remotely operated vehicle (ROV) and quickly transported to a laboratory ashore, have revealed two hitherto undescribed means of bioluminescent expression for the species. In the first, light is produced by a new type of organ located at the tips of all eight arms. In the second, a viscous fluid containing microscopic luminous particles is released from the arm tips to form a glowing cloud around the animal. Both modes of light production are apparently linked to anti-predation strategies. Use of the tip-lights is readily educed by contact stimuli, while fluid expulsion has a much higher triggering threshold. Coelenterazine and luciferase are the chemical precursors of light production. This paper presents observations on the structure and operation of the arm-tip light organs, the character of the luminous cloud, and how the light they produce is incorporated into behavioral patterns.

  20. Analysis on shock wave speed of water hammer of lifting pipes for deep-sea mining

    Science.gov (United States)

    Zhou, Zhi-jin; Yang, Ning; Wang, Zhao

    2013-04-01

    Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.

  1. The "pseudo-craniovertebral articulation" in the deep-sea fish Stomias boa (Teleostei: Stomiidae).

    Science.gov (United States)

    Schnell, Nalani K; Bernstein, Peter; Maier, Wolfgang

    2008-05-01

    Many predatory deep-sea fishes show highly specialized modifications of their feeding apparatus, e.g., elongate jaws studded with long daggerlike teeth, often combined with a very distensible stomach, to be capable of swallowing relatively large prey. These striking features can be observed in members of the marine teleost family Stomiidae. The present study gives a detailed morphological description of the mesopelagic predatory fish, Stomias boa, based on a combined approach of clearing and double staining, serial sections and dissection. In this genus, large pads made of dense connective tissue extend from the first enlarged neural arch to the ventral side of the chordal sheath, embracing the prominent exoccipitals and thus constituting a kind of double ball- and socket joint for the head. The notochordal occipito-vertebral gap is enlarged, probably not by loss of vertebral centra as is proposed for other genera of the stomiid family, e.g., in Astronesthes or Photostomias. We conclude that this "pseudo-craniovertebral articulation" serves as a functional substitute for the absent vertebrae and strengthens the flexible, anterior part of the vertebral column during extreme dorsal expansion of the gape during prey capture and swallowing. (c) 2007 Wiley-Liss, Inc.

  2. Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments

    Science.gov (United States)

    Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.

    2011-12-01

    Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.

  3. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    KAUST Repository

    Agusti, Susana; Gonzá lez-Gordillo, J. I.; Vaqué , D.; Estrada, M.; Cerezo, M. I.; Salazar, G.; Gasol, J. M.; Duarte, Carlos M.

    2015-01-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean.

  4. Response of deep-sea benthic foraminifera to Miocene paleoclimatic events, DSDP site 289

    International Nuclear Information System (INIS)

    Woodruff, F.; Douglas, R.G.

    1981-01-01

    Changes in the Miocene deep-sea benthic foraminifera at DSDP Site 289 closely correlate to the climatically induced variations in deep and bottom waters in the Pacific Ocean. In early Miocene time, oxygen and carbon isotopes indicate that bottom waters were relatively warm and poorly oxygenated. Benthic foraminiferal assemblages are characterized by various species inherited from the Oligocene. Expansion of the Antarctic icecap in the early middle Miocene, 14-16 m.y. ago, increased oxygen isotope values, produced cold, more oxygenated bottom waters and lead to a turnover in the benthic foraminifera. An Oligocene-early Miocene assemblage was replaced by a cibicidoid-dominated assemblage. Some species became extinct and benthic faunas became more bathymetrically restricted with the increased stratification of deep waters in the ocean. In mid-Miocene time, Epistominella exigua and E. umbonifera, indicative of young, oxygenated bottom waters, are relatively common at DSDP Site 289. Further glacial expansion 5-9 m.y. ago lowered sealevel, increased oceanic upwelling and associated biological productivity and intensified the oxygen minima. Abundant hispid and costate uvigerines become a dominant faunal element at shallow depths above 2500 m as E. umbonifera becomes common to abundant below 2500 m. By late Miocene time, benthic faunas similar in species composition and proportion to modern faunas on the Ontong-Java plateau, had become established. (Auth.)

  5. Primitive decapods from the deep sea: first record of blind lobsters (Crustacea: Decapoda: Polychelidae in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Luis Ernesto Arruda Bezerra

    Full Text Available ABSTRACT We report herein the occurrence of the infraorder Polychelida in Potiguar Basin, northeastern Brazil. Specimens were collected by the project "Avaliação da Biota Bentônica e Planctônica na porção offshore das Bacias Potiguar e Ceará", developed by the Brazilian Oil Company (PETROBRAS. Three species were recorded for the first time in this region: Pentacheles validus A. Milne-Edwards, 1880, Polycheles typhlops Heller, 1862, and Stereomastis sculpta (Smith, 1880 at 2000 m, 400 m and 2057 m depth, respectively. The Brazilian deep-sea floor remains poorly known, but progress has been made as a result of collections obtained by oceanographic expeditions and research projects developed by PETROBRAS in Campos Basin (Rio de Janeiro and Potiguar Basin (Rio Grande do Norte, expanding the knowledge of the distribution area of Polychelidae in Brazilian deep sea waters.

  6. Comparative study on the stress corrosion cracking of X70 pipeline steel in simulated shallow and deep sea environments

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Feilong [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); China Building Material Test & Certification Group Co. Ltd., Beijing 100024 (China); Ren, Shuai [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); Li, Zhong [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G6 (Canada); Liu, Zhiyong, E-mail: liuzhiyong7804@ustb.edu.cn [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China); Li, Xiaogang; Du, Cuiwei [Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Corrosion and Protection of Ministry of Education, Beijing 100083 (China)

    2017-02-08

    The stress corrosion cracking (SCC) behavior of X70 steel in simulated shallow and deep sea environments was studied using potentiodynamic polarization measurement, a slow strain rate tensile (SSRT) test and scanning electron microscopy (SEM). The results indicate that the predominant cathodic reaction changes from an oxygen reduction reaction to the hydrogen evolution reaction as the dissolved oxygen (DO) content decreases. In the simulated deep sea environment, the SCC susceptibility of X70 steel decreased first, reached its lowest point at 15 MPa and then increased as the simulated sea hydrostatic pressure (HP) further increased. This is consistent with the regularity for the change of the cathodic hydrogen evolution reaction current density i{sub H} at E{sub corr}, which indicates that the HP may influence the SCC susceptibility of X70 steel by changing the permeated hydrogen concentration.

  7. Impact of deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) on non-commercial fish species off West Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Ole A; Bastardie, Francois; Eigaard, Ole Ritzau

    2014-01-01

    Since the late 1980s, a deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) has been developing gradually in West Greenland. Deep-sea fish species are generally long-lived and characterized by late age of maturity, low fecundity, and slow growth, features that probably cause low....... During the period 1988–2011, population abundance and size composition changed as catch and effort in the Greenland halibut fishery increased. Two species showed a significant decrease in abundance, and four populations showed a significant reduction in mean weight of individuals (p , 0.05). Correlation...... analyses show that most of the observed trends in abundance are probably not related to increasing fishing effort for Greenland halibut. The analysis did, however, show that most of the observed decreases in mean weight were significantly correlated with fishing effort during the 24-year period...

  8. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.

    Science.gov (United States)

    Glover, A G; Gooday, A J; Bailey, D M; Billett, D S M; Chevaldonné, P; Colaço, A; Copley, J; Cuvelier, D; Desbruyères, D; Kalogeropoulou, V; Klages, M; Lampadariou, N; Lejeusne, C; Mestre, N C; Paterson, G L J; Perez, T; Ruhl, H; Sarrazin, J; Soltwedel, T; Soto, E H; Thatje, S; Tselepides, A; Van Gaever, S; Vanreusel, A

    2010-01-01

    Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales

  9. Controls on the composition and extraction of rare earth elements and yttrium (REY) in deep sea polymetallic nodules and sediments

    OpenAIRE

    Menendez Gamella, Amaya

    2017-01-01

    Rising demand for metals is driving a search for new mineral resources and mining of seafloor deposits is likely to commence in the next few years. These include polymetallic nodules and crusts that are highly enriched in Mn, Co, Ni, Cu, Mo, Li and Te, and deep-sea clays that can contain high concentrations of the rare earth elements and yttrium (REY). The potential environmental impacts of mining these deposits are, however, poorly constrained and a better understanding of the processes that...

  10. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge

    Science.gov (United States)

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946–4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments. PMID:26379634

  11. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for palaeoceanography

    Science.gov (United States)

    Robinson, Laura F.; Adkins, Jess F.; Frank, Norbert; Gagnon, Alexander C.; Prouty, Nancy G.; Brendan Roark, E.; de Flierdt, Tina van

    2014-01-01

    Deep-sea corals were discovered over a century ago, but it is only over recent years that focused efforts have been made to explore the history of the oceans using the geochemistry of their skeletal remains. They offer a promising archive of past oceanic environments given their global distribution, layered growth patterns, longevity and preservation as well as our ability to date them using radiometric techniques. This paper provides an overview of the current state-of-the-art in terms of geochemical approaches to using deep-sea coral skeletons to explore the history of the ocean. Deep-sea coral skeletons have a wide array of morphologies (e.g. solitary cup corals, branching colonial corals) and materials (calcite, aragonite and proteins). As such their biomineralization strategies are diverse, leading to complex geochemistry within coral skeletons. Notwithstanding these complications, progress has been made on developing methods for reconstructing the oceanographic environment in the past using trace elements and isotopic methods. Promising approaches within certain coral groups include clumped isotopes and Mg/Li for temperature reconstructions, boron isotopes and radiocarbon for carbon cycling, εNd, and radiocarbon for circulation studies and δ15N, P/Ca and Ba/Ca for nutrient tracer studies. Likewise there is now a range of techniques for dating deep-sea corals skeletons (e.g. U-series, radiocarbon), and determining their growth rates (e.g. radiocarbon and 210Pb). Dating studies on historic coral populations in the Atlantic, Southern Ocean and Pacific point to climate and environmental changes being dominant controls on coral populations over millennial and orbital timescales. This paper provides a review of a range of successes and promising approaches. It also highlights areas in which further research would likely provide new insights into biomineralization, palaeoceanography and distribution of past coral populations.

  12. Chemical compositions of magnetic, stony spherules from deep-sea sediments determined by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Yamakoshi, Kazuo

    1984-01-01

    Chemical compositions of magnetic, stony spherules from deep sea sediments were determined by instrumental neutron activation analysis. High Ir, Au, Ni and Co contents indicate their extraterrestrial origin. The obtained compositions are considerably different from those of chondrites. It can be qualitatively interpreted, however, that cosmic matters having the compositions of chondrites are changed into magnetic, stony spherules by thermal degenerations during their atmospheric entry. (author)

  13. A new genus and species of deep-sea glass sponge (Porifera, Hexactinellida, Aulocalycidae) from the Indian Ocean

    OpenAIRE

    Sautya, Sabyasachi; Tabachnick, Konstantin R.; Ingole, Baban

    2011-01-01

    Abstract New hexactinellid sponges were collected from 2589 m depth on the Carlsberg Ridge in the Indian Ocean during deep-sea dredging. All fragments belong to a new genus and species, Indiella gen. n. ridgenensis sp. n., a representative of the family Aulocalycidae described here. The peculiar features of this sponge, not described earlier for other Aulocalycidae, are: longitudinal strands present in several layers and epirhyses channelization.

  14. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge.

    Science.gov (United States)

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946-4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments.

  15. Development of temporal trends of radioactivity in benthic organisms and in water from the deep sea (Atlantic)

    International Nuclear Information System (INIS)

    Kanisch, G.; Kellermann, H.-J.; Vobach, M.; Krueger, A.

    2003-01-01

    Since 20 years the Federal Research Centre for Fisheries is performing radioecological studies in the deep sea of the Northeast Atlantic, especially in the area north-west of Spain used for dumping of radioactive waste until 1982. Until 1998/2000, in Benthos some decrease was observed for 137 Cs, however, almost not for 238 Pu, 239,240 Pu and 241 Am. In the dumpsite area the ratio 238 Pu/ 239,240 Pu, about 0.072, showed higher values than in comparison sites, about 0,044. Alpha spectrometric measurements of the atom based ratio 240 Pu/ 239 Pu in Benthos, due to slight deviations from the global fallout value of 0.18, indicated a special impact of the ''Nevada Test Site'' fallout. In rat-tailed fish (Macrouridae) from the deep sea 137Cs decreased since 1989 with an effective half-live of 14.5 years, comparable to that of 16.2 years in the surface water. Related to the concentration in the surface water a 137 Cs concentration factor of 83 was obtained. It is concluded that the dominant source for 137 Cs in deep sea fish is the global fallout. For plutonium isotopes measured in sea water samples from the deep the values of 238 Pu/ 239,240 Pu and 238 Pu, being higher for the dumpsite area, were interpreted as impact of leaking radioactive drums. For this leakage acting as a plutonium source a 238 Pu/ 239,240 Pu ratio of 0.17 was estimated. However, the total plutonium inventory in the deep sea thereby increased by only about 20 %. (orig.)

  16. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge

    OpenAIRE

    Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze

    2008-01-01

    The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched w...

  17. Bacterial Production and Enzymatic Activities in Deep-Sea Sediments of the Pacific Ocean: Biogeochemical Implications of Different Temperature Constraints

    Science.gov (United States)

    Danovaro, R.; Corinaldesi, C.; dell'Anno, A.

    2002-12-01

    The deep-sea bed, acting as the ultimate sink for organic material derived from the upper oceans primary production, is now assumed to play a key role in biogeochemical cycling of organic matter on global scale. Early diagenesis of organic matter in marine sediments is dependent upon biological processes (largely mediated by bacterial activity) and by molecular diffusion. Organic matter reaching the sea floor by sedimentation is subjected to complex biogeochemical transformations that make organic matter largely unsuitable for direct utilization by benthic heterotrophs. Extracellular enzymatic activities in the sediment is generally recognized as the key step in the degradation and utilization of organic polymers by bacteria and a key role in biopolymeric carbon mobilization is played by aminopeptidase, alkaline phosphatase and glucosidase activities. In the present study we investigated bacterial density, bacterial C production and exo-enzymatic activities (aminopeptidase, glucosidase and phosphatase activity) in deep-sea sediments of the Pacific Ocean in relation with the biochemical composition of sediment organic matter (proteins, carbohydrates and lipids), in order to gather information on organic matter cycling and diagenesis. Benthic viral abundance was also measured to investigate the potential role of viruses on microbial loop functioning. Sediment samples were collected at eight stations (depth ranging from 2070-3100 m) along two transects located at the opposite side (north and south) of ocean seismic ridge Juan Fernandez (along latitudes 33° 20' - 33° 40'), constituted by the submerged vulcanoes, which connects the Chilean coasts to Rapa Nui Island. Since the northern and southern sides of this ridge apparently displayed small but significant differences in deep-sea temperature (related to the general ocean circulation), this sampling strategy allowed also investigating the role of different temperature constraints on bacterial activity and

  18. A new genus and species of deep-sea glass sponge (Porifera, Hexactinellida, Aulocalycidae from the Indian Ocean

    Directory of Open Access Journals (Sweden)

    Sabyasachi Sautya

    2011-10-01

    Full Text Available New hexactinellid sponges were collected from 2589 m depth on the Carlsberg Ridge in the Indian Ocean during deep-sea dredging. All fragments belong to a new genus and species, Indiella gen. n. ridgenensis sp. n., a representative of the family Aulocalycidae described here. The peculiar features of this sponge, not described earlier for other Aulocalycidae, are: longitudinal strands present in several layers and epirhyses channelization.

  19. A new genus and species of deep-sea glass sponge (Porifera, Hexactinellida, Aulocalycidae) from the Indian Ocean.

    Science.gov (United States)

    Sautya, Sabyasachi; Tabachnick, Konstantin R; Ingole, Baban

    2011-01-01

    New hexactinellid sponges were collected from 2589 m depth on the Carlsberg Ridge in the Indian Ocean during deep-sea dredging. All fragments belong to a new genus and species, Indiellagen. n.ridgenensissp. n., a representative of the family Aulocalycidae described here. The peculiar features of this sponge, not described earlier for other Aulocalycidae, are: longitudinal strands present in several layers and epirhyses channelization.

  20. WHATS-3: An improved flow-through multi-bottle fluid sampler for deep-sea geofluid research

    Science.gov (United States)

    Miyazaki, Junichi; Makabe, Akiko; Matsui, Yohei; Ebina, Naoya; Tsutsumi, Saki; Ishibashi, Jun-ichiro; Chen, Chong; Kaneko, Sho; Takai, Ken; Kawagucci, Shinsuke

    2017-06-01

    Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to understanding subseafloor environments of Earth. Fluid chemistry, especially, provides crucial information towards elucidating the physical, chemical and biological processes that occur in these ecosystems. To accurately assess fluid and gas properties of deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and as such they are important assets of deep-sea geofluid research. Here, the development of a new flow-through, pressure-tight fluid sampler capable of four independent sampling events (two subsamples for liquid and gas analyses from each) is reported. This new sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a major upgrade from the previous WHATS-2 sampler with improvements in sample number, valve operational time, physical robustness, and ease of maintenance. Routine laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa pressure. Successful field tests of the new sampler were also carried out in five hydrothermal fields, two in Indian Ocean and three in Okinawa Trough (max. depth 3,300 m). Relations of Mg and major ion species demonstrated bimodal mixing trends between a hydrothermal fluid and seawater, confirming the high-quality of fluids sampled. The newly developed WHATS-3 sampler is well-balanced in sampling capability, field usability, and maintenance feasibility, and can serve as one of the best geofluid samplers available at present to conduct efficient research of deep-sea geofluid systems.

  1. The effects of natural iron fertilisation on deep-sea ecology: the Crozet Plateau, Southern Indian Ocean.

    Directory of Open Access Journals (Sweden)

    George A Wolff

    Full Text Available The addition of iron to high-nutrient low-chlorophyll (HNLC oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF has been proposed as a means of mitigating anthropogenic atmospheric CO(2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth to the East (naturally iron fertilized; +Fe and South (HNLC of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.

  2. WHATS-3: An Improved Flow-Through Multi-bottle Fluid Sampler for Deep-Sea Geofluid Research

    Directory of Open Access Journals (Sweden)

    Junichi Miyazaki

    2017-06-01

    Full Text Available Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to understanding subseafloor environments of Earth. Fluid chemistry, especially, provides crucial information toward elucidating the physical, chemical, and biological processes that occur in these ecosystems. To accurately assess fluid and gas properties of deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and as such they are important assets of deep-sea geofluid research. Here, the development of a new flow-through, pressure-tight fluid sampler capable of four independent sampling events (two subsamples for liquid and gas analyses from each is reported. This new sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a major upgrade from the previous WHATS-2 sampler with improvements in sample number, valve operational time, physical robustness, and ease of maintenance. Routine laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa pressure. Successful field tests of the new sampler were also carried out in five hydrothermal fields, two in Indian Ocean, and three in Okinawa Trough (max. depth 3,300 m. Relations of Mg and major ion species demonstrated bimodal mixing trends between a hydrothermal fluid and seawater, confirming the high quality of fluids sampled. The newly developed WHATS-3 sampler is well-balanced in sampling capability, field usability, and maintenance feasibility, and can serve as one of the best geofluid samplers available at present to conduct efficient research of deep-sea geofluid systems.

  3. Genomic and Phylogenetic Characterization of Luminous Bacteria Symbiotic with the Deep-Sea Fish Chlorophthalmus albatrossis (Aulopiformes: Chlorophthalmidae)

    OpenAIRE

    Dunlap, Paul V.; Ast, Jennifer C.

    2005-01-01

    Bacteria forming light-organ symbiosis with deep-sea chlorophthalmid fishes (Aulopiformes: Chlorophthalmidae) are considered to belong to the species Photobacterium phosphoreum. The identification of these bacteria as P. phosphoreum, however, was based exclusively on phenotypic traits, which may not discriminate between phenetically similar but evolutionarily distinct luminous bacteria. Therefore, to test the species identification of chlorophthalmid symbionts, we carried out a genomotypic (r...

  4. Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology.

    Science.gov (United States)

    Higgs, Nicholas D; Little, Crispin T S; Glover, Adrian G

    2011-01-07

    Whales are unique among vertebrates because of the enormous oil reserves held in their soft tissue and bone. These 'biofuel' stores have been used by humans from prehistoric times to more recent industrial-scale whaling. Deep-sea biologists have now discovered that the oily bones of dead whales on the seabed are also used by specialist and generalist scavenging communities, including many unique organisms recently described as new to science. In the context of both cetacean and deep-sea invertebrate biology, we review scientific knowledge on the oil content of bone from several of the great whale species: Balaenoptera musculus, Balaenoptera physalus, Balaenoptera borealis, Megaptera novaeangliae, Eschrichtius robustus, Physeter macrocephalus and the striped dolphin, Stenella coeruleoalba. We show that data collected by scientists over 50 years ago during the heyday of industrial whaling explain several interesting phenomena with regard to the decay of whale remains. Variations in the lipid content of bones from different parts of a whale correspond closely with recently observed differences in the taphonomy of deep-sea whale carcasses and observed biases in the frequency of whale bones at archaeological sites.

  5. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  6. The distribution of deep-sea sponge aggregations in the North Atlantic and implications for their effective spatial management

    Science.gov (United States)

    Howell, Kerry-Louise; Piechaud, Nils; Downie, Anna-Leena; Kenny, Andrew

    2016-09-01

    Sponge aggregations have been recognised as key component of shallow benthic ecosystems providing several important functional roles including habitat building and nutrient recycling. Within the deep-sea ecosystem, sponge aggregations may be extensive and available evidence suggests they may also play important functional roles, however data on their ecology, extent and distribution in the North Atlantic is lacking, hampering conservation efforts. In this study, we used Maximum Entropy Modelling and presence data for two deep-sea sponge aggregation types, Pheronema carpenteri aggregations and ostur aggregations dominated by geodid sponges, to address the following questions: 1) What environmental factors drive the broad-scale distribution of these selected sponge grounds? 2) What is the predicted distribution of these grounds in the northern North Atlantic, Norwegian and Barents Sea? 3) How are these sponge grounds distributed between Exclusive Economic Zones (EEZs) and High Seas areas? 4) What percentage of these grounds in High Seas areas are protected by the current High Seas MPA network? Our results suggest that silicate concentration, temperature, depth and amount of particulate organic carbon are the most important drivers of sponge distribution. Most of the sponge grounds are located within national EEZs rather than in the High Seas. Coordinated conservation planning between nations with significant areas of sponge grounds such as Iceland, Greenland and Faroes (Denmark), Norway (coastal Norway and Svalbard), Portugal and the UK, should be implemented in order to effectively manage these communities in view of the increasing level of human activity within the deep-sea environment.

  7. HB1204: Deep-Sea Corals and Benthic Habitats in Northeast Deepwater Canyons on NOAA Ship Henry Bigelow between 20120703 and 20120718

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A multi-disciplinary team of scientists on the Henry Bigelow HB1204 mission surveyed and ground-truthed known or suspected deep-sea coral habitats associated with...

  8. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment

    KAUST Repository

    Rö thig, Till; Yum, Lauren; Kremb, Stephan Georg; Roik, Anna Krystyna; Voolstra, Christian R.

    2017-01-01

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed

  9. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.

    Science.gov (United States)

    Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G

    2014-08-19

    The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.

  10. Evolution and functional characterisation of melanopsins in a deep-sea chimaera (elephant shark, Callorhinchus milii.

    Directory of Open Access Journals (Sweden)

    Wayne I L Davies

    Full Text Available Non-visual photoreception in mammals is primarily mediated by two splice variants that derive from a single melanopsin (OPN4M gene, whose expression is restricted to a subset of retinal ganglion cells. Physiologically, this sensory system regulates the photoentrainment of many biological rhythms, such as sleep via the melatonin endocrine system and pupil constriction. By contrast, melanopsin exists as two distinct lineages in non-mammals, opn4m and opn4x, and is broadly expressed in a wide range of tissue types, including the eye, brain, pineal gland and skin. Despite these findings, the evolution and function of melanopsin in early vertebrates are largely unknown. We, therefore, investigated the complement of opn4 classes present in the genome of a model deep-sea cartilaginous species, the elephant shark (Callorhinchus milii, as a representative vertebrate that resides at the base of the gnathostome (jawed vertebrate lineage. We reveal that three melanopsin genes, opn4m1, opn4m2 and opn4x, are expressed in multiple tissues of the elephant shark. The two opn4m genes are likely to have arisen as a result of a lineage-specific duplication, whereas "long" and "short" splice variants are generated from a single opn4x gene. By using a heterologous expression system, we suggest that these genes encode functional photopigments that exhibit both "invertebrate-like" bistable and classical "vertebrate-like" monostable biochemical characteristics. We discuss the evolution and function of these melanopsin pigments within the context of the diverse photic and ecological environments inhabited by this chimaerid holocephalan, as well as the origin of non-visual sensory systems in early vertebrates.

  11. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and

  12. Biogeography of Deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic.

    Directory of Open Access Journals (Sweden)

    Marianne Jacob

    Full Text Available Knowledge on spatial scales of the distribution of deep-sea life is still sparse, but highly relevant to the understanding of dispersal, habitat ranges and ecological processes. We examined regional spatial distribution patterns of the benthic bacterial community and covarying environmental parameters such as water depth, biomass and energy availability at the Arctic Long-Term Ecological Research (LTER site HAUSGARTEN (Eastern Fram Strait. Samples from 13 stations were retrieved from a bathymetric (1,284-3,535 m water depth, 54 km in length and a latitudinal transect (∼ 2,500 m water depth; 123 km in length. 454 massively parallel tag sequencing (MPTS and automated ribosomal intergenic spacer analysis (ARISA were combined to describe both abundant and rare types shaping the bacterial community. This spatial sampling scheme allowed detection of up to 99% of the estimated richness on phylum and class levels. At the resolution of operational taxonomic units (97% sequence identity; OTU3% only 36% of the Chao1 estimated richness was recovered, indicating a high diversity, mostly due to rare types (62% of all OTU3%. Accordingly, a high turnover of the bacterial community was also observed between any two sampling stations (average replacement of 79% of OTU3%, yet no direct correlation with spatial distance was observed within the region. Bacterial community composition and structure differed significantly with increasing water depth along the bathymetric transect. The relative sequence abundance of Verrucomicrobia and Planctomycetes decreased significantly with water depth, and that of Deferribacteres increased. Energy availability, estimated from phytodetrital pigment concentrations in the sediments, partly explained the variation in community structure. Overall, this study indicates a high proportion of unique bacterial types on relatively small spatial scales (tens of kilometers, and supports the sampling design of the LTER site HAUSGARTEN to

  13. A new direction-sensitive optical module for deep-sea neutrino telescopy

    International Nuclear Information System (INIS)

    Brunoldi, Marco

    2009-01-01

    Within the KM3NeT framework, the NEMO (NEutrino Mediterranean Observatory) project is studying new technologies for a km 3 -scale neutrino telescope in the Mediterranean Sea. The telescope goal will be the investigation of the high-energy component of the cosmic neutrino spectrum: a promising tool to better understand the mechanisms that originate extreme-energy cosmic rays. Neutrino energy and direction will be reconstructed using the Cherenkov light produced in water by muons coming from neutrino interactions. Two prototypes of a new large-area (10 in.) 4-anode photomultipliers, manufactured by Hamamatsu at the request of the NEMO Collaboration, have been extensively studied. These tubes will be integrated into spherical glass pressure-resistant optical modules and used for the first time to detect the direction of the detected Cherenkov light at the NEMO deep-sea (3600 m) site near Capo Passero in Sicily. The photocathode surface in these optical modules will be effectively divided into four quadrants by a pair of crescent-shaped mirrors embedded in the optical gel linking the PMT to the glass pressure sphere. A series of measurements was performed at the testing facility of the NEMO group at the INFN Sezione di Catania. The single photoelectron peak, the transit time spread, the gain and the cross-talk of the prototype have been studied, to have a complete characterization and make feasible a comparison with previous models. The first prototype of direction-sensitive optical module has been assembled and tested with a dedicated experimental setup at the INFN Sezione di Genova. First results of tests of the prototype are presented.

  14. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913.

    Science.gov (United States)

    Zeng, Zhenshun; Cai, Xingsheng; Wang, Pengxia; Guo, Yunxue; Liu, Xiaoxiao; Li, Baiyuan; Wang, Xiaoxue

    2017-01-01

    Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913), an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid-liquid interface and pellicles at the liquid-air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA). The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.

  15. Siliceous Sponge Spicules as Paleoenvironmental Biomarkers of the Deep-sea

    Science.gov (United States)

    Jochum, K. P.; Wang, X.; Vennemann, T. W.; Sinha, B.; Müller, W. E.

    2009-12-01

    Microanalyses of giant basal spicules (GBS) from the deep sea siliceous sponge Monorhaphis chuni, which grows up to a 3 m height and can reach 1 cm in diameter, offer an unique possibility to record environmental change of past oceanic and climatic conditions over time scales of hundreds to thousands of years. The concentrations and the isotopic abundance ratios of selected elements in the surrounding seawater, such as oxygen, magnesium, calcium, manganese are archived in the spicules of these GBS. We have analyzed 6 - 7 mm thick slices of a GBS that has been collected at a depth of 1110 m in the East China Sea. The sampling location is within the Okinawa Trough, a region that has experienced active volcanism and tectonism. The results disclose changes of the oxygen isotopic composition and the Mg/Ca ratios from the axial center towards the surface of the spicule, indicating an increase of the seawater temperature from about 1.9 °C to 4 °C during the lifetime of the sponge, which has been estimated to about 11 kyr. Furthermore, microanalyses indicate a remarkable temperature shift of up to 9 °C occurring during a period of 9.5 - 3.1 kyr before present. This time interval is also characterized by high Mn concentrations in the GBS. The thickness of the spicule lamellae formed during that period is smaller and more variable (4 - 10 µm), suggesting a growth disturbance of the animal. These anomalies have been explained by the assumption that large discharges of hydrothermal fluids occurred in the neighborhood of these sponges. This view is also supported by the evidence that marked submarine volcanism existed in nearby seamounts, which has paralleled the hydrothermal activity.

  16. A simple model for the dispersion of radioactive wastes dumped on the deep-sea bed

    International Nuclear Information System (INIS)

    Shepherd, J.G.

    1976-01-01

    A simple model has been developed for the dispersion of radioactive materials in a closed and finite ocean. It allows for the simultaneous action of both diffusion and horizontal (but not vertical) advection, and thus avoids the major limitations of previous models such as that of Webb and Morley. It is sufficiently versatile to handle non-Fickian diffusion and radioactive decay, but requires numerical integration using some semi-empirical form for the Green's function of diffusion from a point source. The model has been used to estimate equilibrium concentrations of radioactive materials in sea water arising from the continuous release of material from a dump on the bottom of the deep ocean, using parameters appropriate for the North Atlantic. It is found that except under rather extreme conditions the surface concentrations do not exceed the long-term average value which would be established in a perfectly mixed ocean. The concentrations are also rather insensitive to the values of the diffusion and advection parameters used, except for that for vertical diffusion, but depend strongly on the overall removal rate of material from the ocean, including processes other than radioactive decay. It is suggested that safety assessments of deep-sea dumping should utilize estimates of the environmental capacities of the oceans based on the long-term 'well-mixed' average concentrations (which are very easily calculated) using a safety factor of no more than ten to allow for the possible effects of pluming and upwelling. In so far as their results are comparable, the present model yields estimates which are close to those of the Webb-Morley model for overall half-lives between 30 and 3000 years, but which become increasingly more restrictive for longer-lived materials. (author)

  17. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  18. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913

    Directory of Open Access Journals (Sweden)

    Zhenshun Zeng

    2017-09-01

    Full Text Available Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913, an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid–liquid interface and pellicles at the liquid–air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA. The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.

  19. The Deepwater Horizon Oil Spill: Ecogenomics of the Deep-Sea Plume

    Science.gov (United States)

    Hazen, T. C.

    2012-12-01

    The explosion on April 20, 2010 at the BP-leased Deepwater Horizon drilling rig in the Gulf of Mexico off the coast of Louisiana, resulted in oil and gas rising to the surface and the oil coming ashore in many parts of the Gulf, it also resulted in the dispersment of an immense oil plume 4,000 feet below the surface of the water. Despite spanning more than 600 feet in the water column and extending more than 10 miles from the wellhead, the dispersed oil plume was gone within weeks after the wellhead was capped - degraded and diluted to undetectable levels. Furthermore, this degradation took place without significant oxygen depletion. Ecogenomics enabled discovery of new and unclassified species of oil-eating bacteria that apparently lives in the deep Gulf where oil seeps are common. Using 16s microarrays, functional gene arrays, clone libraries, lipid analysis and a variety of hydrocarbon and micronutrient analyses we were able to characterize the oil degraders. Metagenomic sequence data was obtained for the deep-water samples using the Illumina platform. In addition, single cells were sorted and sequenced for the some of the most dominant bacteria that were represented in the oil plume; namely uncultivated representatives of Colwellia and Oceanospirillum. In addition, we performed laboratory microcosm experiments using uncontaminated water collected from The Gulf at the depth of the oil plume to which we added oil and COREXIT. These samples were characterized by 454 pyrotag. The results provide information about the key players and processes involved in degradation of oil, with and without COREXIT, in different impacted environments in The Gulf of Mexico. We are also extending these studies to explore dozens of deep sediment samples that were also collected after the oil spill around the wellhead. This data suggests that a great potential for intrinsic bioremediation of oil plumes exists in the deep-sea and other environs in the Gulf of Mexico.

  20. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  1. Food web flows through a sub-arctic deep-sea benthic community

    Science.gov (United States)

    Gontikaki, E.; van Oevelen, D.; Soetaert, K.; Witte, U.

    2011-11-01

    The benthic food web of the deep Faroe-Shetland Channel (FSC) was modelled by using the linear inverse modelling methodology. The reconstruction of carbon pathways by inverse analysis was based on benthic oxygen uptake rates, biomass data and transfer of labile carbon through the food web as revealed by a pulse-chase experiment. Carbon deposition was estimated at 2.2 mmol C m -2 d -1. Approximately 69% of the deposited carbon was respired by the benthic community with bacteria being responsible for 70% of the total respiration. The major fraction of the labile detritus flux was recycled within the microbial loop leaving merely 2% of the deposited labile phytodetritus available for metazoan consumption. Bacteria assimilated carbon at high efficiency (0.55) but only 24% of bacterial production was grazed by metazoans; the remaining returned to the dissolved organic matter pool due to viral lysis. Refractory detritus was the basal food resource for nematodes covering ∼99% of their carbon requirements. On the contrary, macrofauna seemed to obtain the major part of their metabolic needs from bacteria (49% of macrofaunal consumption). Labile detritus transfer was well-constrained, based on the data from the pulse-chase experiment, but appeared to be of limited importance to the diet of the examined benthic organisms (preferred prey, in this case, was other macrofaunal animals rather than nematodes. Bacteria and detritus contributed 53% and 12% to the total carbon ingestion of carnivorous polychaetes suggesting a high degree of omnivory among higher consumers in the FSC benthic food web. Overall, this study provided a unique insight into the functioning of a deep-sea benthic community and demonstrated how conventional data can be exploited further when combined with state-of-the-art modelling approaches.

  2. RUO-FAN QIU

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. RUO-FAN QIU. Articles written in Pramana – Journal of Physics. Volume 89 Issue 6 December 2017 pp 81 Research Article. Three-dimensional coupled double-distribution-function lattice Boltzmann models for compressible Navier–Stokes equations · RUO-FAN QIU ...

  3. yi fan zheng

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. YI FAN ZHENG. Articles written in Bulletin of Materials Science. Volume 40 Issue 7 December 2017 pp 1329-1333. Synthesis and enhanced photocatalytic activity of g-C 3 N 4 hybridized CdS nanoparticles · QING YING LIU YI LING QI YI FAN ZHENG XU CHUN SONG.

  4. Characterization of Carbonate Crust from Deep-sea Methane Seeps on the Northern US Atlantic Margin.

    Science.gov (United States)

    Gabitov, R. I.; Borrelli, C.; Buettner, J.; Testa, M.; Garner, B.; Weremeichik, J.; Thomas, J. B.; Wahidi, M.; Thirumalai, R. V. K. G.; Kirkland, B. L.; Skarke, A. D.

    2017-12-01

    Authigenic carbonate minerals widely occur at the seafloor as carbonate crusts and are often directly linked to microbial activity, about which promotion of carbonate crystal growth and geochemistry are not entirely understood. To evaluate a potential metabolic contribution, studies were conducted on carbonate crust collected from a methane seep and on precipitation experiments which produced inorganic aragonite crystallized at high pressure. Among the samples collected during a NSF sponsored cruise to the North Atlantic Continental Margin of the United States (off of New England) in July-August 2016, we analyzed one carbonate crust sample (AD4835 BB-4522) collected at 39.805860; -69.592593 and at a depth of 1419.6 m. In this crust sample, two textural types of aragonite were identified: 1) groundmass consisting of fine grey crystals (100 µm, 24.9 wt%), feldspar (5.6 wt%), and dolomite (3.6 wt%), and trace amount of troilite were identified using XRD, SEM, and optical microscopy. The sample was cut into slabs parallel to crust growth assuming the crust grew in a downward direction. Concentrations of Na, Mg, Al, Si, S, K, Ca, Mn, Fe, Sr, Zr, Ba, and U were measured in the direction parallel to growth of the crust using LA-ICP-MS. Proportions of Si, Al, (Na+K), Mg, S, and Fe in the groundmass suggest the occurrence of sub-micron inclusions of alkali feldspar, and potentially pyroxene, Fe oxide, and Fe sulfide, which were impossible to avoid with the instrument's spatial resolution. The occurrence of micro non-carbonate inclusions causes high elemental concentrations compared to the values expected for aragonite crystallized from seawater. White aragonite acicular crystals were free of silicate and sulfide inclusions, and therefore, yielded lower concentrations of all measured elements except Sr compared to the groundmass. Analyzed Mg and Sr are consistent with published data for deep-sea corals. Also, Sr is similar to experimental data on inorganic aragonite. Mg

  5. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages

    Directory of Open Access Journals (Sweden)

    María F. Sánchez Goñi

    2018-01-01

    Full Text Available Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth’s other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs, ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials and cold phases (Greenland stadials. The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold

  6. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages.

    Science.gov (United States)

    Sánchez Goñi, María F; Desprat, Stéphanie; Fletcher, William J; Morales-Molino, César; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H; Zorzi, Coralie

    2018-01-01

    Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality) on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth's other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs), ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O) cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials) and cold phases (Greenland stadials). The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea decoupling events

  7. A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals

    Science.gov (United States)

    Janiszewska, Katarzyna; Stolarski, Jaroslaw; Benzerara, Karim; Meibom, Anders; Mazur, Maciej; Kitahara, Marcelo; Cairns, Stephen D.

    2010-05-01

    Structural and biogeochemical properties of the skeleton of many invertebrates rely on organic matrix-mediated biomineralization processes. Organic matrices, composed of complex assemblages of macromolecules (proteins, polysaccharides), may control nucleation, spatial delineation and organization of basic microstructural units. Biologically controlled mineralization is also suggested for the scleractinian corals whose different, molecularly recognized clades are supported by distinct types of skeletal microstructures. Main differences in scleractinian coral skeletal microstructures suggested so far consist in (1) varying spatial relationships between Rapid Accretion Deposits (RAD, 'centers of calcification') and thickening deposits (TD, 'fibers'), and (2) varying arrangements of biomineral fibers into higher order structures (e.g., bundles of fibers perpendicular to skeletal surfaces in some 'caryophylliid' corals vs. scale-like units with fibers parallel to the surface in acroporiids). However, a common feature of biomineral fibers in corals described thus far was their similar crystallographic arrangement within larger meso-scale structures (bundles of fibers) and continuity between successive growth layers. Herein we show that representatives of the deep-sea scleractinian family Micrabaciidae (genera: Letepsammia, Rhombopsammia, Stephanophyllia, Leptopenus) have thickening deposits composed of irregular meshwork of short (1-2 μm) and extremely thin (ca. 100-300 nm) fibers organized into small bundles (ca. 1-2 μm thick). Longer axes of fibers are aligned within individual bundles that, in turn, show rather irregular arrangement on the growing surfaces and within the skeleton (irregular criss-cross pattern). In contrast to other scleractinians (including deep-water 'caryophylliids', fungiacyathids, and anthemiphyllids sympatric with micrabaciids), growth layers are not distinct. Also the regions of rapid accretion and thickening deposits are not clearly

  8. Abundance and Distribution of Diagnostic Carbon Fixation Genes in a Deep-Sea Hydrothermal Gradient Ecosystem

    Science.gov (United States)

    Blumenfeld, H. N.; Kelley, D. S.; Girguis, P. R.; Schrenk, M. O.

    2010-12-01

    The walls of deep-sea hydrothermal vent chimneys sustain steep thermal and chemical gradients resulting from the mixing of hot (350°C+) hydrothermal fluids with cold, oxygenated seawater. The chemical disequilibrium generated from this process has the potential to drive numerous chemolithoautotrophic metabolisms, many of which have been demonstrated to be operative in microbial pure cultures. In addition to the well-known Calvin Cycle, at least five additional pathways have been discovered including the Reverse Tricarboxylic Acid Cycle (rTCA), the Reductive Acetyl-CoA pathway, and the 3-hydroxyproprionate pathway. Most of the newly discovered pathways have been found in thermophilic and hyperthermophilic Bacteria and Archaea, which are the well represented in microbial diversity studies of hydrothermal chimney walls. However, to date, little is known about the environmental controls that impact various carbon fixation pathways. The overlap of limited microbial diversity with distinct habitat conditions in hydrothermal chimney walls provides an ideal setting to explore these relationships. Hydrothermal chimney walls from multiple structures recovered from the Juan de Fuca Ridge in the northeastern Pacific were sub-sampled and analyzed using PCR-based assays. Earlier work showed elevated microbial abundances in the outer portions of mature chimney walls, with varying ratios of Archaea to Bacteria from the outer to inner portions of the chimneys. Common phylotypes identified in these regions included Epsilonproteobacteria, Gammaproteobacteria, and Desulfurococcales. Total genomic DNA was extracted from mineralogically distinct niches within these structures and queried for genes coding key regulatory enzymes for each of the well studied carbon fixation pathways. Preliminary results show the occurrence of genes representing rTCA cycle (aclB) and methyl coenzyme A reductase (mcrA) - a proxy for the Reductive Acetyl-CoA Pathway within interior portion of mature

  9. Dispersion of deep-sea hydrothermal vent effluents and larvae by submesoscale and tidal currents

    Science.gov (United States)

    Vic, Clément; Gula, Jonathan; Roullet, Guillaume; Pradillon, Florence

    2018-03-01

    Deep-sea hydrothermal vents provide sources of geochemical materials that impact the global ocean heat and chemical budgets, and support complex biological communities. Vent effluents and larvae are dispersed and transported long distances by deep ocean currents, but these currents are largely undersampled and little is known about their variability. Submesoscale (0.1-10 km) currents are known to play an important role for the dispersion of biogeochemical materials in the ocean surface layer, but their impact for the dispersion in the deep ocean is unknown. Here, we use a series of nested regional oceanic numerical simulations with increasing resolution (from δx = 6 km to δx = 0.75 km) to investigate the structure and variability of highly-resolved deep currents over the Mid-Atlantic Ridge (MAR) and their role on the dispersion of the Lucky Strike hydrothermal vent effluents and larvae. We shed light on a submesoscale regime of oceanic turbulence over the MAR at 1500 m depth, contrasting with open-ocean - i.e., far from topographic features - regimes of turbulence, dominated by mesoscales. Impacts of submesoscale and tidal currents on larval dispersion and connectivity among vent populations are investigated by releasing neutrally buoyant Lagrangian particles at the Lucky Strike hydrothermal vent. Although the absolute dispersion is overall not sensitive to the model resolution, submesoscale currents are found to significantly increase both the horizontal and vertical relative dispersion of particles at O(1-10) km and O(1-10) days, resulting in an increased mixing of the cloud of particles. A fraction of particles are trapped in submesoscale coherent vortices, which enable transport over long time and distances. Tidal currents and internal tides do not significantly impact the horizontal relative dispersion. However, they roughly double the vertical dispersion. Specifically, particles undergo strong tidally-induced mixing close to rough topographic features

  10. Imaging microbial metal metabolism in situ under conditions of the deep-sea hydrothermal vents

    Science.gov (United States)

    Oger, P. M.; Daniel, I.; Simionovici, A.; Picard, A.

    2006-12-01

    High-pressure biotopes are the most widely spread biotopes on Earth. They represent one possible location for the origin of life. They also share striking similarities with extraterrestrial biotopes such as those postulated for Europe or Mars. In absence of light, dissimilatory reduction of metals (DMR) is fueling the ecosystem. Monitoring the metabolism of the deep-sea hydrothermal vent microbial fauna under P, T and chemical conditions relevant to their isolation environment can be difficult because of the confinement and because most spectroscopic probes do not sense metallic ions in solution. We demonstrated the possibility to use Xray spectroscopy to monitor the speciation of metallic species in solution. Experiments were performed at The ESRF using Selenium (Se) detoxification by Agrobacterium tumefaciens as an analog of DMR. The reduction of Se from selenite to the metal was monitored by a combiantion of two Xray spectroscopic techniques (XANES and μXRF). Cells were incubated in the low pressure DAC in growth medium supplemented with 5mM Selenite and incubated under pressures up to 60 Mpa at 30°C for 24h. The evolution of the speciation can be easily monitored and the concentration of each Se species determined from the Xray spectra by linear combinations of standard spectra. Selenite is transformed by the bacterium into a mixture of metal Se and methylated Se after 24 hours. Se detoxification is observed in situ up to at least 25 MPa. The technique, developped for Se can be adapted to monitor other elements more relevant to DMR such as As, Fe or S, which should allow to monitor in situ under controlled pressure and temperature the metabolism of vent organisms. It is also amenable to the monitoring of toxic metals. Xray spectroscopy and the lpDAC are compatible with other spectroscopic techniques, such as Raman, UV or IR spectroscopies, allowing to probe other metabolic activities. Hence, enlarging the range of metabolic information that can be obtained in

  11. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    Science.gov (United States)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  12. Mine Waste and Acute Warming Induce Energetic Stress in the Deep-Sea Sponge Geodia atlantica and Coral Primnoa resedeaformis; Results From a Mesocosm Study

    Directory of Open Access Journals (Sweden)

    Elliot Scanes

    2018-04-01

    Full Text Available There is the potential for climate change to interact with pollution in all of the Earth's oceans. In the fjords of Norway, mine tailings are released into fjords generating suspended sediment plumes that impact deep-sea ecosystems. These same deep-sea ecosystems are expected to undergo periodic warming as climate change increases the frequency of down-welling events in fjords. It remains unknown how a polluted deep-sea ecosystem would respond to down-welling because multiple stressors will often interact in unpredictable ways. Here, we exposed two deep-sea foundation species; the gorgonian coral Primnoa resedaeformis and the demosponge Geodia atlantica to suspended sediment (10 mg L−1 and acute warming (+5°C in a factorial mesocosm experiment for 40 days. Physiology (respiration, nutrient flux and cellular responses (lysosomal cell stability were measured for both the coral and sponge. Exposure to elevated suspended sediment reduced metabolism, supressed silicate uptake and induced cellular instability of the sponge G. atlantica. However, combining sediment with warming caused G. atlantica to respire and excrete nitrogen at a greater rate. For the coral P. resedaeformis, suspended sediments reduced O:N ratios after 40 days, however, warming had a greater effect on P. resedaeformis physiology compared to sediment. Warming increased respiration, nitrogen excretion, and cellular instability which resulted in lower O:N ratios. We argue that suspended sediment and warming can act alone and also interact to cause significant harm to deep-sea biota, however responses are likely to be species-specific. Warming and pollution could interact in the deep-sea to cause mortality to the coral P. resedaeformis and to a lesser extent, the sponge G. atlantica. As foundation species, reducing the abundance of deep sea corals and sponges would likely impact the ecosystems they support.

  13. Patterns of deep-sea genetic connectivity in the New Zealand region: implications for management of benthic ecosystems.

    Directory of Open Access Journals (Sweden)

    Eleanor K Bors

    Full Text Available Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ, deep-sea communities at upper bathyal depths (<2000 m are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand's EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.

  14. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining.

    Science.gov (United States)

    Mestre, Nélia C; Rocha, Thiago L; Canals, Miquel; Cardoso, Cátia; Danovaro, Roberto; Dell'Anno, Antonio; Gambi, Cristina; Regoli, Francesco; Sanchez-Vidal, Anna; Bebianno, Maria João

    2017-09-01

    Portmán Bay is a heavily contaminated area resulting from decades of metal mine tailings disposal, and is considered a suitable shallow-water analogue to investigate the potential ecotoxicological impact of deep-sea mining. Resuspension plumes were artificially created by removing the top layer of the mine tailings deposit by bottom trawling. Mussels were deployed at three sites: i) off the mine tailings deposit area; ii) on the mine tailings deposit beyond the influence from the resuspension plumes; iii) under the influence of the artificially generated resuspension plumes. Surface sediment samples were collected at the same sites for metal analysis and ecotoxicity assessment. Metal concentrations and a battery of biomarkers (oxidative stress, metal exposure, biotransformation and oxidative damage) were measured in different mussel tissues. The environmental hazard posed by the resuspension plumes was investigated by a quantitative weight of evidence (WOE) model that integrated all the data. The resuspension of sediments loaded with metal mine tails demonstrated that chemical contaminants were released by trawling subsequently inducing ecotoxicological impact in mussels' health. Considering as sediment quality guidelines (SQGs) those indicated in Spanish action level B for the disposal of dredged material at sea, the WOE model indicates that the hazard is slight off the mine tailings deposit, moderate on the mine tailings deposit without the influence from the resuspension plumes, and major under the influence of the resuspension plumes. Portmán Bay mine tailings deposit is a by-product of sulphide mining, and despite differences in environmental setting, it can reflect the potential ecotoxic effects to marine fauna from the impact of resuspension of plumes created by deep-sea mining of polymetallic sulphides. A similar approach as in this study could be applied in other areas affected by sediment resuspension and for testing future deep-sea mining sites in

  15. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world

    Science.gov (United States)

    Thomas, Ellen; D’haenens, Simon; Speijer, Robert P.; Alegret, Laia

    2018-01-01

    The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma), linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian). Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa) and/or the ability to calcify in carbonate-corrosive waters (N. truempyi). Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana) were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the middle Ypresian

  16. Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness

    Science.gov (United States)

    Jiang, Mingjing; He, Jie; Wang, Jianfeng; Zhou, Yaping; Zhu, Fangyuan

    2017-12-01

    Due to increasing global energy demands, research is being conducted on the mechanical properties of methane hydrate-bearing soils (MHBSs), from which methane hydrate (MH) will be explored. This paper presents a numerical approach to study the mechanical properties of MHBSs. The relationship between the level of MH saturation and the interparticle bond thickness is first obtained by analyzing the scanning electron microscope images of MHBS samples, in which is the bridge connecting the micromechanical behavior captured by the DEM with the macroscopic properties of MHBSs. A simplified thermal-hydromechanical (THM) bond model that considers the different bond thicknesses is then proposed to describe the contact behavior between the soil particles and those incorporated into the discrete element method (DEM). Finally, a series of biaxial compression tests are carried out with different MH saturations under different effective confining pressures to analyze the mechanical properties of deep-sea MHBSs. The results of the DEM numerical simulation are also compared with the findings from triaxial compression tests. The results show that the macromechanical properties of deep-sea MHBSs can be qualitatively captured by the proposed DEM. The shear strength, cohesion, and volumetric contraction of deep-sea MHBSs increase with increasing MH saturation, although its influence on the internal friction angle is obscure. The shear strength and volumetric contraction increase with increasing effective confining pressure. The peak shear strength and the dilation of MHBSs increase as the critical bond thickness increases, while the residual deviator stress largely remains the same at a larger axial strain. With increasing the axial strain, the percentage of broken bonds increases, along with the expansion of the shear band.

  17. Deep sea animal density and size estimated using a Dual-frequency IDentification SONar (DIDSON) offshore the island of Hawaii

    Science.gov (United States)

    Giorli, Giacomo; Drazen, Jeffrey C.; Neuheimer, Anna B.; Copeland, Adrienne; Au, Whitlow W. L.

    2018-01-01

    Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators' distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m3 and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases.

  18. Molecular evidence for the Southern Hemisphere origin and deep-sea diversification of spiny lobsters (Crustacea: Decapoda: Palinuridae).

    Science.gov (United States)

    Tsang, L M; Chan, T-Y; Cheung, M K; Chu, K H

    2009-05-01

    Spiny lobsters (family Palinuridae) are economically important marine animals that have been the subject of a considerable amount of research. However, the phylogeny of this group remains disputed. Morphological analyses have not been able to resolve the relationships of the various members of the group, and no agreement has yet been reached on its phylogeny as indicated by the different gene trees reported to date. In the present study, we attempt to reconstruct the phylogeny of Palinuridae and its allies using sequences from three nuclear protein-coding genes (phosphoenolpyruvate carboxykinase, sodium-potassium ATPase alpha-subunit and histone 3). The inferred topology receives strong nodal support for most of the branches. The family Palinuridae is found to be paraphyletic with the polyphyletic Synaxidae nested within it. Stridentes forms a monophyletic assemblage, indicating that the stridulating sound producing organ evolved only once in the spiny lobsters. By contrast, Silentes is paraphyletic, as Palinurellus is more closely related to Stridentes than to other Silentes genera. The three genera restricted to the southern high latitudes (Jasus, Projasus and Sagmariasus) constitute the basal lineages in the spiny lobsters, suggesting a Southern Hemisphere origin for the group. Subsequent diversification appears to have been driven by the closure of the Tethys Sea and the formation of the Antarctic circumpolar current, which isolated the northern and southern taxa. Contrary to an earlier hypothesis that postulated evolution from a deep-sea ancestral stock, the shallow-water genus Panulirus is the basal taxon in Stridentes, while the deep-sea genera Puerulus and Linuparus are found to be derived. This indicates that the spiny lobsters invaded deep-sea habitats from the shallower water rocky reefs and then radiated. Our results suggest that Synaxidae is not a valid family, and should be considered to be synonymous with Palinuridae. We also found that the

  19. [Predominant strains of polycyclic aromatic hydrocarbon-degrading consortia from deep sea of the Middle Atlantic Ridge].

    Science.gov (United States)

    Cui, Zhisong; Shao, Zongze

    2009-07-01

    In order to identify the predominant strains of polycyclic aromatic hydrocarbon (PAH)-degrading consortia harboring in sea water and surface sediment collected from deep sea of the Middle Atlantic Ridge. We employed enrichment method and spread-plate method to isolate cultivable bacteria and PAHs degraders from deep sea samples. Phylogenetic analysis was conducted by 16S rRNA gene sequencing of the bacteria. Then we analyzed the dominant bacteria in the PAHs-degrading consortia by denaturing gradient gel electrophoresis (DGGE) combined with DNA sequencing. Altogether 16 cultivable bacteria were obtained, including one PAHs degrader Novosphingobium sp. 4D. Phylogenetic analysis showed that strains closely related to Alcanivorax dieselolei NO1A (5/16) and Tistrella mobilis TISTR 1108T (5/16) constituted two biggest groups among the cultivable bacteria. DGGE analysis showed that strain 4L (also 4M and 4N, Alcanivorax dieselolei NO1A, 99.21%), 4D (Novosphingobium pentaromativorans US6-1(T), 97.07%) and 4B (also 4E, 4H and 4K, Tistrella mobilis TISTR 1108T, > 99%) dominated the consortium MC2D. While in consortium MC3CO, the predominant strains were strain 5C (also 5H, Alcanivorax dieselolei NO1A, > 99%), uncultivable strain represented by band 5-8 (Novosphingobium aromaticivorans DSM 12444T, 99.41%), 5J (Tistrella mobilis TISTR 1108T, 99.52%) and 5F (also 5G, Thalassospira lucentensis DSM 14000T, degrading consortia in sea water and surface sediment of Middle Atlantic Ridge deep sea, with Novosphingobium spp. as their main PAHs degraders.

  20. Amino acid stable isotope applications to deep-sea corals: A molecular geochemistry approach to reconstructing past ocean conditions

    Science.gov (United States)

    McMahon, K.; McCarthy, M. D.; Guilderson, T. P.; Sherwood, O.; Williams, B.; Larsen, T.; Glynn, D. S.

    2017-12-01

    Future climate change is predicted to alter ocean productivity, food web dynamics, biogeochemical cycling, and the efficacy of the biological pump. Proteinaceous deep-sea corals act as "living sediment traps," providing long-term, high-resolution records of exported surface ocean production and a window into past changes in ocean condition as a historical context for potential future changes. Here, we present recent work developing the application of compound-specific stable isotope analysis of individual amino acids to proteinaceous deep-sea corals to reconstruct past changes in phytoplankton community composition and biogeochemical cycling. We present new calibrations for molecular isotope comparisons between metabolically active coral polyp tissue and bioarchival proteinaceous skeleton. We then applied these techniques to deep-sea corals from the North Pacific Subtropical Gyre (NPSG) to reconstruct centennial to millennial time scale changes in phytoplankton community composition and biogeochemical cycling as a function of regional climate change. This work suggests that the NPSG has undergone multiple major phytoplankton regime shifts over the last millennium between prokaryotic and eukaryotic phytoplankton communities and associated sources of nitrogen fueling production. The most recent regime, which started around the end of the Little Ice Age and the onset of the Industrial era, is unprecedented in the last 1000 years and resulted in a 30-50% increase in diazotrophic cyanobacteria contribution to export production and an associated 17-27% increase in N2-fixation in the NPSG over last century. By offering the first direct phylogenetic context for long-term shifts in isotopic records of exported particulate organic matter, our data represent a major step forward in understanding the evolution of marine plankton community dynamics, food web architecture, biogeochemical cycling, and the climate feedback loops through the biological pump.