WorldWideScience

Sample records for mucosal epithelial barrier

  1. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome.

    Science.gov (United States)

    González-Castro, Ana M; Martínez, Cristina; Salvo-Romero, Eloísa; Fortea, Marina; Pardo-Camacho, Cristina; Pérez-Berezo, Teresa; Alonso-Cotoner, Carmen; Santos, Javier; Vicario, María

    2017-01-01

    Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  2. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    Science.gov (United States)

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  3. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Qinghua eYu

    2015-03-01

    Full Text Available Pathogens invade intestinal mucosal barrier through phagocytosis of antigen presenting cells (dendritic cell, microfold cells, or through the invasion into the intestinal epithelial directly. Some pathogens could damage the cell junction between epithelial cells and use the paracellular pathway as an entrance to invade. Moreover, some Lactobacillus could inhibit the adhesion of the pathogens and protect the integrity of the cell junction and mucosal barrier. This research focused on the potential therapeutic effect of Lactobacillus fructosus (L. fructosus C2 to attenuate ETEC K88 or S. typhimurium SL1344 induced changes to mucosal barrier. The results demonstrated that treatment of polarized Caco-2 cells with L. fructosus C2 reduced the permeation of dextran, and expression of IL-8, p-ERK and p-JNK when cells were infected with pathogenic bacteria. The findings indicated that L. fructosus C2 exerted a protective effect against the damage to the integrity of Caco-2 cells by ETEC or S. typhimurium infection.

  4. Role of airway epithelial barrier dysfunction in pathogenesis of asthma.

    Science.gov (United States)

    Gon, Yasuhiro; Hashimoto, Shu

    2018-01-01

    Bronchial asthma is characterized by persistent cough, increased sputum, and repeated wheezing. The pathophysiology underlying these symptoms is the hyper-responsiveness of the airway along with chronic airway inflammation. Repeated injury, repair, and regeneration of the airway epithelium following exposure to environmental factors and inflammation results in histological changes and functional abnormalities in the airway mucosal epithelium; such changes are believed to have a significant association with the pathophysiology of asthma. Damage to the barrier functions of the airway epithelium enhances mucosal permeability of foreign substances in the airway epithelium of patients with asthma. Thus, epithelial barrier fragility is closely involved in releasing epithelial cytokines (e.g., TSLP, IL-25, and IL-33) because of the activation of airway epithelial cells, dendritic cells, and innate group 2 innate lymphoid cells (ILC2). Functional abnormalities of the airway epithelial cells along with the activation of dendritic cells, Th2 cells, and ILC2 form a single immunopathological unit that is considered to cause allergic airway inflammation. Here we use the latest published literature to discuss the potential pathological mechanisms regarding the onset and progressive severity of asthma with regard to the disruption of the airway epithelial function. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  5. HIV enteropathy and aging: gastrointestinal immunity, mucosal epithelial barrier, and microbial translocation.

    Science.gov (United States)

    Wang, Hongyin; Kotler, Donald P

    2014-07-01

    Despite decreases in morbidity and mortality as a result of antiretroviral therapy, gastrointestinal dysfunction remains common in HIV infection. Treated patients are at risk for complications of 'premature' aging, such as cardiovascular disease, osteopenia, neurocognitive decline, malignancies, and frailty. This review summarizes recent observations in this field. Mucosal CD4 lymphocytes, especially Th17 cells, are depleted in acute HIV and simian immune deficiency virus (SIV) infections, although other cell types also are affected. Reconstitution during therapy often is incomplete, especially in mucosa. Mucosal barrier function is affected by both HIV infection and aging and includes paracellular transport via tight junctions and uptake through areas of apoptosis; other factors may affect systemic antigen exposure. The resultant microbial translocation is associated with systemic immune activation in HIV and SIV infections. There is evidence of immune activation and microbial translocation in the elderly. The immune phenotypes of immunosenescence in HIV infection and aging appear similar. There are several targets for intervention; blockage of residual mucosal virus replication, preventing antigen uptake, modulating the microbiome, improving T cell recovery, combining therapies aimed at mucosal integrity, augmenting mucosal immunity, and managing traditional risk factors for premature aging in the general population. Aging may interact with HIV enteropathy to enhance microbial translocation and immune activation.

  6. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis.

    Science.gov (United States)

    Wallon, Conny; Persborn, Mats; Jönsson, Maria; Wang, Arthur; Phan, Van; Lampinen, Maria; Vicario, Maria; Santos, Javier; Sherman, Philip M; Carlson, Marie; Ericson, Ann-Charlott; McKay, Derek M; Söderholm, Johan D

    2011-05-01

    Altered intestinal barrier function has been implicated in the pathophysiology of ulcerative colitis (UC) in genetic, functional, and epidemiological studies. Mast cells and corticotropin-releasing factor (CRF) regulate the mucosal barrier in human colon. Because eosinophils are often increased in colon tissues of patients with UC, we assessed interactions among mast cells, CRF, and eosinophils in the mucosal barrier of these patients. Transmucosal fluxes of protein antigens (horseradish peroxidase) and paracellular markers ((51)Cr-EDTA, fluorescein isothiocyanate-dextran 4000) were studied in noninflamed, colonic mucosal biopsy samples collected from 26 patients with UC and 53 healthy volunteers (controls); samples were mounted in Ussing chambers. We also performed fluorescence and electron microscopy of human tissue samples, assessed isolated eosinophils, and performed mechanistic studies using in vitro cocultured eosinophils (15HL-60), mast cells (HMC-1), and a colonic epithelial cell line (T84). Colon tissues from patients with UC had significant increases in permeability to protein antigens compared with controls. Permeability was blocked by atropine (a muscarinic receptor antagonist), α-helical CRF(9-41) (a CRF receptor antagonist), and lodoxamide (a mast-cell stabilizer). Eosinophils were increased in number in UC tissues (compared with controls), expressed the most M2 and M3 muscarinic receptors of any mucosal cell type, and had immunoreactivity to CRF. In coculture studies, carbachol activation of eosinophils caused production of CRF and activation of mast cells, which increased permeability of T84 epithelial cells to macromolecules. We identified a neuroimmune intercellular circuit (from cholinergic nerves, via eosinophils to mast cells) that mediates colonic mucosal barrier dysfunction in patients with UC. This circuit might exacerbate mucosal inflammation. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Neutrophil Interactions with Epithelial Expressed ICAM-1 Enhances Intestinal Mucosal Wound Healing

    Science.gov (United States)

    Sumagin, R; Brazil, JC; Nava, P; Nishio, H; Alam, A; Luissint, AC; Weber, DA; Neish, AS; Nusrat, A; Parkos, CA

    2015-01-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. While epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 plays an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing. PMID:26732677

  8. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing.

    Science.gov (United States)

    Sumagin, R; Brazil, J C; Nava, P; Nishio, H; Alam, A; Luissint, A C; Weber, D A; Neish, A S; Nusrat, A; Parkos, C A

    2016-09-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. Although epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 has an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing.

  9. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms.

    Science.gov (United States)

    Lechuga, Susana; Ivanov, Andrei I

    2017-07-01

    The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    Science.gov (United States)

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lactobacillus frumenti Facilitates Intestinal Epithelial Barrier Function Maintenance in Early-Weaned Piglets

    Science.gov (United States)

    Hu, Jun; Chen, Lingli; Zheng, Wenyong; Shi, Min; Liu, Liu; Xie, Chunlin; Wang, Xinkai; Niu, Yaorong; Hou, Qiliang; Xu, Xiaofan; Xu, Baoyang; Tang, Yimei; Zhou, Shuyi; Yan, Yiqin; Yang, Tao; Ma, Libao; Yan, Xianghua

    2018-01-01

    Increased intestinal epithelial barrier function damages caused by early weaning stress have adverse effects on swine health and feed utilization efficiency. Probiotics have emerged as the promising antibiotic alternatives used for intestinal barrier function damage prevention. Our previous data showed that Lactobacillus frumenti was identified as a predominant Lactobacillus in the intestinal microbiota of weaned piglets. However, whether the intestinal epithelial barrier function in piglets was regulated by L. frumenti is still unclear. Here, piglets received a PBS vehicle or PBS suspension (2 ml, 108 CFU/ml) containing the L. frumenti by oral gavage once a day during the period of 6–20 days of age prior to early weaning. Our data demonstrated that oral administration of L. frumenti significantly improved the intestinal mucosal integrity and decreased the serum endotoxin and D-lactic acid levels in early-weaned piglets (26 days of age). The intestinal tight junction proteins (including ZO-1, Occludin, and Claudin-1) were significantly up-regulated by L. frumenti administration. The serum immunoglobulin G (IgG) levels, intestinal secretory immunoglobulin A (sIgA) levels, and interferon-γ (IFN-γ) levels were significantly increased by L. frumenti administration. Furthermore, our data revealed that oral administration of L. frumenti significantly increased the relative abundances of health-promoting microbes (including L. frumenti, Lactobacillus gasseri LA39, Parabacteroides distasonis, and Kazachstania telluris) and decreased the relative abundances of opportunistic pathogens (including Desulfovibrio desulfuricans and Candida humilis). Functional alteration of the intestinal bacterial community by L. frumenti administration was characterized by the significantly increased fatty acids and protein metabolism and decreased diseases-associated metabolic pathways. These findings suggest that L. frumenti facilitates intestinal epithelial barrier function maintenance

  12. Extracorporeal membrane oxygenation causes loss of intestinal epithelial barrier in the newborn piglet.

    Science.gov (United States)

    Kurundkar, Ashish R; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Hartman, Yolanda E; He, Dongning; Karnatak, Rajendra K; Neel, Mary L; Clancy, John P; Anantharamaiah, G M; Maheshwari, Akhil

    2010-08-01

    Extracorporeal membrane oxygenation (ECMO) is an important life-support system used in neonates and young children with intractable cardiorespiratory failure. In this study, we used our porcine neonatal model of venoarterial ECMO to investigate whether ECMO causes gut barrier dysfunction. We subjected 3-wk-old previously healthy piglets to venoarterial ECMO for up to 8 h and evaluated gut mucosal permeability, bacterial translocation, plasma levels of bacterial products, and ultrastructural changes in gut epithelium. We also measured plasma lipopolysaccharide (LPS) levels in a small cohort of human neonates receiving ECMO. In our porcine model, ECMO caused a rapid increase in gut mucosal permeability within the first 2 h of treatment, leading to a 6- to 10-fold rise in circulating bacterial products. These changes in barrier function were associated with cytoskeletal condensation in epithelial cells, which was explained by phosphorylation of a myosin II regulatory light chain. In support of these findings, we also detected elevated plasma LPS levels in human neonates receiving ECMO, indicating a similar loss of gut barrier function in these infants. On the basis of these data, we conclude that ECMO is an independent cause of gut barrier dysfunction and bacterial translocation may be an important contributor to ECMO-related inflammation.

  13. Epithelial Cell-Neutrophil Interactions in the Alimentary Tract: A Complex Dialog in Mucosal Surveillance and Inflammation

    Directory of Open Access Journals (Sweden)

    Sean P. Colgan

    2002-01-01

    Full Text Available Inflammatory diseases of mucosal organs as diverse as the lung, kidney, and intestine, inevitably require the intimate interactions of neutrophils with columnar epithelia. The physiologic consequences of such interactions often determine endpoint organ function, and for this reason, much recent interest has developed in identifying mechanisms and novel targets for the treatment of mucosal inflammation. Elegant in vitro model systems incorporating purified human neutrophils and human epithelial cells grown in physiologic orientations have aided in discovery of new and insightful pathways to define basic inflammatory pathways. Here, we will review the recent literature regarding the interactions between columnar epithelial cells and neutrophils, with an emphasis on intestinal epithelial cells, structural aspects of neutrophil transepithelial migration, molecular determinants of neutrophil-epithelial cell interactions, as well as modulation of these pathways. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.

  14. Mucosal Ecological Network of Epithelium and Immune Cells for Gut Homeostasis and Tissue Healing.

    Science.gov (United States)

    Kurashima, Yosuke; Kiyono, Hiroshi

    2017-04-26

    The intestinal epithelial barrier includes columnar epithelial, Paneth, goblet, enteroendocrine, and tuft cells as well as other cell populations, all of which contribute properties essential for gastrointestinal homeostasis. The intestinal mucosa is covered by mucin, which contains antimicrobial peptides and secretory IgA and prevents luminal bacteria, fungi, and viruses from stimulating intestinal immune responses. Conversely, the transport of luminal microorganisms-mediated by M, dendritic, and goblet cells-into intestinal tissues facilitates the harmonization of active and quiescent mucosal immune responses. The bacterial population within gut-associated lymphoid tissues creates the intratissue cohabitations for harmonized mucosal immunity. Intermolecular and intercellular communication among epithelial, immune, and mesenchymal cells creates an environment conducive for epithelial regeneration and mucosal healing. This review summarizes the so-called intestinal mucosal ecological network-the complex but vital molecular and cellular interactions of epithelial mesenchymal cells, immune cells, and commensal microbiota that achieve intestinal homeostasis, regeneration, and healing.

  15. TLR-dependent human mucosal epithelial cell responses to microbial pathogens.

    Directory of Open Access Journals (Sweden)

    Paola eMassari

    2014-08-01

    Full Text Available AbstractToll-Like Receptor (TLR signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in humans as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites, specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners, their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.

  16. A Novel Peptide to Treat Oral Mucositis Blocks Endothelial and Epithelial Cell Apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiaoyan; Chen Peili [Department of Medicine, University of Chicago, Chicago, Illinois (United States); Sonis, Stephen T. [Division of Oral Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Biomodels, Watertown, Massachusetts (United States); Lingen, Mark W. [Department of Pathology, University of Chicago, Chicago, Illinois (United States); Berger, Ann [NephRx Corporation, Kalamazoo, Michigan (United States); Toback, F. Gary, E-mail: gtoback@medicine.bsd.uchicago.edu [Department of Medicine, University of Chicago, Chicago, Illinois (United States)

    2012-07-01

    Purpose: No effective agents currently exist to treat oral mucositis (OM) in patients receiving chemoradiation for the treatment of head-and-neck cancer. We identified a novel 21-amino acid peptide derived from antrum mucosal protein-18 that is cytoprotective, mitogenic, and motogenic in tissue culture and animal models of gastrointestinal epithelial cell injury. We examined whether administration of antrum mucosal protein peptide (AMP-p) could protect against and/or speed recovery from OM. Methods and Materials: OM was induced in established hamster models by a single dose of radiation, fractionated radiation, or fractionated radiation together with cisplatin to simulate conventional treatments of head-and-neck cancer. Results: Daily subcutaneous administration of AMP-p reduced the occurrence of ulceration and accelerated mucosal recovery in all three models. A delay in the onset of erythema after irradiation was observed, suggesting that a protective effect exists even before injury to mucosal epithelial cells occurs. To test this hypothesis, the effects of AMP-p on tumor necrosis factor-{alpha}-induced apoptosis were studied in an endothelial cell line (human dermal microvascular endothelial cells) as well as an epithelial cell line (human adult low-calcium, high-temperature keratinocytes; HaCaT) used to model the oral mucosa. AMP-p treatment, either before or after cell monolayers were exposed to tumor necrosis factor-{alpha}, protected against development of apoptosis in both cell types when assessed by annexin V and propidium iodide staining followed by flow cytometry or ligase-mediated polymerase chain reaction. Conclusions: These observations suggest that the ability of AMP-p to attenuate radiation-induced OM could be attributable, at least in part, to its antiapoptotic activity.

  17. Defects in small intestinal epithelial barrier function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine.

    Science.gov (United States)

    Moeser, Adam J; Borst, Luke B; Overman, Beth L; Pittman, Jeremy S

    2012-10-01

    The objective of this study was to investigate intestinal function and morphology associated with peri-weaning failure to thrive syndrome (PFTS) in swine. Jejunum and distal ileum from control and pigs exhibiting PFTS was harvested at weaning, 4 and 11 days post-weaning (PW) for intestinal barrier function studies and histological analyses (n=6 pigs per group). Marked disturbances in intestinal barrier function was observed in PFTS pigs, compared with controls, indicated by lower (p<0.05) TER and increased (p<0.01) permeability to FITC dextran (4 kDa). Intestines from weaned pigs, subjected to a 4-day fast, exhibited minor disturbances in intestinal barrier function. Villus atrophy and crypt hyperplasia were observed in the PFTS intestine compared with control and fasted pigs. These data demonstrate that PFTS is associated with profound disturbances in intestinal epithelial barrier function and alterations in mucosal and epithelial morphology in which anorexia is not the sole factor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Intestinal barrier integrity and inflammatory bowel disease

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Pedersen, Jannie; Jørgensen, Peter

    2018-01-01

    Disruption of normal barrier function is a fundamental factor in the pathogenesis of inflammatory bowel disease, which includes increased epithelial cell death, modified mucus configuration, altered expression and distribution of tight junction-proteins, along with a decreased expression of antim......Disruption of normal barrier function is a fundamental factor in the pathogenesis of inflammatory bowel disease, which includes increased epithelial cell death, modified mucus configuration, altered expression and distribution of tight junction-proteins, along with a decreased expression...... of antimicrobial peptides. Inflammatory bowel disease is associated with life-long morbidity for affected patients, and both the incidence and prevalence is increasing globally, resulting in substantial economic strain for society. Mucosal healing and re-establishment of barrier integrity is associated......, novel treatment strategies to accomplish mucosal healing and to re-establish normal barrier integrity in inflammatory bowel disease are warranted, and luminal stem cell-based approaches might have an intriguing potential. Transplantation of in vitro expanded intestinal epithelial stem cells derived...

  19. Role of intestinal mucosal barrier in the development and progression of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    ZHANG Yuanyuan

    2016-12-01

    Full Text Available The incidence of non-alcoholic fatty liver disease (NAFLD has been increasing year by year in China. Intestinal mucosa is the largest organ for bacterial storage, and intestinal mucosal barrier includes biological barrier, mechanical barrier, immunological barrier, and chemical barrier. This article investigates the important role of intestinal mucosal barrier function in the pathogenesis of NAFLD. As for the intestinal biological barrier, abnormalities in gut microbiota occur earlier than obesity and other metabolic disorders; small intestinal bacterial overgrowth may affect energy metabolism, promote insulin resistance, and get involved in the pathogenesis of NAFLD; regulation of gut microbiota has a certain clinical effect in the treatment of NAFLD. Intestinal mechanical barrier impairment increases the mucosal permeability and is associated with intestinal dysbacteriosis. The changes in intestinal immunological barrier may be associated with obesity, metabolic disorders, and liver inflammation. The changes in intestinal chemical barrier can inhibit the synthesis and secretion of very low-density lipoprotein and low-density lipoprotein in hepatocytes and may result in triglyceride deposition in the liver. It is pointed out that the research on intestinal mucosal barrier function provides promising prospects for the prevention and treatment of NAFLD.

  20. Role of serotonin in the intestinal mucosal epithelium barrier in weaning mice undergoing stress-induced diarrhea.

    Science.gov (United States)

    Dong, Yulan; Wang, Zixu; Qin, Zhuoming; Cao, Jing; Chen, Yaoxing

    2018-02-01

    Stress-induced diarrhea is a frequent and challenging threat to humans and domestic animals. Serotonin (5-HT) has been shown to be involved in the pathological process of stress-induced diarrhea. However, the role of 5-HT in stress-induced diarrhea remains unclear. A stress-induced diarrhea model was established in 21-day-old ICR weaning mice through an intragastric administration of 0.25 mL of 0.4 g/mL folium sennae and restraint of the hind legs with adhesive tape for 4 h to determine whether 5-HT regulates the mucosal barrier to cause diarrhea. Mice with decreased levels of 5-HT were pretreated with an intraperitoneal injection of 300 mg/kg p-chlorophenylalanine (PCPA), a 5-HT synthesis inhibitor. After 5 days of treatment, the stress level, body weight and intestinal mucosal morphology indexes were measured. Compared to the controls, the mice with stress-induced diarrhea displayed a stress reaction, with increased corticosterone levels, as well as increased 5-HT-positive cells. However, the mice with stress-induced diarrhea exhibited decreased body weights, villus height to crypt depth ratios (V/C), and Occludin and Claudin1 expression. The PCPA injection reversed these effects in mice with different degrees of stress-induced diarrhea. Based on these findings, inhibition of 5-HT synthesis relieved the stress response and improved the health of the intestinal tract, including both the intestinal absorption capacity, as determined by the villus height and crypt depth, and the mucosal barrier function, as determined by the tight junction proteins of epithelial cell.

  1. Gastric mucosal defence mechanism during stress of pyloric obstruction in albino rats.

    Science.gov (United States)

    Somasundaram, K; Ganguly, A K

    1987-04-01

    1. The integrity of the gastric mucosa and its ability to secrete mucus are believed to be essential for protection of gastric mucosa against ulceration induced by aggressive factors active in any stress situation. This study involves a three-compartmental analysis of gastric mucosal barrier in pylorus-ligated albino rats. 2. Quantitative analyses of histologically identifiable gastric mucosal epithelial neutral glycoproteins and gastric adherent mucus from oxyntic and pyloric gland areas, and components of non-dialysable mucosubstances in gastric secretion were made under stress of pyloric obstruction for 4, 8, and 16 h durations. Epithelial mucin was identified by periodic acid-Schiff (PAS) staining technique and assessed from the ratio of gastric mucosal thickness to the depth of PAS positive materials in it. The remaining visible mucus adhered to the gastric mucosa was estimated by Alcian blue binding technique. The results were compared with that of identical control groups. 3. A significant reduction in mucosal epithelial PAS positive materials after 8 or 16 h of pylorus ligation was observed. 4. The Alcian blue binding capacity of the pyloric gland area was increased significantly after 4 h of pylorus ligation, while after 8 or 16 h it was reduced in both oxyntic and pyloric gland areas. 5. Significant reductions in the rate of gastric secretion and volume, as well as concentration of the components of non-dialysable mucosubstances, were observed, indicating decreased synthesis of mucus glycoproteins. 6. Disruption of the mucosal barrier may have occurred due to decreased mucus synthesis and acid-pepsin accumulation; both could be due to stress associated with gastric distension. 7. The present findings confirm the role of mucus in protecting the underlying gastric epithelium during stress. The adherent mucus offers a first line of defence and epithelial mucus a second line of defence.

  2. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Science.gov (United States)

    Chen, Peili; Li, Yan Chun; Toback, F Gary

    2015-01-01

    Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD). We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP)-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI) mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  3. AMP-18 Targets p21 to Maintain Epithelial Homeostasis.

    Directory of Open Access Journals (Sweden)

    Peili Chen

    Full Text Available Dysregulated homeostasis of epithelial cells resulting in disruption of mucosal barrier function is an important pathogenic mechanism in inflammatory bowel diseases (IBD. We have characterized a novel gastric protein, Antrum Mucosal Protein (AMP-18, that has pleiotropic properties; it is mitogenic, anti-apoptotic and can stimulate formation of tight junctions. A 21-mer synthetic peptide derived from AMP-18 exhibits the same biological functions as the full-length protein and is an effective therapeutic agent in mouse models of IBD. In this study we set out to characterize therapeutic mechanisms and identify molecular targets by which AMP-18 maintains and restores disrupted epithelial homeostasis in cultured intestinal epithelial cells and a mouse model of IBD. Tumor necrosis factor (TNF-α, a pro-inflammatory cytokine known to mediate gastrointestinal (GI mucosal injury in IBD, was used to induce intestinal epithelial cell injury, and study the effects of AMP-18 on apoptosis and the cell cycle. An apoptosis array used to search for targets of AMP-18 in cells exposed to TNF-α identified the cyclin-dependent kinase inhibitor p21 WAF1/CIP1. Treatment with AMP-18 blunted increases in p21 expression and apoptosis, while reversing disturbed cell cycle kinetics induced by TNF-α. AMP-18 appears to act through PI3K/AKT pathways to increase p21 phosphorylation, thereby reducing its nuclear accumulation to overcome the antiproliferative effects of TNF-α. In vitamin D receptor-deficient mice with TNBS-induced IBD, the observed increase in p21 expression in colonic epithelial cells was suppressed by treatment with AMP peptide. The results indicate that AMP-18 can maintain and/or restore the homeostatic balance between proliferation and apoptosis in intestinal epithelial cells to protect and repair mucosal barrier homeostasis and function, suggesting a therapeutic role in IBD.

  4. Acidic bile salts induces mucosal barrier dysfunction through let-7a reduction during gastric carcinogenesis after Helicobacter pylori eradication

    Science.gov (United States)

    Takahashi, Yasushi; Uno, Kaname; Iijima, Katsunori; Abe, Yasuhiko; Koike, Tomoyuki; Asano, Naoki; Asanuma, Kiyotaka; Shimosegawa, Tooru

    2018-01-01

    Gastric cancer (GC) after eradication for Helicobacter pylori (H.pylori) increases, but its carcinogenesis is not elucidated. It is mainly found in acid non-secretion areas (ANA), as mucosal regeneration in acid secretory areas (AA) after eradication changes the acidity and bile toxicity of gastric juice. We aimed to clarify the role of barrier dysfunction of ANA by the stimulation of pH3 bile acid cocktail (ABC) during carcinogenesis. We collected 18 patients after curative endoscopic resection for GC, identified later than 24 months after eradication, and took biopsies by Congo-red chromoendoscopy to distinguish AA and ANA (UMIN00018967). The mucosal barrier function was investigated using a mini-Ussing chamber system and molecular biological methods. The reduction in mucosal impedance in ANA after stimulation was significantly larger than that in AA, 79.6% vs. 87.9%, respectively. The decrease of zonula occludens-1 (ZO-1) and let-7a and the increase of snail in ANA were significant compared to those in AA. In an in vitro study, the restoration of ZO-1 and let-7a as well as the induction of snail were observed after stimulation. High mobility group A2 (HMGA2)-snail activation, MTT proliferation, and cellular infiltration capacity were significantly increased in AGS transfected with let-7a inhibitor, and vice versa. Accordingly, using a mini-Ussing chamber system for human biopsy specimens followed by an in vitro study, we demonstrated for the first time that the exposure of acidic bile salts to ANA might cause serious barrier dysfunction through the let-7a reduction, promoting epithelial-mesenchymal transition during inflammation-associated carcinogenesis even after eradication. PMID:29719591

  5. Vocal Fold Epithelial Barrier in Health and Injury A Research Review

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.

    2015-01-01

    Purpose Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially hazardous insults including environmental or systemic-based irritants such as pollutants and reflux, surgical procedures, and vibratory trauma. Small disruptions in the epithelial barrier may have a large impact on susceptibility to injury and overall vocal health. The purpose of this article is to provide a broad-based review of our current knowledge of the vocal fold epithelial barrier. Methods A comprehensive review of the literature was conducted. Details of the structure of the vocal fold epithelial barrier are presented and evaluated in the context of function in injury and pathology. The importance of the epithelial-associated vocal fold mucus barrier is also introduced. Results/Conclusions Information presented in this review is valuable for clinicians and researchers as it highlights the importance of this understudied portion of the vocal folds to overall vocal health and disease. Prevention and treatment of injury to the epithelial barrier is a significant area awaiting further investigation. PMID:24686981

  6. Physiology and immunology of mucosal barriers in catfish (Ictalurus spp.)

    Science.gov (United States)

    The mucosal barriers of catfish (Ictalurus spp.) constitute the first line of defense against pathogen invasion while simultaneously carrying out a diverse array of other critical physiological processes, including nutrient adsorption, osmoregulation, waste excretion, and environmental sensing. Catf...

  7. Inhibition of Epithelial TNF-α Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis.

    Science.gov (United States)

    Zhou, Zijuan; Wang, Liang; Feng, Panpan; Yin, Lianhong; Wang, Chen; Zhi, Shengxu; Dong, Jianyi; Wang, Jingyu; Lin, Yuan; Chen, Dapeng; Xiong, Yongjian; Peng, Jinyong

    2017-01-01

    Activation of the TNF-α receptor (TNFR) leads to an inflammatory response, and anti-TNF therapy has been administered to reduce inflammation symptoms and heal mucosal ulcers in inflammatory bowel disease (IBD). Bromelain, a complex natural mixture of proteolytic enzymes, has been shown to exert anti-inflammatory effects. This study aimed to investigate the effect of purified fruit bromelain (PFB)-induced inhibition of epithelial TNFR in a rat colitis model. Colitis was established by intracolonic administration of 2, 4, 6-trinitrobenzene sulfonic acid. Expression of TNFR1 and TNFR2 was measured by quantitative RT-PCR and western blotting. The effect of PFB on colitis was evaluated by examining the inflammatory response and intestinal epithelial barrier function. Our results showed that both TNFR1 and TNFR2 expression were significantly increased in a colitis model, and the increase was significantly reversed by PFB. Colitis symptoms, including infiltration of inflammatory cells, cytokine profiles, epithelial cell apoptosis, and epithelial tight junction barrier dysfunction were significantly ameliorated by PFB. Compared with fruit bromelain and stem bromelain complex, the inhibition of TNFR2 induced by PFB was stronger than that exhibited on TNFR1. These results indicate that PFB showed a stronger selective inhibitory effect on TNFR2 than TNFR1. In other words, purification of fruit bromelain increases its selectivity on TNFR2 inhibition. High expression of epithelial TNFRs in colitis was significantly counteracted by PFB, and PFB-induced TNFR inhibition ameliorated colitis symptoms. These results supply novel insights into potential IBD treatment by PFB.

  8. Celiac Disease: Role of the Epithelial BarrierSummary

    Directory of Open Access Journals (Sweden)

    Michael Schumann

    2017-03-01

    Full Text Available In celiac disease (CD a T-cell–mediated response to gluten is mounted in genetically predisposed individuals, resulting in a malabsorptive enteropathy histologically highlighted by villous atrophy and crypt hyperplasia. Recent data point to the epithelial layer as an under-rated hot spot in celiac pathophysiology to date. This overview summarizes current functional and genetic evidence on the role of the epithelial barrier in CD, consisting of the cell membranes and the apical junctional complex comprising sealing as well as ion and water channel-forming tight junction proteins and the adherens junction. Moreover, the underlying mechanisms are discussed, including apoptosis of intestinal epithelial cells, biology of intestinal stem cells, alterations in the apical junctional complex, transcytotic uptake of gluten peptides, and possible implications of a defective epithelial polarity. Current research is directed toward new treatment options for CD that are alternatives or complementary therapeutics to a gluten-free diet. Thus, strategies to target an altered epithelial barrier therapeutically also are discussed. Keywords: Celiac Sprue, Gluten-Sensitive Enteropathy, Tight Junction, Epithelial Polarity, Partitioning-Defective Proteins, α-Gliadin 33mer

  9. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes.

    Science.gov (United States)

    Dukhin, Stanislav S; Labib, Mohamed E

    2013-11-01

    Drug delivery using nanoparticles as drug carriers has recently attracted the attention of many investigators. Targeted delivery of nanoparticles to the lymph nodes is especially important to prevent cancer metastasis or infection, and to diagnose disease stage. However, systemic injection of nanoparticles often results in organ toxicity because they reach and accumulate in all the lymph nodes in the body. An attractive strategy would be to deliver the drug-loaded nanoparticles to a subset of draining lymph nodes corresponding to a specific site or organ to minimize systemic toxicity. In this respect, mucosal delivery of nanoparticles to regional draining lymph nodes of a selected site creates a new opportunity to accomplish this task with minimal toxicity. One example is the delivery of nanoparticles from the vaginal lumen to draining lymph nodes to prevent the transmission of HIV in women. Other known examples include mucosal delivery of vaccines to induce immunity. In all cases, molecular and particle transport by means of diffusion and convective diffusion play a major role. The corresponding transport processes have common inherent regularities and are addressed in this review. Here we use nanoparticle delivery from the vaginal lumen to the lymph nodes as an example to address the many aspects of associated transport processes. In this case, nanoparticles penetrate the epithelial barrier and move through the interstitium (tissue) to the initial lymphatics until they finally reach the lymph nodes. Since the movement of interstitial liquid near the epithelial barrier is retarded, nanoparticle transport was found to take place through special foci present in the epithelium. Immediately after nanoparticles emerge from the foci, they move through the interstitium due to diffusion affected by convection (convective diffusion). Specifically, the convective transport of nanoparticles occurs due to their convection together with interstitial fluid through the

  10. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    Science.gov (United States)

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  11. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis.

    Science.gov (United States)

    Glover, Louise E; Bowers, Brittelle E; Saeedi, Bejan; Ehrentraut, Stefan F; Campbell, Eric L; Bayless, Amanda J; Dobrinskikh, Evgenia; Kendrick, Agnieszka A; Kelly, Caleb J; Burgess, Adrianne; Miller, Lauren; Kominsky, Douglas J; Jedlicka, Paul; Colgan, Sean P

    2013-12-03

    Mucosal surfaces of the lower gastrointestinal tract are subject to frequent, pronounced fluctuations in oxygen tension, particularly during inflammation. Adaptive responses to hypoxia are orchestrated largely by the hypoxia-inducible transcription factors (HIFs). As HIF-1α and HIF-2α are coexpressed in mucosal epithelia that constitute the barrier between the lumen and the underlying immune milieu, we sought to define the discrete contribution of HIF-1 and HIF-2 transactivation pathways to intestinal epithelial cell homeostasis. The present study identifies creatine kinases (CKs), key metabolic enzymes for rapid ATP generation via the phosphocreatine-creatine kinase (PCr/CK) system, as a unique gene family that is coordinately regulated by HIF. Cytosolic CKs are expressed in a HIF-2-dependent manner in vitro and localize to apical intestinal epithelial cell adherens junctions, where they are critical for junction assembly and epithelial integrity. Supplementation with dietary creatine markedly ameliorated both disease severity and inflammatory responses in colitis models. Further, enzymes of the PCr/CK metabolic shuttle demonstrate dysregulated mucosal expression in a subset of ulcerative colitis and Crohn disease patients. These findings establish a role for HIF-regulated CK in epithelial homeostasis and reveal a fundamental link between cellular bioenergetics and mucosal barrier.

  12. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure.

    Science.gov (United States)

    Aghapour, Mahyar; Raee, Pourya; Moghaddam, Seyed Javad; Hiemstra, Pieter S; Heijink, Irene H

    2018-02-01

    The epithelial lining of the airway forms the first barrier against environmental insults, such as inhaled cigarette smoke, which is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). The barrier is formed by airway epithelial junctions, which are interconnected structures that restrict permeability to inhaled pathogens and environmental stressors. Destruction of the epithelial barrier not only exposes subepithelial layers to hazardous agents in the inspired air, but also alters the normal function of epithelial cells, which may eventually contribute to the development of COPD. Of note, disruption of epithelial junctions may lead to modulation of signaling pathways involved in differentiation, repair, and proinflammatory responses. Epithelial barrier dysfunction may be particularly relevant in COPD, where repeated injury by cigarette smoke exposure, pathogens, inflammatory mediators, and impaired epithelial regeneration may compromise the barrier function. In the current review, we discuss recent advances in understanding the mechanisms of barrier dysfunction in COPD, as well as the molecular mechanisms that underlie the impaired repair response of the injured epithelium in COPD and its inability to redifferentiate into a functionally intact epithelium.

  13. Host Epithelial Interactions with Helicobacter Pylori: A Role for Disrupted Gastric Barrier Function in the Clinical Outcome of Infection?

    Directory of Open Access Journals (Sweden)

    Andre G Buret

    2005-01-01

    Full Text Available Infection of the human stomach with Helicobacter pylori may develop into gastritis, ulceration, adenocarcinoma and mucosal lymphomas. The pathogenic mechanisms that determine the clinical outcome from this microbial-epithelial interaction remain poorly understood. An increasing number of reports suggests that disruptions of epithelial barrier function may contribute to pathology and postinfectious complications in a variety of gastrointestinal infections. The aim of this review is to critically discuss the implications of H pylori persistence on gastric disease, with emphasis on the role of myosin light chain kinase, claudins and matrix metalloproteinases in gastric permeability defects, and their contribution to the development of cancer. These mechanisms and the associated signalling events may represent novel therapeutic targets to control disease processes induced by H pylori, a microbial pathogen that colonizes the stomach of over 50% of the human population.

  14. Effects of synbiotics on intestinal mucosal barrier in rat model

    Directory of Open Access Journals (Sweden)

    Zhigang Xue

    2017-06-01

    Conclusions: Probiotics can improve the concentration of colonic probiotics, while synbiotics can improve probiotics concentration and mucosa thickness in colon, decrease L/M ratio and bacterial translocation. Synbiotics shows more protective effects on intestinal mucosal barrier in rats after cecectomy and gastrostomy and the intervention of specific antibiotics.

  15. Gastroduodenal mucosal defence mechanisms and the action of non-steroidal anti-inflammatory agents.

    Science.gov (United States)

    Garner, A; Allen, A; Rowe, P H

    1987-01-01

    This review summarises gastroduodenal protective mechanisms, the actions of non-steroidal anti-inflammatory (NSAI) agents on mucus and HCO3 secretions, and the basis of gastric mucosal injury induced by acetylsalicylic and salicylic acids (ASA and SA). Resistance to autodigestion by acid and pepsin present in gastric juice is multifactorial involving pre-epithelial (mucus-bicarbonate barrier) and post-epithelial (blood flow, acid-base balance) factors in addition to properties of the surface cell layer per se. The latter includes mucosal re-epithelialisation, a property which appears particularly important with respect to recovery from acute injury. A range of NSAI agents (ASA, fenclofenac, ibuprofen and indomethacin) inhibit gastric HCO3 transport in isolated mucosal preparations. Inhibition of duodenal HCO3 transport has been demonstrated in response to indomethacin in vitro and in vivo. These effects on secretion can be antagonised by exogenous prostaglandins of the E series. The layer of secreted mucus gel overlying the epithelial surface is not affected by NSAI drugs in the short term. However a number of these agents have been shown to inhibit glycoprotein biosynthesis by the epithelial cells. Thus loss of this protective coat could be anticipated during chronic drug exposure since erosion of adherent mucus by luminal shear and proteolysis would not be compensated by continued secretion. Detailed analysis of the gastric mucosal injury induced by salicylates both in vitro and in vivo reveals that much of the damage previously attributed to ASA is in fact due to the metabolic product SA. In this respect it is concluded that mucosal injury caused by ASA is due to a combination of two factors.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  17. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    Science.gov (United States)

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  18. Isolation and gene expression profiling of intestinal epithelial cells: crypt isolation by calcium chelation from in vivo samples.

    LENUS (Irish Health Repository)

    Balfe, Aine

    2018-01-01

    The epithelial layer within the colon represents a physical barrier between the luminal contents and its underlying mucosa. It plays a pivotal role in mucosal homeostasis, and both tolerance and anti-pathogenic immune responses. Identifying signals of inflammation initiation and responses to stimuli from within the epithelial layer is critical to understanding the molecular pathways underlying disease pathology. This study validated a method to isolate and analyze epithelial populations, enabling investigations of epithelial function and response in a variety of disease setting.

  19. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease : Role of Cigarette Smoke Exposure

    NARCIS (Netherlands)

    Aghapour, Mahyar; Raee, Pourya; Moghaddam, Seyed Javad; Hiemstra, Pieter S.; Heijink, Irene H.

    The epithelial lining of the airway forms the first barrier against environmental insults, such as inhaled cigarette smoke, which is the primary risk factor for the development of chronic obstructive pulmonary disease (COPD). The barrier is formed by airway epithelial junctions, which are

  20. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice.

    Science.gov (United States)

    Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing

    2017-04-01

    Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa injury. The levels of PCNA, a marker of proliferation, increased in response to CDCA feeding and were paralleled by elevated TGR5 expression. CDCA upregulated TGR5 expression and promoted proliferation in Caco-2 and FHs 74 Int cells pretreated with LPS. Overexpression of TGR5 resulted in increased PCNA, cell viability, EdU incorporation, and the proportion of cells in S phase, whereas knockdown of TGR5 had the opposite effect. Our data indicate that bile acids promote intestinal epithelial cell proliferation and decrease mucosal injury by upregulating TGR5 expression in obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Comparison of the chloride channel activator lubiprostone and the oral laxative Polyethylene Glycol 3350 on mucosal barrier repair in ischemic-injured porcine intestine.

    Science.gov (United States)

    Moeser, Adam-J; Nighot, Prashant-K; Roerig, Birgit; Ueno, Ryuji; Blikslager, Anthony-T

    2008-10-21

    To investigate the effects of lubiprostone and Polyethylene Glycol 3350 (PEG) on mucosal barrier repair in ischemic-injured porcine intestine. Ileum from 6 piglets (approximately 15 kg body weight) was subjected to ischemic conditions by occluding the local mesenteric circulation for 45 min in vivo. Ileal tissues from each pig were then harvested and mounted in Ussing chambers and bathed in oxygenated Ringer's solution in vitro. Intestinal barrier function was assessed by measuring transepithelial electrical resistance (TER) and mucosal-to-serosal fluxes of (3)H-mannitol and (14)C-inulin. Statistical analyses of data collected over a 120-min time course included 2-way ANOVA for the effects of time and treatment on indices of barrier function. Application of 1 micromol/L lubiprostone to the mucosal surface of ischemic-injured ileum in vitro induced significant elevations in TER compared to non-treated tissue. Lubiprostone also reduced mucosal-to-serosal fluxes of (3)H-mannitol and (14)C-inulin. Alternatively, application of a polyethylene laxative (PEG, 20 mmol/L) to the mucosal surface of ischemic tissues significantly increased flux of (3)H-mannitol and (14)C-inulin. This experiment demonstrates that lubiprostone stimulates recovery of barrier function in ischemic intestinal tissues whereas the PEG laxative had deleterious effects on mucosal repair. These results suggest that, unlike osmotic laxatives, lubiprostone stimulates repair of the injured intestinal barrier.

  2. Budesonide and fluticasone propionate differentially affect the airway epithelial barrier

    NARCIS (Netherlands)

    Heijink, I. H.; Jonker, M.R.; Vries, de Maaike; van Oosterhout, A. J. M.; Telenga, E.; ten Hacken, N. H. T.; Postma, D. S.; van den Berge, M.

    2016-01-01

    Background: COPD patients have a higher risk of pneumonia when treated with fluticasone propionate (FP) than with placebo, and a lower risk with budesonide (BUD). We hypothesized that BUD and FP differentially affect the mucosal barrier in response to viral infection and/or cigarette smoke. Methods:

  3. "Targeted disruption of the epithelial-barrier by Helicobacter pylori"

    Directory of Open Access Journals (Sweden)

    Wroblewski Lydia E

    2011-11-01

    Full Text Available Abstract Helicobacter pylori colonizes the human gastric epithelium and induces chronic gastritis, which can lead to gastric cancer. Through cell-cell contacts the gastric epithelium forms a barrier to protect underlying tissue from pathogenic bacteria; however, H. pylori have evolved numerous strategies to perturb the integrity of the gastric barrier. In this review, we summarize recent research into the mechanisms through which H. pylori disrupts intercellular junctions and disrupts the gastric epithelial barrier.

  4. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  5. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  6. The intestinal barrier function and its involvement in digestive disease

    Directory of Open Access Journals (Sweden)

    Eloísa Salvo-Romero

    2015-11-01

    Full Text Available The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.

  7. Lactobacillus reuteri strains protect epithelial barrier integrity of IPEC-J2 monolayers from the detrimental effect of enterotoxigenic Escherichia coli.

    Science.gov (United States)

    Karimi, Shokoufeh; Jonsson, Hans; Lundh, Torbjörn; Roos, Stefan

    2018-01-01

    Lactobacillus reuteri is an inhabitant of the gastrointestinal (GI) tract of mammals and birds and several strains of this species are known to be effective probiotics. The mechanisms by which L. reuteri confers its health-promoting effects are far from being fully understood, but protection of the mucosal barrier is thought to be important. Leaky gut is a state of abnormal intestinal permeability with implications for the pathophysiology of various gastrointestinal disorders. Enterotoxigenic Escherichia coli (ETEC) can invade the intestinal mucosa and induce changes in barrier function by producing enterotoxin or by direct invasion of the intestinal epithelium. Our hypothesis was that L. reuteri can protect the mucosal barrier, and the goal of the study was to challenge this hypothesis by monitoring the protective effect of L. reuteri strains on epithelial dysfunction caused by ETEC. Using an infection model based on the porcine intestinal cell line IPEC-J2, it was demonstrated that pretreatment of the cells with human-derived L. reuteri strains (ATCC PTA 6475, DSM 17938 and 1563F) and a rat strain (R2LC) reduced the detrimental effect of ETEC in a dose-dependent manner, as monitored by permeability of FITC-dextran and transepithelial electrical resistance (TEER). Moreover, the results revealed that ETEC upregulated proinflammatory cytokines IL-6 and TNFα and decreased expression of the shorter isoform of ZO-1 (187 kDa) and E-cadherin. In contrast, pretreatment with L. reuteri DSM 17938 and 1563F downregulated expression of IL-6 and TNFα, and led to an increase in production of the longer isoform of ZO-1 (195 kDa) and maintained E-cadherin expression. Interestingly, expression of ZO-1 (187 kDa) was preserved only when the infected cells were pretreated with strain 1563F. These findings demonstrate that L. reuteri strains exert a protective effect against ETEC-induced mucosal integrity disruption. © 2018 The Authors. Physiological Reports published by

  8. Intestinal epithelial apoptosis initiates gut mucosal injury during extracorporeal membrane oxygenation in the newborn piglet.

    Science.gov (United States)

    MohanKumar, Krishnan; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Jagadeeswaran, Ramasamy; Namachivayam, Kopperuncholan; Kurundkar, Ashish R; Kelly, David R; Garzon, Steven A; Maheshwari, Akhil

    2014-02-01

    Neonates and young infants exposed to extracorporeal circulation during extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass are at risk of developing a systemic inflammatory response syndrome with multi-organ dysfunction. We used a piglet model of ECMO to investigate the hypothesis that epithelial apoptosis is an early event that precedes villous damage during ECMO-related bowel injury. Healthy 3-week-old piglets were subjected to ECMO for up to 8 h. Epithelial apoptosis was measured in histopathological analysis, nuclear imaging, and terminal deoxynucleotidyl transferase dUTP nick end labeling. Plasma intestinal fatty acid-binding protein (I-FABP) levels were measured by enzyme immunoassay. Intestinal mast cells were isolated by fluorescence-assisted cell sorting. Cleaved caspase-8, caspase-9, phospho-p38 MAPK, and fas ligand expression were investigated by immunohistochemistry, western blots, and reverse transcriptase-quantitative PCR. Piglet ECMO was associated with increased gut epithelial apoptosis. Extensive apoptotic changes were noted on villus tips and in scattered crypt cells after 2 h of ECMO. After 8 h, the villi were denuded and apoptotic changes were evident in a majority of crypt cells. Increased circulating I-FABP levels, a marker of gut epithelial injury, showed that epithelial injury occurred during ECMO. We detected increased cleaved caspase-8, but not cleaved caspase-9, in epithelial cells indicating that the extrinsic apoptotic pathway was active. ECMO was associated with increased fas ligand expression in intestinal mast cells, which was induced through activation of the p38 mitogen-activated protein kinase. We conclude that epithelial apoptosis is an early event that initiates gut mucosal injury in a piglet model of ECMO.

  9. Expert-led didactic versus self-directed audiovisual training of confocal laser endomicroscopy in evaluation of mucosal barrier defects.

    Science.gov (United States)

    Huynh, Roy; Ip, Matthew; Chang, Jeff; Haifer, Craig; Leong, Rupert W

    2018-01-01

     Confocal laser endomicroscopy (CLE) allows mucosal barrier defects along the intestinal epithelium to be visualized in vivo during endoscopy. Training in CLE interpretation can be achieved didactically or through self-directed learning. This study aimed to compare the effectiveness of expert-led didactic with self-directed audiovisual teaching for training inexperienced analysts on how to recognize mucosal barrier defects on endoscope-based CLE (eCLE).  This randomized controlled study involved trainee analysts who were taught how to recognize mucosal barrier defects on eCLE either didactically or through an audiovisual clip. After being trained, they evaluated 6 sets of 30 images. Image evaluation required the trainees to determine whether specific features of barrier dysfunction were present or not. Trainees in the didactic group engaged in peer discussion and received feedback after each set while this did not happen in the self-directed group. Accuracy, sensitivity, and specificity of both groups were compared. Trainees in the didactic group achieved a higher overall accuracy (87.5 % vs 85.0 %, P  = 0.002) and sensitivity (84.5 % vs 80.4 %, P  = 0.002) compared to trainees in the self-directed group. Interobserver agreement was higher in the didactic group (k = 0.686, 95 % CI 0.680 - 0.691, P  barrier defects on eCLE.

  10. Medroxyprogesterone acetate and levonorgestrel increase genital mucosal permeability and enhance susceptibility to genital herpes simplex virus type 2 infection.

    Science.gov (United States)

    Quispe Calla, N E; Vicetti Miguel, R D; Boyaka, P N; Hall-Stoodley, L; Kaur, B; Trout, W; Pavelko, S D; Cherpes, T L

    2016-11-01

    Depot-medroxyprogesterone acetate (DMPA) is a hormonal contraceptive especially popular in areas with high prevalence of HIV and other sexually transmitted infections (STI). Although observational studies identify DMPA as an important STI risk factor, mechanisms underlying this connection are undefined. Levonorgestrel (LNG) is another progestin used for hormonal contraception, but its effect on STI susceptibility is much less explored. Using a mouse model of genital herpes simplex virus type 2 (HSV-2) infection, we herein found that DMPA and LNG similarly reduced genital expression of the desmosomal cadherin desmoglein-1α (DSG1α), enhanced access of inflammatory cells to genital tissue by increasing mucosal epithelial permeability, and increased susceptibility to viral infection. Additional studies with uninfected mice revealed that DMPA-mediated increases in mucosal permeability promoted tissue inflammation by facilitating endogenous vaginal microbiota invasion. Conversely, concomitant treatment of mice with DMPA and intravaginal estrogen restored mucosal barrier function and prevented HSV-2 infection. Evaluating ectocervical biopsy tissue from women before and 1 month after initiating DMPA remarkably revealed that inflammation and barrier protection were altered by treatment identically to changes seen in progestin-treated mice. Together, our work reveals DMPA and LNG diminish the genital mucosal barrier; a first-line defense against all STI, but may offer foundation for new contraceptive strategies less compromising of barrier protection.

  11. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.

    Science.gov (United States)

    Liu, Xinxin; Zheng, Wei; Sivasankar, M Preeti

    2016-01-01

    Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3) expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001). Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (pacrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (pacrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium.

  12. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    DEFF Research Database (Denmark)

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-01-01

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented perme...

  13. The effect of topical treatments for CRS on the sinonasal epithelial barrier.

    Science.gov (United States)

    Ramezanpour, M; Rayan, A; Smith, J L P; Vreugde, S

    2017-06-01

    Several topical treatments are used in the management of Chronic Rhinosinusitis (CRS), some of which the safety and efficacy has yet to be determined. The purpose of this study was to investigate the effect of commonly used topical treatments on the sinonasal epithelial barrier. Normal saline (0.9% Sodium Chloride), hypertonic saline (3% Sodium Chloride), FESS Sinu-Cleanse Hypertonic, FLO Sinus Care and Budesonide 1 mg/ 2 ml were applied to the apical side of air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs) from CRS patients (n=3) and non-CRS controls (n=3) for 24 hours. Epithelial barrier structure and function was assessed using trans-epithelial electrical resistance (TEER), measuring the passage of Fluorescein Isothiocyanate labelled Dextrans (FITC-Dextrans) and assessing the expression of the tight junction protein Zona Occludens-1 (ZO-1) using immunofluorescence. Toxicity was assessed using a Lactate Dehydrogenase (LDH) assay. Data was analysed using ANOVA, followed by Tukey HSD post hoc test. Hypertonic solution and budesonide significantly increased TEER values in CRS derived HNECs. In contrast, FESS Sinu-Cleanse Hypertonic significantly reduced TEER 5 minutes after application of the solution followed by an increase in paracellular permeability of FITC-Dextrans (30 minutes) and increased LDH levels 6 hours after application of the solution. Our findings confirm that isotonic and hypertonic saline solutions do not compromise epithelial barrier function in vitro but underscore the importance of examining safety and efficacy of over-the-counter wash solutions.

  14. Live Imaging of HIV-1 Transfer across T Cell Virological Synapse to Epithelial Cells that Promotes Stromal Macrophage Infection.

    Science.gov (United States)

    Real, Fernando; Sennepin, Alexis; Ganor, Yonatan; Schmitt, Alain; Bomsel, Morgane

    2018-05-08

    During sexual intercourse, HIV-1 crosses epithelial barriers composing the genital mucosa, a poorly understood feature that requires an HIV-1-infected cell vectoring efficient mucosal HIV-1 entry. Therefore, urethral mucosa comprising a polarized epithelium and a stroma composed of fibroblasts and macrophages were reconstructed in vitro. Using this system, we demonstrate by live imaging that efficient HIV-1 transmission to stromal macrophages depends on cell-mediated transfer of the virus through virological synapses formed between HIV-1-infected CD4 + T cells and the epithelial cell mucosal surface. We visualized HIV-1 translocation through mucosal epithelial cells via transcytosis in regions where virological synapses occurred. In turn, interleukin-13 is secreted and HIV-1 targets macrophages, which develop a latent state of infection reversed by lipopolysaccharide (LPS) activation. The live observation of virological synapse formation reported herein is key in the design of vaccines and antiretroviral therapies aimed at blocking HIV-1 access to cellular reservoirs in genital mucosa. Copyright © 2018. Published by Elsevier Inc.

  15. Xyloglucan, a Plant Polymer with Barrier Protective Properties over the Mucous Membranes: An Overview

    Directory of Open Access Journals (Sweden)

    Núria Piqué

    2018-02-01

    Full Text Available Disruption of the epithelial barrier function has been recently associated with a variety of diseases, mainly at intestinal level, but also affecting the respiratory epithelium and other mucosal barriers. Non-pharmacological approaches such as xyloglucan, with demonstrated protective barrier properties, are proposed as new alternatives for the management of a wide range of diseases, for which mucosal disruption and, particularly, tight junction alterations, is a common characteristic. Xyloglucan, a natural polysaccharide derived from tamarind seeds, possesses a “mucin-like” molecular structure that confers mucoadhesive properties, allowing xyloglucan formulations to act as a barrier capable of reducing bacterial adherence and invasion and to preserve tight junctions and paracellular flux, as observed in different in vitro and in vivo studies. In clinical trials, xyloglucan has been seen to reduce symptoms of gastroenteritis in adults and children, nasal disorders and dry eye syndrome. Similar mucosal protectors containing reticulated proteins have also been useful for the treatment of irritable bowel syndrome and urinary tract infections. The role of xyloglucan in other disorders with mucosal disruption, such as dermatological or other infectious diseases, deserves further research. In conclusion, xyloglucan, endowed with film-forming protective barrier properties, is a safe non-pharmacological alternative for the management of different diseases, such as gastrointestinal and nasal disorders.

  16. TNFα/IFNγ Mediated Intestinal Epithelial Barrier Dysfunction Is Attenuated by MicroRNA-93 Downregulation of PTK6 in Mouse Colonic Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Ricci J Haines

    Full Text Available Since inflammatory bowel diseases (IBD represent significant morbidity and mortality in the US, the need for defining novel drug targets and inflammatory mechanisms would be of considerable benefit. Although protein tyrosine kinase 6 (PTK6, also known as breast tumor kinase BRK has been primarily studied in an oncogenic context, it was noted that PTK6 null mice exhibited significantly enhanced colonic epithelial barrier function. Considering that the inflammatory functions of PTK6 have not yet been explored, we hypothesized that cytokines responsible for mediating IBD, such as TNFα/IFNγ, may solicit the action of PTK6 to alter barrier function. After first assessing critical mediators of TNFα/IFNγ driven epithelial barrier dysfunction, we further explored the possibility of PTK6 in this inflammatory context. In this report, we showed that PTK6 siRNA and PTK6 null young adult mouse colonic epithelial cells (YAMC exhibited significant attenuation of TNFα/IFNγ induced barrier dysfunction as measured by electric cell-substrate impedance sensing (ECIS assay and permeability assays. In addition, PTK6 null cells transfected with PTK6 cDNA displayed restored barrier dysfunction in response to TNFα/IFNγ, while the cells transfected with vector alone showed similar attenuation of barrier dysfunction. Furthermore, using subcellular fractionation and immunocytochemistry experiments, we found that PTK6 plays a role in FoxO1 nuclear accumulation leading to down-regulation of claudin-3, a tight junction protein. Moreover, we searched for relevant miRNA candidates putative for targeting PTK6 in order to identify and assess the impact of microRNA that target PTK6 with respect to TNFα/IFNγ induced barrier dysfunction. Subsequently, we assayed likely targets and determined their effectiveness in attenuating PTK6 expression as well as cytokine induced barrier dysfunction. Results showed that miR-93 reduced PTK6 expression and attenuated TNF

  17. Pseudomonas aeruginosa outer membrane vesicles triggered by human mucosal fluid and lysozyme can prime host tissue surfaces for bacterial adhesion

    Directory of Open Access Journals (Sweden)

    Matteo Maria Emiliano Metruccio

    2016-06-01

    Full Text Available Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release Outer Membrane Vesicles (OMVs in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to PBS controls (~100 fold. TEM and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (~4-fold, P < 0.01. Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections.

  18. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity.

    Directory of Open Access Journals (Sweden)

    Sya N Ukena

    2007-12-01

    Full Text Available Probiotics are proposed to positively modulate the intestinal epithelial barrier formed by intestinal epithelial cells (IECs and intercellular junctions. Disruption of this border alters paracellular permeability and is a key mechanism for the development of enteric infections and inflammatory bowel diseases (IBDs.To study the in vivo effect of probiotic Escherichia coli Nissle 1917 (EcN on the stabilization of the intestinal barrier under healthy conditions, germfree mice were colonized with EcN or K12 E. coli strain MG1655. IECs were isolated and analyzed for gene and protein expression of the tight junction molecules ZO-1 and ZO-2. Then, in order to analyze beneficial effects of EcN under inflammatory conditions, the probiotic was orally administered to BALB/c mice with acute dextran sodium sulfate (DSS induced colitis. Colonization of gnotobiotic mice with EcN resulted in an up-regulation of ZO-1 in IECs at both mRNA and protein levels. EcN administration to DSS-treated mice reduced the loss of body weight and colon shortening. In addition, infiltration of the colon with leukocytes was ameliorated in EcN inoculated mice. Acute DSS colitis did not result in an anion secretory defect, but abrogated the sodium absorptive function of the mucosa. Additionally, intestinal barrier function was severely affected as evidenced by a strong increase in the mucosal uptake of Evans blue in vivo. Concomitant administration of EcN to DSS treated animals resulted in a significant protection against intestinal barrier dysfunction and IECs isolated from these mice exhibited a more pronounced expression of ZO-1.This study convincingly demonstrates that probiotic EcN is able to mediate up-regulation of ZO-1 expression in murine IECs and confer protection from the DSS colitis-associated increase in mucosal permeability to luminal substances.

  19. Mucosal vaccines: recent progress in understanding the natural barriers.

    Science.gov (United States)

    Borges, Olga; Lebre, Filipa; Bento, Dulce; Borchard, Gerrit; Junginger, Hans E

    2010-02-01

    It has long been known that protection against pathogens invading the organism via mucosal surfaces correlates better with the presence of specific antibodies in local secretions than with serum antibodies. The most effective way to induce mucosal immunity is to administer antigens directly to the mucosal surface. The development of vaccines for mucosal application requires antigen delivery systems and immunopotentiators that efficiently facilitate the presentation of the antigen to the mucosal immune system. This review provides an overview of the events within mucosal tissues that lead to protective mucosal immune responses. The understanding of those biological mechanisms, together with knowledge of the technology of vaccines and adjuvants, provides guidance on important technical aspects of mucosal vaccine design. Not being exhaustive, this review also provides information related to modern adjuvants, including polymeric delivery systems and immunopotentiators.

  20. Novel approach to gastric mucosal defect repair using fresh amniotic membrane allograft in dogs (experimental study).

    Science.gov (United States)

    Farghali, Haithem A; AbdElKader, Naglaa A; Khattab, Marwa S; AbuBakr, Huda O

    2017-10-18

    , epithelial, and post-epithelial normal gastric mucosal barriers.

  1. The bile acids, deoxycholic acid and ursodeoxycholic acid, regulate colonic epithelial wound healing.

    Science.gov (United States)

    Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J

    2018-03-01

    The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes

  2. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.

    Directory of Open Access Journals (Sweden)

    Xinxin Liu

    Full Text Available Acrolein is a ubiquitous pollutant abundant in cigarette smoke, mobile exhaust, and industrial waste. There is limited literature on the effects of acrolein on vocal fold tissue, although there are clinical reports of voice changes after pollutant exposures. Vocal folds are responsible for voice production. The overall objective of this study was to investigate the effects of acrolein exposure on viable, excised vocal fold epithelial tissue and to characterize the mechanism underlying acrolein toxicity. Vocal fold epithelia were studied because they form the outermost layer of the vocal folds and are a primary recipient of inhaled pollutants. Porcine vocal fold epithelia were exposed to 0, 50, 100, 500, 900 or 1300 μM of acrolein for 3 hours; the metabolic activity, epithelial resistance, epithelial permeability, tight junction protein (occludin and claudin 3 expression, cell membrane integrity and lipid peroxidation were investigated. The data demonstrated that acrolein exposure at 500 μM significantly reduced vocal fold epithelial metabolic activity by 27.2% (p≤0.001. Incubation with 100 μM acrolein caused a marked increase in epithelial permeability by 130.5% (p<0.05 and a reduction in transepithelial electrical resistance (TEER by 180.0% (p<0.001. While the expression of tight junctional protein did not change in acrolein-treated samples, the cell membrane integrity was significantly damaged with a 45.6% increase of lipid peroxidation as compared to controls (p<0.05. Taken together, these data provide evidence that acute acrolein exposure impairs vocal fold epithelial barrier integrity. Lipid peroxidation-induced cell membrane damage may play an important role in reducing the barrier function of the epithelium.

  3. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2017-01-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue...... homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body — namely, the epidermis and the intestine — and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity...

  4. Potential in vitro model for testing the effect of exposure to nanoparticles on the lung alveolar epithelial barrier

    Directory of Open Access Journals (Sweden)

    Raymond Derk

    2015-03-01

    Full Text Available Pulmonary barrier function plays a pivotal role in protection from inhaled particles. However, some nano-scaled particles, such as carbon nanotubes (CNT, have demonstrated the ability to penetrate this barrier in animal models, resulting in an unusual, rapid interstitial fibrosis. To delineate the underlying mechanism and specific bio-effect of inhaled nanoparticles in respiratory toxicity, models of lung epithelial barriers are required that allow accurate representation of in vivo systems; however, there is currently a lack of consistent methods to do so. Thus, this work demonstrates a well-characterized in vitro model of pulmonary barrier function using Calu-3 cells, and provides the experimental conditions required for achieving tight junction complexes in cell culture, with trans-epithelial electrical resistance measurement used as a biosensor for proper barrier formation and integrity. The effects of cell number and serum constituents have been examined and we found that changes in each of these parameters can greatly affect barrier formation. Our data demonstrate that use of 5.0 × 104 Calu-3 cells/well in the Transwell cell culture system, with 10% serum concentrations in culture media is optimal for assessing epithelial barrier function. In addition, we have utilized CNT exposure to analyze the dose-, time-, and nanoparticle property-dependent alterations of epithelial barrier permeability as a means to validate this model. Such high throughput in vitro cell models of the epithelium could be used to predict the interaction of other nanoparticles with lung epithelial barriers to mimic respiratory behavior in vivo, thus providing essential tools and bio-sensing techniques that can be uniformly employed.

  5. Interferon-gamma increased epithelial barrier function via upregulating claudin-7 expression in human submandibular gland duct epithelium.

    Science.gov (United States)

    Abe, Ayumi; Takano, Kenichi; Kojima, Takashi; Nomura, Kazuaki; Kakuki, Takuya; Kaneko, Yakuto; Yamamoto, Motohisa; Takahashi, Hiroki; Himi, Tetsuo

    2016-06-01

    Tight junctions (TJs) are necessary for salivary gland function and may serve as indicators of salivary gland epithelial dysfunction. IgG4-related disease (IgG4-RD) is a newly recognized fibro-inflammatory condition which disrupts the TJ associated epithelial barrier. The salivary glands are one of the most frequently involved organs in IgG4-RD, however, changes of the TJ associated epithelial barrier in salivary gland duct epithelium is poorly understood. Here, we investigated the regulation and function of TJs in human submandibular gland ductal epithelial cells (HSDECs) in normal and IgG4-RD. We examined submandibular gland (SMG) tissue from eight control individuals and 22 patients with IgG4-RD and established an HSDEC culture system. Immunohistochemistry, immunocytochemistry, western blotting, and measurement of transepithelial electrical resistance (TER) were performed. Claudin-4, claudin-7, occludin, and JAM-A were expressed at the apical side of the duct epithelium in submandibular gland (SMG) tissue and at the cell borders in HSDECs of normal and IgG4-RD. The expression and distribution of TJs in SMG tissue were not different in control individuals and patients with IgG4-RD in vivo and in vitro. Although interferon-gamma (IFNγ) generally disrupts the integrity and function of TJs, as manifested by decreased epithelial barrier function, IFNγ markedly increased the epithelial barrier function of HSDECs via upregulation of claudin-7 expression in HSDECs from patients with IgG4-RD. This is the first report showing an IFNγ-dependent increase in epithelial barrier function in the salivary gland duct epithelium. Our results provide insights into the functional significance of TJs in salivary gland duct epithelium in physiological and pathological conditions, including IgG4-RD.

  6. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine.

    Directory of Open Access Journals (Sweden)

    Marisol Chang

    Full Text Available Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO was used to study the degradation of two mucin isoforms (mucin 2 and 13 and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4. In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell

  7. NOD-Like Receptors in Intestinal Homeostasis and Epithelial Tissue Repair

    Science.gov (United States)

    Parlato, Marianna; Yeretssian, Garabet

    2014-01-01

    The intestinal epithelium constitutes a dynamic physical barrier segregating the luminal content from the underlying mucosal tissue. Following injury, the epithelial integrity is restored by rapid migration of intestinal epithelial cells (IECs) across the denuded area in a process known as wound healing. Hence, through a sequence of events involving restitution, proliferation and differentiation of IECs the gap is resealed and homeostasis reestablished. Relapsing damage followed by healing of the inflamed mucosa is a hallmark of several intestinal disorders including inflammatory bowel diseases (IBD). While several regulatory peptides, growth factors and cytokines stimulate restitution of the epithelial layer after injury, recent evidence in the field underscores the contribution of innate immunity in controlling this process. In particular, nucleotide-binding and oligomerization domain-like receptors (NLRs) play critical roles in sensing the commensal microbiota, maintaining homeostasis, and regulating intestinal inflammation. Here, we review the process of intestinal epithelial tissue repair and we specifically focus on the impact of NLR-mediated signaling mechanisms involved in governing epithelial wound healing during disease. PMID:24886810

  8. The Pseudomonas aeruginosa Type III Translocon Is Required for Biofilm Formation at the Epithelial Barrier

    DEFF Research Database (Denmark)

    Tran, Cindy S; Rangel, Stephanie M; Almblad, Henrik

    2014-01-01

    Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised hosts, often involve the formation of antibiotic-resistant biofilms. Although biofilm formation has been extensively studied in vitro on glass or plastic surfaces, much less is known...... about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates...... a previously unappreciated function for the type III translocon in the formation of P. aeruginosa biofilms at the epithelial barrier and demonstrate that biofilms may form at early time points of infection....

  9. Cystic fibrosis: a mucosal immunodeficiency syndrome

    Science.gov (United States)

    Cohen, Taylor Sitarik; Prince, Alice

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) functions as a channel that regulates the transport of ions and the movement of water across the epithelial barrier. Mutations in CFTR, which form the basis for the clinical manifestations of cystic fibrosis, affect the epithelial innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation that fails to eradicate pulmonary pathogens. Compounding the effects of excessive neutrophil recruitment, the mutant CFTR channel does not transport antioxidants to counteract neutrophil-associated oxidative stress. Whereas mutant CFTR expression in leukocytes outside of the lung does not markedly impair their function, the expected regulation of inflammation in the airways is clearly deficient in cystic fibrosis. The resulting bacterial infections, which are caused by organisms that have substantial genetic and metabolic flexibility, can resist multiple classes of antibiotics and evade phagocytic clearance. The development of animal models that approximate the human pulmonary phenotypes—airway inflammation and spontaneous infection—may provide the much-needed tools to establish how CFTR regulates mucosal immunity and to test directly the effect of pharmacologic potentiation and correction of mutant CFTR function on bacterial clearance. PMID:22481418

  10. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients.

    Science.gov (United States)

    Sugita, Kazunari; Steer, Catherine A; Martinez-Gonzalez, Itziar; Altunbulakli, Can; Morita, Hideaki; Castro-Giner, Francesc; Kubo, Terufumi; Wawrzyniak, Paulina; Rückert, Beate; Sudo, Katsuko; Nakae, Susumu; Matsumoto, Kenji; O'Mahony, Liam; Akdis, Mübeccel; Takei, Fumio; Akdis, Cezmi A

    2018-01-01

    Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2) -/- , Rag2 -/- Il2rg -/- , and Rora sg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2 -/- mice lacking T and B cells triggered TJ disruption, whereas Rag2 -/- Il2rg -/- and Rora sg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  11. Chemotherapy-induced oral mucositis and associated infections in a novel organotypic model.

    Science.gov (United States)

    Sobue, T; Bertolini, M; Thompson, A; Peterson, D E; Diaz, P I; Dongari-Bagtzoglou, A

    2018-06-01

    Oral mucositis is a common side effect of cancer chemotherapy, with significant adverse impact on the delivery of anti-neoplastic treatment. There is a lack of consensus regarding the role of oral commensal microorganisms in the initiation or progression of mucositis because relevant experimental models are non-existent. The goal of this study was to develop an in vitro mucosal injury model that mimics chemotherapy-induced mucositis, where the effect of oral commensals can be studied. A novel organotypic model of chemotherapy-induced mucositis was developed based on a human oral epithelial cell line and a fibroblast-embedded collagen matrix. Treatment of organotypic constructs with 5-fluorouracil (5-FU) reproduced major histopathologic characteristics of oral mucositis, such as DNA synthesis inhibition, apoptosis and cytoplasmic vacuolation, without compromising the three-dimensional structure of the multilayer organotypic mucosa. Although structural integrity of the model was preserved, 5-FU treatment resulted in a widening of epithelial intercellular spaces, characterized by E-cadherin dissolution from adherens junctions. In a neutrophil transmigration assay we discovered that this treatment facilitated transport of neutrophils through epithelial layers. Moreover, 5-FU treatment stimulated key proinflammatory cytokines that are associated with the pathogenesis of oral mucositis. 5-FU treatment of mucosal constructs did not significantly affect fungal or bacterial biofilm growth under the conditions tested in this study; however, it exacerbated the inflammatory response to certain bacterial and fungal commensals. These findings suggest that commensals may play a role in the pathogenesis of oral mucositis by amplifying the proinflammatory signals to mucosa that is injured by cytotoxic chemotherapy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Mucosal healing in ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob Benedict; Coskun, Mehmet; Nielsen, Ole Haagen

    2013-01-01

    . With the introduction of the tumor necrosis factor-alpha inhibitors for the treatment of UC, it has become increasingly evident that the disease course is influenced by whether or not the patient achieves mucosal healing. Thus, patients with mucosal healing have fewer flare-ups, a decreased risk of colectomy......, and a lower probability of developing colorectal cancer. Understanding the mechanisms of mucosal wound formation and wound healing in UC, and how they are affected therapeutically is therefore of importance for obtaining efficient treatment strategies holding the potential of changing the disease course of UC....... This review is focused on the pathophysiological mechanism of mucosal wound formation in UC as well as the known mechanisms of intestinal wound healing. Regarding the latter topic, pathways of both wound healing intrinsic to epithelial cells and the wound-healing mechanisms involving interaction between...

  13. Oral and intestinal mucositis - causes and possible treatments.

    Science.gov (United States)

    Duncan, M; Grant, G

    2003-11-01

    Chemotherapy and radiotherapy, whilst highly effective in the treatment of neoplasia, can also cause damage to healthy tissue. In particular, the alimentary tract may be badly affected. Severe inflammation, lesioning and ulceration can occur. Patients may experience intense pain, nausea and gastro-enteritis. They are also highly susceptible to infection. The disorder (mucositis) is a dose-limiting toxicity of therapy and affects around 500 000 patients world-wide annually. Oral and intestinal mucositis is multi-factorial in nature. The disruption or loss of rapidly dividing epithelial progenitor cells is a trigger for the onset of the disorder. However, the actual dysfunction that manifests and its severity and duration are greatly influenced by changes in other cell populations, immune responses and the effects of oral/gut flora. This complexity has hampered the development of effective palliative or preventative measures. Recent studies have concentrated on the use of bioactive/growth factors, hormones or interleukins to modify epithelial metabolism and reduce the susceptibility of the tract to mucositis. Some of these treatments appear to have considerable potential and are at present under clinical evaluation. This overview deals with the cellular changes and host responses that may lead to the development of mucositis of the oral cavity and gastrointestinal tract, and the potential of existing and novel palliative measures to limit or prevent the disorder. Presently available treatments do not prevent mucositis, but can limit its severity if used in combination. Poor oral health and existing epithelial damage predispose patients to mucositis. The elimination of dental problems or the minimization of existing damage to the alimentary tract, prior to the commencement of therapy, lowers their susceptibility. Measures that reduce the flora of the tract, before therapy, can also be helpful. Increased production of free radicals and the induction of inflammation are

  14. Vocal Fold Epithelial Barrier in Health and Injury: A Research Review

    Science.gov (United States)

    Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.

    2014-01-01

    Purpose: Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially…

  15. Toward improving mucosal barrier defenses: rhG-CSF plus IgG antibody.

    Science.gov (United States)

    Simmonds, Aryeh; LaGamma, Edmund F

    2006-11-01

    Epithelial cell functions ultimately define the ability of the extremely low birth weight human fetus to survive outside of the uterus. These specialized epithelial cell capacities manage all human interactions with the ex utero world including: (i) lung mechanics, surface chemistry and gas exchange, (ii) renal tubular balance of fluid and electrolytes, (iii) barrier functions of the intestine and skin for keeping bacteria out and water in, plus enabling intestinal digestion, as well as (iv) maintaining an intact neuroepithelium lining of the ventricles of the brain and retina. In Part I of this two part review, the authors describe why the gut barrier is a clinically relevant model system for studying the complex interplay between innate and adaptive immunity, dendritic &epithelial cell interactions, intraepithelial lymphocytes, M-cells, as well as the gut associated lymphoid tissues where colonization after birth, clinician feeding practices, use of antibiotics as well as exposure to prebiotics, probiotics and maternal vaginal flora all program the neonate for a life-time of immune competence distinguishing "self" from foreign antigens. These barrier defense capacities become destructive during disease processes like necrotizing enterocolitis (NEC) when an otherwise maturationally normal, yet dysregulated and immature, immune defense system is associated with high levels of certain inflammatory mediators like TNFa. In Part II the authors discuss the rationale for why rhG-CSF has theoretical advantages in managing NEC or sepsis by augmenting neonatal neutrophil number, neutrophil expression of Fcg and complement receptors, as well as phagocytic function and oxidative burst. rhG-CSF also has potent anti-TNFa functions that may serve to limit extension of tissue destruction while not impairing bacterial killing capacity. Healthy, non-infected neutropenic and septic neonates differ in their ability to respond to rhG-CSF; however, no neonatal clinical trials to date

  16. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  17. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  18. Neonatal mucosal immunology.

    Science.gov (United States)

    Torow, N; Marsland, B J; Hornef, M W; Gollwitzer, E S

    2017-01-01

    Although largely deprived from exogenous stimuli in utero, the mucosal barriers of the neonate after birth are bombarded by environmental, nutritional, and microbial exposures. The microbiome is established concurrently with the developing immune system. The nature and timing of discrete interactions between these two factors underpins the long-term immune characteristics of these organs, and can set an individual on a trajectory towards or away from disease. Microbial exposures in the gastrointestinal and respiratory tracts are some of the key determinants of the overall immune tone at these mucosal barriers and represent a leading target for future intervention strategies. In this review, we discuss immune maturation in the gut and lung and how microbes have a central role in this process.

  19. Alterations in Factors Involved in Differentiation and Barrier Function in the Epithelium in Oral and Genital Lichen Planus.

    Science.gov (United States)

    Danielsson, Karin; Ebrahimi, Majid; Nylander, Elisabet; Wahlin, Ylva Britt; Nylander, Karin

    2017-02-08

    Lichen planus is a chronic recurrent inflammatory disease affecting both skin and mucosa, mainly in oral and/or genital regions. Keratinocytes go through a well-regulated process of proliferation and differentiation, alterations in which may result in defects in the protective epithelial barrier. Long-term barrier impairment might lead to chronic inflammation. In order to broaden our understanding of the differentiation process in mucosal lichen planus, we mapped the expression of 4 factors known to be involved in differentiation. Biopsies were collected from oral and genital lichen planus lesions and normal controls. Altered expression of all 4 factors in epithelium from lichen planus lesions was found, clearly indicating disturbed epithelial differentiation in lichen planus lesions.

  20. Desmoglein 2 regulates the intestinal epithelial barrier via p38 mitogen-activated protein kinase.

    Science.gov (United States)

    Ungewiß, Hanna; Vielmuth, Franziska; Suzuki, Shintaro T; Maiser, Andreas; Harz, Hartmann; Leonhardt, Heinrich; Kugelmann, Daniela; Schlegel, Nicolas; Waschke, Jens

    2017-07-24

    Intestinal epithelial barrier properties are maintained by a junctional complex consisting of tight junctions (TJ), adherens junctions (AJ) and desmosomes. Desmoglein 2 (Dsg2), an adhesion molecule of desmosomes and the only Dsg isoform expressed in enterocytes, is required for epithelial barrier properties and may contribute to barrier defects in Crohn's disease. Here, we identified extradesmosomal Dsg2 on the surface of polarized enterocytes by Triton extraction, confocal microscopy, SIM and STED. Atomic force microscopy (AFM) revealed Dsg2-specific binding events along the cell border on the surface of enterocytes with a mean unbinding force of around 30pN. Binding events were blocked by an inhibitory antibody targeting Dsg2 which under same conditions activated p38MAPK but did not reduce cell cohesion. In enterocytes deficient for Dsg2, p38MAPK activity was reduced and both barrier integrity and reformation were impaired. Dsc2 rescue did not restore p38MAPK activity indicating that Dsg2 is required. Accordingly, direct activation of p38MAPK in Dsg2-deficient cells enhanced barrier reformation demonstrating that Dsg2-mediated activation of p38MAPK is crucial for barrier function. Collectively, our data show that Dsg2, beside its adhesion function, regulates intestinal barrier function via p38MAPK signalling. This is in contrast to keratinocytes and points towards tissue-specific signalling functions of desmosomal cadherins.

  1. Lymphocytes accelerate epithelial tight junction assembly: role of AMP-activated protein kinase (AMPK.

    Directory of Open Access Journals (Sweden)

    Xiao Xiao Tang

    2010-08-01

    Full Text Available The tight junctions (TJs, characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK. AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-alpha. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK.

  2. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  3. Modulation of radiation-induced oral mucositis by pentoxifylline: Preclinical studies

    International Nuclear Information System (INIS)

    Gruber, Sylvia; Bozsaky, Eva; Schmidt, Margret; Doerr, Wolfgang

    2015-01-01

    Oral mucositis is a frequent early side effect of radio(chemo)therapy of head-and-neck malignancies. The epithelial radiation response is accompanied by inflammatory reactions; their interaction with epithelial processes remains unclear. The aim of the present study was to investigate the effect of pentoxifylline (PTX) on the oral mucosal radiation response in the mouse tongue model. Irradiation comprised fractionation (5 fractions of 3 Gy/week) over 1 (days 0-4) or 2 weeks (days 0-4, 7-11), followed by graded local top-up doses (day 7/14), in order to generate complete dose-effect curves. PTX (15 mg/kg subcutaneously) was applied once daily over varying time intervals. Ulceration of mouse tongue epithelium, corresponding to confluent mucositis, was analyzed as the clinically relevant endpoint. With fractionated irradiation over 1 week, PTX administration significantly reduced the incidence of mucosal reactions when initiated before (day - 5) the onset of fractionation; a trend was observed for start of PTX treatment on day 0. Similarly, PTX treatment combined with 2 weeks of fractionation had a significant effect on ulcer incidence in all but one experiment. This clearly illustrates the potential of PTX to ameliorate oral mucositis during daily fractionated irradiation. PTX resulted in a significant reduction of oral mucositis during fractionated irradiation, which may be attributed to stimulation of mucosal repopulation processes. The biological basis of this effect, however, needs to be clarified in further, detailed mechanistic studies. (orig.) [de

  4. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells.

    Science.gov (United States)

    Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J

    2017-09-01

    Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.

  5. Molecular Pathophysiology of Epithelial Barrier Dysfunction in Inflammatory Bowel Diseases

    Directory of Open Access Journals (Sweden)

    Jessica Y. Lee

    2018-03-01

    Full Text Available Over the years, the scientific community has explored myriads of theories in search of the etiology and a cure for inflammatory bowel disease (IBD. The cumulative evidence has pointed to the key role of the intestinal barrier and the breakdown of these mechanisms in IBD. More and more scientists and clinicians are embracing the concept of the impaired intestinal epithelial barrier and its role in the pathogenesis and natural history of IBD. However, we are missing a key tool that bridges these scientific insights to clinical practice. Our goal is to overcome the limitations in understanding the molecular physiology of intestinal barrier function and develop a clinical tool to assess and quantify it. This review article explores the proteins in the intestinal tissue that are pivotal in regulating intestinal permeability. Understanding the molecular pathophysiology of impaired intestinal barrier function in IBD may lead to the development of a biochemical method of assessing intestinal tissue integrity which will have a significant impact on the development of novel therapies targeting the intestinal mucosa.

  6. Multivalent adhesion molecule 7 clusters act as signaling platform for host cellular GTPase activation and facilitate epithelial barrier dysfunction.

    Directory of Open Access Journals (Sweden)

    Jenson Lim

    2014-09-01

    Full Text Available Vibrio parahaemolyticus is an emerging bacterial pathogen which colonizes the gastrointestinal tract and can cause severe enteritis and bacteraemia. During infection, V. parahaemolyticus primarily attaches to the small intestine, where it causes extensive tissue damage and compromises epithelial barrier integrity. We have previously described that Multivalent Adhesion Molecule (MAM 7 contributes to initial attachment of V. parahaemolyticus to epithelial cells. Here we show that the bacterial adhesin, through multivalent interactions between surface-induced adhesin clusters and phosphatidic acid lipids in the host cell membrane, induces activation of the small GTPase RhoA and actin rearrangements in host cells. In infection studies with V. parahaemolyticus we further demonstrate that adhesin-triggered activation of the ROCK/LIMK signaling axis is sufficient to redistribute tight junction proteins, leading to a loss of epithelial barrier function. Taken together, these findings show an unprecedented mechanism by which an adhesin acts as assembly platform for a host cellular signaling pathway, which ultimately facilitates breaching of the epithelial barrier by a bacterial pathogen.

  7. Interplay among gut microbiota, intestinal mucosal barrier and enteric neuro-immune system: a common path to neurodegenerative diseases?

    Science.gov (United States)

    Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Blandizzi, Corrado; Fornai, Matteo

    2018-05-24

    Neurological diseases, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS) and multiple sclerosis, are often associated with functional gastrointestinal disorders. These gastrointestinal disturbances may occur at all stages of the neurodegenerative diseases, to such an extent that they are now considered an integral part of their clinical picture. Several lines of evidence support the contention that, in central neurodegenerative diseases, changes in gut microbiota and enteric neuro-immune system alterations could contribute to gastrointesinal dysfunctions as well as initiation and upward spreading of the neurologic disorder. The present review has been intended to provide a comprehensive overview of the available knowledge on the role played by enteric microbiota, mucosal immune system and enteric nervous system, considered as an integrated network, in the pathophysiology of the main neurological diseases known to be associated with intestinal disturbances. In addition, based on current human and pre-clinical evidence, our intent was to critically discuss whether changes in the dynamic interplay between gut microbiota, intestinal epithelial barrier and enteric neuro-immune system are a consequence of the central neurodegeneration or might represent the starting point of the neurodegenerative process. Special attention has been paid also to discuss whether alterations of the enteric bacterial-neuro-immune network could represent a common path driving the onset of the main neurodegenerative diseases, even though each disease displays its own distinct clinical features.

  8. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression.

    Science.gov (United States)

    Wise, Sarah K; Laury, Adrienne M; Katz, Elizabeth H; Den Beste, Kyle A; Parkos, Charles A; Nusrat, Asma

    2014-05-01

    Altered expression of epithelial intercellular junction proteins has been observed in sinonasal biopsies from nasal polyps and epithelial layers cultured from nasal polyp patients. These alterations comprise a "leaky" epithelial barrier phenotype. We hypothesize that T helper 2 (Th2) cytokines interleukin (IL)-4 and IL-13 modulate epithelial junction proteins, thereby contributing to the leaky epithelial barrier. Differentiated primary sinonasal epithelial layers cultured at the air-liquid interface were exposed to IL-4, IL-13, and controls for 24 hours at 37°C. Epithelial resistance measurements were taken every 4 hours during cytokine exposure. Western blot and immunofluorescence staining/confocal microscopy were used to assess changes in a panel of tight and adherens junction proteins. Western blot densitometry was quantified with image analysis. IL-4 and IL-13 exposure resulted in a mean decrease in transepithelial resistance at 24 hours to 51.6% (n = 6) and 68.6% (n = 8) of baseline, respectively. Tight junction protein junctional adhesion molecule-A (JAM-A) expression decreased 42.2% with IL-4 exposure (n = 9) and 37.5% with IL-13 exposure (n = 9). Adherens junction protein E-cadherin expression decreased 35.3% with IL-4 exposure (n = 9) and 32.9% with IL-13 exposure (n = 9). Tight junction protein claudin-2 showed more variability but had a trend toward higher expression with Th2 cytokine exposure. There were no appreciable changes in claudin-1, occludin, or zonula occludens-1 (ZO-1) with IL-4 or IL-13 exposure. Sinonasal epithelial exposure to Th2 cytokines IL-4 and IL-13 results in alterations in intercellular junction proteins, reflecting increased epithelial permeability. Such changes may explain some of the phenotypic manifestations of Th2-mediated sinonasal disease, such as edema, nasal discharge, and environmental reactivity. © 2014 ARS-AAOA, LLC.

  10. IL-4 and IL-13 Compromise the Sinonasal Epithelial Barrier and Perturb Intercellular Junction Protein Expression

    Science.gov (United States)

    Wise, Sarah K.; Laury, Adrienne M.; Katz, Elizabeth H.; Den Beste, Kyle A.; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    Introduction Altered expression of epithelial intercellular junction proteins has been observed in sinonasal biopsies from nasal polyps and epithelial layers cultured from nasal polyp patients. These alterations comprise a “leaky” epithelial barrier phenotype. We hypothesize that Th2 cytokines IL-4 and IL-13 modulate epithelial junction proteins thereby contributing to the leaky epithelial barrier. Methods Differentiated primary sinonasal epithelial layers cultured at the air-liquid interface were exposed to IL-4, IL-13, and controls for 24 hours at 37°C. Epithelial resistance measurements were taken every 4 hours during cytokine exposure. Western blot and immunofluorescence staining/confocal microscopy were used to assess changes in a panel of tight and adherens junction proteins. Western blot densitometry was quantified with image analysis. Results IL-4 and IL-13 exposure resulted in a mean decrease in transepithelial resistance at 24 hours to 51.6% (n=6) and 68.6% (n=8) of baseline, respectively. Tight junction protein JAM-A expression decreased 42.2% with IL-4 exposure (n=9) and 37.5% with IL-13 exposure (n=9). Adherens junction protein E-cadherin expression decreased 35.3% with IL-4 exposure (n=9) and 32.9% with IL-13 exposure (n=9). Tight junction protein claudin-2 showed more variability but had a trend toward higher expression with Th2 cytokine exposure. There were no appreciable changes in claudin-1, occludin, or ZO-1 with IL-4 or IL-13 exposure. Conclusion Sinonasal epithelial exposure to Th2 cytokines IL-4 and IL-13 results in alterations in intercellular junction proteins, reflecting increased epithelial permeability. Such changes may explain some of the phenotypic manifestations of Th2-mediated sinonasal disease, such as edema, nasal discharge, and environmental reactivity. PMID:24510479

  11. Fish oil enhances recovery of intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplant.

    Directory of Open Access Journals (Sweden)

    Qiurong Li

    Full Text Available BACKGROUND: The intestinal chronic rejection (CR is the major limitation to long-term survival of transplanted organs. This study aimed to investigate the interaction between intestinal microbiota and epithelial integrity in chronic rejection of intestinal transplantation, and to find out whether fish oil enhances recovery of intestinal microbiota and epithelial integrity. METHODS/PRINCIPAL FINDINGS: The luminal and mucosal microbiota composition of CR rats were characterized by DGGE analysis at 190 days after intestinal transplant. The specific bacterial species were determined by sequence analysis. Furthermore, changes in the localization of intestinal TJ proteins were examined by immunofluorescent staining. PCR-DGGE analysis revealed that gut microbiota in CR rats had a shift towards Escherichia coli, Bacteroides spp and Clostridium spp and a decrease in the abundance of Lactobacillales bacteria in the intestines. Fish oil supplementation could enhance the recovery of gut microbiota, showing a significant decrease of gut bacterial proportions of E. coli and Bacteroides spp and an increase of Lactobacillales spp. In addition, CR rats showed pronounced alteration of tight junction, depicted by marked changes in epithelial cell ultrastructure and redistribution of occuldin and claudins as well as disruption in TJ barrier function. Fish oil administration ameliorated disruption of epithelial integrity in CR, which was associated with an improvement of the mucosal structure leading to improved tight junctions. CONCLUSIONS/SIGNIFICANCE: Our study have presented novel evidence that fish oil is involved in the maintenance of epithelial TJ integrity and recovery of gut microbiota, which may have therapeutic potential against CR in intestinal transplantation.

  12. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms.

    Science.gov (United States)

    Kern, J S; Herz, C; Haan, E; Moore, D; Nottelmann, S; von Lilien, T; Greiner, P; Schmitt-Graeff, A; Opitz, O G; Bruckner-Tuderman, L; Has, C

    2007-12-01

    Kindlin-1 is an epithelium-specific phosphoprotein and focal adhesion adaptor component. Mutations in the corresponding gene (KIND1) cause Kindler syndrome (KS), which is manifested by skin blistering, poikiloderma, photosensitivity and carcinogenesis. Some patients also exhibit gastrointestinal symptoms, but it has remained unclear whether these represent a feature of Kindler syndrome or a coincidence. We examined kindlin-1 in human gastrointestinal epithelia and showed that it is involved in the aetiopathology of Kindler syndrome-associated colitis. Kindlin-1 expression was assessed by indirect immunofluorescence, western blot and RT-PCR. Kindlin-1 is expressed in oral mucosa, colon and rectum. Both the full-length 74 kDa kindlin-1 protein and a 43 kDa isoform were detected in CaCo2 cells, the latter resulting from alternative splicing. In the first months of life, patients (homozygous for null mutations) had severe intestinal involvement with haemorrhagic diarrhoea and showed morphological features of severe ulcerative colitis. Later in childhood, histopathology demonstrated focal detachment of the epithelium in all segments of the colon, chronic inflammation and mucosal atrophy. These findings define an intestinal phenotype for Kindler syndrome as a consequence of a primary epithelial barrier defect. The different clinical intestinal manifestations in Kindler syndrome patients may be explained by partial functional compensation of kindlin-1 deficiency by the intestinal isoform or by the presence of truncated mutant kindlin-1. (c) 2007 Pathological Society of Great Britain and Ireland

  13. Inhibition of Epithelial TNF-α Receptors by Purified Fruit Bromelain Ameliorates Intestinal Inflammation and Barrier Dysfunction in Colitis

    OpenAIRE

    Zhou, Zijuan; Wang, Liang; Feng, Panpan; Yin, Lianhong; Wang, Chen; Zhi, Shengxu; Dong, Jianyi; Wang, Jingyu; Lin, Yuan; Chen, Dapeng; Xiong, Yongjian; Peng, Jinyong

    2017-01-01

    Activation of the TNF-α receptor (TNFR) leads to an inflammatory response, and anti-TNF therapy has been administered to reduce inflammation symptoms and heal mucosal ulcers in inflammatory bowel disease (IBD). Bromelain, a complex natural mixture of proteolytic enzymes, has been shown to exert anti-inflammatory effects. This study aimed to investigate the effect of purified fruit bromelain (PFB)-induced inhibition of epithelial TNFR in a rat colitis model. Colitis was established by intracol...

  14. EMMPRIN Modulates Epithelial Barrier Function through a MMP–Mediated Occludin Cleavage

    Science.gov (United States)

    Huet, Eric; Vallée, Benoit; Delbé, Jean; Mourah, Samia; Prulière-Escabasse, Virginie; Tremouilleres, Magali; Kadomatsu, Kenji; Doan, Serge; Baudouin, Christophe; Menashi, Suzanne; Gabison, Eric E.

    2011-01-01

    Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure. PMID:21777561

  15. Protective effect of lactobacillus acidophilus and isomaltooligosaccharide on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea

    International Nuclear Information System (INIS)

    Du Dan; Fang Lichao; Chen Bingbo; Wei Hong

    2008-01-01

    Objective: To investigate the protective effect of synbiotics combined lactobacillus acidophilus and iso-malto-oligosaccharide (IMO) on intestinal mucosal barriers in rat models of antibiotic-associated diarrhea(AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 5 days. The synbiotics was orally administered to the AAD rats daily at three different strengths for 7 days. The intestinal flora and intestinal mucus SIgA levels were determined on d6, d9 and d13. The histopathological changes of ileal mucosa were studied on d13. Results: In the prepared AAD model rats (on d6) there were lower intestinal mucus SIgA levels and intestinal flora disorders were demonstrated. The intestinal floras of the rats administering synbiotics were readjusted to the similar pattern of healthy rats with bacterial translocation corrected on d13 and the levels of SIgA were not significantly different from of the control (P>0.05). The histopathological picture was basically normal in the treated models on d13. Conclusion: The synbiotics combined lactobacillus acidophilus and isomaltooligosaccharide possessed good protective effect on the intestinal mucosal barrier in lincomycin induced rat models of AAD. (authors)

  16. Clinical effects of flurbiprofen tooth patch on radiation-induced oral mucositis. A pilot study

    NARCIS (Netherlands)

    Stokman, MA; Spijkervet, FKL; Burlage, FR; Roodenburg, JLN

    Background: Mucositis is an oral sequela of radiotherapy. In the development of mucositis several mechanisms play a role, such as inflammation and the effect of radiation on the high proliferation rate of oral basal epithelial cells. Therefore, administration of a drug with antiinflammatory and

  17. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice

    Science.gov (United States)

    Pineton de Chambrun, G; Body-Malapel, M; Frey-Wagner, I; Djouina, M; Deknuydt, F; Atrott, K; Esquerre, N; Altare, F; Neut, C; Arrieta, M C; Kanneganti, T-D; Rogler, G; Colombel, J-F; Cortot, A; Desreumaux, P; Vignal, C

    2014-01-01

    The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10−/−) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor. PMID:24129165

  18. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; A randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; Vos, De Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm J.H.M.; Wit, De Nicole J.W.; Bron, Peter A.; Masclee, Ad A.M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  19. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H M; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A M; Troost, Freddy J

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  20. Protein-coated nanoparticles are internalized by the epithelial cells of the female reproductive tract and induce systemic and mucosal immune responses.

    Directory of Open Access Journals (Sweden)

    Savannah E Howe

    Full Text Available The female reproductive tract (FRT includes the oviducts (fallopian tubes, uterus, cervix and vagina. A layer of columnar epithelium separates the endocervix and uterus from the outside environment, while the vagina is lined with stratified squamous epithelium. The mucosa of the FRT is exposed to antigens originating from microflora, and occasionally from infectious microorganisms. Whether epithelial cells (ECs of the FRT take up (sample the lumen antigens is not known. To address this question, we examined the uptake of 20-40 nm nanoparticles (NPs applied vaginally to mice which were not treated with hormones, epithelial disruptors, or adjuvants. We found that 20 and 40 nm NPs are quickly internalized by ECs of the upper FRT and within one hour could be observed in the lymphatic ducts that drain the FRT, as well as in the ileac lymph nodes (ILNs and the mesenteric lymph nodes (MLNs. Chicken ovalbumin (Ova conjugated to 20 nm NPs (NP-Ova when administered vaginally reaches the internal milieu in an immunologically relevant form; thus vaginal immunization of mice with NP-Ova induces systemic IgG to Ova antigen. Most importantly, vaginal immunization primes the intestinal mucosa for secretion of sIgA. Sub-cutaneous (s.c boosting immunization with Ova in complete Freund's adjuvant (CFA further elevates the systemic (IgG1 and IgG2c as well as mucosal (IgG1 and sIgA antibody titers. These findings suggest that the modes of antigen uptake at mucosal surfaces and pathways of antigen transport are more complex than previously appreciated.

  1. Effects of feminine hygiene products on the vaginal mucosal biome

    Directory of Open Access Journals (Sweden)

    Raina N. Fichorova

    2013-02-01

    Full Text Available Background: Over-the-counter (OTC feminine hygiene products come with little warning about possible side effects. This study evaluates in-vitro their effects on Lactobacillus crispatus, which is dominant in the normal vaginal microbiota and helps maintain a healthy mucosal barrier essential for normal reproductive function and prevention of sexually transmitted infections and gynecologic cancer. Methods: A feminine moisturizer (Vagisil, personal lubricant, and douche were purchased OTC. A topical spermicide (nonoxynol-9 known to alter the vaginal immune barrier was used as a control. L. crispatus was incubated with each product for 2 and 24h and then seeded on agar for colony forming units (CFU. Human vaginal epithelial cells were exposed to products in the presence or absence of L. crispatus for 24h, followed by epithelium-associated CFU enumeration. Interleukin-8 was immunoassayed and ANOVA was used for statistical evaluation. Results: Nonoxynol-9 and Vagisil suppressed Lactobacillus growth at 2h and killed all bacteria at 24h. The lubricant decreased bacterial growth insignificantly at 2h but killed all at 24h. The douche did not have a significant effect. At full strength, all products suppressed epithelial viability and all, except the douche, suppressed epithelial-associated CFU. When applied at non-toxic dose in the absence of bacteria, the douche and moisturizer induced an increase of IL-8, suggesting a potential to initiate inflammatory reaction. In the presence of L. crispatus, the proinflammatory effects of the douche and moisturizer were countered, and IL-8 production was inhibited in the presence of the other products. Conclusion: Some OTC vaginal products may be harmful to L. crispatus and alter the vaginal immune environment. Illustrated through these results, L. crispatus is essential in the preservation of the function of vaginal epithelial cells in the presence of some feminine hygiene products. More research should be invested

  2. Dual Function of Novel Pollen Coat (Surface) Proteins: IgE-binding Capacity and Proteolytic Activity Disrupting the Airway Epithelial Barrier

    Science.gov (United States)

    Bashir, Mohamed Elfatih H.; Ward, Jason M.; Cummings, Matthew; Karrar, Eltayeb E.; Root, Michael; Mohamed, Abu Bekr A.; Naclerio, Robert M.; Preuss, Daphne

    2013-01-01

    Background The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., “de-fatted”), and, as a result, their involvement in allergy has not been explored. Methodology/Principal Findings Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM) to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass) pollen (BGP) by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP) and endoxylanase (EXY). The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. Conclusions/Significance Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic responses is

  3. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  4. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning.

    NARCIS (Netherlands)

    Spreeuwenberg, M.A.; Verdonk, J.M.; Gaskins, H.R.; Verstegen, M.W.A.

    2001-01-01

    Compromising alterations in gastrointestinal architecture are common during the weaning transition of pigs. The relation between villous atrophy and epithelial barrier function at weaning is not well understood. This study evaluated in vitro transepithelial transport by Ussing metabolic chambers,

  5. Primary human polarized small intestinal epithelial barriers respond differently to a hazardous and an innocuous protein.

    Science.gov (United States)

    Eaton, A D; Zimmermann, C; Delaney, B; Hurley, B P

    2017-08-01

    An experimental platform employing human derived intestinal epithelial cell (IEC) line monolayers grown on permeable Transwell ® filters was previously investigated to differentiate between hazardous and innocuous proteins. This approach was effective at distinguishing these types of proteins and perturbation of monolayer integrity, particularly transepithelial electrical resistance (TEER), was the most sensitive indicator. In the current report, in vitro indicators of monolayer integrity, cytotoxicity, and inflammation were evaluated using primary (non-transformed) human polarized small intestinal epithelial barriers cultured on Transwell ® filters to compare effects of a hazardous protein (Clostridium difficile Toxin A [ToxA]) and an innocuous protein (bovine serum albumin [BSA]). ToxA exerted a reproducible decrease on barrier integrity at doses comparable to those producing effects observed from cell line-derived IEC monolayers, with TEER being the most sensitive indicator. In contrast, BSA, tested at concentrations substantially higher than ToxA, did not cause changes in any of the tested variables. These results demonstrate a similarity in response to certain proteins between cell line-derived polarized IEC models and a primary human polarized small intestinal epithelial barrier model, thereby reinforcing the potential usefulness of cell line-derived polarized IECs as a valid experimental platform to differentiate between hazardous and non-hazardous proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available The probiotic yeast Saccharomyces boulardii has been shown to ameliorate disease severity in the context of many infectious and inflammatory conditions. However, use of S. boulardii as a prophylactic agent or therapeutic delivery vector would require delivery of S. boulardii to a healthy, uninflamed intestine. In contrast to inflamed mucosal tissue, the diverse microbiota, intact epithelial barrier, and fewer inflammatory immune cells within the healthy intestine may all limit the degree to which S. boulardii contacts and influences the host mucosal immune system. Understanding the nature of these interactions is crucial for application of S. boulardii as a prophylactic agent or therapeutic delivery vehicle. In this study, we explore both intrinsic and immunomodulatory properties of S. boulardii in the healthy mucosal immune system. Genomic sequencing and morphological analysis of S. boulardii reveals changes in cell wall components compared to non-probiotic S. cerevisiae that may partially account for probiotic functions of S. boulardii. Flow cytometry and immunohistochemistry demonstrate limited S. boulardii association with murine Peyer's patches. We also show that although S. boulardii induces a systemic humoral immune response, this response is small in magnitude and not directed against S. boulardii itself. RNA-seq of the draining mesenteric lymph nodes indicates that even repeated administration of S. boulardii induces few transcriptional changes in the healthy intestine. Together these data strongly suggest that interaction between S. boulardii and the mucosal immune system in the healthy intestine is limited, with important implications for future work examining S. boulardii as a prophylactic agent and therapeutic delivery vehicle.

  7. Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System.

    Science.gov (United States)

    Hudson, Lauren E; McDermott, Courtney D; Stewart, Taryn P; Hudson, William H; Rios, Daniel; Fasken, Milo B; Corbett, Anita H; Lamb, Tracey J

    2016-01-01

    The probiotic yeast Saccharomyces boulardii has been shown to ameliorate disease severity in the context of many infectious and inflammatory conditions. However, use of S. boulardii as a prophylactic agent or therapeutic delivery vector would require delivery of S. boulardii to a healthy, uninflamed intestine. In contrast to inflamed mucosal tissue, the diverse microbiota, intact epithelial barrier, and fewer inflammatory immune cells within the healthy intestine may all limit the degree to which S. boulardii contacts and influences the host mucosal immune system. Understanding the nature of these interactions is crucial for application of S. boulardii as a prophylactic agent or therapeutic delivery vehicle. In this study, we explore both intrinsic and immunomodulatory properties of S. boulardii in the healthy mucosal immune system. Genomic sequencing and morphological analysis of S. boulardii reveals changes in cell wall components compared to non-probiotic S. cerevisiae that may partially account for probiotic functions of S. boulardii. Flow cytometry and immunohistochemistry demonstrate limited S. boulardii association with murine Peyer's patches. We also show that although S. boulardii induces a systemic humoral immune response, this response is small in magnitude and not directed against S. boulardii itself. RNA-seq of the draining mesenteric lymph nodes indicates that even repeated administration of S. boulardii induces few transcriptional changes in the healthy intestine. Together these data strongly suggest that interaction between S. boulardii and the mucosal immune system in the healthy intestine is limited, with important implications for future work examining S. boulardii as a prophylactic agent and therapeutic delivery vehicle.

  8. In Inflamed Intestinal Tissues and Epithelial Cells, Interleukin 22 Signaling Increases Expression of H19 Long Noncoding RNA, Which Promotes Mucosal Regeneration.

    Science.gov (United States)

    Geng, Hua; Bu, Heng-Fu; Liu, Fangyi; Wu, Longtao; Pfeifer, Karl; Chou, Pauline M; Wang, Xiao; Sun, Jiaren; Lu, Lu; Pandey, Ashutosh; Bartolomei, Marisa S; De Plaen, Isabelle G; Wang, Peng; Yu, Jindan; Qian, Jiaming; Tan, Xiao-Di

    2018-04-03

    Inflammation affects regeneration of the intestinal epithelia; long non-coding RNAs (lncRNAs) regulate cell functions, such as proliferation, differentiation, and migration. We investigated the mechanisms by which the lncRNA H19, imprinted maternally expressed transcript (H19) regulates regeneration of intestinal epithelium using cell cultures and mouse models of inflammation. We performed RNA-sequencing transcriptome analyses of intestinal tissues from mice with lipopolysaccharide (LPS)-induced sepsis to identify lncRNAs associated with inflammation; findings were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization analyses of intestinal tissues from mice with sepsis or dextran sulfate sodium (DSS)-induced mucosal wound healing and patients with ulcerative colitis compared to healthy individuals (controls). We screened cytokines for their ability to induce expression of H19 in HT-29 cells and intestinal epithelial cells (IECs), and confirmed findings in crypt epithelial organoids derived from mouse small intestine. IECs were incubated with different signal transduction inhibitors and effects on H19 lncRNA levels were measured. We assessed intestinal epithelial proliferation or regeneration in H19 ΔEx1/+ mice given LPS or DSS vs wild-type littermates (control mice). H19 was overexpressed in IECs using lentiviral vectors and cell proliferation was measured. We performed RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays to study functions of H19 in IECs. In RNA-sequencing transcriptome analysis of lncRNA expression in intestinal tissues from mice, we found levels of H19 only changed significantly with LPS exposure. Levels of H19 lncRNA increased in intestinal tissues of patients with ulcerative colitis, mice with LPS-induced sepsis, or mice with DSS-induced colitis, compared with controls. Increased H19 lncRNA localized to epithelial cells in the intestine, regardless of Lgr5 messenger RNA

  9. The effects of probiotics on barrier function and mucosal pouch microbiota during maintenance treatment for severe pouchitis in patients with ulcerative colitis

    NARCIS (Netherlands)

    Persborn, M.; Gerritsen, J.; Wallon, C.; Carlsson, A.; Akkermans, L.M.A.; Soderholm, J.D.

    2013-01-01

    Background A total of 10-15% of patients with an ileoanal pouch develop severe pouchitis necessitating long-term use of antibiotics or pouch excision. Probiotics reduce the risk of recurrence of pouchitis, but mechanisms behind these effects are not fully understood. Aim To examine mucosal barrier

  10. Exploiting the Gastric Epithelial Barrier: Helicobacter pylori's Attack on Tight and Adherens Junctions.

    Science.gov (United States)

    Backert, Steffen; Schmidt, Thomas P; Harrer, Aileen; Wessler, Silja

    2017-01-01

    Highly organized intercellular tight and adherens junctions are crucial structural components for establishing and maintenance of epithelial barrier functions, which control the microbiota and protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of multiple infectious diseases as well as various cancers. The gastric pathogen Helicobacter pylori exerts an amazing set of strategies to manipulate these epithelial cell-to-cell junctions, which are implicated in changing cell polarity, migration and invasive growth as well as pro-inflammatory and proliferative responses. This chapter focuses on the H. pylori pathogenicity factors VacA, CagA, HtrA and urease, and how they can induce host cell signaling involved in altering cell-to-cell permeability. We propose a stepwise model for how H. pylori targets components of tight and adherens junctions in order to disrupt the gastric epithelial cell layer, giving fresh insights into the pathogenesis of this important bacterium.

  11. Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics

    DEFF Research Database (Denmark)

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A.

    2014-01-01

    of the polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties...... of chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA....

  12. Barrier effect of Esoxx® on esophageal mucosal damage: experimental study on ex-vivo swine model

    Directory of Open Access Journals (Sweden)

    Di Simone MP

    2012-06-01

    Full Text Available Massimo P Di Simone,1 Fabio Baldi,2,3 Valentina Vasina,4 Fabrizio Scorrano,5 Maria Laura Bacci,5 Antonella Ferrieri,6 Gilberto Poggioli11Department of General Surgery and Transplants, 2Centre for the Study and Therapy of the Esophageal Diseases, 3GVM Care and Research, MCH Cotignola (RA, 4Department of Pharmacology, Alma Mater Studiorum, University of Bologna, Bologna, 5Department of Veterinary Medical Science – DMSVET – University of Bologna, Bologna, 6Clinical Research Department, Alfa Wassermann Spa, Bologna, ItalyAbstract: The aim of the present study was to assess the potential barrier effect of Esoxx®, a new nonprescription medication under development for the relief of gastroesophageal reflux symptoms. Esoxx is based on a mixture of hyaluronic acid and chondroitin sulfate in a bioadhesive suspension of Lutrol® F 127 polymer (poloxamer 407 which facilitates the product adhesion on the esophageal mucosa. The mucosal damage was induced by 15 to 90 minutes of perfusion with an acidic solution (HCl, pH 1.47 with or without pepsin (2000 U/mL, acidified to pH 2; Sigma-Aldrich. Mucosal esophageal specimens were histologically evaluated and Evans blue dye solution was used to assess the permeability of the swine mucosa after the chemical injury. The results show that: (1 esophageal mucosal damage is related to the perfusion time and to the presence of pepsin, (2 mucosal damage is associated with an increased permeability, documented by an evident Evans blue staining, (3 perfusion with Esoxx is able to reduce the permeability of the injured mucosa, even after saline washing of the swine esophagus. These preliminary results support further clinical studies of Esoxx in the topical treatment of gastroesophageal reflux symptoms.Keywords: bioadhesion, hyaluronic acid, Evans blue dye, animal model, esophagus, reflux esophagitis

  13. Involvement of PI3K/AKT and MAPK Pathways for TNF-α Production in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis.

    Science.gov (United States)

    Yang, Jung-Bo; Quan, Juan-Hua; Kim, Ye-Eun; Rhee, Yun-Ee; Kang, Byung-Hyun; Choi, In-Wook; Cha, Guang-Ho; Yuk, Jae-Min; Lee, Young-Ha

    2015-08-01

    Trichomonas vaginalis; induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNF-α production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNF-α production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNF-α production was significantly decreased compared to the control; however, TNF-α reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNF-α production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNF-α production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.

  14. Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nazzy Pakpour

    Full Text Available Anopheline mosquitoes are the primary vectors of parasites in the genus Plasmodium, the causative agents of malaria. Malaria parasites undergo a series of complex transformations upon ingestion by the mosquito host. During this process, the physical barrier of the midgut epithelium, along with innate immune defenses, functionally restrict parasite development. Although these defenses have been studied for some time, the regulatory factors that control them are poorly understood. The protein kinase C (PKC gene family consists of serine/threonine kinases that serve as central signaling molecules and regulators of a broad spectrum of cellular processes including epithelial barrier function and immunity. Indeed, PKCs are highly conserved, ranging from 7 isoforms in Drosophila to 16 isoforms in mammals, yet none have been identified in mosquitoes. Despite conservation of the PKC gene family and their potential as targets for transmission-blocking strategies for malaria, no direct connections between PKCs, the mosquito immune response or epithelial barrier integrity are known. Here, we identify and characterize six PKC gene family members--PKCδ, PKCε, PKCζ, PKD, PKN, and an indeterminate conventional PKC--in Anopheles gambiae and Anopheles stephensi. Sequence and phylogenetic analyses of the anopheline PKCs support most subfamily assignments. All six PKCs are expressed in the midgut epithelia of A. gambiae and A. stephensi post-blood feeding, indicating availability for signaling in a tissue that is critical for malaria parasite development. Although inhibition of PKC enzymatic activity decreased NF-κB-regulated anti-microbial peptide expression in mosquito cells in vitro, PKC inhibition had no effect on expression of a panel of immune genes in the midgut epithelium in vivo. PKC inhibition did, however, significantly increase midgut barrier integrity and decrease development of P. falciparum oocysts in A. stephensi, suggesting that PKC

  15. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    Science.gov (United States)

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  16. The X-ray endoscopic semiotics and diagnostic algorithm of radiation studies of precancerous gastric mucosal changes

    International Nuclear Information System (INIS)

    Akabekov, R.F.; Gorshkov, A.N.

    1997-01-01

    The X-ray endoscopic semiotics of precancerous gastric mucosal changes (epithelial dysplasia, intestinal epithelial rearrangement) was examined by the results of 1574 gastric examination. A diagnostic algorithm was developed for radiation studies in the diagnosis of the above pathology. 7 refs., 4 figs

  17. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis.

    Science.gov (United States)

    Ciccia, Francesco; Guggino, Giuliana; Rizzo, Aroldo; Alessandro, Riccardo; Luchetti, Michele Maria; Milling, Simon; Saieva, Laura; Cypers, Heleen; Stampone, Tommaso; Di Benedetto, Paola; Gabrielli, Armando; Fasano, Alessio; Elewaut, Dirk; Triolo, Giovanni

    2017-06-01

    Dysbiosis has been recently demonstrated in patients with ankylosing spondylitis (AS) but its implications in the modulation of intestinal immune responses have never been studied. The aim of this study was to investigate the role of ileal bacteria in modulating local and systemic immune responses in AS. Ileal biopsies were obtained from 50 HLA-B27 + patients with AS and 20 normal subjects. Silver stain was used to visualise bacteria. Ileal expression of tight and adherens junction proteins was investigated by TaqMan real-time (RT)-PCR and immunohistochemistry. Serum levels of lipopolysaccharide (LPS), LPS-binding protein (LPS-BP), intestinal fatty acid-BP (iFABP) and zonulin were assayed by ELISA. Monocyte immunological functions were studied in in vitro experiments. In addition the effects of antibiotics on tight junctions in human leukocyte antigen (HLA)-B27 transgenic (TG) rats were assessed. Adherent and invasive bacteria were observed in the gut of patients with AS with the bacterial scores significantly correlated with gut inflammation. Impairment of the gut vascular barrier (GVB) was also present in AS, accompanied by significant upregulation of zonulin, and associated with high serum levels of LPS, LPS-BP, iFABP and zonulin. In in vitro studies zonulin altered endothelial tight junctions while its epithelial release was modulated by isolated AS ileal bacteria. AS circulating monocytes displayed an anergic phenotype partially restored by ex vivo stimulation with LPS+sCD14 and their stimulation with recombinant zonulin induced a clear M2 phenotype. Antibiotics restored tight junction function in HLA-B27 TG rats. Bacterial ileitis, increased zonulin expression and damaged intestinal mucosal barrier and GVB, characterises the gut of patients with AS and are associated with increased blood levels of zonulin, and bacterial products. Bacterial products and zonulin influence monocyte behaviour. Published by the BMJ Publishing Group Limited. For permission to use

  18. Functional and structural alterations of epithelial barrier properties of rat ileum following X-irradiation

    International Nuclear Information System (INIS)

    Dublineau, I.; Lebrun, F.; Grison, S.; Griffiths, N.M.

    2004-01-01

    Irradiation of the digestive system leads to alterations of the small intestine. We have characterized the disruption of the barrier integrity in rat ileum from 1 to 14 days following irradiation ranging from 6 to 12 Gy. The intestinal permeability to 14 C-mannitol and 3 H-dextran 70,000 was measured in vitro in Ussing chambers. In parallel to these functional studies, immunohistochemical analyses of junctional proteins (ZO-1 and β-catenin) of ileal epithelium were performed by confocal microscopy. Irradiation with 10 Gy induced a marked decrease in epithelial tissue resistance at three days and a fivefold increase in mannitol permeability, without modifications of dextran permeability. A disorganization of the localization for ZO-1 and β-catenin was also observed. At 7 days after irradiation, we observed a recovery of the organization of junctional proteins in parallel to a return of intestinal permeability to control value. In addition to these time-dependent effects, a gradual effect on epithelial integrity of the radiation doses was observed 3 days after irradiation. This study shows a disruption of the integrity of the intestinal barrier in rat ileum following abdominal X-irradiation, depending on the time postirradiation and on the delivered dose. The loss of barrier integrity was characterized by a disorganization of proteins of tight and adherent junctions, leading to increased intestinal permeability to mannitol. (author)

  19. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.

    Science.gov (United States)

    Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-03-30

    Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R 2 = 0.5301, P <0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R 2 = 0.4608, P <0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. A mouse model of otitis media identifies HB-EGF as a mediator of inflammation-induced mucosal proliferation.

    Directory of Open Access Journals (Sweden)

    Keigo Suzukawa

    Full Text Available Otitis media is one of the most common pediatric infections. While it is usually treated without difficulty, up to 20% of children may progress to long-term complications that include hearing loss, impaired speech and language development, academic underachievement, and irreversible disease. Hyperplasia of middle ear mucosa contributes to the sequelae of acute otitis media and is of important clinical significance. Understanding the role of growth factors in the mediation of mucosal hyperplasia could lead to the development of new therapeutic interventions for this disease and its sequelae.From a whole genome gene array analysis of mRNA expression during acute otitis media, we identified growth factors with expression kinetics temporally related to hyperplasia. We then tested these factors for their ability to stimulate mucosal epithelial growth in vitro, and determined protein levels and histological distribution in vivo for active factors.From the gene array, we identified seven candidate growth factors with upregulation of mRNA expression kinetics related to mucosal hyperplasia. Of the seven, only HB-EGF (heparin-binding-epidermal growth factor induced significant mucosal epithelial hyperplasia in vitro. Subsequent quantification of HB-EGF protein expression in vivo via Western blot analysis confirmed that the protein is highly expressed from 6 hours to 24 hours after bacterial inoculation, while immunohistochemistry revealed production by middle ear epithelial cells and infiltrating lymphocytes.Our data suggest an active role for HB-EGF in the hyperplasia of the middle ear mucosal epithelium during otitis media. These results imply that therapies targeting HB-EGF could ameliorate mucosal growth during otitis media, and thereby reduce detrimental sequelae of this childhood disease.

  1. 8-prenylnaringenin and tamoxifen inhibit the shedding of irradiated epithelial cells and increase the latency period of radiation-induced oral mucositis. Cell culture and murine model

    Energy Technology Data Exchange (ETDEWEB)

    Ryck, Tine de; Impe, Annouchka van; Bracke, Marc E. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Vanhoecke, Barbara W. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Ghent University, Laboratory of Microbial Ecology and Technology (LabMET), Ghent (Belgium); Heyerick, Arne [Ghent University, Laboratory of Pharmacognosy and Phytochemistry, Ghent (Belgium); Vakaet, Luc; Neve, Wilfried de [Ghent University Hospital, Department of Radiation Oncology, Ghent (Belgium); Mueller, Doreen [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Schmidt, Margret [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); German Cancer Consortium (DKTK) partner site Dresden and German Cancer Center (DKFZ), Heidelberg (Germany); Doerr, Wolfgang [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Medical University, Department of Radiation Oncology, CCC, and CD-Laboratory RadOnc, Vienna (Austria)

    2015-05-01

    The major component in the pathogenesis of oral radiation-induced mucositis is progressive epithelial hypoplasia and eventual ulceration. Irradiation inhibits cell proliferation, while cell loss at the surface continues. We conceived to slow down this desquamation by increasing intercellular adhesion, regulated by the E-cadherin/catenin complex. We investigated if 8-prenylnaringenin (8-PN) or tamoxifen (TAM) decrease the shedding of irradiated human buccal epithelial cells in vitro and thus delay the ulcerative phase of radiation-induced mucositis in vivo. In vitro, aggregates of buccal epithelial cells were irradiated and cultured in suspension for 11 days. 8-PN or TAM were investigated regarding their effect on cell shedding. In vivo, the lower tongue surface of mice was irradiated with graded single doses of 25 kV X-rays. The incidence, latency, and duration of the resulting mucosal ulcerations were analyzed after topical treatment with 8-PN, TAM or solvent. 8-PN or TAM prevented the volume reduction of the irradiated cell aggregates during the incubation period. This was the result of a higher residual cell number in the treated versus the untreated irradiated aggregates. In vivo, topical treatment with 8-PN or TAM significantly increased the latency of mucositis from 10.9 to 12.1 and 12.4 days respectively, while the ulcer incidence was unchanged. 8-PN and TAM prevent volume reduction of irradiated cell aggregates in suspension culture. In the tongues of mice, these compounds increase the latency period. This suggests a role for these compounds for the amelioration of radiation-induced mucositis in the treatment of head and neck tumors. (orig.) [German] Die wesentliche Komponente in der Pathogenese der radiogenen Mukositis ist eine progressive epitheliale Hypoplasie und letztendlich Ulzeration. Die Bestrahlung hemmt die Zellproliferation, waehrend der Zellverlust an der Oberflaeche fortbesteht. Wir versuchten, diese Desquamation durch eine Stimulation der

  2. Roles of Mucosal Immunity against Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Wu Li

    2012-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb, the causative agent of tuberculosis (TB, is one of the world's leading infectious causes of morbidity and mortality. As a mucosal-transmitted pathogen, Mtb infects humans and animals mainly through the mucosal tissue of the respiratory tract. Apart from providing a physical barrier against the invasion of pathogen, the major function of the respiratory mucosa may be to serve as the inductive sites to initiate mucosal immune responses and sequentially provide the first line of defense for the host to defend against this pathogen. A large body of studies in the animals and humans have demonstrated that the mucosal immune system, rather than the systemic immune system, plays fundamental roles in the host’s defense against Mtb infection. Therefore, the development of new vaccines and novel delivery routes capable of directly inducing respiratory mucosal immunity is emphasized for achieving enhanced protection from Mtb infection. In this paper, we outline the current state of knowledge regarding the mucosal immunity against Mtb infection, including the development of TB vaccines, and respiratory delivery routes to enhance mucosal immunity are discussed.

  3. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Quaranta

    Full Text Available The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.

  4. Oral mucositis: recent perspectives on prevention and treatment

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio da Silva Santos

    2009-10-01

    Full Text Available Oral mucositis is a result of toxicity and one of the most common side effects of radiotherapy and chemotherapy in cancer treatment and in hematopoietic stem cell transplantation. Clinically these changes are characterized by epithelial atrophy, edema, erythema and the appearance of ulcerations that can affect the entire oral mucosa, causing pain and discomfort, impairing speech, and swallowing food. In addition to the major symptoms, the ulcers increase the risk of local and systemic infection, compromising function and interfering with oral antineoplastic treatment and may lead to it being discontinued. The diagnosis, prevention and therapeutic strategies in providing support in cases of oral mucositis are the dentist’s responsibility. Through critical analysis of literature, the aim of this article is to present oral mucositis, its pathogenesis, clinical features and treatments offered today to address or control the condition, highlighting the importance of dentists’ role in its management.

  5. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage.

    Directory of Open Access Journals (Sweden)

    Daniela Catanzaro

    Full Text Available Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD, however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA, were tested at 0.1-10 μg/ml and 0.027 μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study

  6. Permeabilization of the blood-brain barrier via mucosal engrafting: implications for drug delivery to the brain.

    Science.gov (United States)

    Bleier, Benjamin S; Kohman, Richie E; Feldman, Rachel E; Ramanlal, Shreshtha; Han, Xue

    2013-01-01

    Utilization of neuropharmaceuticals for central nervous system(CNS) disease is highly limited due to the blood-brain barrier(BBB) which restricts molecules larger than 500Da from reaching the CNS. The development of a reliable method to bypass the BBB would represent an enormous advance in neuropharmacology enabling the use of many potential disease modifying therapies. Previous attempts such as transcranial catheter implantation have proven to be temporary and associated with multiple complications. Here we describe a novel method of creating a semipermeable window in the BBB using purely autologous tissues to allow for high molecular weight(HMW) drug delivery to the CNS. This approach is inspired by recent advances in human endoscopic transnasal skull base surgical techniques and involves engrafting semipermeable nasal mucosa within a surgical defect in the BBB. The mucosal graft thereby creates a permanent transmucosal conduit for drugs to access the CNS. The main objective of this study was to develop a murine model of this technique and use it to evaluate transmucosal permeability for the purpose of direct drug delivery to the brain. Using this model we demonstrate that mucosal grafts allow for the transport of molecules up to 500 kDa directly to the brain in both a time and molecular weight dependent fashion. Markers up to 40 kDa were found within the striatum suggesting a potential role for this technique in the treatment of Parkinson's disease. This proof of principle study demonstrates that mucosal engrafting represents the first permanent and stable method of bypassing the BBB thereby providing a pathway for HMW therapeutics directly into the CNS.

  7. Evaluation of mast cells, eosinophils, blood capillaries in oral lichen planus and oral lichenoid mucositis.

    Science.gov (United States)

    Reddy, D Santhosh; Sivapathasundharam, B; Saraswathi, T R; SriRam, G

    2012-01-01

    Mast cells are granule containing secretory cells present in oral mucosal and connective tissue environment. Oral lichen planus and oral lichenoid lesions are commonly occurring oral diseases and have some similarity clinically and histologically. Both are characterized by an extensive sub epithelial infiltrate of T cells, together with mast cells, eosinophils and blood capillaries. In this study mast cell and eosinophil densities along with number of blood capillaries were studied to find out if they could aid in histopathological distinction between oral lichen planus and lichenoid mucositis. To enumerate mast cells and compare the status of Mast Cells (Intact or Degranulated) in Lichen planus, Lichenoid mucositis and normal buccal mucosa in tissue sections stained with Toluidine Blue, and also to enumerate Eosinophils and blood capillaries in tissue sections stained with H and E. The study group included 30 cases each of oral lichen planus and oral lichenoid mucositis. 10 cases of clinically normal oral buccal mucosa formed the control group. All the sections were stained with Toluidine blue and H and E separately. Histopathological analysis was done using binocular light microscope equipped with square ocular grid to standardize the field of evaluation. The result of the study showed. · Significant increase in number of mast cells in oral lichen planus and oral lichenoid mucositis compared to normal buccal mucosa. · Significant increase of intact mast cells suepithelially within the inflammatory cell infiltrate in oral lichen planus compared to oral lichenoid mucositis. · Significant increase of degranulated mast cells in oral lichenoid mucositis to oral lichen planus, and increase in number of eosinophil densities in oral lichenoid mucositis compared to oral lichen planus. · Significant increase in number of capillaries in oral lichenoid mucositis compared to oral lichen planus. The findings of increased number of intact mast cells sub epithelially in oral

  8. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    Directory of Open Access Journals (Sweden)

    Anna Sommansson

    Full Text Available Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v. did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v. but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  9. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers.

    Directory of Open Access Journals (Sweden)

    Judit Váradi

    Full Text Available Alpha-melanocyte-stimulating hormone (α-MSH is a potent anti-inflammatory peptide with cytoprotective effect in various tissues. The present investigation demonstrates the ability of α-MSH to interact with intestinal epithelial cell monolayers and mitigate inflammatory processes of the epithelial barrier. The protective effect of α-MSH was studied on Caco-2 human intestinal epithelial monolayers, which were disrupted by exposure to tumor necrosis factor-α and interleukin-1β. The barrier integrity was assessed by measuring transepithelial electric resistance (TEER and permeability for marker molecules. Caco-2 monolayers were evaluated by immunohistochemistry for expression of melanocortin-1 receptor and tight junction proteins ZO-1 and claudin-4. The activation of nuclear factor kappa beta (NF-κB was detected by fluorescence microscopy and inflammatory cytokine expression was assessed by flow cytometric bead array cytokine assay. Exposure of Caco-2 monolayers to proinflammatory cytokines lowered TEER and increased permeability for fluorescein and albumin, which was accompanied by changes in ZO-1 and claudin-4 immunostaining. α-MSH was able to prevent inflammation-associated decrease of TEER in a dose-dependent manner and reduce the increased permeability for paracellular marker fluorescein. Further immunohistochemistry analysis revealed proinflammatory cytokine induced translocation of the NF-κB p65 subunit into Caco-2 cell nuclei, which was inhibited by α-MSH. As a result the IL-6 and IL-8 production of Caco-2 monolayers were also decreased with different patterns by the addition of α-MSH to the culture medium. In conclusion, Caco-2 cells showed a positive immunostaining for melanocortin-1 receptor and α-MSH protected Caco-2 cells against inflammatory barrier dysfunction and inflammatory activation induced by tumor necrosis factor-α and interleukin-1β cytokines.

  10. Mucosal T cells in gut homeostasis and inflammation

    OpenAIRE

    van Wijk, Femke; Cheroutre, Hilde

    2010-01-01

    The antigen-rich environment of the gut interacts with a highly integrated and specialized mucosal immune system that has the challenging task of preventing invasion and the systemic spread of microbes, while avoiding excessive or unnecessary immune responses to innocuous antigens. Disruption of the mucosal barrier and/or defects in gut immune regulatory networks may lead to chronic intestinal inflammation as seen in inflammatory bowel disease. The T-cell populations of the intestine play a c...

  11. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    OpenAIRE

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequ...

  12. Colonization and effector functions of innate lymphoid cells in mucosal tissues

    Science.gov (United States)

    Kim, Myunghoo; Kim, Chang H.

    2016-01-01

    Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. PMID:27365193

  13. Probiotics promote endocytic allergen degradation in gut epithelial cells

    International Nuclear Information System (INIS)

    Song, Chun-Hua; Liu, Zhi-Qiang; Huang, Shelly; Zheng, Peng-Yuan; Yang, Ping-Chang

    2012-01-01

    Highlights: ► Knockdown of A20 compromised the epithelial barrier function. ► The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. ► Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. ► Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  14. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  15. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells

    DEFF Research Database (Denmark)

    Del Vecchio, Giovanna; Tscheik, Christian; Tenz, Kareen

    2012-01-01

    Claudin-5 is a tight junction (TJ) protein which limits the diffusion of small hydrophilic molecules. Thus, it represents a potential pharmacological target to improve drug delivery to the tissues protected by claudin-5-dependent barriers. Sodium caprate is known as an absorption enhancer which...... opens the paracellular space acting on TJ proteins and actin cytoskeleton. Its action on claudin-5 is not understood so far. Epithelial and endothelial systems were used to evaluate the effect of caprate on claudin-5 in TJ-free cells and on claudin-5 fully integrated in TJ. To this aim, confocal...... of endothelial and epithelial cells. In conclusion, the study further elucidates the cellular effects of caprate at the tight junctions....

  16. Severe Burn-Induced Intestinal Epithelial Barrier Dysfunction Is Associated With Endoplasmic Reticulum Stress and Autophagy in Mice

    Science.gov (United States)

    Huang, Yalan; Feng, Yanhai; Wang, Yu; Wang, Pei; Wang, Fengjun; Ren, Hui

    2018-01-01

    The disruption of intestinal barrier plays a vital role in the pathophysiological changes after severe burn injury, however, the underlying mechanisms are poorly understood. Severe burn causes the disruption of intestinal tight junction (TJ) barrier. Previous studies have shown that endoplasmic reticulum (ER) stress and autophagy are closely associated with the impairment of intestinal mucosa. Thus, we hypothesize that ER stress and autophagy are likely involved in burn injury-induced intestinal epithelial barrier dysfunction. Mice received a 30% total body surface area (TBSA) full-thickness burn, and were sacrificed at 0, 1, 2, 6, 12 and 24 h postburn. The results showed that intestinal permeability was increased significantly after burn injury, accompanied by the damage of mucosa and the alteration of TJ proteins. Severe burn induced ER stress, as indicated by increased intraluminal chaperone binding protein (BIP), CCAAT/enhancer-binding protein homologous protein (CHOP) and inositol-requiring enzyme 1(IRE1)/X-box binding protein 1 splicing (XBP1). Autophagy was activated after burn injury, as evidenced by the increase of autophagy related protein 5 (ATG5), Beclin 1 and LC3II/LC3I ratio and the decrease of p62. Besides, the number of autophagosomes was also increased after burn injury. The levels of p-PI3K(Ser191), p-PI3K(Ser262), p-AKT(Ser473), and p-mTOR were decreased postburn, suggesting that autophagy-related PI3K/AKT/mTOR pathway is involved in the intestinal epithelial barrier dysfunction following severe burn. In summary, severe burn injury induces the ER stress and autophagy in intestinal epithelia, leading to the disruption of intestinal barrier. PMID:29740349

  17. Dietary Lactobacillus rhamnosus GG Supplementation Improves the Mucosal Barrier Function in the Intestine of Weaned Piglets Challenged by Porcine Rotavirus.

    Directory of Open Access Journals (Sweden)

    Xiangbing Mao

    Full Text Available Lactobacillus rhamnosus GG (LGG has been regarded as a safe probiotic strain. The aim of this study was to investigate whether dietary LGG supplementation could alleviate diarrhea via improving jejunal mucosal barrier function in the weaned piglets challenged by RV, and further analyze the potential roles for apoptosis of jejunal mucosal cells and intestinal microbiota. A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets: the basal diet and LGG supplementing diet. On day 11, all pigs were orally infused RV or the sterile essential medium. RV infusion increased the diarrhea rate, increased the RV-Ab, NSP4 and IL-2 concentrations and the Bax mRNA levels of jejunal mucosa (P<0.05, decreased the villus height, villus height: crypt depth, the sIgA, IL-4 and mucin 1 concentrations and the ZO-1, occludin and Bcl-2 mRNA levels of jejunal mucosa (P<0.05, and affected the microbiota of ileum and cecum (P<0.05 in the weaned pigs. Dietary LGG supplementation increased the villus height and villus height: crypt depth, the sIgA, IL-4, mucin 1 and mucin 2 concentrations, and the ZO-1, occludin and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05 reduced the Bax mRNA levels of the jejunal mucosa (P<0.05 in weaned pigs. Furthermore, dietary LGG supplementation alleviated the increase of diarrhea rate in the weaned pigs challenged by RV (P<0.05, and relieve the effect of RV infection on the villus height, crypt depth and the villus height: crypt depth of the jejunal mucosa (P<0.05, the NSP4, sIgA, IL-2, IL-4, mucin 1 and mucin 2 concentrations of jejunal mucosa (P<0.05, the ZO-1, occludin, Bax and Bcl-2 mRNA levels of the jejunal mucosa (P<0.05, and the microbiota of ileum and cecum (P<0.05 in the weaned pigs challenged by RV. These results suggest that supplementing LGG in diets alleviated the diarrhea of weaned piglets challenged by RV via inhibiting the virus multiplication and improving the jejunal mucosal barrier

  18. Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier.

    Science.gov (United States)

    Mansfield, Edward D H; de la Rosa, Victor R; Kowalczyk, Radoslaw M; Grillo, Isabelle; Hoogenboom, Richard; Sillence, Katy; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-08-16

    Functionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering. Diffusion coefficients were determined in water and in a mucin dispersion (using Nanoparticle Tracking Analysis), and penetration through a mucosal barrier was assessed using an ex vivo fluorescence technique. The addition of a single methylene group in the side chain significantly altered the penetration and diffusion of the materials in both mucin dispersions and mucosal tissue. Nanoparticles functionalised with poly(2-methyl-2-oxazoline) were significantly more diffusive than particles with poly(2-ethyl-2-oxazoline) while particles with poly(2-n-propyl-2-oxazoline) showed no significant increase compared to the unfunctionalised particles. These data show that variations in the polymer structure can radically alter their diffusive properties with clear implications for the future design of mucus penetrating systems.

  19. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    International Nuclear Information System (INIS)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-01-01

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  20. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A. [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States); Nusrat, Asma, E-mail: anusrat@emory.edu [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States)

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  1. Interleukin-17A induces bicarbonate secretion in normal human bronchial epithelial cells

    Science.gov (United States)

    Kreindler, James L.; Bertrand, Carol A.; Lee, Robert J.; Karasic, Thomas; Aujla, Shean; Pilewski, Joseph M.; Frizzell, Raymond A.; Kolls, Jay K.

    2009-01-01

    The innate immune functions of human airways include mucociliary clearance and antimicrobial peptide activity. Both functions may be affected by changes in epithelial ion transport. Interleukin-17A (IL-17A), which has a receptor at the basolateral membrane of airway epithelia, is a T cell cytokine that has been shown to increase mucus secretion and antimicrobial peptide production by human bronchial epithelial (HBE) cells. Furthermore, IL-17A levels are increased in sputum from patients during pulmonary exacerbations of cystic fibrosis. Therefore, we investigated the effects of IL-17A on basal, amiloride-sensitive, and forskolin-stimulated ion transport in mature, well-differentiated HBE cells. Exposure of HBE monolayers to IL-17A for 48 h induced a novel forskolin-stimulated bicarbonate secretion in addition to forskolin-stimulated chloride secretion and resulted in alkalinization of liquid on the mucosal surface of polarized cells. IL-17A-induced bicarbonate secretion was cystic fibrosis transmembrane conductance regulator (CFTR)-dependent, mucosal chloride-dependent, partially Na+-dependent, and sensitive to serosal, but not mucosal, stilbene inhibition. These data suggest that IL-17A modulates epithelial bicarbonate secretion and implicate a mechanism by which airway surface liquid pH changes may be abnormal in cystic fibrosis. PMID:19074559

  2. Colonization and effector functions of innate lymphoid cells in mucosal tissues.

    Science.gov (United States)

    Kim, Myunghoo; Kim, Chang H

    2016-10-01

    Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Mucosal IgA Responses: Damaged in Established HIV Infection—Yet, Effective Weapon against HIV Transmission

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    2017-11-01

    Full Text Available HIV infection not only destroys CD4+ T cells but also inflicts serious damage to the B-cell compartment, such as lymphadenopathy, destruction of normal B-cell follicle architecture, polyclonal hypergammaglobulinemia, increased apoptosis of B cells, and irreversible loss of memory B-cell responses with advanced HIV disease. Subepithelial B cells and plasma cells are also affected, which results in loss of mucosal IgG and IgA antibodies. This leaves the mucosal barrier vulnerable to bacterial translocation. The ensuing immune activation in mucosal tissues adds fuel to the fire of local HIV replication. We postulate that compromised mucosal antibody defenses also facilitate superinfection of HIV-positive individuals with new HIV strains. This in turn sets the stage for the generation of circulating recombinant forms of HIV. What can the mucosal B-cell compartment contribute to protect a healthy, uninfected host against mucosal HIV transmission? Here, we discuss proof-of-principle studies we have performed using passive mucosal immunization, i.e., topical administration of preformed anti-HIV monoclonal antibodies (mAbs as IgG1, dimeric IgA1 (dIgA1, and dIgA2 isotypes, alone or in combination. Our data indicate that mucosally applied anti-HIV envelope mAbs can provide potent protection against mucosal transmission of simian-human immunodeficiency virus. Our review also discusses the induction of mucosal antibody defenses by active vaccination and potential strategies to interrupt the vicious cycle of bacterial translocation, immune activation, and stimulation of HIV replication in individuals with damaged mucosal barriers.

  4. How to prevent contamination with Candida albicans during the fabrication of transplantable oral mucosal epithelial cell sheets

    Directory of Open Access Journals (Sweden)

    Ryo Takagi

    2015-06-01

    Full Text Available We have utilized patients' own oral mucosa as a cell source for the fabrication of transplantable epithelial cell sheets to treat limbal stem cell deficiency and mucosal defects after endoscopic submucosal dissection of esophageal cancer. Because there are abundant microbiotas in the human oral cavity, the oral mucosa was sterilized and 40 μg/mL gentamicin and 0.27 μg/mL amphotericin B were added to the culture medium in our protocol. Although an oral surgeon carefully checked each patient's oral cavity and although candidiasis was not observed before taking the biopsy, contamination with Candida albicans (C. albicans was detected in the conditioned medium during cell sheet fabrication. After adding 1 μg/mL amphotericin B to the transportation medium during transport from Nagasaki University Hospital to Tokyo Women's Medical University, which are 1200 km apart, no proliferation of C. albicans was observed. These results indicated that the supplementation of transportation medium with antimycotics would be useful for preventing contamination with C. albicans derived from the oral mucosa without hampering cell proliferation.

  5. Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines

    DEFF Research Database (Denmark)

    Glenn, Gregory M; Francis, David H; Danielsen, E Michael

    2009-01-01

    mucosal barrier as a key step in enteric pathogen survival. We review key observations relevant to the roles of LT and cholera toxin in protective immunity and the effects of these toxins on innate mucosal defenses. We suggest either that toxin-mediated fluid secretion mechanically disrupts the mucus...... layer or that toxins interfere with innate mucosal defenses by other means. Such a breach gives pathogens access to the enterocyte, leading to binding and pathogenicity by enterotoxigenic E. coli (ETEC) and other organisms. Given the common exposure to LT(+) ETEC by humans visiting or residing...... unexpectedly broad protective effects against LT(+) ETEC and mixed infections when using a toxin-based enteric vaccine. If toxins truly exert barrier-disruptive effects as a key step in pathogenesis, then a return to classic toxin-based vaccine strategies for enteric disease is warranted and can be expected...

  6. Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria.

    Directory of Open Access Journals (Sweden)

    Chen Sun

    Full Text Available A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs. Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis.

  7. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    Science.gov (United States)

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  8. HIV-1 impairs human retinal pigment epithelial barrier function: possible association with the pathogenesis of HIV-associated retinopathy.

    Science.gov (United States)

    Tan, Suiyi; Duan, Heng; Xun, Tianrong; Ci, Wei; Qiu, Jiayin; Yu, Fei; Zhao, Xuyan; Wu, Linxuan; Li, Lin; Lu, Lu; Jiang, Shibo; Liu, Shuwen

    2014-07-01

    The breakdown of human retinal pigment epithelial (HRPE) barrier is considered as the etiology of retinopathy, which affects the quality of life of HIV/AIDS patients. Here we demonstrate that HIV-1 could directly impair HRPE barrier function, which leads to the translocation of HIV-1 and bacteria. HRPE cells (D407) were grown to form polarized, confluent monolayers and treated with different HIV-1 infectious clones. A significant increase of monolayer permeability, as measured by trans-epithelial electrical resistance (TEER) and apical-basolateral movements of sodium fluorescein, was observed. Disrupted tightness of HRPE barrier was associated with the downregulation of several tight junction proteins in D407 cells, including ZO-1, Occludin, Claudin-1, Claudin-2, Claudin-3, Claudin-4, and Claudin-5, after exposure to HIV-1, without affecting the viability of cells. HIV-1 gp120 was shown to participate in the alteration of barrier properties, as evidenced by decreased TEER and weakened expression of tight junction proteins in D407 monolayers after exposure to pseudotyped HIV-1, UV-inactivated HIV-1, and free gp120, but not to an envelope (Env)-defective mutant of HIV. Furthermore, exposure to HIV-1 particles could induce the release of pro-inflammatory cytokines in D407, including IL-6 and MCP-1, both of which downregulated the expression of ZO-1 in the HRPE barrier. Disrupted HRPE monolayer allowed translocation of HIV-1 and bacteria across the epithelium. Overall, these findings suggest that HIV-1 may exploit its Env glycoprotein to induce an inflammatory state in HRPE cells, which could result in impairment of HRPE monolayer integrity, allowing virus and bacteria existing in ocular fluids to cross the epithelium and penetrate the HRPE barrier. Our study highlights the role of HIV-1 in the pathogenesis of HIV/AIDS-related retinopathy and suggests potential therapeutic targets for this ocular complication.

  9. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier.

    Science.gov (United States)

    Ulluwishewa, Dulantha; Anderson, Rachel C; Young, Wayne; McNabb, Warren C; van Baarlen, Peter; Moughan, Paul J; Wells, Jerry M; Roy, Nicole C

    2015-02-01

    Faecalibacterium prausnitzii, an abundant member of the human commensal microbiota, has been proposed to have a protective role in the intestine. However, it is an obligate anaerobe, difficult to co-culture in viable form with oxygen-requiring intestinal cells. To overcome this limitation, a unique apical anaerobic model of the intestinal barrier, which enabled co-culture of live obligate anaerobes with the human intestinal cell line Caco-2, was developed. Caco-2 cells remained viable and maintained an intact barrier for at least 12 h, consistent with gene expression data, which suggested Caco-2 cells had adapted to survive in an oxygen-reduced atmosphere. Live F. prausnitzii cells, but not ultraviolet (UV)-killed F. prausnitzii, increased the permeability of mannitol across the epithelial barrier. Gene expression analysis showed inflammatory mediators to be expressed at lower amounts in Caco-2 cells exposed to live F. prausnitzii than UV-killed F. prausnitzii, This, consistent with previous reports, implies that live F. prausnitzii produces an anti-inflammatory compound in the culture supernatant, demonstrating the value of a physiologically relevant co-culture system that allows obligate anaerobic bacteria to remain viable. © 2014 John Wiley & Sons Ltd.

  10. Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis.

    Science.gov (United States)

    Marks, Ellen; Goggins, Bridie J; Cardona, Jocelle; Cole, Siobhan; Minahan, Kyra; Mateer, Sean; Walker, Marjorie M; Shalwitz, Robert; Keely, Simon

    2015-02-01

    Pharmacological induction of hypoxia-inducible factor (HIF), a global transcriptional regulator of the hypoxic response, by prolyl hydroxylase inhibitors (PHDi) is protective in murine models of colitis, and epithelial cells are critical for the observed therapeutic efficacy. Because systemic HIF activation may lead to potentially negative off-target effects, we hypothesized that targeting epithelial HIF through oral delivery of PHDi would be sufficient to protect against colitis in a mouse model. Using a chemically induced trinitrobenzene sulfonic acid murine model of colitis, we compared the efficacy of oral and intraperitoneal (i.p.) delivery of the PHDi; AKB-4924 in preventing colitis, as measured by endoscopy, histology, barrier integrity, and immune profiling. Furthermore, we measured potential off-target effects, examining HIF and HIF target genes in the heart and kidney, as well as erythropoietin and hematocrit levels. Oral administration of AKB-4924 exhibited mucosal protection comparable i.p. dosing. Oral delivery of PHDi led to reduced colonic epithelial HIF stabilization compared with i.p. delivery, but this was still sufficient to induce transcription of downstream HIF targets. Furthermore, oral delivery of PHDi led to reduced stabilization of HIF and activation of HIF targets in extraintestinal organs. Oral delivery of PHDi therapies to this intestinal mucosa protects against colitis in animal models and represents a potential therapeutic strategy for inflammatory bowel disease, which also precludes unwanted extraintestinal effects.

  11. Immunology of Gut Mucosal Vaccines

    Science.gov (United States)

    Pasetti, Marcela F.; Simon, Jakub K.; Sztein, Marcelo B.; Levine, Myron M.

    2011-01-01

    Summary Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines. PMID:21198669

  12. Regeneration of Vocal Fold Mucosa Using Tissue-Engineered Structures with Oral Mucosal Cells

    Science.gov (United States)

    Fukahori, Mioko; Chitose, Shun-ichi; Sato, Kiminori; Sueyoshi, Shintaro; Kurita, Takashi; Umeno, Hirohito; Monden, Yu; Yamakawa, Ryoji

    2016-01-01

    Objectives Scarred vocal folds result in irregular vibrations during phonation due to stiffness of the vocal fold mucosa. To date, a completely satisfactory corrective procedure has yet to be achieved. We hypothesize that a potential treatment option for this disease is to replace scarred vocal folds with organotypic mucosa. The purpose of this study is to regenerate vocal fold mucosa using a tissue-engineered structure with autologous oral mucosal cells. Study Design Animal experiment using eight beagles (including three controls). Methods A 3 mm by 3 mm specimen of canine oral mucosa was surgically excised and divided into epithelial and subepithelial tissues. Epithelial cells and fibroblasts were isolated and cultured separately. The proliferated epithelial cells were co-cultured on oriented collagen gels containing the proliferated fibroblasts for an additional two weeks. The organotypic cultured tissues were transplanted to the mucosa-deficient vocal folds. Two months after transplantation, vocal fold vibrations and morphological characteristics were observed. Results A tissue-engineered vocal fold mucosa, consisting of stratified epithelium and lamina propria, was successfully fabricated to closely resemble the normal layered vocal fold mucosa. Laryngeal stroboscopy revealed regular but slightly small mucosal waves at the transplanted site. Immunohistochemically, stratified epithelium expressed cytokeratin, and the distributed cells in the lamina propria expressed vimentin. Elastic Van Gieson staining revealed a decreased number of elastic fibers in the lamina propria of the transplanted site. Conclusion The fabricated mucosa with autologous oral mucosal cells successfully restored the vocal fold mucosa. This reconstruction technique could offer substantial clinical advantages for treating intractable diseases such as scarring of the vocal folds. PMID:26730600

  13. Defining the Interaction of HIV-1 with the Mucosal Barriers of the Female Reproductive Tract

    Science.gov (United States)

    Carias, Ann M.; McCoombe, Scott; McRaven, Michael; Anderson, Meegan; Galloway, Nicole; Vandergrift, Nathan; Fought, Angela J.; Lurain, John; Duplantis, Maurice; Veazey, Ronald S.

    2013-01-01

    Worldwide, HIV-1 infects millions of people annually, the majority of whom are women. To establish infection in the female reproductive tract (FRT), HIV-1 in male ejaculate must overcome numerous innate and adaptive immune factors, traverse the genital epithelium, and establish infection in underlying CD4+ target cells. How the virus achieves this remains poorly defined. By utilizing a new technique, we define how HIV-1 interacts with different tissues of the FRT using human cervical explants and in vivo exposure in the rhesus macaque vaginal transmission model. Despite previous claims of the squamous epithelium being an efficient barrier to virus entry, we reveal that HIV-1 can penetrate both intact columnar and squamous epithelial barriers to depths where the virus can encounter potential target cells. In the squamous epithelium, we identify virus entry occurring through diffusive percolation, penetrating areas where cell junctions are absent. In the columnar epithelium, we illustrate that virus does not transverse barriers as well as previously thought due to mucus impediment. We also show a statistically significant correlation between the viral load of inocula and the ability of HIV-1 to pervade the squamous barrier. Overall, our results suggest a diffusive percolation mechanism for the initial events of HIV-1 entry. With these data, we also mathematically extrapolate the number of HIV-1 particles that penetrate the mucosa per coital act, providing a biological description of the mechanism for HIV-1 transmission during the acute and chronic stages of infection. PMID:23966398

  14. The world of epithelial sheets.

    Science.gov (United States)

    Honda, Hisao

    2017-06-01

    An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  15. The normal bacterial flora prevents GI disease

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The normal bacterial flora prevents GI disease. Inhibits pathogenic enteric bacteria. Decrease luminal pH; Secrete bacteriocidal proteins; Colonization resistance; Block epithelial binding – induce MUC2. Improves epithelial and mucosal barrier integrity. Produce ...

  16. Pathogenesis of human papillomavirus-associated mucosal disease.

    Science.gov (United States)

    Groves, Ian J; Coleman, Nicholas

    2015-03-01

    Human papillomaviruses (HPVs) are a necessary cause of carcinoma of the cervix and other mucosal epithelia. Key events in high-risk HPV (HRHPV)-associated neoplastic progression include persistent infection, deregulated expression of virus early genes in basal epithelial cells and genomic instability causing secondary host genomic imbalances. There are multiple mechanisms by which deregulated virus early gene expression may be achieved. Integration of virus DNA into host chromosomes is observed in the majority of cervical squamous cell carcinomas (SCCs), although in ∼15% of cases the virus remains extrachromosomal (episomal). Interestingly, not all integration events provide a growth advantage to basal cervical epithelial cells or lead to increased levels of the virus oncogenes E6 and E7, when compared with episome-containing basal cells. The factors that provide a competitive advantage to some integrants, but not others, are complex and include virus and host contributions. Gene expression from integrated and episomal HRHPV is regulated through host epigenetic mechanisms affecting the virus long control region (LCR), which appear to be of functional importance. New approaches to treating HRHPV-associated mucosal neoplasia include knockout of integrated HRHPV DNA, depletion of virus transcripts and inhibition of virus early gene transcription through targeting or use of epigenetic modifiers. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. Mucosal effects of tenofovir 1% gel.

    Science.gov (United States)

    Hladik, Florian; Burgener, Adam; Ballweber, Lamar; Gottardo, Raphael; Vojtech, Lucia; Fourati, Slim; Dai, James Y; Cameron, Mark J; Strobl, Johanna; Hughes, Sean M; Hoesley, Craig; Andrew, Philip; Johnson, Sherri; Piper, Jeanna; Friend, David R; Ball, T Blake; Cranston, Ross D; Mayer, Kenneth H; McElrath, M Juliana; McGowan, Ian

    2015-02-03

    Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored.

  18. Epithelial-microbial crosstalk in polymeric Ig receptor deficient mice

    NARCIS (Netherlands)

    Reikvam, D.H.; Derrien, M.M.N.; Islam, R.; Erofeev, A.; Grcic, V.; Sandvik, A.; Gaustad, P.; Meza-Zepeda, L.A.; Jahnsen, F.L.; Smidt, H.; Johansen, F.E.

    2012-01-01

    Innate and adaptive mucosal defense mechanisms ensure a homeostatic relationship with the large and complex mutualistic gut microbiota. Dimeric IgA and pentameric IgM are transported across the intestinal epithelium via the epithelial polymeric Ig receptor (pIgR) and provide a significant portion of

  19. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine

    Directory of Open Access Journals (Sweden)

    Eva Maier

    2017-12-01

    Full Text Available Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2 activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2. The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER, of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.

  20. Live Faecalibacterium prausnitzii Does Not Enhance Epithelial Barrier Integrity in an Apical Anaerobic Co-Culture Model of the Large Intestine.

    Science.gov (United States)

    Maier, Eva; Anderson, Rachel C; Roy, Nicole C

    2017-12-12

    Appropriate intestinal barrier maturation during infancy largely depends on colonization with commensal bacteria. Faecalibacterium prausnitzii is an abundant obligate anaerobe that colonizes during weaning and is thought to maintain colonic health throughout life. We previously showed that F. prausnitzii induced Toll-like receptor 2 (TLR2) activation, which is linked to enhanced tight junction formation. Therefore, we hypothesized that F. prausnitzii enhances barrier integrity, an important factor in appropriate intestinal barrier maturation. In order to test metabolically active bacteria, we used a novel apical anaerobic co-culture system that allows the survival of both obligate anaerobic bacteria and oxygen-requiring intestinal epithelial cells (Caco-2). The first aim was to optimize the culture medium to enable growth and active metabolism of F. prausnitzii while maintaining the viability and barrier integrity, as measured by trans-epithelial electrical resistance (TEER), of the Caco-2 cells. This was achieved by supplementing the apical cell culture medium with bacterial culture medium. The second aim was to test the effect of F. prausnitzii on TEER across Caco-2 cell layers. Live F. prausnitzii did not improve TEER, which indicates that its benefits are not via altering tight junction integrity. The optimization of the novel dual-environment co-culturing system performed in this research will enable the investigation of new probiotics originating from indigenous beneficial bacteria.

  1. EMMPRIN modulates epithelial barrier function through a MMP-mediated occludin cleavage: implications in dry eye disease.

    Science.gov (United States)

    Huet, Eric; Vallée, Benoit; Delbé, Jean; Mourah, Samia; Prulière-Escabasse, Virginie; Tremouilleres, Magali; Kadomatsu, Kenji; Doan, Serge; Baudouin, Christophe; Menashi, Suzanne; Gabison, Eric E

    2011-09-01

    Dry eye is a common disease that develops as a result of alteration of tear fluid, leading to osmotic stress and a perturbed epithelial barrier. Matrix metalloproteinase-9 (MMP-9) may be important in dry eye disease, as its genetic knockout conferred resistance to the epithelial disruption. We show that extracellular matrix metalloproteinase inducer (EMMPRIN; also termed CD147), an inducer of MMP expression, participates in the pathogenesis of dry eye through MMP-mediated cleavage of occludin, an important component of tight junctions. EMMPRIN expression was increased on the ocular surface of dry eye patients and correlated with those of MMP-9. High osmolarity in cell culture, mimicking dry eye conditions, increased both EMMPRIN and MMP-9 and resulted in the disruption of epithelial junctions through the cleavage of occludin. Exogenously added recombinant EMMPRIN had similar effects that were abrogated in the presence of the MMP inhibitor marimastat. Membrane occludin immunostaining was markedly increased in the apical corneal epithelium of both EMMPRIN and MMP-9 knock-out mice. Furthermore, an inverse correlation between EMMPRIN and occludin membrane staining was consistently observed both in vitro and in vivo as a function of corneal epithelial cells differentiation. These data suggest a possible role of EMMPRIN in regulating the amount of occludin at the cell surface in homeostasis beyond pathological situations such as dry eye disease, and EMMPRIN may be essential for the formation and maintenance of organized epithelial structure. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    Science.gov (United States)

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface

  3. Dietary Factors and Mucosal Immune Response in Celiac Disease Patients Having Persistent Symptoms Despite a Gluten-free Diet.

    Science.gov (United States)

    Laurikka, Pilvi; Lindfors, Katri; Oittinen, Mikko; Huhtala, Heini; Salmi, Teea; Lähdeaho, Marja-Leena; Ilus, Tuire; Mäki, Markku; Kaukinen, Katri; Kurppa, Kalle

    2018-03-02

    The aim of this study was to investigate the role of dietary factors, distinct small-bowel mucosal immune cell types, and epithelial integrity in the perpetuation of gastrointestinal symptoms in treated celiac disease patients. For unexplained reasons, many celiac disease patients suffer from persistent symptoms, despite a strict gluten-free diet (GFD) and recovered intestinal mucosa. We compared clinical and serological data and mucosal recovery in 22 asymptomatic and 25 symptomatic celiac patients on a long-term GFD. The density of CD3 and γδ intraepithelial lymphocytes (IELs), CD25 and FOXP3 regulatory T cells, and CD117 mast cells, and the expression of tight junction proteins claudin-3 and occludin, heat shock protein 60, interleukin 15, and Toll-like receptor 2 and 4 were evaluated in duodenal biopsies. All subjects kept a strict GFD and had negative celiac autoantibodies and recovered mucosal morphology. The asymptomatic patients had higher mean fiber intake (20.2 vs. 15.2 g/d, P=0.028) and density of CD3 IELs (59.3 vs. 45.0 cell/mm, P=0.045) than those with persistent symptoms. There was a similar but nonsignificant trend in γδ IELs (17.9 vs. 13.5, P=0.149). There were no differences between the groups in other parameters measured. Low fiber intake may predispose patients to persistent symptoms in celiac disease. There were no differences between the groups in the markers of innate immunity, epithelial stress or epithelial integrity. A higher number of IELs in asymptomatic subjects may indicate that the association between symptoms and mucosal inflammation is more complicated than previously thought.

  4. Enhanced mucosal re-epithelialization induced by short chain fatty acids in experimental colitis

    Directory of Open Access Journals (Sweden)

    Aguilar-Nascimento J.E.

    1999-01-01

    Full Text Available The short chain fatty acids (SCFA are the best nutrients for the colonocytes. Glucose is poorly used as a fuel but may be transformed into SCFA by colonic bacteria. The aim of this study was to investigate the effect of SCFA or glucose on experimental colitis. Colitis was induced in 30 Wistar rats by colonic instillation of 4% acetic acid. Five days later they were randomized to receive twice a day colonic lavage containing saline (controls, N = 10, 10% hypertonic glucose (N = 10 or SCFA (N = 10 until day 8 when they were killed. At autopsy, the colon was removed and weighed and the mucosa was evaluated macro- and microscopically and stripped out for DNA assay. Data are reported as mean ± SD or median [range] as appropriate. All animals lost weight but there was no difference between groups. Colon weight was significantly lower in the SCFA group (3.8 ± 0.5 g than in the control (5.3 ± 2.1 g and glucose (5.2 ± 1.3 g groups (P<0.05. Macroscopically, the severity of inflammation was less in SCFA (grade 2 [1-5] than in control (grade 9 [4-10] and glucose-treated (grade 9 [2-10] animals (P<0.01. Microscopically, ulceration of the mucosa was more severe in the glucose and control groups than in the SCFA group. The DNA content of the mucosa of SCFA-treated animals (8.2 [5.0-20.2] mg/g of tissue was higher than in glucose-treated (5.1 [4.2-8.5] mg/g of tissue; P<0.01 and control (6.2 [4.5-8.9] mg/g of tissue; P<0.05 animals. We conclude that SCFA may enhance mucosal re-epithelialization in experimental colitis, whereas hypertonic glucose is of no benefit.

  5. Interferon-β induced in female genital epithelium by HIV-1 glycoprotein 120 via Toll-like-receptor 2 pathway acts to protect the mucosal barrier.

    Science.gov (United States)

    Nazli, Aisha; Dizzell, Sara; Zahoor, Muhammad Atif; Ferreira, Victor H; Kafka, Jessica; Woods, Matthew William; Ouellet, Michel; Ashkar, Ali A; Tremblay, Michel J; Bowdish, Dawn Me; Kaushic, Charu

    2018-03-19

    More than 40% of HIV infections occur via female reproductive tract (FRT) through heterosexual transmission. Epithelial cells that line the female genital mucosa are the first line of defense against HIV-1 and other sexually transmitted pathogens. These sentient cells recognize and respond to external stimuli by induction of a range of carefully balanced innate immune responses. Previously, we have shown that in response to HIV-1 gp120, the genital epithelial cells (GECs) from upper reproductive tract induce an inflammatory response that may facilitate HIV-1 translocation and infection. In this study, we report that the endometrial and endocervical GECs simultaneously induce biologically active interferon-β (IFNβ) antiviral responses following exposure to HIV-1 that act to protect the epithelial tight junction barrier. The innate antiviral response was directly induced by HIV-1 envelope glycoprotein gp120 and addition of gp120 neutralizing antibody inhibited IFNβ production. Interferon-β was induced by gp120 in upper GECs through Toll-like receptor 2 signaling and required presence of heparan sulfate on epithelial cell surface. The induction of IFNβ was dependent upon activation of transcription factor IRF3 (interferon regulatory factor 3). The IFNβ was biologically active, had a protective effect on epithelial tight junction barrier and was able to inhibit HIV-1 infection in TZM-bl indicator cells and HIV-1 replication in T cells. This is the first report that recognition of HIV-1 by upper GECs leads to induction of innate antiviral pathways. This could explain the overall low infectivity of HIV-1 in the FRT and could be exploited for HIV-1 prophylaxis.Cellular and Molecular Immunology advance online publication, 19 March 2018; doi:10.1038/cmi.2017.168.

  6. A protective role for keratinocyte growth factor in a murine model of chemotherapy and radiotherapy-induced mucositis

    International Nuclear Information System (INIS)

    Borges, Luis; Rex, Karen L.; Chen, Jennifer N.; Wei, Ping; Kaufman, Stephen; Scully, Sheila; Pretorius, James K.; Farrell, Catherine L.

    2006-01-01

    Purpose: To evaluate the activity of palifermin (rHuKGF) in a murine model of mucosal damage induced by a radiotherapy/chemotherapy (RT/CT) regimen mimicking treatment protocols used in head-and-neck cancer patients. Methods and Materials: A model of mucosal damage induced by RT/CT was established by injecting female BDF1 mice with cisplatin (10 mg/kg) on Day 1; 5-fluorouracil (40 mg/kg/day) on Days 1-4, and irradiation (5 Gy/day) to the head and neck on Days 1-5. Palifermin was administered subcutaneously on Days -2 to 0 (5 mg/kg/day) and on Day 5 (5 mg/kg). Evaluations included body weight, organ weight, keratinocyte growth factor receptor expression, epithelial thickness, and cellular proliferation. Results: Initiation of the radiochemotherapeutic regimen resulted in a reduction in body weight in control animals. Palifermin administration suppressed weight loss and resulted in increased organ weight (salivary glands and small intestine), epithelial thickness (esophagus and tongue), and cellular proliferation (tongue and salivary glands). Conclusions: Administration of palifermin before RT/CT promotes cell proliferation and increases in epithelial thickness in the oral mucosa, salivary glands, and digestive tract. Palifermin administration before and after RT/CT mitigates weight loss and a trophic effect on the intestinal mucosa and salivary glands, suggesting that palifermin use should be investigated further in the RT/CT settings, in which intestinal mucositis and salivary gland dysfunction are predominant side effects of cytotoxic therapy

  7. Milk fermentation products of L. helveticus R389 activate calcineurin as a signal to promote gut mucosal immunity

    Directory of Open Access Journals (Sweden)

    Perdigón Gabriela

    2007-09-01

    Full Text Available Background Fermented milks containing probiotic bacteria are a way of delivering bioactive constituents to targets in the gastrointestinal tract. We reported previously that the fermentation of milk at constant pH 6 by L. helveticus R389 increased its content of peptide fractions, and the oral administration of the non-bacterial fraction (FMSpH6 to mice increased total secretory IgA in the intestinal lumen and enhanced the number of IgA and various cytokines producing cells as well as the secretion of IL-6 by small intestine epithelial cells. We also demonstrated that this FMSpH6 was effective for the prevention of Salmonella typhimurium infection in mice. In this work, we studied in mice the impact of the oral administration of the supernatant of milk fermented by L. helveticus R389 on the gut physiology by measuring parameters such as calcium channels and E-cadherin expression, the activation of the biological signal calcineurin and mast and goblet cells, as a way to determine some mechanisms involved in the immunomodulating effects of the milk fermentation products, observed in previous studies. We analyzed the impact of the supernatant of milk fermented by L. helveticus R389 at pH6-controlled on the expression of calcineurin and on the reinforcement of the ephitelial barrier, measuring parameters such as calcium channels and E-cadherin expression and in the reinforcement of the non-specific immunity determining mast cells and goblet cells associated to the gut. Results We observed an enhanced expression of TRPV6 channels in the duodenum, indicating an improved capacity for dietary Ca2+ uptake. We demonstrated an enhanced expression of calcineurin in the small intestine, able to upregulate immune parameters such as IL-2 and TNF production, with an increase in the number of these cytokines secreting cells. We determined an increase in the number of mucosal mast cells and goblet cells, which would mean an improved state of mucosal surveillance

  8. Pharmacological Protection From Radiation ± Cisplatin-Induced Oral Mucositis

    International Nuclear Information System (INIS)

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2012-01-01

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation ± cisplatin. Methods and Materials: Female C3H mice, ∼8 weeks old, were irradiated with five fractionated doses ± cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 × 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  9. Impact of removing mucosal barrier injury laboratory-confirmed bloodstream infections from central line-associated bloodstream infection rates in the National Healthcare Safety Network, 2014.

    Science.gov (United States)

    See, Isaac; Soe, Minn M; Epstein, Lauren; Edwards, Jonathan R; Magill, Shelley S; Thompson, Nicola D

    2017-03-01

    Central line-associated bloodstream infection (CLABSI) event data reported to the National Healthcare Safety Network from 2014, the first year of required use of the mucosal barrier injury laboratory-confirmed bloodstream infection (MBI-LCBI) definition, were analyzed to assess the impact of removing MBI-LCBI events from CLABSI rates. CLABSI rates decreased significantly in some location types after removing MBI-LCBI events, and MBI-LCBI events will be removed from publicly reported CLABSI rates. Published by Elsevier Inc.

  10. Integrated Stress Response Mediates Epithelial Injury in Mechanical Ventilation.

    Science.gov (United States)

    Dolinay, Tamas; Himes, Blanca E; Shumyatcher, Maya; Lawrence, Gladys Gray; Margulies, Susan S

    2017-08-01

    Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.

  11. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hiemstra, I. H.; Klaver, E. J.; Vrijland, K.

    2014-01-01

    The administration of helminths is considered a promising strategy for the treatment of autoimmune diseases due to their immunomodulatory properties. Currently, the application of the helminth Trichuris suis as a treatment for Crohn's disease is being studied in large multi-center clinical trials....... The intestinal epithelium forms an efficient barrier between the intestinal lumen containing the microbial flora and helminths, and dendritic cells (DCs) present in the lamina propria that determine the TH response. Here, we investigated how excreted/secreted (E/S) products of T. suis affect the barrier function...... of intestinal epithelial cells (IECs) in order to reach the DCs and modulate the immune response. We show that T. suis E/S products reduce the barrier function and the expression of the tight junction proteins EMP-1 and claudin-4 in IEC CMT93/69 monolayers in a glycan-dependent manner. This resulted...

  12. Mucus as a Barrier to Drug Delivery

    DEFF Research Database (Denmark)

    Bøgh, Marie; Nielsen, Hanne Mørck

    2015-01-01

    Viscoelastic mucus lines all mucosal surfaces of the body and forms a potential barrier to mucosal drug delivery. Mucus is mainly composed of water and mucins; high-molecular weight glycoproteins forming an entangled network. Consequently, mucus forms a steric barrier and due to its negative charge...... barrier to drug delivery. Current knowledge of mucus characteristics and barrier properties, as achieved by state-of-the-art methodologies, is the topic of this MiniReview emphasizing the gastrointestinal mucus and an overall focus on oral drug delivery. Cell culture-based in vitro models are well......, studies of peptide and protein drug diffusion in and through mucus and studies of mucus-penetrating nanoparticles are included to illustrate the mucus as a potentially important barrier to obtain sufficient bioavailability of orally administered drugs, and thus an important parameter to address...

  13. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Andrea C. Lei-Leston

    2017-09-01

    Full Text Available Pattern recognition receptors (PRR, such as NOD-like receptors (NLRs, sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host–lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.

  14. The role of JAM-A in inflammatory bowel disease: unrevealing the ties that bind.

    Science.gov (United States)

    Vetrano, Stefania; Danese, Silvio

    2009-05-01

    Tight junctions (TJ) are junctional proteins whose function is to maintain an intact intestinal epithelial barrier and regulate the paracellular movement of water and solutes. Altered TJ structure and epithelial permeability are observed in inflammatory bowel disease and seem to have an important role in the pathogenesis of these diseases. Junctional adhesion molecule-A (JAM-A) is a protein expressed at tight junctions of epithelial and endothelial cells, as well as on circulating leukocytes. Its function at tight junctions appears to be crucial as an extracellular adhesive molecule in the direct regulation of intestinal barrier function. This review focuses on the role of JAM-A in controlling mucosal homeostasis by regulating the integrity and permeability of epithelial barrier function.

  15. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles

    Science.gov (United States)

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina; Lien, Kathy; Tugizov, Sharof M.

    2018-01-01

    Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30–40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission. PMID:29277006

  16. Proximal Gut Mucosal Epithelial Homeostasis in Aged IL-1 Type I Receptor Knockout Mice After Starvation

    Science.gov (United States)

    2011-08-01

    increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia . Am J Cardiol. 2008; 101:69E. [PubMed: 18157968] 11. Iwakiri R...nutritional deficiencies in the elderly can be corrected by nutritional supplementation [5-7], especially among patients who are fed enterally [8-10...mechanistic approach regarding intestinal cell dysfunction in the elderly . Starvation causes mucosal atrophy and loss of mucosal height [32], and glutamine

  17. Mucosal stromal fibroblasts markedly enhance HIV infection of CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Jason A Neidleman

    2017-02-01

    Full Text Available Understanding early events of HIV transmission within mucosal tissues is vital for developing effective prevention strategies. Here, we report that primary stromal fibroblasts isolated from endometrium, cervix, foreskin, male urethra, and intestines significantly increase HIV infection of CD4+ T cells-by up to 37-fold for R5-tropic HIV and 100-fold for X4-tropic HIV-without themselves becoming infected. Fibroblasts were more efficient than dendritic cells at trans-infection and mediate this response in the absence of the DC-SIGN and Siglec-1 receptors. In comparison, mucosal epithelial cells secrete antivirals and inhibit HIV infection. These data suggest that breaches in the epithelium allow external or luminal HIV to escape an antiviral environment to access the infection-favorable environment of the stromal fibroblasts, and suggest that resident fibroblasts have a central, but previously unrecognized, role in HIV acquisition at mucosal sites. Inhibiting fibroblast-mediated enhancement of HIV infection should be considered as a novel prevention strategy.

  18. Gut microbiota utilize immunoglobulin A for mucosal colonization.

    Science.gov (United States)

    Donaldson, G P; Ladinsky, M S; Yu, K B; Sanders, J G; Yoo, B B; Chou, W-C; Conner, M E; Earl, A M; Knight, R; Bjorkman, P J; Mazmanian, S K

    2018-05-18

    The immune system responds vigorously to microbial infection while permitting lifelong colonization by the microbiome. Mechanisms that facilitate the establishment and stability of the gut microbiota remain poorly described. We found that a regulatory system in the prominent human commensal Bacteroides fragilis modulates its surface architecture to invite binding of immunoglobulin A (IgA) in mice. Specific immune recognition facilitated bacterial adherence to cultured intestinal epithelial cells and intimate association with the gut mucosal surface in vivo. The IgA response was required for B. fragilis (and other commensal species) to occupy a defined mucosal niche that mediates stable colonization of the gut through exclusion of exogenous competitors. Therefore, in addition to its role in pathogen clearance, we propose that IgA responses can be co-opted by the microbiome to engender robust host-microbial symbiosis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Lipopolysaccharide Binding Protein Enables Intestinal Epithelial Restitution Despite Lipopolysaccharide Exposure

    Science.gov (United States)

    Richter, Juli M.; Schanbacher, Brandon L.; Huang, Hong; Xue, Jianjing; Bauer, John A.; Giannone, Peter J.

    2011-01-01

    Intestinal epithelial restitution is the first part in the process of mucosal repair after injury in the intestine. Integrity of the intestinal mucosal barrier is important as a first line of defense against bacteria and endotoxin. Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality in extremely low birth weight infants, but its mechanisms are not well defined. Abnormal bacterial colonization, immature barrier function, innate immunity activation and inflammation likely play a role. Lipopolysaccharide (LPS) binding protein (LBP) is secreted by enterocytes in response to inflammatory stimuli and has concentration-dependent effects. At basal concentrations, LBP stimulates the inflammatory response by presenting LPS to its receptor. However, at high concentrations, LBP is able to neutralize LPS and prevent an exaggerated inflammatory response. We sought to determine how LBP would affect wound healing in an in vitro model of intestinal cell restitution and protect against intestinal injury in a rodent model of NEC. Immature intestinal epithelial cells (IEC-6) were seeded in poly-l-lysine coated 8 chamber slides and grown to confluence. A 500μm wound was created using a cell scraper mounted on the microscope to achieve uniform wounding. Media was replaced with media containing LPS +/− LBP. Slide wells were imaged after 0, 8, and 24 hours and then fixed. Cellular restitution was evaluated via digital images captured on an inverted microscope and wound closure was determined by automated analysis. TLR4 was determined by rtPCR after RNA isolation from wounded cells 24 hours after treatment. LPS alone attenuated wound healing in immature intestinal epithelium. This attenuation is reversed by 24 hours with increasing concentrations of LBP so that wound healing is equivalent to control (p< 0.001). TLR4 was increased with LPS alone but levels returned to that of control after addition of LBP in the higher concentrations. LBP had no effect on the

  20. Microbiome Composition and Function Drives Wound-Healing Impairment in the Female Genital Tract.

    Directory of Open Access Journals (Sweden)

    Alexander S Zevin

    2016-09-01

    Full Text Available The mechanism(s by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity.

  1. In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash.

    Science.gov (United States)

    Ramezanpour, Mahnaz; Murphy, Jae; Smith, Jason L P; Vreugde, Sarah; Psaltis, Alkis James

    2017-12-01

    Carrageenans have shown to reduce the viral load in nasal secretions and lower the incidence of secondary infections in children with common cold. Despite the widespread use of carrageenans in topical applications, the effect of carrageenans on the sinonasal epithelial barrier has not been elucidated. We investigate the effect of different carrageenans on the sinonasal epithelial barrier and inflammatory response in vitro. Iota and Kappa carrageenan delivered in saline irrigation solutions applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells from chronic rhinosinusitis patients and controls. Epithelial barrier structure was assessed by measuring the transepithelial electrical resistance (TEER) and immunolocalization of F actin. Ciliary beat frequency (CBF), toxicity, and inflammatory response was studied. Kappa or Iota carrageenan in the different solutions was not toxic, did not have detrimental effects on epithelial barrier structure and CBF. Rather, application of Kappa carrageenan significantly increased TEER and suppressed interleukin 6 (IL-6) secretion in ALI cultures from CRS patients. Kappa or Iota carrageenan solution was safe and did not negatively affect epithelial barrier function. Kappa carrageenan increased TEER and decreased IL-6 production in CRS patients, indicating positive effects on epithelial barrier function in vitro. © 2017 ARS-AAOA, LLC.

  2. High level expression of human epithelial β-defensins (hBD-1, 2 and 3 in papillomavirus induced lesions

    Directory of Open Access Journals (Sweden)

    Chong Kong T

    2006-09-01

    Full Text Available Abstract Background Epithelial defensins including human β-defensins (hBDs and α-defensins (HDs are antimicrobial peptides that play important roles in the mucosal defense system. However, the role of defensins in papillomavirus induced epithelial lesions is unknown. Results Papilloma tissues were prospectively collected from 15 patients with recurrent respiratory papillomatosis (RRP and analyzed for defensins and chemokine IL-8 expression by quantitative, reverse-transcriptase polymerase chain reaction (RT-PCR assays. HBD-1, -2 and -3 mRNAs were detectable in papilloma samples from all RRP patients and the levels were higher than in normal oral mucosal tissues from healthy individuals. Immunohistochemical analysis showed that both hBD-1 and 2 were localized in the upper epithelial layers of papilloma tissues. Expression of hBD-2 and hBD-3 appeared to be correlated as indicated by scatter plot analysis (r = 0.837, p Conclusion Human β-defensins are upregulated in respiratory papillomas. This novel finding suggests that hBDs might contribute to innate and adaptive immune responses targeted against papillomavirus-induced epithelial lesions.

  3. Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection.

    Directory of Open Access Journals (Sweden)

    Andrew Leber

    Full Text Available Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and even death. To better understand the dynamics of mucosal immunity during C. difficile infection from initiation through expansion to resolution, we built a computational model of the mucosal immune response to the bacterium. The model was calibrated using data from a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17 (Th17 effector responses in the colonic lamina propria and luminal commensal bacteria populations in the clearance of C. difficile and colonic pathology, whereas regulatory T (Treg cells responses are associated with the recovery phase. In addition, the production of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species. Computational simulations suggest that the removal of neutrophil and epithelial cell derived anti-microbial inhibitions, separately and together, on commensal bacterial regrowth promote recovery and minimize colonic inflammatory pathology. Simulation results predict a decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the colonic lamina propria, and length of infection with accelerated commensal bacteria re-growth through altered anti-microbial inhibition. Computational modeling provides novel insights on the therapeutic value of repopulating the colonic microbiome and inducing regulatory mucosal immune responses during C. difficile infection. Thus, modeling mucosal immunity-gut microbiota interactions has the potential to guide the development of targeted fecal transplantation therapies in the context of precision medicine interventions.

  4. NHE8 plays important roles in gastric mucosal protection

    Science.gov (United States)

    Xu, Hua; Li, Jing; Chen, Huacong; Wang, Chunhui

    2013-01-01

    Sodium/hydrogen exchanger (NHE) 8 is an apically expressed membrane protein in the intestinal epithelial cells. It plays important roles in sodium absorption and bicarbonate secretion in the intestine. Although NHE8 mRNA has been detected in the stomach, the precise location and physiological role of NHE8 in the gastric glands remain unclear. In the current study, we successfully detected the expression of NHE8 in the glandular region of the stomach by Western blotting and located NHE8 protein at the apical membrane in the surface mucous cells by a confocal microscopic method. We also identified the expression of downregulated-in-adenoma (DRA) in the surface mucous cells in the stomach. Using NHE8−/− mice, we found that NHE8 plays little or no role in basal gastric acid production, yet NHE8−/− mice have reduced gastric mucosal surface pH and higher incidence of developing gastric ulcer. DRA expression was reduced significantly in the stomach in NHE8−/− mice. The propensity for gastric ulcer, reduced mucosal surface pH, and low DRA expression suggest that NHE8 is indirectly involved in gastric bicarbonate secretion and gastric mucosal protection. PMID:23220221

  5. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera Hernández (Mónica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  6. Cytokine Tuning of Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    Caroline Andrews

    2018-06-01

    Full Text Available The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.

  7. Effects of stimulated repopulation on oral mucositis during conventional radiotherapy

    International Nuclear Information System (INIS)

    Doerr, W.; Jacubek, A.; Kummermehr, J.; Herrmann, Th.; Doelling-Jochem, I.; Eckelt, U.

    1995-01-01

    The effect of local conditioning of human oral mucosa by silver nitrate solution (3%) on epithelial proliferation rates was tested in 11 healthy volunteers by in vitro labelling of biopsies with tritiated thymidine. Compared to control biopsies from 13 volunteers, stimulation over 3 days, 3 times per day, yielded a significant (p = 0.006) increase in the epithelial labelling index (LI) from 4.75 ± 0.32% to 6.85 ± 0.65%, i.e., by 44%. The increase in the absolute number of labelled cells per mm epithelial length was dependent on the overall cell density at the various intraoral sites and varied between 45% in the maxillary vestibule and 91% at the floor of the mouth. In an analysis of variance, stimulation turned out to be the most important source causing the effect (p = 0.011 for LI and 0.015 for labelled cells per mm). In a radiotherapy trial with conventional postoperative treatment with 5 x 2 Gy/week to a total dose of 60 Gy in 6 weeks, the left buccal mucosa in 10 patients with squamous cell carcinomas of the head and neck was conditioned (3% silver nitrate, 3 times per day, 5 days before and the first 2 days of radiotherapy) while the contralateral mucosa, receiving an identical dose, served as individual control. Mucositis scores according to the EORTC/RTOG or the Dische system showed that the time course and severity of the mucosal response was almost identical in both cheeks, which is in clear contrast to a previous clinical study (Maciejewski et al. Radiother. Oncol. 22, 7-11, 1991). Differences in radiation dose intensity, i.e., weekly dose, in these studies are discussed as a tentative explanation for the different clinical findings

  8. Impact of Helicobacter pylori on the healing process of the gastric barrier

    Science.gov (United States)

    Mnich, Eliza; Kowalewicz-Kulbat, Magdalena; Sicińska, Paulina; Hinc, Krzysztof; Obuchowski, Michał; Gajewski, Adrian; Moran, Anthony P; Chmiela, Magdalena

    2016-01-01

    AIM To determine the impact of selected well defined Helicobacter pylori (H. pylori) antigens on gastric barrier cell turnover. METHODS In this study, using two cellular models of gastric epithelial cells and fibroblasts, we have focused on exploring the effects of well defined H. pylori soluble components such as glycine acid extract antigenic complex (GE), subunit A of urease (UreA), cytotoxin associated gene A protein (CagA) and lipopolysaccharide (LPS) on cell turnover by comparing the wound healing capacity of the cells in terms of their proliferative and metabolic activity as well as cell cycle distribution. Toxic effects of H. pylori components have been assessed in an association with damage to cell nuclei and inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation. RESULTS We showed that H. pylori GE, CagA and UreA promoted regeneration of epithelial cells and fibroblasts, which is necessary for effective tissue healing. However, in vivo increased proliferative activity of these cells may constitute an increased risk of gastric neoplasia. In contrast, H. pylori LPS showed a dose-dependent influence on the process of wound healing. At a low concentration (1 ng/mL) H. pylori LPS accelerated of healing epithelial cells, which was linked to significantly enhanced cell proliferation and MTT reduction as well as lack of alterations in cell cycle and downregulation of epidermal growth factor (EGF) production as well as cell nuclei destruction. By comparison, H. pylori LPS at a high concentration (25 ng/mL) inhibited the process of wound repair, which was related to diminished proliferative activity of the cells, cell cycle arrest, destruction of cell nuclei and downregulation of the EGF/STAT3 signalling pathway. CONCLUSION In vivo H. pylori LPS driven effects might lead to the maintenance of chronic inflammatory response and pathological disorders on the level of the gastric mucosal barrier. PMID:27672275

  9. Effects of plasma CGRP and NPY level changes on intestinal mucosal barrier injury after scald in rats

    International Nuclear Information System (INIS)

    Shao Lijian; Zhu Qingxian; He Ming; Zhang Hongyan

    2004-01-01

    Objective: To investigate the significance of plasma CGRP and NPY levels changes immediately after scald in rats. Methods: Thirty-two rat models of 30% TBSA III degree scald were prepared. Eight animals each were sacrificed at 3, 6,12 and 24 hrs; taking blood samples for determination of plasma CGRP, NPY levels and 5 cm of ileum for pathologic study. As controls, eight animals without scald were treated in the same way. Results: Plasma CGRP levels were decreased significantly after scald, reaching bottom value at 12 hr and remained lower than those in controls at 24 hr (p 0.05). Plasma levels of CGRP were negatively correlated to plasma NPY levels (p<0.01). Ileum mucosal injuries presented as edema, congestion with necrosis and slough of epithelium were most marked at 12 hr. Conclusion: Plasma CGRP and NPY levels changed significantly after scald and were mutually negatively correlated. Post-scald intestinal mucosa barrier injuries were possibly related to the changes of levels of those vasoactive peptides

  10. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells.

    Science.gov (United States)

    Mikami, Hiroshi; Kuwahara, Go; Nakamura, Nobuyuki; Yamato, Masayuki; Tanaka, Masatoshi; Kodama, Shohta

    2012-05-01

    We fabricated novel tissue engineered urethral grafts using autologously harvested oral cells. We report their viability in a canine model. Oral tissues were harvested by punch biopsy and divided into mucosal and muscle sections. Epithelial cells from mucosal sections were cultured as epithelial cell sheets. Simultaneously muscle derived cells were seeded on collagen mesh matrices to form muscle cell sheets. At 2 weeks the sheets were joined and tubularized to form 2-layer tissue engineered urethras, which were autologously grafted to surgically induced urethral defects in 10 dogs in the experimental group. Tissue engineered grafts were not applied to the induced urethral defect in control dogs. The dogs were followed 12 weeks postoperatively. Urethrogram and histological examination were done to evaluate the grafting outcome. We successfully fabricated 2-layer tissue engineered urethras in vitro and transplanted them in dogs in the experimental group. The 12-week complication-free rate was significantly higher in the experimental group than in controls. Urethrogram confirmed urethral patency without stricture in the complication-free group at 12 weeks. Histologically urethras in the transplant group showed a stratified epithelial layer overlying well differentiated submucosa. In contrast, urethras in controls showed severe fibrosis without epithelial layer formation. Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Antimicrobial aspects of inflammatory resolution in the mucosa: A role for pro-resolving mediators1

    Science.gov (United States)

    Campbell, Eric L.; Serhan, Charles N.; Colgan, Sean P.

    2011-01-01

    Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial antigens, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier, in recent years numerous findings implicate an active role of the epithelium with pro-resolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and pro-resolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosalhomeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to pro-resolving lipid mediators. PMID:21934099

  12. Methotrexate-induced intestinal mucositis delays gastric emptying and gastrointestinal transit of liquids in awake rats

    Directory of Open Access Journals (Sweden)

    Pedro M. G. Soares

    2011-03-01

    Full Text Available CONTEXT: Methotrexate and other anticancer agents can induce intestinal mucositis, which is one of the most common limiting factor that prevent further dose escalation of the methotrexate. OBJECTIVES: To evaluate the gastric emptying and gastrointestinal transit of liquids in methotrexate-induced intestinal mucositis. METHODS: Wistar rats received methotrexate (2.5 mg/kg/day for 3 days, subcutaneously or saline. After 1, 3 and 7 days, sections of duodenum, jejunum and ileum were removed for assessment of epithelial damage and myeloperoxidase activity (biochemical marker of granulocyte infiltration. Others rats were pre-treated with methotrexate or saline, gavage-fed after 3 or 7 days with a standard test liquid meal, and sacrificed 10, 20 or 30-min later. Gastric and small intestine dye recoveries were measured by spectrophotometry. RESULTS: After 3 days of methotrexate, there was an epithelial intestinal damage in all segments, with myeloperoxidase activity increase in both in duodenum and ileum. Seven days after methotrexate, we observed a complete reversion of this intestinal damage. There was an increase in gastric dye recoveries after 10, 20, and 30-min post-prandial intervals after 3 days, but not after 7 days, of methotrexate. Intestine dye recoveries were decreased in the first and second segments at 10 min, in the third at 20 min, and in the second and third at 30 min, only after 3 days of methotrexate treatment. CONCLUSION: Methotrexate-induced intestinal mucositis delays gastric emptying and gastrointestinal transit of liquids in awake rats.

  13. Epithelial cell-cell junctions and plasma membrane domains

    NARCIS (Netherlands)

    Giepmans, Ben N. G.; van Ijzendoorn, Sven C. D.

    Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally,

  14. Mucosal immunity and B cells in teleosts: effect of vaccination and stress.

    Directory of Open Access Journals (Sweden)

    David eParra

    2015-07-01

    Full Text Available Fish are subjected to several insults from the environment, which may endanger animal survival. Mucosal surfaces are the first line of defense against those threats and they act as a physical barrier to protect the animal but also function as immunologically active tissues. Thus, four mucosal-associated lymphoid tissues have been described in fish, which lead the immune responses in gut, skin, gills and nose. Humoral and cellular immunity, as well as its regulation and the factors that influence the response in these mucosal lymphoid tissues is still not well known in most of fish species. Mucosal B-lymphocytes and immunoglobulins (Igs are one of the key players in the immune response after vaccination. Recent findings about IgT in trout have delimited the compartmentalization of immune response in systemic and mucosal. The existence of IgT as a specialized mucosa Ig gives us the opportunity of measuring mucosal specific responses after vaccination, a fact that was not possible until recently in most of the fish species. Vaccination process is influenced by several factors, being stress one of the main stimuli determining the success of the vaccine. Thus, one of the major goals in a vaccination process is to avoid possible situations of stress, which might interfere with fish immune performance. However, the interaction between immune and neuroendocrine systems at mucosal tissues is still unknown. In this review we will summarized the latest findings about B-lymphocytes and immunoglobulins in mucosal immunity and the effect of stress and vaccines on B cell response at mucosal sites. It is important to point out that a small number of studies have been published regarding mucosal stress and very few about the influence of stress over mucosal B-lymphocytes.

  15. Mechanical Barriers Restrict Invasion of Herpes Simplex Virus 1 into Human Oral Mucosa.

    Science.gov (United States)

    Thier, Katharina; Petermann, Philipp; Rahn, Elena; Rothamel, Daniel; Bloch, Wilhelm; Knebel-Mörsdorf, Dagmar

    2017-11-15

    Oral mucosa is one of the main target tissues of the human pathogen herpes simplex virus 1 (HSV-1). How the virus overcomes the protective epithelial barriers and penetrates the tissue to reach its receptors and initiate infection is still unclear. Here, we established an ex vivo infection assay with human oral mucosa that allows viral entry studies in a natural target tissue. The focus was on the susceptibility of keratinocytes in the epithelium and the characterization of cellular receptors that mediate viral entry. Upon ex vivo infection of gingiva or vestibular mucosa, we observed that intact human mucosa samples were protected from viral invasion. In contrast, the basal layer of the oral epithelium was efficiently invaded once the connective tissue and the basement membrane were removed. Later during infection, HSV-1 spread from basal keratinocytes to upper layers, demonstrating the susceptibility of the stratified squamous epithelium to HSV-1. The analysis of potential receptors revealed nectin-1 on most mucosal keratinocytes, whereas herpesvirus entry mediator (HVEM) was found only on a subpopulation of cells, suggesting that nectin-1 acts as primary receptor for HSV-1 in human oral mucosa. To mimic the supposed entry route of HSV-1 via microlesions in vivo , we mechanically wounded the mucosa prior to infection. While we observed a limited number of infected keratinocytes in some wounded mucosa samples, other samples showed no infected cells. Thus, we conclude that mechanical wounding of mucosa is insufficient for the virus to efficiently overcome epithelial barriers and to make entry-mediating receptors accessible. IMPORTANCE To invade the target tissue of its human host during primary infection, herpes simplex virus (HSV) must overcome the epithelial barriers of mucosa, skin, or cornea. For most viruses, the mechanisms underlying the invasion into the target tissues of their host organism are still open. Here, we established an ex vivo infection model of

  16. Interactions between bacteria and the intestinal mucosa: Do enteric neurotransmitters acting on epithelium cells influence mucosal colonization or infection?

    Science.gov (United States)

    The mechanisms governing the ability of bacteria to adhere to and colonize human and animal hosts in health and disease are still incompletely understood. Throughout the extensive mucosal surfaces of the body that are in contact with the external environment, epithelial cells represent the first po...

  17. Endoscopic diode laser welding of mucosal grafts on the larynx: a new technique.

    Science.gov (United States)

    Wang, Z; Pankratov, M M; Rebeiz, E E; Perrault, D F; Shapshay, S M

    1995-01-01

    Epithelial coverage of a laryngotracheal wound is an important factor in preventing stenosis, and endoscopic transplantation of a free mucosal graft without stents or sutures would be a significant therapeutic advance. In vitro and in vivo canine studies were performed to explore the feasibility of transplantation with a low-power diode laser (400 mW) enhanced by indocyanine green dye-doped albumin. The tensile strength of graft adherence in 10 cadaver larynges was strong (35.25 +/- 10.39 g). Survival studies in live canine models with a specially designed endoscopic instrument set showed excellent healing at 6, 14, and 28 days. Healing was documented with photography and by histologic examination. Successful endoscopic transplantation of a free mucosal graft should improve results of treatment for laryngotracheal stenosis and laryngeal reconstructive surgery.

  18. Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis

    Directory of Open Access Journals (Sweden)

    Dana Ditgen

    2016-01-01

    Full Text Available The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx and Trx-like protein (Trx-lp were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite’s mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa.

  19. Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications.

    Science.gov (United States)

    Yarbrough, Victoria L; Winkle, Sean; Herbst-Kralovetz, Melissa M

    2015-01-01

    At the interface of the external environment and the mucosal surface of the female reproductive tract (FRT) lies a first-line defense against pathogen invasion that includes antimicrobial peptides (AMP). Comprised of a unique class of multifunctional, amphipathic molecules, AMP employ a wide range of functions to limit microbial invasion and replication within host cells as well as independently modulate the immune system, dampen inflammation and maintain tissue homeostasis. The role of AMP in barrier defense at the level of the skin and gut has received much attention as of late. Given the far reaching implications for women's health, maternal and fetal morbidity and mortality, and sexually transmissible and polymicrobial diseases, we herein review the distribution and function of key AMP throughout the female reproductive mucosa and assess their role as an essential immunological barrier to microbial invasion throughout the reproductive cycle of a woman's lifetime. A comprehensive search in PubMed/Medline was conducted related to AMP general structure, function, signaling, expression, distribution and barrier function of AMP in the FRT, hormone regulation of AMP, the microbiome of the FRT, and AMP in relation to implantation, pregnancy, fertility, pelvic inflammatory disease, complications of pregnancy and assisted reproductive technology. AMP are amphipathic peptides that target microbes for destruction and have been conserved throughout all living organisms. In the FRT, several major classes of AMP are expressed constitutively and others are inducible at the mucosal epithelium and by immune cells. AMP expression is also under the influence of sex hormones, varying throughout the menstrual cycle, and dependent on the vaginal microbiome. AMP can prevent infection with sexually transmissible and opportunistic pathogens of the female reproductive tissues, although emerging understanding of vaginal dysbiosis suggests induction of a unique AMP profile with increased

  20. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    Directory of Open Access Journals (Sweden)

    Maria Fiorentino

    Full Text Available Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa and might contribute (along with enterotoxins to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them

  1. Effects of positive acceleration exposure on intestinal mucosal barrier and sIgA level in rats

    Directory of Open Access Journals (Sweden)

    Jie QIU

    2016-10-01

    Full Text Available Objective  To explore the effect of positive acceleration (+Gz on immune barrier of intestinal mucosa in rats. Methods  Thirty two male SD rats were randomly divided into 4 groups (8 each: Group A (control group, Group B (+5Gz group, Group C (+10Gz group and Group D (repeated exposure group. The animal centrifuge was used to simulate the exposure of acceleration. Group A was no disposed. +5Gz group and +10Gz group were subjected to centrifugal force of +5Gz and +10Gz respectively for 5min; repeated exposure group was continuously exposed to 1.5min under +5Gz value, 2min under +10Gz value and 1.5min under +5Gz. All groups were exposed to the respective acceleration once daily for 5 days. The damage of intestinal mucosa was observed by light microscopy after the experiment was finished, and the content of sIgA in intestinal mucosa was detected by ELISA. Results  Except for group A, intestinal mucosal injury was observed in the other three groups. Group D was shown as the most serious one, followed by group C and group B. Compared with group A, the level of sIgA was significantly lower in other three groups (P<0.05. The level of sIgA in group C was significantly lower than that in group B (P<0.05 and higher than that in group D (P<0.05. Conclusion  +Gz exposure can result in intestinal injury and weaken the function of immune barrier of intestinal mucosa in rats. DOI: 10.11855/j.issn.0577-7402.2016.10.14

  2. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B.; Mandel, U.

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrate......-T antigen. The changes induced by wounding in the expression of collagen IV, laminin gamma2-chain (laminin-5), and laminin alpha5-chain were similar to those found in skin wounds and served to define the region of epithelial movement. This region was found to show a marked increase in staining for both...... epithelium, a pattern of expression similar to K16, which was also strongly upregulated in both the outgrowth and the adjacent nonwounded epithelium. These findings provide further support for an influence of such carbohydrate structures on the migratory behavior of epithelial cells....

  3. Human Secretory IgM Antibodies Activate Human Complement and Offer Protection at Mucosal Surface.

    Science.gov (United States)

    Michaelsen, T E; Emilsen, S; Sandin, R H; Granerud, B K; Bratlie, D; Ihle, O; Sandlie, I

    2017-01-01

    IgM molecules circulate in serum as large polymers, mainly pentamers, which can be transported by the poly-Ig receptor (pIgR) across epithelial cells to mucosal surfaces and released as secretory IgM (SIgM). The mucosal SIgM molecules have non-covalently attached secretory component (SC), which is the extracellular part of pIgR which is cleaved from the epithelial cell membrane. Serum IgM antibodies do not contain SC and have previously been shown to make a conformational change from 'a star' to a 'staple' conformation upon reaction with antigens on a cell surface, enabling them to activate complement. However, it is not clear whether SIgM similarly can induce complement activation. To clarify this issue, we constructed recombinant chimeric (mouse/human) IgM antibodies against hapten 5-iodo-4-hydroxy-3-nitro-phenacetyl (NIP) and in addition studied polyclonal IgM formed after immunization with a meningococcal group B vaccine. The monoclonal and polyclonal IgM molecules were purified by affinity chromatography on a column containing human SC in order to isolate joining-chain (J-chain) containing IgM, followed by addition of excess amounts of soluble SC to create SIgM (IgM J+ SC+). These SIgM preparations were tested for complement activation ability and shown to be nearly as active as the parental IgM J+ molecules. Thus, SIgM may offer protection against pathogens at mucosal surface by complement-mediated cell lysis or by phagocytosis mediated by complement receptors present on effector cells on mucosa. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  4. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  5. Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hans Linde Nielsen

    Full Text Available Campylobacter concisus infections of the gastrointestinal tract can be accompanied by diarrhea and inflammation, whereas colonization of the human oral cavity might have a commensal nature. We focus on the pathophysiology of C. concisus and the effects of different clinical oral and fecal C. concisus strains on human HT-29/B6 colon cells. Six oral and eight fecal strains of C. concisus were isolated. Mucus-producing HT-29/B6 epithelial monolayers were infected with the C. concisus strains. Transepithelial electrical resistance (R(t and tracer fluxes of different molecule size were measured in Ussing chambers. Tight junction (TJ protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29/B6 cells and impaired epithelial barrier function, characterized by a time- and dose-dependent decrease in R(t either after infection from the apical side but even more from the basolateral compartment. TJ protein expression changes were sparse, only in apoptotic areas of infected monolayers TJ proteins were redistributed. Solely the barrier-forming TJ protein claudin-5 showed a reduced expression level to 66±8% (P<0.05, by expression regulation from the gene. Concomitantly, Lactate dehydrogenase release was elevated to 3.1±0.3% versus 0.7±0.1% in control (P<0.001, suggesting cytotoxic effects. Furthermore, oral and fecal C. concisus strains elevated apoptotic events to 5-fold. C. concisus-infected monolayers revealed an increased permeability for 332 Da fluorescein (1.74±0.13 vs. 0.56±0.17 10(-6 cm/s in control, P<0.05 but showed no difference in permeability for 4 kDa FITC-dextran (FD-4. The same was true in camptothecin-exposed monolayers, where camptothecin was used for apoptosis induction.In conclusion, epithelial barrier dysfunction by oral and

  6. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease.

    Science.gov (United States)

    Fujita, Tsuyoshi; Yoshimoto, Tetsuya; Kajiya, Mikihito; Ouhara, Kazuhisa; Matsuda, Shinji; Takemura, Tasuku; Akutagawa, Keiichi; Takeda, Katsuhiro; Mizuno, Noriyoshi; Kurihara, Hidemi

    2018-05-01

    Periodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue. The disorganization of cell-cell interactions and subsequent inflammation contribute to the initiation of periodontal disease. These make us consider that regulation of host defensive functions, epithelial barrier and neutrophil activity, may become novel preventive methods for periodontal inflammation. Based on this concept, we have found that several agents regulate the barrier function of gingival epithelial cells and suppress the accumulation of neutrophils in the gingival epithelium. We herein introduce the actions of irsogladine maleate, azithromycin, amphotericin B, and Houttuynia cordata (dokudami in Japanese), which is commonly used in traditional medicine, on the epithelial barrier and neutrophil migration in gingival epithelial cells in vivo and in vitro , in order to provide support for the clinical application of these agents to the prevention of periodontal inflammation.

  7. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Shao, Yujing; Guo, Yuming; Wang, Zhong

    2013-07-01

    This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P chickens challenged with Salmonella Typhimurium.

  8. Effect of sucralfate on gastric permeability in an ex vivo model of stress-related mucosal disease in dogs.

    Science.gov (United States)

    Hill, Tracy L; Lascelles, B Duncan X; Blikslager, Anthony T

    2018-03-01

    Sucralfate is a gastroprotectant with no known systemic effects. The efficacy of sucralfate for prevention and treatment of stress-related mucosal diseases (SRMD) in dogs is unknown. To develop a canine ex vivo model of SRMD and to determine the effect of sucralfate on mucosal barrier function in this model. Gastric antral mucosa was collected immediately postmortem from 29 random-source apparently healthy dogs euthanized at a local animal control facility. Randomized experimental trial. Sucralfate (100 mg/mL) was applied to ex vivo canine gastric mucosa concurrent with and after acid injury. Barrier function was assessed by measurement of transepithelial electrical resistance (TER) and radiolabeled mannitol flux. Application of acidified Ringers solution to the mucosal side of gastric antrum caused a reduction in gastric barrier function, and washout of acidified Ringers solution allowed recovery of barrier function (TER: 34.0 ± 2.8% of control at maximum injury, 71.3 ± 5.5% at recovery, P < .001). Sucralfate application at the time of injury or after injury significantly hastened recovery of barrier function (TER: 118.0 ± 15.2% of control at maximum injury, P < .001 and 111.0 ± 15.5% at recovery, P = .35). Sucralfate appeared effective at restoring defects in gastric barrier function induced by acid and accelerating repair of tissues subjected to acid in this model, suggesting that sucralfate could have utility for the treatment and prevention of SRMD in dogs. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    International Nuclear Information System (INIS)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-01-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO 2 NPs (size range 4–33 nm), two preparations of CeO 2 NPs (9–36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15–240 μg/cm 2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm 2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm 2 , in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO 2 and CeO 2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured

  10. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Science.gov (United States)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-09-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO2 NPs (size range 4-33 nm), two preparations of CeO2 NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 μg/cm2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm2, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO2 and CeO2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured nanomaterials.

  11. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  12. Chemotherapy-Induced and/or Radiation Therapy-Induced Oral Mucositis-Complicating the Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    Maddireddy Umameshwar Rao Naidu

    2004-09-01

    Full Text Available The term mucositis is coined to describe the adverse effects of radiation and chemotherapy treatments. Mucositis is one of the most common adverse reactions encountered in radiation therapy for head and neck cancers, as well as in chemotherapy, in particular with drugs affecting DNA synthesis (Sphase-specific agents such as fluorouracil, methotrexate, and cytarabine. Mucositis may limit the patient's ability to tolerate chemotherapy or radiation therapy, and nutritional status is compromised. It may drastically affect cancer treatment as well as the patient's quality of life. The incidence and severity of mucositis will vary from patient to patient. It will also vary from treatment to treatment. It is estimated that there is 40% incidence of mucositis in patients treated with standard chemotherapy and this will not only increase with the number of treatment cycles but also with previous episodes. Similarly, patients who undergo bone marrow transplantation and who receive high doses of chemotherapy have a 76% chance of getting mucositis. Patients receiving radiation, in particular to head and neck cancers, have a 30% to 60% chance. The exact pathophysiology of development is not known, but it is thought to be divided into direct and indirect mucositis. Chemotherapy and/or radiation therapy will interfere with the normal turnover of epithelial, cells leading to mucosal injury; subsequently, it can also occur due to indirect invasion of Gram-negative bacteria and fungal species because most of the cancer drugs will cause changes in blood counts. With the advancement in cytology, a more precise mechanism has been established. With this understanding, we can select and target particular mediators responsible for the mucositis. Risk factors such as age, nutritional status, type of malignancy, and oral care during treatment will play important roles in the development of mucositis. Many treatment options are available to prevent and treat this

  13. Toll-Like Receptor 2 Activation by beta 2 -> 1-Fructans Protects Barrier Function of T84 Human Intestinal Epithelial Cells in a Chain Length-Dependent Manner

    NARCIS (Netherlands)

    Vogt, Leonie M.; Meyer, Diederick; Pullens, Gerdie; Faas, Marijke M.; Venema, Koen; Ramasamy, Uttara; Schols, Henk A.; de Vos, Paul

    Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that beta 2 -> 1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2

  14. Topical use of sucralfate in epithelial wound healing: clinical evidences and molecular mechanisms of action.

    Science.gov (United States)

    Masuelli, Laura; Tumino, Giovanni; Turriziani, Mario; Modesti, Andrea; Bei, Roberto

    2010-01-01

    Sucralfate is a basic aluminium salt of sucrose octasulphate which was orally employed for prevention and treatment of several gastrointestinal diseases including gastroesophageal reflux, gastric and duodenal ulcer. Recent studies have employed sucralfate as a topical drug for the healing of several types of epithelial wounds such as ulcers, inflammatory dermatitis, mucositis and burn wounds. Epithelial wound healing is a well orchestrated process involving hemostasis, inflammatory reaction, cell proliferation and tissue remodelling which leads to granulation tissue development and filling of the wound space. This report will review clinical evidences on the use of topical sucralfate for the management of epithelial lesions and deal with the current knowledge on the molecular mechanisms of action of this compound towards the epithelial wound healing process and will also discuss relevant patents.

  15. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers.

    Science.gov (United States)

    Mitragotri, Samir

    2013-01-01

    Overcoming biological barriers including skin, mucosal membranes, blood brain barrier as well as cell and nuclear membrane constitutes a key hurdle in the field of drug delivery. While these barriers serve the natural protective function in the body, they limit delivery of drugs into the body. A variety of methods have been developed to overcome these barriers including formulations, targeting peptides and device-based technologies. This review focuses on the use of physical methods including acoustic devices, electric devices, high-pressure devices, microneedles and optical devices for disrupting various barriers in the body including skin and other membranes. A summary of the working principles of these devices and their ability to enhance drug delivery is presented. Copyright © 2012. Published by Elsevier B.V.

  16. Erythropoietin protects the retinal pigment epithelial barrier against ...

    African Journals Online (AJOL)

    O2-induced hyperpermeability. H Zhang, Y Gong, X Wu, Y Shi, L Yin, Y Qiu. Abstract. Erythropoietin (EPO) is not limited to hematopoiesis; it may act as a protective cytokine. In this study, the retinal pigment epithelial (RPE) cell viability, cell ...

  17. Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation.

    Science.gov (United States)

    Galdeano, C Maldonado; Perdigón, G

    2004-01-01

    To determine how probiotic bacteria contact with intestinal epithelial and immune cells and the conditions to induce a good mucosal immune stimulation. Lactobacillus casei was studied by transmission electron microscopy (TEM) to determine its interaction with the gut. We compared the influence of viable and nonviable lactic acid bacteria on the intestinal mucosal immune system (IMIS) and their persistence in the gut of mice. TEM showed whole Lact. casei adhered to the villi; the bacterial antigen was found in the cytoplasm of the enterocytes. Viable bacteria stimulated the IMIS to a greater extent than nonviable bacteria with the exception of Lact. delbrueckii subsp. bulgaricus. For all the strains assayed at 72 h no antigenic particles were found in the intestine. Antigenic particles but not the whole bacteria can enter to epithelial cells and contact with the immune cells. Bacterial viability is a condition for a better stimulation of the IMIS. We demonstrated that only antigenic particle interact with the immune cells and their fast clearance from the gut agrees with those described for the particulate antigens. The regular consumption of probiotics should not adversely affect the host.

  18. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells.

    Science.gov (United States)

    Arnold, Kelly B; Burgener, Adam; Birse, Kenzie; Romas, Laura; Dunphy, Laura J; Shahabi, Kamnoosh; Abou, Max; Westmacott, Garrett R; McCorrister, Stuart; Kwatampora, Jessie; Nyanga, Billy; Kimani, Joshua; Masson, Lindi; Liebenberg, Lenine J; Abdool Karim, Salim S; Passmore, Jo-Ann S; Lauffenburger, Douglas A; Kaul, Rupert; McKinnon, Lyle R

    2016-01-01

    Elevated inflammatory cytokines (EMCs) at mucosal surfaces have been associated with HIV susceptibility, but the underlying mechanisms remain unclear. We characterized the soluble mucosal proteome associated with elevated cytokine expression in the female reproductive tract. A scoring system was devised based on the elevation (upper quartile) of at least three of seven inflammatory cytokines in cervicovaginal lavage. Using this score, HIV-uninfected Kenyan women were classified as either having EMC (n=28) or not (n=68). Of 455 proteins quantified in proteomic analyses, 53 were associated with EMC (5% false discovery rate threshold). EMCs were associated with proteases, cell motility, and actin cytoskeletal pathways, whereas protease inhibitor, epidermal cell differentiation, and cornified envelope pathways were decreased. Multivariate analysis identified an optimal signature of 16 proteins that distinguished the EMC group with 88% accuracy. Three proteins in this signature were neutrophil-associated proteases that correlated with many cytokines, especially GM-CSF (granulocyte-macrophage colony-stimulating factor), IL-1β (interleukin-1β), MIP-3α (macrophage inflammatory protein-3α), IL-17, and IL-8. Gene set enrichment analyses implicated activated immune cells; we verified experimentally that EMC women had an increased frequency of endocervical CD4(+) T cells. These data reveal strong linkages between mucosal cytokines, barrier function, proteases, and immune cell movement, and propose these as potential mechanisms that increase risk of HIV acquisition.

  19. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles.

    Science.gov (United States)

    Srivastava, Atul; Gowda, Devegowda Vishakante; Madhunapantula, SubbaRao V; Shinde, Chetan G; Iyer, Meenakshi

    2015-04-01

    Mucosal immune responses are the first-line defensive mechanisms against a variety of infections. Therefore, immunizations of mucosal surfaces from which majority of infectious agents make their entry, helps to protect the body against infections. Hence, vaccinization of mucosal surfaces by using mucosal vaccines provides the basis for generating protective immunity both in the mucosal and systemic immune compartments. Mucosal vaccines offer several advantages over parenteral immunization. For example, (i) ease of administration; (ii) non-invasiveness; (iii) high-patient compliance; and (iv) suitability for mass vaccination. Despite these benefits, to date, only very few mucosal vaccines have been developed using whole microorganisms and approved for use in humans. This is due to various challenges associated with the development of an effective mucosal vaccine that can work against a variety of infections, and various problems concerned with the safe delivery of developed vaccine. For instance, protein antigen alone is not just sufficient enough for the optimal delivery of antigen(s) mucosally. Hence, efforts have been made to develop better prophylactic and therapeutic vaccines for improved mucosal Th1 and Th2 immune responses using an efficient and safe immunostimulatory molecule and novel delivery carriers. Therefore, in this review, we have made an attempt to cover the recent advancements in the development of adjuvants and delivery carriers for safe and effective mucosal vaccine production. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  20. Innate Lymphoid Cells (ILCs): Cytokine Hubs Regulating Immunity and Tissue Homeostasis

    NARCIS (Netherlands)

    Nagasawa, Maho; Spits, Hergen; Ros, Xavier Romero

    2017-01-01

    Innate lymphoid cells (ILCs) have emerged as an expanding family of effector cells particularly enriched in the mucosal barriers. ILCs are promptly activated by stress signals and multiple epithelial- and myeloid-cell-derived cytokines. In response, ILCs rapidly secrete effector cytokines, which

  1. The Immune System Bridges the Gut Microbiota with Systemic Energy Homeostasis: Focus on TLRs, Mucosal Barrier, and SCFAs.

    Science.gov (United States)

    Spiljar, Martina; Merkler, Doron; Trajkovski, Mirko

    2017-01-01

    The gut microbiota is essential for the development and regulation of the immune system and the metabolism of the host. Germ-free animals have altered immunity with increased susceptibility to immunologic diseases and show metabolic alterations. Here, we focus on two of the major immune-mediated microbiota-influenced components that signal far beyond their local environment. First, the activation or suppression of the toll-like receptors (TLRs) by microbial signals can dictate the tone of the immune response, and they are implicated in regulation of the energy homeostasis. Second, we discuss the intestinal mucosal surface is an immunologic component that protects the host from pathogenic invasion, is tightly regulated with regard to its permeability and can influence the systemic energy balance. The short chain fatty acids are a group of molecules that can both modulate the intestinal barrier and escape the gut to influence systemic health. As modulators of the immune response, the microbiota-derived signals influence functions of distant organs and can change susceptibility to metabolic diseases.

  2. Activation of IGF-1/IGFBP-3 signaling by berberine improves intestinal mucosal barrier of rats with acute endotoxemia.

    Science.gov (United States)

    He, Yan; Yuan, Xiaoming; Zhou, Guangrong; Feng, Aiwen

    2018-01-01

    Insulin-like growth factor I (IGF-I) and binding protein 3 (IGFBP-3) play a role in the maintenance of gut mucosal barrier function. Nevertheless, IGF-I/IGFBP-3 and tight junction protein (TJP) expression in small intestinal mucosa are often impaired during endotoxemia. In this model of acute endotoxemia, the regulatory effect of berberine on IGF-I/IGFBP-3 and TJP expression in ileal mucosa was evaluated. The findings revealed systemic injection of lipopolysaccharide (LPS) suppressed mRNA and protein expression of IGF-I and IGFBP-3, but berberine ameliorated their production. LPS injection inhibited occludin and claudin-1 protein generation, and this inhibitory effect of LPS was abolished by berberine. Inhibition of IGF-I/IGFBP-3 signaling by AG1024 or siRNAs reduced berberine-induced occludin and claudin-1 production. Additionally, GW9662 was found to repress berberine-induced IGF-I/IGFBP-3 expression, indicating of a cross-link between PPARγ and IGF-I/IGFBP-3 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet....

  4. FIBCD1 Modulation of the Epithelial Immune Response Elicited by Chitin

    DEFF Research Database (Denmark)

    Hammond, Mark; Schlosser, Anders; Bak-Thomsen, Theresa Helene

    2010-01-01

    of NF-jB signalling and downstream synthesis of mucosal epithelial-derived cytokines, TSLP and IL-33, which shapes the local accumulation and activation of Th2 responses. Results: Initial experiments have focused on the establishment of stable FIBCD1 overexpression in HEK293, HCT-116 and A549 epithelial......Background: FIBCD1 is a type II transmembrane protein located on the brush border of intestinal epithelial cells. FIBCD1 binds specifically to acetylated compounds such as chitin through the C-terminal fibrinogen-related domain. Chitin is a highly acetylated homopolymeric b-1,4-N...... or the model ligand acetylated BSA, at different time intervals anddoses and using a luciferase reporter system detection of NFjB activation will be performed and cytokine expression will be quantified via qRT-PCR. Perspectives: Improved understanding of epithelialimmune and inflammatory modulation in response...

  5. Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer

    International Nuclear Information System (INIS)

    George, I; Vranic, S; Boland, S; Borot, M C; Marano, F; Baeza-Squiban, A

    2013-01-01

    Safe development and application of nanotechnologies in many fields require better knowledge about their potential adverse effects on human health. Evidence of abilities of nanoparticles (NPs) to cross epithelial barriers and reach secondary organs via the bloodstream led us to investigate the translocation of SiO 2 NPs of 50 nm (50 nm-SiO 2 -NPs) across human bronchial epithelial cells that are primary targets after exposure to inhaled NPs. We quantified the translocation of fluorescently labelled SiO 2 NPs at non-cytotoxic concentrations (5 and 10 μg/cm 2 ) across Calu-3 epithelial monolayer. After 14 days in culture Calu-3 cells seeded onto 3 μm-polycarbonate Transwell membranes formed an efficient bronchial barrier assessed by measurement of the transepithelial electric resistance and quantification of the permeability of the monolayer. After 24 hours of exposure, we observed a significant translocation of NPs that was more important when the initial NP concentration decreased. Confocal microscopy observations revealed NP uptake by cells and an important NP retention inside the porous membrane. In conclusion, 50 nm-SiO 2 -NPs can cross the human bronchial epithelial barrier without affecting the integrity of the epithelial cell monolayer.

  6. IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance.

    Science.gov (United States)

    Tsai, Pei-Yun; Zhang, Bingkun; He, Wei-Qi; Zha, Juan-Min; Odenwald, Matthew A; Singh, Gurminder; Tamura, Atsushi; Shen, Le; Sailer, Anne; Yeruva, Sunil; Kuo, Wei-Ting; Fu, Yang-Xin; Tsukita, Sachiko; Turner, Jerrold R

    2017-06-14

    Diarrhea is a host response to enteric pathogens, but its impact on pathogenesis remains poorly defined. By infecting mice with the attaching and effacing bacteria Citrobacter rodentium, we defined the mechanisms and contributions of diarrhea and intestinal barrier loss to host defense. Increased permeability occurred within 2 days of infection and coincided with IL-22-dependent upregulation of the epithelial tight junction protein claudin-2. Permeability increases were limited to small molecules, as expected for the paracellular water and Na + channel formed by claudin-2. Relative to wild-type, claudin-2-deficient mice experienced severe disease, including increased mucosal colonization by C. rodentium, prolonged pathogen shedding, exaggerated cytokine responses, and greater tissue injury. Conversely, transgenic claudin-2 overexpression reduced disease severity. Chemically induced osmotic diarrhea reduced colitis severity and C. rodentium burden in claudin-2-deficient, but not transgenic, mice, demonstrating that claudin-2-mediated protection is the result of enhanced water efflux. Thus, IL-22-induced claudin-2 upregulation drives diarrhea and pathogen clearance. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Allergic sensitization

    DEFF Research Database (Denmark)

    van Ree, Ronald; Hummelshøj, Lone; Plantinga, Maud

    2014-01-01

    Allergic sensitization is the outcome of a complex interplay between the allergen and the host in a given environmental context. The first barrier encountered by an allergen on its way to sensitization is the mucosal epithelial layer. Allergic inflammatory diseases are accompanied by increased pe...

  8. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity.

    Science.gov (United States)

    Kikuchi, Kentaro; Noguchi, Yoshihiro; de Rivera, Michelle Wendoline Garcia-Niño; Hoshino, Miyako; Sakashita, Hideaki; Yamada, Tsutomu; Inoue, Harumi; Miyazaki, Yuji; Nozaki, Tadashige; González-López, Blanca Silvia; Ide, Fumio; Kusama, Kaoru

    2016-03-01

    A relationship between Epstein-Barr virus (EBV) infection and cancer of lymphoid and epithelial tissues such as Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma (NPC), gastric carcinoma, and oral cancer has been reported. EBV is transmitted orally and infects B cells and epithelial cells. However, it has remained uncertain whether EBV plays a role in carcinogenesis of oral mucosal tissue. In the present study, we detected the EBV genome and latent EBV gene expression in normal mucosal epithelia, epithelial dysplasia, and oral squamous cell carcinoma (OSCC) to clarify whether EBV is involved in carcinogenesis of the oral cavity. We examined 333 formalin-fixed, paraffin-embedded tissue samples (morphologically normal oral mucosa 30 samples, gingivitis 32, tonsillitis 17, oral epithelial dysplasia 83, OSCC 150, and NPC 21). EBV latent infection genes (EBNA-2, LMP-1) were detected not only in OSCC (50.2 %, 10.7 %) but also in severe epithelial dysplasia (66.7 %, 44.4 %), mild to moderate epithelial dysplasia (43.1 %, 18.5 %), gingivitis (78.1 %, 21.9 %), and normal mucosa (83.3 %, 23.3 %). Furthermore, the intensity of EBV latent infection gene expression (EBER, LMP-1) was significantly higher in severe epithelial dysplasia (94.4 %, 72.2 %) than in OSCC (34.7 %, 38.7 %). These results suggest that EBV latent infection genes and their increased expression in severe epithelial dysplasia might play an important role in the dysplasia-carcinoma sequence in the oral cavity.

  9. Perinatal supplementation of 4-phenylbutyrate and glutamine attenuates endoplasmic reticulum stress and improves colonic epithelial barrier function in rats born with intrauterine growth restriction.

    Science.gov (United States)

    Désir-Vigné, Axel; Haure-Mirande, Vianney; de Coppet, Pierre; Darmaun, Dominique; Le Dréan, Gwenola; Segain, Jean-Pierre

    2018-05-01

    Intrauterine growth restriction (IUGR) can affect the structure and function of the intestinal barrier and increase digestive disease risk in adulthood. Using the rat model of maternal dietary protein restriction (8% vs. 20%), we found that the colon of IUGR offspring displayed decreased mRNA expression of epithelial barrier proteins MUC2 and occludin during development. This was associated with increased mRNA expression of endoplasmic reticulum (ER) stress marker XBP1s and increased colonic permeability measured in Ussing chambers. We hypothesized that ER stress contributes to colonic barrier alterations and that perinatal supplementation of dams with ER stress modulators, phenylbutyrate and glutamine (PG) could prevent these defects in IUGR offspring. We first demonstrated that ER stress induction by tunicamycin or thapsigargin increased the permeability of rat colonic tissues mounted in Ussing chamber and that PG treatment prevented this effect. Therefore, we supplemented the diet of control and IUGR dams with PG during gestation and lactation. Real-time polymerase chain reaction and histological analysis of colons from 120-day-old offspring revealed that perinatal PG treatment partially prevented the increased expression of ER stress markers but reversed the reduction of crypt depth and goblet cell number in IUGR rats. In dextran sodium sulfate-induced injury and recovery experiments, the colon of IUGR rats without perinatal PG treatment showed higher XBP1s mRNA levels and histological scores of inflammation than IUGR rats with perinatal PG treatment. In conclusion, these data suggest that perinatal supplementation with PG could alleviate ER stress and prevent epithelial barrier dysfunction in IUGR offspring. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Inflammatory myofibroblastic tumor appendix with concomitant mucosal dysplasia, simulating pseudomyxoma on preoperative aspiration cytology

    Directory of Open Access Journals (Sweden)

    Kaushik Majumdar

    2012-01-01

    Full Text Available Inflammatory myofibroblastic tumor (IMT has been described as a pseudosarcomatous proliferation of spindled myofibroblasts admixed with lymphoplasmacytic cells. The various terminologies like inflammatory pseudotumor, plasma cell granuloma, and inflammatory myofibrohistiocytic proliferation, used to describe this entity, highlight the controversial etiopathogenesis of this relatively indolent neoplasm. IMT has now been described in different anatomic locations. However, cases occurring in the gastrointestinal tract are rare with very few cases described in the appendix. We present a case of inflammatory myofibroblastic tumor appendix with mucosal dysplasia in a 41-year-old male, presenting with abdominal pain and lump in the right iliac fossa. Aspiration cytology yielded few atypical epithelial cells and spindle cells in a mucinous background, suggesting the possibility of pseudomyxoma peritonei. Awareness of IMT appendix with rare presence of mucosal dysplasia may help in preventing overzealous resection, especially in situations that on preoperative evaluation may suggest malignancy.

  11. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis

    Directory of Open Access Journals (Sweden)

    Reda RI

    2017-03-01

    rabbits under the current experimental conditions. The attenuated clinical severity was accompanied by a marked reduction in inflammatory infiltrate and re-epithelization of the epithelial layer. Conclusion: Eudragit L100 nanofibers (EL-NF loaded with KET (F1 suppressed the inflammatory response associated with mucositis, which confirmed the efficacy of local buccal delivery of KET-loaded EL-NF in treating oral mucositis. Keywords: nanofibers, electrospinning, ketoprofen, Eudragit, oral mucositis

  12. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels

    Directory of Open Access Journals (Sweden)

    C Lehner

    2016-05-01

    Full Text Available Tissue barriers function as “gate keepers” between different compartments (usually blood and tissue and are formed by specialised membrane-associated proteins, localising to the apicolateral plasma membrane domain of epithelial and endothelial cells. By sealing the paracellular space, the free diffusion of solutes and molecules across epithelia and endothelia is impeded. Thereby, tissue barriers contribute to the establishment and maintenance of a distinct internal and external environment, which is crucial during organ development and allows maintenance of an organ-specific homeostatic milieu. So far, various epithelial and endothelial tissue barriers have been described, including the blood-brain barrier, the blood-retina barrier, the blood-testis barrier, the blood-placenta barrier, and the cerebrospinal fluid (CSF-brain barrier, which are vital for physiological function and any disturbance of these barriers can result in severe organ damage or even death. Here, we describe the identification of a novel barrier, located in the vascular bed of tendons, which we term the blood-tendon barrier (BTB. By using immunohistochemistry, transmission electron microscopy, and tracer studies we demonstrate the presence of a functional endothelial barrier within tendons restricting the passage of large blood-borne molecules into the surrounding tendon tissue. We further provide in vitro evidence that the BTB potentially contributes to the creation of a distinct internal tissue environment impacting upon the proliferation and differentiation of tendon-resident cells, effects which might be fundamental for the onset of tendon pathologies.

  13. Frequency of fungal infection in biopsies of oral mucosal lesions: A prospective hospital-based study

    Directory of Open Access Journals (Sweden)

    Thimmarasa Venkappa Bhovi

    2015-01-01

    Full Text Available Aims and Objectives: To determine the frequency and common site of fungal infection in biopsies of oral mucosal lesions and also to detect the lesions most likely to be infected with fungal infection. Materials and Methods: A total of 100 patients with oral mucosal lesions were advised routine hematological examination followed by incisional biopsy under local anesthesia. The specimen were fixed in 10% neutral buffered formalin and processed. One section from the specimen was stained with hematoxylin and eosin staining for histopathological diagnosis of the lesion and a second section was stained with Periodic acid-Schiff (PAS stain for detection of fungal infection. Results: Out of the 100 patients, the most common mucosal lesion encountered was carcinoma (56% followed by lesions with dysplastic changes (28%, benign lesions (9%, squamous papilloma (2% and oral submucous fibrosis (5%. The most common anatomic location affected by the mucosal lesions were buccal mucosa, followed by the tongue, gingiva, maxillary tuberosity and floor of the mouth with values of 73%, 16%, 6%, 4% and 1%, respectively. Squamous papilloma had the highest positive association with fungal infection (100% followed by lesions with dysplastic changes (17.9% and carcinoma (8.9%. The maximum fungal positive association was encountered in the mucosal lesions over the tongue (18.7% followed by the buccal mucosa (12.3%. Conclusion: There is statistically significant association of fungal infection with dysplastic lesions and papilloma with the tongue and buccal mucosa as the most common sites. Hence a PAS stain should be performed whenever epithelial dysplasia on the tongue and buccal mucosa is diagnosed.

  14. T cell receptor-o deletion in human T cells

    NARCIS (Netherlands)

    M.C.M. Verschuren (Martie)

    1996-01-01

    textabstractThe immune system protects the body against pathogens such as bacteria, viruses, fungi, and parasites, when they pass the first line of body defence such as the skin or other epithelial and mucosal barriers. After penetration into the body, micro-organisms encounter the second line

  15. microRNA-4516 Contributes to Different Functions of Epithelial Permeability Barrier by Targeting Poliovirus Receptor Related Protein 1 in Enterovirus 71 and Coxsackievirus A16 Infections

    Directory of Open Access Journals (Sweden)

    Yajie Hu

    2018-04-01

    Full Text Available Enterovirus 71 (EV-A71 and coxsackievirus A16 (CV-A16 remain the predominant etiological agents of hand, foot, and mouth disease (HFMD. The clinical manifestations caused by the two viruses are obviously different. CV-A16 usually triggers a repeated infection, and airway epithelial integrity is often the potential causative factor of respiratory repeated infections. Our previous studies have demonstrated that there were some differentially expressed miRNAs involved in the regulation of adhesion function of epithelial barrier in EV-A71 and CV-A16 infections. In this study, we compared the differences between EV-A71 and CV-A16 infections on the airway epithelial barrier function in human bronchial epithelial (16HBE cells and further screened the key miRNA which leaded to the formation of these differences. Our results showed that more rapid proliferation, more serious destruction of 16HBE cells permeability, more apoptosis and disruption of intercellular adhesion-associated molecules were found in CV-A16 infection as compared to EV-A71 infection. Furthermore, we also identified that microRNA-4516 (miR-4516, which presented down-regulation in EV-A71 infection and up-regulation in CV-A16 infection was an important regulator of intercellular junctions by targeting Poliovirus receptor related protein 1(PVRL1. The expressions of PVRL1, claudin4, ZO-1 and E-cadherin in CV-A16-infected cells were significantly less than those in EV-A71-infected cells, while the expressions of these proteins were subverted when pre-treated with miR-4516-overexpression plasmid in EV-A71 infected and miR-4516-knockdown plasmid in CV-A16 infected 16HBE cells. Thus, these data suggested that the opposite expression of miR-4516 in EV-A71 and CV-A16 infections might be the initial steps leading to different epithelial impairments of 16HBE cells by destroying intercellular adhesion, which finally resulted in different outcomes of EV-A71 and CV-A16 infections.

  16. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    International Nuclear Information System (INIS)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-01-01

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [ 3 H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [ 3 H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-κB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  17. Alpha-Toxin Promotes Mucosal Biofilm Formation by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michele J Anderson

    2012-05-01

    Full Text Available Staphylococcus aureus causes numerous diseases in humans ranging from the mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS. S. aureus may also be asymptomatically carried in the anterior nares, vagina or on the skin, which serve as reservoirs for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and a major cause of TSS. Our prior studies indicated that α-toxin was a major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. It also facilitated the penetration of TSS Toxin-1 (TSST-1 across vaginal mucosa. However, the majority of menstrual TSS isolates produce low α-toxin due to a nonsense point mutation at codon 113, designated hly, suggesting mucosal adaptation. The aim of this study was to characterize the differences between TSS USA200 strains [high (hla+ and low (hly+ α-toxin producers] in their abilities to infect and disrupt vaginal mucosal tissue. A mucosal model was developed using ex vivo porcine vaginal mucosa, LIVE/DEAD® staining and confocal microscropy to characterize biofilm formation and tissue viability of TSS USA 200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hly, MNPE (hla+ and MNPE isogenic hla knockout (hlaKO. All TSS strains grew to similar bacterial densities (1-5 x 108 CFU on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587, MN8 (hly+, or MNPE hlaKO, formed biofilms and were less cytotoxic. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. Our studies suggest α-toxin affects S. aureus phenotypic growth on vaginal mucosa, by promoting tissue disruption and biofilm formation; and α–toxin mutants (hly are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic

  18. A new technique for continuous measurement and recording of gastric potential difference in the rat: evaluation of NSAID-induced gastric mucosal damage.

    Science.gov (United States)

    Scarpignato, C; Corradi, C; Gandolfi, M A; Galmiche, J P

    1995-10-01

    Disruption of the gastric mucosal barrier by the so-called "barrier breakers" such as ethanol, aspirin, and bile is associated with an increase in gastric potential difference (GPD), that is, a decrease in its negativity. Because a good correlation between the degree of histological damage and changes in GPD has been observed, this parameter has been used increasingly as an index of mucosal integrity. However, the current methodology for measuring GPD is laborious due to the preparation and checking of KCl-agarose bridges prior to each experiment, and calculations--usually handmade--are time-consuming and inaccurate. In this paper, a new method allowing simultaneous measurement and recording of GPD in the rat is described. The method allows a simultaneous recording of intragastric pH and an automatic data analysis. The new technique has been validated by studying mucosal damage induced by aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) (namely indomethacin and droxicam) as well as the mucosal protective activity of an antacid and sucralfate. The similarity between the results obtained in this rat model and those derived from human experiments clearly show that the developed methodology yields results that are predictive for human pharmacology.

  19. Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells

    Directory of Open Access Journals (Sweden)

    W. Cui

    2010-04-01

    Full Text Available The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.

  20. Histopathology of cutaneous and mucosal lesions in human paracoccidioidomycosis

    Directory of Open Access Journals (Sweden)

    Fabio Uribe

    1987-04-01

    Full Text Available Biopsies from cutaneous and mucosal lesions from 40 patients with active paracoccidioidomycosis, were studied histopathologically. All cases exhibited chronic granulomatous inflammation and 38 also presented suppuration; this picture corresponded to the mixed mycotic granuloma (MMG. Pseudoepitheliomatous hyperplasia and the transepidermic (or epithelial elimination of the parasite, were observed in all cases. In paracoccidioidomycosis elimination takes place through formation of progressive edema, accompained by exocytosis. The edema gives rise to spongiosis, microvesicles and microabscesses which not only contain the fungus but also, various cellular elements. Cells in charge of the phagocytic process were essentialy Langhans giant cells; PMN's, epithelioid and foreign body giant cells were poor phagocytes. An additional finding was the presence of fibrosis in most biopsies.

  1. New Pathways for Alimentary Mucositis

    Directory of Open Access Journals (Sweden)

    Joanne M. Bowen

    2008-01-01

    Full Text Available Alimentary mucositis is a major dose-limiting toxicity associated with anticancer treatment. It is responsible for reducing patient quality of life and represents a significant economic burden in oncology. The pathobiology of alimentary mucositis is extremely complex, and an increased understanding of mechanisms and pathway interactions is required to rationally design improved therapies. This review describes the latest advances in defining mechanisms of alimentary mucositis pathobiology in the context of pathway activation. It focuses particularly on the recent genome-wide analyses of regimen-related mucosal injury and the identification of specific regulatory pathways implicated in mucositis development. This review also discusses the currently known alimentary mucositis risk factors and the development of novel treatments. Suggestions for future research directions have been raised.

  2. Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion

    DEFF Research Database (Denmark)

    Rosenstiel, Philip; Sina, Christian; End, Caroline

    2007-01-01

    Mucosal epithelial cell layers are constantly exposed to a complex resident microflora. Deleted in malignant brain tumors 1 (DMBT1) belongs to the group of secreted scavenger receptor cysteine-rich proteins and is considered to be involved in host defense by pathogen binding. This report describe...

  3. Radiation induced oral mucositis

    Directory of Open Access Journals (Sweden)

    P S Satheesh Kumar

    2009-01-01

    Full Text Available Patients receiving radiotherapy or chemotherapy will receive some degree of oral mucositis The incidence of oral mucositis was especially high in patients: (i With primary tumors in the oral cavity, oropharynx, or nasopharynx; (ii who also received concomitant chemotherapy; (iii who received a total dose over 5,000 cGy; and (iv who were treated with altered fractionation radiation schedules. Radiation-induced oral mucositis affects the quality of life of the patients and the family concerned. The present day management of oral mucositis is mostly palliative and or supportive care. The newer guidelines are suggesting Palifermin, which is the first active mucositis drug as well as Amifostine, for radiation protection and cryotherapy. The current management should focus more on palliative measures, such as pain management, nutritional support, and maintenance, of good oral hygiene

  4. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.

    Science.gov (United States)

    Xu, Jiaqiang; Li, Gao; Wang, Zhuoyi; Si, Luqin; He, Sijie; Cai, Jialing; Huang, Jiangeng; Donovan, Maureen D

    2016-02-01

    Glyphosate is one of the most commonly used herbicides worldwide due to its broad spectrum of activity and reported low toxicity to humans. Glyphosate has an amino acid-like structure that is highly polar and shows low bioavailability following oral ingestion and low systemic toxicity following intravenous exposures. Spray applications of glyphosate in agricultural or residential settings can result in topical or inhalation exposures to the herbicide. Limited systemic exposure to glyphosate occurs following skin contact, and pulmonary exposure has also been reported to be low. The results of nasal inhalation exposures, however, have not been evaluated. To investigate the mechanisms of glyphosate absorption across epithelial tissues, the permeation of glyphosate across Caco-2 cells, a gastrointestinal epithelium model, was compared with permeation across nasal respiratory and olfactory tissues excised from cows. Saturable glyphosate uptake was seen in all three tissues, indicating the activity of epithelial transporters. The uptake was shown to be ATP and Na(+) independent, and glyphosate permeability could be significantly reduced by the inclusion of competitive amino acids or specific LAT1/LAT2 transporter inhibitors. The pattern of inhibition of glyphosate permeability across Caco-2 and nasal mucosal tissues suggests that LAT1/2 play major roles in the transport of this amino-acid-like herbicide. Enhanced uptake into the epithelial cells at barrier mucosae, including the respiratory and gastrointestinal tracts, may result in more significant local and systemic effects than predicted from glyphosate's passive permeability, and enhanced uptake by the olfactory mucosa may result in further CNS disposition, potentially increasing the risk for brain-related toxicities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Brain-gut axis and mucosal immunity: a perspective on mucosal psychoneuroimmunology.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    The role of the brain-gut axis has traditionally been investigated in relation to intestinal motility, secretion, and vascularity. More recently, the concept of brain-gut dialogue has extended to the relationship between the nervous system and mucosal immune function. There is compelling evidence for a reciprocal or bi-directional communication between the immune system and the neuroendocrine system. This is mediated, in part, by shared ligands (chemical messengers) and receptors that are common to the immune and nervous systems. Although the concept of psychoneuroimmunology and neuroimmune cross-talk has been studied primarily in the context of the systemic immune system, it is likely to have special significance in the gut. The mucosal immune system is anatomically, functionally, and operationally distinct from the systemic immune system and is subject to independent regulatory signals. Furthermore, the intestinal mucosal immune system operates in a local milieu that depends on a dense innervation for its integrity, with juxtaposition of neuroendocrine cells and mucosal immune cells. An overview of evidence for the biologic plausibility of a brain-gut-immune axis is presented and its potential relevance to mucosal inflammatory disorders is discussed.

  6. Rhubarb Supplementation Promotes Intestinal Mucosal Innate Immune Homeostasis through Modulating Intestinal Epithelial Microbiota in Goat Kids.

    Science.gov (United States)

    Jiao, Jinzhen; Wu, Jian; Wang, Min; Zhou, Chuanshe; Zhong, Rongzhen; Tan, Zhiliang

    2018-01-31

    The abuse and misuse of antibiotics in livestock production pose a potential health risk globally. Rhubarb can serve as a potential alternative to antibiotics, and several studies have looked into its anticancer, antitumor, and anti-inflammatory properties. The aim of this study was to test the effects of rhubarb supplementation to the diet of young ruminants on innate immune function and epithelial microbiota in the small intestine. Goat kids were fed with a control diet supplemented with or without rhubarb (1.25% DM) and were slaughtered at days 50 and 60 of age. Results showed that the supplementation of rhubarb increased ileal villus height (P = 0.036), increased jejujal and ileal anti-inflammatory IL-10 production (P immune function were accompanied by shifts in ileal epithelial bacterial ecosystem in favor of Blautia, Clostridium, Lactobacillus, and Pseudomonas, and with a decline in the relative abundance of Staphylococcus (P immune homeostasis by modulating intestinal epithelial microbiota during the early stages of animal development.

  7. Barriers to Liposomal Gene Delivery: from Application Site to the Target.

    Science.gov (United States)

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.

  8. Cyanidin-3-O-Glucoside Modulates the In Vitro Inflammatory Crosstalk between Intestinal Epithelial and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Daniela Ferrari

    2017-01-01

    Full Text Available Intestinal epithelium represents a protective physical barrier and actively contributes to the mucosal immune system. Polarized basolateral intestinal secretion of inflammatory mediators, followed by activation of NF-κB signaling and inflammatory pathways in endothelial cells, efficiently triggers extravasation of neutrophils from the vasculature, therefore contributing to the development and maintenance of intestinal inflammation. Proper regulation of NF-κB activation at the epithelial interface is crucial for the maintenance of physiological tissue homeostasis. Many papers reported that anthocyanins, a group of compounds belonging to flavonoids, possess anti-inflammatory effects and modulate NF-κB activity. In this study, by using a coculture in vitro system, we aimed to evaluate the effects of TNF-α-stimulated intestinal cells on endothelial cells activation, as well as the protective effects of cyanidin-3-glucoside (C3G. In this model, TNF-α induced nuclear translocation of NF-κB and TNF-α and IL-8 gene expression in Caco-2 cells, whereas C3G pretreatment dose-dependently reduced these effects. Furthermore, TNF-α-stimulated Caco-2 cells induced endothelial cells activation with increased E-selectin and VCAM-1 mRNA, leukocyte adhesion, and NF-κB levels in HUVECs, which were inhibited by C3G. We demonstrated that selective inhibition of the NF-κB pathway in epithelial cells represents the main mechanism by which C3G exerts these protective effects. Thus, anthocyanins could contribute to the management of chronic gut inflammatory diseases.

  9. Cytological Characteristics of Mucose Cell and Vaginal Temperature and pH During Estrous Cycle in Local Sheep

    Directory of Open Access Journals (Sweden)

    Siti Darodjah Rasad

    2017-09-01

    Full Text Available Aim of this study was to examine the characteristics cytology of mucous cell-,temperature- and pH vagina during estrous cycle in local sheep.  31local sheep were synchronized with vaginal sponge consist of 20  mg  progesterone hormone before carried out observations of cytology of cells from the vaginal mucose through vaginal swabs, temperature and pH of the vagina.  Vaginal swabs were collected daily at 7 am for a weeks.Vaginal temperature and pH measurement is carried out twice a day, at 07.00 am and 15.00 pm for a weeks after vaginal swabs. Smears of the swab were then prepared on glass slide and they were stained with Giemsa.  Vaginal epithelial cells; Parabasal, intermediate and superficial cells were counted and their percentages during pro-estrous, estrous and di-estrous were determined. Di-estrous was characterized by the absent of superficial cells in the epithelial vagina. Pro-estrous was characterized by the increasing progressively of intermediate/superficial cells in epithelial vagina, whereas estrous was characterized by the presence of superficial/cornification cells in most epithelial vagina. Based on the dominance of superficial cell, the number of sheep identified as estrous is highest on third day, with 52%.  Observation on vaginal temperature also resulting that the highest temperature values obtained on the third day of 39,08±0.28°C.  It could be effected of the vaginal pH during the observation. Underthe influence ofestrogen, the epithelial vaginalcellssynthesizeand accumulateglycogenin large quantitiesdepositedin the lumen ofvagina. Vaginal bacteriametabolizethe glycogenformlactic acid, which causesvaginal pHis low.The pH conditions prevent from pathogenic microorganisms and fungi. Increased estrogenal so cause cell proliferation through the thickening of the epithelium lining of the vagina so that the cells differentiate.Increasing of glycogenin the superficial cells, and  ceratin cells found in the cytoplasm of

  10. Matriptase zymogen supports epithelial development, homeostasis and regeneration

    DEFF Research Database (Denmark)

    Friis, Stine; Tadeo, Daniel; Le-Gall, Sylvain M.

    2017-01-01

    Background Matriptase is a membrane serine protease essential for epithelial development, homeostasis, and regeneration, as well as a central orchestrator of pathogenic pericellular signaling in the context of inflammatory and proliferative diseases. Matriptase is an unusual protease in that its...... previously reported for transgenic mice mis-expressing wildtype epidermal matriptase. Equally surprising, mice engineered to express only zymogen-locked endogenous matriptase, unlike matriptase null mice, were viable, developed epithelial barrier function, and regenerated the injured epithelium. Compatible...

  11. Intrauterine Growth Restriction Impairs Small Intestinal Mucosal Immunity in Neonatal Piglets

    Science.gov (United States)

    Dong, Li; Zhong, Xiang; Ahmad, Hussain; Li, Wei; Wang, Yuanxiao; Zhang, Lili

    2014-01-01

    Intrauterine growth restriction (IUGR) is a very common problem in both piglet and human neonate populations. We hypothesized that IUGR neonates have impaired intestinal mucosal immunity from birth. Using neonatal piglets as IUGR models, immune organ weights, the weight and length of the small intestine (SI), intestinal morphology, intraepithelial immune cell numbers, levels of cytokines and immunoglobulins, and the relative gene expression of cytokines in the SI were investigated. IUGR neonatal piglets were observed to have lower absolute immune organ weight and SI length, decreased relative weights of the thymus, spleen, mesenteric lymph node, and thinner but longer SIs. Damaged and jagged villi, shorter microvilli, presence of autophagosomes, swelled mitochondria, and decreased villus surface areas were also found in the SIs of IUGR neonatal piglets. We also found a smaller number of epithelial goblet cells and lymphocytes in the SIs of IUGR neonates. In addition, we detected reduced levels of the cytokines TNF-α and IFN-γ and decreased gene expression of cytokines in IUGR neonates. In conclusion, IUGR was shown to impair the mucosal immunity of the SI in neonatal piglets, and the ileum was the major site of impairment. PMID:24710659

  12. Cultured alveolar epithelial cells from septic rats mimic in vivo septic lung.

    Directory of Open Access Journals (Sweden)

    Taylor S Cohen

    2010-06-01

    Full Text Available Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200-300 g were sacrificed 24 hours after cecal ligation and double puncture (2CLP or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A and MAPk (JNK, ERK, an p38 signaling activation, or barrier function was examined by measuring transepithelial resistance (TER or the flux of two molecular tracers (5 and 20 A. Inhibitors of JNK (SP600125, 20 microM and ERK (U0126, 10 microM were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm(2, respectively, however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique

  13. Hypo-responsiveness of interleukin-8 production in human embryonic epithelial intestine 407 cells independent of NF-κB pathway: New lessons from endotoxin and ribotoxic deoxynivalenol

    International Nuclear Information System (INIS)

    Moon, Yuseok; Yang, Hyun; Park, Seung-Hwan

    2008-01-01

    Mucosal epithelium senses external toxic insults and transmits the danger signals into the epithelial cells in order to activate a broad range of inflammatory responses. However, pre-exposure to the commensal endotoxins can induce inflammatory tolerance and maintain the homeostasis without excessive immune responses. We recently reported that ribotoxin deoxynivalenol (DON) and its derivatives elicited the pro-inflammatory response as the mucosal insults in human epithelial cells. Taking the knowledge into consideration, we tested the hypothesis that endotoxin pre-exposure can attenuate ribotoxin-induced epithelial interleukin-8 (IL-8) production via a tolerance mechanism. Pre-exposure to endotoxin repressed IL-8 release and its gene expression. However, inflammatory tolerance was not mediated by the attenuated NF-κB activation which has been generally recognized as the major mediator of LPS-mediated toll-like receptor (TLR) signaling pathway. Instead, pre-exposure to endotoxin was observed to trigger the delayed induction of peroxisome proliferator-activated receptor gamma (PPAR-γ) which contributed to the diminished IL-8 production in the human epithelial cells. Moreover, endogenous PPAR-γ agonist suppressed toxicant-mediated interleukin-8 production and IL-8 mRNA stability. Taken together, endotoxin induced hypo-production of pro-inflammatory cytokine IL-8 in the human epithelial cells, which was associated with the delayed activation of PPAR-γ expression by pre-existing endotoxin

  14. NLRX1 Acts as an Epithelial-Intrinsic Tumor Suppressor through the Modulation of TNF-Mediated Proliferation

    Directory of Open Access Journals (Sweden)

    Ivan Tattoli

    2016-03-01

    Full Text Available The mitochondrial Nod-like receptor protein NLRX1 protects against colorectal tumorigenesis through mechanisms that remain unclear. Using mice with an intestinal epithelial cells (IEC-specific deletion of Nlrx1, we find that NLRX1 provides an IEC-intrinsic protection against colitis-associated carcinogenesis in the colon. These Nlrx1 mutant mice have increased expression of Tnf, Egf, and Tgfb1, three factors essential for wound healing, as well as increased epithelial proliferation during the epithelial regeneration phase following injury triggered by dextran sodium sulfate. In primary intestinal organoids lacking Nlrx1, stimulation with TNF resulted in exacerbated proliferation and expression of the intestinal stem cell markers Olfm4 and Myb. This hyper-proliferation response was associated with increased activation of Akt and NF-κB pathways in response to TNF stimulation. Together, these results identify NLRX1 as a suppressor of colonic tumorigenesis that acts by controlling epithelial proliferation in the intestine during the regeneration phase following mucosal injury.

  15. New frontiers in mucositis.

    Science.gov (United States)

    Peterson, Douglas E; Keefe, Dorothy M; Sonis, Stephen T

    2012-01-01

    Mucositis is among the most debilitating side effects of radiotherapy, chemotherapy, and targeted anticancer therapy. Research continues to escalate regarding key issues such as etiopathology, incidence and severity across different mucosae, relationships between mucosal and nonmucosal toxicities, and risk factors. This approach is being translated into enhanced management strategies. Recent technology advances provide an important foundation for this continuum. For example, evolution of applied genomics is fostering development of new algorithms to rapidly screen genomewide single-nucleotide polymorphisms (SNPs) for patient-associated risk prediction. This modeling will permit individual tailoring of the most effective, least toxic treatment in the future. The evolution of novel cancer therapeutics is changing the mucositis toxicity profile. These agents can be associated with unique mechanisms of mucosal damage. Additional research is needed to optimally manage toxicity caused by agents such as mammalian target of rapamycin (mTOR) inhibitors and tyrosine kinase inhibitors, without reducing antitumor effect. There has similarly been heightened attention across the health professions regarding clinical practice guidelines for mucositis management in the years following the first published guidelines in 2004. New opportunities exist to more effectively interface this collective guideline portfolio by capitalizing upon novel technologies such as an Internet-based Wiki platform. Substantive progress thus continues across many domains associated with mucosal injury in oncology patients. In addition to enhancing oncology patient care, these advances are being integrated into high-impact educational and scientific venues including the National Cancer Institute Physician Data Query (PDQ) portfolio as well as a new Gordon Research Conference on mucosal health and disease scheduled for June 2013.

  16. The role of CD103+ Dendritic cells in the intestinal mucosal immune system.

    Directory of Open Access Journals (Sweden)

    Darren Thomas Ruane

    2011-07-01

    Full Text Available While dendritic cells (DC are central to the induction and regulation of adaptive immunity, these cells are very heterogenous and specific subsets can be characterized based on the expression of cell surface markers and functional properties. Intestinal CD103+ DCs are the subject of particular interest due to their role in regulating mucosal immunity. Since the epithelial surfaces are constantly exposed to a high antigenic load, tight regulation of innate and adaptive intestinal immune responses is vital as intestinal inflammation can have detrimental consequences for the host. Strategically positioned within the lamina propria, CD103+ DCs play an important role in maintaining intestinal immune homeostasis. These cells are required for the induction of tolerogenic immune responses and imprinting gut homing phenotypic changes on antigen-specific T cells. Recent insights into their development and regulatory properties have revealed additional immunoregulatory roles and further highlighted their importance for intestinal immunity. In this review we discuss the nature of the intestinal CD103+ DC population and the emerging roles of these cells in the regulation of mucosal immunity.

  17. Airway mucosal permeability in chronic bronchitics and bronchial asthmatics with hypersecretion

    International Nuclear Information System (INIS)

    Honda, I.; Shimura, S.; Sasaki, T.; Sasaki, H.; Takishima, T.; Nakamura, M.

    1988-01-01

    To determine airway mucosal permeability, radiolabeled albumin in sputum was examined on the basis of a 2-h period of sputum collection for as long as 8h after intravenous administration of 131 I-labeled human serum albumin. This technique was applied to 12 patients with bronchial asthma associated with hypersecretion or chronic bronchitis. Group A consisted of 6 asthmatics (2 females and 4 males, 56.0 +/- 6.4 yr of age, mean +/- SEM); Group B consisted of 6 bronchitics (3 females and 3 males, 53.8 +/- 6.5 yr of age). Between Groups A and B, there was no significant difference in sputum volume per day or in obstructive impairment. Radiolabeled albumin concentration (cpm/ml) was obtained from radiocount of each sputum sample and then divided by serum concentration at the time of each sampling (2, 4, 6, and 8 h after administration). Group B showed large values compared with those in Group A. In Group A, the ratios were 2.0 +/- 0.8, 2.5 +/- 0.5, 2.2 +/- 0.2, and 1.5 +/- 0.4% (mean +/- SEM) at 2, 4, 6, and 8 h after the administration, respectively, whereas in Group B, the ratios were 3.0 +/- 0.6, 7.0 +/- 1.8, 7.2 +/- 1.8, and 7.4 +/- 2.4%, respectively. The differences between Groups A and B were statistically significant (two-way analysis of variance). These findings suggest that an increase in airway mucosal permeability is due to mucosal epithelial damage by chronic inflammation in bronchitics and not to the underlying abnormality of asthma

  18. Mucosal melanosis associated with chemoembolization

    Directory of Open Access Journals (Sweden)

    Ali Alkan

    2015-06-01

    Full Text Available Mucosal lesions due to underlying disease or drug toxicity, are important part of oncology practice. Patient with a diagnosis of hepatocellular carcinoma was treated with chemoembolisation. She presented with new onset of mucosal hyperpigmented lesion all through her oral cavity. Biopsy was consistent with mucosal melanosis, which was associated with the chemotherapeutics used in the chemoembolisation procedure. Lesion progressively improved without any treatment. Here we present an mucosal melanosis experience after chemoembolisation. J Clin Exp Invest 2015; 6 (2: 189-191

  19. Intestinal epithelium in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet

    2014-01-01

    The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs) that are crucial in maintaining intestinal...... of inflammatory bowel disease (IBD). Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets....

  20. Sex hormones and mucosal wound healing.

    Science.gov (United States)

    Engeland, Christopher G; Sabzehei, Bahareh; Marucha, Phillip T

    2009-07-01

    Wound healing studies, which have chiefly examined dermal tissues, have reported a female advantage in healing rates. In contrast, our laboratory recently demonstrated women heal mucosal wounds more slowly than men. We hypothesized sex hormones influence wound healing rates, possibly through their modulating effects on inflammation. This study involved 329 younger subjects aged 18-43 (165 women, 164 men) and 93 older subjects aged 50-88 (60 women, 33 men). A 3.5mm diameter wound was created on the hard oral palate and videographed daily to assess wound closure. Blood collected at the time of wounding was used to assess circulating testosterone, progesterone and estradiol levels, and in vitro cytokine production in response to LPS. No strong associations were observed between healing times and estradiol or progesterone levels. However, in younger subjects, lower testosterone levels related to faster wound closure. Conversely, in older women higher testosterone levels related to (1) lower inflammatory responses; and (2) faster healing times. No such relationships were seen in older men, or in women taking oral contraceptives or hormone replacement therapy [HRT]. Older women (50-54 years) not yet experiencing menopause healed similarly to younger women and dissimilarly from age-matched post-menopausal women. This suggests that the deleterious effects of aging on wound healing occur secondary to the effects of menopause. Supporting this, there was evidence in post-menopausal women that HRT augmented wound closure. Overall, this study suggests that human mucosal healing rates are modulated by testosterone levels. Based upon when between-group differences were observed, testosterone may impact upon the proliferative phase of healing which involves immune processes such as re-epithelialization and angiogenesis.

  1. Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers.

    Science.gov (United States)

    Wang, Ying; Zhao, Yating; Cui, Yu; Zhao, Qinfu; Zhang, Qiang; Musetti, Sara; Kinghorn, Karina A; Wang, Siling

    2018-01-01

    Oral administration of nanocarriers remains a significant challenge in the pharmaceutical sciences. The nanocarriers must efficiently overcome multiple gastrointestinal barriers including the harsh gastrointestinal environment, the mucosal layer, and the epithelium. Neutral hydrophilic surfaces are reportedly necessary for mucus permeation, but hydrophobic and cationic surfaces are important for efficient epithelial absorption. To accommodate these conflicting surface property requirements, we developed a strategy to modify nanocarrier surfaces with cationic cell-penetrating peptides (CPP) concealed by a hydrophilic succinylated casein (SCN) layer. SCN is a mucus-inert natural material specifically degraded in the intestine, thus protecting nanocarriers from the harsh gastric environment, facilitating their mucus permeation, and inducing exposure of CPPs after degradation for further effective transepithelial transport. Quantum dots doped hollow silica nanoparticles (HSQN) with a diameter around 180 nm was used as the nanocarrier and demonstrated as high as 50% loading efficacy of paclitaxel, a model drug with poor solubility and permeability. The dual layer modification strategy prevented premature drug leakage in stomach and maintained high mucus permeation (the trajectory spanned 9-fold larger area than single CPP modification). After intestinal degradation of SCN by trypsin, these nanocarriers exhibited strong interaction with epithelial membranes and a 5-fold increase in cellular uptake. Significant transepithelial transport and intestinal distribution were also observed for this dual-modified formulation. A pharmacokinetics study on the paclitaxel-loaded nanocarrier found 40% absolute bioavailability and 7.8-fold higher AUC compared to oral Taxol®. Compared with single CPP modified nanocarriers, our formulation showed increased in vivo efficacy and tumor accumulation of the model drug with negligible intestinal toxicity. In summary, sequential modification

  2. Evaluation and Comparison of the Biopathology of Collagen and Inflammation in the Extracellular Matrix of Oral Epithelial Dysplasias and Inflammatory Fibrous Hyperplasia Using Picrosirius Red Stain and Polarising Microscopy: A Preliminary Study.

    Science.gov (United States)

    Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph

    2015-12-01

    The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than expected. Hence we suggest considering the integrity of extracellular matrix collagen, intactness of basement membrane and inflammation associated with dysplasia along with the anaplasia of epithelial cells in the microscopic assessment of dysplastic epithelium.

  3. A high-grain diet alters the omasal epithelial structure and expression of tight junction proteins in a goat model.

    Science.gov (United States)

    Liu, Jun-Hua; Xu, Ting-Ting; Zhu, Wei-Yun; Mao, Sheng-Yong

    2014-07-01

    The omasal epithelial barrier plays important roles in maintaining nutrient absorption and immune homeostasis in ruminants. However, little information is currently available about the changes in omasal epithelial barrier function at the structural and molecular levels during feeding of a high-grain (HG) diet. Ten male goats were randomly assigned to two groups, fed either a hay diet (0% grain; n = 5) or HG diet (65% grain; n = 5). Changes in omasal epithelial structure and expression of tight junction (TJ) proteins were determined via electron microscopy and Western blot analysis. After 7 weeks on each diet, omasal contents in the HG group showed significantly lower pH (P diet showed profound alterations in omasal epithelial structure and TJ proteins, corresponding to depression of thickness of total epithelia, stratum granulosum, and the sum of the stratum spinosum and stratum basale, marked epithelial cellular damage, erosion of intercellular junctions and down-regulation in expression of the TJ proteins, claudin-4 and occludin. The study demonstrates that feeding a HG diet is associated with omasal epithelial cellular damage and changes in expression of TJ proteins. These research findings provide an insight into the possible significance of diet on the omasal epithelial barrier in ruminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cholinergic modulation of epithelial integrity in the proximal colon of pigs.

    Science.gov (United States)

    Lesko, Szilvia; Wessler, Ignaz; Gäbel, Gotthold; Petto, Carola; Pfannkuche, Helga

    2013-01-01

    Within the gut, acetylcholine (ACh) is synthesised by enteric neurons, as well as by 'non-neuronal' epithelial cells. In studies of non-intestinal epithelia, ACh was involved in the generation of an intact epithelial barrier. In the present study, primary cultured porcine colonocytes were used to determine whether treatment with exogenous ACh or expression of endogenous epithelium-derived ACh may modulate epithelial tightness in the gastrointestinal tract. Piglet colonocytes were cultured on filter membranes for 8 days. The tightness of the growing epithelial cell layer was evaluated by measuring transepithelial electrical resistance (TEER). To determine whether ACh modulates the tightness of the cell layer, cells were treated with cholinergic, muscarinic and/or nicotinic agonists and antagonists. Choline acetyltransferase (ChAT), cholinergic receptors and ACh were determined by immunohistochemistry, RT-PCR and HPLC, respectively. Application of the cholinergic agonist carbachol (10 µm) and the muscarinic agonist oxotremorine (10 µM) resulted in significantly higher TEER values compared to controls. The effect was completely inhibited by the muscarinic antagonist atropine. Application of atropine alone (without any agonist) led to significantly lower TEER values compared to controls. Synthesis of ACh by epithelial cells was proven by detection of muscarinic and nicotinic receptor mRNAs, immunohistochemical detection of ChAT and detection of ACh by HPLC. ACh is strongly involved in the regulation of epithelial tightness in the proximal colon of pigs via muscarinic pathways. Non-neuronal ACh seems to be of particular importance for epithelial cells forming a tight barrier. Copyright © 2013 S. Karger AG, Basel.

  5. Assessment and protection of esophageal mucosal integrity in patients with heartburn without esophagitis.

    Science.gov (United States)

    Woodland, Philip; Lee, Chung; Duraisamy, Yasotha; Duraysami, Yasotha; Farré, Ricard; Dettmar, Peter; Sifrim, Daniel

    2013-04-01

    Intact esophageal mucosal integrity is essential to prevent symptoms during gastroesophageal reflux events. Approximately 70% of patients with heartburn have macroscopically normal esophageal mucosa. In patients with heartburn, persistent functional impairment of esophageal mucosal barrier integrity may underlie remaining symptoms. Topical protection of a functionally vulnerable mucosa may be an attractive therapeutic strategy. We aimed to evaluate esophageal mucosal functional integrity in patients with heartburn without esophagitis, and test the feasibility of an alginate-based topical mucosal protection. Three distal esophageal biopsies were obtained from 22 patients with heartburn symptoms, and 22 control subjects. In mini-Ussing chambers, the change in transepithelial electrical resistance (TER) of biopsies when exposed to neutral, weakly acidic, and acidic solutions was measured. The experiment was repeated in a further 10 patients after pretreatment of biopsies with sodium alginate, viscous control, or liquid control "protectant" solutions. Biopsy exposure to neutral solution caused no change in TER. Exposure to weakly acidic and acidic solutions caused a greater reduction in TER in patients than in controls (weakly acid -7.2% (95% confidence interval (CI) -9.9 to -4.5) vs. 3.2% (-2.2 to 8.6), Pheartburn without esophagitis shows distinct vulnerability to acid and weakly acidic exposures. Experiments in vitro suggest that such vulnerable mucosa may be protected by application of an alginate-containing topical solution.

  6. Regulation of Tight Junctions in Upper Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Takashi Kojima

    2013-01-01

    Full Text Available The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP, which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions.

  7. Effect of Interlukin-1β on proliferation of gastric epithelial cells in culture

    OpenAIRE

    Beales, Ian LP

    2002-01-01

    Abstract Background Helicobacter pylori is the main risk factor for the development of non-cardia gastric cancer. Increased proliferation of the gastric mucosa is a feature of H. pylori infection. Mucosal interkeukin-1β production is increased in H. pylori infection and IL-1β genotypes associated with increased pro-inflammatory activity are risk factors for the development of gastric cancer. The effect of IL-1β on gastric epithelial cell proliferation has been examined in this study. Methods ...

  8. Guarding the frontiers: the biology of type III interferons

    DEFF Research Database (Denmark)

    Wack, Andreas; Terczynska-Dyla, Ewa; Hartmann, Rune

    2015-01-01

    Type III interferons (IFNs) or IFN-λs regulate a similar set of genes as type I IFNs, but whereas type I IFNs act globally, IFN-λs primarily target mucosal epithelial cells and protect them against the frequent viral attacks that are typical for barrier tissues. IFN-λs thereby help to maintain...

  9. Effect of ionising radiation exposure on structure and permeability of epithelial junctions in rat ileum

    International Nuclear Information System (INIS)

    Lebrum, F.; Dublineau, I.; Grison, S.; Strup, C.; Griffiths, N.M.

    2002-01-01

    Exposure of the digestive tract to ionising radiation results in both morphological and functional alterations of the small intestine. However little is known about the effect of irradiation on the junctions playing a major role in the maintenance of epithelial barrier integrity. Thus the aim of this study was to investigate, in rat ileum, the effect of radiation exposure on the permeability of the epithelial barrier in parallel with the localization of certain inter- and intra-cellular proteins of tight and adherent junctions

  10. Interdependency of EGF and GLP-2 Signaling in Attenuating Mucosal Atrophy in a Mouse Model of Parenteral Nutrition

    DEFF Research Database (Denmark)

    Feng, Yongjia; Demehri, Farok R; Xiao, Weidong

    2017-01-01

    BACKGROUND & AIMS: Total parenteral nutrition (TPN), a crucial treatment for patients who cannot receive enteral nutrition, is associated with mucosal atrophy, barrier dysfunction, and infectious complications. Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) improve intestinal...... deprived of enteral nutrition. METHODS: Adult C57BL/6J, IEC-Egfr(knock out (KO)) and IEC-pik3r1(KO) mice receiving TPN or enteral nutrition were treated with EGF or GLP-2 alone or in combination with reciprocal receptor inhibitors, GLP-2(3-33) or gefitinib. Jejunum was collected and mucosal atrophy and IEC...

  11. The Mucosal Immune System of Teleost Fish

    Directory of Open Access Journals (Sweden)

    Irene Salinas

    2015-08-01

    Full Text Available Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT of teleosts are the gut-associated lymphoid tissue (GALT, skin-associated lymphoid tissue (SALT, the gill-associated lymphoid tissue (GIALT and the recently discovered nasopharynx-associated lymphoid tissue (NALT. Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT+ B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture.

  12. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Olivia I. Coleman

    2018-01-01

    Full Text Available The gastrointestinal (GI tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD and colorectal cancer (CRC. Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.

  13. Intestinal epithelium in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Mehmet eCoskun

    2014-08-01

    Full Text Available The intestinal epithelium has a strategic position as a protective physical barrier to luminal microbiota and actively contributes to the mucosal immune system. This barrier is mainly formed by a monolayer of specialized intestinal epithelial cells (IECs that are crucial in maintaining intestinal homeostasis. Therefore, dysregulation within the epithelial layer can increase intestinal permeability, lead to abnormalities in interactions between IECs and immune cells in underlying lamina propria, and disturb the intestinal immune homeostasis, all of which are linked to the clinical disease course of inflammatory bowel disease (IBD. Understanding the role of the intestinal epithelium in IBD pathogenesis might contribute to an improved knowledge of the inflammatory processes and the identification of potential therapeutic targets.

  14. Mucosal integrity and sensitivity to acid in the proximal esophagus in patients with gastroesophageal reflux disease.

    Science.gov (United States)

    van Hoeij, Froukje B; Weijenborg, Pim W; van den Bergh Weerman, Marius A; van den Wijngaard, René M J G J; Verheij, J; Smout, André J P M; Bredenoord, Albert J

    2016-07-01

    Acid reflux episodes that extend to the proximal esophagus are more likely to be perceived. This suggests that the proximal esophagus is more sensitive to acid than the distal esophagus, which could be caused by impaired mucosal integrity in the proximal esophagus. Our aim was to explore sensitivity to acid and mucosal integrity in different segments of the esophagus. We used a prospective observational study, including 12 patients with gastroesophageal reflux disease (GERD). After stopping acid secretion-inhibiting medication, two procedures were performed: an acid perfusion test and an upper endoscopy with electrical tissue impedance spectroscopy and esophageal biopsies. Proximal and distal sensitivity to acid and tissue impedance were measured in vivo, and mucosal permeability and epithelial intercellular spaces at different esophageal levels were measured in vitro. Mean lag time to heartburn perception was much shorter after proximal acid perfusion (0.8 min) than after distal acid perfusion (3.9 min) (P = 0.02). Median in vivo tissue impedance was significantly lower in the distal esophagus (4,563 Ω·m) compared with the proximal esophagus (8,170 Ω·m) (P = 0.002). Transepithelial permeability, as measured by the median fluorescein flux was significantly higher in the distal (2,051 nmol·cm(-2)·h(-1)) than in the proximal segment (368 nmol·cm(-2)·h(-1)) (P = 0.033). Intercellular space ratio and maximum heartburn intensity were not significantly different between the proximal and distal esophagus. In GERD patients off acid secretion-inhibiting medication, acid exposure in the proximal segment of the esophagus provokes symptoms earlier than acid exposure in the distal esophagus, whereas mucosal integrity is impaired more in the distal esophagus. These findings indicate that the enhanced sensitivity to proximal reflux episodes is not explained by increased mucosal permeability. Copyright © 2016 the American Physiological Society.

  15. A microfluidic cell culture device with integrated microelectrodes for barrier studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Dufva, Martin; Kutter, Jörg P.

    We present an eight cell culture microfluidic device fabricated using thiol-ene ‘click’ chemistry with embedded microelectrodes for evaluating barrier properties of human intestinal epithelial cells. The capability of the microelectrodes for trans-epithelial electrical resistance (TEER) measureme......) measurements was demonstrated by using confluent human colorectal epithelial cells (Caco-2) and rat fibroblast (CT 26) cells cultured in the microfluidic device....

  16. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport

    Directory of Open Access Journals (Sweden)

    Szilvia Veszelka

    2018-05-01

    Full Text Available Cell culture-based blood-brain barrier (BBB models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC, ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA. As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L, and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1 and influx transporters (GLUT-1, LAT-1 were present in all models at mRNA levels. The transcript of BCRP (ABCG2 was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which

  17. Endoscopic Mucosal Resection with Circumferential Mucosal Incision for Colorectal Neoplasms: Comparison with Endoscopic Submucosal Dissection and between Two Endoscopists with Different Experiences

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Yang

    2017-07-01

    Full Text Available Background/Aims Endoscopic mucosal resection with circumferential mucosal incision (CMI-EMR may offer benefits comparable to those of endoscopic submucosal dissection (ESD, while requiring less technical proficiency than ESD. Methods We retrospectively compared the outcomes of CMI-EMR (n=34 and size-matched ESD (n=102, which were performed by a Korean endoscopist for colorectal epithelial lesions of 20–35 mm. Procedural parameters of CMI-EMRs performed by an American ESD novice (n=30 were compared with those performed by the Korean endoscopist. Results The lesion size was 22.3±3.9 mm and 22.9±2.4 mm in the CMI-EMR and size-matched ESD groups, respectively (p=0.730. The resection time was 12.7±7.0 minutes in the CMI-EMR group and 45.6±30.1 minutes in the ESD group (p<0.001. The en bloc resection rate was 94.1% in the CMI-EMR group and 100% in the ESD group (p=0.061. There were no differences in the en bloc resection and complication rates of CMI-EMRs between a Korean and an American endoscopist. Conclusions For the treatment of moderate-size colorectal lesions, CMI-EMR showed a trend toward lower en bloc resection rate, but required shorter procedure time than ESD. CMI-EMR outcomes were similar when performed by a Korean ESD expert and an American ESD novice.

  18. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. In vivo effects of dexamethasone and indomethacin on neutrophil-induced alterations of nasal epithelial mucosubstances

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, J A; Portereiko, J V; Harkema, J R

    1988-12-01

    Previous studies have shown that neutrophils migrating through rat nasal mucosal epithelium, in response to intranasal instillation of endotoxin, induce a transient decrease in stored epithelial mucosubstances. Prostaglandins and leukotrienes can either increase or decrease mucous secretion of airway epithelia in vitro. In this study, rats were treated with indomethacin a specific inhibitor of prostaglandin synthesis, or with dexamethasone, a general inhibitor of arachidonic acid metabolism, and challenged with intranasally instilled endotoxin. Dexamethasone alone or in combination with indomethacin, but not indomethacin alone, significantly altered the neutrophil response to intranasally instilled endotoxin and may have inhibited the neutrophil-induced decrease in stored mucosubstances. These data suggest that leukotrienes and possibly prostaglandins play a significant role in the coordinated response of the nasal mucosal epitholium to an acute inflammatory stimulus. (author)

  20. In vivo effects of dexamethasone and indomethacin on neutrophil-induced alterations of nasal epithelial mucosubstances

    International Nuclear Information System (INIS)

    Hotchkiss, J.A.; Portereiko, J.V.; Harkema, J.R.

    1988-01-01

    Previous studies have shown that neutrophils migrating through rat nasal mucosal epithelium, in response to intranasal instillation of endotoxin, induce a transient decrease in stored epithelial mucosubstances. Prostaglandins and leukotrienes can either increase or decrease mucous secretion of airway epithelia in vitro. In this study, rats were treated with indomethacin a specific inhibitor of prostaglandin synthesis, or with dexamethasone, a general inhibitor of arachidonic acid metabolism, and challenged with intranasally instilled endotoxin. Dexamethasone alone or in combination with indomethacin, but not indomethacin alone, significantly altered the neutrophil response to intranasally instilled endotoxin and may have inhibited the neutrophil-induced decrease in stored mucosubstances. These data suggest that leukotrienes and possibly prostaglandins play a significant role in the coordinated response of the nasal mucosal epitholium to an acute inflammatory stimulus. (author)

  1. Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats.

    Science.gov (United States)

    Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun

    2015-01-14

    To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14(th) day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. In the rat model, jaundice was obvious, and the rats' activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P jaundice group than in the GLP-2 group (P jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin.

  2. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery.

    Directory of Open Access Journals (Sweden)

    Joep P M Derikx

    Full Text Available Gut barrier loss has been implicated as a critical event in the occurrence of postoperative complications. We aimed to study the development of gut barrier loss in patients undergoing major non-abdominal surgery.Twenty consecutive children undergoing spinal fusion surgery were included. This kind of surgery is characterized by long operation time, significant blood loss, prolonged systemic hypotension, without directly leading to compromise of the intestines by intestinal manipulation or use of extracorporeal circulation. Blood was collected preoperatively, every two hours during surgery and 2, 4, 15 and 24 hours postoperatively. Gut mucosal barrier was assessed by plasma markers for enterocyte damage (I-FABP, I-BABP and urinary presence of tight junction protein claudin-3. Intestinal mucosal perfusion was measured by gastric tonometry (P(rCO2, P(r-aCO2-gap. Plasma concentration of I-FABP, I-BABP and urinary expression of claudin-3 increased rapidly and significantly after the onset of surgery in most children. Postoperatively, all markers decreased promptly towards baseline values together with normalisation of MAP. Plasma levels of I-FABP, I-BABP were significantly negatively correlated with MAP at (1/2 hour before blood sampling (-0.726 (p<0.001, -0.483 (P<0.001, respectively. Furthermore, circulating I-FABP correlated with gastric mucosal P(rCO2, P(r-aCO2-gap measured at the same time points (0.553 (p = 0.040, 0.585 (p = 0.028, respectively.This study shows the development of gut barrier loss in children undergoing major non-abdominal surgery, which is related to preceding hypotension and mesenterial hypoperfusion. These data shed new light on the potential role of peroperative circulatory perturbation and intestinal barrier loss.

  3. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery

    Science.gov (United States)

    Derikx, Joep P. M.; van Waardenburg, Dick A.; Thuijls, Geertje; Willigers, Henriëtte M.; Koenraads, Marianne; van Bijnen, Annemarie A.; Heineman, Erik; Poeze, Martijn; Ambergen, Ton; van Ooij, André; van Rhijn, Lodewijk W.; Buurman, Wim A.

    2008-01-01

    Background Gut barrier loss has been implicated as a critical event in the occurrence of postoperative complications. We aimed to study the development of gut barrier loss in patients undergoing major non-abdominal surgery. Methodology/Principal Findings Twenty consecutive children undergoing spinal fusion surgery were included. This kind of surgery is characterized by long operation time, significant blood loss, prolonged systemic hypotension, without directly leading to compromise of the intestines by intestinal manipulation or use of extracorporeal circulation. Blood was collected preoperatively, every two hours during surgery and 2, 4, 15 and 24 hours postoperatively. Gut mucosal barrier was assessed by plasma markers for enterocyte damage (I-FABP, I-BABP) and urinary presence of tight junction protein claudin-3. Intestinal mucosal perfusion was measured by gastric tonometry (PrCO2, Pr-aCO2-gap). Plasma concentration of I-FABP, I-BABP and urinary expression of claudin-3 increased rapidly and significantly after the onset of surgery in most children. Postoperatively, all markers decreased promptly towards baseline values together with normalisation of MAP. Plasma levels of I-FABP, I-BABP were significantly negatively correlated with MAP at ½ hour before blood sampling (−0.726 (p<0.001), −0.483 (P<0.001), respectively). Furthermore, circulating I-FABP correlated with gastric mucosal PrCO2, Pr-aCO2-gap measured at the same time points (0.553 (p = 0.040), 0.585 (p = 0.028), respectively). Conclusions/Significance This study shows the development of gut barrier loss in children undergoing major non-abdominal surgery, which is related to preceding hypotension and mesenterial hypoperfusion. These data shed new light on the potential role of peroperative circulatory perturbation and intestinal barrier loss. PMID:19088854

  4. Hericium erinaceus polysaccharide facilitates restoration of injured intestinal mucosal immunity in Muscovy duck reovirus-infected Muscovy ducklings.

    Science.gov (United States)

    Wu, Yijian; Jiang, Huihui; Zhu, Erpeng; Li, Jian; Wang, Quanxi; Zhou, Wuduo; Qin, Tao; Wu, Xiaoping; Wu, Baocheng; Huang, Yifan

    2018-02-01

    To elucidate the effect of Hericium erinaceus polysaccharide (HEP) on the intestinal mucosal immunity in normal and Muscovy duck reovirus (MDRV)-infected Muscovy ducklings, 1-day-old healthy Muscovy ducklings were pretreated with 0.2g/L HEP and/or following by MDRV infection in this study, duodenal samples were respectively collected at 1, 3, 6, 10, 15 and 21day post-infection, tissue sections were prepared for observation of morphological structure and determination of intestinal parameters (villus height/crypt depth ratio, villus surface area) as well as counts of intraepithelial lymphocytes (IELs), goblet cells, mast cells. Additionally, dynamics of secretory immunoglobin A (sIgA), interferon-γ (IFN-γ) and interleukin-4 (IL-4) productions in intestinal mucosa were measured with radioimmunoassay. Results showed that HEP significantly improved intestinal morphological structure and related indexes, and significantly inhibited the reduction of intestinal mucosal IELs, goblet cells and mast cells caused by MDRV infection. Furthermore, HEP significantly increased the secretion of sIgA, IFN-γ and IL-4 to enhance intestinal mucosal immune functions. Our findings indicate that HEP treatment can effectively repair MDRV-caused injures of small intestinal mucosal immune barrier, and improve mucosal immune function in sick Muscovy ducklings, which will provide valuable help for further application of HEP in prevention and treatment of MDRV infection. Copyright © 2017. Published by Elsevier B.V.

  5. Mimicking herpes simplex virus 1 and herpes simplex virus 2 mucosal behavior in a well-characterized human genital organ culture.

    Science.gov (United States)

    Steukers, Lennert; Weyers, Steven; Yang, Xiaoyun; Vandekerckhove, Annelies P; Glorieux, Sarah; Cornelissen, Maria; Van den Broeck, Wim; Temmerman, Marleen; Nauwynck, Hans J

    2014-07-15

    We developed and morphologically characterized a human genital mucosa explant model (endocervix and ectocervix/vagina) to mimic genital herpes infections caused by herpes simplex virus types 1 (HSV-1) and 2 (HSV-2). Subsequent analysis of HSV entry receptor expression throughout the menstrual cycle in genital tissues was performed, and the evolution of HSV-1/-2 mucosal spread over time was assessed. Nectin-1 and -2 were expressed in all tissues during the entire menstrual cycle. Herpesvirus entry mediator expression was limited mainly to some connective tissue cells. Both HSV-1 and HSV-2 exhibited a plaque-wise mucosal spread across the basement membrane and induced prominent epithelial syncytia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Polysaccharide-Containing Macromolecules in a Kampo (Traditional Japanese Herbal Medicine, Hochuekkito: Dual Active Ingredients for Modulation of Immune Functions on Intestinal Peyer's Patches and Epithelial cells

    Directory of Open Access Journals (Sweden)

    Hiroaki Kiyohara

    2011-01-01

    Full Text Available A traditional Japanese herbal (Kampo medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41 is a well-known Kampo formula, and has been found to enhance antigen-specific antibody response in not only local mucosal immune system in upper respiratory tract, but also systemic immune system through upper respiratory mucosal immune system. Although this immunopharmacological effect has been proposed to express by modulation of intestinal immune system including Peyer's patches and intestinal epithelial cells, active ingredients are not known. TJ-41 directly affected the production of bone marrow cell-proliferative growth factors from murine Peyer's patch immunocompetent cells in vitro. Among low molecular, intermediate size and macromolecular weight fractions prepared from TJ-41, only fraction containing macromolecular weight ingredients showed Peyer's patch-mediated bone marrow cell-proliferation enhancing activity. Anion-exchange chromatography and gel filtration gave 17 subfractions comprising polysaccharides and lignins from the macromolecular weight fraction of TJ-41, and some of the subfractions showed significant enhancing activities having different degrees. Some of the subfractions also expressed stimulating activity on G-CSF-production from colonic epithelial cells, and statistically significant positive correlation was observed among enhancing activities of the subfractions against Peyer's patch immunocompetent cells and epithelial cells. Among the fractions from TJ-41 oral administration of macromolecular weight ingredient fraction to mice succeeded to enhance antigen-specific antibody response in systemic immune system through upper respiratory mucosal immune system, but all the separated fractions failed to enhance the in vivo antibody response in upper respiratory tract.

  7. Effect of glutamine-enriched nutritional support on intestinal mucosal barrier function, MMP-2, MMP-9 and immune function in patients with advanced gastric cancer during perioperative chemotherapy.

    Science.gov (United States)

    Wang, Juan; Li, Yanfen; Qi, Yuanling

    2017-09-01

    We studied the effects of glutamine-enriched nutritional support on intestinal mucosal barrier, matrix metalloproteinase (MMP)-2, MMP-9 and immune function during perioperative chemotherapy in patients with advanced gastric cancer. The study was conducted on 94 patients with advanced gastric cancer admitted from April 2015 to March 2016. They were randomly divided into observation and control groups, n=47. Control group was given basic nutritional support whereas glutamine-enriched nutritional support was given to patients in observation group. High-performance liquid chromatography was used to measure lactulose and mannitol ratio in urine (L/M) and ELISA was used to measure D-lactate levels before chemotherapy and in the 1st, 2nd and 3rd cycle of chemotherapy. Immunoglobulin level was detected by immune turbidimetry assay, T lymphocyte subsets were determined by flow cytometry after 3 cycles of chemotherapy, MMP-2 and MMP-9 of patients were compared between the two groups. The serious adverse reactions incidence (grade and IV) of patients were observed. To evaluate the life quality of patients, QLQ-C30 was used after 6 months. The levels of L/M and D-lactate in both groups after the first cycle of chemotherapy were significantly higher than that before chemotherapy; they began to decline after the second or third cycle, but were still significantly higher than the levels before chemotherapy (pgroups after 1st, 2nd, 3rd cycle after chemotherapy, L/M and D-lactate levels of patients in the observation group were significantly lower than in the control group (pgroup was significantly lower than control group (pgroup were significantly higher than control group (pnutritional support can effectively protect the intestinal mucosal barrier function in patients with advanced gastric cancer in their perioperative chemotherapy, improve the level of MMP-2 and MMP-9 in patients with advanced gastric cancer, enhance their immune function, reduce the incidence of adverse

  8. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health.

    Science.gov (United States)

    Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Pauls, K Peter; Robinson, Lindsay E; Power, Krista A

    2017-11-01

    Common beans (Phaseolus vulgaris L.) are enriched in non-digestible fermentable carbohydrates and phenolic compounds that can modulate the colonic microenvironment (microbiota and host epithelial barrier) to improve gut health. In a comprehensive assessment of the impact of two commonly consumed bean varieties (differing in levels and types of phenolic compounds) within the colonic microenvironment, C57Bl/6 mice were fed diets supplemented with 20% cooked navy bean (NB) or black bean (BB) flours or an isocaloric basal diet control (BD) for 3 weeks. NB and BB similarly altered the fecal microbiota community structure (16S rRNA sequencing) notably by increasing the abundance of carbohydrate fermenting bacteria such as Prevotella, S24-7 and Ruminococcus flavefaciens, which coincided with enhanced short chain fatty acid (SCFA) production (microbial-derived carbohydrate fermentation products) and colonic expression of the SCFA receptors GPR-41/-43/-109a. Both NB and BB enhanced multiple aspects of mucus and epithelial barrier integrity vs. BD including: (i) goblet cell number, crypt mucus content and mucin mRNA expression, (ii) anti-microbial defenses (Reg3γ), (iii) crypt length and epithelial cell proliferation, (iv) apical junctional complex components (occludin, JAM-A, ZO-1 and E-cadherin) mRNA expression and (v) reduced serum endotoxin concentrations. Interestingly, biomarkers of colon barrier integrity (crypt height, mucus content, cell proliferation and goblet cell number) were enhanced in BB vs. NB-fed mice, suggesting added benefits attributable to unique BB components (e.g., phenolics). Overall, NB and BB improved baseline colonic microenvironment function by altering the microbial community structure and activity and promoting colon barrier integrity and function; effects which may prove beneficial in attenuating gut-associated diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Physiopathology, prevention and treatment of the oral mucositis induced by chemotherapy and radiotherapy

    International Nuclear Information System (INIS)

    Avila G, Andres; Cardona Z, Andres Felipe; Perea B, Ana Helena

    2000-01-01

    The oral mucositis is a frequent and potentially severe complication of the antineoplasic therapy; it is considered that approximately 400.000 new patients per year in United States will develop acute or chronic complications in oral cavity after the beginning of its treatment. Some of the basic manifestations that are inside the clinical descriptions understand the erythema, the desquamation, formation of ulcers, the bled, and exudation. The epithelial oropharynge surface has a quick replication rate, and for this reason it is highly exposed to the direct insult due to the cytotoxic effects of the chemotherapy, the radiotherapy, and indirectly the infectious agents. The paper includes topics like physiopathology, risk factors, chemotherapy, radiotherapy, the patient's evaluation and conclusions

  10. Prior mucosal exposure to heterologous cells alters the pathogenesis of cell-associated mucosal feline immunodeficiency virus challenge

    Directory of Open Access Journals (Sweden)

    Leavell Sarah

    2010-05-01

    Full Text Available Abstract Background Several lines of research suggest that exposure to cellular material can alter the susceptibility to infection by HIV-1. Because sexual contact often includes exposure to cellular material, we hypothesized that repeated mucosal exposure to heterologous cells would induce an immune response that would alter the susceptibility to mucosal infection. Using the feline immunodeficiency virus (FIV model of HIV-1 mucosal transmission, the cervicovaginal mucosa was exposed once weekly for 12 weeks to 5,000 heterologous cells or media (control and then cats were vaginally challenged with cell-associated or cell-free FIV. Results Exposure to heterologous cells decreased the percentage of lymphocytes in the mucosal and systemic lymph nodes (LN expressing L-selectin as well as the percentage of CD4+ CD25+ T cells. These shifts were associated with enhanced ex-vivo proliferative responses to heterologous cells. Following mucosal challenge with cell-associated, but not cell-free, FIV, proviral burden was reduced by 64% in cats previously exposed to heterologous cells as compared to media exposed controls. Conclusions The pathogenesis and/or the threshold for mucosal infection by infected cells (but not cell-free virus can be modulated by mucosal exposure to uninfected heterologous cells.

  11. Immunopathophysiology of inflammatory bowel disease: how genetics link barrier dysfunction and innate immunity to inflammation.

    Science.gov (United States)

    Mehta, Minesh; Ahmed, Shifat; Dryden, Gerald

    2017-08-01

    Inflammatory bowel diseases (IBD) comprise a distinct set of clinical symptoms resulting from chronic or relapsing immune activation and corresponding inflammation within the gastrointestinal (GI) tract. Diverse genetic mutations, encoding important aspects of innate immunity and mucosal homeostasis, combine with environmental triggers to create inappropriate, sustained inflammatory responses. Recently, significant advances have been made in understanding the interplay of the intestinal epithelium, mucosal immune system, and commensal bacteria as a foundation of the pathogenesis of inflammatory bowel disease. Complex interactions between specialized intestinal epithelial cells and mucosal immune cells determine different outcomes based on the environmental input: the development of tolerance in the presence of commensal bacterial or the promotion of inflammation upon recognition of pathogenic organisms. This article reviews key genetic abnormalities involved in inflammatory and homeostatic pathways that enhance susceptibility to immune dysregulation and combine with environmental triggers to trigger the development of chronic intestinal inflammation and IBD.

  12. Evaluation of preparation methods for MS-based analysis of intestinal epithelial cell proteomes

    DEFF Research Database (Denmark)

    Hesselager, Marianne Overgaard; Codrea, Marius Cosmin; Bendixen, Emøke

    2015-01-01

    analyzed by LC and electrospray QTOF-MS. The methods were evaluated according to efficiency, purity, transmembrane protein recovery, as well as for suitability to large-scale preparations. Our data clearly demonstrate that mucosal shaving is by far the best-suited method for in-depth MS analysis in terms...... are low in abundance, and large amounts of sample is needed for their preparation and for undertaking MS-based analysis. The aim of this study was to evaluate three different methods for isolation and preparation of pig intestinal epithelial cells for MS-based analysis of the proteome. Samples were...... of ease and speed of sample preparation, as well as protein recovery. In comparison, more gentle methods where intestinal epithelial cells are harvested by shaking are more time consuming, result in lower protein yield, and are prone to increased technical variation due to multiple steps involved....

  13. Epithelial-Mesenchymal Transition in Tissue Repair and Fibrosis

    Science.gov (United States)

    Stone, Rivka C.; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I.; Tomic-Canic, Marjana

    2016-01-01

    Epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics which confer migratory capacity. EMT and its converse, MET (mesenchymal-to-epithelial transition), are integral stages of many physiologic processes, and as such are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes - the resident skin epithelial cells - migrate across the wound bed to restore the epidermal barrier. Moreover, EMT also plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblast arises from cells of epithelial lineage in response to injury but is pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the impaired repair of fibrotic wounds may identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. PMID:27461257

  14. Interferon γ-Induced Nuclear Interleukin-33 Potentiates the Release of Esophageal Epithelial Derived Cytokines.

    Directory of Open Access Journals (Sweden)

    Jing Shan

    Full Text Available Esophageal epithelial cells are an initiating cell type in esophageal inflammation, playing an essential role in the pathogenesis of gastroesophageal reflux disease (GERD. A new tissue-derived cytokine, interleukin-33 (IL-33, has been shown to be upregulated in esophageal epithelial cell nuclei in GERD, taking part in mucosal inflammation. Here, inflammatory cytokines secreted by esophageal epithelial cells, and their regulation by IL-33, were investigated.In an in vitro stratified squamous epithelial model, IL-33 expression was examined using quantitative RT-PCR, western blot, ELISA, and immunofluorescence. Epithelial cell secreted inflammatory cytokines were examined using multiplex flow immunoassay. IL-33 was knocked down with small interfering RNA (siRNA in normal human esophageal epithelial cells (HEECs. Pharmacological inhibitors and signal transducers and activators of transcription 1 (STAT1 siRNA were used to explore the signaling pathways.Interferon (IFNγ treatment upregulated nuclear IL-33 in HEECs. Furthermore, HEECs can produce various inflammatory cytokines, such as IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1, regulated on activation normal T-cell expressed and presumably secreted (RANTES, and granulocyte-macrophage colony-stimulating factor (GM-CSF in response to IFNγ. Nuclear, but not exogenous IL-33, amplified IFN induction of these cytokines. P38 mitogen-activated protein kinase (MAPK and janus protein tyrosine kinases (JAK/STAT1 were the common signaling pathways of IFNγ-mediated induction of IL-33 and other cytokines.Esophageal epithelial cells can actively participate in GERD pathogenesis through the production of various cytokines, and epithelial-derived IL-33 might play a central role in the production of these cytokines.

  15. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeanette Wagener

    Full Text Available C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.

  16. Healing of corneal epithelial wounds in marine and freshwater fish.

    Science.gov (United States)

    Ubels, J L; Edelhauser, H F

    The corneal epithelium of a fish is in direct contact with the aquatic environment and is a barrier to movement of ions and water into and through the cornea. This tissue layer is thus important in maintenance of corneal transparency. When the epithelium is wounded, its protective function is lost and corneal transparency remains compromised until the epithelial barrier is re-established. This study was undertaken to investigate the healing response of the fish cornea to epithelial abrasion. Wounds were stained with fluorescein and photographed during healing. Wound areas were measured by planimetry. The cornea of the sculpin, a marine teleost, becomes edematous after wounding and heals at 2.54 to 3.42 mm2/hr. Nonswelling corneas of the elasmobranchs--dogfish shark and skate--heal at 1.29 mm2/hr, respectively. The wounded eye of the rainbow trout, a freshwater teleost, is stressed by the low osmolality of the environment. Severe corneal edema and cataracts develop following epithelial wounding, and the cornea heals at 0.64 mm2/hr. Although the healing rates in teleosts differ from those in mammals, histology shows that the corneal healing mechanism is essentially the same in fish and mammals.

  17. Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line

    DEFF Research Database (Denmark)

    Nielsen, Ditte Søvsø Gundelund; Jensen, Bent Borg; Theil, Peter Kappel

    2018-01-01

    . This was associated with regulation of different genes involved in epithelial integrity, mucus secretion, apoptosis, oxidative stress, and butyrate transport. In conclusion, butyrate in concentrations that can be achieved by dietary intervention in vivo enhanced the epithelial barrier function in vitro. B...

  18. [Changes in expression of Slingshot protein in hypoxic human intestinal epithelial cell and its relation with barrier function of the cells].

    Science.gov (United States)

    Zhang, Jian; Wang, Pei; He, Wen; Wang, Fengjun

    2016-04-01

    To study the effect of hypoxia on Slingshot protein expression in human intestinal epithelial cell and its relation with changes in barrier function of the cells. The human intestinal epithelial cell line Caco-2 was used to reproduce monolayer-cells. One portion of the monolayer-cell specimens were divided into six parts according to the random number table, and they were respectively exposed to hypoxia for 0 (without hypoxia), 1, 2, 6, 12, and 24 h. Transepithelial electrical resistance (TER) was determined with an ohmmeter. Another portion of the monolayer-cell specimens were exposed to hypoxia as above. Western blotting was used to detect the protein expressions of zonula occludens 1 (ZO-1), occludin, claudin-1, Slingshot-1, Slingshot-2, and Slingshot-3. The remaining portion of the monolayer-cell specimens were also exposed to hypoxia as above. The content of fibrous actin (F-actin) and globular actin (G-actin) was determined by fluorescence method. The sample number of above-mentioned 3 experiments was respectively 10, 10, and 18 at each time point. Data were processed with one-way analysis of variance and Dunnett test. (1) Compared with that of cells exposed to hypoxia for 0 h, TER of cells exposed to hypoxia for 1 to 24 h was significantly reduced (P values below 0.01). (2) Compared with those of cells exposed to hypoxia for 0 h (all were 1.00), the protein expressions of ZO-1, occludin, and claudin-1 of cells exposed to hypoxia for 1 to 24 h were generally lower, especially those of cells exposed to hypoxia for 12 h or 24 h (respectively 0.69 ± 0.20, 0.47 ± 0.15, and 0.47 ± 0.22, Pprotein expressions of Slingshot-1 and Slingshot-3 of cells exposed to hypoxia for 1 to 24 h were not obviously changed (P values above 0.05). The protein expression of Slingshot-2 of cells was decreased at first and then gradually increased from hypoxia hour 1 to 24. The protein expression of Slingshot-2 of cells exposed to hypoxia for 24 h (1.54 ± 0.57) was significantly

  19. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases

    Czech Academy of Sciences Publication Activity Database

    Tlaskalová, Helena; Štěpánková, Renata; Hudcovic, Tomáš; Tučková, Ludmila; Cukrowska, B.; Lodinová-Žádníková, R.; Kozáková, Hana; Rossmann, Pavel; Bártová, J.; Sokol, Dan

    2004-01-01

    Roč. 93, - (2004), s. 97-108 ISSN 0165-2478 R&D Projects: GA ČR GA310/01/0933; GA ČR GA310/02/1470; GA AV ČR IAA5020101; GA AV ČR IAA5020205; GA AV ČR IAA5020210; GA AV ČR IBS5020203; GA MZd NK6742; GA MZd NI7525 Institutional research plan: CEZ:AV0Z5020903 Keywords : mucosal microbiota * intestina barrier * germ-free animal Subject RIV: EE - Microbiology, Virology Impact factor: 2.136, year: 2004

  20. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain.

    Science.gov (United States)

    Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe

    2012-04-01

    IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.

  1. Epithelial cell proliferation in human fundic and antral mucosae. Influence of superselective vagotomy and relationship with gastritis

    International Nuclear Information System (INIS)

    Gutierrez, O.; Lehy, T.; Rene, E.; Gres, L.; Bonfils, S.

    1985-01-01

    Epithelial cell proliferation in the fundic and antral mucosae was studied in 19 duodenal ulcer patients, 11 patients having undergone fundic superselective vagotomy for duodenal ulcer, and 10 controls. This was achieved through in vitro incorporation of tritiated thymidine in mucosal biopsies and radioautography. Except for increased fundic mucosal height, duodenal ulcer patients did not differ from controls for all parameters studied. In vagotomized patients, as compared to the other two groups, the labeling index was significantly enhanced in the innervated antral mucosa where atrophic gastritis developed, but there was no change in the labeling index and no worsening of mucosal inflammation in the denervated fundic mucosa. The only abnormality in the latter was a striking expansion, towards the surface, of the proliferative area within the fundic pit. The labeling indices and the degree of gastritis in gastric mucosae are significantly correlated in control and duodenal ulcer patients. If findings in antral mucosa, after superselective vagotomy, seemed related to gastritis lesions, those in fundic mucosa were not and may indicate an alteration due to the vagotomy per se

  2. Mucosal immunization using proteoliposome and cochleate structures from Neisseria meningitidis serogroup B induce mucosal and systemic responses.

    Science.gov (United States)

    Campo, Judith Del; Zayas, Caridad; Romeu, Belkis; Acevedo, Reinaldo; González, Elizabeth; Bracho, Gustavo; Cuello, Maribel; Cabrera, Osmir; Balboa, Julio; Lastre, Miriam

    2009-12-01

    Most pathogens either invade the body or establish infection in mucosal tissues and represent an enormous challenge for vaccine development by the absence of good mucosal adjuvants. A proteoliposome-derived adjuvant from Neisseria meningitidis serogroup B (AFPL1, Adjuvant Finlay Proteoliposome 1) and its derived cochleate form (Co, AFCo1) contain multiple pathogen-associated molecular patterns as immunopotentiators, and can also serve as delivery systems to elicit a Th1-type immune response. The present studies demonstrate the ability of AFPL1and AFCo1 to induce mucosal and systemic immune responses by different mucosal immunizations routes and significant adjuvant activity for antibody responses of both structures: a microparticle and a nanoparticle with a heterologous antigen. Therefore, we used female mice immunized by intragastric, intravaginal, intranasal or intramuscular routes with both structures alone or incorporated with ovalbumin (OVA). High levels of specific IgG antibody were detected in all sera and in vaginal washes, but specific IgA antibody in external secretions was only detected in mucosally immunized mice. Furthermore, antigen specific IgG1 and IgG2a isotypes were all induced. AFPL1 and AFCo1 are capable of inducing IFN-gamma responses, and chemokine secretions, like MIP-1alpha and MIP-1beta. However, AFCo1 is a better alternative to induce immune responses at mucosal level. Even when we use a heterologous antigen, the AFCo1 response was better than with AFPL1 in inducing mucosal and systemic immune responses. These results support the use of AFCo1 as a potent Th1 inducing adjuvant particularly suitable for mucosal immunization.

  3. The learning curve, interobserver, and intraobserver agreement of endoscopic confocal laser endomicroscopy in the assessment of mucosal barrier defects.

    Science.gov (United States)

    Chang, Jeff; Ip, Matthew; Yang, Michael; Wong, Brendon; Power, Theresa; Lin, Lisa; Xuan, Wei; Phan, Tri Giang; Leong, Rupert W

    2016-04-01

    Confocal laser endomicroscopy can dynamically assess intestinal mucosal barrier defects and increased intestinal permeability (IP). These are functional features that do not have corresponding appearance on histopathology. As such, previous pathology training may not be beneficial in learning these dynamic features. This study aims to evaluate the diagnostic accuracy, learning curve, inter- and intraobserver agreement for identifying features of increased IP in experienced and inexperienced analysts and pathologists. A total of 180 endoscopic confocal laser endomicroscopy (Pentax EC-3870FK; Pentax, Tokyo, Japan) images of the terminal ileum, subdivided into 6 sets of 30 were evaluated by 6 experienced analysts, 13 inexperienced analysts, and 2 pathologists, after a 30-minute teaching session. Cell-junction enhancement, fluorescein leak, and cell dropout were used to represent increased IP and were either present or absent in each image. For each image, the diagnostic accuracy, confidence, and quality were assessed. Diagnostic accuracy was significantly higher for experienced analysts compared with inexperienced analysts from the first set (96.7% vs 83.1%, P 0.86 for experienced observers. Features representative of increased IP can be rapidly learned with high inter- and intraobserver agreement. Confidence and image quality were significant predictors of accurate interpretation. Previous pathology training did not have an effect on learning. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  4. Splenectomy attenuates severe thermal trauma-induced intestinal barrier breakdown in rats.

    Science.gov (United States)

    Liu, Xiang-dong; Chen, Zhen-yong; Yang, Peng; Huang, Wen-guang; Jiang, Chun-fang

    2015-12-01

    The severe local thermal trauma activates a number of systemic inflammatory mediators, such as TNF-α, NF-κB, resulting in a disruption of gut barrier. The gastrointestinal tight junction (TJ) is highly regulated by membrane-associated proteins including zonula occludens protein-1 (ZO-1) and occludin, which can be modulated by inflammatory cytokines. As splenectomy has been shown to reduce secretion of cytokines, we hypothesized that (1) severe scald injury up-regulates TNF-α and NF-κB, meanwhile down-regulates expression of ZO-1 and occludin, leading to the increased intestinal permeability, and (2) splenectomy can prevent the burn-induced decrease in ZO-1 and occludin expression, resulting in improved intestinal barrier. Wistar rats undergoing a 30% total body surface area (TBSA) thermal trauma were randomized to receive an accessorial splenectomy meanwhile or not. Intestinal injury was assessed by histological morphological analysis, and serum endotoxin levels, TNF-α, NF-κB, ZO-1 and occludin levels were detected by Western blotting in the terminal ileum mucosal tissue. 30% TBSA burn caused a significant increase in serum endotoxin levels, but NF-κB, and TNF-α, and the average intestinal villus height and mucosal thickness were decreased significantly. Burn injury could also markedly decrease the levels of ZO-1 and occludin in terminal ileum mucosal tissue (all PSplenectomy at 7th day after burn significantly reversed the burn-induced breakdown of ZO-1 and occludin (all PSplenectomy may provide a therapeutic benefit in restoring burn-induced intestinal barrier by decreasing the release of inflammatory cytokines and recovering TJ proteins.

  5. Irradiation mucositis and oral flora

    International Nuclear Information System (INIS)

    Spijkervet, F.K.L.

    1989-01-01

    This study, which is motivated by the substantial morbidity of local signs of mucositis and generalized symptoms that result from mucositis induced by therapeutic irradiation, has the following objectives: To investigate if it is possible to prevent irradiation mucositis via oral flora elimination, and, if it is true that flora plays a role in irradiation mucositis, what fraction of the oral flora may be involved; to evaluate oral Gram-negative bacillary carriage; to investigate the possibility to eradicate Gram-negative bacilli from the oral cavity; to evaluate oral yeast carriage; to investigate the possibility to eradicate yeasts stomatitis and the 'selectivity' of elimination of flora. Two methods are described for monitoring alterations of mucositis of the oral cavity and changes in oral flora. Chlorhexidine has been tested as the commonly used prophylaxis. The effect of chlorhexidine 0.1% rinses on oral flora and mucositis has been studied in a prospective placebo controlled double blind randomized programme. The results of the influence of saliva on the antimicrobial activity of chlorhexidine and the results of selective elimination of oral flora in irradiated patients who have head and neck cancer are reported. Salivary inactivation of the topical antimicrobials used for selective elimination of oral flora has been studied and the results are reported. Finally, the objectives that have been achieved (or not) are delineated. The significance of the results of the study are discussed in terms of published information and further lines of research are suggested. (author). 559 refs.; 29 figs.; 20 tabs

  6. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury

    Science.gov (United States)

    Coburn, Luke; Lopez, Hender; Schouwenaar, Irin-Maya; Yap, Alpha S.; Lobaskin, Vladimir; Gomez, Guillermo A.

    2018-03-01

    Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.

  7. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol in mucosal epithelial cells (specifically Caco-2 cell layers and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.

  8. IBS, NERD and functional dyspepsia are immuno-neuronal disorders of mucosal cytokine imbalances clinically reversible with high potency sucralfate.

    Science.gov (United States)

    McCullough, Ricky W

    2013-03-01

    Irritable bowel syndrome (IBS), non-erosive reflux disorder (NERD), and functional dyspepsia (FD) are best classified as immuno-neuronal disorders of the mucosa or functional mucosal syndromes (FMS). Each appears to be clinically reversible using high potency sucralfate (HPS). In FMS of the GI tract, postprandial nausea, altered motility, discordant peristalsis, vomiting, diarrhea, and hyperalgesia are the clinical expressions of a mucosal imbalance between pro-inflammatory cytokines of up-regulated intra-epithelial lymphocytes (IELs) and feedback anti-inflammatory cytokines tasked with moderating the antigenic response of IELs. Normal functioning GI tract requires an operative balance between pro-inflammatory and anti-inflammatrory cytokines, a balance governed by locally expressed growth factors. The surface concentration of sucralfate can be enhanced 7-23-fold by suspending it in a select concentration of cations and multi-dentate cationic chelators. Increased surface concentration of sucralfate facilitates novel dose effects which include efficient activation of growth factors, quiescence of gated-nociceptor firing and resultant restoration of normal GI function. Published by Elsevier Ltd.

  9. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  10. A crosstalk between muscarinic and CRF2 receptors regulates cellular adhesion properties of human colon cancer cells.

    Science.gov (United States)

    Pelissier-Rota, M; Chartier, N T; Bonaz, B; Jacquier-Sarlin, M R

    2017-07-01

    Patients with inflammatory bowel disease often suffer from chronic and relapsing intestinal inflammation that favor the development of colitis associated cancer. An alteration of the epithelial intestinal barrier function observed in IBD is supposed to be a consequence of stress. It has been proposed that corticotrophin-releasing factor receptor (CRF2), one of the two receptors of CRF, the principal neuromediator of stress, acts on cholinergic nerves to induce stress-mediated epithelial barrier dysfunction. Non-neuronal acetylcholine (Ach) and muscarinic receptors (mAchR) also contribute to alterations of epithelial cell functions. In this study, we investigated the mechanisms through which stress and Ach modulate epithelial cell adhesive properties. We show that Ach-induced activation of mAchR in HT-29 cells results in cell dissociation together with changes in cell-matrix contacts, which correlates with the acquisition of invasive potential consistent with a matrix metalloproteinase (MMP) mode of invasion. These processes result from mAchR subsequent stimulation of the cascade of src/Erk and FAK activation. Ach-induced secretion of laminin 332 leads to α3β1 integrin activation and RhoA-dependent reorganization of the actin cytoskeleton. We show that Ach-mediated effects on cell adhesion are blocked by astressin 2b, a CRF2 antagonist, suggesting that Ach action depends partly on CRF2 signaling. This is reinforced by the fact that Ach-mediated activation of mAchR stimulates both the synthesis and the release of CRF2 ligands in HT-29 cells (effects blocked by atropine). In summary, our data provides evidence for a novel intracellular circuit involving mAchR acting on CRF2-signaling that could mediate colonic mucosal barrier dysfunction and exacerbate mucosal inflammation. Copyright © 2017. Published by Elsevier B.V.

  11. Protecting intestinal epithelial integrity by galacto-oligosaccharides: Keeping it tight

    NARCIS (Netherlands)

    Akbari, P.

    2016-01-01

    The intestinal barrier serves as a first line of host defense against potentially harmful stressors from the environment ingested with food, and is primarily formed by epithelial cells connected by tight junctions. Oligosaccharides have been identified as components in milk, particularly in

  12. Loss of guanylyl cyclase C (GCC signaling leads to dysfunctional intestinal barrier.

    Directory of Open Access Journals (Sweden)

    Xiaonan Han

    2011-01-01

    Full Text Available Guanylyl Cyclase C (GCC signaling via uroguanylin (UGN and guanylin activation is a critical mediator of intestinal fluid homeostasis, intestinal cell proliferation/apoptosis, and tumorigenesis. As a mechanism for some of these effects, we hypothesized that GCC signaling mediates regulation of intestinal barrier function.Paracellular permeability of intestinal segments was assessed in wild type (WT and GCC deficient (GCC-/- mice with and without lipopolysaccharide (LPS challenge, as well as in UGN deficient (UGN-/- mice. IFNγ and myosin light chain kinase (MLCK levels were determined by real time PCR. Expression of tight junction proteins (TJPs, phosphorylation of myosin II regulatory light chain (MLC, and STAT1 activation were examined in intestinal epithelial cells (IECs and intestinal mucosa. The permeability of Caco-2 and HT-29 IEC monolayers, grown on Transwell filters was determined in the absence and presence of GCC RNA interference (RNAi. We found that intestinal permeability was increased in GCC-/- and UGN-/- mice compared to WT, accompanied by increased IFNγ levels, MLCK and STAT1 activation in IECs. LPS challenge promotes greater IFNγ and STAT1 activation in IECs of GCC-/- mice compared to WT mice. Claudin-2 and JAM-A expression were reduced in GCC deficient intestine; the level of phosphorylated MLC in IECs was significantly increased in GCC-/- and UGN-/- mice compared to WT. GCC knockdown induced MLC phosphorylation, increased permeability in IEC monolayers under basal conditions, and enhanced TNFα and IFNγ-induced monolayer hyperpermeability.GCC signaling plays a protective role in the integrity of the intestinal mucosal barrier by regulating MLCK activation and TJ disassembly. GCC signaling activation may therefore represent a novel mechanism in maintaining the small bowel barrier in response to injury.

  13. Epithelial-mesenchymal transition in tissue repair and fibrosis.

    Science.gov (United States)

    Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana

    2016-09-01

    The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).

  14. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity

    Directory of Open Access Journals (Sweden)

    Esposito Pasquale

    2011-03-01

    Full Text Available Abstract Background Celiac disease (CD is an autoimmune enteropathy triggered by the ingestion of gluten. Gluten-sensitive individuals (GS cannot tolerate gluten and may develop gastrointestinal symptoms similar to those in CD, but the overall clinical picture is generally less severe and is not accompanied by the concurrence of tissue transglutaminase autoantibodies or autoimmune comorbidities. By studying and comparing mucosal expression of genes associated with intestinal barrier function, as well as innate and adaptive immunity in CD compared with GS, we sought to better understand the similarities and differences between these two gluten-associated disorders. Methods CD, GS and healthy, gluten-tolerant individuals were enrolled in this study. Intestinal permeability was evaluated using a lactulose and mannitol probe, and mucosal biopsy specimens were collected to study the expression of genes involved in barrier function and immunity. Results Unlike CD, GS is not associated with increased intestinal permeability. In fact, this was significantly reduced in GS compared with controls (P = 0.0308, paralleled by significantly increased expression of claudin (CLDN 4 (P = 0.0286. Relative to controls, adaptive immunity markers interleukin (IL-6 (P = 0.0124 and IL-21 (P = 0.0572 were expressed at higher levels in CD but not in GS, while expression of the innate immunity marker Toll-like receptor (TLR 2 was increased in GS but not in CD (P = 0.0295. Finally, expression of the T-regulatory cell marker FOXP3 was significantly reduced in GS relative to controls (P = 0.0325 and CD patients (P = 0.0293. Conclusions This study shows that the two gluten-associated disorders, CD and GS, are different clinical entities, and it contributes to the characterization of GS as a condition associated with prevalent gluten-induced activation of innate, rather than adaptive, immune responses in the absence of detectable changes in mucosal barrier function.

  15. Role of Vitamin D in Maintaining Renal Epithelial Barrier Function in Uremic Conditions

    Directory of Open Access Journals (Sweden)

    Milos Mihajlovic

    2017-11-01

    Full Text Available As current kidney replacement therapies are not efficient enough for end-stage renal disease (ESRD treatment, a bioartificial kidney (BAK device, based on conditionally immortalized human proximal tubule epithelial cells (ciPTEC, could represent an attractive solution. The active transport activity of such a system was recently demonstrated. In addition, endocrine functions of the cells, such as vitamin D activation, are relevant. The organic anion transporter 1 (OAT-1 overexpressing ciPTEC line presented 1α-hydroxylase (CYP27B1, 24-hydroxylase (CYP24A1 and vitamin D receptor (VDR, responsible for vitamin D activation, degradation and function, respectively. The ability to produce and secrete 1α,25-dihydroxy-vitamin D3, was shown after incubation with the precursor, 25-hydroxy-vitamin D3. The beneficial effect of vitamin D on cell function and behavior in uremic conditions was studied in the presence of an anionic uremic toxins mixture. Vitamin D could restore cell viability, and inflammatory and oxidative status, as shown by cell metabolic activity, interleukin-6 (IL-6 levels and reactive oxygen species (ROS production, respectively. Finally, vitamin D restored transepithelial barrier function, as evidenced by decreased inulin-FITC leakage in biofunctionalized hollow fiber membranes (HFM carrying ciPTEC-OAT1. In conclusion, the protective effects of vitamin D in uremic conditions and proven ciPTEC-OAT1 endocrine function encourage the use of these cells for BAK application.

  16. Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye.

    Science.gov (United States)

    Guzmán, Mauricio; Keitelman, Irene; Sabbione, Florencia; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G

    2016-10-01

    Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

    Science.gov (United States)

    Takahashi, Chika; Miyatake, Koichi; Kusakabe, Morioh; Nishida, Eisuke

    2018-06-01

    Epithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates. We found that in Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight-junction protein distribution, as well as tight-junction barrier function, resulting in epidermal breakdown. Moreover, in human epithelial breast cancer cells, inhibition of ERK3 expression induced thickened epithelia with aberrant adherens and tight junctions. Results from microarray analyses suggested that transcription factor AP-2α (TFAP2A), a transcriptional regulator important for epithelial gene expression, is involved in ERK3-dependent changes in gene expression. Of note, TFAP2A knockdown phenocopied ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 was required for full activation of TFAP2A-dependent transcription. Our findings reveal that ERK3 regulates epithelial architecture, possibly together with TFAP2A. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Cytokines levels, Severity of acute mucositis and the need of PEG tube installation during chemo-radiation for head and neck cancer - a prospective pilot study

    International Nuclear Information System (INIS)

    Meirovitz, Amichay; Kuten, Michal; Billan, Salem; Abdah-Bortnyak, Roxolyana; Sharon, Anat; Peretz, Tamar; Sela, Mordechai; Schaffer, Moshe; Barak, Vivian

    2010-01-01

    The purpose of this pilot study was to detect a correlation between serum cytokine levels and severity of mucositis, necessitating installation of a percutaneous endoscopic gastrostomy tube (PEG) in head and neck (H&N) cancer patients receiving combined chemo-radiation therapy. Fifteen patients with H&N epithelial cancer were recruited to this study. All patients received radiotherapy to the H&N region, with doses ranging from 50-70 Gy. Chemotherapy with cisplatin, carboplatin, 5-fluorouracil and taxanes was given to high-risk patients, using standard chemotherapy protocols. Patients were evaluated for mucositis according to WHO common toxicity criteria, and blood samples were drawn for inflammatory (IL-1, IL-6, IL-8, TNF-α) and anti-inflammatory (IL-10) cytokine levels before and during treatment. A positive correlation was found between IL-6 serum levels and severity of mucositis and dysphagia; specifically, high IL-6 levels at week 2 were correlated with a need for PEG tube installation. A seemingly contradictory correlation was found between low IL-8 serum levels and a need for a PEG tube. These preliminary results, indicating a correlation between IL-6 and IL-8 serum levels and severity of mucositis and a need for a PEG tube installation, justify a large scale study

  20. Radiation-induced mucositis pain in laryngeal cancer

    International Nuclear Information System (INIS)

    Takahashi, Atsuhito; Shoji, Kazuhiko; Iki, Takehiro; Mizuta, Masanobu; Matsubara, Mami

    2009-01-01

    Radiation therapy in those with head and neck malignancies often triggers painful mucositis poorly controlled by nonsteroidal antiinflammatory drugs (NSAIDs). To better understand how radiation-induced pain develops over time, we studied the numerical rating scale (NRS 0-5) pain scores from 32 persons undergoing radiation therapy of 60-72 Gy for newly diagnosed laryngeal cancer. The degree of mucositis was evaluated using Common Terminology Criteria for Adverse Events version3.0 (CTCAE v3.0). We divided the 32 into a conventional fractionation (CF) group of 14 and a hyperfractionation (HF) group of 18, and further divided laryngeal cancer into a small-field group of 23 and a large-field group of 9. The mucositis pain course was similar in CF and HF, but mucositis pain was severer in the HF group, which also required more NSAIDs. Those in the large-field group had severer pain and mucositis and required more NSAIDs than those in the small-field group. We therefore concluded that small/large-field radiation therapy, rather fractionation type, was related to the incidence of radiation-induced mucositis pain. (author)

  1. Antigen presentation and MHC class II expression by human esophageal epithelial cells: role in eosinophilic esophagitis.

    Science.gov (United States)

    Mulder, Daniel J; Pooni, Aman; Mak, Nanette; Hurlbut, David J; Basta, Sameh; Justinich, Christopher J

    2011-02-01

    Professional antigen-presenting cells (APCs) play a crucial role in initiating immune responses. Under pathological conditions, epithelial cells at mucosal surfaces act as nonprofessional APCs, thereby regulating immune responses at the site of exposure. Epithelial cells in the esophagus may contribute to the pathogenesis of eosinophilic esophagitis (EoE) by presenting antigens on the major histocompatibility complex (MHC) class II. Our goal was to demonstrate the ability of esophageal epithelial cells to process and present antigens on the MHC class II system and to investigate the contribution of epithelial cell antigen presentation to EoE. Immunohistochemistry detected HLA-DR, CD80, and CD86 expression and enzyme-linked immunosorbent assay detected interferon-γ (IFNγ) in esophageal biopsies. Antigen presentation was studied using the human esophageal epithelial cell line HET-1A by reverse transcriptase-PCR, flow cytometry, and confocal microscopy. T helper cell lymphocyte proliferation was assessed by flow cytometry and IL-2 secretion. IFNγ and MHC class II were increased in mucosa of patients with EoE. IFNγ increased mRNA of HLA-DP, HLA-DQ, HLA-DR, and CIITA in HET-1A cells. HET-1A engulfed cell debris and processed ovalbumin. HET-1A cells expressed HLA-DR after IFNγ treatment. HET-1A stimulated T helper cell activation. In this study, we demonstrated the ability of esophageal epithelial cells to act as nonprofessional APCs in the presence of IFNγ. Esophageal epithelial cell antigen presentation may contribute to the pathophysiology of eosinophilic esophagitis. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Neutrophils Compromise Retinal Pigment Epithelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Jiehao Zhou

    2010-01-01

    Full Text Available We hypothesized that neutrophils and their secreted factors mediate breakdown of the integrity of the outer blood-retina-barrier by degrading the apical tight junctions of the retinal pigment epithelium (RPE. The effect of activated neutrophils or neutrophil cell lysate on apparent permeability of bovine RPE-Choroid explants was evaluated by measuring [H] mannitol flux in a modified Ussing chamber. The expression of matrix metalloproteinase- (MMP- 9 in murine peritoneal neutrophils, and the effects of neutrophils on RPE tight-junction protein expression were assessed by confocal microscopy and western blot. Our results revealed that basolateral incubation of explants with neutrophils decreased occludin and ZO-1 expression at 1 and 3 hours and increased the permeability of bovine RPE-Choroid explants by >3-fold (P<.05. Similarly, basolateral incubation of explants with neutrophil lysate decreased ZO-1 expression at 1 and 3 hours (P<.05 and increased permeability of explants by 75%. Further, we found that neutrophils prominently express MMP-9 and that incubation of explants with neutrophils in the presence of anti-MMP-9 antibody inhibited the increase in permeability. These data suggest that neutrophil-derived MMP-9 may play an important role in disrupting the integrity of the outer blood-retina barrier.

  3. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation

    DEFF Research Database (Denmark)

    López-Posadas, Rocío; Becker, Christoph; Günther, Claudia

    2016-01-01

    Although defects in intestinal barrier function are a key pathogenic factor in patients with inflammatory bowel diseases (IBDs), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we addressed this issue by characterizing t...

  4. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells

    NARCIS (Netherlands)

    Akbari, Peyman; Fink-Gremmels, Johanna; Willems, Rianne H.A.M.; Difilippo, Elisabetta; Schols, Henk A.; Schoterman, Margriet H.C.; Garssen, Johan; Braber, Saskia

    2017-01-01

    Purpose: The direct effects of galacto-oligosaccharides (GOS), including Vivinal® GOS syrup (VGOS) and purified Vivinal® GOS (PGOS), on the epithelial integrity and corresponding interleukin-8 (IL-8/CXCL8) release were examined in a Caco-2 cell model for intestinal barrier dysfunction. To

  5. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    Full Text Available BACKGROUND: Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. CONCLUSIONS/SIGNIFICANCE: These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.

  6. Salmosan, a β-galactomannan-rich product, in combination with Lactobacillus plantarum contributes to restore intestinal epithelial barrier function by modulation of cytokine production.

    Science.gov (United States)

    Brufau, M Teresa; Campo-Sabariz, Joan; Carné, Sergi; Ferrer, Ruth; Martín-Venegas, Raquel

    2017-03-01

    Mannan-oligosaccharides (MOSs) are mannose-rich substrates with several intestinal health-promoting properties. The aim of this study was to investigate the potential capacity of Salmosan (S-βGM), a β-galactomannan-rich MOS product, to restore epithelial barrier function independently from its capacity to reduce bacterial invasion. In addition, the combination of S-βGM with the proven probiotic Lactobacillus plantarum (LP) was also tested. Paracellular permeability was assessed by transepithelial electrical resistance (TER) in co-cultures of Caco-2 cells and macrophages (differentiated from THP-1 cells) stimulated with LPS of Salmonella Enteritidis and in Caco-2 cell cultures stimulated with TNF-α in the absence or presence of 500 μg/ml S-βGM, LP (MOI 10) or a combination of both. In both culture models, TER was significantly reduced up to 25% by LPS or TNF-α stimulation, and the addition of S-βGM or LP alone did not modify TER, whereas the combination of both restored TER to values of nonstimulated cells. Under LPS stimulation, TNF-α production was significantly increased by 10-fold, whereas IL-10 and IL-6 levels were not modified. The combination of S-βGM and LP reduced TNF-α production to nonstimulated cell values and significantly increased IL-10 and IL-6 levels (5- and 7.5-fold, respectively). Moreover, S-βGM has the capacity to induce an increase of fivefold in LP growth. In conclusion, we have demonstrated that S-βGM in combination with LP protects epithelial barrier function by modulation of cytokine secretion, thus giving an additional value to this MOS as a potential symbiotic. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Gene expression in epithelial cells in response to pneumovirus infection

    Directory of Open Access Journals (Sweden)

    Rosenberg Helene F

    2001-05-01

    Full Text Available Abstract Respiratory syncytial virus (RSV and pneumonia virus of mice (PVM are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner.

  8. High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon.

    Science.gov (United States)

    Lan, Annaïg; Andriamihaja, Mireille; Blouin, Jean-Marc; Liu, Xinxin; Descatoire, Véronique; Desclée de Maredsous, Caroline; Davila, Anne-Marie; Walker, Francine; Tomé, Daniel; Blachier, François

    2015-01-01

    We have previously shown that high-protein (HP) diet ingestion causes marked changes in the luminal environment of the colonic epithelium. This study aimed to evaluate the impact of such modifications on small intestinal and colonic mucosa, two segments with different transit time and physiological functions. Rats were fed with either normal protein (NP; 14% protein) or HP (53% protein) isocaloric diet for 2 weeks, and parameters related to intestinal mucous-secreting cells and to several innate/adaptive immune characteristics (myeloperoxidase activity, cytokine and epithelial TLR expression, proportion of immune cells in gut-associated lymphoid tissues) were measured in the ileum and colon. In ileum from HP animals, we observed hyperplasia of mucus-producing cells concomitant with an increased expression of Muc2 at both gene and protein levels, reduction of mucosal myeloperoxidase activity, down-regulation of Tlr4 gene expression in enterocytes and down-regulation of mucosal Th cytokines associated with CD4+ lymphocyte reduction in mesenteric lymph nodes. These changes coincided with an increased amount of acetate in the ileal luminal content. In colon, HP diet ingestion resulted in a lower number of goblet cells at the epithelial surface but increased goblet cell number in colonic crypts together with an increased Muc3 and a slight reduction of Il-6 gene expression. Our data suggest that HP diet modifies the goblet cell distribution in colon and, in ileum, increases goblet cell activity and decreases parameters related to basal gut inflammatory status. The impact of HP diet on intestinal mucosa in terms of beneficial or deleterious effects is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Surgical revirgination: Four vaginal mucosal flaps for reconstruction of a hymen

    Directory of Open Access Journals (Sweden)

    Hemant A Saraiya

    2015-01-01

    Full Text Available Introduction: Over centuries, virginity has been given social, religious and moral importance. It is widely believed as a state of a female who has never engaged in sexual intercourse, and her hymen is intact. Hymenoplasty for torn hymen is carried out not only for the sake of cultural and religious traditions but also for the social status and interpersonal relationships. Materials and Methods: 2.5 cm long and 1 cm wide four vaginal mucosal flaps were raised from the anterior vaginal wall just behind labia minora. Two flaps were based proximally, and their two opposing flaps were based distally. These flaps were overlapped in a crisscross fashion and were sutured with 5/0 Polyglactin (Vicryl® sutures leaving no area raw. The donor area was closed primarily. When some remains of a torn hymen were found, one to three vaginal mucosal flaps were added to its remains as per the need for reconstruction. Results: We operated upon 11 patients. In nine cases, the hymen was reconstructed with four flaps. In remaining two, it was reconstructed from the remains using vaginal mucosal flaps. All flaps healed without any infection or disruption. Sutures got absorbed in 25-35 days. In all cases, this newly constructed barrier broke with only moderate pressure at the time of penetrative sex serving the purpose of the surgery completely. Conclusion: Erasing evidence of the sexual history simply by ′Surgical Revirgination′ is extremely important to women contemplating marriage in cultures where a high value is placed on virginity.

  10. Can the oral microflora affect oral ulcerative mucositis?

    NARCIS (Netherlands)

    Laheij, A.M.G.A.; de Soet, J.J.

    2014-01-01

    Purpose of review: Oral mucositis is one of the most prevalent toxicities after hematopoietic stem cell transplantation. Mucositis is initiated by the chemotherapy or radiotherapy preceding the transplantation. It is commonly accepted that microorganisms play a role in the process of oral mucositis.

  11. The analysis of bacterial culture in radiation mucositis

    International Nuclear Information System (INIS)

    Wen Zunbei; Su Deqing; Liang Yuxue

    2006-01-01

    Objective: To investigate pathogen dose existing or not in patients with radiation mucositis. Methods: From Juanary 2004 to August 2005, from 46 patients with radiation mucositis some pharynx secretion were taken for culture. Then they were treated with antibiotics selected by the cultured results and gargle. Results: 5 patients with grade 0 of radiation mucositis were with no cultured pathogen, and the results of some other patients with radiation mucositis include 8 cases of epiphyte, 1 cases of p. vulgaris and 3 cases of Staphylococcus. the positive rate is 29.2% (12/41); Conclusion: Some patients with radiation mucositis do exist pathogen, and we must slect antibiotics by the bacterial cultured results. (authors)

  12. Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming.

    Science.gov (United States)

    Robinson, J M; Henderson, W A

    2018-01-12

    We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.

  13. Expression of p75NGFR, a Proliferative and Basal Cell Marker, in the Buccal Mucosa Epithelium during Re-epithelialization

    International Nuclear Information System (INIS)

    Ishii, Akihiro; Muramatsu, Takashi; Lee, Jong-Min; Higa, Kazunari; Shinozaki, Naoshi; Jung, Han-Sung; Shibahara, Takahiko

    2014-01-01

    We investigated the expression of p75 NGFR , a proliferative and basal cell marker, in the mouse buccal mucosa epithelium during wound healing in order to elucidate the role of epithelial stem cells. Epithelial defects were generated in the epithelium of the buccal mucosa of 6-week-old mice using CO 2 laser irradiation. BrdU was immediately administered to mice following laser irradiation. They were then sacrificed after 1, 3, 7, and 14 days. Paraffin sections were prepared and the irradiated areas were analyzed using immunohistochemistry with anti-p75 NGFR , BrdU, PCNA, and CK14 antibodies. During re-epithelialization, PCNA (–)/p75 NGFR (+) cells extended to the wound, which then closed, whereas PCNA (+)/p75 NGFR (+) cells were not observed at the edge of the wound. In addition, p75 NGFR (–)/CK14 (+), which reflected the presence of post-mitotic differentiating cells, was observed in the supra-basal layers of the extended epithelium. BrdU (+)/p75 NGFR (+), which reflected the presence of epithelial stem cells, was detected sparsely in buccal basal epithelial cells after healing, and disappeared after 7 days. These results suggest that p75 NGFR (+) keratinocytes are localized in the basal layer, which contains oral epithelial stem cells, and retain the ability to proliferate in order to regenerate the buccal mucosal epithelium

  14. Scoring irradiation mucositis in head and neck cancer patients

    International Nuclear Information System (INIS)

    Spijkervet, F.K.L.; Panders, A.K.; Saene, H.K.F. van; Vermey, A.; Mehta, D.M.

    1989-01-01

    Irradiation mucositis is defined as an inflammatory-like process of the oropharyngeal mucosa following therapeutic irradiation of patients who have head and neck cancer. Clinically, it is a serious side effect because severe mucositis can cause generalized problems (weight loss, nasogastic tube feedings) and interferes with the well-being of the patient seriously. Grading mucositis is important for the evaluation of preventive and therapeutic measures. The object of this study was to develop a scoring method based on local mucositis signs only. Four clinical local signs of mucositis were used in this score: white discoloration, erythema, pseudomembranes and ulceration. Mucositis of the oral cavity was calcualted during conventional irradiation protocol for 8 distinguishable areas using the 4 signs and their extent. A prospective evaluation of this method in 15 irradiated head and neck cancer patients displayed an S-curve reflecting a symptomless first irradiation week, followed by a rapid and steady increase of white discoloration, erythema and pseudomembranes during the second and third week. Oral candidiasis, generalized symptoms such as weight loss and the highest mucositis scores were seen after 3 weeks irradiation. The novel mucositis scoring method may be of value in studying the effect of hygiene programs, topical application of disinfectans or antibiotics on oral mucositis. (author)

  15. Scoring irradiation mucositis in head and neck cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Spijkervet, F.K.L.; Panders, A.K. (Departments of Oral and Maxillofacial Surgery, University Hospital Groningen (Netherlands)); Saene, H.K.F. van (Medical Microbiology, University of Liverpool (UK)); Vermey, A. (Department of Surgery Oncology Division, University Hospital Groningen (Netherlands)); Mehta, D.M. (Department of Radiotherapy, University Hospital Groningen (Netherlands))

    1989-01-01

    Irradiation mucositis is defined as an inflammatory-like process of the oropharyngeal mucosa following therapeutic irradiation of patients who have head and neck cancer. Clinically, it is a serious side effect because severe mucositis can cause generalized problems (weight loss, nasogastic tube feedings) and interferes with the well-being of the patient seriously. Grading mucositis is important for the evaluation of preventive and therapeutic measures. The object of this study was to develop a scoring method based on local mucositis signs only. Four clinical local signs of mucositis were used in this score: white discoloration, erythema, pseudomembranes and ulceration. Mucositis of the oral cavity was calcualted during conventional irradiation protocol for 8 distinguishable areas using the 4 signs and their extent. A prospective evaluation of this method in 15 irradiated head and neck cancer patients displayed an S-curve reflecting a symptomless first irradiation week, followed by a rapid and steady increase of white discoloration, erythema and pseudomembranes during the second and third week. Oral candidiasis, generalized symptoms such as weight loss and the highest mucositis scores were seen after 3 weeks irradiation. The novel mucositis scoring method may be of value in studying the effect of hygiene programs, topical application of disinfectans or antibiotics on oral mucositis. (author).

  16. BISPHOSPHONATE - RELATED MUCOSITIS (BRM: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Pavel Stanimirov

    2017-03-01

    Full Text Available Bisphosphonates (BPs are the most widely used and effective antiresorptive agents for the treatment of diseases in which there is an increase in osteoclastic resorption, including post-menopausal osteoporosis, Paget’s disease, and tumor-associated osteolysis. Oral and maxillofacial surgeons are well aware of the side effects of bisphosphonates and mainly with bisphosphonate-related osteonecrosis of the jaws (BRONJ. Less known are the mucosal lesions associated with the use of these agents. In the scientific literature, there are only few reports of mucosal lesions due to the direct contact of the oral form of BPs with the mucosa (bisphosphonate-related mucositis. They are mostly related to improper use of bisphosphonate tablets that are chewed, sucked or allowed to melt in the mouth before swallowing. Lesions are atypical and need to be differentiated from other mucosal erosions. We present a case of bisphosphonate-related mucositis due to the improper use of alendronate.

  17. A decrease in vitamin D levels is associated with methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Oosterom, N; Dirks, N F; Heil, S G; de Jonge, R; Tissing, W J E; Pieters, R; van den Heuvel-Eibrink, M M; Heijboer, A C; Pluijm, S M F

    2018-06-19

    Children with acute lymphoblastic leukemia (ALL) are at increased risk of vitamin D deficiency, which might make them more susceptible to developing adverse events. Previous studies showed that low vitamin D levels were associated with an increased inflammatory mucosal state and impaired mucosal tissue barriers. We examined the prevalence of vitamin D deficiency and studied the association between vitamin D levels and methotrexate (MTX)-induced oral mucositis in pediatric ALL. We assessed 25-hydroxyvitamin D (25(OH)D 3 ) and 24,25-dihydroxyvitamin D (24,25(OH) 2 D 3 ) levels in 99 children with ALL before the start of 4 × 5 g/m 2 high-dose methotrexate (HD-MTX) (T0) and in 81/99 children after discontinuation of HD-MTX (T1). Two cutoff values for vitamin D deficiency exist: 25(OH)D 3 levels D deficiency occurred in respectively 8% ( 4 years of age as compared to children between 1 and 4 years of age. A decrease in 25(OH)D 3 levels during HD-MTX therapy was associated with developing severe oral mucositis (OR 1.6; 95% CI [1.1-2.4]). 25(OH)D 3 and 24,25(OH) 2 D 3 levels at T0 and the change in 24,25(OH) 2 D 3 levels during therapy were not associated with the development of severe oral mucositis. This study showed that vitamin D deficiency occurs frequently in pediatric ALL patients above the age of 4 years. A decrease in 25(OH)D 3 levels during MTX therapy was observed in children with ALL that developed severe oral mucositis.

  18. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis

    OpenAIRE

    Klara Klimesova; Zuzana Jiraskova Zakostelska; Helena Tlaskalova-Hogenova

    2018-01-01

    Host’s physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distin...

  19. Food allergy: separating the science from the mythology.

    Science.gov (United States)

    Brandtzaeg, Per

    2010-07-01

    Numerous genes are involved in innate and adaptive immunity and these have been modified over millions of years. During this evolution, the mucosal immune system has developed two anti-inflammatory strategies: immune exclusion by the use of secretory antibodies to control epithelial colonization of microorganisms and to inhibit the penetration of potentially harmful agents; and immunosuppression to counteract local and peripheral hypersensitivity against innocuous antigens, such as food proteins. The latter strategy is called oral tolerance when induced via the gut. Homeostatic mechanisms also dampen immune responses to commensal bacteria. The mucosal epithelial barrier and immunoregulatory network are poorly developed in newborns. The perinatal period is, therefore, critical with regard to the induction of food allergy. The development of immune homeostasis depends on windows of opportunity during which innate and adaptive immunity are coordinated by antigen-presenting cells. The function of these cells is not only orchestrated by microbial products but also by dietary constituents, including vitamin A and lipids, such as polyunsaturated omega-3 fatty acids. These factors may in various ways exert beneficial effects on the immunophenotype of the infant. The same is true for breast milk, which provides immune-inducing factors and secretory immunoglobulin A, which reinforces the gut epithelial barrier. It is not easy to dissect the immunoregulatory network and identify variables that lead to food allergy. This Review discusses efforts to this end and outlines the scientific basis for future food allergy prevention.

  20. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    International Nuclear Information System (INIS)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-01-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with 3 H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P 0 C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP

  1. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    Science.gov (United States)

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  2. Low uptake of silica nanoparticles in Caco-2 intestinal epithelial barriers

    NARCIS (Netherlands)

    Ye, Dong; Bramini, Mattia; Hristov, Delyan R.; Wan, Sha; Salvati, Anna; Åberg, Christoffer; Dawson, Kenneth A.

    2017-01-01

    Cellular barriers, such as the skin, the lung epithelium or the intestinal epithelium, constitute one of the first obstacles facing nanomedicines or other nanoparticles entering organisms. It is thus important to assess the capacity of nanoparticles to enter and transport across such barriers. In

  3. Curcuminoids from Curcuma longaL. reduced intestinal mucositis induced by 5-fluorouracil in mice: Bioadhesive, proliferative, anti-inflammatory and antioxidant effects

    Directory of Open Access Journals (Sweden)

    Edvande Xavier dos Santos Filho

    Full Text Available Introduction: Intestinal mucositis is a frequent limiting factor in anticancer therapy and there is currently no broadly effective treatment targeted to cure this side effect. Objective: This study aimed to evaluate the effects of a mucoadhesive formulation containing curcuminoids (MFC from Curcuma longa L. on the pathogenesis of 5-fluorouracil (5-FU-induced intestinal mucositis. Methods: Three intraperitoneal 5-FU injections (200 mg/kg were used to induce intestinal mucositis in adult Swiss male mice. Treatment was provided orally (MFC 3.75, 7.5 and 15 mg/kg, thirty minutes before 5-FU injections, daily until euthanasia. Duodenal samples were collected to perform morphometric and histopathological analysis, to investigate the expression of Ki-67, p53, Bax and Bcl-2 by immunohistochemistry, to evaluate neutrophil activity myeloperoxidase (MPO-mediated and oxidative stress by malondialdehyde (MDA determination. Mice body weight was assessed as well. Results: As expected, 5-FU induced a significant weight loss (∼17%, P < 0.001, shortening in villi height (∼55.4% and crypts depth (∼47%, and increased (∼64% the histological severity score when compared to other groups (P < 0.05. These pathological changes were markedly alleviated by the three MFC treatment doses (P < 0.05, in special with the dose MFC 15 mg/kg. This dose also stimulated cell proliferation by ∼90% in the epithelial cells lining from villi and crypts (P < 0.05, reduced MPO levels and MDA formation by 60% and 44%, respectively (P < 0.05. Conclusions: Our data suggest the therapeutic potential of the formulation for treating intestinal mucositis in mice. Supplementary studies are underway searching for the elucidation of mechanisms involved in the protective effects of MFC in order to make this formulation a clinical tool for mucositis treatment. Keywords: Mucoadhesive formulation, Curcuminoids, Curcuma longa L, Intestinal mucositis, 5-Fluorouracil

  4. Surgical outcome in headache due to mucosal contact

    International Nuclear Information System (INIS)

    Goto, Fumiyuki; Yabe, Haruna; Ogawa, Kaoru

    2010-01-01

    Headaches is classified as primary and secondary, with secondary originating in head and neck conditions, the most important etiology being acute sinusitis. Headache due to mucosal contact, rarely encountered by otorhinolaryngologists, is an important secondary headache, whose criteria are defined by the International Classification of Headache Disorders to include intermittent pain localized in the periorbital and medial canthal or temporozygomatic regions, evidence that pain is attributable to mucosal contact and the presence of mucosal contact in the absence of acute rhinosinusitis, obtained using clinical examinations, nasal endoscopy, and/or computed tomography (CT). After mucosal contact is surgically corrected pain usually disappears permanently within 7 days. We reviewed mucosal contact headaches in 63 subjects undergoing nasal or paranasal surgery from April 2007 to March 2008. Of those 7 were diagnosed with headaches due to contact points in nasal mucosa, ranging from canthal to the temporozygomatic. The most common contact, between the middle turbinate and nasal septum, was seen in 6 of the 7. Surgery eliminated symptoms in 4 and ameliorated them in 3 indicating effective headache management. Subjects with severe headaches or localized periorbital and medial canthal pain regions, mucosal contact involvement is ruled out when CT allows no lesions. When mucosal contact headache is suspected, however surgery should be considered as a last resort. (author)

  5. Nasal Lipopolysaccharide Challenge and Cytokine Measurement Reflects Innate Mucosal Immune Responsiveness.

    Directory of Open Access Journals (Sweden)

    Jaideep Dhariwal

    Full Text Available Practical methods of monitoring innate immune mucosal responsiveness are lacking. Lipopolysaccharide (LPS is a component of the cell wall of Gram negative bacteria and a potent activator of Toll-like receptor (TLR-4. To measure LPS responsiveness of the nasal mucosa, we administered LPS as a nasal spray and quantified chemokine and cytokine levels in mucosal lining fluid (MLF.We performed a 5-way cross-over, single blind, placebo-controlled study in 15 healthy non-atopic subjects (n = 14 per protocol. Doses of ultrapure LPS (1, 10, 30 or 100μg/100μl or placebo were administered by a single nasal spray to each nostril. Using the recently developed method of nasosorption with synthetic adsorptive matrices (SAM, a series of samples were taken. A panel of seven cytokines/chemokines were measured by multiplex immunoassay in MLF. mRNA for intercellular cell adhesion molecule-1 (ICAM-1 was quantified from nasal epithelial curettage samples taken before and after challenge.Topical nasal LPS was well tolerated, causing no symptoms and no visible changes to the nasal mucosa. LPS induced dose-related increases in MLF levels of IL-1β, IL-6, CXCL8 (IL-8 and CCL3 (MIP-1α (AUC at 0.5 to 10h, compared to placebo, p<0.05 at 30 and 100μg LPS. At 100μg LPS, IL-10, IFN-α and TNF-α were also increased (p<0.05. Dose-related changes in mucosal ICAM-1 mRNA were also seen after challenge, and neutrophils appeared to peak in MLF at 8h. However, 2 subjects with high baseline cytokine levels showed prominent cytokine and chemokine responses to relatively low LPS doses (10μg and 30μg LPS.Topical nasal LPS causes dose-dependent increases in cytokines, chemokines, mRNA and cells. However, responsiveness can show unpredictable variations, possibly because baseline innate tone is affected by environmental factors. We believe that this new technique will have wide application in the study of the innate immune responses of the respiratory mucosa.Ultrapure LPS was used

  6. [Protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease].

    Science.gov (United States)

    Liu, Y T; Li, Y Q; Wang, Y Z

    2016-12-20

    Objective: To investigate the protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease (NAFLD). Methods: A total of 36 healthy male Sprague-Dawley rats with a mean body weight of 180±20 g were randomly divided into control group, model group, and treatment group, with 12 rats in each group, after adaptive feeding for 1 week. The rats in the control group were given basic feed, and those in the model group and treatment group were given high-fat feed. After 12 weeks of feeding, the treatment group was given Saccharomyces boulardii (75×10 8 CFU/kg/d) by gavage, and those in the control group and model group were given isotonic saline by gavage. At the 20th week, blood samples were taken from the abdominal aorta to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), intestinal fatty acid binding protein (IFABP), tumor necrosis factor-α (TNF-α), and endotoxins. The liver pathological changes, intestinal histopathological changes, and expression of occludin in the intestinal mucosa were observed. Fecal samples were collected to measure the changes in Escherichia coli and Bacteroides. A one-way analysis of variance and the SNK test were used for comparison between multiple groups, and the rank sum test was used as the non-parametric test. Results: Compared with the control group, the model group had significantly higher body weight, liver mass, and liver index ( P 0.05). Compared with the control group, the model group had significant increases in the levels of endotoxin, TNF-α, and IFABP ( P Saccharomyces boulardii can reduce body weight and improve hepatocyte steatosis. Saccharomyces boulardii can reduce endotoxemia in NAFLD rats and thus alleviate inflammatory response. Saccharomyces boulardii can also adjust the proportion of Escherichia coli and Bacteroides in the intestine of NAFLD rats.

  7. Effect of chronic aspirin ingestion on epithelial proliferation in rat fundus, antrum, and duodenum

    International Nuclear Information System (INIS)

    Eastwood, G.L.; Quimby, G.F.

    1972-01-01

    We studied the effect of chronic aspirin ingestion on gastroduodenal epithelial proliferation by feeding rats aspirin in the drinking water. A control group of rats received plain water. At the end of 4 wk, [3H]-thymidine was given intravenously to label proliferating cells, and the rats were killed 1 h later. Sections of fundus, antrum, and proximal duodenum were processed for light autoradiography. We found that chronic aspirin ingestion stimulated epithelial proliferation in fundic mucosa but had no effect in the antrum. In the duodenum, aspirin increased proliferation in the lowest four crypt-cell positions, which most likely indicates an increase in stem-cell production. None of the tissues contained evidence of inflammation or ulceration. The proliferative effects of aspirin may help explain the previously observed phenomenon of mucosal adaptation in the rat after repeated exposure to aspirin. Further, if human gastroduodenal epithelium responds in a similar manner to chronic aspirin exposure, the effects on proliferation may explain in part the distribution of aspirin-associated ulcers

  8. Suction blister lesions and epithelialization monitored by optical coherence tomography

    DEFF Research Database (Denmark)

    Ahlström, M G; Gjerdrum, L M R; Larsen, H F

    2018-01-01

    suction blister was raised on each buttock, and the blister roof was excised. Lesions were covered with moisture-retaining dressing. In Study 1, the lesions were OCT-scanned on day 0 (D0), D2 and D4 and excised for histological examination. In Study 2, the progress of epithelialization and skin barrier...

  9. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.

    Science.gov (United States)

    Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X

    2017-05-01

    The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D 1 (D 1 R) and D 5 (D 5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (I SC ), Western blot, immunohistochemistry and ELISA were used in human D 5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in I SC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D 5 R, but not D 1 R, was observed in the duodenum of control rat. In human D 5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal I SC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D 5 R knock-down transgenic mice manifested a decreased basal I SC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D 5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  10. Oral administration of a recombinant cholera toxin B subunit promotes mucosal healing in the colon.

    Science.gov (United States)

    Baldauf, K J; Royal, J M; Kouokam, J C; Haribabu, B; Jala, V R; Yaddanapudi, K; Hamorsky, K T; Dryden, G W; Matoba, N

    2017-07-01

    Cholera toxin B subunit (CTB) is a component of a licensed oral cholera vaccine. However, CTB has pleiotropic immunomodulatory effects whose impacts on the gut are not fully understood. Here, we found that oral administration in mice of a plant-made recombinant CTB (CTBp) significantly increased several immune cell populations in the colon lamina propria. Global gene expression analysis revealed that CTBp had more pronounced impacts on the colon than the small intestine, with significant activation of TGFβ-mediated pathways in the colon epithelium. The clinical relevance of CTBp-induced impacts on colonic mucosa was examined. In a human colon epithelial model using Caco2 cells, CTBp, but not the non-GM1-binding mutant G33D-CTBp, induced TGFβ-mediated wound healing. In a dextran sodium sulfate (DSS) acute colitis mouse model, oral administration of CTBp protected against colon mucosal damage as manifested by mitigated body weight loss, decreased histopathological scores, and blunted escalation of inflammatory cytokine levels while inducing wound healing-related genes. Furthermore, biweekly oral administration of CTBp significantly reduced disease severity and tumorigenesis in the azoxymethane/DSS model of ulcerative colitis and colon cancer. Altogether, these results demonstrate CTBp's ability to enhance mucosal healing in the colon, highlighting its potential application in ulcerative colitis therapy besides cholera vaccination.

  11. The postnatal development of the mucosal immune system and mucosal tolerance in domestic animals

    OpenAIRE

    Bailey , Mick; Haverson , Karin

    2006-01-01

    International audience; The mucosal immune system is exposed to a range of antigens associated with pathogens, to which it must mount active immune responses. However, it is also exposed to a large number of harmless antigens associated with food and with commensal microbial flora, to which expression of active, inflammatory immune responses to these antigens is undesirable. The mucosal immune system must contain machinery capable of evaluating the antigens to which it is exposed and mounting...

  12. Preventive Activity against Influenza (H1N1 Virus by Intranasally Delivered RNA-Hydrolyzing Antibody in Respiratory Epithelial Cells of Mice

    Directory of Open Access Journals (Sweden)

    Seungchan Cho

    2015-09-01

    Full Text Available The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1 was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 μg/day for five days prior to infection demonstrated an antiviral activity (70% survival against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.

  13. Activation of Rho GTPases by Cytotoxic Necrotizing Factor 1 Induces Macropinocytosis and Scavenging Activity in Epithelial Cells

    Science.gov (United States)

    Fiorentini, Carla; Falzano, Loredana; Fabbri, Alessia; Stringaro, Annarita; Logozzi, Mariaantonia; Travaglione, Sara; Contamin, Stéphanette; Arancia, Giuseppe; Malorni, Walter; Fais, Stefano

    2001-01-01

    Macropinocytosis, a ruffling-driven process that allows the capture of large material, is an essential aspect of normal cell function. It can be either constitutive, as in professional phagocytes where it ends with the digestion of captured material, or induced, as in epithelial cells stimulated by growth factors. In this case, the internalized material recycles back to the cell surface. We herein show that activation of Rho GTPases by a bacterial protein toxin, the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), allowed epithelial cells to engulf and digest apoptotic cells in a manner similar to that of professional phagocytes. In particular, we have demonstrated that 1) the activation of all Rho, Rac, and Cdc42 by CNF1 was essential for the capture and internalization of apoptotic cells; and 2) such activation allowed the discharge of macropinosomal content into Rab7 and lysosomal associated membrane protein-1 acidic lysosomal vesicles where the ingested particles underwent degradation. Taken together, these findings indicate that CNF1-induced “switching on” of Rho GTPases may induce in epithelial cells a scavenging activity, comparable to that exerted by professional phagocytes. The activation of such activity in epithelial cells may be relevant, in mucosal tissues, in supporting or integrating the scavenging activity of resident macrophages. PMID:11452003

  14. Mucosal immunogenicity of plant lectins in mice

    Science.gov (United States)

    Lavelle, E C; Grant, G; Pusztai, A; Pfüller, U; O’Hagan, D T

    2000-01-01

    The mucosal immunogenicity of a number of plant lectins with different sugar specificities was investigated in mice. Following intranasal (i.n.) or oral administration, the systemic and mucosal antibody responses elicited were compared with those induced by a potent mucosal immunogen (cholera toxin; CT) and a poorly immunogenic protein (ovalbumin; OVA). After three oral or i.n. doses of CT, high levels of specific serum antibodies were measured and specific IgA was detected in the serum, saliva, vaginal wash, nasal wash and gut wash of mice. Immunization with OVA elicited low titres of serum IgG but specific IgA was not detected in mucosal secretions. Both oral and i.n. delivery of all five plant lectins investigated [Viscum album (mistletoe lectin 1; ML‐1), Lycospersicum esculentum (tomato lectin; LEA), Phaseolus vulgaris (PHA), Triticum vulgaris (wheat germ agglutinin (WGA), Ulex europaeus I (UEA‐1)] stimulated the production of specific serum IgG and IgA antibody after three i.n. or oral doses. Immunization with ML‐1 induced high titres of serum IgG and IgA in addition to specific IgA in mucosal secretions. The response to orally delivered ML‐1 was comparable to that induced by CT, although a 10‐fold higher dose was administered. Immunization with LEA also induced high titres of serum IgG, particularly after i.n. delivery. Low specific IgA titres were also detected to LEA in mucosal secretions. Responses to PHA, WGA and UEA‐1 were measured at a relatively low level in the serum, and little or no specific mucosal IgA was detected. PMID:10651938

  15. The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome.

    Science.gov (United States)

    Pigrau, M; Rodiño-Janeiro, B K; Casado-Bedmar, M; Lobo, B; Vicario, M; Santos, J; Alonso-Cotoner, C

    2016-04-01

    Intestinal homeostasis is a dynamic process that takes place at the interface between the lumen and the mucosa of the gastrointestinal tract, where a constant scrutiny for antigens and toxins derived from food and microorganisms is carried out by the vast gut-associated immune system. Intestinal homeostasis is preserved by the ability of the mucus layer and the mucosal barrier to keep the passage of small-sized and antigenic molecules across the epithelium highly selective. When combined and preserved, immune surveillance and barrier's selective permeability, the host capacity of preventing the development of intestinal inflammation is optimized, and viceversa. In addition, the brain-gut-microbiome axis, a multidirectional communication system that integrates distant and local regulatory networks through neural, immunological, metabolic, and hormonal signaling pathways, also regulates intestinal function. Dysfunction of the brain-gut-microbiome axis may induce the loss of gut mucosal homeostasis, leading to uncontrolled permeation of toxins and immunogenic particles, increasing the risk of appearance of intestinal inflammation, mucosal damage, and gut disorders. Irritable bowel syndrome is prevalent stress-sensitive gastrointestinal disorder that shows a female predominance. Interestingly, the role of stress, sex and gonadal hormones in the regulation of intestinal mucosal and the brain-gut-microbiome axis functioning is being increasingly recognized. We aim to critically review the evidence linking sex, and stress to intestinal barrier and brain-gut-microbiome axis dysfunction and the implications for irritable bowel syndrome. © 2015 John Wiley & Sons Ltd.

  16. Evidence for a common mucosal immune system in the pig.

    Science.gov (United States)

    Wilson, Heather L; Obradovic, Milan R

    2015-07-01

    The majority of lymphocytes activated at mucosal sites receive instructions to home back to the local mucosa, but a portion also seed distal mucosa sites. By seeding distal sites with antigen-specific effector or memory lymphocytes, the foundation is laid for the animal's mucosal immune system to respond with a secondary response should to this antigen be encountered at this site in the future. The common mucosal immune system has been studied quite extensively in rodent models but less so in large animal models such as the pig. Reasons for this paucity of reported induction of the common mucosal immune system in this species may be that distal mucosal sites were examined but no induction was observed and therefore it was not reported. However, we suspect that the majority of investigators simply did not sample distal mucosal sites and therefore there is little evidence of immune response induction in the literature. It is our hope that more pig immunologists and infectious disease experts who perform mucosal immunizations or inoculations on pigs will sample distal mucosal sites and report their findings, whether results are positive or negative. In this review, we highlight papers that show that immunization/inoculation using one route triggers mucosal immune system induction locally, systemically, and within at least one distal mucosal site. Only by understanding whether immunizations at one site triggers immunity throughout the common mucosal immune system can we rationally develop vaccines for the pig, and through these works we can gather evidence about the mucosal immune system that may be extrapolated to other livestock species or humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Sucralfate for the treatment of radiation induced mucositis

    International Nuclear Information System (INIS)

    Belka, C.; Hoffmann, W.; Paulsen, F.; Bamberg, M.

    1997-01-01

    Purpose: Radiotherapy, a cornerstone in the management of head and neck cancer, pelvic cancer, and esophageal cancer is associated with a marked mucosal toxicity. Pain, malnutrition and diarrhea are the most prevalent clinical symptoms of radiation induced mucosal damage. Because there is no known way to obviate radiation mucositis all efforts to prevent aggravation and accelerate healing of mucosal changes are of great importance. Numerous agents including antimicrobials, local and systemic analgesics, antiinflammatory drugs, antidiarrheal drugs, in combination with intensive dietetic care are used to relieve symptoms. Recently coating agents like the polyaluminum-sucrose complex sucralfate were suggested for the prevention and treatment of mucosal reactions. Since sucralfate protects ulcerated epithelium by coating, liberates protective prostaglandins and increases the local availability of protective factors this drug might directly interact with the pathogenesis of mucositis. Patients and Method: The results of available studies are analysed and discussed. Results: The results of several studies indicate that sucralfate treatment especially during radiotherapy for pelvic cancer leads to a significant amelioration of clinical symptoms and morphological changes. An application of sucralfate during radiotherapy of head and neck cancer reveals only limited benefits in most studies performed. Conclusion: Nevertheless sucralfate is a save, cheap and active drug for the prevention and treatment of radiation mucositis especially in patients with pelvic irradiation. (orig.) [de

  18. Guideline for the prevention of oral and oropharyngeal mucositis in children receiving treatment for cancer or undergoing haematopoietic stem cell transplantation.

    Science.gov (United States)

    Sung, Lillian; Robinson, Paula; Treister, Nathaniel; Baggott, Tina; Gibson, Paul; Tissing, Wim; Wiernikowski, John; Brinklow, Jennifer; Dupuis, L Lee

    2017-03-01

    To develop an evidence-based clinical practice guideline for the prevention of oral mucositis in children (0-18 years) receiving treatment for cancer or undergoing haematopoietic stem cell transplantation (HSCT). The Mucositis Prevention Guideline Development Group was interdisciplinary and included internationally recognised experts in paediatric mucositis. For the evidence review, we included randomised controlled trials (RCTs) conducted in either children or adults evaluating the following interventions selected according to prespecified criteria: cryotherapy, low level light therapy (LLLT) and keratinocyte growth factor (KGF). We also examined RCTs of any intervention conducted in children. For all systematic reviews, we synthesised the occurrence of severe oral mucositis. The Grades of Recommendation, Assessment, Development and Evaluation approach was used to describe quality of evidence and strength of recommendations. We suggest cryotherapy or LLLT may be offered to cooperative children receiving chemotherapy or HSCT conditioning with regimens associated with a high rate of mucositis. We also suggest KGF may be offered to children receiving HSCT conditioning with regimens associated with a high rate of severe mucositis. However, KGF use merits caution as there is a lack of efficacy and toxicity data in children, and a lack of long-term follow-up data in paediatric cancers. No other interventions were recommended for oral mucositis prevention in children. All three specific interventions evaluated in this clinical practice guideline were associated with a weak recommendation for use. There may be important organisational and cost barriers to the adoption of LLLT and KGF. Considerations for implementation and key research gaps are highlighted. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    Science.gov (United States)

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  20. Cutaneous and mucosal pain syndromes

    Directory of Open Access Journals (Sweden)

    Siddappa K

    2002-01-01

    Full Text Available The cutaneous and mucosal pain syndromes are characterized by pain, burning sensation, numbness or paraesthesia of a particular part of the skin or mucosal surface without any visible signs. They are usually sensory disorders, sometimes with a great deal of psychologic overlay. In this article various conditions have been listed and are described. The possible causative mechanisms are discussed when they are applicable and the outline of their management is described.

  1. Pilot study of lithium to restore intestinal barrier function in severe graft-versus-host disease.

    Directory of Open Access Journals (Sweden)

    Gideon Steinbach

    Full Text Available Severe intestinal graft-vs-host disease (GVHD after allogeneic hematopoietic cell transplantation (HCT causes mucosal ulceration and induces innate and adaptive immune responses that amplify and perpetuate GVHD and the associated barrier dysfunction. Pharmacological agents to target mucosal barrier dysfunction in GVHD are needed. We hypothesized that induction of Wnt signaling by lithium, an inhibitor of glycogen synthase kinase (GSK3, would potentiate intestinal crypt proliferation and mucosal repair and that inhibition of GSK3 in inflammatory cells would attenuate the deregulated inflammatory response to mucosal injury. We conducted an observational pilot study to provide data for the potential design of a randomized study of lithium. Twenty patients with steroid refractory intestinal GVHD meeting enrollment criteria were given oral lithium carbonate. GVHD was otherwise treated per current practice, including 2 mg/kg per day of prednisone equivalent. Seventeen patients had extensive mucosal denudation (extreme endoscopic grade 3 in the duodenum or colon. We observed that 8 of 12 patients (67% had a complete remission (CR of GVHD and survived more than 1 year (median 5 years when lithium administration was started promptly within 3 days of endoscopic diagnosis of denuded mucosa. When lithium was started promptly and less than 7 days from salvage therapy for refractory GVHD, 8 of 10 patients (80% had a CR and survived more than 1 year. In perspective, a review of 1447 consecutive adult HCT patients in the preceding 6 years at our cancer center showed 0% one-year survival in 27 patients with stage 3-4 intestinal GVHD and grade 3 endoscopic appearance in the duodenum or colon. Toxicities included fatigue, somnolence, confusion or blunted affect in 50% of the patients. The favorable outcomes in patients who received prompt lithium therapy appear to support the future conduct of a randomized study of lithium for management of severe GVHD with

  2. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models.

    Science.gov (United States)

    Finch, Paul W; Mark Cross, Lawrence J; McAuley, Daniel F; Farrell, Catherine L

    2013-09-01

    Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  3. Management of mucositis in oral irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Feber, T. [Cookridge Hospital, Leeds (United Kingdom)

    1996-10-01

    Mucositis significantly affects quality of life and tolerance of treatment in oral irradiation. Effective management of this complication is therefore very important. However, there is a scarcity of up-to-date oral care protocols, with most centres using ritualized regimens. The literature on oral rinses in radiation mucositis is at best inconclusive and at worst confusing. In this study, patients undergoing radical radiotherapy treatment (55-60 Gy in 4 weeks) to more than 50% of the oral cavity and oropharynx were randomized to a research based oral care protocol with either saline 0.9% or hydrogen peroxide 3.5 volumes (HP) as rinses. The results of this study show that, on average, the group receiving saline rinses appeared to do better on some outcomes than the group receiving HP. This suggests that frequent mechanical cleansing of the mouth may be more important than the antiseptic properties of a mouthwash. Antiseptic mouthwashes may be contra-indicated in radiation mucositis. In order to determine best practice in mucositis management, multicentre, multidisciplinary trials should be conducted. (Author).

  4. Management of mucositis in oral irradiation

    International Nuclear Information System (INIS)

    Feber, T.

    1996-01-01

    Mucositis significantly affects quality of life and tolerance of treatment in oral irradiation. Effective management of this complication is therefore very important. However, there is a scarcity of up-to-date oral care protocols, with most centres using ritualized regimens. The literature on oral rinses in radiation mucositis is at best inconclusive and at worst confusing. In this study, patients undergoing radical radiotherapy treatment (55-60 Gy in 4 weeks) to more than 50% of the oral cavity and oropharynx were randomized to a research based oral care protocol with either saline 0.9% or hydrogen peroxide 3.5 volumes (HP) as rinses. The results of this study show that, on average, the group receiving saline rinses appeared to do better on some outcomes than the group receiving HP. This suggests that frequent mechanical cleansing of the mouth may be more important than the antiseptic properties of a mouthwash. Antiseptic mouthwashes may be contra-indicated in radiation mucositis. In order to determine best practice in mucositis management, multicentre, multidisciplinary trials should be conducted. (Author)

  5. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    Science.gov (United States)

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. CCL28 induces mucosal homing of HIV-1-specific IgA-secreting plasma cells in mice immunized with HIV-1 virus-like particles.

    Directory of Open Access Journals (Sweden)

    Veronica Rainone

    Full Text Available Mucosae-associated epithelial chemokine (MEC or CCL28 binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1(IIIB Virus-like particles (VLPs. Mice receiving either HIV-1(IIIB VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19(+ splenocytes of HIV-1(IIIB VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1(IIIB VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines.

  7. Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility

    International Nuclear Information System (INIS)

    Aw, Tak Yee

    2005-01-01

    The intestine is a primary site of nutrient absorption and a critical defense barrier against dietary-derived mutagens, carcinogens, and oxidants. Accumulation of oxidants like peroxidized lipids in the gut lumen can contribute to impairment of mucosal metabolic pathways, enterocyte dysfunction independent of cell injury, and development of gut pathologies, such as inflammation and cancer. Despite this recognition, we know little of the pathways of intestinal transport, metabolism, and luminal disposition of dietary peroxides in vivo or of the underlying mechanisms of lipid peroxide-induced genesis of intestinal disease processes. This chapter summarizes our current understanding of the determinants of intestinal absorption and metabolism of peroxidized lipids. I will review experimental evidence from our laboratory and others (Table 1) supporting the pivotal role that glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) play in mucosal transport and metabolism of lipid hydroperoxides and how reductant availability can be compromised under chronic stress such as hypoxia, and the influence of GSH on oxidative susceptibility, and redox contribution to genesis of gut disorders. The discussion is pertinent to understanding dietary lipid peroxides and GSH redox balance in intestinal physiology and pathophysiology and the significance of luminal GSH in preserving the integrity of the intestinal epithelium

  8. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  9. Allopurinol gel mitigates radiation-induced mucositis and dermatitis

    International Nuclear Information System (INIS)

    Kitagawa, Junichi; Nasu, Masanori; Okumura, Hayato; Matsumoto, Shigeji; Shibata, Akihiko; Makino, Kimiko; Terada, Hiroshi

    2008-01-01

    It has not been verified whether allopurinol application is beneficial in decreasing the severity of radiation-induced oral mucositis and dermatitis. Rats were divided into 4 groups and received 15 Gy irradiation on the left whisker pad. Group 1 received only irradiation. Group 2 was maintained by applying allopurinol/carrageenan-mixed gel (allopurinol gel) continuously from 2 days before to 20 days after irradiation. Group 3 had allopurinol gel applied for 20 days after radiation. Group 4 was maintained by applying carrageenan gel continuously from 2 days before to 20 days after irradiation. The intra oral mucosal and acute skin reactions were assessed daily using mucositis and skin score systems. The escape thresholds for mechanical stimulation to the left whisker pad were measured daily. In addition, the irradiated tissues at the endpoint of this study were compared with naive tissue. Escape threshold in group 2 was significantly higher than that in group 1, and mucositis and skin scores were much improved compared with those of group 1. Concerning escape threshold, mucositis and skin scores in group 3 began to improve 10 days after irradiation. Group 4 showed severe symptoms of mucositis and dermatitis to the same extent as that observed in group 1. In the histopathological study, the tissues of group 1 showed severe inflammatory reactions, compared with those of group 2. These results suggest that allopurinol gel application can mitigate inflammation reactions associated with radiation-induced oral mucositis and dermatitis. (author)

  10. The effect of mechanical extension stimulation combined with epithelial cell sorting on outcomes of implanted tissue-engineered muscular urethras.

    Science.gov (United States)

    Fu, Qiang; Deng, Chen-Liang; Zhao, Ren-Yan; Wang, Ying; Cao, Yilin

    2014-01-01

    Urethral defects are common and frequent disorders and are difficult to treat. Simple natural or synthetic materials do not provide a satisfactory curative solution for long urethral defects, and urethroplasty with large areas of autologous tissues is limited and might interfere with wound healing. In this study, adipose-derived stem cells were used. These cells can be derived from a wide range of sources, have extensive expansion capability, and were combined with oral mucosal epithelial cells to solve the problem of finding seeding cell sources for producing the tissue-engineered urethras. We also used the synthetic biodegradable polymer poly-glycolic acid (PGA) as a scaffold material to overcome issues such as potential pathogen infections derived from natural materials (such as de-vascular stents or animal-derived collagen) and differing diameters. Furthermore, we used a bioreactor to construct a tissue-engineered epithelial-muscular lumen with a double-layer structure (the epithelial lining and the muscle layer). Through these steps, we used an epithelial-muscular lumen built in vitro to repair defects in a canine urethral defect model (1 cm). Canine urethral reconstruction was successfully achieved based on image analysis and histological techniques at different time points. This study provides a basis for the clinical application of tissue engineering of an epithelial-muscular lumen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Nir eOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just innocent bystanders or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  12. Probiotic supplements and debridement of peri-implant mucositis

    DEFF Research Database (Denmark)

    Hallström, Hadar; Lindgren, Susann; Widén, Cecilia

    2016-01-01

    OBJECTIVE: The aim of this double-blind randomized placebo-controlled trial was to evaluate the effects of probiotic supplements in adjunct to conventional management of peri-implant mucositis. MATERIALS AND METHODS: Forty-nine adult patients with peri-implant mucositis were consecutively recruited...... debridement and oral hygiene reinforcement resulted in clinical improvement of peri-implant mucositis and a reduction in cytokine levels. Probiotic supplements did not provide added benefit to placebo....

  13. Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection.

    Directory of Open Access Journals (Sweden)

    Nadine Wittkopf

    Full Text Available Gastrointestinal infections with EHEC and EPEC are responsible for outbreaks of diarrheal diseases and represent a global health problem. Innate first-line-defense mechanisms such as production of mucus and antimicrobial peptides by intestinal epithelial cells are of utmost importance for host control of gastrointestinal infections. For the first time, we directly demonstrate a critical role for Stat3 activation in intestinal epithelial cells upon infection of mice with Citrobacter rodentium - a murine pathogen that mimics human infections with attaching and effacing Escherichia coli. C. rodentium induced transcription of IL-6 and IL-22 in gut samples of mice and was associated with activation of the transcription factor Stat3 in intestinal epithelial cells. C. rodentium infection induced expression of several antimicrobial peptides such as RegIIIγ and Pla2g2a in the intestine which was critically dependent on Stat3 activation. Consequently, mice with specific deletion of Stat3 in intestinal epithelial cells showed increased susceptibility to C. rodentium infection as indicated by high bacterial load, severe gut inflammation, pronounced intestinal epithelial cell death and dissemination of bacteria to distant organs. Together, our data implicate an essential role for Stat3 activation in intestinal epithelial cells during C. rodentium infection. Stat3 concerts the host response to bacterial infection by controlling bacterial growth and suppression of apoptosis to maintain intestinal epithelial barrier function.

  14. Breakdown evaluation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method.

    Science.gov (United States)

    Nakashima, Mikiro; Nakamura, Tadahiro; Teshima, Mugen; To, Hideto; Uematsu, Masafumi; Kitaoka, Takashi; Taniyama, Kotaro; Nishida, Koyo; Nakamura, Junzo; Sasaki, Hitoshi

    2008-02-01

    The aim of this study was to examine the usefulness of an electrophysiologic method for predicting corneal epithelial breakdown by antiallergic eyedrops and comparing the results with those in other appraisal methods. Six kinds of antiallergic eyedrops, including benzalkonium chloride (BK) as an ophthalmic preservative and two kinds of BK-free antiallergic eyedrops, were used in this study. Eyedrops were applied to excise rabbit corneas and monitoring was performed according to an electrophysiologic method, using a commercially available chamber system to mimic human tear turnover. Changes in transepithelial electrical resistance (TEER) in the corneal surface were recorded. The cytotoxicity of each kind of eyedrops in a normal rabbit corneal epithelial (NRCE) cell line and a human endothelial cell line EA.hy926 was also examined. The extent of decrease in the corneal TEER after applying antiallergic eyedrops was dependent on the concentration of the BK included as a preservative, but it was also affected by the different kinds of drugs when the BK concentration was low. Higher cytotoxicity of the eyedrops against the NRCE and EA.hy926 cell lines was observed with a reduction of TEER. Monitoring changes in the corneal TEER, according to the electrophysiologic method with the application of antiallergic eyedrops, is useful for predicting corneal epithelial breakdown caused by their instillation.

  15. Gastrointestinal mucosal abnormalities using videocapsule endoscopy in systemic sclerosis.

    Science.gov (United States)

    Marie, I; Antonietti, M; Houivet, E; Hachulla, E; Maunoury, V; Bienvenu, B; Viennot, S; Smail, A; Duhaut, P; Dupas, J-L; Dominique, S; Hatron, P-Y; Levesque, H; Benichou, J; Ducrotté, P

    2014-07-01

    To date, there are no large studies on videocapsule endoscopy in systemic sclerosis (SSc). Consequently, the prevalence and features of gastrointestinal mucosal abnormalities in SSc have not been determined. To determine both prevalence and characteristics of gastrointestinal mucosal abnormalities in unselected patients with SSc, using videocapsule endoscopy. To predict which SSc patients are at risk of developing potentially bleeding gastrointestinal vascular mucosal abnormalities. Videocapsule endoscopy was performed on 50 patients with SSc. Prevalence of gastrointestinal mucosal abnormalities was 52%. Potentially bleeding vascular mucosal lesions were predominant, including: watermelon stomach (34.6%), gastric and/or small intestinal telangiectasia (26.9%) and gastric and/or small intestinal angiodysplasia (38.5%). SSc patients with gastrointestinal vascular mucosal lesions more often exhibited: limited cutaneous SSc (P = 0.06), digital ulcers (P = 0.05), higher score of nailfold videocapillaroscopy (P = 0.0009), anaemia (P = 0.02), lower levels of ferritin (P correlation between gastrointestinal vascular mucosal lesions and presence of severe extra-digestive vasculopathy (digital ulcers and higher nailfold videocapillaroscopy scores). This latter supports the theory that SSc-related diffuse vasculopathy is responsible for both cutaneous and digestive vascular lesions. Therefore, we suggest that nailfold videocapillaroscopy may be a helpful test for managing SSc patients. In fact, nailfold videocapillaroscopy score should be calculated routinely, as it may result in identification of SSc patients at higher risk of developing potentially bleeding gastrointestinal vascular mucosal lesions. © 2014 John Wiley & Sons Ltd.

  16. A regenerative approach towards mucosal fenestration closure

    Science.gov (United States)

    Gandi, Padma; Anumala, Naveen; Reddy, Amarender; Viswa Chandra, Rampalli

    2013-01-01

    Mucosal fenestration is an opening or an interstice through the oral mucosa. A lesion which occurs with greater frequency than generally realised, its occurrence is attributed to a myriad of causes. Mucogingival procedures including connective tissue grafts, free gingival grafts and lateral pedicle grafts are generally considered to be the treatment of choice in the closure of a mucosal fenestration. More often, these procedures are performed in conjunction with other procedures such as periradicular surgery and with bone grafts. However, the concomitant use of gingival grafts and bone grafts in mucosal fenestrations secondary to infections in sites exhibiting severe bone loss is highly debatable. In this article, we report two cases of mucosal fenestrations secondary to trauma and their management by regenerative periodontal surgery with the placement of guided tissue regeneration membrane and bone graft. The final outcome was a complete closure of the fenestration in both the cases. PMID:23749826

  17. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.

  18. Systematic review of antimicrobials, mucosal coating agents, anesthetics, and analgesics for the management of oral mucositis in cancer patients

    NARCIS (Netherlands)

    Saunders, Deborah P.; Epstein, Joel B.; Elad, Sharon; Allemano, Justin; Bossi, Paolo; van de Wetering, Marianne D.; Rao, Nikhil G.; Potting, Carin; Cheng, Karis K.; Freidank, Annette; Brennan, Michael T.; Bowen, Joanne; Dennis, Kristopher; Lalla, Rajesh V.

    2013-01-01

    The aim of this project was to develop clinical practice guidelines on the use of antimicrobials, mucosal coating agents, anesthetics, and analgesics for the prevention and management of oral mucositis (OM) in cancer patients. A systematic review of the available literature was conducted. The body

  19. Systematic review of antimicrobials, mucosal coating agents, anesthetics, and analgesics for the management of oral mucositis in cancer patients.

    NARCIS (Netherlands)

    Saunders, D.P.; Epstein, J.B.; Elad, S.; Allemano, J.; Bossi, P.; Wetering, M.D. van de; Rao, N.G.; Potting, C.M.J.; Cheng, K.K.; Freidank, A.; Brennan, M.T.; Bowen, J.; Dennis, K.; Lalla, R.V.

    2013-01-01

    PURPOSE: The aim of this project was to develop clinical practice guidelines on the use of antimicrobials, mucosal coating agents, anesthetics, and analgesics for the prevention and management of oral mucositis (OM) in cancer patients. METHODS: A systematic review of the available literature was

  20. Transgenic Killer Commensal Bacteria as Mucosal Protectants

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    2001-01-01

    Full Text Available As first line of defense against the majority of infections and primary site for their transmission, mucosal surfaces of the oral cavity and genitourinary, gastrointestinal, and respiratory tracts represent the most suitable sites to deliver protective agents for the prevention of infectious diseases. Mucosal protection is important not only for life threatening diseases but also for opportunistic infections which currently represent a serious burden in terms of morbidity, mortality, and cost of cures. Candida albicans is among the most prevalent causes of mucosal infections not only in immuno- compromised patients, such as HIV-infected subjects who are frequently affected by oral and esophageal candidiasis, but also in otherwise healthy individuals, as in the case of acute vaginitis. Unfortunately, current strategies for mucosal protection against candidiasis are severely limited by the lack of effective vaccines and the relative paucity and toxicity of commercially available antifungal drugs. An additional option has been reported in a recent

  1. Microneedle and mucosal delivery of influenza vaccines

    Science.gov (United States)

    Kang, Sang-Moo; Song, Jae-Min; Kim, Yeu-Chun

    2017-01-01

    In recent years with the threat of pandemic influenza and other public health needs, alternative vaccination methods other than intramuscular immunization have received great attention. The skin and mucosal surfaces are attractive sites probably because of both non-invasive access to the vaccine delivery and unique immunological responses. Intradermal vaccines using a microinjection system (BD Soluvia) and intranasal vaccines (FluMist) are licensed. As a new vaccination method, solid microneedles have been developed using a simple device that may be suitable for self-administration. Because coated micorneedle influenza vaccines are administered in the solid state, developing formulations maintaining the stability of influenza vaccines is an important issue to be considered. Marketable microneedle devices and clinical trials remain to be developed. Other alternative mucosal routes such as oral and intranasal delivery systems are also attractive for inducing cross protective mucosal immunity but effective non-live mucosal vaccines remain to be developed. PMID:22697052

  2. Expression profiling and functional analysis of Toll-like receptors in primary healthy human nasal epithelial cells shows no correlation and a refractory LPS response

    NARCIS (Netherlands)

    van Tongeren, J.; Röschmann, K. I. L.; Reinartz, S. M.; Luiten, S.; Fokkens, W. J.; de Jong, E. C.; van Drunen, C. M.

    2015-01-01

    Background: Innate immune recognition via Toll-like receptors (TLRs) on barrier cells like epithelial cells has been shown to influence the regulation of local immune responses. Here we determine expression level variations and functionality of TLRs in nasal epithelial cells from healthy donors.

  3. Inhalation exposure to ethylene induces eosinophilic rhinitis and nasal epithelial remodeling in Fischer 344 rats.

    Science.gov (United States)

    Brandenberger, Christina; Hotchkiss, Jon A; Krieger, Shannon M; Pottenger, Lynn H; Harkema, Jack R

    2015-11-05

    This study investigated the time- and concentration-dependent effects of inhaled ethylene on eosinophilic rhinitis and nasal epithelial remodeling in Fisher 344 rats exposed to 0, 10, 50, 300, or 10,000 ppm ethylene, 6 h/day, 5 days/week for up to 4 weeks. Morphometric quantitation of eosinophilic inflammation and mucous cell metaplasia/hyperplasia (MCM) and nasal mucosal gene expression were evaluated at anatomic sites previously shown to undergo ethylene-induced epithelial remodeling. Serum levels of total IgE, IgG1 and IgG2a were measured to determine if ethylene exposure increased the expression of Th2-associated (IgE and IgG1) relative to Th1-associated (IgG2a) antibody isotypes. Rats exposed to 0 or 10,000 ppm for 1, 3, 5, 10, or 20 days were analyzed to assess the temporal pattern of ethylene-induced alterations in nasal epithelial cell proliferation, morphology and gene expression. Rats exposed to 0, 10, 50, 300, and 10,000 ppm ethylene for 20 days were analyzed to assess concentration-dependent effects on lesion development. Additional rats exposed 4 weeks to 0, 300, or 10,000 ppm ethylene were held for 13 weeks post-exposure to examine the persistence of ethylene-induced mucosal alterations. The data indicate that cell death and reparative cell proliferation were not a part of the pathogenesis of ethylene-induced nasal lesions. Enhanced gene expression of Th2 cytokines (e.g., IL-5, IL-13) and chitinase (YM1/2) in the nasal mucosa was much greater than that of Th1 cytokines (e.g., IFNγ) after ethylene exposure. A significant increase in MCM was measured after 5 days of exposure to 10,000 ppm ethylene and after 20 days of exposure 10 ppm ethylene. Ethylene-induced MCM was reversible after cessation of exposure. No increase in total serum IgE, IgG1 or IgG2a was measured in any ethylene-exposed group. These data do not support involvement of an immune-mediated allergic mechanism in the pathogenesis of ethylene-induced nasal lesions in rats. Repeated

  4. Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new National Healthcare Safety Network definition.

    Science.gov (United States)

    See, Isaac; Iwamoto, Martha; Allen-Bridson, Kathy; Horan, Teresa; Magill, Shelley S; Thompson, Nicola D

    2013-08-01

    To assess challenges to implementation of a new National Healthcare Safety Network (NHSN) surveillance definition, mucosal barrier injury laboratory-confirmed bloodstream infection (MBI-LCBI). Multicenter field test. Selected locations of acute care hospitals participating in NHSN central line-associated bloodstream infection (CLABSI) surveillance. Hospital staff augmented their CLABSI surveillance for 2 months to incorporate MBI-LCBI: a primary bloodstream infection due to a selected group of organisms in patients with either neutropenia or an allogeneic hematopoietic stem cell transplant with gastrointestinal graft-versus-host disease or diarrhea. Centers for Disease Control and Prevention (CDC) staff reviewed submitted data to verify whether CLABSIs met MBI-LCBI criteria and summarized the descriptive epidemiology of cases reported. Eight cancer, 2 pediatric, and 28 general acute care hospitals including 193 inpatient units (49% oncology/bone marrow transplant [BMT], 21% adult ward, 20% adult critical care, 6% pediatric, 4% step-down) conducted field testing. Among 906 positive blood cultures reviewed, 282 CLABSIs were identified. Of the 103 CLABSIs that also met MBI-LCBI criteria, 100 (97%) were reported from oncology/BMT locations. Agreement between hospital staff and CDC classification of reported CLABSIs as meeting the MBI-LCBI definition was high (90%; κ = 0.82). Most MBI-LCBIs (91%) occurred in patients meeting neutropenia criteria. Some hospitals indicated that their laboratories' methods of reporting cell counts prevented application of neutropenia criteria; revised neutropenia criteria were created using data from field testing. Hospital staff applied the MBI-LCBI definition accurately. Field testing informed modifications for the January 2013 implementation of MBI-LCBI in the NHSN.

  5. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer.

    Science.gov (United States)

    de Azevedo, Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, Jerry M; Chatel, Jean-Marc

    2015-09-11

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen β-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Differential Apoptosis in Mucosal and Dermal Wound Healing

    Science.gov (United States)

    Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann

    2014-01-01

    Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; phealing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209

  7. A High Grain Diet Dynamically Shifted the Composition of Mucosa-Associated Microbiota and Induced Mucosal Injuries in the Colon of Sheep

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2017-10-01

    Full Text Available This study investigated the dynamic shifts in mucosa-associated microbiota composition and mucosal morphology in the colon of sheep fed a high grain (HG diet. A total of 20 male sheep were randomly assigned to four groups (n = 5 for each. The sheep in first group received hay diet. The animals in other 3 groups were fed an HG diet for 7 (HG7, 14 (HG14, or 28 (HG28 days, respectively. Colonic digesta samples were collected to determine the pH and the concentrations of volatile fatty acid (VFA and lactate. The colonic mucosa was sampled to characterize the bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression levels of cytokines and tight junction protein genes using quantitative real-time PCR. As time advanced, results revealed that colonic pH linearly decreased (P = 0.007, and the concentrations of total VFA linearly increased (P < 0.001. Microbial analysis showed that an HG diet linearly reduced (P < 0.050 the diversity and richness of the colonic microbiota. The principal coordinate analysis results showed that the colonic mucosa-associated bacterial communities of the four groups significantly shifted with number of days fed an HG diet. At the genus level, HG feeding significantly increased the relative abundance of some taxa including Prevotella, Coprococcus, Roseburia, and Clostridium_sensu_stricto_1, and decreased the proportion of Treponema, and the percentage of these taxa was not affected by days fed an HG diet. The microscopic examination showed that HG feeding caused the mucosal epithelial injury. The RT-PCR results showed that the mRNA expression of claudin-1 (P = 0.038, IL-1β (P = 0.045, IL-6 (P = 0.050, and TNF-α (P = 0.020 increased linearly with number of days fed an HG diet. The correlation analysis revealed significant correlation between the colonic mucosal mRNA expression of cytokines and mucosal bacterial composition. Generally, HG feeding increased colonic fermentation and altered colonic

  8. The Potential Role of Probiotics in the Management of Childhood Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    J. William Critchfield

    2011-01-01

    Full Text Available Gastrointestinal (GI dysfunction has been reported in a substantial number of children with autism spectrum disorders (ASD. Activation of the mucosal immune response and the presence of abnormal gut microbiota are repeatedly observed in these children. In children with ASD, the presence of GI dysfunction is often associated with increased irritability, tantrums, aggressive behaviour, and sleep disturbances. Moreover, modulating gut bacteria with short-term antibiotic treatment can lead to temporary improvement in behavioral symptoms in some individuals with ASD. Probiotics can influence microbiota composition and intestinal barrier function and alter mucosal immune responses. The administration of probiotic bacteria to address changes in the microbiota might, therefore, be a useful novel therapeutic tool with which to restore normal gut microbiota, reduce inflammation, restore epithelial barrier function, and potentially ameliorate behavioural symptoms associated with some children with ASD. In this review of the literature, support emerges for the clinical testing of probiotics in ASD, especially in the context of addressing GI symptoms.

  9. Localization of trefoil factor family peptide 3 (TFF3) in epithelial tissues originating from the three germ layers of developing mouse embryo.

    Science.gov (United States)

    Bijelić, Nikola; Belovari, Tatjana; Tolušić Levak, Maja; Baus Lončar, Mirela

    2017-08-20

    Trefoil factor family (TFF) peptides are involved in the maintenance of epithelial integrity and epithelial restitution. Mature epithelial tissues originate from different embryonic germ layers. The objective of this research was to explore the presence and localization of TFF3 peptide in mouse embryonic epithelia and to examine if the occurrence of TFF3 peptide is germ layer-dependent. Mouse embryos (14-18 days old) were fixed in 4% paraformaldehyde and embedded in paraffin. Immunohistochemistry was performed with affinity purified rabbit anti-TFF3 antibody, goat anti-rabbit biotinylated secondary antibody and streptavidin-horseradish peroxidase, followed by 3,3'-diaminobenzidine. TFF3 peptide was present in the gastric and intestinal mucosa, respiratory mucosa in the upper and lower airways, pancreas, kidney tubules, epidermis, and oral cavity. The presence and localization of TFF3 peptide was associated with the embryonic stage and tissue differentiation. TFF3 peptide distribution specific to the germ layers was not observed. The role of TFF3 peptide in cell migration and differentiation, immune response, and apoptosis might be associated with specific embryonic epithelial cells. TFF3 peptide may also be considered as a marker for mucosal maturation.

  10. Localization of trefoil factor family peptide 3 (TFF3 in epithelial tissues originating from the three germ layers of developing mouse embryo

    Directory of Open Access Journals (Sweden)

    Nikola Bijelić

    2017-08-01

    Full Text Available Trefoil factor family (TFF peptides are involved in the maintenance of epithelial integrity and epithelial restitution. Mature epithelial tissues originate from different embryonic germ layers. The objective of this research was to explore the presence and localization of TFF3 peptide in mouse embryonic epithelia and to examine if the occurrence of TFF3 peptide is germ layer-dependent. Mouse embryos (14-18 days old were fixed in 4% paraformaldehyde and embedded in paraffin. Immunohistochemistry was performed with affinity purified rabbit anti-TFF3 antibody, goat anti-rabbit biotinylated secondary antibody and streptavidin-horseradish peroxidase, followed by 3,3'-diaminobenzidine. TFF3 peptide was present in the gastric and intestinal mucosa, respiratory mucosa in the upper and lower airways, pancreas, kidney tubules, epidermis, and oral cavity. The presence and localization of TFF3 peptide was associated with the embryonic stage and tissue differentiation. TFF3 peptide distribution specific to the germ layers was not observed. The role of TFF3 peptide in cell migration and differentiation, immune response, and apoptosis might be associated with specific embryonic epithelial cells. TFF3 peptide may also be considered as a marker for mucosal maturation.

  11. Sensitization to epithelial antigens in chronic mucosal inflammatory disease. Characterization of human intestinal mucosa-derived mononuclear cells reactive with purified epithelial cell-associated components in vitro.

    OpenAIRE

    Roche, J K; Fiocchi, C; Youngman, K

    1985-01-01

    To explore the auto-reactive potential of cells infiltrating the gut mucosa in idiopathic chronic inflammatory bowel disease, intestinal lamina propria mononuclear cells (LPMC) were isolated, characterized morphologically and phenotypically, and evaluated for antigen-specific reactivity. The last was assessed by quantitating LPMC cytotoxic capabilities against purified, aqueous-soluble, organ-specific epithelial cell-associated components (ECAC) characterized previously. Enzyme-isolated infla...

  12. Host defense mechanisms in oral mucosa

    OpenAIRE

    菅原, 俊二

    2003-01-01

    It is speculated that more than 500 bacterial species reside in the oral cavity. Some cause periodontitis and dental caries, an understanding of which requires examination of innate immunity in the oral cavity. Oral mucosal cells such as epithelial cells and fibroblasts are thought to act as a physical barrier against invasion by pathogenic organisms, but they also can produce inflammatory cytokines and express adhesion molecules, resulting in control of neutrophil and T cell infiltration. Th...

  13. Effect of gene time on acute radiation mucositis and dermatitis

    International Nuclear Information System (INIS)

    Li Suyan; Gao Li; Yin Weibo; Xu Guozhen; Xiao Guangli

    2002-01-01

    Objective: To evaluate the effect of recombinant human epidermal growth factor (Gene Time) on acute mucositis and dermatitis induced by radiation. Methods: 120 head and neck cancer patients were randomized into 3 groups: 1. Mucositis prophylactic application (MPA) group with control, 2. Mucositis therapeutic application (MTA) group with control and 3. Dermatitis therapeutic application (DTA) group with control. Prophylactic application of drug consisted of spraying the Gene Time preparation on the irradiated skin or mucous membrane as radiotherapy was being carried out. This was compared with control patients who received routine conventional skin care. Therapeutic application was started as grade I radiation mucositis or dermatitis appeared. The evaluation of acute radiation mucositis and dermatitis was done according to the systems proposed by RTOG or EORTC. Results: The results showed that in the MPA group, the rate of radiation mucositis at ≤10 Gy was 20% (4/20) as compared to the 70% (14/20) of the control (P = 0.004). During the course of radiation, the incidences of grade III, IV acute radiation mucositis and dermatitis were always lower than the control. In therapeutic application of Gene Time, the response rate of acute radiation mucositis was also better than the control (90% vs 50%) (P = 0.016) and that of acute dermatitis was similar (95% vs 50%) (P = 0.005). Moreover, the ≤3 d rate of healing of grade III dermatitis in the application group was 3/7 as compared to the 0/14 of the control. Conclusion: Prophylactic application of recombinant human epidermal growth factor is able to postpone the development of radiation mucositis. This preparation is also able to lower the incidence of grade III, IV mucositis and dermatitis both by therapeutic and prophylactic application in addition to the hastened healing of grade III dermatitis

  14. Inside the mucosal immune system.

    Directory of Open Access Journals (Sweden)

    Jerry R McGhee

    Full Text Available An intricate network of innate and immune cells and their derived mediators function in unison to protect us from toxic elements and infectious microbial diseases that are encountered in our environment. This vast network operates efficiently by use of a single cell epithelium in, for example, the gastrointestinal (GI and upper respiratory (UR tracts, fortified by adjoining cells and lymphoid tissues that protect its integrity. Perturbations certainly occur, sometimes resulting in inflammatory diseases or infections that can be debilitating and life threatening. For example, allergies in the eyes, skin, nose, and the UR or digestive tracts are common. Likewise, genetic background and environmental microbial encounters can lead to inflammatory bowel diseases (IBDs. This mucosal immune system (MIS in both health and disease is currently under intense investigation worldwide by scientists with diverse expertise and interests. Despite this activity, there are numerous questions remaining that will require detailed answers in order to use the MIS to our advantage. In this issue of PLOS Biology, a research article describes a multi-scale in vivo systems approach to determine precisely how the gut epithelium responds to an inflammatory cytokine, tumor necrosis factor-alpha (TNF-α, given by the intravenous route. This article reveals a previously unknown pathway in which several cell types and their secreted mediators work in unison to prevent epithelial cell death in the mouse small intestine. The results of this interesting study illustrate how in vivo systems biology approaches can be used to unravel the complex mechanisms used to protect the host from its environment.

  15. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    Science.gov (United States)

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  16. Oral mucositis in head and neck cancer: risk, biology, and management.

    Science.gov (United States)

    Sonis, Stephen T

    2013-01-01

    Of the toxicities associated with conventional forms of treatment for head and neck cancers, probably none has such a consistent legacy as oral mucositis.1 Despite the fact that mucosal injury was noted as far back as Marie Curie's first forays into therapeutic radiation, an effective intervention has yet to be developed. In addition to its historic link to radiation, new therapeutic strategies including induction chemotherapy often produce mucositis, and targeted therapies appear to alter mucositis risk and its severity and course.2 The symptomatic effect of oral mucositis is profound. Disabling oral and oropharyngeal pain prevents patients from eating normally, requires opiate analgesics, and in some cases results in alteration or discontinuation of anticancer therapy.3 Furthermore, the health and economic consequences of oral mucositis are far from trivial. The incremental cost of oral mucositis in patients with head and neck cancer exceeds $17,000 (USD).4.

  17. A major population of mucosal memory CD4+ T cells, coexpressing IL-18Rα and DR3, display innate lymphocyte functionality

    DEFF Research Database (Denmark)

    Holmkvist, P.; Roepstorff, K.; Uronen-Hansson, H.

    2015-01-01

    induction of IL-5, IL-13, GM-CSF, and IL-22 was IL-12 independent. IL-18Rα+DR3+CD4+ T cells with similar functionality were present in human skin, nasal polyps, and, in particular, the intestine, where in chronic inflammation they localized with IL-18-producing cells in lymphoid aggregates. Collectively......, these results suggest that human memory IL-18Rα+DR3+CD4+ T cells may contribute to antigen-independent innate responses at barrier surfaces.......Mucosal tissues contain large numbers of memory CD4+ T cells that, through T-cell receptor-dependent interactions with antigen-presenting cells, are believed to have a key role in barrier defense and maintenance of tissue integrity. Here we identify a major subset of memory CD4+ Tcells at barrier...

  18. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Directory of Open Access Journals (Sweden)

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  19. Innate Lymphoid Cells in HIV/SIV Infections.

    Science.gov (United States)

    Shah, Spandan V; Manickam, Cordelia; Ram, Daniel R; Reeves, R Keith

    2017-01-01

    Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC) have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  20. Innate Lymphoid Cells in HIV/SIV Infections

    Directory of Open Access Journals (Sweden)

    Spandan V. Shah

    2017-12-01

    Full Text Available Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  1. Mucosite bucal rádio e quimioinduzida Radiation therapy and chemotherapy-induced oral mucositis

    Directory of Open Access Journals (Sweden)

    Luiz Evaristo Ricci Volpato

    2007-08-01

    . RESULTS: current studies define oral mucositis as a very frequent and painful inflammation with ulcers on the oral mucosa that are covered by a pseudo membrane. The incidence and severity of lesions are influenced by patient and treatment variables. Oral mucositis is a result of two major mechanisms: direct toxicity on the mucosa and myelosuppression due to the treatment. Its pathofisiology is composed of four interdependent phases: an initial inflammatory/vascular phase; an epithelial phase; an ulcerative/bacteriological phase; and a healing phase. It is considered a potential source of life-threatening infection and often is a dose-limiting factor in anticancer therapy. Some interventions have been shown to be potentially effective to prevent and treat oral mucositis. Further intensive research through well-structured clinical trials to obtain the best scientific evidence over the standard therapy of oral mucositis is necessary to attain ideal parameters for radiotherapy and chemotherapy.

  2. HIV gp120 binds to mannose receptor on vaginal epithelial cells and induces production of matrix metalloproteinases.

    Directory of Open Access Journals (Sweden)

    Sashaina E Fanibunda

    Full Text Available BACKGROUND: During sexual transmission of HIV in women, the virus breaches the multi-layered CD4 negative stratified squamous epithelial barrier of the vagina, to infect the sub-epithelial CD4 positive immune cells. However the mechanisms by which HIV gains entry into the sub-epithelial zone is hitherto unknown. We have previously reported human mannose receptor (hMR as a CD4 independent receptor playing a role in HIV transmission on human spermatozoa. The current study was undertaken to investigate the expression of hMR in vaginal epithelial cells, its HIV gp120 binding potential, affinity constants and the induction of matrix metalloproteinases (MMPs downstream of HIV gp120 binding to hMR. PRINCIPAL FINDINGS: Human vaginal epithelial cells and the immortalized vaginal epithelial cell line Vk2/E6E7 were used in this study. hMR mRNA and protein were expressed in vaginal epithelial cells and cell line, with a molecular weight of 155 kDa. HIV gp120 bound to vaginal proteins with high affinity, (Kd = 1.2±0.2 nM for vaginal cells, 1.4±0.2 nM for cell line and the hMR antagonist mannan dose dependently inhibited this binding. Both HIV gp120 binding and hMR exhibited identical patterns of localization in the epithelial cells by immunofluorescence. HIV gp120 bound to immunopurified hMR and affinity constants were 2.9±0.4 nM and 3.2±0.6 nM for vaginal cells and Vk2/E6E7 cell line respectively. HIV gp120 induced an increase in MMP-9 mRNA expression and activity by zymography, which could be inhibited by an anti-hMR antibody. CONCLUSION: hMR expressed by vaginal epithelial cells has high affinity for HIV gp120 and this binding induces production of MMPs. We propose that the induction of MMPs in response to HIV gp120 may lead to degradation of tight junction proteins and the extracellular matrix proteins in the vaginal epithelium and basement membrane, leading to weakening of the epithelial barrier; thereby facilitating transport of HIV across the

  3. Immunohistochemical Localization of Fibrinogen C Domain Containing 1 on Epithelial and Mucosal Surfaces in Human Tissues

    DEFF Research Database (Denmark)

    von Huth, Sebastian; Moeller, Jesper B; Schlosser, Anders

    2018-01-01

    Fibrinogen C domain containing 1 (FIBCD1) is a transmembrane receptor that binds chitin and other acetylated compounds with high affinity. FIBCD1 has previously been shown to be present in the epithelium of the gastrointestinal tract. In the present study, we performed a detailed analysis...... high expression of FIBCD1 and also mesodermal-derived cells in the genitourinary system and ectodermal-derived epidermis and sebaceous glands cells expressed FIBCD1. In some columnar epithelial cells, for example, in the salivary gland and gall bladder, the FIBCD1 expression was clearly polarized...

  4. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

    Directory of Open Access Journals (Sweden)

    Ussama M Abdel-Motal

    Full Text Available Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.This study tested the hypothesis that adeno-associated virus (AAV-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc, or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal in an organotypic human vaginal epithelial cell (VEC model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

  5. The effect of O-acetylsalicylic acid on lipid synthesis by guinea pig gastric mucosa in vitro

    International Nuclear Information System (INIS)

    Spohn, M.; McColl, I.

    1987-01-01

    The aim of this work was to investigate the involvement of lipids as possible components of the gastric mucosal barrier by studying the synthesis and secretion of lipids by the epithelial cell lining of gastric mucosa and the effect of salicylate on these processes. O-Acetylsalicylic acid reversibly reduced in vitro incorporation of (U- 14 C) and of DL-(2- 14 C) mevalonic acid into lipids by isolated epithelial cells and by intact mucosa of guinea pig stomach, indicating reversible inhibition of lipid synthesis by the tissue in the presence of the drug. Inhibition of incorporation of both precursors into total lipids, into their fatty acid components, and into cholesterol is demonstrated

  6. Oral Candida as an aggravating factor of mucositis Induced by radiotherapy

    International Nuclear Information System (INIS)

    Simoes, Cristiane Araujo; Castro, Jurema Freire Lisboa de; Cazal, Claudia

    2011-01-01

    Antineoplastic treatment induces some undesirable consequences in head and neck cancer patients. Often, the emergence of major clinical manifestations, such as oral mucositis, results in temporary interruption of the treatment, decreasing the patients' quality of life, and increasing hospital costs. Radio-induced or chemo-induced oral mucositis is possibly aggravated by opportunist fungal infections, which turn the mucositis more resistant to the conventional treatments. Objective: this study aims to identify the presence of Candida sp. as a possible aggravating factor of oral mucositis in patients with head and neck cancer under antineoplastic treatment. Method: all patients with radio- or chemo-induced oral mucositis from the Cancer Hospital of Pernambuco, treated between October 2008 and April 2009, were selected for the study. The prevalence of Candida sp was measured through the cytological analysis of oral mucosa in patients with oral mucositis. The fungal presence was correlated with the mucositis severity. Results: the results showed a positive association between fungal colonization and more several lesions (degrees III and IV of mucositis). Conclusion: The outcomes shown may contribute to a solution for unconventional mucosites, which do not respond to the usual treatment. (author)

  7. Implications of bisphosphonate calcium ion depletion interfering with desmosome epithelial seal in osseointegrated implants and pressure ulcers.

    Science.gov (United States)

    Touyz, Louis Z G; Afrashtehfar, Kelvin I

    2017-09-01

    Osteoporosis (OP) is a global bone disease prevalent in aging in humans, especially in older women. Bisphosphonates (BPs) are commonly used as therapy for OP as it influences hard and soft tissues calcium metabolism. Mucosal and dermal ulceration with exposure of underlying bone arises from incomplete epithelial recovery due to reduced desmosome formation deriving from lack of available calcium. Pathological situations such as bisphosphonate-related osteonecrosis of the jaw have been described. This hypothesis states other situations which demand intact functional desmosomes such as healing skin over chronic pressure points leading to pressure ulcers (as well-known as bedsores, pressure sores, pressure injuries, decubitus ulcers), and hemidesmosomes such as epithelial seals in contact with titanium surfaces will have a higher prevalence of breakdown among patients being treated with BPs. This may be proven through the diminished modulation of calcium ions due to BPs, and its effect on the formation of intercellular gap junctions. Copyright © 2017. Published by Elsevier Ltd.

  8. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    Science.gov (United States)

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  9. Interactions between bacteria and the gut mucosa: Do enteric neurotransmitters acting on the mucosal epithelium influence intestinal colonization or infection?

    Science.gov (United States)

    The intestinal epithelium is a critical barrier between the internal and external milieux of the mammalian host. Epithelial interactions between these two host environments have been shown to be modulated by several different, cross-communicating cell types residing in the gut mucosa. These include ...

  10. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    Science.gov (United States)

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  11. Increased melatonin in oral mucosal tissue of oral lichen planus (OLP) patients: A possible link between melatonin and its role in oral mucosal inflammation.

    Science.gov (United States)

    Luengtrakoon, Kirawut; Wannakasemsuk, Worraned; Vichitrananda, Vilasinee; Klanrit, Poramaporn; Hormdee, Doosadee; Noisombut, Rajda; Chaiyarit, Ponlatham

    2017-06-01

    The existence of extra-pineal melatonin has been observed in various tissues. No prior studies of melatonin in human oral mucosal tissue under the condition of chronic inflammation have been reported. The aim of this study was to investigate the presence of melatonin in oral mucosal tissue of patients with oral lichen planus (OLP) which was considered as a chronic inflammatory immune-mediated disease causing oral mucosal damage and ulcerations. Sections from formalin-fixed and paraffin-embedded oral mucosal tissue of OLP patients (n=30), and control subjects (n=30) were used in this study. Immunohistochemical staining was performed and the semiquantitative scoring system was used to assess the levels of arylalkylamine-N-acetyltransferase (AANAT: a rate-limiting enzyme in the biosynthesis pathway of melatonin), melatonin, and melatonin receptor 1 (MT1) in oral mucosa of OLP patients and normal oral mucosa of control subjects. AANAT, melatonin, and MT1were detected in oral mucosal tissue of OLP patients and control subjects. Immunostaining scores of AANAT, melatonin, and MT1 in oral mucosal tissue of OLP patients were significantly higher than those in control subjects (p=0.002, poral mucosal tissue of OLP patients imply that chronic inflammation may induce the local biosynthesis of melatonin via AANAT, and may enhance the action of melatonin via MT1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chemotherapy induced intestinal mucositis; from bench to bed

    NARCIS (Netherlands)

    B.A.E. Koning, de (Barbara)

    2008-01-01

    textabstractPart 1 focuses primarily on the pathophysiology of mucositis, in order to gain more insight different experimental mouse models were used. Chapter 2 describes mucositis induced by high dose doxorubicin (DOX)- treatment. DOX is a frequently used cytostatic drug in childhood cancer,

  13. Oral complications of cancer therapies. Mucosal alterations

    International Nuclear Information System (INIS)

    Squier, C.A.

    1990-01-01

    The initial effect of anticancer therapy, such as radiation and chemotherapy, is on the rapidly proliferating cells of the oral epithelium. As a consequence, the epithelium may show atrophy and ulceration. The sites of these alterations are related to the rate of epithelial proliferation. Regions of rapid proliferation, such as the oral lining mucosa, show a greater frequency of ulceration than masticatory mucosa or skin. Subsequent changes in the mucosa reflect damage to connective tissue, including fibroblasts and blood vessels. This results in hyalinization of collagen, hypovascularity, and ischemia. Indirect effects of anticancer therapy may include granulocytopenia and reduced salivary secretion, so that the protective mucin coating of the epithelium is compromised. These changes result in tissue with reduced barrier function and impaired ability to heal and to resist entry of pathogens, thus increasing the risk of systemic infections

  14. A randomised clinical trial of misoprostol for radiation mucositis

    International Nuclear Information System (INIS)

    Faroudi, F.; Timms, I.; Sathiyuaseelan, Y.; Cakir, B.; Tiver, K.W.; Gebski, V.; Veness, M.

    2003-01-01

    Radiation mucositis is a major acute toxicity of radiation therapy for head and neck malignancies. We tested whether Misoprostol, a synthetic prostaglandin E 1 analogue given prophylactically decreased intensity of radiation mucositis. A double blind randomized trial was conducted. The intervention consisted of swishing dissolved drug or placebo as a mouthwash, and then swallowing two hours prior to radiation treatment. Patients were stratified based on concurrent chemotherapy, altered fractionation, smoking, extent of oral mucosa in radiation field, and institution. The main end point was the extent of RTOG grade III mucositis, taking into account both time and duration of mucositis. 42 patients were randomized to active drug, and 41 patients to placebo. The trial was designed to have 70 patients in each arm. The trial closed due to poor accrual. In the Misoprostol group 18/42 (43%) had grade III/IV mucositis, and in the placebo group 17/40 (42%). The mean difference between the areas under the curve was 0.38 (p-value: 0.38). For grade II mucositis the corresponding figures were 18 (42%) and 19 (47%). The time from commencement of radiation therapy to the development of peak mucositis was 49 days in the misoprostol patients and 51 days in the placebo group. The duration of grade III mucositis 12.5 days in the Misoprostol patients and 7 days in the placebo patients. In the Misoprostol arm 4 patients had an interruption to their Radiation Therapy, in the Placebo arm 5 had interruptions. Patients average weight loss was 8.1 and 8.2kg. Average self-assessment was via a 10cm LASA scale for soreness of throat and overall well-being. Misoprostol showed a worse QoL on soreness of mouth (mean difference: 0.84 units (p-value .03), but overall well-being was similar on both treatment arms 1 patient withdrew in the Misoprostol arm and 2 in the placebo arm. Misoprostol given prophylactically does not reduce the incidence of Grade III/IV mucositis, is associated with a shorter

  15. Acute mucosal radiation reactions in patients with head and neck cancer. Patterns of mucosal healing on the basis of daily examinations

    Energy Technology Data Exchange (ETDEWEB)

    Wygoda, A.; Skladowski, K.; Rutkowski, T.; Hutnik, M.; Golen, M.; Pilecki, B.; Przeorek, W.; Lukaszczyk-Widel, B. [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice (Poland). 1st Dept. of Radiation Oncology

    2012-08-15

    Purpose: The goal of this research was to evaluate the healing processes of acute mucosal radiation reactions (AMRR) in patients with head and neck cancer. Materials and methods: In 46 patients with oral and oropharyngeal cancer patients irradiated with conventional (n = 25) and accelerated (n = 21) dose fractionation AMRR was evaluated daily during and after radiotherapy. Complex of morphological and functional symptoms according to the Dische score were collected daily until complete healing. Results: Duration of healing after the end of radiotherapy ranged widely (12-70 days). It was on the average 8 days longer for accelerated than for conventional radiotherapy (p = 0.016). Duration of dysphagia was also longer for accelerated irradiation (11 days, p = 0.027). Three types of morphological symptoms were observed as the last symptom at the end of AMRR healing: spotted and confluent mucositis, erythema, and edema. Only a slight correlation between healing duration and area of irradiation fields (r = 0.23) was noted. In patients with confluent mucositis, two morphological forms of mucosal healing were observed, i.e., marginal and spotted. The spotted form was noted in 71% of patients undergoing conventional radiotherapy and in 38% of patients undergoing accelerated radiotherapy. The symptoms of mucosal healing were observed in 40% patients during radiotherapy. Conclusion: The wide range of AMRR healing reflects individual potential of mucosa recovery with longer duration for accelerated radiotherapy. Two morphological forms of confluent mucositis healing were present: marginal and spotted. Healing of AMRR during radiotherapy can be observed in a significant proportion of patients. (orig.)

  16. Pretreatment with Saccharomyces boulardii does not prevent the experimental mucositis in Swiss mice.

    Science.gov (United States)

    Maioli, Tatiani Uceli; de Melo Silva, Brenda; Dias, Michelle Nobre; Paiva, Nivea Carolina; Cardoso, Valbert Nascimento; Fernandes, Simone Odilia; Carneiro, Cláudia Martins; Dos Santos Martins, Flaviano; de Vasconcelos Generoso, Simone

    2014-04-11

    The antimetabolite chemotherapy 5-Fluorouracil is one of the most commonly prescribed drugs in clinical cancer treatment. Although this drug is not specific for cancer cells and also acts on healthy cells, it can cause mucositis, a common collateral effect. Dysbiosis has also been described in 5-fluorouracil-induced mucositis and is likely to contribute to the overall development of mucositis. In light of this theory, the use of probiotics could be a helpful strategy to alleviate mucositis. So the aim of this study was evaluate the impact of the probiotic Saccharomyces boulardii in a model of mucositis. After induced of mucositis, mice from the Mucositis groups showed a decrease in food consumption (p Saccharomyces boulardii did not reverse this effect (p > 0.05). Mucositis induced an increase in intestinal permeability and intestinal inflammation (p  0.05) in mice pretreated with S. boulardii. S. boulardii was not able to prevent the effects of experimental mucositis induced by 5- Fluorouracil.

  17. Myosin light chain kinase mediates intestinal barrier disruption following burn injury.

    Directory of Open Access Journals (Sweden)

    Chuanli Chen

    Full Text Available BACKGROUND: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC phosphorylation mediated by MLC kinase (MLCK is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. METHODOLOGY/PRINCIPAL FINDINGS: Male balb/c mice were assigned randomly to either sham burn (control or 30% total body surface area (TBSA full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg, an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. CONCLUSIONS/SIGNIFICANCE: The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.

  18. Hydrostatic pressure incubation affects barrier properties of mammary epithelial cell monolayers, in vitro.

    Science.gov (United States)

    Mießler, Katharina S; Markov, Alexander G; Amasheh, Salah

    2018-01-01

    During lactation, accumulation of milk in mammary glands (MG) causes hydrostatic pressure (HP) and concentration of bioactive compounds. Previously, a changed expression of tight junction (TJ) proteins was observed in mice MGs by accumulation of milk, in vivo. The TJ primarily determines the integrity of the MG epithelium. The present study questioned whether HP alone can affect the TJ in a mammary epithelial cell model, in vitro. Therefore, monolayers of HC11, a mammary epithelial cell line, were mounted into modified Ussing chambers and incubated with 10 kPa bilateral HP for 4 h. Short circuit current and transepithelial resistance were recorded and compared to controls, and TJ proteins were analyzed by Western blotting and immunofluorescent staining. In our first approach HC11 cells could withstand the pressure incubation and a downregulation of occludin was observed. In a second approach, using prolactin- and dexamethasone-induced cells, a decrease of short circuit current was observed, beginning after 2 h of incubation. With the addition of 1 mM barium chloride to the bathing solution the decrease could be blocked temporarily. On molecular level an upregulation of ZO-1 could be observed in hormone-induced cells, which was downregulated after the incubation with barium chloride. In conclusion, bilateral HP incubation affects mammary epithelial monolayers, in vitro. Both, the reduction of short circuit current and the change in TJ proteins may be interpreted as physiological requirements for lactation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Microbiota facilitates dietary heme-induced epithelial hyperproliferation and hyperplasia by breaking the mucus barrier

    NARCIS (Netherlands)

    IJssennagger, Noortje; Belzer, Clara; Hooiveld, Guido; Dekker, Jan; Muller, Michael; Kleerebezem, Michiel; Meer, van der Roelof

    2015-01-01

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in

  20. Effect of respiratory syncytial virus (RSV) infection on the adherence of pathogenic bacteria to human epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Faden, H.; Hong, J.J.; Ogra, P.L.

    1986-03-01

    The effect of RSV infection on the adherence of Streptococcus pneumoniae (SP), Haemophilus influenzae (HI) and Staphylococcus aureus (SA) to human epithelial cells was determined. RSV-infected Hep-2 cell cultures at different stages of expression of surface viral antigens and bacteria labeled with /sup 3/H-thymidine were employed to examine the kinetics of bacterial adherence to virus-infected cells. RSV infection did not alter the magnitude of adherence of HI or SA to HEp-2 cells. However, adherence of SP to HEp-2 cells was significantly (P < 0.01) enhanced by prior RSV infection. The degree of adherence was directly related to the amount of viral antigen expressed on the cell surface. The adherence was temperature dependent, with maximal adherence observed at 37/sup 0/C. Heat-inactivation of SP did not alter adherence characteristics. These data suggest that RSV infection increases adherence of SP to the surface of epithelial cells in vitro. Since attachment of bacteria to mucosal surfaces is the first step in many infections, it is suggested that viral infections of epithelial cells render them more susceptible to bacterial adherence. Thus, RSV infection in vivo may predispose children to SP infections, such as in otitis media, by increasing colonization with SP.

  1. Corticotropin-releasing hormone and mast cells in the regulation of mucosal barrier function in the human colon.

    Science.gov (United States)

    Wallon, Conny; Söderholm, Johan D

    2009-05-01

    Corticotropin-releasing hormone (CRH) is an important neuro-endocrine mediator of the stress response. Local effects of CRH in the intestinal mucosa have become evident in recent years. We showed that CRH activates CRH receptor subtypes R1 and R2 on subepithelial mast cells, thereby inducing increased transcellular uptake of protein antigens in human colonic biopsies in Ussing chambers. Ongoing studies also implicate local cholinergic signaling in regulation of macromolecular permeability in the human colon. Since increased uptake of antigenic molecules is associated with mucosal inflammation, our findings may have implications for understanding stress-related intestinal disorders.

  2. Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus Cholera Toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity

    OpenAIRE

    Maeto, Cynthia Alejandra; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, Maria Magdalena

    2017-01-01

    Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after thei...

  3. Effect of heme oxygenase-1 transduced bone marrow mesenchymal stem cells on damaged intestinal epithelial cells in vitro.

    Science.gov (United States)

    Cao, Yi; Wu, Ben-Juan; Zheng, Wei-Ping; Yin, Ming-Li; Liu, Tao; Song, Hong-Li

    2017-07-01

    In this study, we explored the effects of mesenchymal stem cells (MSCs) from bone marrow overexpressing heme oxygenase-1 (HO-1) on the damaged human intestinal epithelial barrier in vitro. Rat MSCs were isolated from bone marrow and transduced with rat HO-1 recombinant adenovirus (HO-MSCs) for stable expression of HO-1. Colorectal adenocarinoma 2 (Caco2) cells were treated with tumor necrosis factor-α (TNF-α) to establish a damaged colon epithelial model. Damaged Caco2 were cocultured with MSCs, Ad-MSCs, Ad-HO + MSCs or HO-MSCs. mRNA and protein expression of Zona occludens-1 (ZO-1) and human HO-1 and the release of cytokines were measured. ZO-1 and human HO-1 in Caco2 were significantly decreased after treatment with TNF-α; and this effect was reduced when coculture with MSCs from bone marrow. Expression of ZO-1 was not significantly affected by Caco2 treatment with TNF-α, Ad-HO, and MSCs. In contrast, ZO-1 and human HO-1 increased significantly when the damaged Caco2 was treated with HO-MSCs. HO-MSCs showed the strongest effect on the expression of ZO-1 in colon epithelial cells. Coculture with HO-MSCs showed the most significant effects on reducing the expression of IL-2, IL-6, IFN-γ and increasing the expression of IL-10. HO-MSCs protected the intestinal epithelial barrier, in which endogenous HO-1 was involved. HO-MSCs play an important role in the repair process by reducing the release of inflammatory cytokines and increasing the release of anti-inflammatory factors. These results suggested that HO-MSCs from bone marrow were more effective in repairing the damaged intestinal epithelial barrier, and the effectiveness of MSCs was improved by HO-1 gene transduction, which provides favorable support for the application of stem cell therapy in the intestinal diseases. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  4. O6-methylguanine-DNA methyltransferase activity in human buccal mucosal tissue and cell cultures. Complex mixtures related to habitual use of tobacco and betel quid inhibit the activity in vitro.

    Science.gov (United States)

    Liu, Y; Egyhazi, S; Hansson, J; Bhide, S V; Kulkarni, P S; Grafström, R C

    1997-10-01

    Extracts prepared from tissue specimens of normal, non-tumourous human buccal mucosa, and cultured buccal epithelial cells and fibroblasts, exhibited O6-methylguanine-DNA methyltransferase (MGMT) activity by catalysing the repair of the premutagenic O6-methylguanine lesion in isolated DNA with rates of 0.2 to 0.3 pmol/mg protein. An SV40 T antigen-immortalized buccal epithelial cell line termed SVpgC2a and a buccal squamous carcinoma line termed SqCC/Y1, both of which lack normal tumour suppressor gene p53 function, exhibited about 50 and 10% of the MGMT activity of normal cells, respectively. The normal, experimentally transformed and tumourous buccal cell types showed MGMT mRNA levels which correlated with their respective levels of MGMT activity. Exposure of buccal cell cultures to various organic or water-based extracts of products related to the use of tobacco and betel quid, decreased both cell survival (measured by reduction of tetrazolium dye) and MGMT activity (measured subsequently to the exposures in cellular extracts). Organic extracts of bidi smoke condensate and betel leaf showed higher potency than those of tobacco and snuff. An aqueous snuff extract also decreased both parameters, whereas an aqueous areca nut extract was without effect. The well-established sulph-hydryl-reactive agent Hg2+, a corrosion product of dental amalgam, served as a positive control and decreased MGMT activity following treatment of cells within a range of 1-10 microM. Taken together, significant MGMT activities were demonstrated in buccal tissue specimens and in the major buccal mucosal cell types in vitro. Lower than normal MGMT activity in two transformed buccal epithelial cell lines correlated with decreased MGMT mRNA and lack of functional p53. Finally, in vitro experiments suggested the potential inhibition of buccal mucosal MGMT activity by complex mixtures present in the saliva of tobacco and betel nut chewers.

  5. Gastric Mucosal Erosions - Radiologic evaluation -

    International Nuclear Information System (INIS)

    Kim, Seung Hyup

    1985-01-01

    70 cases of gastric mucosal erosions were diagnosed by double contrast upper gastrointestinal examinations and endoscopic findings. Analyzing the radiologic findings of these 70 cases of gastric mucosal erosions, the following results were obtained. 1. Among the total 70 cases, 65 cases were typical varioliform erosions showing central depressions and surrounding mucosal elevations. Remaining 5 cases were erosions of acute phase having multiple irregular depressions without surrounding elevations. 2. The gastric antrum was involved alone or in part in all cases. Duodenal bulb was involved with gastric antrum in 4 cases. 3. The majority of the cases had multiple erosions. There were only 2 cases of single erosion. 4. In 65 cases of varioliform erosions; 1) The diameter of the surrounding elevations varied from 3 to 20 mm with the majority (47 cases) between 6 and 10 mm. 2) In general, the surrounding elevations with sharp margin on double contrast films were also clearly demonstrated on compression films but those with faint margin were not. 3) The size of the central barium collections varied from pinpoint to 10 mm with the majority under 5 mm. The shape of the central barium collections in majority of the cases were round with a few cases of linear, triangular or star-shape. 5. In 5 cases of acute phase erosions; 1) All the 5 cases were females. 2) On double contrast radiography, all the cases showed multiple irregular depressed lesions without surrounding elevations. 3) 1 case had the history of hematemesis. 4) In 1 case, there was marked radiological improvement on follow-up study of 2 months interval. 6. In 23 cases, there were coexistent diseases with gastric mucosal erosions. These were 13 cases of duodenal bulb ulcers,7 cases of benign gastric ulcers and 3 others

  6. Alveolocapillary model system to study alveolar re-epithelialization

    Energy Technology Data Exchange (ETDEWEB)

    Willems, Coen H.M.P.; Zimmermann, Luc J.I.; Sanders, Patricia J.L.T.; Wagendorp, Margot; Kloosterboer, Nico [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands); Cohen Tervaert, Jan Willem [Division of Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht (Netherlands); Duimel, Hans J.Q.; Verheyen, Fons K.C.P. [Electron Microscopy Unit, Department of Molecular Cell Biology, Maastricht University Medical Centre, Maastricht (Netherlands); Iwaarden, J. Freek van, E-mail: f.vaniwaarden@maastrichtuniversity.nl [Department of Paediatrics, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht (Netherlands)

    2013-01-01

    In the present study an in vitro bilayer model system of the pulmonary alveolocapillary barrier was established to investigate the role of the microvascular endothelium on re-epithelialization. The model system, confluent monolayer cultures on opposing sides of a porous membrane, consisted of a human microvascular endothelial cell line (HPMEC-ST1.6R) and an alveolar type II like cell line (A549), stably expressing EGFP and mCherry, respectively. These fluorescent proteins allowed the real time assessment of the integrity of the monolayers and the automated analysis of the wound healing process after a scratch injury. The HPMECs significantly attenuated the speed of re-epithelialization, which was associated with the proximity to the A549 layer. Examination of cross-sectional transmission electron micrographs of the model system revealed protrusions through the membrane pores and close contact between the A549 cells and the HPMECs. Immunohistochemical analysis showed that these close contacts consisted of heterocellular gap-, tight- and adherens-junctions. Additional analysis, using a fluorescent probe to assess gap-junctional communication, revealed that the HPMECs and A549 cells were able to exchange the fluorophore, which could be abrogated by disrupting the gap junctions using connexin mimetic peptides. These data suggest that the pulmonary microvascular endothelium may impact the re-epithelialization process. -- Highlights: ► Model system for vital imaging and high throughput screening. ► Microvascular endothelium influences re-epithelialization. ► A549 cells form protrusions through membrane to contact HPMEC. ► A549 cells and HPMECs form heterocellular tight-, gap- and adherens-junctions.

  7. Protective Effects of Bifidobacterium on Intestinal Barrier Function in LPS-Induced Enterocyte Barrier Injury of Caco-2 Monolayers and in a Rat NEC Model.

    Science.gov (United States)

    Ling, Xiang; Linglong, Peng; Weixia, Du; Hong, Wei

    2016-01-01

    Zonulin protein is a newly discovered modulator which modulates the permeability of the intestinal epithelial barrier by disassembling intercellular tight junctions (TJ). Disruption of TJ is associated with neonatal necrotizing enterocolitis (NEC). It has been shown bifidobacterium could protect the intestinal barrier function and prophylactical administration of bifidobacterium has beneficial effects in NEC patients and animals. However, it is still unknown whether the zonulin is involved in the gut barrier dysfunction of NEC, and the protective mechanisms of bifidobacterium on intestinal barrier function are also not well understood. The present study aims to investigate the effects of bifidobacterium on intestinal barrier function, zonulin regulation, and TJ integrity both in LPS-induced enterocyte barrier injury of Caco-2 monolayers and in a rat NEC model. Our results showed bifidobacterium markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS (P zonulin release (P zonulin (P zonulin protein release and improvement of intestinal TJ integrity.

  8. Perspectives toward oral mucositis prevention from parents and health care professionals in pediatric cancer.

    Science.gov (United States)

    Ethier, Marie-Chantal; Regier, Dean A; Tomlinson, Deborah; Judd, Peter; Doyle, John; Gassas, Adam; Naqvi, Ahmed; Sung, Lillian

    2012-08-01

    The objectives of this study were: (1) to describe parents and health care professionals (HCPs) perceived importance of oral mucositis prevention in children with cancer; (2) To describe utilities and willingness-to-pay (WTP) to prevent mucositis. Respondents included parents of children receiving intensive chemotherapy for leukemia/lymphoma or undergoing stem cell transplantation and HCPs caring for children with cancer. Importance of mild and severe oral mucositis was estimated using a visual analogue scale (VAS). Mucositis-associated utilities were elicited using the time trade-off technique (TTO). WTP to avoid mucositis was obtained using contingent valuation. These techniques quantify how much time or money the participant is willing to relinquish in order to prevent mucositis. Eighty-two parents and 60 HCPs were included. Parents and HCPs believed mild mucositis to be of similar importance (median VAS 2.5 versus 3.6; P = 0.357) while parents considered severe mucositis less important than HCPs (median VAS 8.3 versus 9.0; P parent versus HCP responses were seen with TTO (mild or severe mucositis) and most parents were not willing to trade any survival time to prevent severe mucositis. Parents were willing to pay significantly more than HCPs to prevent mild mucositis (average median WTP $1,371 CAN vs. $684 CAN, P = 0.031). No differences were seen in WTP to prevent severe mucositis. Parents and HCP believe severe mucositis to be important, although it is more important to HCPs. Parents would not be willing to reduce life expectancy to eliminate mucositis.

  9. Protecting intestinal epithelial integrity by galacto-oligosaccharides: Keeping it tight

    OpenAIRE

    Akbari, P.

    2016-01-01

    The intestinal barrier serves as a first line of host defense against potentially harmful stressors from the environment ingested with food, and is primarily formed by epithelial cells connected by tight junctions. Oligosaccharides have been identified as components in milk, particularly in colostrum, that support the development of intestinal microbiota in the early phase of life and contribute to the maturation of the immune system in infants. Currently, galacto-oligosaccharides (GOS) are u...

  10. Kiwifruit, mucins, and the gut barrier.

    Science.gov (United States)

    Moughan, Paul J; Rutherfurd, Shane M; Balan, Prabhu

    2013-01-01

    Kiwifruit has long been regarded in China, where it originated from, for its health properties and particularly in relation to digestion and general gut health. There are a number of physical and chemical properties of the fruit, including its dietary fiber content, the presence of raphides, its high water holding capacity and actinidin content, that suggest that kiwifruit may be effective in influencing gut mucin production and thus enhancing the integrity of the gut barrier. The mucous layer, which comprises mucins and other materials, overlying the mucosal epithelium, is an important component of the gut barrier. The gut barrier plays a crucial role in separating the host from the often noxious external environment. The mucous layer, which covers the entire gastrointestinal tract (GIT), is the front line of innate host defense. There have been few direct studies of the effect of kiwifruit ingestion on mucin production in the GIT, and findings that are available using animal models are somewhat inconsistent. Taking results for digesta mucin content, number of goblet cells, and mucin gene expression, together, it would seem that green kiwifruit and possibly gold kiwifruit do influence gut mucin production, and the kiwifruit as part of a balanced diet may help to maintain the mucous layer and gut barrier. More corroborative experimental evidence is needed, and studies need to be undertaken in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Cultivated vaginal microbiomes alter HIV-1 infection and antiretroviral efficacy in colonized epithelial multilayer cultures.

    Science.gov (United States)

    Pyles, Richard B; Vincent, Kathleen L; Baum, Marc M; Elsom, Barry; Miller, Aaron L; Maxwell, Carrie; Eaves-Pyles, Tonyia D; Li, Guangyu; Popov, Vsevolod L; Nusbaum, Rebecca J; Ferguson, Monique R

    2014-01-01

    There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral.

  12. C-kit expression in canine mucosal melanomas.

    Science.gov (United States)

    Newman, S J; Jankovsky, J M; Rohrbach, B W; LeBlanc, A K

    2012-09-01

    The c-kit receptor is responsible for transmission of promigration signals to melanocytes; its downregulation may be involved in malignant progression of human melanocytic neoplasms. Expression of this receptor has not been examined in normal or neoplastic melanocytes from dogs. In this study, 14 benign dermal and 61 malignant mucosal melanocytic tumors were examined for c-kit (KIT) expression. Sites of the mucosal melanomas were gingiva (not further specified; n = 30), buccal gingiva (n = 6), soft palate (n = 4), hard palate (n = 5), tongue (n = 7), lip (n = 6), and conjunctiva (n = 3). Melan A was expressed in all 14 dermal melanocytomas and in 59 of 61 (96.7%) tumors from oral or conjunctival mucosa, confirming melanocytic origin. C-kit receptor expression was strong and diffuse throughout the cytoplasm in all 14 dermal melanocytomas and was identified in basilar mucosal melanocytes over submucosal neoplasms (27 of 61, 44.3%), junctional (neoplastic) melanocytes (17 of 61, 27.9%), and, less commonly, neoplastic melanocytes of the subepithelial tumors (6 of 61, 9.8%). KIT expression anywhere within the resected melanomas correlated with significantly longer survival. These results suggest that c-kit receptor expression may be altered in canine melanomas and may have potential as a prognostic indicator for mucosal melanomas.

  13. Mucosal safety of PHI-443 and stampidine as a combination microbicide to prevent genital transmission of HIV-1.

    Science.gov (United States)

    D'Cruz, Osmond J; Uckun, Fatih M

    2007-10-01

    To investigate the in vitro and in vivo mucosal safety of a nonnucleoside reverse transcriptase (RT) inhibitor (PHI-443) and a nucleoside analogue RT inhibitor (stampidine)-based anti-HIV microbicide either alone or in combination. In vitro and in vivo studies using three-dimensional vaginal epithelia integrating Langerhans cells and 16 New Zealand White rabbits, respectively. Research laboratory. Rabbits in groups of four were exposed intravaginally to a gel with and without 1% PHI-443, 1% stampidine, or 1% PHI-443 plus 1% stampidine for 14 days. Cytokine/chemokine release by three-dimensional co-cultures in the presence and absence of PHI-443 or stampidine. Histologic scoring of vaginal tissue for mucosal toxicity at 24 hours after dosing. Simultaneous evaluation of levels of 10 cytokines (granulocyte-macrophage colony-stimulating factor, interleukin-1 alpha, interleukin-13, macrophage inflammatory protein-1 beta, granulocyte colony-stimulating factor, interleukin-18, tumor necrosis factor-alpha, interleukin-6, interleukin-1 beta, and interferon-gamma) and 6 chemokines (epithelial neutrophil-activating peptide-78, interleukin-8, monocyte/macrophage chemoattractant protein-1, macrophage inflammatory protein-3 alpha, interferon-inducible protein-10, and regulated upon activation of normal T-cell expressed and secreted) in culture media by a multiplexed chemiluminescence-based immunoassay. In the rabbit model, repeated intravaginal administration of PHI-443 plus stampidine via a gel formulation at concentrations nearly 2,000 and 10,000 times higher than their respective in vitro anti-HIV IC(50) values did not result in vaginal irritation. The levels of proinflammatory cytokines/chemokines secreted by multilayered human genital epithelia integrating Langerhans cells were unaffected by prolonged exposure to PHI-443 or stampidine. The combination of PHI-443 and stampidine was noncytotoxic to vaginal epithelial cells, nonirritating to vaginal mucosa, and did not induce

  14. Human colorectal mucosal microbiota correlates with its host niche physiology revealed by endomicroscopy.

    Science.gov (United States)

    Wang, Ai-Hua; Li, Ming; Li, Chang-Qing; Kou, Guan-Jun; Zuo, Xiu-Li; Li, Yan-Qing

    2016-02-26

    The human gut microbiota plays a pivotal role in the maintenance of health, but how the microbiota interacts with the host at the colorectal mucosa is poorly understood. We proposed that confocal laser endomicroscopy (CLE) might help to untangle this relationship by providing in vivo physiological information of the mucosa. We used CLE to evaluate the in vivo physiology of human colorectal mucosa, and the mucosal microbiota was quantified using 16 s rDNA pyrosequencing. The human mucosal microbiota agglomerated to three major clusters dominated by Prevotella, Bacteroides and Lactococcus. The mucosal microbiota clusters did not significantly correlate with the disease status or biopsy sites but closely correlated with the mucosal niche physiology, which was non-invasively revealed by CLE. Inflammation tilted two subnetworks within the mucosal microbiota. Infiltration of inflammatory cells significantly correlated with multiple components in the predicted metagenome, such as the VirD2 component of the type IV secretory pathway. Our data suggest that a close correlation exists between the mucosal microbiota and the colorectal mucosal physiology, and CLE is a clinically available tool that can be used to facilitate the study of the in vivo correlation between colorectal mucosal physiology and the mucosal microbiota.

  15. Testing stem cell therapy in a rat model of inflammatory bowel disease: role of bone marrow stem cells and stem cell factor in mucosal regeneration.

    Science.gov (United States)

    Qu, Bo; Xin, Guo-Rong; Zhao, Li-Xia; Xing, Hui; Lian, Li-Ying; Jiang, Hai-Yan; Tong, Jia-Zhao; Wang, Bei-Bei; Jin, Shi-Zhu

    2014-01-01

    The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.

  16. Effect of lactobacillus acidophilus combined with iso-malto-oligosaccharide on the intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD)

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Du; Lichao, Fang; Bingbo, Chen; Hong, Wei [Third Military Medical Univ., Chongqing (China). Laboratory Animal Center

    2005-02-15

    Objective: To investigate the corrective effect of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) on the decreased intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 6 days. One group of models were left with natural recovery and three other groups were given gavage with different strengths of synbiotic for 7 days. In each group, stool specimens were taken from 6-8 rats for flora examination, then the animals sacrificed and intestinal mucus contents of SIgA determined (with RIA) on d6, d9 and d13. Results: The intestinal flora in rat models of AAD was greatly altered with marked reduction in probiotics. Also, the intestinal mucus contents of SIgA were significantly decreased. Treatment with different strengths of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) would significantly improve the condition with SIgA contents approaching normal. Conclusion: Synbiotic treatment could increase the intestinal mucosal secretion of SIgA with restoration of the mucosal immuno-barrier function in rat models with AAD. (authors)

  17. Effect of lactobacillus acidophilus combined with iso-malto-oligosaccharide on the intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD)

    International Nuclear Information System (INIS)

    Du Dan; Fang Lichao; Chen Bingbo; Wei Hong

    2005-01-01

    Objective: To investigate the corrective effect of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) on the decreased intestinal mucosal secretion of SlgA in rat models with antibiotic-associated diarrhea (AAD). Methods: Rat models of AAD were prepared with lincomycin gavage for 6 days. One group of models were left with natural recovery and three other groups were given gavage with different strengths of synbiotic for 7 days. In each group, stool specimens were taken from 6-8 rats for flora examination, then the animals sacrificed and intestinal mucus contents of SIgA determined (with RIA) on d6, d9 and d13. Results: The intestinal flora in rat models of AAD was greatly altered with marked reduction in probiotics. Also, the intestinal mucus contents of SIgA were significantly decreased. Treatment with different strengths of synbiotic (Lactobacillus acidophilus combined with iso-malto-oligosaccharide) would significantly improve the condition with SIgA contents approaching normal. Conclusion: Synbiotic treatment could increase the intestinal mucosal secretion of SIgA with restoration of the mucosal immuno-barrier function in rat models with AAD. (authors)

  18. Oral Cryotherapy for Preventing Oral Mucositis in Patients Receiving Cancer Treatment.

    Science.gov (United States)

    Riley, Philip; McCabe, Martin G; Glenny, Anne-Marie

    2016-10-01

    In patients receiving treatment for cancer, does oral cryotherapy prevent oral mucositis? Oral cryotherapy is effective for the prevention of oral mucositis in adults receiving fluorouracil-based chemotherapy for solid cancers, and for the prevention of severe oral mucositis in adults receiving high-dose melphalan-based chemotherapy before hematopoietic stem cell transplantation (HSCT).

  19. Regulation of epithelial differentiation in rat intestine by intraluminal delivery of an adenoviral vector or silencing RNA coding for Schlafen 3.

    Directory of Open Access Journals (Sweden)

    Pavlo L Kovalenko

    Full Text Available Although we stimulate enterocytic proliferation to ameliorate short gut syndrome or mucosal atrophy, less effort has been directed at enterocytic differentiation. Schlafen 3 (Slfn3 is a poorly understood protein induced during IEC-6 enterocytic differentiation. We hypothesized that exogenous manipulation of Slfn3 would regulate enterocytic differentiation in vivo. Adenoviral vector coding for Slfn3 cDNA (Ad-GFP-Slfn3 or silencing RNA for Slfn3 (siSlfn3 was introduced intraluminally into rat intestine. We assessed Slfn3, villin, sucrase-isomaltase (SI, Dpp4, and Glut2 by qRT-PCR, Western blot, and immunohistochemistry. We also studied Slfn3 and these differentiation markers in atrophic defunctionalized jejunal mucosa and the crypt-villus axis of normal jejunum. Ad-GFP-Slfn3 but not Ad-GFP increased Slfn3, villin and Dpp4 expression in human Caco-2 intestinal epithelial cells. Injecting Ad-GFP-Slfn3 into rat jejunum in vivo increased mucosal Slfn3 mRNA three days later vs. intraluminal Ad-GFP. This Slfn3 overexpression was associated with increases in all four differentiation markers. Injecting siSlfn3 into rat jejunum in vivo substantially reduced Slfn3 and all four intestinal mucosal differentiation markers three days later, as well as Dpp4 specific activity. Endogenous Slfn3 was reduced in atrophic mucosa from a blind-end Roux-en-Y anastomosis in parallel with differentiation marker expression together with AKT and p38 signaling. Slfn3 was more highly expressed in the villi than the crypts, paralleling Glut2, SI and Dpp4. Slfn3 is a key intracellular regulator of rat enterocytic differentiation. Understanding how Slfn3 works may identify targets to promote enterocytic differentiation and maintain mucosal function in vivo, facilitating enteral nutrition and improving survival in patients with mucosal atrophy or short gut syndrome.

  20. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alicia M. Barnett

    2016-05-01

    Full Text Available Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs. This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells and mucus-secreting goblet cells (HT29-MTX cells, that more closely simulate the cell proportions found in the small (90:10 and large intestine (75:25. Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER, in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  1. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium.

    Science.gov (United States)

    Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L

    2016-05-06

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  2. Pilot study of ice-ball cryotherapy for radiation-induced oral mucositis

    International Nuclear Information System (INIS)

    Ohyama, Waichiro; Ebihara, Satoshi

    1996-01-01

    Oral mucositis caused by radiotherapy is intractable and may worsen the patient's nutritional condition and interrupt treatment. To reduce the incidence and severity of oral mucositis induced by cancer therapy and promote early improvement of its symptoms, we devised cryotherapy by ice balls using Elase (fibrinolysin and deoxyribonuclease, combined). The therapeutic effect of ice-ball cryotherapy was evaluated in 10 patients with carcinoma of the oral cavity and pharynx who were undergoing radiotherapy. Cryotherapy was continued from the development of oral mucositis until its disappearance. The severity of various symptoms of mucositis were reduced by cryotherapy. Healing required 3 to 16 days (median, 7 days) after the end of radiotherapy. Radiotherapy was not interrupted in any cases. This preliminary report suggests that ice-ball cryotherapy is an effective treatment for radiation-induced oral mucositis. (author)

  3. The Mucosal Adjuvant Cholera Toxin B Instructs Non-Mucosal Dendritic Cells to Promote IgA Production Via Retinoic Acid and TGF-β

    NARCIS (Netherlands)

    A.K. Gloudemans (Anouk); M. Plantinga (Maud); M. Guilliams (Martin); M.A. Willart (Monique); A. Ozir-Fazalalikhan (Arifa); A. van der Ham (Alwin); L. Boon (Louis); N.L. Harris (Nicola); H. Hammad (Hamida); H.C. Hoogsteden (Henk); M. Yazdanbakhsh (Maria); R.W. Hendriks (Rudi); B.N.M. Lambrecht (Bart); H.H. Smits (Hermelijn)

    2013-01-01

    textabstractIt is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing

  4. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate

    Directory of Open Access Journals (Sweden)

    Ju-Ri Sim

    2018-01-01

    Full Text Available Short-chain fatty acids (SCFAs, such as acetate, butyrate, and propionate, modulate immune responses in the gut. However, the effect of SCFAs on mucosal vaccine-induced immune cell migration is poorly understood. Here, we investigated whether SCFAs modulate chemokine expression induced by the killed whole-cell oral cholera vaccine, Shanchol™, in human intestinal epithelial cells. Shanchol™ induced expression of CCL2, CCL5, CCL20, and CXCL10 at the mRNA level, but not at the protein level. Interestingly, CCL20 secretion was substantially increased by co-stimulation with Shanchol™ and butyrate, while neither acetate nor propionate showed such effect. Enhanced CCL20 secretion was associated with GPR109A activation, and histone deacetylase (HDAC inhibition. In addition, co-treatment with Shanchol™ and butyrate synergistically increased the secretion of adenosine triphosphate (ATP. Moreover, CCL20 secretion was decreased by inhibiting the extracellular ATP receptor P2X7. However, neither inflammasomes nor caspases were involved in CCL20 production. The culture supernatant of cells treated with Shanchol™ and butyrate augmented human immature dendritic cell migration. Collectively, these results suggest that butyrate enhances Shanchol™-induced CCL20 production in human intestinal epithelial cells via HDAC inhibition and ATP-P2X7 signaling by activating GPR109A. These effects potentially enhance the mucosal immune responses in the gut induced by this oral cholera vaccine.

  5. ٍEvaluating Baremoom Mouthwash Efficacy in Treatment of Chemotherapy-Induced Mucositis

    Directory of Open Access Journals (Sweden)

    MH Akhavan Karbasi

    2016-03-01

    Full Text Available Introduction: Chemotherapy-induced oral mucositis is regarded as a painful and discomforting chemotherapy complication , affecting patient’s quality of life and endurance to continue the treatment. Hence, treatment of mucositis is of great significance. The present study was conducted to evaluate the effect of Baremoom mouthwash in treatment of chemotherapy-induced mucositis . Methods: This interventional double-blinded randomized clinical trial study was performed on 40 adult patients under chemotherapy in blood and oncology department of Shahid Sadouqhi hospital. The total of 40 patients were randomly divided into two groups: an experimental baremoom group and a control placebo group each containing 20 subjects. Baremoom mouthwash (30% extract, Soren Tektoos, Mashhad and placebo mouthwash ( Sterile water with allowable additives ,Soren Tektoos, Mashhad with same apparent properties were given to the patients (3 times a day for 7 days after mucositis detection. The patients were evaluated in regard with mucositis grade (0-4 WHO and wounds extension on 1th , 3th and 7th days after the study begining. In order to statistically analyze the collected data, Freidman, Mann–Whitney, and wilcoxon W tests were applied utilizing SPSS software (ver, 17. Results: On 3rd  and 7th  days, mean degree of wound extension and mucositis were demonstrated to be significantly different between the two groups. According to Friedman test, both experimental and control groups revealed a significant difference in regard with wound extension and mucositis grade within the three time periods. Conclusion: The study findings indicated that Baremoom mouthwash was more effective in chemotherapy- induced mucositis than placebo. Hence, this agent can be recommended as an appropriate medicine in order to eliminate mucositis symtoms and decrease oral ulcers.

  6. Mucosal Immune Regulation in Early Infancy: Monitoring and Intervention

    NARCIS (Netherlands)

    J. Hol (Jeroen)

    2011-01-01

    textabstractThe mucosal immune system of infants is dependent on the maintenance of mucosal homeostasis. Homeostasis results from the interaction between the mucosa and exogenous factors such as dietar and microbial agents. Induction and maintenance of homeostasis is a highly regluated system that

  7. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells.

    Science.gov (United States)

    Van Itallie, Christina M; Tietgens, Amber Jean; Aponte, Angel; Gucek, Marjan; Cartagena-Rivera, Alexander X; Chadwick, Richard S; Anderson, James M

    2018-02-02

    Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells. © 2018. Published by The Company of Biologists Ltd.

  8. Immune Homeostasis in Epithelial Cells: Evidence and Role of Inflammasome Signaling Reviewed.

    Science.gov (United States)

    Peeters, Paul M; Wouters, Emiel F; Reynaert, Niki L

    2015-01-01

    The epithelium regulates the interaction between the noxious xenogenous, as well as the microbial environment and the immune system, not only by providing a barrier but also by expressing a number of immunoregulatory membrane receptors, and intracellular danger sensors and their downstream effectors. Amongst these are a number of inflammasome sensor subtypes, which have been initially characterized in myeloid cells and described to be activated upon assembly into multiprotein complexes by microbial and environmental triggers. This review compiles a vast amount of literature that supports a pivotal role for inflammasomes in the various epithelial barriers of the human body as essential factors maintaining immune signaling and homeostasis.

  9. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner.

    Science.gov (United States)

    Hughes, K R; Harnisch, L C; Alcon-Giner, C; Mitra, S; Wright, C J; Ketskemety, J; van Sinderen, D; Watson, A J M; Hall, L J

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi-a process termed 'cell shedding'. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. © 2017 The Authors.

  10. Visualization of probiotic-mediated Ca2+ signaling in intestinal epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Takahiro Adachi

    2016-12-01

    Full Text Available Probiotics, such as lactic acid bacteria (LAB and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs, because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60 transgenic mouse line and established 5D (x, y, z, time, and Ca2+ intravital imaging systems of lymphoid tissues including those in Peyer’s patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system, heat-killed Bacillus subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions, and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria.

  11. The identification of plant lectins with mucosal adjuvant activity

    Science.gov (United States)

    Lavelle, E C; Grant, G; Pusztai, A; Pfüller, U; O'hagan, D T

    2001-01-01

    To date, the most potent mucosal vaccine adjuvants to be identified have been bacterial toxins. The present data demonstrate that the type 2 ribosome-inactivating protein (type 2 RIP), mistletoe lectin I (ML-I) is a strong mucosal adjuvant of plant origin. A number of plant lectins were investigated as intranasal (i.n.) coadjuvants for a bystander protein, ovalbumin (OVA). As a positive control, a potent mucosal adjuvant, cholera toxin (CT), was used. Co-administration of ML-I or CT with OVA stimulated high titres of OVA-specific serum immunoglobulin G (IgG) in addition to OVA-specific IgA in mucosal secretions. CT and ML-I were also strongly immunogenic, inducing high titres of specific serum IgG and specific IgA at mucosal sites. None of the other plant lectins investigated significantly boosted the response to co-administered OVA. Immunization with phytohaemagglutinin (PHA) plus OVA elicited a lectin-specific response but did not stimulate an enhanced response to OVA compared with the antigen alone. Intranasal delivery of tomato lectin (LEA) elicited a strong lectin-specific systemic and mucosal antibody response but only weakly potentiated the response to co-delivered OVA. In contrast, administration of wheatgerm agglutinin (WGA) or Ulex europaeus lectin 1 (UEA-I) with OVA stimulated a serum IgG response to OVA while the lectin-specific responses (particularly for WGA) were relatively low. Thus, there was not a direct correlation between immunogenicity and adjuvanticity although the strongest adjuvants (CT, ML-I) were also highly immunogenic. PMID:11168640

  12. Pilot study of ice-ball cryotherapy for radiation-induced oral mucositis

    Energy Technology Data Exchange (ETDEWEB)

    Ohyama, Waichiro; Ebihara, Satoshi [National Cancer Center Hospital, Tokyo (Japan)

    1996-02-01

    Oral mucositis caused by radiotherapy is intractable and may worsen the patient`s nutritional condition and interrupt treatment. To reduce the incidence and severity of oral mucositis induced by cancer therapy and promote early improvement of its symptoms, we devised cryotherapy by ice balls using Elase (fibrinolysin and deoxyribonuclease, combined). The therapeutic effect of ice-ball cryotherapy was evaluated in 10 patients with carcinoma of the oral cavity and pharynx who were undergoing radiotherapy. Cryotherapy was continued from the development of oral mucositis until its disappearance. The severity of various symptoms of mucositis were reduced by cryotherapy. Healing required 3 to 16 days (median, 7 days) after the end of radiotherapy. Radiotherapy was not interrupted in any cases. This preliminary report suggests that ice-ball cryotherapy is an effective treatment for radiation-induced oral mucositis. (author).

  13. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  14. Primary prevention of peri-implantitis: managing peri-implant mucositis.

    Science.gov (United States)

    Jepsen, Søren; Berglundh, Tord; Genco, Robert; Aass, Anne Merete; Demirel, Korkud; Derks, Jan; Figuero, Elena; Giovannoli, Jean Louis; Goldstein, Moshe; Lambert, France; Ortiz-Vigon, Alberto; Polyzois, Ioannis; Salvi, Giovanni E; Schwarz, Frank; Serino, Giovanni; Tomasi, Cristiano; Zitzmann, Nicola U

    2015-04-01

    Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considered as a preventive measure for the onset of peri-implantitis. Therefore, the remit of this working group was to assess the prevalence of peri-implant diseases, as well as risks for peri-implant mucositis and to evaluate measures for the management of peri-implant mucositis. Discussions were informed by four systematic reviews on the current epidemiology of peri-implant diseases, on potential risks contributing to the development of peri-implant mucositis, and on the effect of patient and of professionally administered measures to manage peri-implant mucositis. This consensus report is based on the outcomes of these systematic reviews and on the expert opinion of the participants. Key findings included: (i) meta-analysis estimated a weighted mean prevalence for peri-implant mucositis of 43% (CI: 32-54%) and for peri-implantitis of 22% (CI: 14-30%); (ii) bleeding on probing is considered as key clinical measure to distinguish between peri-implant health and disease; (iii) lack of regular supportive therapy in patients with peri-implant mucositis was associated with increased risk for onset of peri-implantitis; (iv) whereas plaque accumulation has been established as aetiological factor, smoking was identified as modifiable patient-related and excess cement as local risk indicator for the development of peri-implant mucositis; (v) patient-administered mechanical plaque control (with manual or powered toothbrushes) has been shown to be an effective preventive measure; (vi) professional intervention

  15. De novo expression of sodium-glucose cotransporter SGLT2 in Bowman’s capsule coincides with replacement of parietal epithelial cell layer with proximal tubule-like epithelium

    OpenAIRE

    Tabatabai, Niloofar M.; North, Paula E.; Regner, Kevin R.; Kumar, Suresh N.; Duris, Christine B.; Blodgett, Amy B.

    2014-01-01

    In kidney nephron, parietal epithelial cells line the Bowman’s capsule and function as a permeability barrier for the glomerular filtrate. Bowman’s capsule cells with proximal tubule epithelial morphology have been found. However, the effects of tubular metaplasia in Bowman’s capsule on kidney function remain poorly understood. Sodium-glucose cotransporter 2 (SGLT2) plays a major role in reabsorption of glucose in the kidney and is expressed on brush border membrane of epithelial cells in the...

  16. Abnormalities of magnesium homeostasis in patients with chemotherapy-induced alimentary tract mucositis

    Directory of Open Access Journals (Sweden)

    Neven Baršić

    2016-03-01

    Full Text Available Purpose: Hypomagnesemia contributes to morbidity in a significant proportion of hospitalized and severely ill patients, but it could also have beneficial anticancer effects. Alimentary tract mucositis is a frequent complication of cytotoxic chemotherapy. The aim of this study was to determine frequency and severity of hypomagnesemia in patients with different grades of chemotherapy-induced alimentary tract mucositis and to assess its clinical manifestations. Methods: Multicentric observational study included 226 adult patients with alimentary mucositis treated at 3 different institutions. Patients were evaluated for severity of mucositis and the presence of hypomagnesemia, symptoms associated with hypomagnesemia, hypocalcemia, ECG changes and granulocytopenia. Subgroup analysis related to mucositis severity and presence of hypomagnesemia was performed. Results: Patients with grade 3 or 4 alimentary mucositis expectedly had more frequent and more severe granulocytopenia than patients with milder mucositis (49.6% vs. 35.4%, P = 0.043, but there were no differences in rate of hypomagnesemia (24.8% vs. 26.5%. When compared to patients with normal magnesium levels, patients with hypomagnesemia had higher rates of hypocalcemia (50.0% vs. 32.7%, P = 0.026, QTc prolongation (15.5% vs. 3.0%, P = 0.002 and granulocytopenia (77.6% vs. 39.9%, P < 0.001, while there was no difference in symptoms or other ECG features among these subgroups. Conclusions: Hypomagnesaemia is not associated with the severity of chemotherapy-induced mucositis. However, hypomagnesaemia was associated with higher rates of granulocytopenia and hypocalcemia. Our study failed to identify the link between hypomagnesaemia and chemotherapy-induced mucositis.

  17. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β.

    Directory of Open Access Journals (Sweden)

    Anouk K Gloudemans

    Full Text Available It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA, and how T cell-dependent (TD or -independent (TI pathways might be involved. Mucosal dendritic cells (DCs are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL, B cell activating factor (BAFF, Retinoic Acid (RA, TGF-β or nitric oxide (NO. We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.

  18. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β.

    Science.gov (United States)

    Gloudemans, Anouk K; Plantinga, Maud; Guilliams, Martin; Willart, Monique A; Ozir-Fazalalikhan, Arifa; van der Ham, Alwin; Boon, Louis; Harris, Nicola L; Hammad, Hamida; Hoogsteden, Henk C; Yazdanbakhsh, Maria; Hendriks, Rudi W; Lambrecht, Bart N; Smits, Hermelijn H

    2013-01-01

    It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.

  19. The role of sucralfate oral suspension in prevention of radiation induced mucositis

    Directory of Open Access Journals (Sweden)

    Hamid Emami

    2008-12-01

    Full Text Available

    • BACKGROUND: Mucositis is one of the most common complications of radiotherapy in head and neck cancers. The aim of this study was to evaluate sucralfate mouthwash in prevention of radiation induced mucositis.
    • METHODS: A clinical randomized trial performed on 52 patients with head and neck cancers in Sayyed-Al-Shohada Hospital of Isfahan University of Medical Sciences. These patients randomly assigned in 2 groups of 26 patients. Placebo and sucralfate was used for control and experimental patients respectiv ly, from the beginning of radiotherapy. Patients were visited weekly until the end of treatment. Grade of the mucositis was evaluated according to WHO grading scale.
    • RESULTS: Sucralfate significantly reduced the mean grade of mucositis in weeks one to four (with P-values of 0.02, 0.02, 0.001 and 0.004, respectively. Development of grade3 mucositis was also lower in sucralfate group (P-value = 0.0001. But, time interval between radiotherapy and appearance of mucositis was not statistically different in the two groups (P-value = 0.9
    • CONCLUSIONS: This study indicated that using oral suspension of sucralfate reduced the grade of radiation-induced mucositis, but did not prevent or delay it.
    • KEYWORDS: Mucositis, radiotherapy, sucralfate, head and neck cancers.

  20. A diet containing whey protein, glutamine, and TGFbeta modulates gut protein metabolism during chemotherapy-induced mucositis in rats.

    Science.gov (United States)

    Boukhettala, Nabile; Ibrahim, Ayman; Claeyssens, Sophie; Faure, Magali; Le Pessot, Florence; Vuichoud, Jacques; Lavoinne, Alain; Breuillé, Denis; Déchelotte, Pierre; Coëffier, Moïse

    2010-08-01

    Mucositis, a common side effect of chemotherapy, is characterized by compromised digestive function, barrier integrity and immune competence. Our aim was to evaluate the impact of a specifically designed diet Clinutren Protect (CP), which contains whey proteins, TGFbeta-rich casein, and free glutamine, on mucositis in rats. Mucositis was induced by three consecutive injections (day 0, day 1, day 2) of methotrexate (2.5 mg/kg). Rats had free access to CP or placebo diets from days -7 to 9. In the placebo diet, whey proteins and TGFbeta-rich casein were replaced by TGFbeta-free casein and glutamine by alanine. Intestinal parameters were assessed at day 3 and 9. Values, expressed as mean +/- SEM, were compared using two-way ANOVA. At day 3, villus height was markedly decreased in the placebo (296 +/- 11 microm) and CP groups (360 +/- 10 microm) compared with controls (464 +/- 27 microm), but more markedly in the placebo as compared to CP group. The intestinal damage score was also reduced in the CP compared with the placebo group. Glutathione content increased in the CP compared with the placebo group (2.2 +/- 0.2 vs. 1.7 +/- 0.2 micromol/g tissue). Gut protein metabolism was more affected in the placebo than in the CP group. The fractional synthesis rate was decreased in the placebo group (93.8 +/- 4.9%/day) compared with controls (121.5 +/- 12.1, P < 0.05), but not in the CP group (106.0 +/- 13.1). In addition, at day 9, rats exhibited improved body weight and food intake recovery in the CP compared to the placebo group. Clinutren Protect feeding reduces intestinal injury in the acute phase of methotrexate-induced mucositis in rats and improves recovery.

  1. Oral mucositis frequency in head and neck chemoradiotherapy

    International Nuclear Information System (INIS)

    Hata, Hironobu; Ota, Yojiro; Ueno, Takao; Kurihara, Kinue; Nishimura, Tetsuo; Onozawa, Yusuke; Zenda, Sadamoto

    2007-01-01

    A retrospective study was performed to determine the frequency and risk factors of oral mucositis in patients receiving radiotherapy or chemoradiotherapy for head and neck tumors. We classified all patients into three groups according to the radiation dose given in the oral cavity (Group A: 0 Gy; 73 patients, Group B: <40 Gy; 66 patients, Group C: ≥40 Gy; 110 patients). In group C, the odds ratio of oral mucositis (≥Gr.2) was 5.6 times in the concomitant chemotherapy group (62 patients) (odds ratio (OR) of 5.6; 95% confidence interval (CI): 2.1-14.9) compared with the radiotherapy (RT) only group (48 patients). In the case of concomitant chemotherapy group in Group C, the odds ratio of oral mucositis (≥Gr.2) was 17 times (OR of 17.1; 95% CI: 2.8-106.0) that in the group using 5-fluorouracil (FU) (50 patients) compared with the group that did not use it (12 patients). For patients whose accumulated radiation dose in the oral cavity was more than 40 Gy, 5-FU was found to be a significant risk factor for oral mucositis. (author)

  2. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Eric A. [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Camacho, Zenaido T. [Department of Cell Biology, Department of Natural Sciences, Western New Mexico University, Silver City, NM 88062 (United States); Hillestad, Matthew L. [Nephrology Training Program, Mayo Clinic, Rochester, MN 55902 (United States); Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J. [Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902 (United States); Mercier, George T. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Barry, Michael A., E-mail: mab@mayo.edu [Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902 (United States); Department of Immunology and Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902 (United States)

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  3. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    International Nuclear Information System (INIS)

    Weaver, Eric A.; Camacho, Zenaido T.; Hillestad, Matthew L.; Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J.; Mercier, George T.; Barry, Michael A.

    2015-01-01

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5

  4. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Directory of Open Access Journals (Sweden)

    Redzic Zoran

    2011-01-01

    Full Text Available Abstract Efficient processing of information by the central nervous system (CNS represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB, which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF barrier (BCSFB, which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC transport proteins at those two barriers and underlines

  5. The therapeutic effect of PLAG against oral mucositis in hamster and mouse model

    Directory of Open Access Journals (Sweden)

    Ha-Reum Lee

    2016-10-01

    Full Text Available Chemotherapy-induced mucositis can limit the effectiveness of cancer therapy and increase the risk of infections. However, no specific therapy for protection against mucositis is currently available. In this study, we investigated the therapeutic effect of PLAG (1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol, acetylated diglyceride in 5-fluorouracil (5-FU-induced oral mucositis animal models. Hamsters were administered 5-FU (80 mg/kg intraperitoneally on days 0, 6, and 9. The animals’ cheek pouches were then scratched equally with the tip of an 18-gauge needle on days 1, 2, and 7. PLAG was administered daily at 250 mg/kg/day. PLAG administration significantly reduced 5-FU/scratching–induced mucositis. Dramatic reversal of weight loss in PLAG-treated hamsters with mucositis was observed. Histochemical staining data also revealed newly differentiated epidermis and blood vessels in the cheek pouches of PLAG-treated hamsters, indicative of recovery. Whole blood analyses indicated that PLAG prevents 5-FU–induced excessive neutrophil transmigration to the infection site and eventually stabilizes the number of circulating neutrophils. In a mouse mucositis model, mice with 5-FU–induced disease treated with PLAG exhibited resistance to body-weight loss compared with mice that received 5-FU or 5-FU/scratching alone. PLAG also dramatically reversed mucositis-associated weight loss and inhibited mucositis-induced inflammatory responses in the tongue and serum. These data suggest that PLAG enhances recovery from 5-FU–induced oral mucositis and may therefore be a useful therapeutic agent for treating side effects of chemotherapy, such as mucositis and cachexia.

  6. Enhanced mucosal reactions in AIDS patients receiving oropharyngeal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, E.B.; Findlay, P.; Gelmann, E.; Lane, H.C.; Zabell, A.

    1987-09-01

    The oropharynx and hypopharynx are common sites of involvement in AIDS patients with mucocutaneous Kaposi's sarcoma. The radiotherapist is often asked to intervene with these patients due to problems with pain, difficulty in swallowing, or impending airway obstruction. We have noted an unexpected decrease in normal tissue tolerance of the oropharyngeal mucosa to irradiation in AIDS patients treated in our department. Data on 12 patients with AIDS and Kaposi's sarcoma receiving oropharyngeal irradiation are presented here. Doses ranged from 1000 cGy to 1800 cGy delivered in 150-300 cGy fractions. Seven of eight patients receiving doses of 1200 cGy or more developed some degree of mucositis, four of these developed mucositis severe enough to require termination of treatment. All patients in this study received some form of systemic therapy during the course of their disease, but no influence on mucosal response to irradiation was noted. Four patients received total body skin electron treatments, but no effect on degree of mucositis was seen. Presence or absence of oral candidiasis was not an obvious factor in the radiation response of the oral mucosa in these patients. T4 counts were done on 9 of the 12 patients. Although the timing of the T4 counts was quite variable, no correlation with immune status and degree of mucositis was found. The degree of mucositis seen in these patients occurred at doses much lower than expected based on normal tissue tolerances seen in other patient populations receiving head and neck irradiations. We believe that the ability of the oral mucosa to repair radiation damage is somehow altered in patients with AIDS.

  7. Enhanced mucosal reactions in AIDS patients receiving oropharyngeal irradiation

    International Nuclear Information System (INIS)

    Watkins, E.B.; Findlay, P.; Gelmann, E.; Lane, H.C.; Zabell, A.

    1987-01-01

    The oropharynx and hypopharynx are common sites of involvement in AIDS patients with mucocutaneous Kaposi's sarcoma. The radiotherapist is often asked to intervene with these patients due to problems with pain, difficulty in swallowing, or impending airway obstruction. We have noted an unexpected decrease in normal tissue tolerance of the oropharyngeal mucosa to irradiation in AIDS patients treated in our department. Data on 12 patients with AIDS and Kaposi's sarcoma receiving oropharyngeal irradiation are presented here. Doses ranged from 1000 cGy to 1800 cGy delivered in 150-300 cGy fractions. Seven of eight patients receiving doses of 1200 cGy or more developed some degree of mucositis, four of these developed mucositis severe enough to require termination of treatment. All patients in this study received some form of systemic therapy during the course of their disease, but no influence on mucosal response to irradiation was noted. Four patients received total body skin electron treatments, but no effect on degree of mucositis was seen. Presence or absence of oral candidiasis was not an obvious factor in the radiation response of the oral mucosa in these patients. T4 counts were done on 9 of the 12 patients. Although the timing of the T4 counts was quite variable, no correlation with immune status and degree of mucositis was found. The degree of mucositis seen in these patients occurred at doses much lower than expected based on normal tissue tolerances seen in other patient populations receiving head and neck irradiations. We believe that the ability of the oral mucosa to repair radiation damage is somehow altered in patients with AIDS

  8. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon

    NARCIS (Netherlands)

    Ijssennagger, Noortje; Belzer, Clara; Hooiveld, Guido J; Dekker, Jan; van Mil, Saskia W C; Müller, Michael; Kleerebezem, Michiel; van der Meer, Roelof; van Mil, SWC

    2015-01-01

    Colorectal cancer risk is associated with diets high in red meat. Heme, the pigment of red meat, induces cytotoxicity of colonic contents and elicits epithelial damage and compensatory hyperproliferation, leading to hyperplasia. Here we explore the possible causal role of the gut microbiota in

  9. Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity

    Directory of Open Access Journals (Sweden)

    Fei Yao

    2015-07-01

    Full Text Available Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET whole-genome sequencing, we analyzed 15 gastric cancers (GCs from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT. Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H+ leakage, and the fusion might contribute to invasiveness once a cell is transformed.

  10. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut.

    Science.gov (United States)

    Mantis, N J; Rol, N; Corthésy, B

    2011-11-01

    Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis.

  11. Pseudomonas aeruginosa Transmigrates at Epithelial Cell-Cell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2016-01-01

    Full Text Available To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment.

  12. Peptic ulcer pathophysiology: acid, bicarbonate, and mucosal function

    DEFF Research Database (Denmark)

    Højgaard, L; Mertz Nielsen, A; Rune, S J

    1996-01-01

    The previously accepted role of gastric acid hypersecretion in peptic ulcer disease has been modified by studies showing no correlation between acid output and clinical outcome of ulcer disease, or between ulcer recurrence rate after vagotomy and preoperative acid secretion. At the same time......, studies have been unable to demonstrate increased acidity in the duodenal bulb in patients with duodenal ulcer, and consequently more emphasis has been given to the mucosal protecting mechanisms. The existence of an active gastric and duodenal mucosal bicarbonate secretion creates a pH gradient from...... cell removal and repair regulated by epidermal growth factor. Sufficient mucosal blood flow, including a normal acid/base balance, is important for subepithelial protection. In today's model of ulcer pathogenesis, gastric acid and H. pylori work in concert as aggressive factors, with the open question...

  13. Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope.

    Science.gov (United States)

    VAN BREEMEN, V L; CLEMENTE, C D

    1955-03-01

    For the purpose of studying the hematoencephalic barrier as it is concerned with silver circulating in the blood stream, silver nitrate was vitally administered to rats in their drinking water over periods of 6 to 8 months. The cerebrum, cerebellum, medulla, area postrema, and choroid plexus were prepared for light and electron microscopy. Silver deposition was found in the perivascular spaces in the choroid plexus, area postrema, in the medulla surrounding the area postrema, and in minute quantities in the cerebrum, cerebellum, and most of the medulla. Two levels of the hematoencephalic barrier were apparently demonstrated in our investigations. The endothelial linings of the vessels in the cerebrum, cerebellum, and medulla constitute the first threshold of the hematoencephalic barrier (specifically here, blood-brain barrier). The cell membranes adjacent to the perivascular spaces form the second threshold, as follows:-the neuroglial cell membranes in the cerebrum, cerebellum, and medulla (blood-brain barrier); the membranes of the neuroglial cells in the area postrema (blood-brain barrier); and the membranes of the epithelial cells of the choroid plexus (blood-cerebrospinal fluid barrier). This study deals with silver deposition and does not infer that the penetration of ionic silver, if present in the blood stream, would necessarily be limited to the regions described. Bleb-like structures were observed to cover the epithelial cell surfaces in the choroid plexus. They may be cellular projections increasing the cell surface area or they may be secretory droplets.

  14. Glucagon-like peptide-1 as a treatment for chemotherapy-induced mucositis

    DEFF Research Database (Denmark)

    Kissow, Hannelouise; Hartmann, Bolette; Holst, Jens Juul

    2012-01-01

    : To determine whether endogenous GLP-1 contributes to the healing processes and if exogenous GLP-1 has a potential role in treating mucositis. METHODS: Mice were injected with 5-fluorouracil (5-FU) or saline to induce mucositis and were then treated with GLP-1, GLP-2, GLP-2 (3-33), exendin (9-39) or vehicle....... The mice were sacrificed 48 or 96 h after the 5-FU injections. The end points were intestinal weight, villus height, proliferation and histological scoring of mucositis severity. Rats were injected with 5-FU or saline, and after 48 h, blood was drawn and analysed for GLP-1 and GLP-2 concentration. RESULTS......: GLP-1 and GLP-2 significantly prevented the loss of mucosal mass and villus height and significantly decreased the mucositis severity score in the duodenum and jejunum 48 h after chemotherapy. The effect was equivalent. Exendin (9-39) reduced the intestinal weight 96 h after chemotherapy. The GLP-1...

  15. Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin.

    Science.gov (United States)

    Xu, Wei; Hong, Seok Jong; Zeitchek, Michael; Cooper, Garry; Jia, Shengxian; Xie, Ping; Qureshi, Hannan A; Zhong, Aimei; Porterfield, Marshall D; Galiano, Robert D; Surmeier, D James; Mustoe, Thomas A

    2015-03-01

    Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.

  16. Tight junction proteins contribute to barrier properties in human pleura.

    Science.gov (United States)

    Markov, Alexander G; Voronkova, Maria A; Volgin, George N; Yablonsky, Piotr K; Fromm, Michael; Amasheh, Salah

    2011-03-15

    The permeability of pleural mesothelium helps to control the volume and composition of the liquid lubricating pleural surfaces. Information on pleural barrier function in health and disease, however, is scarce. Tissue specimens of human pleura were mounted in Ussing chambers for measurement of transmesothelial resistance. Expression of tight junction (TJ) proteins was studied by Western blots and immune fluorescence confocal microscopy. Both visceral and parietal pleura showed barrier properties represented by transmesothelial resistance. Occludin, claudin-1, -3, -5, and -7, were detected in visceral pleura. In parietal pleura, the same TJ proteins were detected, except claudin-7. In tissues from patients with pleural inflammation these tightening claudins were decreased and in visceral pleura claudin-2, a paracellular channel former, became apparent. We report that barrier function in human pleura coincides with expression of claudins known to be key determinants of epithelial barrier properties. In inflamed tissue, claudin expression indicates a reduced barrier function. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Transcriptional profiling of primary endometrial epithelial cells following acute HIV-1 exposure reveals gene signatures related to innate immunity.

    Science.gov (United States)

    Zahoor, Muhammad Atif; Woods, Matthew William; Dizzell, Sara; Nazli, Aisha; Mueller, Kristen M; Nguyen, Philip V; Verschoor, Chris P; Kaushic, Charu

    2018-04-01

    Genital epithelial cells (GECs) line the mucosal surface of the female genital tract (FGT) and are the first cells that interface with both commensal microbiota and sexually transmitted pathogens. Despite the protective barrier formed by GECs, the FGT is a major site of HIV-1 infection. This highlights the importance of studying the interaction of HIV-1 and GECs. Using microarray analysis, we characterized the transcriptional profile of primary endometrial GECs grown in the presence or absence of physiological levels of E2 (10 -9  mol/L) or P4 (10 -7  mol/L) following acute exposure to HIV-1 for 6 hours. Acute exposure of primary endometrial GECs to HIV-1 resulted in the expression of genes related to inflammation, plasminogen activation, adhesion and diapedesis and interferon response. Interestingly, exposure to HIV-1 in the presence of E2 and P4 resulted in differential transcriptional profiles, suggesting that the response of primary endometrial GECs to HIV-1 exposure is modulated by female sex hormones. The gene expression signature of endometrial GECs indicates that the response of these cells may be key to determining host susceptibility to HIV-1 and that sex hormones modulate these interactions. This study allows us to explore possible mechanisms that explain the hormone-mediated fluctuation of HIV-1 susceptibility in women. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Dynamic 99mTc-DTPA radioaerosol lung scanning for the evaluation of alveolar-capillary barrier permeability

    International Nuclear Information System (INIS)

    Maini, C.L.; Marchetti, L.; Bonetti, M.G.; Giordano, A.; Pistelli, R.; Antonelli Incalzi, R.

    1987-01-01

    Pulmonary clearance of small droplet 99m Tc-DTPA radioaerosol was studied in 100 patients (12 normal subjects, N; 10 asymptomatic healthy smoker, FA; 31 patients with interstitial lung diseases, IP; 47 patients with chronic obstructive lung disease, BPCO). The first seven minutes of clearance were described with the function At=Ao*exp(-K*t) and the time constant K was considered representative of the 99m Tc-DTPA clearance rate and hence of the alveolar-capillary barrier permeability. Groups FA, IP and BPCO showed a significant (p 99m Tc-DTPA dynamic lung scanning is an easy, non-invasive method to assess derangements of alveolar-capillary barrier permeability secondary to epithelial damage; 2) permeability increase is a very early effect of cigarette smoke damafe to the epithelium; 3) other mechanisms of epithelial injury are present in diffuse lung disease; 4) while the clinical role of this new pathophysiological test is not yet clear, it is likely that it may become a very early marker of pulmonary epithelial damage in diffuse lung disease

  19. Trophic factors in the treatment and prevention of alimentary tract mucositis

    DEFF Research Database (Denmark)

    Rathe, Mathias; Shen, Rene L; Sangild, Per T

    2018-01-01

    PURPOSE OF REVIEW: Mucositis is a common adverse effect of cytotoxic anticancer treatment with serious implications for the quality of life, morbidity and mortality of cancers patients. Although, evidence supporting the use of certain treatments exists there is no gold standard for preventing...... clinical trials and uniform reporting of mucositis, are important elements to help establish new standard interventions that can be included into the continuously updated clinical recommendations for treatment of mucositis....

  20. Mucosal Barrier Injury Laboratory-Confirmed Bloodstream Infections (MBI-LCBI): Descriptive Analysis of Data Reported to National Healthcare Safety Network (NHSN), 2013.

    Science.gov (United States)

    Epstein, Lauren; See, Isaac; Edwards, Jonathan R; Magill, Shelley S; Thompson, Nicola D

    2016-01-01

    OBJECTIVES To determine the impact of mucosal barrier injury laboratory-confirmed bloodstream infections (MBI-LCBIs) on central-line-associated bloodstream infection (CLABSI) rates during the first year of MBI-LCBI reporting to the National Healthcare Safety Network (NHSN) DESIGN Descriptive analysis of 2013 NHSN data SETTING Selected inpatient locations in acute care hospitals METHODS A descriptive analysis of MBI-LCBI cases was performed. CLABSI rates per 1,000 central-line days were calculated with and without the inclusion of MBI-LCBIs in the subset of locations reporting ≥1 MBI-LCBI, and in all locations (regardless of MBI-LCBI reporting) to determine rate differences overall and by location type. RESULTS From 418 locations in 252 acute care hospitals reporting ≥1 MBI-LCBIs, 3,162 CLABSIs were reported; 1,415 (44.7%) met the MBI-LCBI definition. Among these locations, removing MBI-LCBI from the CLABSI rate determination produced the greatest CLABSI rate decreases in oncology (49%) and ward locations (45%). Among all locations reporting CLABSI data, including those reporting no MBI-LCBIs, removing MBI-LCBI reduced rates by 8%. Here, the greatest decrease was in oncology locations (38% decrease); decreases in other locations ranged from 1.2% to 4.2%. CONCLUSIONS An understanding of the potential impact of removing MBI-LCBIs from CLABSI data is needed to accurately interpret CLABSI trends over time and to inform changes to state and federal reporting programs. Whereas the MBI-LCBI definition may have a large impact on CLABSI rates in locations where patients with certain clinical conditions are cared for, the impact of MBI-LCBIs on overall CLABSI rates across inpatient locations appears to be more modest. Infect. Control Hosp. Epidemiol. 2015;37(1):2-7.

  1. Dual oxidase in mucosal immunity and host-microbe homeostasis.

    Science.gov (United States)

    Bae, Yun Soo; Choi, Myoung Kwon; Lee, Won-Jae

    2010-07-01

    Mucosal epithelia are in direct contact with microbes, which range from beneficial symbionts to pathogens. Accordingly, hosts must have a conflicting strategy to combat pathogens efficiently while tolerating symbionts. Recent progress has revealed that dual oxidase (DUOX) plays a key role in mucosal immunity in organisms that range from flies to humans. Information from the genetic model of Drosophila has advanced our understanding of the regulatory mechanism of DUOX and its role in mucosal immunity. Further investigations of DUOX regulation in response to symbiotic or non-symbiotic bacteria and the in vivo consequences in host physiology will give a novel insight into the microbe-controlling system of the mucosa. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Cryopreservation of Human Mucosal Leukocytes.

    Directory of Open Access Journals (Sweden)

    Sean M Hughes

    Full Text Available Understanding how leukocytes in the cervicovaginal and colorectal mucosae respond to pathogens, and how medical interventions affect these responses, is important for developing better tools to prevent HIV and other sexually transmitted infections. An effective cryopreservation protocol for these cells following their isolation will make studying them more feasible.To find an optimal cryopreservation protocol for mucosal mononuclear leukocytes, we compared cryopreservation media and procedures using human vaginal leukocytes and confirmed our results with endocervical and colorectal leukocytes. Specifically, we measured the recovery of viable vaginal T cells and macrophages after cryopreservation with different cryopreservation media and handling procedures. We found several cryopreservation media that led to recoveries above 75%. Limiting the number and volume of washes increased the fraction of cells recovered by 10-15%, possibly due to the small cell numbers in mucosal samples. We confirmed that our cryopreservation protocol also works well for both endocervical and colorectal leukocytes. Cryopreserved leukocytes had slightly increased cytokine responses to antigenic stimulation relative to the same cells tested fresh. Additionally, we tested whether it is better to cryopreserve endocervical cells on the cytobrush or in suspension.Leukocytes from cervicovaginal and colorectal tissues can be cryopreserved with good recovery of functional, viable cells using several different cryopreservation media. The number and volume of washes has an experimentally meaningful effect on the percentage of cells recovered. We provide a detailed, step-by-step protocol with best practices for cryopreservation of mucosal leukocytes.

  3. The efficacy of a steroid mixture for chemoradiotherapy-induced acute mucositis

    International Nuclear Information System (INIS)

    Tamamura, Hiroyasu; Ohoguchi, Manabu; Ichioka, Kazuhiro; Ohta, Kiyotaka; Higashi, Kotarou; Tonami, Hisao

    2005-01-01

    Radiotherapy is an important therapeutic tool for malignant tumors in the head and neck and thoracic region. However, radiotherapy has also been known to cause acute mucositis and esophagitis during the early phase of treatment, for which there is no cure to date. A mixture of mucosal protective steroids has been shown to be beneficial in patients with these symptoms receiving radiotherapy alone. The purpose of this study was to examine the efficacy of this agent to treat the mucositis that accompanies chemoradiotherapy. Moreover, the differences between the curative effects were examined retrospectively, according to the region irradiated. Radiotherapy was administered to the head and neck, and thoracic region, and the steroid mixture was prescribed for patients in the radiotherapy alone and chemoradiotherapy groups that exhibited acute radiation-induced mucositis symptoms. We then evaluated daily food consumption, total serum-protein value, serum-albumin value and body weight of the radiation-induced mucositis patients that were treated with the mixture. Moreover, we also examined the efficacy in patients undergoing irradiation of the oral cavity, and of the esophagus (which did not entail irradiation of the oral cavity). Two hundred and fourteen patients treated with the steroid mixture in this study had no treatment-related adverse events. In comparison between the radiotherapy alone and chemoradiotherapy groups, no significant differences were observed for daily food consumption. However, differences were observed for daily food consumption between the groups undergoing irradiation of the oral cavity and irradiation of the esophagus (p=0.0008). In the group experiencing irradiation of the mouth, decreased ability to swallow and digest food associated with the primary disease was also observed. Total serum-protein values, serum-albumin values and body weight exhibited a slight decrease despite the onset of radiation-induced mucositis, compared with the values

  4. Bio-physical characteristics of gastrointestinal mucosa of celiac patients: comparison with control subjects and effect of gluten free diet-

    Directory of Open Access Journals (Sweden)

    Villanacci Vincenzo

    2011-11-01

    Full Text Available Abstract Background Intestinal mucosa is leaky in celiac disease (CD, and this alteration may involve changes in hydrophobicity of the mucus surface barrier in addition to alteration of the epithelial barrier. The aims of our study were i to compare duodenal hydrophobicity as an index of mucus barrier integrity in CD patients studied before (n = 38 and during gluten- free diet (GFD, n = 68, and in control subjects (n = 90, and ii to check for regional differences of hydrophobicity in the gastro-intestinal tract. Methods Hydrophobicity was assessed by measurement of contact angle (CA (Rame Hart 100/10 goniometer generated by a drop of water placed on intestinal mucosal biopsies. Results CA (mean ± SD of distal duodenum was significantly lower in CD patients (56° ± 10° than in control subjects (69° ± 9°, p corpus > rectum > duodenum > oesophagus > ileum. Conclusions We conclude that the hydrophobicity of duodenal mucous layer is reduced in CD patients, and that the resulting decreased capacity to repel luminal contents may contribute to the increased intestinal permeability of CD. This alteration mirrors the severity of the mucosal lesions and is not completely reverted by gluten-free diet. Intestinal hydrophobicity exhibits regional differences in the human intestinal tract.

  5. Investigation of how to prevent mucositis induced by chemoradiotherapy

    International Nuclear Information System (INIS)

    Tosaka, Chihiro; Tajima, Hakuju; Inoue, Tadao

    2011-01-01

    Chemoradiotherapy for head and neck cancer is associated with a high incidence of severe oral mucositis; an adverse, painful event. Oral mucositis also causes nutritional deficiency by making oral feeding difficult. This may lead to prolongation of hospitalization due to complications caused by malnutrition. However, an effective way to prevent oral mucositis completely, remains to be found. In this study, we evaluated the occurrence of oral mucositis, and nutritional conditions such as hypoalbuminemia, reduction of body weight, and length of hospital stay (days) when the mouth was rinsed using rebamipide solution (R solution), or Poraprezinc-alginate sodium solution (P-A solution) (both considered to be effective for oral mucositis). A mouth rinsed with sodium azulene sulfonate (S solution) was used as a control. The mouth was rinsed out six times per day continuously during chemoradiotherapy. In the study, 31 patients were assigned to rinse their mouths using R solution, 11 patients using P-A solution, and 15 patients using S solution (reduction rate of body weight in 14 patients). For the evaluation, the criteria for adverse drug reactions CTCAE (v3.0) were used. Grade 1 and over, oral mucositis occurred in 48% of the R solution group, 36% of the P-A solution group, and 80% of the S solution group, indicating that the P-A solution group significantly prevented the occurrence of oral mucositis as opposed to the S solution group. A reduction in body weight was observed in 81% of the R solution group, 82% of the P-A solution group, and 79% of the S solution group, indicating a similar weight reduction rate among individual solution groups. Hypoalbuminemia equal to grade 2 or higher occurred in 3% of the R solution group, 18% of the P-A solution group, and 29% of the S solution group, indicating that the R group significantly prevented the occurrence of hypoalbuminemia compared to the S solution group. In addition, the length of hospital stays were 44±8.0 days for

  6. Absorption of iron in the aged; investigation of mucosal-uptake, mucosal-transfer and retention of a physiological dose of inorganic iron

    International Nuclear Information System (INIS)

    Marx, J.J.M.

    1976-01-01

    Iron (II) and iron (III) uptake by the mucosal cells, the retention in the body, and the mucosal-transport fraction were studied in 40 healthy people over 65 years old, in 30 young adults and in 20 patients with iron-deficiency. The study was performed with 59 Fe as a tracer and 51 Cr as an inert indicator. The radioactivity was measured with a whole body scanner 24 hours and 24 days after ingestion

  7. Recent Advances in Intestinal Stem Cells.

    Science.gov (United States)

    McCabe, Laura R; Parameswaran, Narayanan

    2017-09-01

    The intestine is a dynamic organ with rapid stem cell division generating epithelial cells that mature and apoptose in 3-5 days. Rapid turnover maintains the epithelial barrier and homeostasis. Current insights on intestinal stem cells (ISCs) and their regulation are discussed here. The Lgr5+ ISCs maintain intestinal homeostasis by dividing asymmetrically, but also divide symmetrically to extinguish or replace ISCs. Following radiation or mucosal injury, reserve BMI1+ ISCs as well as other crypt cells can de-differentiate into Lgr5+ ISCs. ISC niche cells, including Paneth, immune and myofibroblast cells secrete factors that regulate ISC proliferation. Finally, several studies indicate that the microbiome metabolites regulate ISC growth. ISC cells can be plastic and integrate a complexity of environmental/niche cues to trigger or suppress proliferation as needed.

  8. Ascorbic acid deficiency aggravates stress-induced gastric mucosal lesions in genetically scorbutic ODS rats.

    Science.gov (United States)

    Ohta, Y; Chiba, S; Imai, Y; Kamiya, Y; Arisawa, T; Kitagawa, A

    2006-12-01

    We examined whether ascorbic acid (AA) deficiency aggravates water immersion restraint stress (WIRS)-induced gastric mucosal lesions in genetically scorbutic ODS rats. ODS rats received scorbutic diet with either distilled water containing AA (1 g/l) or distilled water for 2 weeks. AA-deficient rats had 12% of gastric mucosal AA content in AA-sufficient rats. AA-deficient rats showed more severe gastric mucosal lesions than AA-sufficient rats at 1, 3 or 6 h after the onset of WIRS, although AA-deficient rats had a slight decrease in gastric mucosal AA content, while AA-sufficient rats had a large decrease in that content. AA-deficient rats had more decreased gastric mucosal nonprotein SH and vitamin E contents and increased gastric mucosal lipid peroxide content than AA-sufficient rats at 1, 3 or 6 h of WIRS. These results indicate that AA deficiency aggravates WIRS-induced gastric mucosal lesions in ODS rats by enhancing oxidative damage in the gastric mucosa.

  9. Lacrimal gland-derived IL-22 regulates IL-17-mediated ocular mucosal inflammation

    Science.gov (United States)

    Ji, Yong Woo; Mittal, Sharad K.; Hwang, Ho Sik; Chang, Eun-Ju; Lee, Joon H.; Seo, Yuri; Yeo, Areum; Noh, Hyemi; Lee, Hye Sun; Chauhan, Sunil K.; Lee, Hyung Keun

    2016-01-01

    Inflammatory damage of mucosal surface of the eye is a hallmark of dry eye disease (DED), and in severe cases can lead to significant discomfort, visual impairment, and blindness. DED is a multifactorial autoimmune disorder with a largely unknown pathogenesis. Using a cross-sectional patient study and a well-characterized murine model of DED, herein we investigated the immunoregulatory function of interleukin-22 (IL-22) in the pathogenesis of DED. We found that IL-22 levels were elevated in lacrimal fluids of DED patients and inversely correlated with severity of disease. Acinar cells of the lacrimal glands, not inflammatory immune cells, are the primary source of IL-22, which suppresses inflammation in ocular surface epithelial cells upon desiccating stress. Moreover, loss of function analyses using IL-22 knock-out mice demonstrated that IL-22 is essential for suppression of ocular surface infiltration of Th17 cells and inhibition of DED induction. Our novel findings elucidate immunoregulatory function of lacrimal gland-derived IL-22 in inhibiting IL-17-mediated ocular surface epitheliopathy in DED thus making IL-22 a new relevant therapeutic target. PMID:28051088

  10. A Review of Clinical Radioprotection and Chemoprotection for Oral Mucositis

    Directory of Open Access Journals (Sweden)

    Bryan Oronsky

    2018-06-01

    Full Text Available The first tenet of medicine, “primum non nocere” or “first, do no harm”, is not always compatible with oncological interventions e.g., chemotherapy, targeted therapy and radiation, since they commonly result in significant toxicities. One of the more frequent and serious treatment-induced toxicities is mucositis and particularly oral mucositis (OM described as inflammation, atrophy and breakdown of the mucosa or lining of the oral cavity. The sequelae of oral mucositis (OM, which include pain, odynodysphagia, dysgeusia, decreased oral intake and systemic infection, frequently require treatment delays, interruptions and discontinuations that not only negatively impact quality of life but also tumor control and survivorship. One potential strategy to reduce or prevent the development of mucositis, for which no effective therapies exist only best supportive empirical care measures, is the administration of agents referred to as radioprotectors and/or chemoprotectors, which are intended to differentially protect normal but not malignant tissue from cytotoxicity. This limited-scope review briefly summarizes the incidence, pathogenesis, symptoms and impact on patients of OM as well as the background and mechanisms of four clinical stage radioprotectors/chemoprotectors, amifostine, palifermin, GC4419 and RRx-001, with the proven or theoretical potential to minimize the development of mucositis particularly in the treatment of head and neck cancers.

  11. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression

    International Nuclear Information System (INIS)

    Pinton, Philippe; Nougayrede, Jean-Philippe; Del Rio, Juan-Carlos; Moreno, Carolina; Marin, Daniela E.; Ferrier, Laurent; Bracarense, Ana-Paula; Kolf-Clauw, Martine; Oswald, Isabelle P.

    2009-01-01

    'The gastrointestinal tract represents the first barrier against food contaminants as well as the first target for these toxicants. Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereals and causes various toxicological effects. Through consumption of contaminated cereals and cereal products, human and pigs are exposed to this mycotoxin. Using in vitro, ex vivo and in vivo approaches, we investigated the effects of DON on the intestinal epithelium. We demonstrated that, in intestinal epithelial cell lines from porcine (IPEC-1) or human (Caco-2) origin, DON decreases trans-epithelial electrical resistance (TEER) and increases in a time and dose-dependent manner the paracellular permeability to 4 kDa dextran and to pathogenic Escherichia coli across intestinal cell monolayers. In pig explants treated with DON, we also observed an increased permeability of intestinal tissue. These alterations of barrier function were associated with a specific reduction in the expression of claudins, which was also seen in vivo in the jejunum of piglets exposed to DON-contaminated feed. In conclusion, DON alters claudin expression and decreases the barrier function of the intestinal epithelium. Considering that high levels of DON may be present in food or feed, consumption of DON-contaminated food/feed may induce intestinal damage and has consequences for human and animal health.

  12. Mucosal complications of modified osteo-odonto keratoprosthesis in chronic Stevens-Johnson syndrome.

    Science.gov (United States)

    Basu, Sayan; Pillai, Vinay Sukumara; Sangwan, Virender S

    2013-11-01

    To describe clinical outcomes of complications afflicting the autologous oral mucous membrane graft after modified osteo-odonto keratoprosthesis surgery in chronic Stevens-Johnson syndrome (SJS). Prospective case series. This study included 30 eyes of 30 patients with SJS-induced dry keratinized ocular surfaces; the patients underwent various stages of this procedure between August 2009 and February 2012. Mucosal complications were classified as either necrosis or overgrowth. Mucosal necrosis was managed according to a predesigned algorithm based on timing (pre- and postimplantation) and location (central or peripheral) of necrosis. Cases with mucosal overgrowth underwent mucosal debulking and trimming. Mucosal necrosis developed in 15 (50%) eyes and overgrowth in 4 (13.3%) eyes. Preimplantation necrosis (n = 7) was initially managed conservatively, but 2 eyes required free labial-mucous membrane grafting for persistent corneal exposure. Free labial-mucous membrane grafting was performed in all cases of postimplantation necrosis (n = 10), but 8 eyes required additional tarsal pedicle flaps (n = 6, for peripheral necrosis) or through-the-lid revisions (n = 2, for central necrosis). Debulking and trimming effectively managed all cases of mucosal overgrowth, but 3 eyes required repeat procedures. At 24.1 ± 6.5 months postimplantation, the keratoprosthesis was retained in all eyes, and the probability of maintaining 20/60 or better vision was similar in eyes with or without mucosal necrosis (86 ± 8.8% vs 80 ± 10.3%). Mucosal complications, especially necrosis, occurred commonly following modified osteo-odonto keratoprosthesis surgery in dry keratinized post-SJS eyes. The algorithm-based management approach described in this study was successful in treating these complications, retaining the prosthesis and preserving useful vision. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Phototherapeutic LASEK for a persistent epithelial defect and a recurrent epithelial erosion.

    Science.gov (United States)

    Hondur, Ahmet; Bilgihan, Kamil; Hasanreisoglu, Berati

    2005-01-01

    To present two patients, one with persistent epithelial defect and one with recurrent epithelial erosion, unresponsive to conventional therapy treated with phototherapeutic keratectomy (PTK) with the laser subepithelial keratomileusis (LASEK) technique (phototherapeutic LASEK). The epithelial flap was created following 18% ethanol application for 20 seconds. A 10-microm deep ablation was performed in the central 7.0-mm zone. A contact lens was placed and the patient examined daily until epithelial closure. Upon epithelial closure, the contact lens was removed. A mild topical steroid and artificial tears were applied for 2 weeks. The epithelium healed in 4 days in both patients. Patients reported only mild pain until epithelial closure. The manifest refraction and uncorrected visual acuity remained unchanged in both eyes. No haze was noted. The first patient has remained asymptomatic without any recurrence for 12 months, and the second for 9 months. Phototherapeutic LASEK provides a therapeutic option for refractory recurrent erosions and persistent epithelial defects, with the additional benefit of being less painful and less risky for haze development than conventional PTK.

  14. Dietary N-Carbamylglutamate Supplementation Boosts Intestinal Mucosal Immunity in Escherichia coli Challenged Piglets.

    Directory of Open Access Journals (Sweden)

    Fengrui Zhang

    Full Text Available N-carbamylglutamate (NCG has been shown to enhance performance in neonatal piglets. However, few studies have demonstrated the effect of NCG on the intestinal mucosal barrier. This study was conducted to determine the effects of dietary NCG supplementation on intestinal mucosal immunity in neonatal piglets after an Escherichia coli (E. coli challenge. New-born piglets (4 d old were assigned randomly to one of four treatments (n = 7, including (I sham challenge, (II sham challenge +50 mg/kg NCG, (III E. coli challenge, and (IV E. coli challenge +50 mg/kg NCG. On d 8, pigs in the E. coli challenge groups (III and IV were orally challenged with 5 mL of E. coli K88 (10(8 CFU/mL, whereas pigs in the sham challenge groups (I and II were orally dosed with an equal volume of water. On d 13, all piglets were sacrificed, and samples were collected and examined. The results show that average daily gain in the E. coli challenged piglets (III and IV was decreased (PE.coli<0.05. However, it tended to be higher in the NCG treated piglets (II and IV. Ileum secretory IgA, as well as IFN-γ, IL-2, IL-4 and IL-10 in ileal homogenates, were increased in E. coli challenged piglets (III and IV. Similarly, ileum SIgA and IL-10 levels, and CD4(+ percentage in NCG treated piglets (II and IV were higher than no-NCG treated piglets (PNCG<0.05. However, the IL-2 level was only decreased in the piglets of E. coli challenge + NCG group (IV compared with E. coli challenge group (III (P<0.05. No change in the IL-2 level of the sham challenged piglets (III was observed. In conclusion, dietary NCG supplementation has some beneficial effects on intestinal mucosal immunity in E. coli challenged piglets, which might be associated with stimulated lymphocyte proliferation and cytokine synthesis. Our findings have an important implication that NCG may be used to reduce diarrhea in neonatal piglets.

  15. MicroRNA-122a Regulates Zonulin by Targeting EGFR in Intestinal Epithelial Dysfunction.

    Science.gov (United States)

    Zhang, Bin; Tian, Yinghai; Jiang, Ping; Jiang, Yanqiong; Li, Chao; Liu, Ting; Zhou, Rujian; Yang, Ning; Zhou, Xinke; Liu, Zhihua

    2017-01-01

    This study aimed to investigate the role of microRNA (miR)-122a in regulating zonulin during the modulation of intestinal barrier. Zonulin proteins and their target gene expression were analyzed in miR-122a-overexpressing cell lines and in the target gene of epidermal growth factor receptor (EGFR). An mmu-miR-122a intestinal epithelial conditional transgenic (miR-122a-TG) mouse model was established to investigate EGFR and zonulin expression. MiR-122a was also detected in the clinical specimens of inflammatory bowel disease. EGFR was identified as a target gene of miR-122a. The expression level of miR-122a was positively correlated with that of zonulin. The expression level of zonulin was significantly increased, whereas the expression level of EGFR was significantly decreased in the miR-122a-TG mice and in the corresponding primary epithelial culture (P zonulin by targeting EGFR, which increased the intestinal epithelial permeability in vivo and in vitro. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs

    Directory of Open Access Journals (Sweden)

    Adam J. Moeser

    2017-12-01

    Full Text Available The gastrointestinal (GI barrier serves a critical role in survival and overall health of animals and humans. Several layers of barrier defense mechanisms are provided by the epithelial, immune and enteric nervous systems. Together they act in concert to control normal gut functions (e.g., digestion, absorption, secretion, immunity, etc. whereas at the same time provide a barrier from the hostile conditions in the luminal environment. Breakdown of these critical GI functions is a central pathophysiological mechanism in the most serious GI disorders in pigs. This review will focus on the development and functional properties of the GI barrier in pigs and how common early life production stressors, such as weaning, can alter immediate and long-term barrier function and disease susceptibility. Specific stress-related pathophysiological mechanisms responsible for driving GI barrier dysfunction induced by weaning and the implications to animal health and performance will be discussed.

  17. Oral cryotherapy reduced oral mucositis in patients having cancer treatments.

    Science.gov (United States)

    Spivakovsky, Sylvia

    2016-09-01

    Data sourcesCochrane Oral Health Group Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Embase, CANCERLIT, CINAHL, the US National Institutes of Health Trials Registry and the WHO Clinical Trials Registry Platform.Study selectionRandomised controlled trials (RCTs) assessing the effects of oral cryotherapy in patients with cancer receiving treatment compared to usual care, no treatment or other interventions to prevent mucositis. The primary outcome was incidence of mucositis and its severity.Data extraction and synthesisTwo reviewers carried out study assessment and data extraction independently. Treatment effect for continuous data was calculated using mean values and standard deviations and expressed as mean difference (MD) and 95% confidence interval. Risk ratio (RR) was calculated for dichotomous data. Meta-analysis was performed.ResultsFourteen studies with 1280 participants were included. Subgroup analysis was undertaken according to the main cancer treatment type. Cryotherapy reduced the risk of developing mucositis by 39% (RR = 0.61; 95%CI, 0.52 to 0.72) on patients treated with fluorouracil (5FU). For melphalan-based treatment the risk of developing mucositis was reduced by 41% (RR =0.59; 95%CI, 0.35 to 1.01). Oral cryotherapy was shown to be safe, with very low rates of minor adverse effects, such as headaches, chills, numbness/taste disturbance and tooth pain. This appears to contribute to the high rates of compliance seen in the included studies.ConclusionsThere is confidence that oral cryotherapy leads to a large reduction in oral mucositis in adults treated with 5FU. Although there is less certainty on the size of the reduction on patients treated with melphalan, it is certain there is reduction of severe mucositis.

  18. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier

    Directory of Open Access Journals (Sweden)

    Ana eCamelo

    2014-01-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive disease of unknown etiology characterised by a dysregulated wound healing response that leads to fatal accumulation of fibroblasts and extracellular matrix in the lung, which compromises tissue architecture and lung function capacity. Injury to type II alveolar epithelial cells is thought to be the key event for the initiation of the disease, and so far both genetic factors, such as mutations in telomerase and MUC5b genes as well as environmental components, like cigarette smoking, exposure to asbestos and viral infections have been implicated as potential initiating triggers. The injured epithelium then enters a state of senescence-associated secretory phenotype whereby it produces both pro-inflammatory and pro-fibrotic factors that contribute to the wound healing process in the lung. Immune cells, like macrophages and neutrophils as well as activated myofibroblasts then perpetuate this cascade of epithelial cell apoptosis and proliferation by release of pro-fibrotic TGF-β and continuous deposition of extracellular matrix stiffens the basement membrane, altogether having a deleterious impact on epithelial cell function. In this review we describe the role of the epithelium as both a physical and immunological barrier between environment and self in the homeostatic versus diseased lung and explore the potential mechanisms of epithelial cell injury and the impact of loss of epithelial cell permeability and function on cytokine production, inflammation and myofibroblast activation in the fibrotic lung.

  19. IL-17A induces Pendrin expression and chloride-bicarbonate exchange in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kelly M Adams

    Full Text Available The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A, which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE cells treated with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4 as a potential mediator of this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic target in IL-17A-dependent lung disease.

  20. Oral cryotherapy reduces mucositis and opioid use after myeloablative therapy--a randomized controlled trial.

    Science.gov (United States)

    Svanberg, Anncarin; Birgegård, Gunnar; Ohrn, Kerstin

    2007-10-01

    Mucositis is a major complication in myeloablative therapy, which often necessitates advanced pharmacological pain treatment, including i.v. opioids. Attempts to prevent oral mucositis have included oral cryotherapy, which has been shown to reduce mucositis, but there is a lack of knowledge concerning the effect of oral cryotherapy on opioid use by reducing the mucositis for patients treated with myeloablative therapy before bone marrow transplantation (BMT). The aim of the present study was to evaluate if oral cryotherapy could delay or alleviate the development of mucositis and thereby reduce the number of days with i.v. opioids among patients who receive myeloablative therapy before BMT. Eighty patients 18 years and older, scheduled for BMT, were included consecutively and randomised to oral cryotherapy or standard oral care. A stratified randomisation was used with regard to type of transplantation. Intensity of pain, severity of mucositis and use of opioids were recorded using pain visual analogue scale (VAS) scores, mucositis index scores and medical and nursing charts. This study showed that patients receiving oral cryotherapy had less pronounced mucositis and significantly fewer days with i.v. opioids than the control group. In the autologous setting, cryotherapy patients also needed significantly lower total dose of opioids. Oral cryotherapy is an effective and well-tolerated therapy to alleviate mucositis and consequently reduce the number of days with i.v. opioids among patients treated with myeloablative therapy before BMT.