WorldWideScience

Sample records for mtr reactor

  1. MTR fuel plate qualification in OSIRIS reactor

    International Nuclear Information System (INIS)

    Sacristan, P.; Boulcourt, P.; Naury, S.; Marchard, L.; Carcreff, H.; Noirot, J.

    2005-01-01

    Qualification of new MTR fuel needs the irradiation in research reactors under representative neutronic, heat flux and thermohydraulic conditions. The experiments are performed in France in the OSIRIS reactor by irradiating MTR full size fuel plates in the IRIS device located in the reactor core. The fuel plates are easily removed from the device during the shutdown of the reactor for performing thickness measurements along the plates by means of a swelling measurement device. Beside the calculation capabilities, the experimental platform includes: the ISIS neutron mock-up for the measurement of neutron flux distribution along the plates; the γ spectrometry for the purpose of measuring the activities of the radionuclides representative of the power and the burnup and to compare with the neutronic calculation. Owing to the experience feedback, a good agreement is observed between calculation and measurement; destructive post irradiation examinations in the LECA facility (Cadarache). New irradiations with the IRIS device and at higher heat flux are under preparation for qualification of MTR fuels. (author)

  2. Flow inversion and natural convection in a MTR (Materials Testing Reactor)

    International Nuclear Information System (INIS)

    Gimenez, M.O.; Clausse, A.

    1990-01-01

    The thermohydraulic evolution of a refrigerating channel of the MTR (Materials Testing Reactors) RA-6 reactor's core, at the Bariloche Atomic Center, has been studied during the transient caused by the primary system's pump decommissioning. This transient constitutes one of the reactor's operating power boundaries due to the maximum temperature permissible in fuel plates. The problem regarding the thermohydraulic code altered for the rectangular geometry calculation characteristic of the MTR design is analyzed. (Author) [es

  3. Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Sakr, A.M.; Amin, E.H.

    2011-01-01

    Three-dimensional burn-up calculations of MTR-type research reactor were performed using different patterns of control rods , to examine their effect on power density and neutron flux distributions throughout the entire core and on the local burn-up distribution. Calculations were performed using the computer codes' package M TR P C system , using the cell calculation transport code WIMS-D4 and the core calculation diffusion code CITVAP. A depletion study was done and the effects on the reactor fuel were studied, then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Keywords: Neutronic Calculations, Burn-Up, MTR-Type Research Reactors, MTR P C Package, Empirical Formula For Fuel Burn-Up.

  4. Planning a new research reactor for AECL: The MAPLE-MTR concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-01-01

    AECL Research is assessing its needs and options for future irradiation research facilities. A planning team has been assembled to identify the irradiation requirements for AECL's research programs and compile options for satisfying the irradiation requirements. The planning team is formulating a set of criteria to evaluate the options and will recommend a plan for developing an appropriate research facility. Developing the MAPLE Materials Test Reactor (MAPLE-MTR) concept to satisfy AECL's irradiation requirements is one option under consideration by the planning team. AECL is undertaking this planning phase because the NRU reactor is 35 years old and many components are nearing the end of their design life. This reactor has been a versatile facility for proof testing CANDU components and fuel designs because the CANDU irradiation environment was simulated quite well. However, the CANDU design has matured and the irradiation requirements have changed. Future research programs will emphasize testing CANDU components near or beyond their design limits. To provide these irradiation conditions, the NRU reactor needs to be upgraded. Upgrading and refurbishing the NRU reactor is being considered, but the potentially large costs and regulatory uncertainties make this option very challenging. AECL is also developing the MAPLE-MTR concept as a potential replacement for the NRU reactor. The MAPLE-MTR concept starts from the recent MAPLE-X10 design and licensing experience and adapts this technology to satisfy the primary irradiation requirements of AECL's research programs. This approach should enable AECL to minimize the need for major advances in nuclear technology (e.g., fuel design, heat transfer). The preliminary considerations for developing the MAPLE-MTR concept are presented in this report. A summary of AECL's research programs is presented along with their irradiation requirements. This is followed by a description of safety criteria that need to be taken into

  5. A lumped parameter core dynamics model for MTR type research reactors under natural convection regime

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Zaferanlouei, Salman

    2013-01-01

    Highlights: ► A model is presented to simulate the reactivity insertion transient in MTR reactors. ► Transient dynamics of IAEA 10 MW MTR type research reactor are evaluated. ► Maximum unprotected reactivity insertion for safe condition is calculated. ► The model predictions are validated with corresponding results in the literature. - Abstract: On the basis of lumped parameter modeling of both the kinetic and thermal–hydraulic effects, a reasonably accurate simplified model has been developed to predict the dynamic response of MTR reactors following to an unprotected reactivity insertion under natural convection regime. By this model the reactor transient behavior at a given initial steady-state can be solved by a set of ordinary differential equations. The model predictions have an acceptable consent with corresponding results of reactivity insertion transients analyzed in the literature. The inherent safety characteristics of MTR research reactors utilizing natural convection is clearly demonstrated by the expanded model. The safety margin of reactor operating is selected ONB condition and thereby the proposed model determines that any slight increase in the value of $0.73 for inserted reactivity will cause the maximum cladding surface temperature to exceed the ONB condition

  6. MTR loop at the MPR-GA. Siwabessy reactor of Serpong Indonesia for testing of LEU fuel

    International Nuclear Information System (INIS)

    Arbie, B.; Sunaryadi, D.; Supadi, S.

    1991-01-01

    The main objective of the MTR-Loop is for testing the specimens of MTR fuel element uprated conditions with respect to the normal conditions of the reactor fuel elements. It is intended to verify the suitability of the fuel elements for operation in a research reactor under preset temperature and pressure conditions. The most important part of the MTR loop is the test section. The fuel elements to be tested are positioned in the test section. For heat removal there is a cooling water flowing through the test section. On this paper the description of the MTR-Loop is described. Installation of the MTR-Loop will be performed in the middle of 1990. In order to facilitate the investigation of fuel behaviour and performance of the new fuel elements the supporting facilities are also already available in the RSG-GAS. (orig.)

  7. Effect of core configuration on the burnup calculations of MTR research reactors

    International Nuclear Information System (INIS)

    Hussein, H.M.; Amin, E.H.; Sakr, A.M.

    2014-01-01

    Highlights: • 3D burn-up calculations of MTR-type research reactor were performed. Examination of the effect of control rod pattern on power density and neutron flux distributions is presented. • The calculations are performed using the MTR P C package and the programs (WIMS and CITVAP). • An empirical formula was generated for every fuel element type, to correlate irradiation to burn-up. - Abstract: In the present paper, three-dimensional burn-up calculations were performed using different patterns of control rods, in order to examine their effect on power density and neutron flux distributions through out the entire core and hence on the local burn-up distribution. These different cores burn-up calculations are carried out for an operating cycle equivalent to 15 Full Power Days (FPDs), with a power rating of 22 MW. Calculations were performed using an example of a typical research reactor of MTR-type using the internationally known computer codes’ package “MTR P C system”, using the cell calculation transport code WIMS-D4 with 12 energy groups and the core calculation diffusion code CITVAP with 5 energy groups. A depletion study was done and the effects on the research reactor fuel (U-235) were performed. The burn-up percentage (B.U.%) curves for every fuel element type were drawn versus irradiation (MWD/TE). Then an empirical formula was generated for every fuel element type, to correlate irradiation to burn-up percentage. Charts of power density and neutron flux distribution for each core were plotted at different sections of each fuel element of the reactor core. Then a complete discussion and analysis of these curves are performed with comparison between the different core configurations, illustrating the effect of insertion or extraction of either of the four control rods directly on the neutron flux and consequently on the power distribution and burn-up. A detailed study of fuel burn-up gives detailed insight on the different B.U.% calculations

  8. New options to fuel plate for MTR reactor

    International Nuclear Information System (INIS)

    Macedo, C.R.

    1988-01-01

    The main datas of fuel elements and the new materials for good performance of the MTR reactor are described. A study to verify the possibility of introduction a new element on the alloy is presented. After verification the stages of nucleus fabrication with dispersion cermets of uranium oxide is gave a special emphasis to cermet fabrication of uranium-aluminium alloys. (C.G.C.) [pt

  9. The use of experimental data in an MTR-type nuclear reactor safety analysis

    Science.gov (United States)

    Day, Simon E.

    Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type ( i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core.

  10. The use of experimental data in an MTR-type nuclear reactor safety analysis

    International Nuclear Information System (INIS)

    Day, S.E.

    2006-01-01

    Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type (i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core. (author)

  11. The use of experimental data in an MTR-type nuclear reactor safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Day, S.E

    2006-07-01

    Reactivity initiated accidents (RIAs) are a category of events required for research reactor safety analysis. A subset of this is unprotected RIAs in which mechanical systems or human intervention are not credited in the response of the system. Light-water cooled and moderated MTR-type (i.e., aluminum-clad uranium plate fuel) reactors are self-limiting up to some reactivity insertion limit beyond which fuel damage occurs. This characteristic was studied in the Borax and Spert reactor tests of the 1950s and 1960s in the USA. This thesis considers the use of this experimental data in generic MTR-type reactor safety analysis. The approach presented herein is based on fundamental phenomenological understanding and uses correlations in the reactor test data with suitable account taken for differences in important system parameters. Specifically, a semi-empirical approach is used to quantify the relationship between the power, energy and temperature rise response of the system as well as parametric dependencies on void coefficient and the degree of subcooling. Secondary effects including the dependence on coolant flow are also examined. A rigorous curve fitting approach and error assessment is used to quantify the trends in the experimental data. In addition to the initial power burst stage of an unprotected transient, the longer term stability of the system is considered with a stylized treatment of characteristic power/temperature oscillations (chugging). A bridge from the HEU-based experimental data to the LEU fuel cycle is assessed and outlined based on existing simulation results presented in the literature. A cell-model based parametric study is included. The results are used to construct a practical safety analysis methodology for determining reactivity insertion safety limits for a light-water moderated and cooled MTR-type core. (author)

  12. Neutronic design of a 22 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.; Soleman, I.; Ghazi, N.

    2008-01-01

    The neutronic design calculations of a 22 MW MTR type nuclear research reactor are conducted in this project. This reactor type is selected by the Arab Atomic Energy Commission in a cooperated project. The design calculations are conducted in two methods: The deterministic method, solving the neutron transport and diffusion equations using the WIMSD4 and the CITATION codes, and the probabilistic method using the MCNP code. Good agreements are noticed between the results of the multiplication factor and the neutron flux distribution which prove the accuracy of our models using the two methods. (authors)

  13. Neutronic design of a 22 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.; Soleman, I.; Ghazi, N.

    2006-12-01

    The neutronic design calculations of a 22 MW MTR type nuclear research reactor are conducted in this project. This reactor type is selected by the Arab Atomic Energy Commission in a cooperated project. The design calculations are conducted in two methods: The deterministic method, solving the neutron transport and diffusion equations using the WIMSD4 and the CITATION codes, and the probabilistic method using the MCNP code. Good agreements are noticed between the results of the multiplication factor and the neutron flux distribution which prove the accuracy of our models using the two methods. (author)

  14. Final disposition of MTR fuel

    International Nuclear Information System (INIS)

    Jonnson, Erik B.

    1996-01-01

    The final disposition of power reactor fuel has been investigated for a long time and some promising solutions to the problem have been shown. The research reactor fuels are normally not compatible with the zirkonium clad power reactor fuel and can thus not rely on the same disposal methods. The MTR fuels are typically Al-clad UAl x or U 3 Si 2 , HEU resp. LEU with essentially higher remaining enrichment than the corresponding power reactor fuel after full utilization of the uranium. The problems arising when evaluating the conditions at the final repository are the high corrosion rate of aluminum and uranium metal and the risk for secondary criticality due to the high content on fissionable material in the fully burnt MTR fuel. The newly adopted US policy to take back Foreign Research Reactor Spent Fuel of US origin for a period of ten years have given the research reactor society a reasonable time to evaluate different possibilities to solve the back end of the fuel cycle. The problem is, however, complicated and requires a solid engagement from the research reactor community. The task would be a suitable continuation of the RERTR program as it involves both the development of new fuel types and collecting data for the safe long-term disposal of the spent MTR fuel. (author)

  15. Early detection of coolant boiling in research reactors with MTR-type fuel

    International Nuclear Information System (INIS)

    Kozma, R.; Turkcan, E.; Verhoef, J.P.

    1992-10-01

    A reactor core monitoring system having the function of early detection of boiling in the coolant channels of research reactors with MTR-type fuel is introduced. The system is based on the on-line analysis of signals of various ex-core and in-core neutron detectors. Early detection of coolant boiling cannot be accomplished by the evaluation of the DC components of these detectors in a number of practically important cases of boiling anomaly. It is shown that the noise component of the available neutron detector signals can be used for the detection of boiling in these cases. Experiments have been carried out at a boiling setup in the research reactor HOR of the Interfaculty Reactor Institute, Technical University of Delft, The Netherlands. (author). 8 refs., 11 figs

  16. Analysis of fuel management pattern of research reactor core of the MTR type design

    International Nuclear Information System (INIS)

    Lily Suparlina; Tukiran Surbakti

    2014-01-01

    Research reactor core design needs neutronics parameter calculation use computer codes. Research reactor MTR type is very interested because can be used as research and also a radioisotope production. The research reactor in Indonesia right now is already 25 years old. Therefore, it is needed to design a new research reactor as a compact core. Recent research reactor core is not enough to meet criteria acceptance in the UCD which already determined namely thermal neutron flux in the core is 1.0x10 15 n/cm 2 s. so that it is necessary to be redesign the alternative core design. The new research reactor design is a MTR type with 5x5 configuration core, uses U9Mo-Al fuel, 70 cm of high and uses two certainly fuel management pattern. The aim of this research is to achieve neutron flux in the core to meet the criteria acceptance in the UCD. Calculation is done by using WIMSD-B, Batan-FUEL and Batan-3DIFF codes. The neutronic parameters to be achieved by this calculation are the power level of 50 MW thermal and core cycle of 20 days. The neutronics parameter calculation is done for new U-9Mo-Al fuel with variation of densities.The result of calculation showed that the fresh core with 5x5 configuration, 360 gram, 390 gram and 450 gram of fuel loadings have meet safety margin and acceptance criteria in the UCD at the thermal neutron flux is more then 1.0 x 10 15 n/cm 2 s. But for equilibrium core is only the 450 gram of loading meet the acceptance criteria. (author)

  17. Final qualification of an industrial wide range neutron instrumentation in the Osiris MTR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Normand, S. [CEA, LIST, Laboratoire Capteur et Architectures Electroniques, F-91191 Gif Sur Yvette (France); Pasdeloup, P. [AREVA TA, Controle Commande and Mesures, F-13762 Les Milles (France); Lescop, B. [CEA, INSTN, UEIN, F-91191 Gif Sur Yvette (France)

    2009-07-01

    This work deals with the final qualification of the IRINA in-core neutron flux measurement system in the MTR Osiris reactor. A specific irradiation device has been set up to validate the last changes in the complete system (electronic, transmitting cable and monitor). Experimental results show the IRINA measurement system meet entirely the in-core reactor conditions requirements: a thermal neutron flux from 10{sup 7} n.cm{sup -2}.s{sup -1} up to 10{sup 14} n.cm{sup -2}.s{sup -1} and a temperature of 300 C degrees during a minimum operating time of 1000 hours. (authors)

  18. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  19. MTR (Materials Testing Reactors) cores fuel management. Application of a low enrichment reactor for the equilibrium and transitory core calculation

    International Nuclear Information System (INIS)

    Relloso, J.M.

    1990-01-01

    This work describes a methodology to define the equilibrium core and a MTR (Materials Testing Reactors) type reactor's fuel management upon multiple boundary conditions, such as: end cycle and permitted maximum reactivities, burn-up extraction and maximun number of movements by rechange. The methodology proposed allows to determine the best options through conceptual relations, prior to a detailed calculation with the core code, reducing the test number with these codes and minimizing in this way CPU cost. The way to better systematized search of transient cores from the first one to the equilibrium one is presented. (Author) [es

  20. A model development for a thermohydraulic calculation material convection of MTR (Materials Testing Reactors)

    International Nuclear Information System (INIS)

    Abbate, P.

    1990-01-01

    The CONVEC program developed for the thermohydraulic calculation under a natural convection regime for MTR type reactors is presented. The program is based on a stationary, one dimensional model of finite differences that allow to calculate the temperatures of cooler, cladding and fuel as well as the flow for a power level specified by the user. This model has been satisfactorily validated by a water cooling (liquid phase) and air system. (Author) [es

  1. Reactivity worth of the thermal column of a MTR type swimming pool research reactor using low enriched uranium fuel

    International Nuclear Information System (INIS)

    Ali Khan, L.; Ahmad, N.

    2002-01-01

    The reactivity worth of the thermal column of a typical MTR type swimming pool research reactor using low enriched uranium fuel has been determined by modeling the core using standard computer codes. It was also measured experimentally by operating the reactor in the stall and open ends. The calculated value of the reactivity worth of the thermal column is about 14% greater than the experimentally determined value

  2. Sensitivity analysis of reflector types and impurities in 10 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2007-01-01

    The 2-D and 3-D neutronics models for 10 MW nuclear research reactor of MTR type have been developed and presented in this paper. Our results agree very well with the results of seven countries mentioned in the IAEA-TECDOC-233. To study the effect of reflector types on the reactor effective multiplication factor, five types of reflectors such as pure beryllium, beryllium, heavy water, carbon and water are selected for this study. The pure beryllium is found to be the most efficient reflector in this group. The effect of the most important impurities, which exist on the beryllium reflector such as iron, silicon and aluminium on the reactor multiplication factor, have been analyzed as well. It is found that the iron impurity affects the reactor multiplication factor the most compared to silicon and aluminium impurities. (author)

  3. Sensitivity analysis of reflector types and impurities in a 10 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2008-01-01

    The 2-D and 3-D neutronics models for 10 MW nuclear research reactor of MTR type have been developed and presented in this paper. Our results agree very well with the results of seven countries mentioned in the IAEA-TECDOC-233. To study the effect of reflector types on the reactor effective multiplication factor, five types of reflectors such as pure beryllium, beryllium, heavy water, carbon and water are selected for this study. The pure beryllium is found to be the most efficient reflector in this group. The effect of the most important impurities, which exist on the beryllium reflector such as iron, silicon and aluminium on the reactor multiplication factor, have been analyzed as well. It is found that the iron impurity affects the reactor multiplication factor the most compared to silicon and aluminium impurities. (author)

  4. Establishing a LEU MTR fuel manufacturing facility in South Africa

    International Nuclear Information System (INIS)

    Jamie, R.W.; Kocher, A.

    2010-01-01

    The South African MTR Fuel Manufacturing Facility was established in the 1970's to supply SAFARI-1 with Fuel Elements and Control Rods. South African capability was developed in parallel with the uranium enrichment program to meet the needs of the Reactor. Further to the July 2005 decision by the South African Governmnent to convert both SAFARI-1 and the Fuel Plant to LEU, the SAFARI-1 phase has been successfully completed and Necsa has commenced with the conversion of the MTR Fuel Manufacturing Facility. In order to establish, validate and qualify the facility, Necsa has entered into a co-operation and technology transfer agreement with AREVA CERCA, the French manufacturer of Research Reactor fuel elements. Past experiences, conversion challenges and the status of the MTR Fuel Facility Project are discussed. On-going co-operation with AREVA CERCA to implement the local manufacture of LEU fuel is explained and elaborated on. (author)

  5. A simple gamma spectrometry method for evaluating the burnup of MTR-type HEU fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Makmal, T. [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel); Nuclear Physics and Engineering Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Aviv, O. [Radiation Safety Division, Soreq Nuclear Research Center, Yavne 81800 (Israel); Gilad, E., E-mail: gilade@bgu.ac.il [The Unit of Nuclear Engineering, Ben-Gurion University of The Negev, Beer-Sheva 84105 (Israel)

    2016-10-21

    A simple method for the evaluation of the burnup of a materials testing reactor (MTR) fuel element by gamma spectrometry is presented. The method was applied to a highly enriched uranium MTR nuclear fuel element that was irradiated in a 5 MW pool-type research reactor for a total period of 34 years. The experimental approach is based on in-situ measurements of the MTR fuel element in the reactor pool by a portable high-purity germanium detector located in a gamma cell. To corroborate the method, analytical calculations (based on the irradiation history of the fuel element) and computer simulations using a dedicated fuel cycle burnup code ORIGEN2 were performed. The burnup of the MTR fuel element was found to be 52.4±8.8%, which is in good agreement with the analytical calculations and the computer simulations. The method presented here is suitable for research reactors with either a regular or an irregular irradiation regime and for reactors with limited infrastructure and/or resources. In addition, its simplicity and the enhanced safety it confers may render this method suitable for IAEA inspectors in fuel element burnup assessments during on-site inspections. - Highlights: • Simple, inexpensive, safe and flexible experimental setup that can be quickly deployed. • Experimental results are thoroughly corroborated against ORIGEN2 burnup code. • Experimental uncertainty of 9% and 5% deviation between measurements and simulations. • Very high burnup MTR fuel element is examined, with 60% depletion of {sup 235}U. • Impact of highly irregular irradiation regime on burnup evaluation is studied.

  6. Methodology for thermal-hydraulics analysis of pool type MTR fuel research reactors

    International Nuclear Information System (INIS)

    Umbehaun, Pedro Ernesto

    2000-01-01

    This work presents a methodology developed for thermal-hydraulic analysis of pool type MTR fuel research reactors. For this methodology a computational program, FLOW, and a model, MTRCR-IEAR1 were developed. FLOW calculates the cooling flow distribution in the fuel elements, control elements, irradiators, and through the channels formed among the fuel elements and among the irradiators and reflectors. This computer program was validated against experimental data for the IEA-R1 research reactor core at IPEN-CNEN/SP. MTRCR-IEAR1 is a model based on the commercial program Engineering Equation Solver (EES). Besides the thermal-hydraulic analyses of the core in steady state accomplished by traditional computational programs like COBRA-3C/RERTR and PARET, this model allows to analyze parallel channels with different cooling flow and/or geometry. Uncertainty factors of the variables from neutronic and thermalhydraulic calculation and also from the fabrication of the fuel element are introduced in the model. For steady state analyses MTRCR-IEAR1 showed good agreement with the results of COBRA-3C/RERTR and PARET. The developed methodology was used for the calculation of the cooling flow distribution and the thermal-hydraulic analysis of a typical configuration of the IEA-R1 research reactor core. (author)

  7. Neutronic calculations in core conversion of the IAN-R1 research reactor from MTR HEU to TRIGA LEU fuel

    International Nuclear Information System (INIS)

    Sarta Fuentes, Jose A.; Castiblanco, L.A.

    2003-01-01

    With cooperation of the International Atomic Energy Agency (IAEA), neutronic calculations were carried out for conversion of the Ian-R1 Reactor from MTR-HEU fuel to TRIGA-LEU fuel. In order to establish a staff for neutronic calculation at the Instituto de Cancan's Nucleares y Energia s Alternatives (INEA) a program was established. This program included training, acquisition of hardware, software and calculation for the core with MTR-HEU fuel , enriched nominally to 93% and calculation for several arrangements with the TRIGA-LEU fuel, enriched to 19.7%. The results were verified and compared with several groups of calculation at the Instituto Nacional de Investigaciones Nucleares (ININ) in Mexico, and General Atomics (GA) in United States. As a result of this program, several technical reports have been wrote. (author)

  8. Prediction, analysis and solution of flow inversion phenomenon in a typical MTR reactor with upward core cooling

    International Nuclear Information System (INIS)

    El-Morshedy, Salah El-Din

    2010-01-01

    Research reactors of power greater than 20 MW are usually designed to be cooled with upward coolant flow direction inside the reactor core. This is mainly to prevent flow inversion problems following a pump coast down. However, in some designs and under certain operating conditions, flow inversion phenomenon is predicted. In the present work, the best-estimate Material Testing Reactors Thermal-Hydraulic Analysis program (MTRTHA) is used to simulate a typical MTR reactor behavior with upward cooling under a hypothetical case of loss of off-site power. The flow inversion phenomenon is predicted under certain decay heat and/or pool temperature values below the design values. The reactor simulation under loss of off-site power is performed for two cases namely; two-flap valves open and one flap-valve fails to open. The model results for the flow inversion phenomenon prediction is analyzed and a solution of the problem is suggested. (orig.)

  9. Monte Carlo simulation of irradiation of MTR fuel plates in the BR2 reactor using a full-scale 3-d model with inclined channels

    International Nuclear Information System (INIS)

    Kuzminov, V. V; Koonen, E.; Ponsard, B.

    2002-01-01

    A three-dimensional full-scale Monte Carlo model of the BR2 reactor has been developed for simulation of irradiation conditions of materials and fuel loaded in various irradiation devices. This new reactor model includes a detailed geometrical description of the inclined reactor channels, the irradiation devices loaded in these channels including the materials to be tested/loaded in these devices, the burn-up of the BR2 fuel elements and the poisoning of the beryllium matrix. Recently a benchmark irradiation of new irradiation device for testing and qualification of MTR fuel plates has been performed. For this purpose the detailed irradiation conditions of fuel plates had to be predetermined. Monte Carlo calculations of neutron fluxes and heat load distributions in irradiated MTR fuel plates were performed taking into account the contents of all loaded experimental devices in the reactor channels. A comparison of the calculated and measured values of neutron fluxes and of heat loads in the BR2 reactor is presented in this paper. The comparison is part of the validation process of the new reactor model. It also serves to establish the capability to conduct a fuel plate irradiation program under requested and well- known irradiation conditions. (author)

  10. Conceptual design of next generation MTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Hiroshi; Yamaura, Takayuki; Naka, Michihiro; Kawamata, Kazuo; Izumo, Hironobu; Hori, Naohiko; Nagao, Yoshiharu; Kusunoki, Tsuyoshi; Kaminaga, Masanori; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Mine, M [Hitachi-GE Nuclear Energy, Ltd., Hitachi, Ibaraki (Japan); Yamazaki, S [Kawasaki Heavy Industries, Ltd., Kobe, Hyogo (Japan); Ishikawa, S [NGK Insulators, Ltd., Nagoya, Aichi (Japan); Miura, K [Sukegawa Electric Co., Ltd., Takahagi, Ibaraki (Japan); Nakashima, S [Fuji Electric Co., Ltd., Tokyo (Japan); Yamaguchi, K [Chiyoda Technol Corp., Tokyo (Japan)

    2012-03-15

    Conceptual design of the high-performance and low-cost next generation materials testing reactor (MTR) which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  11. The effect of code user and boundary conditions on RELAP calculations of MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The safety evaluation of nuclear power and re search reactors is a very important step before their construction and during their operation. This evaluation based on the best estimate calculations requires qualified codes qualified users, and qualified nodalizations. The effect of code users on the RELAP5 results during the analysis of loss of flow transient in MTR research reactors is presented in this pa per. To clarify this effect, two nodalizations for research reactor different in the simulation of the open water surface boundary conditions of the reactor pool have been used. Very different results are obtained with few choices for code users. The core natural circulation flow with the be ginning of core boiling doesn't stop but in creases. The in creasing in the natural circulation flow shifts out the boiling from the core and the clad temperature decreases be low the local saturation temperature.

  12. Performance of the MTR core with MOX fuel using the MCNP4C2 code

    International Nuclear Information System (INIS)

    Shaaban, Ismail; Albarhoum, Mohamad

    2016-01-01

    The MCNP4C2 code was used to simulate the MTR-22 MW research reactor and perform the neutronic analysis for a new fuel namely: a MOX (U 3 O 8 &PuO 2 ) fuel dispersed in an Al matrix for One Neutronic Trap (ONT) and Three Neutronic Traps (TNTs) in its core. Its new characteristics were compared to its original characteristics based on the U 3 O 8 -Al fuel. Experimental data for the neutronic parameters including criticality relative to the MTR-22 MW reactor for the original U 3 O 8 -Al fuel at nominal power were used to validate the calculated values and were found acceptable. The achieved results seem to confirm that the use of MOX fuel in the MTR-22 MW will not degrade the safe operational conditions of the reactor. In addition, the use of MOX fuel in the MTR-22 MW core leads to reduce the uranium fuel enrichment with 235 U and the amount of loaded 235 U in the core by about 34.84% and 15.21% for the ONT and TNTs cases, respectively. - Highlights: • Re-cycling of the ETRR-2 reactor by MOX fuel. • Increase the number of the neutronic traps from one neutronic trap to three neutronic trap. • Calculation of the criticality safety and neutronic parameters of the ETRR-2 reactor for the U 3 O 8 -Al original fuel and the MOX fuel.

  13. JHR. A high performance MTR under construction for a sustainable nuclear energy

    International Nuclear Information System (INIS)

    Iracane, Daniel; Cordier, Pierre-Yves

    2009-01-01

    The Access to an up-to-date Material Testing Reactor (MTR) is essential to support a sustainable nuclear energy, meeting industry and public needs, and keeping a high level of scientific expertise. This includes services to existing and coming reactor technologies for major stakes such as safety and competitiveness, lifetime management, operation optimization, development of innovative structural material and fuel required for future systems (innovative Gen III, Gen IV, fusion...), etc. The JHR copes with this context. Design phase has been completed by the end of 2005 and JHR is now under construction. Start of operation is scheduled in 2014. As a new MTR taking benefit of a large available worldwide experience, JHR offers new major experimental capability that will be presented. JHR will be operated within an international users' consortium that will guarantee effective and cost-effective operation. This innovative way to operate a MTR, as a user-facility for the benefit of industry and public bodies, will be presented. (author)

  14. The Jules Horowitz Reactor (JHR), a European Material Testing Reactor (MTR), with extended experimental capabilities

    International Nuclear Information System (INIS)

    Ballagny, A.; Bergamaschi, Y.; Bouilloux, Y.; Bravo, X.; Guigon, B.; Rommens, M.; Tremodeux, P.

    2003-01-01

    The Jules Horowitz Reactor (JHR) is the European MTR (Material Testing Reactor) designed to provide, after 2010, the necessary knowledge for keeping the existing power plants in operation and to design innovative reactors types with new objectives such as: minimizing the radioactive waste production, taking into account additional safety requirements, preventing risks of nuclear proliferation. To achieve such an ambitious objective. The JHR is designed with a high flexibility in order to satisfy the current demand from European industry, research and to be able to accommodate future requirements. The JHR will offer a wide range of performances and services in gathering, in a single site at Cadarache, all the necessary functionalities and facilities for an effective production of results: e.g. fuel fabrication laboratories, preparation of the instrumented devices, interpretation of the experiments, modelling. The JHR must rely on a top level scientific environment based on experts teams from CEA and EC and local universities. With a thermal flux of 7,4.10 14 ncm -2 s -1 and a fast flux of 6,4.10 14 ncm -2 s -1 , it is possible to carry out irradiation experiments on materials and fuels whatever the reactor type considered. It will also be possible to carry out locally, fast neutron irradiation to achieve damage effect up to 25 dpa/year. (dpa = deplacement per atom). The study of the fuels behavior under accidental conditions, from analytical experiments, on a limited amount of irradiated fuel, is a major objective of the project. These oriented safety tests are possible by taking into account specific requirements in the design of the facility such as the tightness level of the containment building, the addition of an alpha hot cell and a laboratory for on line fission products measurement. (author)

  15. Irradiation of novel MTR fuel plates in BR2

    International Nuclear Information System (INIS)

    Verboomen, B.; Aoust, Th.; Beeckmans De Westmeerbeeck, A.; De Raedt, Ch.

    2000-01-01

    Since the end of 1999, novel MTR fuel plates with very high-density meat are being irradiated in BR2. The purpose of the irradiation is to investigate the behaviour of these fuel plates under very severe reactor operation conditions. The novel fuel plates are inserted in two standard six-tube BR2 fuel elements in the locations normally occupied by the standard outer fuel plates. The irradiation in BR2 was prepared by carrying out detailed neutron Monte Carlo calculations of the whole BR2 core containing the two experimental fuel elements for various positions in the reactor and for various azimuthal orientations of the fuel elements. Comparing the thus determined fission density levels and azimuthal profiles in the new MTR fuel plates irradiated in the various channels allowed the experimenters to choose the most appropriate BR2 channel and the most appropriate fuel element orientation. (author)

  16. MTR and PWR/PHWR in-pile loop safety in integration with the operation of multipurpose reactor - GAS

    International Nuclear Information System (INIS)

    Suharno; Aji, Bintoro; Sugiyanto; Rohman, Budi; Zarkasi, Amin S.; Giarno

    1998-01-01

    MTR and PWR/PHWR In-Pile Loop safety analysis in integration with the operation of Multipurpose Reactor - Gas has been carried out and completed. The assessment is emphasized on the function of the interface systems from the dependence of the operation and the evaluation to the possibility of leakage or failure of the in-pile part inside the reactor pool and reactor core. The analysis is refers to the logic function of the interface system and the possibility of leakage or failure of the in-pile part inside reactor pool and reactor core to consider the integrity of the core qualitatively. The results show that in normal and in transient conditions , the interface system meet the function requirement in safe integrated operation of in-pile loop and reactor. And the results of the possibility analysis of the leakage shows that the possibility based on mechanically assessment is very low and the impact to core integrity is nothing or can be eliminated. The possible position for leakage is on the flen on which one meter above the top level of the core, therefore no influence of leakage to the core

  17. Decontamination and decommissioning of the MTR [Materials Testing Reactor]-603 HB-2 cubicle

    International Nuclear Information System (INIS)

    Smith, D.L.

    1987-10-01

    This paper describes the decontamination and decommissioning (D and D) of the MTR-603 HB-2 cubicle located at the Idaho National Engineering Laboratory (INEL). The HB-2 cubicle became radioactively contaminated during out-of-pile circulating water loop experiments conducted in the Materials Testing Reactor in the 1950s and 1960s. This paper describes work performed to accomplish the D and D objectives of reducing the high radiation fields caused by contamination inside the cubicle, preventing future contamination spread, and making about 1400 ft 2 of floor space available for reuse. Decommissioning of the HB-2 cubicle consisted of total dismantlement of the cubicle and its contents and was performed without disrupting ongoing laboratory work being conducted in areas surrounding the HB-2 cubicle. 3 refs., 7 figs., 4 tabs

  18. Thermal-hydraulic safety aspects related to irradiation capabilities in MTR reactors

    International Nuclear Information System (INIS)

    Khedr, A.

    2009-01-01

    MTR research reactor such as ETRR-2 is an open pool type reactor that has a capability for irradiation into a number of irradiation boxes (IBs) installed at different positions on a separate grid called irradiation grid (I G). The I B has a lower removable plug to open or close its lower nozzle according to the I B is used or not.Increasing the used No. of I Bs in irradiation means that a valuable change in the flow distribution on the I G will occur. This paper is focused on the optimum number of I Bs that could be used without deterioration the cooling of I G components and avoiding the formation of hot spots. RELAP5 system code is used for thermal hydraulic analysis of the I G cooling system. Mathematical models and fortran program is developed to calculate the heat distribution in the I G components and the equivalent nozzle diameter that compensate the I B pressure drop due to the irradiated material (I M). This equivalent diameter simulates the used I B nozzle in the RELAP5 input deck. The results show that, the internal flow into the I Bs has significant effect on the coolability of the I G components. The number of I Bs that can be used is inversely proportional with the reactor power, the IM's void fraction and directly proportional with the PCS flow rate. Different cases of operating power and void fraction at two values for PCS flow are studied. In all of the cases considered limited number of the I Bs is permissible to use in order to avoid the excessive heating of the I G components

  19. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  20. Concept study for interim storage of research reactor fuel elements in transport and storage casks. Transport and storage licensing procedure for the CASTOR MTR 2 cask. Final report

    International Nuclear Information System (INIS)

    Weiss, M.

    2001-01-01

    As a result of the project, a concept was to be developed for managing spent fuel elements from research reactors on the basis of the interim storage technology existing in Germany, in order to make the transition to direct disposal possible in the long term. This final report describes the studies for the spent fuel management concept as well as the development of a transport and storage cask for spent fuel elements from research reactors. The concept analyses were based on data of the fuel to be disposed of, as well as the handling conditions for casks at the German research reactors. Due to the quite different conditions for handling of casks at the individual reactors, it was necessary to examine different cask concepts as well as special solutions for loading the casks outside of the spent fuel pools. As a result of these analyses, a concept was elaborated on the basis of a newly developed transport and storage cask as well as a mobile fuel transfer system for the reactor stations, at which a direct loading of the cask is not possible, as the optimal variant. The cask necessary for this concept with the designation CASTOR trademark MTR 2 follows in ist design the tried and tested principles of the CASTOR trademark casks for transport and interim storage of spent LWR fuel. With the CASTOR trademark MTR 2, it is possible to transport and to place into long term interim storage various fuel element types, which have been and are currently used in German research reactors. The technical development of the cask has been completed, the documents for the transport license as type B(U)F package design and for obtaining the storage license at the interim storage facility of Ahaus have been prepared, submitted to the licensing authorities and to a large degree already evaluated positively. The transport license of the CASTOR trademark MTR 2 has been issued for the shipment of VKTA-contents and FRM II compact fuel elements. (orig.)

  1. Sipping test on a failed MTR fuel element

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac; Zeituni, Carlos Alberto; Silva, Antonio Teixeira e; Perrotta, Jose Augusto; Silva, Jose Eduardo Rosa da

    2002-01-01

    This work describes sipping tests performed on MTR fuel elements of the IEA-R1 research reactor, in order to determinate which one failed in the core during a routine operation of the reactor. radioactive iodine isotopes 131 I and 133 I, employed as failure indicators, were detected in samples corresponding to the fuel element IEA-156. The specific activity of each sample, as well as the average leaking rate, were measured for 137 Cs. The nuclear fuels U 3 O 8 - Al dispersion and U - Al alloy were compared concerning their measured average leaking rates of 137 Cs. (author)

  2. Validation of RELAP5 model of experimental test rig simulating the natural convection in MTR research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Khedr, A.; Abdel-Latif, Salwa H. [Nuclear and Radiological Regulatory Authority, Cairo (Egypt); Abdel-Hadi, Eed A. [Benha Univ., Cairo (Egypt). Shobra Faculty of Engineering; D' Auria, F. [Pisa Univ. (Italy)

    2016-03-15

    In an attempt to understand the built-up of natural circulation in MTR pool type upward flow research reactors after loss of power, an experimental test rig was built to simulate the loop of natural circulation in MTR reactors. The test rig consisting of two vertically oriented branches, in one of them the core is simulated by two rectangular, electrically heated, parallel channels. The other branch simulates the part of the return pipe that participates in the development of core natural circulation. In the first phase of the work, many experimental runs at different conditions of channel's power and branch's initial temperatures are performed. The channel's coolant and surface temperatures were measured. The measurements and their interpretation were published by the first three authors. In the present work the thermal hydraulic behavior of the test rig is complemented by theoretical analysis using RELAP5 Mod 3.3 system code. The analysis consisting of two parts; in the first part RELAP5 model is validated against the measured values and in the second part some of the other not measured hydraulic parameters are predicted and analyzed. The test rig is typically nodalized and an input dick is prepared. In spite of the low pressure of the test rig, the results show that RELAP5 qualitatively predicts the thermal hydraulic behaviour and the accompanied phenomenon of flow inversion of such facilities. Quantitatively, there is a difference between the predicted and measured values especially the channel's surface temperature. This difference may be return to the uncertainties in initial conditions of experimental runs, the position of the thermocouples which buried inside the heat structure, and the heat transfer package in RELAP5.

  3. Development of Fusion Nuclear Technologies and the role of MTR's

    International Nuclear Information System (INIS)

    Laan, J.G. van der; Schaaf, B. van der

    2006-01-01

    Fusion power plant operation will strongly depend on the economy and reliability of crucial components, such as first wall modules, tritium breeding blankets and divertors. Their operating temperature shall be high to accomplish high plant efficiency. The materials properties and component fabrication routes shall also assure long reliable operation to minimize plant outage. The components must be fabricated in large quantities based on demonstrations with a limited amount of test beds. Mock-ups and test loops will, through iteration processes, demonstrate the reliable operation under reference thermal-hydraulic conditions. Although 14 MeV neutrons dominate the nuclear conditions near the first wall, neutron transport analyses have shown that large portions of the components near the plasma have to cope with a neutron spectrum resembling a fission core. Present Materials Test Reactors, MTR's, offer fluxes relevant for large parts of the fusion major components. The mixed and fast fission spectra though is not representative for all fusion conditions. The strong point of MTR's is their ability to generate sufficient displacement damage in the materials in a relatively short time. The cores of MTR's provide sufficient space for irradiation of representative cut-outs of components to allow integrated functional and materials tests in a high flux neutron field. The MTR's are the primary test bed for structural and functional fusion relevant materials. The MTR space and dose rates provide a valuable base line for the developments and demonstrations of fusion key components in a neutron field. In recent years the pebble bed assembly, PBA, irradiated in the HFR, Petten, has shown the feasibility of the helium-cooled concept with lithium ceramics and beryllium multiplier pebble beds. The irradiations produce a wealth of process parameters for the control of the tritium release of the pebbles. The PBA packaging, cooling and tritium purging arrangements closely resemble the

  4. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Guigon, B.; Vacelet, H.; Dornbusch, D.

    2000-01-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs from activation analysis to power reactor fuel qualification. In this paper the main characteristics of the Jules Horowitz Reactor are presented. Safety criteria are explained. Finally, merits and disadvantages of UMo compared to the standard U 3 Si 2 fuel are discussed. (author)

  5. Neutronic modelling of the Harwell MTR's: some recent problems

    International Nuclear Information System (INIS)

    Taylor, N.P.

    1984-01-01

    Use of the Harwell Materials Testing Reactors for the irradiation of experimental rigs gives rise to a number of requirements for calculations of neutron fluxes. In addition photon fluxes are required for estimates of nuclear heating rates. A range of calculational methods are employed, from simple cell to whole reactor models, and the latter have been extended for preliminary design studies for the next generation of MTR to replace DIDO and PLUTO. The technique used for these various models are described in this note, with emphasis on the areas in which modelling problems are encountered. The applications divide into three distinct areas: calculations concerning rigs irradiated within the reactor core, those for rigs positioned in the D 2 O reflector surrounding the core, and design studies for a replacement reactor. (Auth.)

  6. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  7. Status of development and irradiation performance of advanced proliferation resistant MTR fuel at NUKEM

    International Nuclear Information System (INIS)

    Hrovat, M.; Hassel, H.-W.; Wehner, E.

    1985-01-01

    This paper describes the current status of development and irradiation performance of fuel elements for Material Test and Research (MTR) Reactors with Medium Enriched Uranium (MEU, ≤ 45 % 235-U) and Low Enriched Uranium (LEU, ≤ 20 % 235-U). (author)

  8. Decommissioning of the MTR-605 process water building at the Idaho National Engineering Laboratory. Final report

    International Nuclear Information System (INIS)

    Browder, J.H.; Wills, E.L.

    1985-01-01

    Decontamination and decommissioning (D and D) of the unused radioactively contaminated portions of the MTR-605 building at the Test Reactor Area of the Idaho National Engineering Laboratory has been completed; this final report describes the D and D project. The building is a two-story concrete structure that was used to house piping systems to channel and control coolant water flow for the Materials Testing Reactor (MTR), a 40 MW (thermal) light water test reactor that was operated from 1952 until 1970 and then deactivated. D and D project objectives were to reduce potential environmental and radioactive contamination hazards to levels as low a reasonably achievable. Primary tasks of the D and D project were: to remove contaminated piping (about 400 linear ft of 36- and 30-in.-dia stainless steel pipe) and valves from the primary coolant pipe tunnels, to remove a primary coolant pump and piping, and to remove the three 8-ft-dia by 25-ft-long evaporators from the building second floor

  9. Analysis of a Neutronic Computational Model for the Core of Material Testing Reactor MTR by Using SQUID Code

    International Nuclear Information System (INIS)

    Al-Taweel, M.H.

    2015-01-01

    It is a conventional practice in the design of nuclear reactor to introduce calculation of hot points to determine spatial variation for energy generated and then determine power distribution.The study had been carried out for core of a reactor type (MTR) by the neutronic code SQUID. In this study, we replace the reflector of the reactor by H 2 O instead of D 2 O as originally the reactor designed.From the study we conclude that the reactor can operates safely, to make sure of that we calculate the multiplication factor where their values ranged from (1.0854) when all control rods are up to (1.001)when three control rods are up.Also the values of hot points were calculated and compared with French documents results with D 2 O as a reflector where the difference is (0.19%), and with light water as reflector instead of heavy water was calculated.For different cases according to control rod position , the values of hot point ranged between (0.46) to (1.64) in case all control rods are up also the values of the average power distributed on different fuel cells were calculated in case of light water as reflector firstly with three control rods are down and the maximum value (2.13*10 -2 Μw).Secondly in case offour control rods are down, the maximum value (1.925*10 -2 Μw) we notice almost coincidence between the neutron flux distribution through the core of reactor and in different positions of control rods

  10. New high density MTR fuel. The CEA-CERCA-COGEMA development program

    International Nuclear Information System (INIS)

    Languille, A.; Durand, J.P.; Gay, A.

    1999-01-01

    The development of a new generation of LEU, high in density and with reprocessing capacities MTR fuel, is a key issue to provide reactor operators with a smooth operation which is necessary for a long term development of Nuclear Energy. In the RRFM'98 meeting, a joint contribution of CEA, CERCA and COGEMA presented a technical classification of the potential candidates uranium alloys. In this paper this MTR working group presents the development program of a new high density fuel. This program is composed of three main steps: Basic Data analysis and collection, Plate Tests (Irradiation and Post Irradiation Examinations) and Lead Test Assemblies (Irradiation and Post Irradiation Examinations). The goal to be reached is to make this new fuel available before the end of the present US return policy. (author)

  11. Studies of mixed HEU-LEU-MTR cores using 3D models

    Energy Technology Data Exchange (ETDEWEB)

    Haenggi, P.; Lehmann, E.; Hammer, J.; Christen, R. [Paul Scherrer Institute, Villigen (Switzerland)

    1997-08-01

    Several different core loadings were assembled at the SAPHIR research reactor in Switzerland combining the available types of MTR-type fuel elements, consisting mainly of both HEU and LEU fuel. Bearing in mind the well known problems which can occur in such configurations (especially power peaking), investigations have been carried out for each new loading with a 2D neutron transport code (BOXER). The axial effects were approximated by a global buckling value and therefore the radial effects could be studied in considerably detail. Some of the results were reported at earlier RERTR meetings and were compared to those obtained by other methods and with experimental values. For the explicit study of the third dimension of the core, another code (SILWER), which has been developed in PSI for LWR power plant cores, has been selected. With the help of an adapted model for the MTR-core of SAPHIR, several important questions have been addressed. Among other aspects, the estimation of the axial contribution to the hot channel factors, the influence of the control rod position and of the Xe-poisoning on the power distribution were studied. Special attention was given to a core position where a new element was assumed placed near a empty, water filled position. The comparison of elements of low and high enrichments at this position was made in terms of the induced power peaks, with explicit consideration of axial effects. The program SILWER has proven to be applicable to MTR-cores for the investigation of axial effects. For routine use as for the support of reactor operation, this 3D code is a good supplement to the standard 2D model.

  12. Experience with the transport and storage casks CASTOR (registered) MTR 2 for spent nuclear fuel assemblies from research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jack, Allen; Rettenbacher, Katharina; Skrzyppek, Juergen [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany)

    2011-07-01

    The CASTOR (registered) MTR 2 cask was designed and manufactured by the company GNS during the 1990's for the transport and interim storage of spent nuclear fuel assemblies from various types of research reactors. Casks of this type have been used at the VKTA Research Centre in Rossendorf near Dresden, Germany as well as at the European Commission's Joint Research Centre at Petten and at the HOR reactor at Delft in the Netherlands. A total of 24 units have been used for the functions of transport and storage with various spent fuel types (VVER, HFR-HEU, and HOR-HEU) for more than ten years now. This type of packaging for radioactive material is a member of the CASTOR (registered) family of spent nuclear fuel casks used worldwide. Over 1000 units are loaded and in storage in Europe, Asia, Africa and North America. This paper presents the experience from the use of the casks for transport and storage in the past, as well as the prospects for the future. (author)

  13. Long term immersion test of aluminum alloy AA 6061 used for fuel cladding in MTR type reactors

    International Nuclear Information System (INIS)

    Linardi, Evelina M.; Rodriguez, Sebastian; Haddad, Roberto; Lanzani, Liliana

    2009-01-01

    In this work we present the results of long term immersion tests performed in the aluminum alloy AA 6061, used for fuel cladding in MTR type reactors. The tests were performed at open circuit potential in high purity water (ρ = 18.2 MΩ.cm) and in 10 -3 M NaCl solution. Two kinds of assemblies were studied: simple sheets and artificial crevices, immersed during 6, 12 and 18 months at room temperature. In both media and both assemblies, the aluminum hydroxide phases crystalline bayerite and bohemite were identified. It was found that a kind of localized attack named alkaline attack occurs around the iron-rich intermetallics. These particles were confirmed to control the corrosion of the AA 6061 alloy in an aerated medium. Immersion times for up to 18 months did not increase the oxide growth or the alkaline attack on the AA 6061 alloy. (author)

  14. Conditioning of spent fuel assemblies from the Rossendorf RFR research reactor in transport and storage containers of the type CASTOR MTR 2

    International Nuclear Information System (INIS)

    Schneider, B.; Hofmann, G.

    1994-09-01

    Most of the spent fuel assemblies are temporarily stored in the flooded fuel ponds AB 1 and AB 2 of the RFR, and some are still in the reactor core. The conditioning task described here is part of the RFR spent fuel management concept and covers the safe emplacement of the spent fuel elements in the CASTOR MTR 2 shipping containers and the sealing of the containers in compliance with the nuclear licence issued for the conditioning task. The transfer of the spent fuel assemblies from the present wet storage conditions to the dry storage conditions in the CASTOR MTR 2 containers is done by a mobile manipulation equipment consisting essentially of the transfer sluice gate and a transfer container. Subsequent to conditioning, the shipping containers are to be transported to a licensed intermediate storage facility to await their transport to a national radwaste repository. The technical handling tools for the transfer and manipulation are briefly described, as well as the process steps involved, putting emphasis on the detailed description of processes and the accompanying time frame, so that the conditioning task can be incorporated into the work plan of the entire project. The report further presents the EDP concept established for the task, including the required data archivation and documentation. (orig.) [de

  15. Back-end of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    Gruber, Gehard J.

    1996-01-01

    This paper outlines the status of topics and issues related to: (1) Research Reactor Spent Nuclear Fuel Return to the U.S., including policy, shipments and ports of entry, management sites, fees, storage technologies, contracts, actual shipment, and legal process, (2) UKAEA: MTR Spent Nuclear Fuel Reprocessing, (3) COGEMA: MTR Spent Nuclear Fuel Reprocessing, and (4) Intermediate Storage + Direct Disposal for Research Reactors. (author)

  16. MTR core loading pattern optimization using burnup dependent group constants

    Directory of Open Access Journals (Sweden)

    Iqbal Masood

    2008-01-01

    Full Text Available A diffusion theory based MTR fuel management methodology has been developed for finding superior core loading patterns at any stage for MTR systems, keeping track of burnup of individual fuel assemblies throughout their history. It is based on using burnup dependent group constants obtained by the WIMS-D/4 computer code for standard fuel elements and control fuel elements. This methodology has been implemented in a computer program named BFMTR, which carries out detailed five group diffusion theory calculations using the CITATION code as a subroutine. The core-wide spatial flux and power profiles thus obtained are used for calculating the peak-to-average power and flux-ratios along with the available excess reactivity of the system. The fuel manager can use the BFMTR code for loading pattern optimization for maximizing the excess reactivity, keeping the peak-to-average power as well as flux-ratio within constraints. The results obtained by the BFMTR code have been found to be in good agreement with the corresponding experimental values for the equilibrium core of the Pakistan Research Reactor-1.

  17. MTR fuel testing in BR2

    International Nuclear Information System (INIS)

    Jacquet, P.; Verwimp, A.; Wirix, S.

    2000-01-01

    New fuel design for MTR 's requires to be qualified under representative conditions, that is geometry, neutron spectrum, heat flux and thermo hydraulic conditions. An irradiation device for fuel plates has been designed to derive the maximum benefit from the BR2 irradiation capacities. The fuel plates can be easily extracted from their support during a shutdown to undergo additional tests. One of these tests is the measurement of the thickness changes along the fuel plate. To that purpose, a facility in the reactor water pool has been designed to measure the fuel swelling with an accuracy of 5 μm using inductive probes. At SCK-CEN, the full range of destructive and non-destructive PIE can be performed, including γ-scanning, wet sipping, surface examination and other methods. (author)

  18. Characterisation of the corrosion products of non-irradiated material test reactors fuel elements (MTR-FE)

    Energy Technology Data Exchange (ETDEWEB)

    Mazeina, L.; Curtius, H.; Fachinger, J. [Inst. for Safety Research and Reactor Technology, Research Centre Juelich (Germany)

    2003-07-01

    In a high concentrated Mg-rich brine a non-irradiated MTR-FE corroded. The formed corrosion products consists of an amorphous part and of hydrotalcites, which were identified as Mg-Al-hydrotalcites with chloride anions in the interlayer. (orig.)

  19. Implementation of a quality assurance system for the design and manufacturing of fuel assembly MTR-plate type

    International Nuclear Information System (INIS)

    Koll, J.H.

    1987-01-01

    Since more than 30 years ago, fuel assemblies (FA) of the MTR-Plate type, for research reactors, have been developed and produced using well known technologies, with different methods for the design, manufacturing, quality control and subsequent verification of FA behaviour, as well as of the design data. The FA and its reliability has been improved through the recycling of the obtained information. No nuclear accidents or major incidents have taken place that can be blamed to FA due to design, manufacturing or its use. Since the 70's, the use of Quality Assurance methodology has been increased, especially for Nuclear Power Plants, in order to ensure safety for these reactors. The use of QA for reactors for research, testing or other uses, has also been steadily increased, not only due to safety reasons, but also because of its convenience for a good operation, being presently a common requirement of the operator of the installation. Herewith is described the way the QA system that has been developed for the design, manufacturing, quality control and supply of MTR-plate type FA, at the Development Section of the Argentine Atomic Energy Commission (CNEA). (Author)

  20. CFD investigation of flow inversion in typical MTR research reactor undergoing thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Salama, Amgad

    2011-01-01

    Highlights: → The 3D, CFD simulation of FLOFA accident in the generic IAEA 10 MW research reactor is carried out. → The different flow and heat transfer mechanisms involved in this process were elucidated. → The transition between these mechanisms during the course of FLOFA is discussed and investigated. → The interesting inversion process upon the transition from downward flow to upward flow is shown. → The temperature field and the friction coefficient during the whole transient process were shown. - Abstract: Three dimensional CFD full simulations of the fast loss of flow accident (FLOFA) of the IAEA 10 MW generic MTR research reactor are conducted. In this system the flow is initially downward. The transient scenario starts when the pump coasts down exponentially with a time constant of 1 s. As a result the temperatures of the heating element, the clad, and the coolant rise. When the flow reaches 85% of its nominal value the control rod system scrams and the power drops sharply resulting in the temperatures of the different components to drop. As the coolant flow continues to drop, the decay heat causes the temperatures to increase at a slower rate in the beginning. When the flow becomes laminar, the rate of temperature increase becomes larger and when the pumps completely stop a flow inversion occurs because of natural convection. The temperature will continue to rise at even higher rates until natural convection is established, that is when the temperatures settle off. The interesting 3D patterns of the flow during the inversion process are shown and investigated. The temperature history is also reported and is compared with those estimated by one-dimensional codes. Generally, very good agreement is achieved which provides confidence in the modeling approach.

  1. The Transcriptional Repressor, MtrR, of the mtrCDE Efflux Pump Operon of Neisseria gonorrhoeae Can Also Serve as an Activator of “off Target” Gene (glnE Expression

    Directory of Open Access Journals (Sweden)

    Paul J. T. Johnson

    2015-06-01

    Full Text Available MtrR is a well-characterized repressor of the Neisseria gonorrhoeae mtrCDE efflux pump operon. However, results from a previous transcriptional profiling study suggested that MtrR also represses or activates expression of at least sixty genes outside of the mtr locus. Evidence that MtrR can directly repress so-called “off target” genes has previously been reported; in particular, MtrR was shown to directly repress glnA, which encodes glutamine synthetase. In contrast, evidence for the ability of MtrR to directly activate expression of gonococcal genes has been lacking; herein, we provide such evidence. We now report that MtrR has the ability to directly activate expression of glnE, which encodes the dual functional adenyltransferase/deadenylase enzyme GlnE that modifies GlnA resulting in regulation of its role in glutamine biosynthesis. With its capacity to repress expression of glnA, the results presented herein emphasize the diverse and often opposing regulatory properties of MtrR that likely contributes to the overall physiology and metabolism of N. gonorrhoeae.

  2. MTR radiological database for SRS spent nuclear fuel facilities

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    A database for radiological characterization of incoming Material Test Reactor (MTR) fuel has been developed for application to the Receiving Basin for Offsite Fuels (RBOF) and L-Basin spent fuel storage facilities at the Savannah River Site (SRS). This database provides a quick quantitative check to determine if SRS bound spent fuel is radiologically bounded by the Reference Fuel Assembly used in the L-Basin and RBOF authorization bases. The developed database considers pertinent characteristics of domestic and foreign research reactor fuel including exposure, fuel enrichment, irradiation time, cooling time, and fuel-to-moderator ratio. The supplied tables replace the time-consuming studies associated with authorization of SRS bound spent fuel with simple hand calculations. Additionally, the comprehensive database provides the means to overcome resource limitations, since a series of simple, yet conservative, hand calculations can now be performed in a timely manner and replace computational and technical staff requirements

  3. ANALISIS POLA MANAJEMEN BAHAN BAKAR DESAIN TERAS REAKTOR RISET TIPE MTR

    Directory of Open Access Journals (Sweden)

    Lily Suparlina

    2015-03-01

    Full Text Available Parameter neutronik dibutuhkan dalam mendesain teras reaktor riset. Reaktor riset jenis MTR (Material Testing Reactor sangat diminati karena dapat digunakan baik untuk riset dan juga produksi radio isotop. Reaktor riset yang ada saat ini sudah tua sehingga dibutuhkan desain reaktor yang mempunyai teras kompak. Desain teras reaktor riset yang sudah ada saat ini belum cukup memadai untuk memenuhi persyaratan di dalam UCD yang telah ditetapkan yaitu fluks neutron termal di teras 1x1015 n/cm2s, oleh karena itu perlu dibuat desain teras reaktor baru sebagai alternatif yang kompak dan dapat menghasilkan fluks neutron tinggi. Telah dilakukan perhitungan dan analisis terhadap manajemen bahan bakar desain teras kompak dengan konfigurasi teras 5x5, berbahan bakar U9Mo-Al dan tinggi teras aktif 70 cm. Tujuan dari riset ini untuk memperoleh fluks neutron di teras memenuhi kebutuhan seperti yang telah ditetapkan di UCD dengan panjang siklus operasi minimum 20 hari pada daya 50 MW. Perhitungan dilakukan dengan menggunakan paket program komputer WIMSD-5B untuk menggenerasi tampang lintang makroskopik bahan bakar dan Batan-FUEL untuk memperoleh nilai parameter neutronik serta Batan-3DIFF untuk perhitungan nilai reaktivitas batang kendali. Perhitungan parameter neutronik teras reaktor riset ini dilakukan untuk bahan bakar U-9Mo-Al dengan tingkat muat bervariasi dan 2 macam pola pergantian bahan bakar yaitu teras segar dan teras setimbang. Hasil analisis menunjukkan bahwa pada teras segar, tingkat muat 235U sebesar 360 gram, 390 gram dan 450 gram memenuhi kriteria keselamatan dan kriteria penerimaan di UCD dengan nilai fluks neutron termal di teras lebih dari 1x1015 n/cm2s dan panjang siklus >20 hari, sedangkan pada teras setimbang panjang siklus dapat terpenuhi hanya untuk tingkat muat 450 gram. Kata kunci: desain teras reaktor, bahan bakar UMo, pola bahan bakar, WIMS, BATAN-FUEL   Research reactor core design needs neutronics parameter calculation use computer

  4. Developing the MAPLE materials test reactor concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-05-01

    MAPLE-MTR is a new multipurpose research facility being planned by AECL Research as a possible replacement for the 35-year-old NRU reactor. In developing the MAPLE-MTR concept, AECL is starting from the recent design and licensing experience with the MAPLE-X10 reactor. By starting from technology developed to support the MAPLE-X10 design and adapting it to produce a concept that satisfies the requirements of fuel channel materials testing and fuel irradiation programs, AECL expects to minimize the need for major advances in nuclear technology (e.g., fuel, heat transfer). Formulation of the MAPLE-MTR concept is at an early stage. This report describes the irradiation requirements of the research areas, how these needs are translated into design criteria for the project and elements of the preliminary design concept

  5. Analysis of a total flow blockage of a Fuel Assembly in a typical MTR Research Reactor by RELAP5/MOD3.3

    International Nuclear Information System (INIS)

    Adorni, M.; Salah, A.B.; Di Maro, B.; Pierro, F.; D'Auria, F.; Hamidouche, T.

    2004-01-01

    The lack of full understanding of complex mechanisms connected with the interaction between thermal-hydraulics and neutronics still challenge the design and the operation of nuclear reactors by the adoption of conservative safety limits. The recent availability of powerful computer and computational techniques together with the continuing increase in operational experience imposes the revisiting of those areas and eventually the identification of design/safety requirements that can be relaxed [1]. Currently, the enlarged commercial exploitation of nuclear Research Reactors (RR) has increased the consideration to their corresponding safety issues. Almost all of the safety analyses have so far been performed using conservative computational tools [2]. Nowadays, the application of Best-Estimate (BE) methods constitutes a real necessity in order to increase their commercial productivity. In this framework, an attempt is made to apply the BE technique to perform a safety evaluation under research reactors operational conditions. In fact, this technique has been largely verified and validated for power reactors using coupled system thermal-hydraulic and three-dimensional neutron kinetics [1]. For this purpose, as typical representative of research reactors, the IAEA 10 MW MTR Research Reactors problem [3] is considered. The system thermal-hydraulic RELAP5 [4] code was developed to simulate transient scenarios in Power reactors such PWR, BWR, VVER, etc. However, only limited work was performed to access the applicability of the code to Research Reactors operating conditions (low pressure, mass flow rates, power, etc) [5]. Previous works performed in this field are reported in [5], [6] and [7]. In this framework, total and partial blockage of a single Fuel Assembly cooling channel are investigated. As a first attempt the calculations are performed by applying the BE thermal-hydraulic system code RELAP5 alone using its point kinetic model to derive the instantaneous core

  6. Research reactors in Argentina

    International Nuclear Information System (INIS)

    Carlos Ruben Calabrese

    1999-01-01

    Argentine Nuclear Development started in early fifties. In 1957, it was decided to built the first a research reactor. RA-1 reactor (120 kw, today licensed to work at 40 kW) started operation in January 1958. Originally RA-1 was an Argonaut (American design) reactor. In early sixties, the RA-1 core was changed. Fuel rods (20% enrichment) was introduced instead the old Argonaut core design. For that reason, a critical facility named RA-0 was built. After that, the RA-3 project started, to build a multipurpose 5 MW nuclear reactor MTR pool type, to produce radioisotopes and research. For that reason and to define the characteristics of the RA-3 core, another critical facility was built, RA-2. Initially RA-3 was a 90 % enriched fuel reactor, and started operation in 1967. When Atucha I NPP project started, a German design Power Reactor, a small homogeneous reactor was donated by the German Government to Argentina (1969). This was RA-4 reactor (20% enrichment, 1W). In 1982, RA-6 pool reactor achieved criticality. This is a 500 kW reactor with 90% enriched MTR fuel elements. In 1990, RA-3 started to operate fueled by 20% enriched fuel. In 1997, the RA-8 (multipurpose critical facility located at Pilcaniyeu) started to operate. RA-3 reactor is the most important CNEA reactor for Argentine Research Reactors development. It is the first in a succession of Argentine MTR reactors built by CNEA (and INVAP SE ) in Argentina and other countries: RA-6 (500 kW, Bariloche-Argentina), RP-10 (10MW, Peru), NUR (500 kW, Algeria), MPR (22 MW, Egypt). The experience of Argentinian industry permits to compete with foreign developed countries as supplier of research reactors. Today, CNEA has six research reactors whose activities have a range from education and promotion of nuclear activity, to radioisotope production. For more than forty years, Argentine Research Reactors are working. The experience of Argentine is important, and argentine firms are able to compete in the design and

  7. Application of MTR soft-decision decoding in multiple-head ...

    Indian Academy of Sciences (India)

    basic MTR logic circuits, and to develop, a new one, the soft-decision MTR decoder, based on such ... of integrated circuits provides their quite simple realization. ..... recording channels, PSU-UNS International Conference on Engineering and ...

  8. dynamic performance of research reactors

    International Nuclear Information System (INIS)

    Abo elnor, A.G.M.

    2007-01-01

    this work studies the dynamic performance of material testing reactor (MTR), where the dynamic performance of any reactor reflects its safety behavior and it should enhance its intrinsic characteristics s ystem corrects itself internally without introducing external corrective action . the present work analyzes and studies the dynamic performance of mtr through the transfer function. the servo system parameters can be changed to fit the system demand. the servo system is an excellent approximation to some of the practical servo system currently use in reactor control system, and a quadratic form of this sort should closely approximate the behavior of almost any type of physical equipment which might be chosen to drive a control rod. proposed changes in servo system parameters could enhance the dynamic performance of the system , but the suitable parameters can be evaluated by using the automatic reactor power control system model

  9. Flux effect on neutron irradiation embrittlement of reactor pressure vessel steels irradiated to high fluences

    International Nuclear Information System (INIS)

    Soneda, N.; Dohi, K.; Nishida, K.; Nomoto, A.; Iwasaki, M.; Tsuno, S.; Akiyama, T.; Watanabe, S.; Ohta, T.

    2011-01-01

    Neutron irradiation embrittlement of reactor pressure vessel (RPV) steels is of great concern for the long term operation of light water reactors. In particular, the embrittlement of the RPV steels of pressurized water reactors (PWRs) at very high fluences beyond 6*10 19 n/cm 2 , E > 1 MeV, needs to be understood in more depth because materials irradiated in material test reactors (MTRs) to such high fluences show larger shifts than predicted by current embrittlement correlation equations available worldwide. The primary difference between the irradiation conditions of MTRs and surveillance capsules is the neutron flux. The neutron flux of MTR is typically more than one order of magnitude higher than that of surveillance capsule, but it is not necessarily clear if this difference in neutron flux causes difference in mechanical properties of RPV. In this paper, we perform direct comparison, in terms of mechanical property and microstructure, between the materials irradiated in surveillance capsules and MTRs to clarify the effect of flux at very high fluences and fluxes. We irradiate the archive materials of some of the commercial reactors in Japan in the MTR, LVR-15, of NRI Rez, Czech Republic. Charpy impact test results of the MTR-irradiated materials are compared with the data from surveillance tests. The comparison of the results of microstructural analyses by means of atom probe tomography is also described to demonstrate the similarity / differences in surveillance and MTR-irradiated materials in terms of solute atom behavior. It appears that high Cu material irradiated in a MTR presents larger shifts than those of surveillance data, while low Cu materials present similar embrittlement. The microstructural changes caused by MTR irradiation and surveillance irradiation are clearly different

  10. Validation and verification of the MTR{sub P}C thermohydraulic package

    Energy Technology Data Exchange (ETDEWEB)

    Doval, Alicia [INVAP S.E., Bariloche, Rio Negro (Argentina). Nuclear Engineering Dept.]. E-mail: doval@invap.com.ar

    1998-07-01

    The MTR{sub P}C v2.6 is a computational package developed for research reactor design and calculation. It covers three of the main aspects of a research reactor: neutronic, shielding and thermohydraulic. In this work only the thermohydraulic package will be covered, dealing with verification and validation aspects. The package consists of the following steady state programs: CAUDVAP 2.60 for the hydraulic calculus, estimates the velocity distribution through different parallel channels connected to a common inlet and outlet common plenum. TERMIC 1H v3.0, used for the thermal design of research reactors, provides information about heat flux for a given maximum wall temperature, onset of nucleate boiling, redistribution phenomena and departure from nucleate boiling. CONVEC V3.0 allows natural convection calculations, giving information on heat fluxes for onset of nucleate boiling, pulsed and burn-out phenomena as well as total coolant flow. Results have been validated against experimental values and verified against theoretical and computational programmes results, showing a good agreement. (author)

  11. Immobilisation of MTR waste in cement (product evaluation). Final report. December 1987

    International Nuclear Information System (INIS)

    Howard, C.G.; Lee, D.J.

    1988-01-01

    The enriched uranium/aluminium fuel used in Material Testing Reactors is reprocessed at Dounreay Nuclear Power Development Establishment (DNE). The main chemical component of the liquid waste produced by this process is acid deficient aluminium nitrate. This is stored in stainless steel tanks at DNE. As a result of work carried out under the UKAEA radioactive waste management programme a decision was taken to immobilise the waste in cement. The programme had two main components, plant design and development of the cementation process. The plant for the cementation of MTR waste is under construction and will be commissioned in 1988/9. The primary objective of this project is to find a suitable process for changing the highly mobile radioactive waste into an inert stable solid. Work carried out on the development of the immobilisation process showed that a conditioning stage (neutralisation) is required to make the acid waste compatible with cement. Small scale experiments showed that adding Ordinary Portland Cement blended with ground granulated Blast Furnace Slag to Simulant MTR Liquor produces an acceptable product. The process has been demonstrated at full scale (200 litres) and the products have been subjected to an extensive programme of destructive and non-destructive testing. Specimens have been tested up to 1200 days after manufacture and show no significant signs of deterioration even when stored underwater or when subjected to freeze thaw cycling. Development work has also shown that the process can successfully immobilise simulant MTR liquor over a wide range of liquor concentrations. The programme therefore successfully produced a formulation that met all the requirements of both the process and product specification. (author)

  12. Immobilisation of MTR waste in cement (product evaluation)

    International Nuclear Information System (INIS)

    Howard, C.G.; Lee, D.J.

    1988-01-01

    The enriched uranium/aluminium fuel used in Material Testing Reactors is reprocessed at Dounreay Nuclear Power Development Establishment (DNE). The main chemical component of the liquid waste produced by this process is acid deficient aluminium nitrate. The primary objective of this project is to find a suitable process for changing the highly mobile radioactive waste into an inert stable solid. Work carried out on the development of the immobilisation process showed that a conditioning stage (neutralisation) is required to make the acid waste compatible with cement. Small scale experiments showed that adding Ordinary Portland Cement blended with ground granulated Blast Furnace Slag to Simulant MTR Liquor produces an acceptable product. The process has been demonstrated at full scale (200 litres) and the products have been subjected to an extensive programme of destructive and non-destructive testing. (author)

  13. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  14. Reprocessing of MTR fuel at Dounreay

    International Nuclear Information System (INIS)

    Hough, N.

    1997-01-01

    UKAEA at Dounreay has been reprocessing MTR fuel for over 30 years. During that time considerable experience has been gained in the reprocessing of traditional HEU alloy fuel and more recently with dispersed fuel. Latterly a reprocessing route for silicide fuel has been demonstrated. Reprocessing of the fuel results in a recycled uranium product of either high or low enrichment and a liquid waste stream which is suitable for conditioning in a stable form for disposal. A plant to provide this conditioning, the Dounreay Cementation Plant is currently undergoing active commissioning. This paper details the plant at Dounreay involved in the reprocessing of MTR fuel and the treatment and conditioning of the liquid stream. (author)

  15. Decontamination and decommissioning of the MTR-603 HB-2 cubicle

    International Nuclear Information System (INIS)

    Smith, D.L.

    1987-01-01

    The decontamination and decommissioning (D and D) of the MTR-603 HB-2 cubicle located at the Idaho National Engineering Laboratory (INEL) are described. The HP-2 cubicle became radioactively contaminated during out-of-pile circulating water loop experiments conducted in the Materials Testing Reactor in the 1950s and 1960s. The work performed to accomplish the D and D objectives of reducing the high radiation fields caused by contamination inside the cubicle, preventing future contamination spread, and making about 1400 ft 2 of floor space available for reuse are discussed. Decommissioning of the HB-2 cubicle consisted of total dismantlement of the cubicle and its contents and was performed without disrupting ongoing laboratory work being conducted in areas surrounding the HB-2 cubicle

  16. Decontamination and decommissioning of the MTR-603 HB-2 cubicle. Final report

    International Nuclear Information System (INIS)

    Smith, D.L.

    1985-12-01

    This report describes the decontamination and decommissioning (D and D) of the MTR-603 HB-2 cubicle located at the Idaho National Engineering Laboratory (INEL). The HB-2 cubicle became radioactively contaminated during out-of-pile circulating water loop experiments conducted in the Materials Testing Reactor in the 1950s and 1960s. This report describes work performed to accomplish the D and D objectives of reducing the high radiation fields caused by contamination inside the cubicle, preventing future contamination spread, and making about 1400 ft 2 of floor space available for reuse. D and D of the HB-2 cubicle consisted of total dismantlement of the cubicle and its contents

  17. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility; Estudo termohidraulico de um elemento combustivel tipo MTR visando a construcao de um dispositivo de irradiacao

    Energy Technology Data Exchange (ETDEWEB)

    Coragem, Helio Boemer de Oliveira

    1980-07-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  18. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility; Estudo termohidraulico de um elemento combustivel tipo MTR visando a construcao de um dispositivo de irradiacao

    Energy Technology Data Exchange (ETDEWEB)

    Coragem, Helio Boemer de Oliveira

    1980-07-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  19. Corrosion behavior of spent MTR fuel elements in a drowned salt mine repository

    International Nuclear Information System (INIS)

    Brodda, B.G.; Fachinger, J.

    1995-01-01

    Spent MTR fuel from German Material Test Reactors will not be reprocessed, but stored in a final salt repository in the deep geologic underground. Fuel elements will be placed in POLLUX containers, which are assumed to resist the corrosive attack of an accidentally formed concentrated salt brine for about 500 years. After a container failure the brine would contact the fuel element, corrode the aluminum plating and possibly leach radionuclides from the fuel. A source term for the calculation of radionuclide mobilization results from the investigation of the behavior of MTR fuel in this scenario, which has to be considered for the long-term safety analysis of a deep mined rock salt repository. Experiments with the different plating materials show that the considered aluminum alloys will not resist the corrosive attack of a brine solution, especially in the presence of iron, under the conditions in a drowned salt mine repository. Although differences in the corrosion rates of about two orders of magnitude were observed when applying different parameter sets, the deterioration must be considered to be almost instantaneous in geological terms. Radionuclides are mobilized from irradiated MTR fuel, when the meat of the fuel element becomes accessible to the brine solution. It seems, however, that the radionuclides are effectively trapped by the aluminum hydroxide formed, as the activity concentrations in the brine solution soon reach a constant level with the progressing corrosion of the cladding aluminum. In the presence of iron a more significant initial release was observed, but also in this case an equilibrium activity seems to be reached as a consequence of radionuclide trapping

  20. US DOE Idaho national laboratory reactor decommissioning

    International Nuclear Information System (INIS)

    Szilagyi, Andrew

    2012-01-01

    The United States Department of Energy (DOE) primary contractor, CH2M-WG Idaho was awarded the cleanup and deactivation and decommissioning contract in May 2005 for the Idaho National Lab (INL). The scope of this work included dispositioning over 200 Facilities and 3 Reactors Complexes (Engineering Test Reactor (ETR), Materials Test Reactor (MTR) and Power Burst Facility (PBF) Reactor). Two additional reactors were added to the scope of the contract during the period of performance. The Zero Power Physics Reactor (ZPPR) disposition was added under a separate subcontractor with the INL lab contractor and the Experimental Breeder Reactor II (EBR-II) disposition was added through American Recovery and Reinvestment Act (ARRA) Funding. All of the reactors have been removed and disposed of with the exception of EBR-II which is scheduled for disposition approximately March of 2012. A brief synopsis of the 5 reactors is provided. For the purpose of this paper the ZPPR reactor due to its unique design as compared to the other four reactors, and the fact that is was relatively lightly contaminated and irradiated will not be discussed with the other four reactors. The ZPPR reactor was readily accessible and was a relatively non-complex removal as compared to the other reactors. Additionally the EBR-II reactor is currently undergoing D and D and will have limited mention in this paper. Prior to decommissioning the reactors, a risk based closure model was applied. This model exercised through the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), Non-Time Critical Removal Action (NTCRA) Process which evaluated several options. The options included; No further action - maintain as is, long term stewardship and monitoring (mothball), entombment in place and reactor removal. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, beryllium, sodium (passivated and elemental), PCB oils and electrical components, lead

  1. Application of nonlinear nodal diffusion method for a small research reactor

    International Nuclear Information System (INIS)

    Jaradat, Mustafa K.; Alawneh, Luay M.; Park, Chang Je; Lee, Byungchul

    2014-01-01

    Highlights: • We applied nonlinear unified nodal method for 10 MW IAEA MTR benchmark problem. • TRITION–NEWT system was used to obtain two-group burnup dependent cross sections. • The criticality and power distribution compared with reference (IAEA-TECDOC-233). • Comparison between different fuel materials was conducted. • Satisfactory results were provided using UNM for MTR core calculations. - Abstract: Nodal diffusion methods are usually used for LWR calculations and rarely used for research reactor calculations. A unified nodal method with an implementation of the coarse mesh finite difference acceleration was developed for use in plate type research reactor calculations. It was validated for two PWR benchmark problems and then applied for IAEA MTR benchmark problem for static calculations to check the validity and accuracy of the method. This work was conducted to investigate the unified nodal method capability to treat material testing reactor cores. A 10 MW research reactor core is considered with three calculation cases for low enriched uranium fuel depending on the core burnup status of fresh, beginning-of-life, and end-of-life cores. The validation work included criticality calculations, flux distribution, and power distribution; in addition, a comparison between different fuel materials with the same uranium content was conducted. The homogenized two-group cross sections were generated using the TRITON–NEWT system. The results were compared with a reference, which was taken from IAEA-TECDOC-233. The unified nodal method provides satisfactory results for an all-rod out case, and the three-dimensional, two-group diffusion model can be considered accurate enough for MTR core calculations

  2. MTR fuel inspection at CERCA

    International Nuclear Information System (INIS)

    Fanjas, Y.

    1992-01-01

    The stringent specifications for MTR fuel plates and fuel elements require various sophisticated inspection techniques. In particular, the development of low enriched silicide fuels made it necessary to adapt these techniques to high density plates. This paper presents the status of inspection technology at CERCA. (author)

  3. Chemometrics application in fuel's MTR type chemical characterization by X-ray fluorescence; Aplicacao da quimiometria para caracterizacao quimica de combustiveis tipo MTR por fluorescencia de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Clayton Pereira da

    2012-07-01

    In Brazil and worldwide the nuclear power has occupied a prominent position with many applications in industry, power generation, environment and medicine, improving the quality of tests and treatments, therefore people's lives. Uranium is the main element used in nuclear facilities and it s employed as base material to generation of electricity in the manufacture of radiopharmaceuticals. In the '50s, during the Cold War, the then newly created International Atomic Energy Agency proposed to oversee nuclear facilities and encourage the manufacture of nuclear fuels with low-enriched uranium (LEU) fuel came then type Material Test Reactor (MTR), manufactured initially in U{sub 3}O{sub 8} and U{sub 3}Si{sub 2} later, both dispersed in aluminum. The use of this technology requires a constant improvement of all processes involving the manufacture of MTR subject to several international protocols, which seek to ensure the reliability of the fuel from the standpoint of practical and environmental. In this context, the control of impurities, from the point of view of neutron economy, directly affects the quality of any nuclear fuel, so strict control is necessary. The literature has reported procedures which, beyond generating residues, are lengthy and costly, they need calibration curve and consequently reference materials. The aim of this work is to establish and validate a methodology for nondestructive quantitative chemical analysis, low cost and analysis time, as well as minimize the generation of waste, for multielement determination of major constituents (Utotal and Si) and impurities (B, Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd and others) present in U3O8 and U{sub 3}Si{sub 2}, meeting the needs of nuclear reactors in the nuclear fuel qualification type MTR. For that purposes, will be applied the X-ray fluorescence technique which allows fast chemical and nondestructive analysis, aside from sample preparation procedures that do not require previous chemical

  4. Cost of the external MTR-fuel cycle. (Uranium , reprocessing and related services)

    International Nuclear Information System (INIS)

    Mueller, H.; Gruber, G.

    1991-01-01

    This paper points out how the RERTR program has affected NUKEM's fuel supplies for MTRs and how the prices in the External MTR Fuel Cycle have developed during this period. In addition other potential fuel sources and services on the External MTR Fuel Cycle are given. (orig.)

  5. Thermohydraulic study of a MTR fuel element aimed at the construction of an irradiation facility

    International Nuclear Information System (INIS)

    Coragem, Helio Boemer de Oliveira

    1980-01-01

    A thermohydraulic study of MTR fuel element is presented as a basic requirement for the development of an irradiation facility for testing fuel elements. A computer code named 'Thermo' has been developed for this purpose, which can stimulate different working conditions, such as, cooling, power elements and neutron flux, performing all pertinent thermohydraulic calculations. Thermocouples were used to measure the temperature gradients of the cooling fluid throughout the IEAR-1 reactor core. All experimental data are in good agreement with the theoretical model applied in this work. Finally, a draft of the proposed facility and its safety system is presented. (author)

  6. Chemometrics application in fuel's MTR type chemical characterization by X-ray fluorescence

    International Nuclear Information System (INIS)

    Silva, Clayton Pereira da

    2012-01-01

    In Brazil and worldwide the nuclear power has occupied a prominent position with many applications in industry, power generation, environment and medicine, improving the quality of tests and treatments, therefore people's lives. Uranium is the main element used in nuclear facilities and it s employed as base material to generation of electricity in the manufacture of radiopharmaceuticals. In the '50s, during the Cold War, the then newly created International Atomic Energy Agency proposed to oversee nuclear facilities and encourage the manufacture of nuclear fuels with low-enriched uranium (LEU) fuel came then type Material Test Reactor (MTR), manufactured initially in U 3 O 8 and U 3 Si 2 later, both dispersed in aluminum. The use of this technology requires a constant improvement of all processes involving the manufacture of MTR subject to several international protocols, which seek to ensure the reliability of the fuel from the standpoint of practical and environmental. In this context, the control of impurities, from the point of view of neutron economy, directly affects the quality of any nuclear fuel, so strict control is necessary. The literature has reported procedures which, beyond generating residues, are lengthy and costly, they need calibration curve and consequently reference materials. The aim of this work is to establish and validate a methodology for nondestructive quantitative chemical analysis, low cost and analysis time, as well as minimize the generation of waste, for multielement determination of major constituents (Utotal and Si) and impurities (B, Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd and others) present in U3O8 and U 3 Si 2 , meeting the needs of nuclear reactors in the nuclear fuel qualification type MTR. For that purposes, will be applied the X-ray fluorescence technique which allows fast chemical and nondestructive analysis, aside from sample preparation procedures that do not require previous chemical treatments (dissolving

  7. Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-26

    In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgas composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.

  8. Integrated infrastructure initiatives for material testing reactor innovations

    International Nuclear Information System (INIS)

    Dekeyser, Jean; Vermeeren, Ludo; Iracane, Daniel

    2011-01-01

    Highlights: → The EU FP7 MTR+I3 project has initiated a durable cooperation between MTR operators. → Improvements in irradiation test device technology and instrumentation were achieved. → Professional training efforts were streamlined and best practices were exchanged. → A framework has been set up to coordinate and optimize the use of MTRs in the EU. - Abstract: The key goal of the European FP6 project MTR+I3 was to build a durable cooperation between Material Testing Reactor (MTR) operators and relevant laboratories that can maintain European leadership with updated capabilities and competences regarding reactor performances and irradiation technology. The MTR+I3 consortium was composed of 18 partners with a high level of expertise in irradiation-related services for all types of nuclear plants. This project covered activities that foster integration of the MTR community involved in designing, fabricating and operating irradiation devices through information exchange, know-how cross-fertilization, exchanges of interdisciplinary personnel, structuring of key-technology suppliers and professional training. The network produced best practice guidelines for selected irradiation activities. This project allowed to launch or to improve technical studies in various domains dealing with irradiation test device technology, experimental loop designs and instrumentation. Major results are illustrated in this paper. These concern in particular: on-line fuel power determination, neutron screen optimization, simulation of transmutation process, power transient systems, water chemistry and stress corrosion cracking, fission gas measurement, irradiation behaviour of electronic modules, mechanical loading under irradiation, high temperature gas loop technology, heavy liquid metal loop development and safety test instrumentation. One of the major benefits of this project is that, starting from a situation of fragmented resources in a strongly competitive sector, it has

  9. Combining different views of mammographic texture resemblance (MTR) marker of breast cancer risk

    DEFF Research Database (Denmark)

    Sun, S.; Karemore, Gopal; Chernoff, Konstantin

    the subsequent 4 years whereas 245 cases had a diagnosis 2-4 years post mammography. We employed the MTR supervised texture learning framework to perform risk evaluation from a single mammography view. In the framework 20,000 pixels were sampled and classified by a kNN pixel classifier. A feature selection step......PURPOSE Mammographic density is a well established breast cancer risk factor. Texture analysis in terms of the Mammographoc Texture Resemblance (MTR) marker has recently shown to add to risk segregation. Hitherto only single view MTR analysis has been performed. Standard mammography examinations...

  10. PcMtr, an aromatic and neutral aliphatic amino acid permease of Penicillium chrysogenum

    NARCIS (Netherlands)

    Trip, H; Evers, ME; Driessen, AJM

    2004-01-01

    The gene encoding an aromatic and neutral aliphatic amino acid permease of Penicillium chrysogenum was cloned, functionally expressed and characterized in Saccharomyces cerevisiae M4276. The permease, designated PcMtr, is structurally and functionally homologous to Mtr of Neurospora crassa, and

  11. Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

    2012-12-01

    Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

  12. Successful completion of a time sensitive MTR and TRIGA Indonesian shipment

    International Nuclear Information System (INIS)

    Anne, Catherine; Patterson, John; Messick, Chuck

    2005-01-01

    Early this year, a shipment of 109 MTR fuel assemblies was received at the Department of Energy's Savannah River Site from the BATAN reactor in Serpong, Indonesia and another of 181 TRIGA fuel assemblies was received at the Idaho National Laboratory from the two BATAN Indonesian TRIGA reactors in Bandung and Yogyakarta, Indonesia. These were the first Other-Than- High-Income Countries shipments under the FRR program since the Spring 2001. The Global Threat Reduction Initiative announced by Secretary Abraham will require expeditious scheduling and extreme sensitivity to shipment security. The subject shipments demonstrated exceptional performance in both respects. Indonesian terrorist acts and 9/11 impacted the security requirements for the spent nuclear fuel shipments. Internal Indonesian security issues and an upcoming Indonesian election led to a request to perform the shipment with a very short schedule. Preliminary site assessments were performed in November 2003. The DOE awarded a task order to NAC for shipment performance just before Christmas 2003. The casks departed the US in January and the fuel elements were delivered at the DOE sites by the end of April 2004. The paper will present how the team completed a successful shipment in a timely manner. (author)

  13. High temperature ultrasonic sensor for fission gas characterization in MTR harsh environment

    Science.gov (United States)

    Gatsa, O.; Combette, P.; Rozenkrantz, E.; Fourmentel, D.; Destouches, C.; Ferrandis, J. Y. AD(; )

    2018-01-01

    In the contemporary world, the measurements in hostile environment is one of the predominant necessity for automotive, aerospace, metallurgy and nuclear plant. The measurement of different parameters in experimental reactors is an important point in nuclear power strategy. In the near past, IES (Institut d'Électronique et des Systèmes) on collaboration with CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) have developed the first ultrasonic sensor for the application of gas quantity determination that has been tested in a Materials Testing Reactor (MTR). Modern requirements state to labor with the materials that possess stability on its parameters around 350°C in operation temperature. Previous work on PZT components elaboration by screen printing method established the new basis in thick film fabrication and characterization in our laboratory. Our trials on Bismuth Titanate ceramics showed the difficulties related to high electrical conductivity of fabricated samples that postponed further research on this material. Among piezoceramics, the requirements on finding an alternative solution on ceramics that might be easily polarized and fabricated by screen printing approach were resolved by the fabrication of thick film from Sodium Bismuth Titanate (NBT) piezoelectric powder. This material exhibits high Curie temperature, relatively good piezoelectric and coupling coefficients, and it stands to be a good solution for the anticipated application. In this paper, we present NBT thick film fabrication by screen printing, characterization of piezoelectric, dielectric properties and material parameters studies in dependence of temperature. Relatively high resistivity in the range of 1.1013 Ohm.cm for fabricated thick film is explained by Aurivillius structure in which a-and b-layers form perovskite structure between oxides of c-layer. Main results of this study are presented and discussed in terms of feasibility for an application to a new sensor

  14. Comparison Of 252Cf Time Correlated Induced Fisssion With AmLi Induced Fission On Fresh MTR Research Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jay Prakash [Los Alamos National Laboratory

    2017-03-30

    The effective application of international safeguards to research reactors requires verification of spent fuel as well as fresh fuel. To accomplish this goal various nondestructive and destructive assay techniques have been developed in the US and around the world. The Advanced Experimental Fuel Counter (AEFC) is a nondestructive assay (NDA) system developed at Los Alamos National Laboratory (LANL) combining both neutron and gamma measurement capabilities. Since spent fuel assemblies are stored in water, the system was designed to be watertight to facilitate underwater measurements by inspectors. The AEFC is comprised of six 3He detectors as well as a shielded and collimated ion chamber. The 3He detectors are used for active and passive neutron coincidence counting while the ion chamber is used for gross gamma counting. Active coincidence measurement data is used to measure residual fissile mass, whereas the passive coincidence measurement data along with passive gamma measurement can provide information about burnup, cooling time, and initial enrichment. In the past, most of the active interrogation systems along with the AEFC used an AmLi neutron interrogation source. Owing to the difficulty in obtaining an AmLi source, a 252Cf spontaneous fission (SF) source was used during a 2014 field trail in Uzbekistan as an alternative. In this study, experiments were performed to calibrate the AEFC instrument and compare use of the 252Cf spontaneous fission source and the AmLi (α,n) neutron emission source. The 252Cf source spontaneously emits bursts of time-correlated prompt fission neutrons that thermalize in the water and induce fission in the fuel assembly. The induced fission (IF) neutrons are also time correlated resulting in more correlated neutron detections inside the 3He detector, which helps reduce the statistical errors in doubles when using the 252Cf interrogation source instead of

  15. A CFD numerical model for the flow distribution in a MTR fuel element

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho; Angelo, Gabriel

    2015-01-01

    Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)

  16. A CFD numerical model for the flow distribution in a MTR fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho, E-mail: acprado@ipen.br, E-mail: delvonei@ipen.br, E-mail: dpedro_digiovanni_s@hotmail.com, E-mail: fabio@ipen.br, E-mail: wmtorres@ipen.br, E-mail: umbehaun@ipen.br, E-mail: jasouza@ipen.br, E-mail: abelchior@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Angelo, Edvaldo, E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil); Angelo, Gabriel, E-mail: gangelo@fei.edu.br [Fundacao Educacional Inaciana (FEI), Sao Bernardo do Campo, SP (Brazil)

    2015-07-01

    Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)

  17. MTR spent fuel back-end - Cogema's long-term commitment

    International Nuclear Information System (INIS)

    Thomasson, J.

    1998-01-01

    MTR spent fuel back end has been subject to many reversal and uncertainties in the past 10 years. Until the end of 1988, US obligated materials were subject to the Off site Fuels Policy (OFP). Under this policy, spent fuels were returned to USA, and were reprocessed there. This OFP took end the 31th of December 1988, and Research Reactor's operators had to implement others solutions: On site storage or Reprocessing in Europe. Meanwhile the RERTR Program was leading to a new LEU fuel to replace HEU aluminide. This new silicide fuel has one main drawback: it cannot be reprocessed in working plants without some process main line modifications. Fortunately, a new Research Reactors spent fuels return policy has been set up by the US in the early 1996. This new policy applies to all reactors converted or that have agreed to convert to LEU, and reactors operating with HEU for which no suitable LEU is available. It covers all the spent fuels discharged until 2006/05/12. But after that period of time, each reactor will be fully responsible for its spent fuels. Since the end of 1996, COGEMA is proposing reprocessing services for Aluminides spent fuels, based on the La Hague capability. This COGEMA answer is for the long term, as the La Hague plant has a good load for the coming years, including the first decade of the next century. Further, this activity benefits from a strong R and D support, that allowed fulfilling the evolutive needs of our customers, and gives us the ability to adapt the plant to the future market. Taking advantage of this flexibility, COGEMA offers Research Reactors' operators a long-term commitment. Already two reactors' operators have chosen to contract with COGEMA for the whole life of their reactors. The contracts execution is under progress and the first transportation will take place soon. Beside today's services, COGEMA is involved in R and D activities to support new fuels development enhancing present LEU performances and having the ability to

  18. Transient thermal hydraulic analysis of the IAEA 10 MW MTR reactor during Loss of Flow Accident to investigate the flow inversion

    International Nuclear Information System (INIS)

    AL-Yahia, Omar S.; Albati, Mohammad A.; Park, Jonghark; Chae, Heetaek; Jo, Daeseong

    2013-01-01

    Highlights: • Transient analyses of a slow and fast LOFA were investigated. • A reactor kinetic and thermal hydraulic coupled model was developed. • Based on force balance, the flow rate during flow inversion was determined. • Flow inversion in a hot channel occurred earlier than in an average channel. • Two temperature peaks were observed during both slow and fast LOFA. - Abstract: Transient analyses of the IAEA 10 MW MTR reactor are investigated during a fast and slow Loss of Flow Accident (LOFA) with a neutron kinetic and thermal hydraulic coupling model. A spatial-dependent thermal hydraulic technique is adopted for analyzing the local thermal hydraulic parameters and hotspot location during a flow inversion. The flow rate through the channel is determined in terms of a balance between driving and preventing forces. Friction and buoyancy forces act as resistance of the flow before a flow inversion while buoyancy force becomes the driving force after a flow inversion. By taking into account the buoyancy effect to determine the flow rate, the difference in the flow inversion time between hot and average channels is investigated: a flow inversion occurs earlier in the hot channel than in an average channel. Furthermore, the movement of the hotspot location before and after a flow inversion is investigated for a slow and fast LOFA. During a flow inversion, two temperature peaks are observed: (1) the first temperature peak is at the initiation of the LOFA, and (2) the second temperature peak is when a flow inversion occurs. The maximum temperature of the cladding is found at the second temperature peak for both LOFA analyses, and is lower than the saturation temperature

  19. L-Area STS MTR/NRU/NRX Grapple Assembly Closure Mechanics Review

    International Nuclear Information System (INIS)

    Huizenga, D. J.

    2016-01-01

    A review of the closure mechanics associated with the Shielded Transfer System (STS) MTR/NRU/NRX grapple assembly utilized at the Savannah River Site (SRS) was performed. This review was prompted by an operational event which occurred at the Canadian Nuclear Laboratories (CNL) utilizing a DTS-XL grapple assembly which is essentially identical to the STS MTR/NRU/NRX grapple assembly used at the SRS. The CNL operational event occurred when a NRU/NRX fuel basket containing spent nuclear fuel assemblies was inadvertently released by the DTS-XL grapple assembly during a transfer. The SM review of the STS MTR/NRU/NRX grapple assembly will examine the operational aspects of the STS and the engineered features of the STS which prevent such an event at the SRS. The design requirements for the STS NRU/NRX modifications and the overall layout of the STS are provided in other documents.

  20. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Beliaev, A S; Saffarini, D A

    1998-12-01

    Iron and manganese oxides or oxyhydroxides are abundant transition metals, and in aquatic environments they serve as terminal electron acceptors for a large number of bacterial species. The molecular mechanisms of anaerobic metal reduction, however, are not understood. Shewanella putrefaciens is a facultative anaerobe that uses Fe(III) and Mn(IV) as terminal electron acceptors during anaerobic respiration. Transposon mutagenesis was used to generate mutants of S. putrefaciens, and one such mutant, SR-21, was analyzed in detail. Growth and enzyme assays indicated that the mutation in SR-21 resulted in loss of Fe(III) and Mn(IV) reduction but did not affect its ability to reduce other electron acceptors used by the wild type. This deficiency was due to Tn5 inactivation of an open reading frame (ORF) designated mtrB. mtrB encodes a protein of 679 amino acids and contains a signal sequence characteristic of secreted proteins. Analysis of membrane fractions of the mutant, SR-21, and wild-type cells indicated that MtrB is located on the outer membrane of S. putrefaciens. A 5.2-kb DNA fragment that contains mtrB was isolated and completely sequenced. A second ORF, designated mtrA, was found directly upstream of mtrB. The two ORFs appear to be arranged in an operon. mtrA encodes a putative 10-heme c-type cytochrome of 333 amino acids. The N-terminal sequence of MtrA contains a potential signal sequence for secretion across the cell membrane. The amino acid sequence of MtrA exhibited 34% identity to NrfB from Escherichia coli, which is involved in formate-dependent nitrite reduction. To our knowledge, this is the first report of genes encoding proteins involved in metal reduction.

  1. Chemometrics application in fuel's MTR type chemical characterization by X-ray fluorescence; Aplicacao da quimiometria para caracterizacao quimica de combustiveis tipo MTR por fluorescencia de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Clayton Pereira da

    2012-07-01

    In Brazil and worldwide the nuclear power has occupied a prominent position with many applications in industry, power generation, environment and medicine, improving the quality of tests and treatments, therefore people's lives. Uranium is the main element used in nuclear facilities and it s employed as base material to generation of electricity in the manufacture of radiopharmaceuticals. In the '50s, during the Cold War, the then newly created International Atomic Energy Agency proposed to oversee nuclear facilities and encourage the manufacture of nuclear fuels with low-enriched uranium (LEU) fuel came then type Material Test Reactor (MTR), manufactured initially in U{sub 3}O{sub 8} and U{sub 3}Si{sub 2} later, both dispersed in aluminum. The use of this technology requires a constant improvement of all processes involving the manufacture of MTR subject to several international protocols, which seek to ensure the reliability of the fuel from the standpoint of practical and environmental. In this context, the control of impurities, from the point of view of neutron economy, directly affects the quality of any nuclear fuel, so strict control is necessary. The literature has reported procedures which, beyond generating residues, are lengthy and costly, they need calibration curve and consequently reference materials. The aim of this work is to establish and validate a methodology for nondestructive quantitative chemical analysis, low cost and analysis time, as well as minimize the generation of waste, for multielement determination of major constituents (Utotal and Si) and impurities (B, Mg, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd and others) present in U3O8 and U{sub 3}Si{sub 2}, meeting the needs of nuclear reactors in the nuclear fuel qualification type MTR. For that purposes, will be applied the X-ray fluorescence technique which allows fast chemical and nondestructive analysis, aside from sample preparation procedures that do not require previous

  2. Removal of the Materials Test Reactor overhead working reservoir

    International Nuclear Information System (INIS)

    Lunis, B.C.

    1975-10-01

    Salient features of the removal of an excessed contaminated facility, the Materials Test Reactor (MTR) overhead working reservoir (OWR) from the Test Reactor Area to the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory are described. The 125-ton OWR was an overhead 160,000-gallon-capacity tank approximately 193 feet high which supplied cooling water to the MTR. Radiation at ground level beneath the tank was 5 mR/hr and approximately 600 mR/hr at the exterior surface of the tank. Sources ranging from 3 R/hr to in excess of 500 R/hr exist within the tank. The tank interior is contaminated with uranium, plutonium, and miscellaneous fission products. The OWR was lowered to ground level with the use of explosive cutters. Dismantling, decontamination, and disposal were performed by Aerojet Nuclear Company maintenance forces

  3. The Conserved Actinobacterial Two-Component System MtrAB Coordinates Chloramphenicol Production with Sporulation in Streptomyces venezuelae NRRL B-65442

    Directory of Open Access Journals (Sweden)

    Nicolle F. Som

    2017-06-01

    Full Text Available Streptomyces bacteria make numerous secondary metabolites, including half of all known antibiotics. Production of antibiotics is usually coordinated with the onset of sporulation but the cross regulation of these processes is not fully understood. This is important because most Streptomyces antibiotics are produced at low levels or not at all under laboratory conditions and this makes large scale production of these compounds very challenging. Here, we characterize the highly conserved actinobacterial two-component system MtrAB in the model organism Streptomyces venezuelae and provide evidence that it coordinates production of the antibiotic chloramphenicol with sporulation. MtrAB are known to coordinate DNA replication and cell division in Mycobacterium tuberculosis where TB-MtrA is essential for viability but MtrB is dispensable. We deleted mtrB in S. venezuelae and this resulted in a global shift in the metabolome, including constitutive, higher-level production of chloramphenicol. We found that chloramphenicol is detectable in the wild-type strain, but only at very low levels and only after it has sporulated. ChIP-seq showed that MtrA binds upstream of DNA replication and cell division genes and genes required for chloramphenicol production. dnaA, dnaN, oriC, and wblE (whiB1 are DNA binding targets for MtrA in both M. tuberculosis and S. venezuelae. Intriguingly, over-expression of TB-MtrA and gain of function TB- and Sv-MtrA proteins in S. venezuelae also switched on higher-level production of chloramphenicol. Given the conservation of MtrAB, these constructs might be useful tools for manipulating antibiotic production in other filamentous actinomycetes.

  4. Ageing management of the BR2 research reactor

    International Nuclear Information System (INIS)

    Verpoortem, J. R.; Van Dyck, S.

    2014-01-01

    At the Belgian nuclear research centre (SCK.CEN) several test reactors are operated. Among these, Belgian Reactor 2 (BR2) is the largest Material Test Reactor (MTR). This water-cooled, beryllium moderated reactor with a maximum thermal power of 100 MW became operational in 1962. Except for two major refurbishment campaigns of one year each, this reactor has been operated continuously over the past 50 years, with a frequency of 5-12 cycles per year. At present, BR2 is used for different research activities, the production of medical isotopes, the production of n-doped silicon and various training and education activities. (Author)

  5. Transportation of spent MTR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Raisonnier, D.

    1997-08-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs.

  6. Transportation of spent MTR fuels

    International Nuclear Information System (INIS)

    Raisonnier, D.

    1997-01-01

    This paper gives an overview of the various aspects of MTR spent fuel transportation and provides in particular information about the on-going shipment of 4 spent fuel casks to the United States. Transnucleaire is a transport and Engineering Company created in 1963 at the request of the French Atomic Energy Commission. The company followed the growth of the world nuclear industry and has now six subsidiaries and affiliated companies established in countries with major nuclear programs

  7. Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Chih-Chia Su

    2015-04-01

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.

  8. Flow velocity calculation to avoid instability in a typical research reactor core

    International Nuclear Information System (INIS)

    Oliveira, Carlos Alberto de; Mattar Neto, Miguel

    2011-01-01

    Flow velocity through a research reactor core composed by MTR-type fuel elements is investigated. Core cooling capacity must be available at the same time that fuel-plate collapse must be avoided. Fuel plates do not rupture during plate collapse, but their lateral deflections can close flow channels and lead to plate over-heating. The critical flow velocity is a speed at which the plates collapse by static instability type failure. In this paper, critical velocity and coolant velocity are evaluated for a typical MTR-type flat plate fuel element. Miller's method is used for prediction of critical velocity. The coolant velocity is limited to 2/3 of the critical velocity, that is a currently used criterion. Fuel plate characteristics are based on the open pool Australian light water reactor. (author)

  9. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-01-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  10. Examples of in-service inspections and typical maintenance schedule for low-power research reactors

    International Nuclear Information System (INIS)

    Boeck, H.

    1997-01-01

    In-service inspection methods for low-power research reactors are described which have been developed during the past 37 years of the operation of the TRIGA reactor Vienna. Special tools have been developed during this period and their application for maintenance and in-serve inspection is discussed. Two practical in-service inspections at a TRIGA reactor and at a MTR reactor are presented. Further a typical maintenance plan for a TRIGA reactor is listed in the annex. (author)

  11. Coupled 3D neutronics/thermal hydraulics modeling of the SAFARI-1 MTR

    International Nuclear Information System (INIS)

    Rosenkrantz, Adam; Avramova, Maria; Ivanov, Kostadin; Prinsloo, Rian; Botes, Danniëll; Elsakhawy, Khalid

    2014-01-01

    Highlights: • Development of 3D coupled neutronics/thermal–hydraulic model of SAFARI-1. • Verification of 3D steady-state NEM based neutronics model for SAFARI-1. • Verification of 3D COBRA-TF based thermal–hydraulic model of SAFARI-1. • Quantification of the effect of correct modeling of thermal–hydraulic feedback. - Abstract: The purpose of this study was to develop a coupled accurate multi-physics model of the SAFARI-1 Material Testing Reactor (MTR), a facility that is used for both research and the production of medical isotopes. The model was developed as part of the SAFARI-1 benchmarking project as a cooperative effort between the Pennsylvania State University (PSU) and the South African Nuclear Energy Corporation (Necsa). It was created using a multi-physics coupling of state of the art nuclear reactor simulation tools, consisting of a neutronics code and a thermal hydraulics code. The neutronics tool used was the PSU code NEM, and the results from this component were verified using the Necsa neutronics code OSCAR-4, which is utilized for SAFARI-1 core design and fuel management. On average, the multiplication factors of the neutronics models agreed to within 5 pcm and the radial assembly-averaged powers agreed to within 0.2%. The thermal hydraulics tool used was the PSU version of COBRA-TF (CTF) sub-channel code, and the results of this component were verified against another thermal hydraulics code, the RELAP5-3D system code, used at Necsa for thermal–hydraulics analysis of SAFARI-1. Although only assembly-averaged results from RELAP5-3D were available, they fell within the range of values for the corresponding assemblies in the comprehensive CTF solution. This comparison allows for the first time to perform a quantification of steady-state errors for a low-powered MTR with an advanced thermal–hydraulic code such as CTF on a per-channel basis as compared to simpler and coarser-mesh RELAP5-3D modeling. Additionally, a new cross section

  12. Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities

    International Nuclear Information System (INIS)

    1994-10-01

    The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition

  13. French experience in design, operation and revamping of nuclear research reactors, in support of advanced reactors development

    International Nuclear Information System (INIS)

    Barre, B.; Bergeonneau, P.; Merchie, F.; Minguet, J.L.; Rousselle, P.

    1996-01-01

    The French nuclear program is strongly based on the R and D work performed in the CEA nuclear research centers and particularly on the various experimental programs carried out in its research reactors in the frame of cooperative actions between the Commissariat a l'Energie Atomique (CEA), Framatome and Electricite de France (EDF). Several types of research reactors have been built by Technicatome and CEA to carry out successfully this considerable R and D work on fuels and materials, among them the socalled Materials Testing Reactors (MTR) SILOE (35 MW) and OSIRIS (70 MW) which are indeed very well suited for technological irradiations. Their simple and flexible design and the large irradiation space available around the core, the SILOE and OSIRIS reactors can be shared by several types of applications such as fuel and material testings for nuclear power plants, radioisotopes production, silicon doping and fundamental research. It is worthwhile recalling that Technicatome and CEA have also built research reactors fully dedicated to safety experimental studies, such as the CABRI, SCARABEE and PHEBUS reactors at Cadarache, and others dedicated to fundamental research such as ORPHEE (14 MW) and the Reacteur a Haut Flux -High Flux Reactor- (RHF 57 MW). This paper will present some of the most significant conceptual and design features of all these reactors as well as the main improvements brought to most of them in the last years. Based on this wide experience, CEA and Technicatome have specially designed for export a new multipurpose research reactor named SIRIUS, with two versions depending on the utilization spectrum and the power range (5 MW to 30 MW). At last, CEA has recently launched the preliminary project study of a new MTR, the Jules Horowitz Reactor, to meet the future needs of fuels and materials irradiations in the next 4 or 5 decades, in support of the French long term nuclear power program. (J.P.N.)

  14. Detection of mutations in mtrR gene in quinolone resistant strains of N.gonorrhoeae isolated from India

    Directory of Open Access Journals (Sweden)

    S V Kulkarni

    2015-01-01

    Full Text Available Background and Objectives: Emergence of multi-drug resistant Neisseria gonorrhoeae resulting from new genetic mutation is a serious threat in controlling gonorrhea. This study was undertaken to identify and characterise mutations in the mtrR genes in N.gonorrhoeae isolates resistant to six different antibiotics in the quinolone group. Materials and Methods: The Minimum inhibitory concentrations (MIC of five quinolones for 64 N.gonorrhoeae isolates isolated during Jan 2007-Jun 2009 were determined by E-test method. Mutations in MtrR loci were examined by deoxyribonucleic acid (DNA sequencing. Results: The proportion of N.gonorrhoeae strains resistant to anti-microbials was 98.4% for norfloxacin and ofloxacin, 96.8% for enoxacin and ciprofloxacin, 95.3% for lomefloxacin. Thirty-one (48.4% strains showed mutation (single/multiple in mtrR gene. Ten different mutations were observed and Gly-45 → Asp, Tyr-105 → His being the most common observed mutation. Conclusion: This is the first report from India on quinolone resistance mutations in MtrRCDE efflux system in N.gonorrhoeae. In conclusion, the high level of resistance to quinolone and single or multiple mutations in mtrR gene could limit the drug choices for gonorrhoea.

  15. Does Magnetization Transfer Ratio (MTR) contribute to the diagnosis and differential diagnosis of the dementias?

    International Nuclear Information System (INIS)

    Hentschel, F.; Kreis, M.; Damian, M.; Krumm, B.

    2004-01-01

    Purpose: The magnetization transfer ratio (MTR) is a MR-based neuroimaging procedure aiming at the quantification of the structural integrity of brain tissue. Its contribution to the differential diagnosis of dementias was examined and discussed in relation to the pathogenesis of age-related dementias. Materials and Methods: Sixty-one patients from a memory clinic were diagnosed by general physical and neuropsychiatric examination, and underwent neuropsychologic testing and neuroimaging using MRI. Their clinical diagnoses were based on standard operational research criteria. Additionally, the MTR in 10 defined regions of interest (ROI) was determined. This investigation was performed using a T1-weighted SE sequence. Average MTR values were determined in the individual ROI and their combinations and correlated with the age gender, cognitive impairment and clinical diagnosis. Sensitivity, specificity, positive and negative predictive value were determined, as well as the rate of correct classifications. Results: For cognitive healthy subjects, the MRT values correlate only mildly, though significantly, with age in the hippocampus and with gender in the dorsal corpus callosum. In contrast, the MTR in the frontal white matter correlates strongly and highly significantly with cognitive impairment in patients with dementia. The differential diagnostic assignment of Alzheimer's disease versus vascular dementia by MTR provides a correct classification of approximately 50% to 70%. PPV for no dementia vs. vascular dementia or the NPV for vascular vs. Alzheimer's disease are considerably higher exceeding 80%. For no dementia vs. Alzheimer's disease, the NPV was over 90%. (orig.)

  16. The Jules Horowitz reactor, a new high performance European material testing reactor open to international users: present status and objectives

    International Nuclear Information System (INIS)

    Iracane, D.; Bignan, G.

    2010-01-01

    The development of nuclear power as a sustainable and competitive energy source will continue to require research and development of fuel and material behaviour under irradiation. This necessitates a high performance material testing reactor (MTR). Facing the obsolescence of most of the existing MTR in Europe, France decided a few years ago the construction of the RJH (Jules Horowitz reactor). RJH is designed, built and will be operated as an international user facility. A first set of experimental hosting devices is being designed. For instance, there are the in-core CALIPSO Nak integrated loop for material studies and other loops for fuel studies under nominal or off-normal or accidental conditions. The RJH international program will focus on the following subjects: -) fuel reliability, assessed through power ramps tests and post-irradiation examination; -) Loss of coolant tests done out-of-pile in a first phase and in-pile in a possible second phase; and -) source term tests addressing fission products release. The paper reports also the point of view of VATTENFALL (a Swedish power utility), as a potential European RJH user. (A.C.)

  17. The Jules Horowitz Reactor project, a driver for revival of the research reactor community

    International Nuclear Information System (INIS)

    Pere, P.; Cavailler, C.; Pascal, C.

    2010-01-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first-rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10 14 n.cm -2 /sec -1 E>1 MeV in core and 3,6x10 14 n.cm -2 /sec -1 E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items:accommodation of a broad experimental domain; involvement by international partners making in-kind contributions to the project; ? development of components critical to safety and performance; the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and; tools to carry out the project, including computer codes

  18. Rules for the licensing of new experiments in BR2: application to the test irradiation of new MTR-fuels

    International Nuclear Information System (INIS)

    Joppen, F.

    2000-01-01

    New types of MTR fuel elements are being developed and require a qualification before routine operation could be authorized. During the test irradiation the new fuel elements .are considered as experimental devices and their irradiation is allowed according to the procedures for experiments. Authorization is based on the advice .of a consultative committee on experiments. This procedure is valid as long as the irradiation is covered by the actual reactor license. An additional license or an amendment is only required if due to the experiment the risk for the workers or the environment is increased in a significant way. A few experimental fuel plates loaded in the primary loop of the reactor will not increase this risk. The source term for potential radioactive releases remains more or less the same. The probability for an accident can be limited by restricting the heat flux and surface temperature. (author)

  19. Research reactor fuel transport in the U.K

    Energy Technology Data Exchange (ETDEWEB)

    Panter, R [U.K. Atomic Energy Authority, Harwell (United Kingdom)

    1983-09-01

    This paper describes the containers currently used for transport of fresh or spent fuel elements for Research and Materials Test Reactors in the U.K., their status, operating procedures and some of the practical difficulties. In the U.K., MTR fuel cycle work is almost entirely the responsibility of the U.K. Atomic Energy Authority.

  20. Burnup measurements on spent fuel elements of the RP-10 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro, E-mail: mvela@ipen.gob.p [Instituto Peruano de Energia Nuclear (IPEN/Peru), Lima (Peru). Grupo de Calculo, Analisis y Seguridad de Reactores; Terremoto, Luis Antonio Albiac, E-mail: laaterre@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using {sup 137}Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  1. Burnup measurements on spent fuel elements of the RP-10 research reactor

    International Nuclear Information System (INIS)

    Vela Mora, Mariano; Gallardo Padilla, Alberto; Palomino, Jose Luis Castro

    2011-01-01

    This work describes the measurement, using nondestructive gamma-ray spectroscopy, of the average burnup attained by Material Testing Reactor (MTR) fuel elements irradiated in the RP-10 research reactor. Measurements were performed at the reactor storage pool area using 137 Cs as the only burnup monitor, even for spent fuel elements with cooling times much shorter than two years. The experimental apparatus was previously calibrated in efficiency to obtain absolute average burnup values, which were compared against corresponding ones furnished by reactor physics calculations. The mean deviation between both values amounts to 6%. (author)

  2. Operational and research activities of Tsing Hua open pool reactor

    International Nuclear Information System (INIS)

    Wang, T.-K.; Tseng, D.-L.; Chou, H.-P.; Onyang Minsun

    1988-01-01

    Tsing Hua Open Pool Reaction (THOR) is the first nuclear reactor to become operational in Taiwan. It reached its first critical on April 13, 1961. Until now, THOR has been operated successfully for 27 years. The major missions of THOR include radioisotope production, neutron activation analysis, nuclear science and engineering researches, education, and personnel training. The THOR was originally loaded with HEU MTR-type fuels. A gradual fuel replacing program using LEU TRIGA fuel to replace MTR started in 1977. By 1987, THOR was loaded with all TRIGA fuels. This paper gives a brief history of THOR, its current status, the core conversion work, some selected research topics, and its improvement plan. (author)

  3. Irradiation experience of IPEN fuel at IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Perrotta, Jose A.; Neto, Adolfo; Durazzo, Michelangelo; Souza, Jose A.B. de; Frajndlich, Roberto

    1998-01-01

    IPEN/CNEN-SP produces, for its IEA-R1 Research Reactor, MTR fuel assemblies based on U 3 O 8 -Al dispersion fuel type. Since 1985 a qualification program on these fuel assemblies has been performed. Average 235 U burnup of 30% and peak burnup of 50% was already achieved by these fuel assemblies. This paper presents some results acquire, by these fuel assemblies, under irradiation at IEA-R1 Research Reactor. (author)

  4. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    Energy Technology Data Exchange (ETDEWEB)

    Hastowo, Hudi; Tarigan, Alim [Multipurpose Reactor Center, National Nuclear Energy Agency of the Republic of Indonesia (PRSG-BATAN), Kawasan PUSPIPTEK Serpong, Tangerang (Indonesia)

    1999-08-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U{sub 3}O{sub 8}-Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  5. Operation experience of the Indonesian multipurpose research reactor RSG-GAS

    International Nuclear Information System (INIS)

    Hastowo, Hudi; Tarigan, Alim

    1999-01-01

    RSG-GAS is a multipurpose research reactor with nominal power of 30 MW, operated by BATAN since 1987. The reactor is an open pool type, cooled and moderated with light water, using the LEU-MTR fuel element in the form of U 3 O 8 -Al dispersion. Up to know, the reactor have been operated around 30,000 hours to serve the user. The reactor have been utilized to produce radioisotope, neutron beam experiments, irradiation of fuel element and its structural material, and reactor physics experiments. This report will explain in further detail concerning operational experience of this reactor, i.e. reactor operation data, reactor utilization, research program, technical problems and it solutions, plant modification and improvement, and development plan to enhance better reactor operation performance and its utilization. (author)

  6. Integrity assessment of research reactor fuel cladding and material testing using eddy current inspection

    International Nuclear Information System (INIS)

    Alencar, Donizete Anderson de

    2004-01-01

    A methodology to perform the integrity assessment of research reactors nuclear fuels cladding, such as those installed in IPR-Rl (TRIGA) and IEA-R1 (MTR), using nondestructive electromagnetic inspection (eddy current) is presented. This methodology is constituted by: the development of calibration reference standards, specific for each type of fuel; the development of special test probes; the recommendations for the inspection equipment calibration; the construction of voltage based evaluation curves and the inspection procedures developed for the characterization of detected flaws. The test probes development, specially those designed for the inspection of MTR fuels cladding, which present access difficulties due to the narrow gap between fuel plates (2,89 mm for IEAR-R1), constituted a challenge that demanded the introduction of unusual materials and constructive techniques. The operational performance of the developed resources, as well as the special operative characteristics of the test probes, such as their immunity to adjacent fuel plates interference and electrical resistivity changes of the fuels meat are experimentally demonstrated. The practical applicability of the developed methodology is verified in non radioactive environment, using a dummy MTR fuel element model, similar to an IEA-R1 reactor fuel element, produced and installed in IPEN, Sao Paulo. The efficacy of the proposed methodology was verified by the achieved results. (author)

  7. Preparations for the shipment of RA-3 reactor irradiated fuel

    International Nuclear Information System (INIS)

    Goldschmidt, Adrian; Novara, Oscar; Lafuente, Jose

    2002-01-01

    During the last quarter of 2000, in the Radioactive Waste Management Area of the Argentine National Commission of Atomic Energy (CNEA), located at Ezeiza Atomic Center (CAE), activities associated to the shipment of 207 MTR spent fuels containing high enrichment uranium were carried out within the Foreign Research Reactor/Domestic Research Reactor Receipt Program launched by the US Department of Energy (DOE). The MTR spent fuel shipped to Savannah River Site (SRS) was fabricated in Argentina with 90% enriched uranium of US origin and it was utilized in the operation of the research and radioisotope production reactor RA-3 from 1968 until 1987. After a cooling period at the reactor, the spent fuel was transferred to the Central Storage Facility (CSF) located in the waste management area of CAE for interim storage. The spent fuel (SF) inventory consisted of 166 standard assemblies (SA) and 41 control assemblies (CA). Basically, the activities performed were the fuel conditioning operations inside the storage facility (remote transference of the assemblies to the operation pool, fuel cropping, fuel re-identification, loading in transport baskets, etc.) conducted by CNEA. The loading of the filled baskets in the transport casks (NAC-LWT) by means of intermediate transfer systems and loaded casks final preparations were conducted by NAC personnel (DOE's contractor) with the support of CNEA personnel. (author)

  8. Criticality Studies in a Pilot Plant for Processing MTR-Type Irradiated Fuels; Estudios de Criticidad de una Planta Piloto para el Tratamiento de Combustibles Irradiados Tipo ' MTR '

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Sanchez, G.; Uriarte Hueda, A. [Junta de Energia Nuclear, Division de Materiales Madrid (Spain)

    1966-05-15

    A number of theoretical studies on nuclear safety have been carried out in a pilot plant being constructed at the Junta de Energia Nuclear in Madrid for processing irradiated fuels from the MTR-type experimental reactor JEN-1. The study was carried out working with aqueous and organic solutions at two levels of {sup 235}U enrichment - 20% and 93%. The paper is divided into two main parts: the first deals with the individual items of equipment, and the interactions between these are studied in the second part. The calculations in this second part have been made using three different methods to make it more certain that the system as a whole can never be critical. The first method employed is based on the solid angle concept and makes it possible to fix the maximum {sup 235}U concentrations within the system. The second method, based on the albedo, supplies the value of the multiplication factor K of the whole assembly as a function of the concentration of {sup 235}U. In the last part, the distribution of the equipment is compared with other similar systems and experimental tests from other sources. Finally, the paper specifies the conditions for working the installation which ensure that a nuclear accident can never occur. (author) [Spanish] Se ha efectuado una serie de estudios teoricos sobre la seguridad nuclear de una planta piloto, que se encuentra en construccion en la Junta de Energfa Nuclear situada en Madrid, para el tratamiento de combustibles irradiados procedentes del reactor experimental JEN-1 del tipo MTR. El estudio se ha realizado utilizando disoluciones, tanto acuosas como organicas, con dos grados de enriquecimiento, 20% y 93% en {sup 235}U. Este trabajo comprende dos partes principales: en la primera se han considerado las distintas unidades del equipo individualmente y en la segunda se han estudiado las interacciones entre ellas. El calculo de esta segunda parte se ha hecho por tres metodos diferentes para tener una mayor seguridad de que el

  9. Control of gdhR Expression in Neisseria gonorrhoeae via Autoregulation and a Master Repressor (MtrR of a Drug Efflux Pump Operon

    Directory of Open Access Journals (Sweden)

    Corinne E. Rouquette-Loughlin

    2017-04-01

    Full Text Available The MtrCDE efflux pump of Neisseria gonorrhoeae contributes to gonococcal resistance to a number of antibiotics used previously or currently in treatment of gonorrhea, as well as to host-derived antimicrobials that participate in innate defense. Overexpression of the MtrCDE efflux pump increases gonococcal survival and fitness during experimental lower genital tract infection of female mice. Transcription of mtrCDE can be repressed by the DNA-binding protein MtrR, which also acts as a global regulator of genes involved in important metabolic, physiologic, or regulatory processes. Here, we investigated whether a gene downstream of mtrCDE, previously annotated gdhR in Neisseria meningitidis, is a target for regulation by MtrR. In meningococci, GdhR serves as a regulator of genes involved in glucose catabolism, amino acid transport, and biosynthesis, including gdhA, which encodes an l-glutamate dehydrogenase and is located next to gdhR but is transcriptionally divergent. We report here that in N. gonorrhoeae, expression of gdhR is subject to autoregulation by GdhR and direct repression by MtrR. Importantly, loss of GdhR significantly increased gonococcal fitness compared to a complemented mutant strain during experimental murine infection. Interestingly, loss of GdhR did not influence expression of gdhA, as reported for meningococci. This variance is most likely due to differences in promoter localization and utilization between gonococci and meningococci. We propose that transcriptional control of gonococcal genes through the action of MtrR and GdhR contributes to fitness of N. gonorrhoeae during infection.

  10. Concepts for the interim storage of spent fuel elements from research reactors in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Niephaus, D.; Bensch, D.; Quaassdorff, P.; Plaetzer, S.

    1997-01-01

    Research reactors have been operated in the Federal Republic of Germany since the late fifties. These are Material Test Reactors (MTR) and training, Research and Isotope Facilities of General Atomic (TRIGA). A total of seven research reactors, i.e. three TRIGA and four MTR facilities were still in operation at the beginning of 1996. Provisions to apply to the back-end of the fuel cycle are required for their continued operation and for already decommissioned plants. This was ensured until the end of the eighties by the reprocessing of spent fuel elements abroad. In view of impeding uncertainties in connection with waste management through reprocessing abroad, the development of a national back-end fuel cycle concept was commissioned by the Federal Minister of Education, Science, Research and Technology in early 1990. Development work was oriented along the lines of the disposal concept for irradiated light-water reactor fuel elements from nuclear power plants. Analogously, the fuel elements from research reactors are to be interim-stored on a long-term basis in adequately designed transport and storage casks and then be directly finally disposed without reprocessing after up to forty years of interim storage. As a first step in the development of a concept for interim storage, several sites with nuclear infrastructure were examined and assessed with respect to their suitability for interim storage. A reasonably feasible reference concept for storing the research reactor fuel elements in CASTOR MTR 2 transport and storage casks at the Ahaus interim storage facility (BZA) was evaluated and the hot cell facility and AVR store of Forschungszentrum Juelich (KFA) were proposed as an optional contingency concept for casks that cannot be repaired at Ahaus. Development work was continued with detailed studies on these two conceptual variants and the results are presented in this paper. (author)

  11. Safety features of TR-2 reactor

    International Nuclear Information System (INIS)

    Tuerker, T.

    2001-01-01

    TR-2 is a swimming pool type research reactor with 5 MW thermal power and uses standard MTR plate type fuel elements. Each standard fuel element consist of 23 fuel plates with a meat + cladding thickness of 0.127 cm, coolant channel clearance is 0.21 cm. Originally TR-2 is designed for %93 enriched U-Al. Alloy fuel meat.This work is based on the preparation of the Final Safety Analyses Report (FSAR) of the TR-2 reactor. The main aspect is to investigate the behaviour of TR-2 reactor under the accident and abnormal operating conditions, which cowers the accident spectrum unique for the TR-2 reactor. This presentation covers some selected transient analyses which are important for the safety aspects of the TR-2 reactor like reactivity induced startup accidents, pump coast down (Loss of Flow Accident, LOFA) and other accidents which are charecteristic to the TR-2

  12. Economical analysis to utilize MTR fuel elements using silicides in research reactors

    International Nuclear Information System (INIS)

    Bergallo, Juan E.; Novara, Oscar E.; Adelfang, Pablo

    2000-01-01

    According to international programs on reducing enrichment in research reactors and the necessity to maintain their operation, new fuel elements have been developed in order to meet both objectives. Thus, U-Si alloy fuel elements for research reactors are becoming of greater interest for the international markets. It became necessary to make an economic study about the convenience of introducing this type of fuel elements in the RA-3 reactor and to know the potentiality of this fuel. The economical behavior of the reactor operation has been evaluated comparing the actual U 3 O 8 nuclear fuel cycle with U 3 Si 2 nuclear fuels. Results obtained show that the main economical factor to determine the change of fuels is the cost of fabrication, and the change is advisable up to an 80% difference. The other factors related to the cost of nuclear fuel cycle are not relevant or have real minor impacts. (author)

  13. Transportation of 33 irradiated MTR fuel assemblies from FRM/Garching to Savannah River Site, USA, using a GNS transport cask and using a new loading device

    International Nuclear Information System (INIS)

    Dreesen, K.; Goetze, H.G.; Holst, L.; Gerstenberg, H.; Schreckenbach, K.

    2000-01-01

    According to the Department of Energy program of the return spent fuel from the foreign research reactors operators, 33 irradiated MTR box shaped fuel assemblies from the Technical University Munich were shipped to SRS/USA. The fuel assemblies were irradiated for typically 800 full days and, after a sufficient cooling time, loaded into a GNS 16 cask. The GNS 16 cask is a new transport cask for box shaped MTR fuel assemblies and TRIGA fuel assemblies and was used for the first time at the FRM Garching. The capacity of the cask is 33 box shaped MTR fuel assemblies. During the loading of the fuel assemblies, a newly developed loading device was used. The main components of the loading device are the transfer flask, the shielded loading lock, adapter plate and a mobile water tank. The loading device works mechanically with manpower. For the handling of the transfer flask, a crane with a capacity of 5 metric tons is necessary. During installation of the lid the mobile water pool is filled with demineralized water and the shielded loading passage is taken away. After that the lid is put on the cask. After drainage, the mobile water pool is disassembled, and the cask is dewatered. Finally leak tests of all seals are made. The achieved leakage rate was -5 Pa x I/s. The work in FRM was done between 03.02.99 and 12.02.99 including a dry run and leak test. (author)

  14. Insertion of reactivity (RIA) without scram in the reactor core IEA-R1 using code PARET

    International Nuclear Information System (INIS)

    Alves, Urias F.; Castrillo, Lazara S.; Lima, Fernando A.

    2013-01-01

    The modeling and analysis thermo hydraulics of a research reactor with MTR type fuel elements - Material Testing Reactor - was performed using the code PARET (Program for the Analysis of Reactor Transients) when in the system some external event is introduced that changed the reactivity in the reactor core. Transients of Reactivity Insertion of 0.5 , 1.5 and 2.0$/ 0.7s in the brazilian reactor IEA-R1 will be presented, and will be shown under what conditions it is possible to ensure the safe operation of its nucleus. (author)

  15. Economical analysis to utilize MTR fuel elements using silicides in research reactors; Analisis economico sobre el uso de elementos combustibles MTR a base de siliciuros en reactores de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Bergallo, Juan E; Novara, Oscar E; Adelfang, Pablo [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Combustibles Nucleares

    2000-07-01

    According to international programs on reducing enrichment in research reactors and the necessity to maintain their operation, new fuel elements have been developed in order to meet both objectives. Thus, U-Si alloy fuel elements for research reactors are becoming of greater interest for the international markets. It became necessary to make an economic study about the convenience of introducing this type of fuel elements in the RA-3 reactor and to know the potentiality of this fuel. The economical behavior of the reactor operation has been evaluated comparing the actual U{sub 3}O{sub 8} nuclear fuel cycle with U{sub 3}Si{sub 2} nuclear fuels. Results obtained show that the main economical factor to determine the change of fuels is the cost of fabrication, and the change is advisable up to an 80% difference. The other factors related to the cost of nuclear fuel cycle are not relevant or have real minor impacts. (author)

  16. The Jules Horowitz reactor project, a driver for revival of the research reactor community

    Energy Technology Data Exchange (ETDEWEB)

    Pere, P.; Cavailler, C.; Pascal, C. [AREVA TA, CEA Cadarache - Etablissement d' AREVA TA - Chantier RJH - MOE - BV2 - BP no. 9 - 13115 Saint Paul lez Durance (France); CS 50497 - 1100, rue JR Gauthier de la Lauziere, 13593 Aix en Provence cedex 3 (France)

    2010-07-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10{sup 14} n.cm{sup -2}/sec{sup -1} E> 1 MeV in core and 3,6x10{sup 14} n.cm{sup -2}/sec{sup -1} E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960's, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items: - accommodation of a broad experimental domain, - involvement by international partners making in-kind contributions to the project, - development of components critical to safety and performance, - the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and

  17. Use of heterogeneous finite elements generated by collision probability solutions to calculate a pool reactor core

    International Nuclear Information System (INIS)

    Calabrese, C.R.; Grant, C.R.

    1990-01-01

    This work presents comparisons between measured fluxes obtained by activation of Manganese foils in the light water, enriched uranium research pool reactor RA-2 MTR (Materials Testing Reactors) fuel element) and fluxes calculated by the finite element method FEM using DELFIN code, and describes the heterogeneus finite elements by a set of solutions of the transport equations for several different configurations obtained using the collision probability code HUEMUL. The agreement between calculated and measured fluxes is good, and the advantage of using FEM is showed because to obtain the flux distribution with same detail using an usual diffusion calculation it would be necessary 12000 mesh points against the 2000 points that FEM uses, hence the processing time is reduced in a factor ten. An interesting alternative to use in MTR fuel management is presented. (Author) [es

  18. Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase

    Energy Technology Data Exchange (ETDEWEB)

    Wasmuth, Elizabeth V. [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Zinder, John C. [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, United States; Zattas, Dimitrios [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Das, Mom [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Lima, Christopher D. [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States

    2017-07-25

    Nuclear RNA exosomes catalyze a range of RNA processing and decay activities that are coordinated in part by cofactors, including Mpp6, Rrp47, and the Mtr4 RNA helicase. Mpp6 interacts with the nine-subunit exosome core, while Rrp47 stabilizes the exoribonuclease Rrp6 and recruits Mtr4, but it is less clear if these cofactors work together. Using biochemistry with Saccharomyces cerevisiae proteins, we show that Rrp47 and Mpp6 stimulate exosome-mediated RNA decay, albeit with unique dependencies on elements within the nuclear exosome. Mpp6-exosomes can recruit Mtr4, while Mpp6 and Rrp47 each contribute to Mtr4-dependent RNA decay, with maximal Mtr4-dependent decay observed with both cofactors. The 3.3 Å structure of a twelve-subunit nuclear Mpp6 exosome bound to RNA shows the central region of Mpp6 bound to the exosome core, positioning its Mtr4 recruitment domain next to Rrp6 and the exosome central channel. Genetic analysis reveals interactions that are largely consistent with our model.

  19. Physics experiment on the Dragon reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, C.

    1974-10-15

    The paper describes a set of DRAGON experiments planned to measure burn-up effects in DRAGON irradiated fuel. Irradiated fuel elements from DRAGON are to be subjected to reactivity measurements in the HECTOR experimental reactor to infer the residual U235 content followed by isotopic analyses at CEA laboratories in 1975. Fast neutron damage to DRAGON graphite is compared to fast neutron dose measurements using Ni58 (n,p) Co58 activation wires in both DRAGON and the DIDO MTR. Gamma scanning of irradiated fuel elements are used to compare axial power profiles to those derived from two-dimensional and three-dimensional calculations of the DRAGON reactor.

  20. Preliminary concept of a zero power nuclear reactor core

    International Nuclear Information System (INIS)

    Mai, Luiz Antonio; Siqueira, Paulo de Tarso D.

    2011-01-01

    The purpose of this work is to define a zero power core to study the neutronic behavior of a modern research reactor as the future RMB (Brazilian Nuclear Multipurpose reactor). The platform used was the IPEN/MB-01 nuclear reactor, installed at the Nuclear and Energy Research Institute (IPEN-CNEN/SP). Equilibrium among minimal changes in the current reactor facilities and an arrangement that will be as representative as possible of a future core were taken into account. The active parts of the elements (fuel and control/safety) were determined to be exactly equal the elements of a future reactor. After several technical discussions, a basic configuration for the zero power core was defined. This reactor will validate the neutronic calculations and will allow the execution of countless future experiments aiming a real core. Of all possible alternative configurations for the zero power core representative of a future reactor - named ZPC-MRR (Zero Power Core - Modern Research Reactor), it was concluded, through technical and practical arguments, that the core will have an array of 4 x 5 positions, with 19 fuel elements, identical in its active part to a standard MTR (Material Test Reactor), 4 control/safety elements having a unique flat surface and a central position of irradiation. The specifications of the fuel elements (FEs) are the same as defined to standard MTR in its active part, but the inferior nozzles are differentiated because ZPC-MRR will be a set without heat generation. A study of reactivity was performed using MCNP code, and it was estimated that it will have around 2700 pcm reactivity excess in its 19 FEs configuration (alike the present IPEN/MB-01 reactivity). The effective change in the IPEN/MB-01 reactor will be made only in the control rods drive mechanism. It will be necessary to modify the center of this mechanism. Major modifications in the facility will not be necessary. (author)

  1. Preliminary concept of a zero power nuclear reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Luiz Antonio; Siqueira, Paulo de Tarso D., E-mail: lamai@ipen.b, E-mail: ptsiquei@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The purpose of this work is to define a zero power core to study the neutronic behavior of a modern research reactor as the future RMB (Brazilian Nuclear Multipurpose reactor). The platform used was the IPEN/MB-01 nuclear reactor, installed at the Nuclear and Energy Research Institute (IPEN-CNEN/SP). Equilibrium among minimal changes in the current reactor facilities and an arrangement that will be as representative as possible of a future core were taken into account. The active parts of the elements (fuel and control/safety) were determined to be exactly equal the elements of a future reactor. After several technical discussions, a basic configuration for the zero power core was defined. This reactor will validate the neutronic calculations and will allow the execution of countless future experiments aiming a real core. Of all possible alternative configurations for the zero power core representative of a future reactor - named ZPC-MRR (Zero Power Core - Modern Research Reactor), it was concluded, through technical and practical arguments, that the core will have an array of 4 x 5 positions, with 19 fuel elements, identical in its active part to a standard MTR (Material Test Reactor), 4 control/safety elements having a unique flat surface and a central position of irradiation. The specifications of the fuel elements (FEs) are the same as defined to standard MTR in its active part, but the inferior nozzles are differentiated because ZPC-MRR will be a set without heat generation. A study of reactivity was performed using MCNP code, and it was estimated that it will have around 2700 pcm reactivity excess in its 19 FEs configuration (alike the present IPEN/MB-01 reactivity). The effective change in the IPEN/MB-01 reactor will be made only in the control rods drive mechanism. It will be necessary to modify the center of this mechanism. Major modifications in the facility will not be necessary. (author)

  2. Multi-target retrieval (MTR): the simultaneous retrieval of pressure, temperature and volume mixing ratio profiles from limb-scanning atmospheric measurements

    International Nuclear Information System (INIS)

    Dinelli, B.M.; Alpaslan, D.; Carlotti, M.; Magnani, L.; Ridolfi, M.

    2004-01-01

    In this paper we describe a retrieval approach for the simultaneous determination of the altitude distributions of p, T and VMR of atmospheric constituents from limb-scanning measurements of the atmosphere. This analysis method, named multi-target retrieval (MTR), has been designed and implemented in a computer code aimed at the analysis of MIPAS-ENVISAT observations; however, the concepts implemented in MTR have a general validity and can be extended to the analysis of all type of limb-scanning observations. In order to assess performance and advantages of the proposed approach, MTR has been compared with the sequential analysis system implemented by ESA as the level-2 processor for MIPAS measurements. The comparison has been performed on a common set of target species and spectral intervals. The performed tests have shown that MTR produces results of better quality than a sequential retrieval. However, the simultaneous retrieval of p, T and water VMR has not lead to satisfactory results below the tropopause, because of the high correlation occurring between p and water VMR in the troposphere. We have shown that this problem can be fixed extending the MTR analysis to at least one further target whose spectral features decouple the retrieval of pressure and water VMR. Ozone was found to be a suitable target for this purpose. The advantages of the MTR analysis system in terms of systematic errors have also been discussed

  3. Thermal simulations and tests in the development of a helmet transport spent fuel elements Research Reactor

    International Nuclear Information System (INIS)

    Saliba, R.; Quintana, F.; Márquez Turiello, R.; Furnari, J.C.; Pimenta Mourão, R.

    2013-01-01

    A packaging for the transport of irradiated fuel from research reactors was designed by a group of researchers to improve the capability in the management of spent fuel elements from the reactors operated in the region. Two half-scale models for MTR fuel were constructed and tested so far and a third one for both MTR and TRIGA fuels will be constructed and tested next. Four test campaigns have been carried out, covering both normal and hypothetical accident conditions of transportation. The thermal test is part of the requirements for the qualification of transportation packages for nuclear reactors spent fuel elements. In this paper both the numerical modelling and experimental thermal tests performed are presented and discussed. The cask is briefly described as well as the finite element model developed and the main adopted hypotheses for the thermal phenomena. The results of both numerical runs and experimental tests are discussed as a tool to validate the thermal modelling. The impact limiters, attached to the cask for protection, were not modelled. (author) [es

  4. Enrichment reduction calculations for the DIDO reactor. App. B

    International Nuclear Information System (INIS)

    Constantine, G.; Javadi, M.; Thick, E.

    1985-01-01

    The possibility has been raised that DIDO/PLUTO type heavy water moderated reactors can be operated with fuel of lower than the 75% enrichment material currently in use with the object of increasing the proliferation resistance of the fuel cycle. This paper sets out to examine the reactor physics aspects of enrichment reductions to 45% and 20% for Harwell's MTR's as part of an IAEA collaborative exercise currently being conducted to examine the topic in a more general way for the whole class of heavy water moderated reactors. The reactor physics tool used at Harwell is WIMSE, the Winfrith Improved Multigroup Scheme, a suite of linked reactor physics codes which has been used extensively for light water, heavy water and graphite moderated thermal reactors. The course of the calculations and the WIMSE modules involved in this study are described briefly

  5. Characterization of gamma field in the JSI TRIGA reactor

    Science.gov (United States)

    Ambrožič, Klemen; Radulović, Vladimir; Snoj, Luka; Gruel, Adrien; Guillou, Mael Le; Blaise, Patrick; Destouches, Christophe; Barbot, Loïc

    2018-01-01

    Research reactors such as the "Jožzef Stefan" Institute TRIGA reactor have primarily been designed for experimentation and sample irradiation with neutrons. However recent developments in incorporating additional instrumentation for nuclear power plant support and with novel high flux material testing reactor designs, γ field characterization has become of great interest for the characterization of the changes in operational parameters of electronic devices and for the evaluation of γ heating of MTR's structural materials in a representative reactor Γ spectrum. In this paper, we present ongoing work on γ field characterization both experimentally, by performing γ field measurements, and by simulations, using Monte Carlo particle transport codes in conjunction with R2S methodology for delayed γ field characterization.

  6. Statistic techniques of process control for MTR type

    International Nuclear Information System (INIS)

    Oliveira, F.S.; Ferrufino, F.B.J.; Santos, G.R.T.; Lima, R.M.

    2002-01-01

    This work aims at introducing some improvements on the fabrication of MTR type fuel plates, applying statistic techniques of process control. The work was divided into four single steps and their data were analyzed for: fabrication of U 3 O 8 fuel plates; fabrication of U 3 Si 2 fuel plates; rolling of small lots of fuel plates; applying statistic tools and standard specifications to perform a comparative study of these processes. (author)

  7. Determination of the burn-up in fuels of the MTR type by means of gamma spectroscopy with crystal of INa(Tl)

    International Nuclear Information System (INIS)

    Kestelman, A.J.

    1988-01-01

    One of the responsibilities of the Laboratory of Analysis by Neutronic Activation of the RA-6 reactor is to determine the burn-up in fuels of the MTR type. In order to gain experience, up to the arrival of the hyperpure Germanium detector (HPGe) to be used in normal operation, preliminary measurements with a crystal of INa(Tl) were made. The fuel elements used are originated in the RA-3 reactor, with a decay superior to the thirteen years. For this reason, the unique visible photoelectric peak is the one of Cs-137, owing to the low resolution of the INa(Tl). After preliminary measurements, the profiles of burn-up, rectified by attenuation, were measured. Once the efficiency of the detector was determined, the calculation of the burn-up was made; for the element No. 144, a value of 21.6 ± 2.9 g was obtained to be compared with the value 21.9 g which was the evaluation made by the operators. (Author) [es

  8. Development of a core follow calculational system for research reactors

    International Nuclear Information System (INIS)

    Muller, E.Z.; Ball, G.; Joubert, W.R.; Schutte, H.C.; Stoker, C.C.; Reitsma, F.

    1994-01-01

    Over the last few years a comprehensive Pressurized Water Reactor and Materials Testing Reactor core analysis code system based on modern reactor physics methods has been under development by the Atomic Energy Corporation of South Africa. This system, known as OSCAR-3, will incorporate a customized graphical user interface and data management system to ensure user-friendliness and good quality control. The system has now reached the stage of development where it can be used for practical MTR core analyses. This paper describes the current capabilities of the components of the OSCAR-3 package, their integration within the package, and outlines future developments. 10 refs., 1 tab., 1 fig

  9. In-tank examination and experience with MTR fuel integrity at the Imperial College reactor

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, S.; Chapman, N.; Robertson, B.; Shields, A.; Velez-Moss, S. [Imperial College of Science Technology and Medicine, Silwood Park, Ascot (United Kingdom); Boeck, H.; Schachner, H.; Klapfer, E. [Atominstitut of the Austrian Universities, Vienna (Austria)

    2000-07-01

    Many changes have occurred in the UK nuclear industry over the past 10 years: nuclear power/radiation research groups have closed, the fast reactor program ceased, and the United Kingdom Atomic Energy Authority (UKAEA) changed emphasis to decommissioning. Many UK research reactors and associated facilities have closed. In 1997, the 100 kW CONSORT pool-type reactor became the last civil nuclear research reactor surviving in the UK. Although VIPER, NEPTUNE and VULCAN remain in the defense field, they have lower steady state neutron fluxes. With so many reactors closing, CONSORT has a strong future. In fact, it underpins many research projects, monitoring schemes and power plants - but each provides a relatively small amount of business. The future strategy of the reactor is being reviewed this year. First criticality took place April 1965, and so in parallel, it is important to understand what the residual technical life of the reactor might be. This paper presents the results of an in-service inspection, which took place in August 1999. (author)

  10. In-tank examination and experience with MTR fuel integrity at the Imperial College reactor

    International Nuclear Information System (INIS)

    Franklin, S.; Chapman, N.; Robertson, B.; Shields, A.; Velez-Moss, S.; Boeck, H.; Schachner, H.; Klapfer, E.

    2000-01-01

    Many changes have occurred in the UK nuclear industry over the past 10 years: nuclear power/radiation research groups have closed, the fast reactor program ceased, and the United Kingdom Atomic Energy Authority (UKAEA) changed emphasis to decommissioning. Many UK research reactors and associated facilities have closed. In 1997, the 100 kW CONSORT pool-type reactor became the last civil nuclear research reactor surviving in the UK. Although VIPER, NEPTUNE and VULCAN remain in the defense field, they have lower steady state neutron fluxes. With so many reactors closing, CONSORT has a strong future. In fact, it underpins many research projects, monitoring schemes and power plants - but each provides a relatively small amount of business. The future strategy of the reactor is being reviewed this year. First criticality took place April 1965, and so in parallel, it is important to understand what the residual technical life of the reactor might be. This paper presents the results of an in-service inspection, which took place in August 1999. (author)

  11. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump.

    Directory of Open Access Journals (Sweden)

    Jani Reddy Bolla

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. The MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here report the crystal structure of the inner membrane MtrD multidrug efflux pump, which reveals a novel structural feature that is not found in other RND efflux pumps.

  12. Re-qualification of MTR-type fuel plates fabrication process

    International Nuclear Information System (INIS)

    Elseaidy, I.M.; Ghoneim, M.M.

    2010-01-01

    The fabricability issues with increased uranium loading due to use low enrichment of uranium (LEU), i.e. less than 20 % of U 235 , increase the problems which occur during compact manufacturing, roll bonding of the fuel plates, potential difficulty in forming during rolling process, mechanical integrity of the core during fabrication, potential difficulty in meat homogeneity, and the ability to fabricate plates with thicker core as a means of increasing total uranium loading. To produce MTR- type fuel plates with high uranium loading (HUL) and keep the required quality of these plates, many of qualification process must be done in the commissioning step of fuel fabrication plant. After that any changing of the fabrication parameters, for example changing of any of the raw materials, devises, operators, and etc., a re- qualification process should be done in order to keep the quality of produced plates. Objective of the present work is the general description of the activities to be accomplished for re-qualification of manufacturing MTR- type nuclear fuel plates. For each process to be re-qualified, a detailed of re-qualification process were established. (author)

  13. On the use of a CFD software for reactor design support

    International Nuclear Information System (INIS)

    Garcia, J.C.; Rauschert, A.; Coleff, Agustin

    2009-01-01

    Different analysis performed with CFD software for reactor design support are shown. The CFD software used was FLUENT version 6.3.26. The first analysis corresponds to an MTR-type reactor. The MTR-type reactor core is constituted by plate fuel elements. The cooling water passes through channels formed by fuel plates with gap between 2 and 4 mm. The flow between two plates uniformly heated was modeled. The results obtained with FLUENT were compared with experimental data, for a transition Reynolds number. The subchannel with nonuniform power in the plates was modeled with those turbulence models which were closer to experimental results. The second analysis corresponds to an integrated PWR type reactor. The downcomer was modeled in order to visualize the streamlines and velocity distribution. Since the complete model of the downcomer would involve a large number of cells, thereby increasing the computation time, one twelfth of the same is modeled due to the symmetry of the problem. The third analysis also corresponds to an integrated PWR type reactor. The transition into the downcomer at the loss of the cold source was modeled. Since the complete model of the downcomer would involve a large number of cells, thereby increasing the computation time, one twenty fourth of the same is modeled due to the symmetry of the problem. A variable flow and temperature in the downcomer inlet were used as boundary condition. With this calculation, we can visualize the time distribution of velocities and temperatures in one of the symmetry planes. (author)

  14. Progress report of the French program, and basic design of the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Ballagny, A.

    1998-01-01

    Since the SILOE reactor was shutdown on December 23, 1997, France has been entirely depending on the OSIRIS reactor to conduct the material and fuel irradiation programmes necessary to the evolution of its nuclear power plants and to prepare the future by analysing further reactor designs which might originate in other strategies, namely in the fuel cycle field. The Jules Horowitz reactor, which operation scheduled to start in 2006, will last 50 years, must cover all irradiation needs including, as far as possible, those related to fast breeder reactor studies, more particularly since the SUPERPHENIX reactor shutdown was announced. RJH reactor studies therefore focus on the increase of flux levels and the search for the limit performance of U 3 Si 2 based MTR fuels. (author)

  15. Calculation analysis of the neutronic experimental data coming from the NUR reactor start-up

    International Nuclear Information System (INIS)

    Madariaga, M.; Villarino, E.; Relloso, J.; Rubio, R

    1991-01-01

    NUR is a new MTR reactor located in Argelia which became critical in march 1989. It is loaded with a 19 plates LEU Fe. This paper contains: a) Reactivity measurements in the first cores technical information about the Fe and some other data necessary for performing cell and reactor calculations b) calculation comparisons with the measured values (2-D and 3-D calculations) with an statistical analysis of the data set from the control rod calibration. (orig.)

  16. Reactivity accident analysis in MTR cores

    International Nuclear Information System (INIS)

    Waldman, R.M.; Vertullo, A.C.

    1987-01-01

    The purpose of the present work is the analysis of reactivity transients in MTR cores with LEU and HEU fuels. The analysis includes the following aspects: the phenomenology of the principal events of the accident that takes place, when a reactivity of more than 1$ is inserted in a critical core in less than 1 second. The description of the accident that happened in the RA-2 critical facility in September 1983. The evaluation of the accident from different points of view: a) Theoretical and qualitative analysis; b) Paret Code calculations; c) Comparison with Spert I and Cabri experiments and with post-accident inspections. Differences between LEU and HEU RA-2 cores. (Author)

  17. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    International Nuclear Information System (INIS)

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy's spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report

  18. Proposition of innovative and safe design of grid plate for Tehran research reactor

    International Nuclear Information System (INIS)

    Jalali, H.R.; Fadaei, A.H.

    2017-01-01

    Highlights: • An innovative and safe design for grid plate in research reactors proposed. • New grid plate acts as an independent shutdown system. • Neutronic and transient calculation was done using MTR-PC package. • Calculations show that the performance and safety of new design are acceptable. - Abstract: The purpose of this paper is to propose an innovative and safe design of grid plate for Tehran research reactor (TRR) without any reduction in its performance in comparison with the current operation. The new grid plate consisted of two joined cubic with empty walls which are place of fuels and heavy water, respectively. The proposed design is such that the reactor core is divided into two distinct parts using the heavy water. The heavy water is inserted in the walls of the new grid plate. The new design of grid plate by keeping the characteristics of the previous version creates the possibility of shutting the reactor down in critical condition. In this paper, at initial step, a simulation of acceptable benchmark for Tehran research reactor is performed which could be considered reliable and comparable with SAR (Safety Analysis Report) data. In the next step, two different designs are proposed for grid plate and then are applied to reactor core using simulation tools. For the proposed design: core excess reactivity, shutdown margin, control rod worth, neutron flux and kinetic parameters are calculated. Furthermore, the transient analysis was performed for the new design to check the status of reactor safety. Obtained results show that all neutronic parameters for the first operating core and the new design are comparable, and there is no reduction in the efficiency of reference core. Moreover, in the current design, a diverse and independent shutdown system for TRR was included. Nuclear reactor analysis codes including MTR-PC package were employed to carry out these calculations.

  19. Fuel requirements for experimental devices in MTR reactors. A perturbation model for reactor core analysis

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1991-01-01

    Irradiation in neutron absorbing devices, requiring high fast neutron fluxes in the core or high thermal fluxes in the reflector and flux traps, lead to higher density fuel and larger core dimensions. A perturbation model of the reactor core helps to estimate the fuel requirements. (orig.)

  20. Nodalization effects on RELAP5 results related to MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The present work deals with the anal y sis of RELAP5 results obtained from the evaluation study of the total loss of flow transient with the deficiency of the heat removal system in a research reactor using two different nodalizations. It focuses on the effect of nodalization on the thermal-hydraulic evaluation of the re search reactor. The analysis of RELAP5 results has shown that nodalization has a big effect on the predicted scenario of the postulated transient. There fore, great care should be taken during the nodalization of the reactor, especially when the avail able experimental or measured data are insufficient for making a complete qualification of the nodalization. Our analysis also shows that the research reactor pool simulation has a great effect on the evaluation of natural circulation flow and on other thermal-hydraulic parameters during the loss of flow transient. For example, the on set time of core boiling changes from less than 2000 s to 15000 s, starting from the beginning of the transient. This occurs if the pool is simulated by two vertical volumes in stead of one vertical volume.

  1. A history of effluent releases from the Texas A and M University reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bates, E F; Neff, R D; Sandel, P S; Schoenbucher, B [Texas A and M University (United States)

    1974-07-01

    Since 1966 records of radioactive effluents releases from the Texas A and M University Research Reactor have been compiled. These data include particulate activity, noble gases, and liquid effluent releases. Particulate activity releases with half-lives greater than eight days were negligible and are not included in this presentation. Conversion from an MTR plate reactor to a TRIGA fueled reactor was completed in August 1968. Records of effluent releases of Argon-4l and liquids for the past, five years are summarized, in this presentation. These release data are compared to the current limits specified: in 10 CPR 20 and the limits appearing in proposed Appendix.

  2. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    International Nuclear Information System (INIS)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira

    2015-01-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  3. Simulation of channel blockage for the IEA-R1 research reactor using RELAP/MOD 3

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eduardo C.F. de; Castrillo, Lazara Silveira, E-mail: ecfoliveira@hotmail.com, E-mail: lazara.castrillo@upe.br [Universidade de Pernambuco (UPE), Recife, PE (Brazil). Escola Politecnica de Pernambuco

    2015-07-01

    Research reactors have great importance in the area of nuclear technology, such as radioisotope production, research in nuclear physics, development of new technologies and staff training for reactor operation. The IEA-R1 is a Brazilian research reactor type pool, located at the IPEN (Instituto de Pesquisas Energeticas e Nucleares). In this work is simulated with computer code RELAP5 / MOD 3.3.2 gamma, the effect caused by partial and complete blockage of a channel in MTR fuel element of the IEA-R1 core, in order to analyzed the thermal hydraulic parameters on adjacent channels. (author)

  4. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  5. Safety challenges encountered during the operating life of the almost 40 year old research reactor BR2

    International Nuclear Information System (INIS)

    Koonen, E.; Joppen, F.; Gubel, P.

    2001-01-01

    The BR2 reactor is one of the major MTR-type research reactors in the world. Its operation started in the early 1960's. Two major refurbishment operations have been carried out since then. Several safety reassessments were carried out over the years in order to keep the safety level in line with modern standards and to enhance operational safety. This paper gives an overview of the safety challenges encountered over the years and how those were met. (author)

  6. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  7. AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74

    Energy Technology Data Exchange (ETDEWEB)

    Hiraishi, Nobuhiro; Ishida, Yo-ichi; Nagahama, Masami, E-mail: nagahama@my-pharm.ac.jp

    2015-11-20

    Nuclear VCP-like 2 (NVL2) is a chaperone-like nucleolar ATPase of the AAA (ATPase associated with diverse cellular activities) family, which exhibits a high level of amino acid sequence similarity with the cytosolic AAA-ATPase VCP/p97. These proteins generally act on macromolecular complexes to stimulate energy-dependent release of their constituents. We previously showed that NVL2 interacts with RNA processing/degradation machinery containing an RNA helicase MTR4/DOB1 and an exonuclease complex, nuclear exosome, and involved in the biogenesis of 60S ribosomal subunits. These observations implicate NVL2 as a remodeling factor for the MTR4-exosome complex during the maturation of pre-ribosomal particles. Here, we used a proteomic screen and identified a WD repeat-containing protein 74 (WDR74) as a factor that specifically dissociates from this complex depending on the ATPase activity of NVL2. WDR74 shows weak amino acid sequence similarity with the yeast ribosome biogenesis protein Nsa1 and is co-localized with NVL2 in the nucleolus. Knockdown of WDR74 decreases 60S ribosome levels. Taken together, our results suggest that WDR74 is a novel regulatory protein of the MTR4-exsosome complex whose interaction is regulated by NVL2 and is involved in ribosome biogenesis. - Highlights: • WDR74 accumulates in MTR4-exosome complex upon expression of dominant-negative NVL2. • WDR74 is co-localized with NVL2 in the nucleolus. • WDR74, along with NVL2, is involved in the synthesis of 60S ribosomal subunits.

  8. AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74

    International Nuclear Information System (INIS)

    Hiraishi, Nobuhiro; Ishida, Yo-ichi; Nagahama, Masami

    2015-01-01

    Nuclear VCP-like 2 (NVL2) is a chaperone-like nucleolar ATPase of the AAA (ATPase associated with diverse cellular activities) family, which exhibits a high level of amino acid sequence similarity with the cytosolic AAA-ATPase VCP/p97. These proteins generally act on macromolecular complexes to stimulate energy-dependent release of their constituents. We previously showed that NVL2 interacts with RNA processing/degradation machinery containing an RNA helicase MTR4/DOB1 and an exonuclease complex, nuclear exosome, and involved in the biogenesis of 60S ribosomal subunits. These observations implicate NVL2 as a remodeling factor for the MTR4-exosome complex during the maturation of pre-ribosomal particles. Here, we used a proteomic screen and identified a WD repeat-containing protein 74 (WDR74) as a factor that specifically dissociates from this complex depending on the ATPase activity of NVL2. WDR74 shows weak amino acid sequence similarity with the yeast ribosome biogenesis protein Nsa1 and is co-localized with NVL2 in the nucleolus. Knockdown of WDR74 decreases 60S ribosome levels. Taken together, our results suggest that WDR74 is a novel regulatory protein of the MTR4-exsosome complex whose interaction is regulated by NVL2 and is involved in ribosome biogenesis. - Highlights: • WDR74 accumulates in MTR4-exosome complex upon expression of dominant-negative NVL2. • WDR74 is co-localized with NVL2 in the nucleolus. • WDR74, along with NVL2, is involved in the synthesis of 60S ribosomal subunits.

  9. Sharing the load: Mex67-Mtr2 cofunctions with Los1 in primary tRNA nuclear export.

    Science.gov (United States)

    Chatterjee, Kunal; Majumder, Shubhra; Wan, Yao; Shah, Vijay; Wu, Jingyan; Huang, Hsiao-Yun; Hopper, Anita K

    2017-11-01

    Eukaryotic transfer RNAs (tRNAs) are exported from the nucleus, their site of synthesis, to the cytoplasm, their site of function for protein synthesis. The evolutionarily conserved β-importin family member Los1 (Exportin-t) has been the only exporter known to execute nuclear export of newly transcribed intron-containing pre-tRNAs. Interestingly, LOS1 is unessential in all tested organisms. As tRNA nuclear export is essential, we previously interrogated the budding yeast proteome to identify candidates that function in tRNA nuclear export. Here, we provide molecular, genetic, cytological, and biochemical evidence that the Mex67-Mtr2 (TAP-p15) heterodimer, best characterized for its essential role in mRNA nuclear export, cofunctions with Los1 in tRNA nuclear export. Inactivation of Mex67 or Mtr2 leads to rapid accumulation of end-matured unspliced tRNAs in the nucleus. Remarkably, merely fivefold overexpression of Mex67-Mtr2 can substitute for Los1 in los1 Δ cells. Moreover, in vivo coimmunoprecipitation assays with tagged Mex67 document that the Mex67 binds tRNAs. Our data also show that tRNA exporters surprisingly exhibit differential tRNA substrate preferences. The existence of multiple tRNA exporters, each with different tRNA preferences, may indicate that the proteome can be regulated by tRNA nuclear export. Thus, our data show that Mex67-Mtr2 functions in primary nuclear export for a subset of yeast tRNAs. © 2017 Chatterjee et al.; Published by Cold Spring Harbor Laboratory Press.

  10. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Akihiro [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Ryuhei, E-mail: nakamura@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hashimoto, Kazuhito, E-mail: hashimoto@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); ERATO/JST, HASHIMOTO Light Energy Conversion Project (Japan)

    2011-06-30

    Graphical abstract: . Display Omitted Highlights: > Monolayer biofilm of Shewanella cells was prepared on an ITO electrode. > Extracellular electron transfer (EET) process was examined with series of mutants. > Direct ET was confirmed with outer-membrane-bound OmcA-MtrCAB complex. > The EET process was not prominently influenced by capsular polysaccharide. - Abstract: The direct electron-transfer (DET) property of Shewanella bacteria has not been resolved in detail due to the complexity of in vivo electrochemistry in whole-cell systems. Here, we report the in vivo assignment of the redox signal indicative of the DET property in biofilms of Shewanella oneidensis MR-1 by cyclic voltammetry (CV) with a series of mutants and a chemical marking technique. The CV measurements of monolayer biofilms formed by deletion mutants of c-type cytochromes ({Delta}mtrA, {Delta}mtrB, {Delta}mtrC/{Delta}omcA, and {Delta}cymA), and pilin ({Delta}pilD), capsular polysaccharide ({Delta}SO3177) and menaquinone ({Delta}menD) biosynthetic proteins demonstrated that the electrochemical redox signal with a midpoint potential at 50 mV (vs. SHE) was due to an outer-membrane-bound OmcA-MtrCAB protein complex of decaheme cytochromes, and did not involve either inner-membrane-bound CymA protein or secreted menaquinone. Using the specific binding affinity of nitric monoxide for the heme groups of c-type cytochromes, we further confirmed this conclusion. The heterogeneous standard rate constant for the DET process was estimated to be 300 {+-} 10 s{sup -1}, which was two orders of magnitude higher than that previously reported for the electron shuttling process via riboflavin. Experiments using a mutant unable to produce capsular polysaccharide ({Delta}SO3177) revealed that the DET property of the OmcA-MtrCAB complex was not influenced by insulating and hydrophilic extracellular polysaccharide. Accordingly, under physiological conditions, S. oneidensis MR-1 utilizes a high density of outer

  11. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  12. Testing of a transport cask for research reactor spent fuel

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Silva, Luiz Leite da; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2011-01-01

    Since the beginning of the last decade three Latin American countries which operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the reactors operated in the region. As a step in this direction, a packaging for the transport of irradiated fuel from research reactors was designed by a tri-national team and a half-scale model for MTR fuel constructed in Argentina and tested in Brazil. Two test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. Although the specimen has not successfully performed the tests, its overall performance was considered very satisfactory, and improvements are being introduced to the design. A third test sequence is planned for 2011. (author)

  13. In-pile modelling of nuclear fuel element for the MTR type reactors. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, Kazem [AEOI, Tehran (Iran, Islamic Republic of). Radiations Application Research School

    2014-06-15

    In part two of the present paper, neutronic properties of the pool-type research reactor core are used to assess the similitude laws derived for out-of-pile modelling of the fuel element. The benchmark reactor used for this purpose is an IAEA 5 MW thermal pool-type research reactor currently in operation. The neutronic properties analysis are based on typical 2 200 m/sec and neutrons having 0.025 eV energy. The non-leakage capability of the system is estimated in terms of diffusion length. Also the slowing down power and the moderating ratio of the modelled methanol coolant are calculated in terms of lethargy of the diffusing medium. It is shown that the Iron which is substituted for Aluminium cladding is a relatively low absorber of neutrons but has a high neutron leakage. Methanol which replaced ordinary water as coolant is not a suitable coolant due to high neutrons absorbing substance. It is concluded that although Iron as a cladding material and methanol as a coolant meet the modelling out-of-pile criteria but are not satisfying neutronic properties. Therefore, use of them as a model clad and coolant are not suggested for research reactors. (orig.)

  14. Multi-purpose reactor

    International Nuclear Information System (INIS)

    1991-05-01

    The Multi-Purpose-Reactor (MPR), is a pool-type reactor with an open water surface and variable core arrangement. Its main feature is plant safety and reliability. Its power is 22MW t h, cooled by light water and moderated by beryllium. It has platetype fuel elements (MTR type, approx. 20%. enriched uranium) clad in aluminium. Its cobalt (Co 60 ) production capacity is 50000 Ci/yr, 200 Ci/gr. The distribution of the reactor core and associated control and safety systems is essentially based on the following design criteria: - upwards cooling flow, to waive the need for cooling flow inversion in case the reactor is cooled by natural convection if confronted with a loss of pumping power, and in order to establish a superior heat transfer potential (a higher coolant saturation temperature); - easy access to the reactor core from top of pool level with the reactor operating at full power, in order to facilitate actual implementation of experiments. Consequently, mechanisms associated to control and safety rods s,re located underneath the reactor tank; - free access of reactor personnel to top of pool level with the reactor operating at full power. This aids in the training of personnel and the actual carrying out of experiments, hence: - a vast water column was placed over the core to act as radiation shielding; - the core's external area is cooled by a downwards flow which leads to a decay tank beyond the pool (for N 16 to decay); - a small downwards flow was directed to stream downwards from above the reactor core in order to drag along any possibly active element; and - a stagnant hot layer system was placed at top of pool level so as to minimize the upwards coolant flow rising towards pool level

  15. A gamma heating calculation methodology for research reactor application

    International Nuclear Information System (INIS)

    Lee, Y.K.; David, J.C.; Carcreff, H.

    2001-01-01

    Gamma heating is an important issue in research reactor operation and fuel safety. Heat deposition in irradiation targets and temperature distribution in irradiation facility should be determined so as to obtain the optimal irradiation conditions. This paper presents a recently developed gamma heating calculation methodology and its application on the research reactors. Based on the TRIPOLI-4 Monte Carlo code under the continuous-energy option, this new calculation methodology was validated against calorimetric measurements realized within a large ex-core irradiation facility of the 70 MWth OSIRIS materials testing reactor (MTR). The contributions from prompt fission neutrons, prompt fission γ-rays, capture γ-rays and inelastic γ-rays to heat deposition were evaluated by a coupled (n, γ) transport calculation. The fission product decay γ-rays were also considered but the activation γ-rays were neglected in this study. (author)

  16. Structural characterization of the principal mRNA-export factor Mex67–Mtr2 from Chaetomium thermophilum

    Energy Technology Data Exchange (ETDEWEB)

    Aibara, Shintaro; Valkov, Eugene; Lamers, Meindert H. [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Dimitrova, Lyudmila; Hurt, Ed [Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg (Germany); Stewart, Murray, E-mail: ms@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom)

    2015-06-27

    The crystal structures of the individual domains of the Mex67–Mtr2 complex from C. thermophilum have been determined and their arrangement in solution has been studied by SAXS. Members of the Mex67–Mtr2/NXF–NXT1 family are the principal mediators of the nuclear export of mRNA. Mex67/NXF1 has a modular structure based on four domains (RRM, LRR, NTF2-like and UBA) that are thought to be present across species, although the level of sequence conservation between organisms, especially in lower eukaryotes, is low. Here, the crystal structures of these domains from the thermophilic fungus Chaetomium thermophilum are presented together with small-angle X-ray scattering (SAXS) and in vitro RNA-binding data that indicate that, not withstanding the limited sequence conservation between different NXF family members, the molecules retain similar structural and RNA-binding properties. Moreover, the resolution of crystal structures obtained with the C. thermophilum domains was often higher than that obtained previously and, when combined with solution and biochemical studies, provided insight into the structural organization, self-association and RNA-binding properties of Mex67–Mtr2 that facilitate mRNA nuclear export.

  17. Structural characterization of the principal mRNA-export factor Mex67–Mtr2 from Chaetomium thermophilum

    International Nuclear Information System (INIS)

    Aibara, Shintaro; Valkov, Eugene; Lamers, Meindert H.; Dimitrova, Lyudmila; Hurt, Ed; Stewart, Murray

    2015-01-01

    The crystal structures of the individual domains of the Mex67–Mtr2 complex from C. thermophilum have been determined and their arrangement in solution has been studied by SAXS. Members of the Mex67–Mtr2/NXF–NXT1 family are the principal mediators of the nuclear export of mRNA. Mex67/NXF1 has a modular structure based on four domains (RRM, LRR, NTF2-like and UBA) that are thought to be present across species, although the level of sequence conservation between organisms, especially in lower eukaryotes, is low. Here, the crystal structures of these domains from the thermophilic fungus Chaetomium thermophilum are presented together with small-angle X-ray scattering (SAXS) and in vitro RNA-binding data that indicate that, not withstanding the limited sequence conservation between different NXF family members, the molecules retain similar structural and RNA-binding properties. Moreover, the resolution of crystal structures obtained with the C. thermophilum domains was often higher than that obtained previously and, when combined with solution and biochemical studies, provided insight into the structural organization, self-association and RNA-binding properties of Mex67–Mtr2 that facilitate mRNA nuclear export

  18. OPAL reactor calculations using the Monte Carlo code serpent

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Diego; Villarino, Eduardo [Nuclear Engineering Dept., INVAP S.E., Rio Negro (Argentina)

    2012-03-15

    In the present work the Monte Carlo cell code developed by VTT Serpent v1.1.14 is used to model the MTR fuel assemblies (FA) and control rods (CR) from OPAL (Open Pool Australian Light-water) reactor in order to obtain few-group constants with burnup dependence to be used in the already developed reactor core models. These core calculations are performed using CITVAP 3-D diffusion code, which is well-known reactor code based on CITATION. Subsequently the results are compared with those obtained by the deterministic calculation line used by INVAP, which uses the Collision Probability Condor cell-code to obtain few-group constants. Finally the results are compared with the experimental data obtained from the reactor information for several operation cycles. As a result several evaluations are performed, including a code to code cell comparison at cell and core level and calculation-experiment comparison at core level in order to evaluate the Serpent code actual capabilities. (author)

  19. Backfitting of the FRG reactors

    Energy Technology Data Exchange (ETDEWEB)

    Krull, W [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht (Germany)

    1990-05-01

    The FRG-research reactors The GKSS-research centre is operating two research reactors of the pool type fueled with MTR-type type fuel elements. The research reactors FRG-1 and FRG-2 having power levels of 5 MW and 15 MW are in operation for 31 year and 27 years respectively. They are comparably old like other research reactors. The reactors are operating at present at approximately 180 days (FRG-1) and between 210 and 250 days (FRG-2) per year. Both reactors are located in the same reactor hall in a connecting pool system. Backfitting measures are needed for our and other research reactors to ensure a high level of safety and availability. The main backfitting activities during last ten years were concerned with: comparison of the existing design with today demands (criteria, guidelines, standards etc.); and probability approach for events from outside like aeroplane crashes and earthquakes; the main accidents were rediscussed like startup from low and full power, loss of coolant flow, loss of heat sink, loss of coolant and fuel plate melting; a new reactor protection system had to be installed, following today's demands; a new crane has been installed in the reactor hall. A cold neutron source has been installed to increase the flux of cold neutrons by a factor of 14. The FRG-l is being converted from 93% enriched U with Alx fuel to 20% enriched U with U{sub 3}Si{sub 2} fuel. Both cooling towers were repaired. Replacement of instrumentation is planned.

  20. Backfitting of the FRG reactors

    International Nuclear Information System (INIS)

    Krull, W.

    1990-01-01

    The FRG-research reactors The GKSS-research centre is operating two research reactors of the pool type fueled with MTR-type type fuel elements. The research reactors FRG-1 and FRG-2 having power levels of 5 MW and 15 MW are in operation for 31 year and 27 years respectively. They are comparably old like other research reactors. The reactors are operating at present at approximately 180 days (FRG-1) and between 210 and 250 days (FRG-2) per year. Both reactors are located in the same reactor hall in a connecting pool system. Backfitting measures are needed for our and other research reactors to ensure a high level of safety and availability. The main backfitting activities during last ten years were concerned with: comparison of the existing design with today demands (criteria, guidelines, standards etc.); and probability approach for events from outside like aeroplane crashes and earthquakes; the main accidents were rediscussed like startup from low and full power, loss of coolant flow, loss of heat sink, loss of coolant and fuel plate melting; a new reactor protection system had to be installed, following today's demands; a new crane has been installed in the reactor hall. A cold neutron source has been installed to increase the flux of cold neutrons by a factor of 14. The FRG-l is being converted from 93% enriched U with Alx fuel to 20% enriched U with U 3 Si 2 fuel. Both cooling towers were repaired. Replacement of instrumentation is planned

  1. Modeling and simulation of loss of the ultimate heat sink in a typical material testing reactor

    International Nuclear Information System (INIS)

    El-Khatib, Hisham; El-Morshedy, Salah El-Din; Higazy, Maher G.; El-Shazly, Karam

    2013-01-01

    Highlights: ► A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in MTR. ► The model involves three coupled sub-models for core, heat exchanger and cooling tower. ► The model is validated against PARET for steady-state and verified by operation data for transients. ► The model is used to simulate the behavior of the reactor under a loss of the ultimate heat sink. ► The model results are analyzed and discussed. -- Abstract: A thermal–hydraulic model has been developed to simulate loss of the ultimate heat sink in a typical material testing reactor (MTR). The model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The model is validated against PARET code for steady-state operation and verified by the reactor operation records for transients. Then, the model is used to simulate the thermal–hydraulic behavior of the reactor under a loss of the ultimate heat sink event. The simulation is performed for two operation regimes: regime I representing 11 MW power and three cooling tower cells operated, and regime II representing 22 MW power and six cooling tower cells operated. In regime I, the simulation is performed for 1, 2 and 3 cooling tower cells failed while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower cells failed. The simulation is performed under protected conditions where the safety action called power reduction is triggered by reactor protection system to decrease the reactor power by 20% when the coolant inlet temperature to the core reaches 43 °C and scram is triggered if the core inlet temperature reaches 44 °C. The model results are analyzed and discussed.

  2. ISO-9001: An approach to accreditation for an MTR facility: SAFARI-1 research reactor

    International Nuclear Information System (INIS)

    Piani, C.S.B.; Du Bruyn, J.F.B.

    2000-01-01

    The SAFARI-1 Research Reactor obtained ISO-9001 accreditation via the South African Bureau of Standards in September 1998. In view of the commercial applications of the reactor, the value of acquisition of the accreditation was considered against the cost of implementation of the Quality System. The criteria identified in the ISO-9001 standard were appraised and a superstructure derived for management of the generation and implementation of a suitable Quality Management System (QMS) for the fairly unique application of a nuclear research reactor. A Quality Policy was established, which formed the basis of the QMS against which the various requirements and/or standards were identified. In addition, since it was considered advantageous to incorporate the management controls of Conventional and Radiological Safety as well as Plant Maintenance and Environmental Management (ISO 14001), these aspects were included in the QMS. (author)

  3. Jordan Research and Training Reactor (JRTR) Utilization Facilities

    International Nuclear Information System (INIS)

    Xoubi, N.

    2013-01-01

    Jordan Research and Training Reactor (JRTR) is a 5 MW light water open pool multipurpose reactor that serves as the focal point for Jordan National Nuclear Centre, and is designed to be utilized in three main areas: Education and training, nuclear research, and radioisotopes production and other commercial and industrial services. The reactor core is composed of 18 fuel assemblies, MTR plate type 19.75% enriched uranium silicide (U 3 Si 2 ) in aluminium matrix, and is reflected on all sides by beryllium and graphite. The reactor power is upgradable to 10 MW with a maximum thermal flux of 1.45×10 14 cm -2 s -1 , and is controlled by a Hafnium control absorber rod and B 4 C shutdown rod. The reactor is designed to include laboratories and classrooms that will support the establishment of a nuclear reactor school for educating and training students in disciplines like nuclear engineering, reactor physics, radiochemistry, nuclear technology, radiation protection, and other related scientific fields where classroom instruction and laboratory experiments will be related in a very practical and realistic manner to the actual operation of the reactor. JRTR is designed to support advanced nuclear research as well as commercial and industrial services, which can be preformed utilizing any of its 35 experimental facilities. (author)

  4. Optimization of the neutron calculation model for the RA-6 reactor

    International Nuclear Information System (INIS)

    Coscia, G.A.

    1981-01-01

    A model for the neutronic calculation of the RA-6 reactor which includes the codes ANISN and EQUIPOSE is analyzed. Starting with a brief description of the reactor, the core and its parts, the general scheme of calculation applied is presented. The fuel elements used were those which are utilized in the RA-3 reactor; this is of the MTR type with 90% enriched uranium. With the approximations used, an analysis of such model of calculation was made, trying to optimize it by reducing, if possible, the calculation time without loosing accuracy. In order to improve the calculation model, it is recomended a cross section data library specific for the enrichment of the fuel considered 90% and the incorporation of a more advanced code than EQUIPOISE which would be DIXYBAR. (M.E.L.) [es

  5. Nuclear data uncertainties propagation methods in Boltzmann/Bateman coupled problems: Application to reactivity in MTR

    International Nuclear Information System (INIS)

    Frosio, Thomas; Bonaccorsi, Thomas; Blaise, Patrick

    2016-01-01

    Highlights: • Hybrid methods are developed for uncertainty propagation. • These methods take into account the flux perturbation in the coupled problem. • We show that OAT and MC methods give coherent results, except for Pearson correlations. • Local sensitivity analysis is performed. - Abstract: A novel method has been developed to calculate sensitivity coefficients in coupled Boltzmann/Bateman problem for nuclear data (ND) uncertainties propagation on the reactivity. Different uncertainty propagation methodologies, such as One-At-a-Time (OAT) and hybrid Monte-Carlo/deterministic methods have been tested and are discussed on an actual example of ND uncertainty problem on a Material Testing Reactor (MTR) benchmark. Those methods, unlike total Monte Carlo (MC) sampling for uncertainty propagation and quantification (UQ), allow obtaining sensitivity coefficients, as well as Bravais–Pearson correlations values between Boltzmann and Bateman, during the depletion calculation for global neutronics parameters such as the effective multiplication coefficient. The methodologies are compared to a pure MC sampling method, usually considered as the “reference” method. It is shown that methodologies can seriously underestimate propagated variances, when Bravais–Pearson correlations on ND are not taken into account in the UQ process.

  6. Establishment of an authenticated physical standard for gamma spectrometric determination of the U-235 content of MTR fuel and evaluation of measurement procedures

    International Nuclear Information System (INIS)

    Fleck, C.M.

    1979-12-01

    Measurements of U-235 content in a standard MTR fuel element were carried out, using scintillation and semi-conductor spectrometers. Three different types of measurement were carried out: a) Comparison of different primary standards among one another and with single fuel plates. b) Calibration of the MTR fuel element as an authenticated physical standard. c) Evaluation of over all errors in assay measurements on MTR fuel elements. The error of the whole assay measurement will be approximately 0.9%. The Uranium distribution in the single fuel plates is the original source of error. In the case of equal Uranium contents in all fuel plates of one fuel assembly, the error of assay measurements would be about 0.3% relative to the primary standards

  7. Safety analysis calculations for research and test reactors

    International Nuclear Information System (INIS)

    Chen, S.Y.; MacDonald, R.; MacFarlane, D.

    1983-01-01

    Safety issues for the two general types of reactors, i.e., the plate-type (MTR-type) reactor and the rod-type (TRIGA-type) reactor, resulting from the changes associated with LEU vs HEU fuels, are explored. The plate-type fuels are typically uranium aluminide (UAl/sub x/) compounds dispersed in aluminum and clad with aluminum. Moderation is provided by the water coolant. Self shut-down reactivity coefficients with HEU fuel are entirely a result of coolant heating, whereas with LEU fuel there is an additional shut down contribution provided by the direct heating of the fuel due to the Doppler coefficient. In contrast, the rod-type (TRIGA) fuels are mixtures of zirconium hydride, uranium, and erbium. This fuel mixture is formed into rods (approx. 1 cm diameter) and clad with stainless steel or Incoloy. In the TRIGA fuel the self-shutdown reactivity is more complex, depending on heating of the fuel rather than the coolant. Results of transient calculations performed with existing computer codes, most suited for each type of reactor, are presented

  8. Depletion Calculations for MTR Core Using MCNPX and Multi-Group Nodal Diffusion Methods

    International Nuclear Information System (INIS)

    Jaradata, Mustafa K.; Park, Chang Je; Lee, Byungchul

    2013-01-01

    In order to maintain a self-sustaining steady-state chain reaction, more fuel than is necessary in order to maintain a steady state chain reaction must be loaded. The introduction of this excess fuel increases the net multiplication capability of the system. In this paper MCNPX and multi-group nodal diffusion theory will be used for depletion calculations for MTR core. The eigenvalue and power distribution in the core will be compared for different burnup. Multi-group nodal diffusion theory with combination of NEWT-TRITON system was used to perform depletion calculations for 3Χ3 MTR core. 2G and 6G approximations were used and compared with MCNPX results for 2G approximation the maximum difference from MCNPX was 40 mk and for 6G approximation was 6 mk which is comparable to the MCNPX results. The calculated power using nodal code was almost the same MCNPX results. Finally the results of the multi-group nodal theory were acceptable and comparable to the calculated using MCNPX

  9. Determination of power density distribution of fuel assemblies for research reactor by directly measuring the strontium-91 activities

    International Nuclear Information System (INIS)

    Yuan, Liq-Ji

    1987-01-01

    This work described the investigations of reactor core power peaking and three dimensional power density distribution of present core configuration of Tsing Hua Open-pool reactor (THOR). An experimental program, based on non-destructive fuel gamma scanning of 91 Sr activities, provides the data of fission density distribution for individual fuel pin of four-rod TRIGA-LEU cluster or for MTR-type fuel assembly. The informations are essentially important for the safety of reactor operation and for fuel management especially for the mixed loading with three different types of fuel at present. The relative power peaking values and the power density distribution for present core are discussed. (author)

  10. Dry storage of MTR spent fuel from the Argentine radioisotope production reactor RA-3

    International Nuclear Information System (INIS)

    Di Marco, A.; Gillaume, E.J.; Ruggirello, G.; Zaweruchi, A.

    1996-01-01

    The nuclear fuel elements of the RA-3 reactor consist in 19 rectangular fuel plates held in position by two lateral structural plates. The whole assembly is coupled to the lower nozzles that fits in the reactor core grid. The inner plates are 1.5 mm thick, 70.5 mm wide and 655 mm long and the outer plates are 100 mm longer. The fuel plates are formed by a core of an AI-U alloy co-laminated between two plates of Al. Enrichment is 90% 235 U. After being extracted from the reactor, the fuel elements have been let to cool down in the reactor storage pool and finally moved to the storage facility. This facility is a grid of vertical underground channels connected by a piping system. The system is filled with processed and controlled water. At the present the storage capacity of the facility is near to be depleted and some indications of deterioration of the fuel elements has been detected. Due to the present status of the facility and the spent fuel stored there, a decision has been taken to proceed to modify the present underwater storage to dry storage. The project consist in: a) Decontamination and conditioning of the storage channels to prepare them for dry storage. b) Disassembly of the fuel elements in hot cells in order to can only the active fuel plates in an adequate tight canister. c) The remnant structural pieces will be treated as low level waste. (author). 10 figs

  11. Opportunities for TRIGA reactors in neutron radiography

    International Nuclear Information System (INIS)

    Barton, John P.

    1978-01-01

    In this country the two most recent installations of TRIGA reactors have both been for neutron radiography, one at HEDL and the other at ANL. Meanwhile, a major portion of the commercial neutron radiography is performed on a TRIGA fueled reactor at Aerotest. Each of these installations has different primary objectives and some comparative observations can be drawn. Another interesting comparison is between the TRIGA reactors for neutron radiography and other small reactors that are being installed for this purpose such as the MIRENE slow pulse reactors in France, a U-233 fueled reactor for neutron radiography in India and the L88 solution reactor in Denmark. At Monsanto Laboratory, in Ohio, a subcritical reactor based on MTR-type fuel has recently been purchased for neutron radiography. Such systems, when driven by a Van de Graaff neutron source, will be compared with the standard TRIGA reactor. Future demands on TRIGA or competitive systems for neutron radiography are likely to include the pulsing capability of the reactor, and also the extraction of cold neutron beams and resonance energy beams. Experiments recently performed on the Oregon State TRIGA Reactor provide information in each of these categories. A point of particular current concern is a comparison made between the resonance energy beam intensity extracted from the edge of the TRIGA core and from a slot which penetrated to the center of the TREAT reactor. These results indicate that by using such slots on a TRIGA, resonance energy intensities could be extracted that are much higher than previously predicted. (author)

  12. New developments in transportation for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mondanel, J.L. [Transnucleaire, F-75008 Paris (France)

    1998-07-01

    For more than 30 years, Transnucleaire has been performing safely a large number of national and international transports of radioactive material. Transnucleaire has also designed and supplied numerous packagings for all types of nuclear fuel cycle radioactive materials: for front-end and back-end products and for power and research reactors. Since the last meeting held in Bruges, Transnucleaire has been continuously involved in transportation activities for fresh and irradiated materials for research reactors. We are pleased to take the opportunity in this meeting to share with reactor operators, official bodies and other partners, the on-going developments in transportation and associated services. Special attention will be paid to the starting of transports of MTR spent fuel elements to the La Hague reprocessing plant where COGEMA offers reprocessing services on a long-term basis to reactors operators. Detailed information is provided on regulatory issues, which may affect transport activities: evolution of the regulations, real experiences of recent transportation and development of new packaging designs. Options and solutions will be proposed by Transnucleaire to improve the situation for continuation of national and international transports at an acceptable price whilst maintaining an ultimate level of safety (author)

  13. Validation concerns for dry storage of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Trumble, E.F.

    1994-01-01

    Recent decisions by the Department of Energy have accelerated the need for storage options to support the return of foreign research reactor (FRR) fuel to the United States. Many of these returns consist of fuel types which contain highly enriched uranium and are aluminum clad. These attributes present many challenges not experienced in the fuel storage designs for commercial nuclear fuels where the fuels have lower enrichment and the cladding is more robust. Historically, returned FRR fuel has been stored for short periods in basins where it is cooled and then sent to be reprocessed. However, a severe lack of basin space and questionable availability of reprocessing facilities necessitates the development of other proposals. One proposed option is to store the FRR fuel in a dry state, thus reducing the corrosion problems associated with aluminum cladding. A drawback to this type of storage, however, is the lack of experimental data for this type of fuel under dry storage conditions. This lack of data has led to recent discussions over the accuracy of some of the current multigroup cross section libraries when applied to dry, fast systems of uranium and aluminum. This concern is evaluated for the specific case of Material Test Reactor (MTR) fuel (MTR is >60% of FRR fuel), a review of applicable experiments is presented and a new experiment is proposed

  14. Reactor fuel element heat conduction via numerical Laplace transform inversion

    International Nuclear Information System (INIS)

    Ganapol, Barry D.; Furfaro, Roberto

    2001-01-01

    A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)

  15. Reactor fuel element heat conduction via numerical Laplace transform inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, Barry D.; Furfaro, Roberto [University of Arizona, Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering], e-mail: ganapol@cowboy.ame.arizona.edu

    2001-07-01

    A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)

  16. Conceptual Nuclear Design Of Two Models Of Research Reactor Proposed For Vietnam

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Huynh Ton Nghiem; Le Vinh Vinh; Vo Doan Hai Dang

    2007-01-01

    The joint study on the development of a new research reactor model for Vietnam was done. The KAERI (Korea Atomic Energy Research Institute) experts and DNRI (Dalat Nuclear Research Institute) researchers developed an advanced HANARO reactor (AHR), a 20-MW open-tank-in-pool type reactor, upward cooled and moderated by light water, reflected by heavy water and rod type fuel assemblies used. Based on the AHR model, a MTR reactor with plate fuel assemblies was developed. Computer codes named MCNP and MVP/BURN were used. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worth, etc. in both with clean, unperturbed core and equilibrium core condition. In case of AHR model, calculation results using MVP/BURN and MCNP codes were compared with the results using HELIOS and MCNP codes by KAERI experts and they are in a good agreement. (author)

  17. Integrity assessment of research reactor fuel cladding and material testing using eddy current inspection; Avaliacao de integridade de revestimentos de combustiveis de reatores de pesquisa e teste de materiais utilizando o ensaio de correntes parasitas

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Donizete Anderson de

    2004-07-01

    A methodology to perform the integrity assessment of research reactors nuclear fuels cladding, such as those installed in IPR-Rl (TRIGA) and IEA-R1 (MTR), using nondestructive electromagnetic inspection (eddy current) is presented. This methodology is constituted by: the development of calibration reference standards, specific for each type of fuel; the development of special test probes; the recommendations for the inspection equipment calibration; the construction of voltage based evaluation curves and the inspection procedures developed for the characterization of detected flaws. The test probes development, specially those designed for the inspection of MTR fuels cladding, which present access difficulties due to the narrow gap between fuel plates (2,89 mm for IEAR-R1), constituted a challenge that demanded the introduction of unusual materials and constructive techniques. The operational performance of the developed resources, as well as the special operative characteristics of the test probes, such as their immunity to adjacent fuel plates interference and electrical resistivity changes of the fuels meat are experimentally demonstrated. The practical applicability of the developed methodology is verified in non radioactive environment, using a dummy MTR fuel element model, similar to an IEA-R1 reactor fuel element, produced and installed in IPEN, Sao Paulo. The efficacy of the proposed methodology was verified by the achieved results. (author)

  18. German research reactor back-end provisions

    International Nuclear Information System (INIS)

    Koester, Siegfried; Gruber, Gerhard

    2002-01-01

    Germany has several types of Research Reactors in operation. These reactors use fuel containing uranium of U.S. origin. Basically all the fuel which will be spent until May 2006 will be returned to the U.S. under existing contracts with the U.S. Department of Energy. The contracts are based on the U.S. FRR SNF (Foreign Research Reactor Spent Nuclear Fuel) Program which started in May 1996 and which will last for 10 years. In 1990, the German Federal Government started a program to long-term store (approx. 40 years) and finally dispose of spent fuel in Germany after the so-called U.S. fuel return window will be closed. In order to long-term store the fuel, a special container was designed which covers all different types of spent fuel from the Research Reactors. The container called 'CASTOR MTR 2' is basically licensed and is already in use for the spent fuel of Russian origin from the 'Research Reactor Rossendorf' in the eastern part of Germany. All that fuel is expected to be stored in the existing intermediate storage facility, the so-called BZA (Brennelemente Zwischenlager Ahaus). BZA already accomodates spent fuel from the former THTR-300 high temperature reactor. A final repository does not yet exist in Germany. Alternative provisions to close the back-end of the Research Reactor fuel cycle are reprocessing at COGEMA (France) or in Russian facilities, perspectively. Waste return in a form to be agreed will be mandatory, at least in France. (author)

  19. Material test reactor fuel research at the BR2 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, Steven Van; Koonen, Edgar; Berghe, Sven van den [Institute for Nuclear Materials Science, SCK-CEN, Boeretang, Mol (Belgium)

    2012-03-15

    required thermal and hydraulic conditions. The availability of a comprehensive set of post irradiation examination facilities on site complements the versatile BR2 reactor to provide a set of high performance tools for MTR fuel qualification. (author)

  20. Development of a transport cask for spent fuel elements of research reactors

    International Nuclear Information System (INIS)

    Quintana, F.; Saliba, R.O.; Furnari, J.C.; Mourao, R.P; Leite da Silva, L.; Novara, O.; Alexandre Miranda, C.; Mattar Neto, M.

    2012-01-01

    This article presents an overview of the development of a research reactor spent fuel transport cask. Through a project funded by the IAEA, Argentina, Brazil and Chile have collaborated to enhance regional capacity in the management of spent fuel elements from research reactors operated in the region. A packaging for the transport of research reactors spent fuel was developed. It was designed by a team of researchers from the countries mentioned and a 1:2 scale model for MTR type fuel was constructed in Argentina and subsequently tested in CDTN facilities in Belo Horizonte, Brazil. There were three test sequences to test the cask for normal transport and hypothetical accident conditions. It has successfully passed the tests and the overall performance was considered satisfactory. As part of the licensing process, a test sequence with the presence of regulatory authorities is scheduled for December, 2012 (author)

  1. Present status of research reactor decommissioning programme in Indonesia

    International Nuclear Information System (INIS)

    Suripto, A.; Mulyanto, N.

    2002-01-01

    At present Indonesia has 3 research reactors, namely the 30 MW MTR-type multipurpose reactor at Serpong Site, two TRIGA-type research reactors, the first one being 1 MW located at Bandung Site and the second one a small reactor of 100 kW at Yogyakarta Site. The TRIGA Reactor at the Bandung Site reached its first criticality at 250 kW in 1964, and then was operated at 1000 kW since 1971. In October 2000 the reactor power was successfully upgraded to 2 MW. This reactor has already been operated for 38 years. There is not yet any decision for the decommissioning of this reactor. However it will surely be an object for the near future decommissioning programme and hence anticipation for the above situation becomes necessary. The regulation on decommissioning of research reactor is already issued by the independent regulatory body (BAPETEN) according to which the decommissioning permit has to be applied by the BATAN. For Indonesia, an early decommissioning strategy for research reactor dictates a restricted re-use of the site for other nuclear installation. This is based on high land price, limited availability of radwaste repository site, and other cost analysis. Spent graphite reflector from the Bandung TRIGA reactor is recommended for a direct disposal after conditioning, without any volume reduction treatment. Development of human resources, technological capability as well as information flow from and exchange with advanced countries are important factors for the future development of research reactor decommissioning programme in Indonesia. (author)

  2. Immobilisation of MTR waste in cement (product evaluation). Annual report March 1985

    International Nuclear Information System (INIS)

    Howard, C.G.; Smith, D.L.G.; Williams, J.R.A.

    1986-01-01

    This report describes work performed at Winfrith under the UKAEA's research and development programme on radioactive waste management. The work carried out during April 1984 to March 1985 on the evaluation of laboratory and 200 dm 3 scale products of cemented MTR waste was sponsored by the Department of the Environment as part of radioactive waste management research programme. The results will be used in the formulation of Government policy but at this stage they do not necessarily represent Government policy. (author)

  3. Estimate of fuel burnup spatial a multipurpose reactor in computer simulation

    International Nuclear Information System (INIS)

    Santos, Nadia Rodrigues dos; Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes

    2015-01-01

    In previous research, which aimed, through computer simulation, estimate the spatial fuel burnup for the research reactor benchmark, material test research - International Atomic Energy Agency (MTR/IAEA), it was found that the use of the code in FORTRAN language, based on the diffusion theory of neutrons and WIMSD-5B, which makes cell calculation, bespoke be valid to estimate the spatial burnup other nuclear research reactors. That said, this paper aims to present the results of computer simulation to estimate the space fuel burnup of a typical multipurpose reactor, plate type and dispersion. the results were considered satisfactory, being in line with those presented in the literature. for future work is suggested simulations with other core configurations. are also suggested comparisons of WIMSD-5B results with programs often employed in burnup calculations and also test different methods of interpolation values obtained by FORTRAN. Another proposal is to estimate the burning fuel, taking into account the thermohydraulics parameters and the appearance of xenon. (author)

  4. What the difference to use LEU and HEU fuel elements separately or together in a research reactor

    International Nuclear Information System (INIS)

    Kaya, S.; Uestuen, G.

    2005-01-01

    Concerning of nuclear material safety, most of the research reactors are advised to shift from HEU (high enriched-%93 U-235) to LEU (low enriched-%20 U-235) fuel elements. When LEU and HEU fuel elements are to be used together in a research reactor, some design and safety problems are encountered. According to use of the reactor, some research reactors such as MTR type may not show any considerable difference for HEU or LEU fuel elements, but the efficiency of radioisotope production generated by thermal neutron interaction may decrease about twenty-thirty percent when LEU fuel elements are used. Here, fine mesh-sized 3D neutronic analysis of TR-2 research reactor is presented to indicate the arising problem when LEU end HEU fuel elements are used together in a research reactor. Partial thermohydraulic analysis of the reactor is also given to show the betterness of the LEU fuel element design. However, there might be some points that should be noticed for safer operation of plate type fuelled research reactors. (author)

  5. The THMIS-MTR observation of a active region filament

    Science.gov (United States)

    Zong, W. G.; Tang, Y. H.; Fang, C.

    We present some THMIS-MTR observations of a active region filament on September 4, 2002. The full stokes parameters of the filament were obtained in Hα, CaII 8542 and FeI 6302. By use of the data with high spatial resolution(0.44" per pixel), we probed the fine structure of the filament and gave out the parameters at the barbs' endpoints, including intensity, velocity and longitudinal magnetic field. Comparing the quiescent filament which we have discussed before, we find that: 1)The velocities of the barbs' endpoints are much bigger in the active region filament, the values are more than one thousand meters per second. 2)The barbs' endpoints terminate at the low logitudinal magnetic field in the active region filament, too.

  6. Modernization and Refurbishment of the RECH-1 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Daie, J. [Nuclear Application Department, Chilean Nuclear Energy Commission (CCHEN), Santiago (Chile)

    2014-08-15

    The Chilean Nuclear Energy Commission (Comisión Chilena de Energía Nuclear, or CCHEN) has operated the RECH-1 research reactor since 1974. This reactor is located at La Reina Nuclear Centre in Santiago, Chile. It is a pool type reactor using LEU MTR fuel assemblies, light water as moderator and coolant, and beryllium as reflector. The reactor has been operated at the nominal power of 5 MW in a continuous shift of 20 hours per week, 48 weeks per year. The main utilizations of the RECH-1 reactor are radioisotope production and neutron activation analysis. Among the most relevant refurbishment and modernization campaigns undertaken at the reactor are: full core conversion to the use of LEU fuel, replacement of the cooling tower, improvement of the containment building by changing the doors and gates and by a better sealant for the penetrations, introduction of an additional source of water by connecting the raw water supply system to the emergency cooling system, improvement of the emergency ventilation system, introduction of a fire detection and alarm system for detection and mitigation to protect the I&C racks, introduction of a radioactive liquid release for those generated at the reactor, introduction of a delay tank degasification system and renewal of the environmental monitoring system. At present we are assessing the possibility of replacing the old analog electronics of control for new digital systems. Detailed descriptions of these diverse activities are presented in the paper. (author)

  7. OSIRIS, a MTR adapted and well fitted to LEU utilization qualification and development

    International Nuclear Information System (INIS)

    Barnier, M.; Beylot, J.P.

    1984-01-01

    The MTR OSIRIS has been successfully operated for 4 years using the ''Caramel'' low enriched uranium dioxyde fuel for the whole core loading. In the first part we examine the performance and operating experience obtained up to the present time with ''Caramel''. In a second part the paper discusses the results of the calculations for a complete OSIRIS core loaded with 20 % silicide fuel and makes a comparison with UAl 93 % and ''Caramel'' 7 % fuels. (author)

  8. Theoretical studies aiming at the IEA-R1 reactor core conversion from high U-235 enrichment to low U-235 enrichment

    International Nuclear Information System (INIS)

    Frajndlich, R.

    1982-01-01

    The research reactors, of which the fuel elements are of MTR type, functions presently, almost in their majority with high U-235 enrichment. The fear that those fuel elements might generate a considerabLe proliferation of nuclear weapons rendered almost mandatory the conversion of highly enriched fuel elements to a low U-235 enrichment. As the IEA-R1 reactor of IPEN is operating with highly enriched fuel elements a study aiming at this conversion was done. The problems related to the conversion and the results obtained, demonstrated the technical viabilty for its realization. (E.G.) [pt

  9. MTR fuel plate qualification capabilities at SCK-CEN

    International Nuclear Information System (INIS)

    Koonen, E.; Jacquet, P.

    2002-01-01

    In order to enhance the capabilities of BR2 in the field of MTR fuel plate testing, a dedicated irradiation device has been designed. In its basic version this device allows the irradiation of 3 fuel plates. The central fuel plate may be replaced by a dummy plate or a plate carrying dosimeters. A first FUTURE device has been built. A benchmark irradiation has been executed with standard BR2 fuel plates in order to qualify this device. Detailed neutronic calculations were performed and the results compared to the results of the post-irradiation examinations of the plates. These comparisons demonstrate the capability to conduct a fuel plate irradiation program under requested and well-known irradiation conditions. Further improvements are presently being designed in order to extend the ranges of heat flux and surface temperature of the fuel plates that can be handled with the FUTURE device. (author)

  10. Investigation of neutron irradiated reactor vessel steels using post-irradiation annealing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hayato; Fukuya, Koji [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    The matrix damage is known to be a major factor that contributes to embrittlement and hardening of irradiated reactor vessel steels, and is assumed to be composed of the point defect clusters. However field emission gun scanning transmission electron microscopy (FEGSTEM) and atom probe (AP) could not detect any evidence of the matrix damage. In this study, post irradiation annealing experiments combining positron annihilation lineshape analysis (PALA) and hardness experiments were applied to an actual surveillance test specimen and a sample of reactor vessel steel irradiated in a material test reactor (MTR), in order to investigate the matrix damage recovery behavior and its contribution to hardening. It was confirmed that higher fluence increased the hardness and the volume fraction of open volume defects and that higher flux decreased the thermal stability of matrix damage and the effect on hardening. The contribution of matrix damage to hardening could be estimated to be below 30%. (author)

  11. The rehabilitation/upgrading of Philippine Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renato, T Banaga [Philippines Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E{sub 1}-U-Z{sub 1}-H{sub 1.6} TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  12. The rehabilitation/upgrading of Philippine Research Reactor

    International Nuclear Information System (INIS)

    Renato T, Banaga

    1998-01-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E 1 -U-Z 1 -H 1.6 TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  13. An overview of the RECH-1 reactor conversion

    International Nuclear Information System (INIS)

    Klein, J.; Medel, J.; Daie, J.; Torres, H.

    2000-01-01

    The RECH-l research reactor achieved the first criticality on October 13, 1974 using HEU MTR type fuel elements, which were fabricated by the UKAEA at Dounreay, Scotland. In 1979, the conversion of the reactor to use LEU fuel was decided; however, a rough estimate of the uranium density needed to convert the reactor gave 3.7 g/cm 3 . This density was not available, and to maintain the overall fuel element geometry it was necessary to convert the reactor to use 45% enriched uranium fuel. In 1985, the conversion of the reactor to use medium enriched uranium was achieved. Some years later, the Chilean Nuclear Energy Commission developed the capability to produce fuel elements based on U 3 Si 2 -Al dispersion fuel. Once the plant and the manufacturing and quality control procedures were commissioned to permit the production of fuel elements, a fabrication program starts to produce LEU fuel elements with a uranium density of 3.4 g/cm 3 . A fabrication qualification period that extended to the required fuel plates for the assembly of two fuel elements started. In November 1998, the first four LEU fuel elements manufactured by the Chilean Fuel Fabrication Plant were delivered to the reactor. When the first two fuel elements were introduced into the core a LEU fuel element qualification program began. While those fuel elements remain in the core, an evaluation program is being applied to observe its performance under irradiation condition. (author)

  14. Corrosion of cermet cores of fuel plates for nuclear research reactor

    International Nuclear Information System (INIS)

    Durazzo, M.; Ramanathan, L.V.

    1984-01-01

    Materials Testing Reactor (MTR) type fuel plates containing U 3 O 8 -Al cores and clad with Al are used in various research reactor. Preliminary investigations, where in the cladding of samples was drilled to simulate conditions of rupture due to pitting attack, revealed that considerable quantities of H 2 was evolved upon exposure of the core to water. The corrosion of cermets cores of different densities was characterized as a function of H 2 evolution that revealed 3 stages. A first stage consisting of an incubation period followed by initiation of H 2 evolution, a second stage with a constant rate of H 2 evolution and a third stage with a low rate of H 2 evolution. All 3 stages were found to vary as a function of cermet density and water temperature. (Author) [pt

  15. Analysis of a total loss of pool water accident in MTR-type research reactors

    International Nuclear Information System (INIS)

    Yilmazer, A.; Yavuz, H.

    2004-01-01

    In this study, the transient in which the pool water is lost throughout one or more of the main coolant pipes which are supposed to be broken guillotine-like is investigated for the TR-2 research reactor in Istanbul. The applicability of the methods used for other similar types of research reactors is shown. Decrease of the pool water level until the top of the core, and from the top to the bottom of the core are examined as two successive phases of the accident. Finite difference scheme and integral methods are employed to solve energy equations and the results of both methods are compared. The finite difference solution uses an explicit form for the analysis of the first phase, and a moving boundary approach for the second phase. The integral method is based on the assumption that the temperatures appearing in the energy equations have the same profiles during the transient as the steady state ones. Analyses are done both for nominal and hot channel, and the results of both methods are observed to be in agreement. (orig.)

  16. Analysis of a total loss of pool water accident in MTR-type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yilmazer, A. [Hacettepe University, Ankara (Turkey). Nuclear Engineering Department; Yavuz, H. [Istanbul Technical University (Turkey). Energy Institute

    2004-08-01

    In this study, the transient in which the pool water is lost throughout one or more of the main coolant pipes which are supposed to be broken guillotine-like is investigated for the TR-2 research reactor in Istanbul. The applicability of the methods used for other similar types of research reactors is shown. Decrease of the pool water level until the top of the core, and from the top to the bottom of the core are examined as two successive phases of the accident. Finite difference scheme and integral methods are employed to solve energy equations and the results of both methods are compared. The finite difference solution uses an explicit form for the analysis of the first phase, and a moving boundary approach for the second phase. The integral method is based on the assumption that the temperatures appearing in the energy equations have the same profiles during the transient as the steady state ones. Analyses are done both for nominal and hot channel, and the results of both methods are observed to be in agreement. (orig.)

  17. Preliminary safety evaluation for a medical therapy reactor

    International Nuclear Information System (INIS)

    Jones, J.L.; Neuman, W.A.

    1989-01-01

    A conceptual design of a passively safe reactor facility for boron neutron capture therapy has been previously described. The medical therapy reactor (MTR) has a maximum power level of 10 MW(thermal) and utilizes 45 wt% uranium in UZrH, 20 wt% 235 U enriched hydride fuel matrix with 1 wt% erbium, which is a burnable poison and provides prompt negative reactivity feedback. The facility has five beam ports for patient treatment and advanced neutron beam research and is capable of 2,000 to 10,000 treatments per year, assuming single 8h/day, 5 day/week operation. The epithermal treatment flux from the beam ports is large, enabling single-session treatment of brain cancers of <10-min duration, with minimal fast neutron and gamma contaminants. The reactor core is designed with sufficient excess reactivity to yield a core lifetime equal to a facility lifetime of 30 yr. A preliminary safety evaluation was performed using the RELAP5 thermal-hydraulic code. The analysis addressed accidents in several major categories, including a pump coastdown, a loss of secondary heat sink, and a $0.5 step reactivity insertion

  18. Uncertainties assessment for safety margins evaluation in MTR reactors core thermal-hydraulic design

    International Nuclear Information System (INIS)

    Gimenez, M.; Schlamp, M.; Vertullo, A.

    2002-01-01

    This report contains a bibliographic review and a critical analysis of different methodologies used for uncertainty evaluation in research reactors core safety related parameters. Different parameters where uncertainties are considered are also presented and discussed, as well as their intrinsic nature regarding the way their uncertainty combination must be done. Finally a combined statistical method with direct propagation of uncertainties and a set of basic parameters as wall and DNB temperatures, CHF, PRD and their respective ratios where uncertainties should be considered is proposed. (author)

  19. Experimental Irradiations of Materials and Fuels in the BR2 Reactor: An Overview of Current Programmes

    International Nuclear Information System (INIS)

    Van Dyck, S.; Koonen, E.; Verwerft, M.; Wéber, M.

    2013-01-01

    The BR2 material test reactor offers a variety of experimental irradiation possibilities for testing of materials, fuels and instruments. The current paper gives an overview of the recent and ongoing programmes in order to illustrate the experimental potential of the reactor. Three domains of applications are reviewed: Irradiation of materials and fuels for pressurised water reactors (PWR); irradiation of materials for accelerator driven systems (ADS), cooled by liquid lead alloys; and irradiation of fuel for Material Test Reactors (MTR). For PWR relevant tests, a dedicated loop is available, providing a full simulation of the thermo hydraulic conditions of a PWR. ADS related tests require particular control of the irradiation environment and the necessary safety precautions in order to avoid 210 Po contamination. In-core mechanical testing of materials is done in comparison and complimentarily to post-irradiation examinations in order to assess flux related effects on the deformation behaviour of materials. (author)

  20. Irradiation facilitates at the advanced test reactor

    International Nuclear Information System (INIS)

    Grover, Blaine S.

    2006-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC - formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950's with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens. The paper has the following contents: ATR description and capabilities; ATR operations, quality and safety requirements; Static capsule experiments; Lead experiments; Irradiation test vehicle; In-pile loop experiments; Gas test loop; Future testing; Support facilities at RTC; Conclusions. To summarize, the ATR has a long history in fuel and material irradiations, and will be fulfilling a critical role in the future fuel and material testing necessary to develop the next generation reactor systems and advanced fuel cycles. The

  1. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided; if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly

  2. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided: if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly. (author)

  3. Core conversion from rod to plate type fuel elements in research reactors

    International Nuclear Information System (INIS)

    Khattab, M.S.; Mina, A.R.

    1997-01-01

    Core thermalhydraulic analysis have been performed for rod and plate types fuel elements without altering the core bundles square grid spacer (68 mm, side) and coolant mass flow rate. The U O 2 -Mg, 10% enrichment rod type fuel elements are replaced by the MTR plate type, U-Al alloy of 20% enrichment. Coolant mass flux increased from 2000 kg/m 2 S to 5000 kg/m 2 S. Reactor power could be upgraded from 2 to 10 MW without significantly altering the steady state, thermal-hydraulic safety margins. Fuel, clad and coolant transient temperatures are determined inside the core hot channel during flow coast down using paret code. Residual heat removal system of 20% coolant capacity is necessary for upgrading reactor power to encounter the case of pumps off at 10 MW nominal operation. 6 figs., 2 tabs

  4. Development and experimental qualification of a calculation scheme for the evaluation of gamma heating in experimental reactors. Application to MARIA and Jules Horowitz (JHR) MTR Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tarchalski, M.; Pytel, K.; Wroblewska, M.; Marcinkowska, Z.; Boettcher, A.; Prokopowicz, R. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Sireta, P.; Gonnier, C.; Bignan, G. [CEA, DEN, Reactor Studies Department, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Fourmentel, D.; Barbot, L.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C.; Brun, J. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France); Jagielski, J. [NCBJ Institute, MARIA Reactor, ul.Andrzeja Soltana 7, 05-400 Swierk (Poland); Institute of Electronic Materials Technolgy, Wolczynska 133, 01-919 Warszawa (Poland); Luks, A. [Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw (Poland)

    2015-07-01

    Precise computational determination of nuclear heating which consists predominantly of gamma heating (more than 80 %) is one of the challenges in material testing reactor exploitation. Due to sophisticated construction and conditions of experimental programs planned in JHR it became essential to use most accurate and precise gamma heating model. Before the JHR starts to operate, gamma heating evaluation methods need to be developed and qualified in other experimental reactor facilities. This is done inter alia using OSIRIS, MINERVE or EOLE research reactors in France. Furthermore, MARIA - Polish material testing reactor - has been chosen to contribute to the qualification of gamma heating calculation schemes/tools. This reactor has some characteristics close to those of JHR (beryllium usage, fuel element geometry). To evaluate gamma heating in JHR and MARIA reactors, both simulation tools and experimental program have been developed and performed. For gamma heating simulation, new calculation scheme and gamma heating model of MARIA have been carried out using TRIPOLI4 and APOLLO2 codes. Calculation outcome has been verified by comparison to experimental measurements in MARIA reactor. To have more precise calculation results, model of MARIA in TRIPOLI4 has been made using the whole geometry of the core. This has been done for the first time in the history of MARIA reactor and was complex due to cut cone shape of all its elements. Material composition of burnt fuel elements has been implemented from APOLLO2 calculations. An experiment for nuclear heating measurements and calculation verification has been done in September 2014. This involved neutron, photon and nuclear heating measurements at selected locations in MARIA reactor using in particular Rh SPND, Ag SPND, Ionization Chamber (all three from CEA), KAROLINA calorimeter (NCBJ) and Gamma Thermometer (CEA/SCK CEN). Measurements were done in forty points using four channels. Maximal nuclear heating evaluated from

  5. Improvements in the model of neutron calculations for research reactors

    International Nuclear Information System (INIS)

    Calzetta, Osvaldo; Leszczynski, Francisco

    1987-01-01

    Within the research program in the field of neutron physics calculations being carried out in the Nuclear Engineering Division at the Centro Atomico Bariloche, the errors which due to some typical approximations appear in the final results are researched. For research MTR type reactors, two approximations, for high and low enrichment are investigated: the treatment of the geometry and the method of few-group cell cross-sections calculation, particularly in the resonance energy region. Commonly, the cell constants used for the entire reactor calculation are obtained making an homogenization of the full fuel elements, by one-dimensional calculations. An improvement is made that explicitly includes the fuel element frames in the core calculation geometry. Besides, a detailed treatment-in energy and space- is used to find the resonance few-group cross sections, and a comparison of the results with detailed and approximated calculations is made. The least number and the best mesh of energy groups needed for cell calculations is fixed too. (Author) [es

  6. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lightwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. The research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology, are presented. (Author) [pt

  7. Experience and research with the IEA-R1 Brazilian reactor

    International Nuclear Information System (INIS)

    Fulfaro, R.; Sousa, J.A. de; Nastasi, M.J.C.; Vinhas, L.A.; Lima, F.W. de.

    1982-06-01

    The IEA-R1 reactor of the Instituto de Pesquisas Energeticas e Nucleares, IPEN, of Sao Paulo, Brazil, a lighwater moderated swimming-pool research reactor of MTR type, went critical for the first time on September 16, 1957. In a general way, in these twenty four years the reactor was utilized without interruption by users of IPEN and other institutions, for the accomplishment of work in the field of applied and basic research, for master and doctoral thesis and for technical development. Some works performed and the renewal programme established for the IEA-R1 research reactor in which several improvements and changes were made. Recent activities in terms of production of radioisotopes and some current research programm in the field of Radiochemistry are described, mainly studies and research on chemical reactions and processes using radioactive tracers and development of radioanalytical methods, such as neutron activation and isotopic dilution. It is also presented the research programmes of the Nuclear Physics Division of IPEN, which includes: nuclear spectroscopy studies and electromagnetic hyperfine interactions; neutron diffraction; neutron inelastic scattering studies in condensed matter; development and application of the technique of fission track register in solid state detectors; neutron radioactive capture with prompt gamma detection and, finally, research in the field of nuclear metrology. (Author) [pt

  8. Preliminary experience and near future utilization programmes of the MPR-30 fueled by LEU [low enriched uranium

    International Nuclear Information System (INIS)

    Arbie, B.; Soentono, S.

    1987-01-01

    The MTR type reactor MPR-30 G.A. Siwabessy, located at PUSPIPTEK Serpong has recently reached its first criticality. This multipurpose reactor is supposed to be the first MTR type reactor in the world that is designed and constructed to be fueled by low enriched uranium. Preliminary experience covering the approach to the first criticality and the excess reactivity loading as well as some thermal hydraulics and power ascension tests are briefly presented and discussed. The near future utilization programmes during and after commissioning are also presented. (Author)

  9. Development of the uranium recovery process from rejected fuel plates in the fabrication of MTR type nuclear fuel

    International Nuclear Information System (INIS)

    Fleming Rubio, Peter Alex

    2010-01-01

    The current work was made in Conversion laboratory belonging to Chilean Nuclear Energy Commission, CCHEN. This is constituted by the development of three hydrometallurgical processes, belonging to the recovery of uranium from fuel plates based on uranium silicide (U_3Si_2) process, for nuclear research reactors MTR (Material Testing Reactor) type, those that come from the Fuel Elements Manufacture Plant, PEC. In the manufacturing process some of these plates are subjected to destructive tests by quality requirement or others are rejected for non-compliance with technical specifications, such as: lack of homogenization of the dispersion of uraniferous compound in the meat, as well as the appearance of the defects, such as blisters, so-called "dog bone", "fish tail", "remote islands", among others. Because the uranium used is enriched in 19.75% U_2_3_5 isotope, which explains the high value in the market, it must be recovered for reuse, returning to the production line of fuel elements. The uranium silicide, contained in the plates, is dispersed in an aluminum matrix and covered with plates and frames of ASTM 6061 Aluminum, as a sandwich coating, commonly referred to as 'meat' (sandwich meat). As aluminum is the main impurity, the process begins with this metal dissolution, present in meat and plates, by NaOH reaction, followed by a vacuum filtration, washing and drying, obtaining a powder of uranium silicide, with a small impurities percentage. Then, the crude uranium silicide reacts with a solution of hydrofluoric acid, dissolving the silicon and simultaneously precipitating UF_4 by reaction with HNO_3, obtaining an impure UO_2(NO_3)_2 solution. The experimental work was developed and implemented at laboratory scale for the three stages pertaining to the uranium recovery process, determining for each one the optimum operation conditions: temperature, molarity or concentration, reagent excess, among others (author)

  10. Proceedings of the 4th international symposium on material testing reactors

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Suzuki, Masahide

    2012-03-01

    This report is the Proceedings of the fourth International Symposium on Material Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The first symposium was held on 2008, at the Oarai Research and Development Center of JAEA, the second, 2009, Idaho National Laboratory (INL) of United States and the third 2010, Nuclear Research Institute (NRI) in Czech Republic to exchange information for deep mutual understanding of material testing reactors. The fourth symposium was originally scheduled to be held INVAP in Argentina. However, the aftermath of volcanic explosion at Chili forced the symposium to change place. Total 111 participants attended from Argentina, Belgium, France, Germany, Indonesia, Malasia, Korea, South Africa, Switzerland, the United State and Japan. This symposium addressed the general topics of 'status and future plan of material testing reactors', 'advancement of irradiation technology', 'expansion of industry use(RI)', 'facility, upgrade, aging management', 'new generation MTR', 'advancement of PIE technology', 'development of advanced driver fuel', and 'nuclear human resource development(HRD) for next generation', and 39 presentations were made. Furthermore, three topics, 'Necessity of cooperation for Mo-99 production by (n,gamma) reaction', 'Necessity of standardization of irradiation technology' and 'Conceptual design of next generation materials testing reactor by collaboration', were selected and discussed. (author)

  11. Proceedings of the 4th international symposium on material testing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Masahiro; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    This report is the Proceedings of the fourth International Symposium on Material Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The first symposium was held on 2008, at the Oarai Research and Development Center of JAEA, the second, 2009, Idaho National Laboratory (INL) of United States and the third 2010, Nuclear Research Institute (NRI) in Czech Republic to exchange information for deep mutual understanding of material testing reactors. The fourth symposium was originally scheduled to be held INVAP in Argentina. However, the aftermath of volcanic explosion at Chili forced the symposium to change place. Total 111 participants attended from Argentina, Belgium, France, Germany, Indonesia, Malasia, Korea, South Africa, Switzerland, the United State and Japan. This symposium addressed the general topics of 'status and future plan of material testing reactors', 'advancement of irradiation technology', 'expansion of industry use(RI)', 'facility, upgrade, aging management', 'new generation MTR', 'advancement of PIE technology', 'development of advanced driver fuel', and 'nuclear human resource development(HRD) for next generation', and 39 presentations were made. Furthermore, three topics, 'Necessity of cooperation for Mo-99 production by (n,gamma) reaction', 'Necessity of standardization of irradiation technology' and 'Conceptual design of next generation materials testing reactor by collaboration', were selected and discussed. (author)

  12. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, C.E.; Mustin, T.P.; Massey, C.D.

    1998-01-01

    Since resuming the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy (DOE) and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues associated with the transport of Materials Testing Reactor (MTR)-type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be important to foreign research reactor operators, shippers, and cask vendors, so that appropriate amendments to the Certificate of Compliance for spent fuel casks can be submitted in a timely manner to facilitate the safe and scheduled transport of FRR SNF

  13. Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin [Reactor and Nuclear Safety School, Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of)

    2017-08-15

    In this paper, a complete station blackout (SBO) or complete loss of electrical power supplies is simulated and analyzed in a downward cooling 5-MW pool-type Material Testing Reactor (MTR). The scenario is traced in the absence of active cooling systems and operators. The code nodalization is successfully benchmarked against experimental data of the reactor's operating parameters. The passive heat removal system includes downward water cooling after pump breakdown by the force of gravity (where the coolant streams down to the unfilled portion of the holdup tank), safety flapper opening, flow reversal from a downward to an upward cooling direction, and then the upward free convection heat removal throughout the flapper safety valve, lower plenum, and fuel assemblies. Both short-term and long-term natural core cooling conditions are simulated and investigated using the RELAP5 code. Short-term analyses focus on the safety flapper valve operation and flow reversal mode. Long-term analyses include simulation of both complete SBO and long-term operation of the free convection mode. Results are promising for pool-type MTRs because this allows operators to investigate RELAP code abilities for MTR thermal–hydraulic simulations without any oscillation; moreover, the Tehran Research Reactor is conservatively safe against the complete SBO and long-term free convection operation.

  14. Simulation and transient analyses of a complete passive heat removal system in a downward cooling pool-type material testing reactor against a complete station blackout and long-term natural convection mode using the RELAP5/3.2 code

    Directory of Open Access Journals (Sweden)

    Afshin Hedayat

    2017-08-01

    Full Text Available In this paper, a complete station blackout (SBO or complete loss of electrical power supplies is simulated and analyzed in a downward cooling 5-MW pool-type Material Testing Reactor (MTR. The scenario is traced in the absence of active cooling systems and operators. The code nodalization is successfully benchmarked against experimental data of the reactor's operating parameters. The passive heat removal system includes downward water cooling after pump breakdown by the force of gravity (where the coolant streams down to the unfilled portion of the holdup tank, safety flapper opening, flow reversal from a downward to an upward cooling direction, and then the upward free convection heat removal throughout the flapper safety valve, lower plenum, and fuel assemblies. Both short-term and long-term natural core cooling conditions are simulated and investigated using the RELAP5 code. Short-term analyses focus on the safety flapper valve operation and flow reversal mode. Long-term analyses include simulation of both complete SBO and long-term operation of the free convection mode. Results are promising for pool-type MTRs because this allows operators to investigate RELAP code abilities for MTR thermal–hydraulic simulations without any oscillation; moreover, the Tehran Research Reactor is conservatively safe against the complete SBO and long-term free convection operation.

  15. System for uranium superficial density measurement in U3Si2 MTR fuel plates using radiography

    International Nuclear Information System (INIS)

    Hey, Martin A.; Gomez Marlasca, Fernando

    2003-01-01

    The paper describes a method for measuring uranium superficial density in high density uranium silicide (U 3 Si 2 ) MTR fuel plates, through the use of industrial radiography, a set of patterns built for this purpose, a transmission optical densitometer, and a quantitative model of analysis and measurement. Our choice for this particular method responds to its high accuracy, low cost and easy implementation according to the standing quality control systems. (author)

  16. High temperature ultrasonic sensor for fission gas characterization in MTR harsh environment

    Directory of Open Access Journals (Sweden)

    Gatsa O.

    2018-01-01

    In this paper, we present NBT thick film fabrication by screen printing, characterization of piezoelectric, dielectric properties and material parameters studies in dependence of temperature. Relatively high resistivity in the range of 1.1013 Ohm.cm for fabricated thick film is explained by Aurivillius structure in which a-and b-layers form perovskite structure between oxides of c-layer. Main results of this study are presented and discussed in terms of feasibility for an application to a new sensor device operating at high temperature level (400°. Piezoelectric parameters enhancement and loss reduction at elevated temperatures are envisaged to be optimized. Further sensor development and test in MTR are expected to be realized in the near future.

  17. On use of ZPR research reactors and associated instrumentation and measurement methods for reactor physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Blaise, P. [CEA, DEN, DER, SPEX Experimental Programs Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    The French atomic and alternative energies -CEA- is strongly involved in research and development programs concerning the use of nuclear energy as a clean and reliable source of energy and consequently is working on the present and future generation of reactors on various topics such as ageing plant management, optimization of the plutonium stockpile, waste management and innovative systems exploration. Core physics studies are an essential part of this comprehensive R and D effort. In particular, the Zero Power Reactor (ZPR) of CEA: EOLE, MINERVE and MASURCA play an important role in the validation of neutron (as well photon) physics calculation tools (codes and nuclear data). The experimental programs defined in the CEA's ZPR facilities aim at improving the calculation routes by reducing the uncertainties of the experimental databases. They also provide accurate data on innovative systems in terms of new materials (moderating and decoupling materials) and new concepts (ADS, ABWR, new MTR (e.g. JHR), GENIV) involving new fuels, absorbers and coolant materials. Conducting such interesting experimental R and D programs is based on determining and measuring main parameters of phenomena of interest to qualify calculation tools and nuclear data 'libraries'. Determining these parameters relies on the use of numerous and different experimental techniques using specific and appropriate instrumentation and detection tools. Main ZPR experimental programs at CEA, their objectives and challenges will be presented and discussed. Future development and perspectives regarding ZPR reactors and associated programs will be also presented. (authors)

  18. Preliminary developments of MTR plates with uranium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Durand, J.P.; Laudamy, P. [CERCA, Romans (France); Richter, K. [Institut fuer Transurane, Karlsruhe (Germany)

    1997-08-01

    In the opinion of CERCA, the total weight of Uranium per MTR plate (without changing the external dimensions) cannot be further increased using U{sub 3}Si{sub 2}. Limits have been reached on plates with a thicker meat or loaded to 6g Ut/cm{sup 3}. The use of a denser fuel like Uranium mononitride could permit an increase in these limits. A collaboration between the Institute for Transuranium Elements (ITU), Joint Research Centre of the European Commission, and CERCA has been set ut. The preliminary studies at the ITU to check compatibility between aluminium and UN proved that there are no metallurgical interactions below 500{degrees}C. Feasibility of the manufacturing, on a laboratory scale at CERCA, of depleted Uranium mononitride plates loaded to 7 g Ut/cm{sup 3} has been demonstrated. The manufacturing process, however, is only one aspect of the development of a new fuel. The experience gained in the case of U{sub 3}Si{sub 2} has shown that the development of a new fuel requires considerable time and financial investment. Such a development certainly represents an effort of about 10 years.

  19. Preliminary developments of MTR plates with uranium nitride

    International Nuclear Information System (INIS)

    Durand, J.P.; Laudamy, P.; Richter, K.

    1997-01-01

    In the opinion of CERCA, the total weight of Uranium per MTR plate (without changing the external dimensions) cannot be further increased using U 3 Si 2 . Limits have been reached on plates with a thicker meat or loaded to 6g Ut/cm 3 . The use of a denser fuel like Uranium mononitride could permit an increase in these limits. A collaboration between the Institute for Transuranium Elements (ITU), Joint Research Centre of the European Commission, and CERCA has been set ut. The preliminary studies at the ITU to check compatibility between aluminium and UN proved that there are no metallurgical interactions below 500 degrees C. Feasibility of the manufacturing, on a laboratory scale at CERCA, of depleted Uranium mononitride plates loaded to 7 g Ut/cm 3 has been demonstrated. The manufacturing process, however, is only one aspect of the development of a new fuel. The experience gained in the case of U 3 Si 2 has shown that the development of a new fuel requires considerable time and financial investment. Such a development certainly represents an effort of about 10 years

  20. The reactor Cabri

    International Nuclear Information System (INIS)

    Ailloud, J.; Millot, J.P.

    1964-01-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m 3 /h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  1. Safety analysis of loss of flow transients in a typical research reactor by RELAP5/MOD3.3

    International Nuclear Information System (INIS)

    Di Maro, B.; Pierro, F.; Adorni, M.; Bousbia Salah, A.; D'Auria, F.

    2003-01-01

    The main aim of the following study is to assess the RELAP5/MOD3.3 code capability in simulating transient dynamic behaviour in nuclear research reactors. For this purpose typical loss of flow transient in a representative MTR (Metal Test Reactor) fuel type Research Reactor is considered. The transient herein considered is a sudden pump trip followed by the opening of a safety valve in order to allow passive decay heat removal by natural convection. During such transient the coolant flow decay, originally downward, leads to a flow reversal and the cooling process of the core passes from forced, mixed and finally to natural circulation. This fact makes it suitable for evaluating the new features of RELAP5 to simulate such specific operating conditions. The instantaneous reactor power is derived through the point kinetic calculation, both protected and unprotected cases are considered (with and without Scram). The results obtained from this analysis were also compared with previous results obtained by old version RELAP5/MOD2 code. (author)

  2. Prevention of criticality accidents. Fuel elements storage; Prevencion de accidentes de criticidad. Almacenamiento de elementos combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Canavese, S I; Capadona, N M

    1991-12-31

    Before the need to store fuel elements of the plate type MTR (Materials Testing Reactors), produced with enriched uranium at 20% in U235 for research reactors, it requires the design of a deposit for this purpose, which will give intrinsic security at a great extent and no complaints regarding its construction, is required. (Author). [Espanol] Partiendo de la necesidad de almacenar elementos combustibles tipo placa MTR (Materials Testing Reactors), producidos con uranio enriquecido al 20% en U235 para reactores de investigacion, se requiere el diseno de un deposito para tal fin que brinde esencialmente un alto grado de seguridad intrinseca y que no ofrezca complicaciones en cuanto a su construccion. (Autor).

  3. Safety analysis calculations for research and test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S Y; MacDonald, R; MacFarlane, D [Argonne National Laboratory, Argonne, IL (United States)

    1983-08-01

    The goal of the RERTR (Reduced Enrichment in Research and Test Reactor) Program at ANL is to provide technical means for conversion of research and test reactors from HEU (High-Enrichment Uranium) to LEU (Low-Enrichment Uranium) fuels. In exploring the feasibility of conversion, safety considerations are a prime concern; therefore, safety analyses must be performed for reactors undergoing the conversion. This requires thorough knowledge of the important safety parameters for different types of reactors for both HEU and LEU fuel. Appropriate computer codes are needed to predict transient reactor behavior under postulated accident conditions. In this discussion, safety issues for the two general types of reactors i.e., the plate-type (MTR-type) reactor and the rod-type (TRIGA-type) reactor, resulting from the changes associated with LEU vs. HEU fuels, are explored. The plate-type fuels are typically uranium aluminide (UAl{sub x}) compounds dispersed in aluminum and clad with aluminum. Moderation is provided by the water coolant. Self shut-down reactivity coefficients with EU fuel are entirely a result of coolant heating, whereas with LEU fuel there is an additional shut down contribution provided by the direct heating of the fuel due to the Doppler coefficient. In contrast, the rod-type (TRIGA) fuels are mixtures of zirconium hydride, uranium, and erbium. This fuel mixture is formed into rods ( {approx} 1 cm diameter) and clad with stainless steel or Incoloy. In the TRIGA fuel the self-shutdown reactivity is more complex, depending on heating of the fuel rather than the coolant. The two most important mechanisms in providing this feedback are: spectral hardening due to neutron interaction with the ZrH moderator as it is heated and Doppler broadening of resonances in erbium and U-238. Since these phenomena result directly from heating of the fuel, and do not depend on heat transfer to the moderator/coolant, the coefficients are prompt acting. Results of transient

  4. In core instrumentation for online nuclear heating measurements of material testing reactor

    International Nuclear Information System (INIS)

    Reynard, C.; Andre, J.; Brun, J.; Carette, M.; Janulyte, A.; Merroun, O.; Zerega, Y.; Lyoussi, A.; Bignan, G.; Chauvin, J-P.; Fourmentel, D.; Glayse, W.; Gonnier, C.; Guimbal, P.; Iracane, D.; Villard, J.-F.

    2010-01-01

    The present work focuses on nuclear heating. This work belongs to a new advanced research program called IN-CORE which means 'Instrumentation for Nuclear radiations and Calorimetry Online in REactor' between the LCP (University of Provence-CNRS) and the CEA (French Atomic Energy Commission) - Jules Horowitz Reactor (JHR) program. This program started in September 2009 and is dedicated to the conception and the design of an innovative mobile experimental device coupling several sensors and ray detectors for on line measurements of relevant physical parameters (photonic heating, neutronic flux ...) and for an accurate parametric mapping of experimental channels in the JHR Core. The work presented below is the first step of this program and concerns a brief state of the art related to measurement methods of nuclear heating phenomena in research reactor in general and MTR in particular. A special care is given to gamma heating measurements. A first part deals with numerical codes and models. The second one presents instrumentation divided into various kinds of sensor such as calorimeter measurements and gamma ionization chamber measurements. Their basic principles, characteristics such as metrological parameters, operating mode, disadvantages/advantages, ... are discussed. (author)

  5. Preparation of U3O8 powder for MTR type fuel from ammonium uranyl carbonate

    International Nuclear Information System (INIS)

    Marcondes, G.H.; Riella, H.G.

    1990-08-01

    In this paper it is described the research done at IPEN-CNEN/SP on the preparation of U 3 O 8 powder from calcination of the AUC, with appropriate characteristics to be used as dispersoid for MTR type fuel. The calcination in air of the AUC leads a U 3 O 8 powder that is further processed to obtain a powder with density and particle size as especifications. The important process parameters are here discussed with the variation AUC calcination temperature and sintering time of the U 3 O 8 powder. (author) [pt

  6. MYRRHA – A multi-purpose fast spectrum research reactor

    International Nuclear Information System (INIS)

    Aït Abderrahim, Hamid; Baeten, Peter; De Bruyn, Didier; Fernandez, Rafael

    2012-01-01

    Highlights: ► Historical evolution of the MYRRHA project. ► Detail design of the MYRRHA Accelerator Driven System. ► Irradiation performance simulation of the MYRRHA ADS. - Abstract: MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental Accelerator-Driven System (ADS) currently under development at SCK⋅CEN and will replace the Material Testing Reactor (MTR) BR2. The MYRRHA facility is currently being developed with the aid of the FP7-project “Central Design Team” and will be as a flexible irradiation facility, able to work in both subcritical and critical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV systems, material developments for fusion reactors, radioisotope production for medical and industrial applications, and Si-doping. MYRRHA will also demonstrate the full concept of Accelerator Driven Systems by coupling the requisite three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow for the study of efficient transmutation of high-level nuclear waste. Since MYRRHA is based on the heavy liquid metal technology, Lead–Bismuth Eutectic, it will be able to significantly contribute to the development of Lead Fast Reactor (LFR) technology. Further, in critical mode, MYRRHA will play the role of European Technology Pilot Plant in the path forward for LFR. In this paper we present the historical perspectives, international and high profile membership within the consortium of the MYRRHA project and the rationale for the design choices are presented. Also, the latest configuration of the reactor system is described together with the different irradiation capabilities. More specifically, the possibilities and performances for fuel irradiations are presented in detail.

  7. Irradiation of fuels and materials in the Jules Horowitz reactor: The 6th European Union JHR co-ordination action (JHR-CA)

    International Nuclear Information System (INIS)

    Iracane, Daniel; Parrat, Daniel

    2005-01-01

    The Fermine thematic network in the 5th FP pointed out the need for a new MTR facility in Europe to answer the continuous need of irradiation capabilities for fission power reactors and fusion facilities and to face the ageing of present MTRs. The Jules Horowitz Reactor (JHR) Project in Cadarache copes with this context, as an international service-oriented user-facility. In the field of nuclear fuels and materials irradiation experiments, a 6th FP co-ordination action, called JHR-CA, has started at the beginning of 2004 for 2 years. The main objective is to network existing expertise on development of a new generation of experimental devices, through definition of conceptual designs, instrumentation and related in-reactor services. This paper presents the outline of the JHR project, the organization of the JHR-CA programme, and a choice of irradiation device conceptual design results. (author)

  8. Greek research reactor performance characteristics after addition of beryllium reflector and LEU fuel

    International Nuclear Information System (INIS)

    Deen, J.R.; Snelgrove, J.L.; Papastergiou, C.

    1992-01-01

    The GRR-1 is a 5-MW pool-type, light-water-moderated and-cooled reactor fueled with MTR-type fuel elements. Recently received Be reflector blocks will soon be added to the core to add additional reactivity until fresh LEU fuel arrives. REBUS-3 xy fuel cycle analyses, using burnup dependent cross sections, were performed to assist in fuel management decisions for the water- and Be-reflected HEU nonequilibrium cores. Cross sections generated by EPRI-CELL have been benchmarked to identical VIM Monte Carlo models. The size of the Be-reflected LEU core has been reduced to 30 elements compared to 35 for the HEU water-reflected core, and an equilibrium cycle calculation has been performed

  9. Fischer-Tropsch synthesis in a two-phase reactor with presaturation

    Energy Technology Data Exchange (ETDEWEB)

    Wache, W. [Bayernoil Raffineriegesellschaft mbH, Ingolstadt (Germany); Datsevich, L.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2006-07-01

    In industry, the Fischer-Tropsch (FTS) synthesis is mostly carried out in multiphase slurry or multitubular reactors (MTR), where gaseous reactants and liquid products (hydrocarbons up to waxes) are contacted in the presence of a solid catalyst. Such reactors are characterized by a complex temperature control, necessity of gas recycling, complicated design and problematic scale-up. A new alternative to conventional FTS-processes is the presaturated-one-liquid-phase (POLF) technology. The basic principle of this concept is a recirculation of the liquid phase, in which a gaseous reactant(s) is (are) solved before entering the fixed-bed reactor. In a simple column reactor, this technology ensures the effective heat removal and intensive fluid-solid mass transfer. In comparison to conventional reactors, the plant design is very simple, the temperature control is uncomplicated and there is no danger of any runaways. That results in lower investment and operation costs as well as in higher reliability. The experiments show that the conversion of CO and the product distribution of hydrocarbons are practically independent on the mode of operation (two- or three-phase system). However, in the lab-scale apparatus, water is accumulated in the loop, which leads to a loss of the catalyst activity (due to Fe-carbonate). In a technical process, the water accumulation in a loop can be eluded by taking an oil free of water from the oil work-up unit. Our experiments with the removal of water from the stream by a zeolite demonstrate a much promising applicability of the POLF process to the industrial FTS. (orig.)

  10. A report on the transport of MTR-type spent fuel assemblies of the Philippine Research Reactor (PRR-1)

    International Nuclear Information System (INIS)

    Yoshisaki, Magno B.; Leopando, Leonardo S.

    1999-03-01

    Fifty one (51) fuel assemblies of mixed enrichment from the Philippine Research Reactor (PRR-1), consisting of 50 spent and 1 fresh, were shipped to the United States last 14 March 1999 under the U.S. Return of Foreign Research Reactor (FRR) fuel policy. The shipment was in line with the U.S. initiative to implement its Record of Decision (ROD) which took effect on 13 May 1996 to accept and manage all FRR uranium fuel of U.S. origin and enriched in the United States. The shipment program would last10 years, ending midnight of 13 May 2006. The ROD provided a 3 year extension period within which to accept FRR spent nuclear fuel (SNF) withdrawn from reactors after 2006. The U.S. policy gave priority to the NPT significance of high enriched U, as the prime target of the return of FRR policy. Classified as a developing country, the Philippines, through the PNRI, signed a contract with the U.S. Department of Energy for the cost-free shipment of PRR-1 spent fuel to the United States. Spent fuel loading and transport operations to the port area lasted seven (7) days, from 8 to 14 March 1999. (Author)

  11. Isotopes accumulation in the thermal column of TRIGA reactor

    International Nuclear Information System (INIS)

    Iorgulis, C.; Diaconu, D.; Gugiu, D.; Csaba, R.

    2013-01-01

    The correlation of impurity observed in the virgin graphite and radionuclide content and activities measured in the irradiated graphite needs to know the irradiated history. This is a challenging process if impurity content and irradiation conditions are not accurately known. This is the case of the irradiated graphite in the thermal column of Institute for Nuclear Research Pitesti (INR)14 MW TRIGA reactor. To overcome incomplete impurity content and the unknown position in the column of the measured irradiated graphite available for characterisation and comparison, a set of preliminary simulations were performed. Following Eu 152 /Eu 154 ration they allowed the estimation of an impurity content and irradiation conditions leading to measured activities. Based on these data the radio-isotope accumulation in different positions in the thermal column was predicted. Modelling performed by INR used advanced prediction packages (e.g. WIMS, MCNP ORIGEN-S from Scale 5) to assess the isotopic content of MTR graphite types with irradiation history specific for a TRIGA research reactor. Some certain calculations points from the column were selected in order to model the burnup and isotopes productions using ORIGEN from SCALE code system. (authors)

  12. Evaluation of analysis method standardless by WDXRF and EDXRF of aluminum powder used in MTR type fuel

    International Nuclear Information System (INIS)

    Scapin, Valdirene O.; Salvador, Vera L.R.; Cotrim, Marycel E.B.; Pires, Maria A.F.; Scapin, Marcos A.

    2011-01-01

    The nuclear fuel used in IEA-R1m reactor at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP) is the MTR type. This fuel is compound of a core (U 3 Si 2 -Al dispersion briquette) wrapped in an aluminum plate with two cladding (superior and inferior) both in aluminum. The fuel element efficiency depends on the quality control of U 3 Si 2 and aluminum. For aluminum should be checked the impurities levels such as Si, Mn, Fe, Co, Cu, Zn and others and Al total . Aiming to provide a quick method, multielemental and non-destructive, the performance of the wavelength dispersive (WDXRF) and energy dispersive (EDXRF) X-ray fluorescence techniques, using the curve instrument sensitivity curve method, also known like standard less analysis, was evaluated. This method allows the determination from the element boron (Z=5) to uranium (Z=92) with concentrations ranging from 0.001 to 99.99% without the need for individual calibration curve and chemical pretreatments in the sample preparation. The results were compared with calibration curve method data, using statistical tests tools. By multivariate analysis of all the experimental data, especially by the discriminant analysis (DA) and cluster analysis (CA), respectively, it was possible to evaluate a correlation between variables of the applied analytical methods could be interpreted in context to qualify the fuels by XRF technique and method standard less. The results showed that the proposed method is satisfactory for both spectrometers; however it was found that the WDXRF presents the greatest conformity degree. (author)

  13. A neutronic feasibility study for LEU conversion of the Brookhaven Medical Research Reactor (BMRR).

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, N. A.

    1998-01-14

    A neutronic feasibility study for converting the Brookhaven Medical Research Reactor from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with Brookhaven National Laboratory. Two possible LEU cores were identified that would provide nearly the same neutron flux and spectrum as the present HEU core at irradiation facilities that are used for Boron Neutron Capture Therapy and for animal research. One core has 17 and the other has 18 LEU MTR-type fuel assemblies with uranium densities of 2.5g U/cm{sup 3} or less in the fuel meat. This LEU fuel is fully-qualified for routine use. Thermal hydraulics and safety analyses need to be performed to complete the feasibility study.

  14. Thermal hydraulic modelling of the Mo and Iridium irradiation facilities of the RA10 reactor

    International Nuclear Information System (INIS)

    Gramajo, M.; García, J.; Marcel, C.P.

    2013-01-01

    The RA-10 reactor is a multipurpose, open pool research reactor. The core consists of a rectangular array of MTR type fuel. The produced thermal power is 30 MW which is extracted by the refrigeration system via an ascendant flow through the core. The core reflector is D 2 O contained in a watertight tank. The design of the reactor includes a number of out-core facilities which are meant to be used for industrial, medical and research purposes. Among all the facilities, the most important ones are the Molybdenum and Iridium ones which we modeled in this work. During the normal operation of the reactor, the manipulation and the on-line extraction of the irradiation facilities is foreseen. Therefore the study of the head loss during the normal operation as well as during the extraction maneuvers plays a relevant role in the design and safety analysis. In this work a CFD commercial code is use dto perform the calculations needed to guarantee the design requirements.In addition, a full detailed geometric model for both, the Molybdenum and Iridium facilities,is used to perform the required simulations. The obtained results allow to evaluating the thermal-hydraulic performance of the proposed facilities designs. (author)

  15. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Mustin, Tracy P.; Massey, Charles D.

    1999-01-01

    Since initiating the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel causing a degradation of the fuel assembly exposing fuel meat and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues and implementation challenges associated with the transport of MTR type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, implementation status, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be of interest to foreign research reactor operators, shippers, and cask vendors in evaluating the condition of their fuel to ensure it can be transported in accordance with appropriate cask certificate requirements. (author)

  16. Adoption of ASME Code Section XI for ISI to Research Reactors

    International Nuclear Information System (INIS)

    Tawfik, Y.E.; El-sesy, I.A.; Shaban, H.I.; Ibrahim, M.M.

    2002-01-01

    ETRR-2 (Second Egyptian thermal research reactor) is a multi-purpose, pool- type reactor with an open water surface and variable core arrangement. The core power is 22 MWth, cooled and moderated by light water and with beryllium reflectors. It contains plate- type fuel elements (MTR type, 19.7% enriched uranium) with aluminum clad. The ETRR-2 reactor consist of 57 systems and around 200 subsystems. These systems contain many mechanical components such as tanks, pipes, valves, pumps, heat exchangers, cooling tower, air compressors, and supports. In this present work, a trial was made to adopt the general requirements of ASME code, section XI to ETRR-2 research reactor. ASME (American Society of Mechanical Engineers) boiler and pressure vessel Code, section XI, provides requirements for in-service inspection (ISI) and in-service testing (IST) of components and systems, and repair/replacement activities in a nuclear power plant. Also, IAEA (International Atomic Energy Authority) has published some recommendations for ISI for research reactors similar to that rules and requirements specified in ASME. The complete ISI program requires several steps that have to be performed in sequence. These steps are described in many logic flow charts (LFC's). These logic flow charts include; the general LFC's for all steps required to complete ISI program, the LFC's for examination requirements, the LFC's for flaw evaluation modules, and the LFC's for acceptability of welds for class 1 components. This program includes, also, the inspection program for welded parts of the reactor components during its lifetime. This inspection program is applied for each system and subsystem of ETRR-2 reactor. It includes the examination area type, the component type, the part to be examined, the weld type, the examination method, the inspection program schedule, and the detailed figures of the welded components. (authors)

  17. Thermal-hydraulic simulation and analysis of Research Reactor Cooling Systems

    International Nuclear Information System (INIS)

    EL Khatib, H.H.A.

    2013-01-01

    The objective of the present study is to formulate a model to simulate the thermal hydraulic behavior of integrated cooling system in a typical material testing reactor (MTR) under loss of ultimate heat sink, the model involves three interactively coupled sub-models for reactor core, heat exchanger and cooling tower. The developed model predicts the temperature profiles in addition it predicts inlet and outlet temperatures of the hot and cold stream as well as the heat exchangers and cooling tower. The model is validated against PARET code for steady-state operation and also verified by the reactor operational records, and then the model is used to simulate the thermal-hydraulic behavior of the reactor under a loss of ultimate heat sink. The simulation is performed for two operational regimes named regime I of (11 MW) thermal power and three operated cooling tower cells and regime II of (22 MW) thermal power and six operated cooling tower cells. In regime I, the simulation is performed for 1, 2 and 3 cooling tower failed cells while in regime II, it is performed for 1, 2, 3, 4, 5 and 6 cooling tower failed cells. The safety action is conducted by the reactor protection system (RPS) named power reduction safety action, it is triggered to decrease the reactor power by amount of 20% of the present power when the water inlet temperature to the core reaches 43 degree C and a scram (emergency shutdown) is triggered in case of the inlet temperature reaches 44 degree C. The model results are analyzed and discussed. The temperature profiles of fuel, clad and coolant are predicted during transient where its maximum values are far from thermal hydraulic limits.

  18. In-core instrumentation and in-situ measurement in connection with fuel behaviour. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    The subject of this meeting has been touched on briefly in most of the Specialist's and topical meetings related to fuel behaviour. On the basis of the conclusions and recommendations of these meetings the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) recommended the Agency to organize a dedicated Specialist's Meeting on the subject. The twenty one papers covered the instrumentation, sensors, methods and computer codes currently used in Material Test Reactor (MTR) and power reactors as well as improved instrumentation and methods. The meeting acknowledged the fast development of fuel modelling and therefore the growing need of dedicated high burnup fuel experiments carried out in MTR reactors on refabricated rods from power reactors. In order to reduce safety margins in power reactors, thus improving economics, the necessity to develop more sophisticated on-line calculations, based on improved sensors, was recognized, although this development is limited by insufficient knowledge of the mechanisms involved. Refs, figs, tabs

  19. Analysis of loss of flow events on Brazilian multipurpose reactor by RELAP5 code

    International Nuclear Information System (INIS)

    Soares, Humberto V.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Aronne, Ivan D.; Rezende, Guilherme P.

    2011-01-01

    The Brazilian Multipurpose Reactor (BMR) is currently being projected and analyzed. It will be a 30 MW open pool multipurpose research reactor with a compact core using Materials Testing Reactor (MTR) type fuel assembly, with planar plates. BMR will be cooled by light water and moderated by beryllium and heavy water. This work presents the calculations of steady state operation of BMR using the RELAP5 model and also three transient cases of loss of flow accident (LOFA), in the primary cooling system. A LOFA may arise through failures associated with the primary cooling system pumps or through events resulting in a decrease in the primary coolant flow with the primary cooling system pumps functioning normally. The cases presented in this paper are: primary cooling system pump shaft seizure, failure of one primary cooling system pump motor and failure of both primary cooling system pump motors. In the shaft seizure case, the flow reduction is sudden, with the blocking of the flow coast down The motor failure cases, deal with the failure of one or two pump motor due to, for example, malfunction or interruption of power and differently of the shaft seizure it can be observed the flow coast down provided by the pump inertia. It is shown that after all initiating events the reactor reaches a safe new steady state keeping the integrity of the fuel elements. (author)

  20. Analysis of loss of flow events on Brazilian multipurpose reactor by RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Humberto V.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria Auxiliadora F., E-mail: antonella@nuclear.ufmg.br, E-mail: laubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br [Departamento de Engenharia Nuclear, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG (Brazil); Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores, CNPq (Brazil); Aronne, Ivan D.; Rezende, Guilherme P., E-mail: aroneid@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte (Brazil).

    2011-07-01

    The Brazilian Multipurpose Reactor (BMR) is currently being projected and analyzed. It will be a 30 MW open pool multipurpose research reactor with a compact core using Materials Testing Reactor (MTR) type fuel assembly, with planar plates. BMR will be cooled by light water and moderated by beryllium and heavy water. This work presents the calculations of steady state operation of BMR using the RELAP5 model and also three transient cases of loss of flow accident (LOFA), in the primary cooling system. A LOFA may arise through failures associated with the primary cooling system pumps or through events resulting in a decrease in the primary coolant flow with the primary cooling system pumps functioning normally. The cases presented in this paper are: primary cooling system pump shaft seizure, failure of one primary cooling system pump motor and failure of both primary cooling system pump motors. In the shaft seizure case, the flow reduction is sudden, with the blocking of the flow coast down The motor failure cases, deal with the failure of one or two pump motor due to, for example, malfunction or interruption of power and differently of the shaft seizure it can be observed the flow coast down provided by the pump inertia. It is shown that after all initiating events the reactor reaches a safe new steady state keeping the integrity of the fuel elements. (author)

  1. Estimate of fuel burnup spatial a multipurpose reactor in computer simulation; Estimativa da queima espacial do combustivel de um reator multiproposito por simulacao computacional

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Nadia Rodrigues dos, E-mail: nadia.santos@ifrj.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (IFRJ), Paracambi, RJ (Brazil); Lima, Zelmo Rodrigues de; Moreira, Maria de Lourdes, E-mail: malu@ien.gov.br, E-mail: zrlima@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    In previous research, which aimed, through computer simulation, estimate the spatial fuel burnup for the research reactor benchmark, material test research - International Atomic Energy Agency (MTR/IAEA), it was found that the use of the code in FORTRAN language, based on the diffusion theory of neutrons and WIMSD-5B, which makes cell calculation, bespoke be valid to estimate the spatial burnup other nuclear research reactors. That said, this paper aims to present the results of computer simulation to estimate the space fuel burnup of a typical multipurpose reactor, plate type and dispersion. the results were considered satisfactory, being in line with those presented in the literature. for future work is suggested simulations with other core configurations. are also suggested comparisons of WIMSD-5B results with programs often employed in burnup calculations and also test different methods of interpolation values obtained by FORTRAN. Another proposal is to estimate the burning fuel, taking into account the thermohydraulics parameters and the appearance of xenon. (author)

  2. Qualification of high-density fuel manufacturing for research reactors at CNEA

    Energy Technology Data Exchange (ETDEWEB)

    Adelfang, P.; Alvarez, L.; Boero, N.; Calabrese, R.; De La Fuente, M.; Echenique, P.; Markiewicz, M.; Pasqualini, E.; Ruggirello, G.; Taboada, H. [CNEA, Buenos Aires (Argentina)

    2001-07-01

    CNEA, the National Atomic Energy Commission of Argentina, is at the present a qualified supplier of uranium oxide fuel for research reactors. A new objective in this field is to develop and qualify the manufacturing of LEU high-density fuel for this type of reactors. According with the international trend Silicide fuel and U-xMo fuel are included in our program as the most suitable options. The facilities to complete the qualification of high-density MTR fuels, like the manufacturing plant installations, the reactor, the pool side fuel examination station and the hot cells are fully operational and equipped to perform all the activities required within the program. The programs for both type of fuels include similar activities: development and set up of the fuel material manufacturing technology, set up of fuel plate manufacturing, fabrication and irradiation of miniplates, fabrication and irradiation of full scale fuel elements, post-irradiation examination and feedback for manufacturing improvements. For silicide fuels most of these steps have already been completed. For U-xMo fuel the activities also include the development of alternative ways to obtain U-xMo powder, feasibility studies for large-scale manufacturing and the economical assessment. Set up of U-xMo fuel plate manufacturing is also well advanced and the fabrication of the first full scale prototype is foreseen during this year. (author)

  3. Technical ability of new MTR high-density fuel alloys regarding the whole fuel cycle

    International Nuclear Information System (INIS)

    Durand, J.P.; Maugard, B.; Gay, A.

    1998-01-01

    The development of new fuel alloys could provide a good opportunity to improve drastically the fuel cycle on the neutronic performances and the reprocessing point of view. Nevertheless, those parameters can only be considered if the fuel manufacture feasibility has been previously demonstrated. As a matter of fact, a MTR work group involving French partners (CEA, CERCA, COGEMA) has been set up in order to evaluate the technical ability of new fuels considering the whole fuel cycle. In this paper CERCA is presenting the preliminary results of UMo and UNbZr fuel plate manufacture, CEA is comparing to U 3 Si 2 the neutronic performances of fuels such as UMo, UN, UNbZr, while COGEMA is dealing with the reprocessing feasibility. (author)

  4. Thermal-hydraulic modelling of the SAFARI-1 research reactor using RELAP/SCDAPSIM/MOD3.4

    International Nuclear Information System (INIS)

    Sekhri, Abdelkrim; Graham, Andy; D'Arcy, Alan; Oliver, Melissa

    2008-01-01

    The SAFARI-1 reactor is a tank-in-pool MTR type research reactor operated at a nominal core power of 20 MW. It operates exclusively in the single phase liquid water regime with nominal water and fuel temperatures not exceeding 100 deg. C. RELAP/SCDAPSIM/MOD3.4 is a Best Estimate Code for light water reactors as well as for low pressure transients, as part of the code validation was done against low pressure facilities and research reactor experimental data. The code was used to simulate SAFARI-1 in normal and abnormal operation and validated against the experimental data in the plant and was used extensively in the upgrading of the Safety Analysis Report (SAR) of the reactor. The focus of the following study is the safety analysis of the SAFARI-1 research reactor and describes the thermal hydraulic modelling and analysis approach. Particular emphasis is placed on the modelling detail, the application of the no-boiling rule and predicting the Onset of Nucleate Boiling and Departure from Nucleate Boiling under Loss of Flow conditions. Such an event leads the reactor to switch to a natural convection regime which is an adequate mode to maintain the clad and fuel temperature within the safety margin. It is shown that the RELAP/SCDAPSIM/MOD3.4 model can provide accurate predictions as long as the clad temperature remains below the onset of nucleate boiling temperature and the DNB ratio is greater than 2. The results are very encouraging and the model is shown to be appropriate for the analysis of SAFARI-1 research reactor. (authors)

  5. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    International Nuclear Information System (INIS)

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    Highlights: ► Kinetic parameters of Tehran research reactor mixed-core have been calculated. ► Burn-up effect on TRR kinetics parameters has been studied. ► Replacement of LEU-CFE with HEU-CFE in the TRR core has been investigated. ► Results of each mixed core were compared to the reference core. ► Calculation of kinetic parameters are necessary for reactivity and power excursion transient analysis. - Abstract: In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR P C package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change

  6. Investigation of fuel lattice pitch changes influence on reactor performance through evaluate the neutronic parameters

    International Nuclear Information System (INIS)

    Zareian Ronizi, F.; Fadaei, A.H.; Setayeshi, S.; Shahidi, A.R.

    2015-01-01

    Highlights: • One of the most complex issues that Nu-engineers deal with is the design of NR core. • Numerous factors in nuclear core design depend on Fuel-to-Moderator volume ratio. • Aim of this research is to investigate RX performance for different lattice pitches. - Abstract: Nuclear reactor core design is one of the most complex issues that nuclear engineers deal with. The number and complexity of effective parameters and their impact on reactor design, which makes the problem difficult to solve, require precise knowledge of these parameters and their influence on the reactor operation. Numerous factors in a nuclear reactor core design depend on the Fuel-to-Moderator volume ratio, V F /V M , in a fuel cell. This ratio can be modified by changing the lattice pitch which is the thickness of water channels between fuels plates while keeping fuel slab dimensions fixed. Cooling and moderating properties of water are affected by such a change in a reactor core, and hence some parameters related to these properties might be changed. The aim of this research is to provide the suitable knowledge for nuclear core designing. To reach this goal, the first operating core of Tehran Research Reactor (TRR) with different lattice pitches is simulated, and the effect of different lattice pitches on some parameters such as effective multiplication factor (K eff ), reactor life time, distribution of neutron flux and power density in the core, as well as moderator temperature and density coefficient of reactivity are evaluated. The nuclear reactor analysis code, MTR-PC package is employed to carry out the considered calculation. Finally, the results are presented in some tables and graphs that provide useful information for nuclear engineers in the nuclear reactor core design

  7. Model of a thermoreactor based on an adiabatic trap with MHD stabilizers

    International Nuclear Information System (INIS)

    Dimov, G.I.

    1984-01-01

    The model of a thermonuclear reactor (MTR) is intended for production and study of a deuterium-tritium plasma with thermonuclear parameters and to solve the basic engineering and technological problems connected with a thermonuclear reactor based on an ambipolar trap

  8. The future Jules Horowitz material testing reactor: An opportunity for developing international collaborations on a major European irradiation infrastructure

    International Nuclear Information System (INIS)

    Parrat, D.; Bignan, G.; Maugard, B.; Gonnier, C.; Blandin, C.

    2015-01-01

    Development process of a fuel product or a nuclear material before using at an industrial scale in a power reactor ranges from characterization of the material itself under neutronic flux up to its qualification in accidental conditions. Irradiations in Material Testing Reactors (MTRs) are in practice the basis of the whole process, in complement of prediction capabilities gained by modelling. Dedicated experimental reactors play also an important complementary role for some specific integral tests (e.g. RIA tests). Irradiations of precursors in power reactors are often limited to products which present a slight design evolution compare to the standard product or are implemented for further tests when a statistical approach is useful for defining a safety criterion. However European MTR park status is characterized by ageing infrastructures, which could cause operational issues in coming years, either on technological or on safety point of views. Moreover some specific supplies related to the public demand could be strongly affected (e.g. radiopharmaceutical targets). To avoid a lack in irradiation capacity offer at European level, CEA launched the Jules Horowitz Material Testing Reactor (JHR) international program, in the frame of a Consortium gathering also EDF (FR), AREVA (FR), European Commission (EU), SCK.CEN (BE), VTT (FI), CIEMAT (SP), STUDSVIK (SE), UJV (CZ), NNL (UK), IAEC (IL), DAE (IN) and as associated partnership: JAEA (JP). Some institutions in this list are themselves the flagship of a national Consortium. Discussions for enlarging participation are on-going with other countries, as JHR Consortium is open to new member entrance until JHR completion. The Jules Horowitz Material Testing Reactor (JHR MTR) is under construction at CEA Cadarache in southern France and will be an important international User Facility for R&D in support to the nuclear industry, research centres, regulatory bodies and TSO, and academic institutions. It represents a unique

  9. Simulation and Comparison of the Calorimeters Measuring the Nuclear Heating in the OSIRIS Reactor, with the TRIPOLI-4R Monte-Carlo Code

    International Nuclear Information System (INIS)

    Peron, A.; Malouch, F.; Diop, C.M.

    2013-06-01

    Two calorimeter devices are used in the OSIRIS MTR reactor (CEA-Saclay center) for the nuclear heating measurements. The first one is a fixed five-stage calorimeter device. The second one is an innovative mobile probe called 'CALMOS'. The design of these devices is different (in particular their geometry), implying modifications on the local neutron and photon fluxes and hence on nuclear heating measured values. The measurements performed by the two calorimeter devices cannot directly be compared; this requires perfect irradiation conditions in the reactor core, especially for the core loading and the control element positions. Simulation is here a good help to perform a fully relevant comparison. In this paper, differences between calorimeter devices in terms of nuclear heating and particle fluxes are evaluated using the TRIPOLI-4 Monte-Carlo code. After a description of the OSIRIS reactor and the design of the two calorimeter devices, the nuclear heating calculation scheme used for simulation will be introduced. Different simulations and results will be detailed and analyzed to determine the calorimeter geometry impact on the measured nuclear heating. (authors)

  10. In-core program for on line measurements of neutron, photon and nuclear heating parameters inside Jules Horowitz MTR reactor

    International Nuclear Information System (INIS)

    Lyoussi, A.; Reynard-Carette, C.

    2014-01-01

    Accurate on-line measurements of key parameters inside experimental channels of Material Testing Reactor are necessary to dimension the irradiation devices and consequently to conduct smart experiments on fuels and materials under suitable conditions. In particular the quantification of nuclear heating, a relevant parameter to reach adapted thermal conditions, has to be improved. These works focus on an important collaborative program between CEA and Aix-Marseille University called INCORE (Instrumentation for Nuclear radiations and Calorimetry On-line in Reactor) dedicated to the development of a new measurement methodology to quantify both nuclear heating and accurate radiation flux levels (neutrons and photons). The methodology, which is based on experiments carried out under irradiation conditions with a multi-sensor device (ionization chamber, fission chamber, gamma thermometer, calorimeter, SPND, SPGD) as well as works performed out-of nuclear/radiative environment on a reference sensor used to measure nuclear heating (calorimeter), is presented (authors)

  11. HEU and LEU MTR fuel elements as target materials for the production of fission molybdenum

    International Nuclear Information System (INIS)

    Sameh, A.A.; Bertram-Berg, A.

    1993-01-01

    The processing of irradiated MTR-fuels for the production of fission nuclides for nuclear medicine presents a significantly increasing task in the field of chemical separation technology of high activity levels. By far the most required product is MO-99, the mother nuclide of Tc-99m which is used in over 90% of the organ function tests in nuclear medicine. Because of the short half life of Mo-99 (66 h) the separation has to be carried out from shortly cooled neutron irradiated U-targets. The needed product purity, the extremely high radiation level, the presence of fission gases like xenon-133 and of volatile toxic isotopes such as iodine-131 and its compounds in kCi-scale require a sophisticated process technology

  12. FUEL BURN-UP CALCULATION FOR WORKING CORE OF THE RSG-GAS RESEARCH REACTOR AT BATAN SERPONG

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-12-01

    Full Text Available The neutronic parameters are required in the safety analysis of the RSG-GAS research reactor. The RSG-GAS research reactor, MTR (Material Testing Reactor type is used for research and also in radioisotope production. RSG-GAS has been operating for 30 years without experiencing significant obstacles. It is managed under strict requirements, especially fuel management and fuel burn-up calculations. The reactor is operated under the supervision of the Regulatory Body (BAPETEN and the IAEA (International Atomic Energy Agency. In this paper, the experience of managing RSG-GAS core fuels will be discussed, there are hundred possibilities of fuel placements on the reactor core and the strategy used to operate the reactor will be crucial. However, based on strict calculation and supervision, there is no incorrect placement of the fuels in the core. The calculations were performed on working core by using the WIMSD-5B computer code with ENDFVII.0 data file to generate the macroscopic cross-section of fuel and BATAN-FUEL code were used to obtain the neutronic parameter value such as fuel burn-up fractions. The calculation of the neutronic core parameters of the RSG-GAS research reactor was carried out for U3Si2-Al fuel, 250 grams of mass, with an equilibrium core strategy. The calculations show that on the last three operating cores (T90, T91, T92, all fuels meet the safety criteria and the fuel burn-up does not exceed the maximum discharge burn-up of 59%. Maximum fuel burn-up always exists in the fuel which is close to the position of control rod.

  13. Validation of photon-heating calculations in irradiation reactor with the experimental AMMON program and the CARMEN device

    International Nuclear Information System (INIS)

    Lemaire, Matthieu

    2015-01-01

    The temperature in the different core structures of Material-Testing Reactors (MTR) is a key physical parameter for MTRs' performance and safety. In nuclear reactors, where neutron and photon flux are sustained by fission chain reactions, neutrons and photons steadily deposit energy in the structures they cross and lead to a temperature rise in these structures. In non-fissile core structures (such as material samples, experimental devices, control rods, fuel claddings, and so on), the main part of nuclear heating is induced by photon interactions. This photon heating must therefore be well calculated as it is a key input parameter for MTR thermal studies, whose purpose is for instance to help determine the proper sizing of cooling power, electrical heaters and insulation gaps in MTR irradiation devices. The Jules Horowitz Reactor (JHR) is the next international MTR under construction in the south of France at CEA Cadarache research center (French Alternative Energies and Atomic Energy Commission). The JHR will be a major research infrastructure for the test of structural material and fuel behavior under irradiation. It will also produce from 25% to 50% of the European demand of medical radioisotopes for diagnostic purposes. High levels of nuclear heating are expected in the JHR core, with an absorbed-dose rate up to 20 watts per hafnium gram at nominal power (100 MW). Compared to a Pressurized-Water Reactor (PWR), the JHR is made of a specific array of materials (aluminum rack, beryllium reflector, hafnium control rods) and the feedback on photon-heating calculations with these features is limited. It is therefore necessary to validate photon-heating calculation tools (calculation codes and the European nuclear-data JEFF3.1.1 library) for use in the JHR, that is, it is necessary to determine the biases and uncertainties that are relevant for the photon-heating values calculated with these tools in the JHR. This topic constitutes the core of the present

  14. MTR fuel element supply by CERCA through CECCN after the production transfer from NUKEM

    International Nuclear Information System (INIS)

    Hassel, H.W.

    1991-01-01

    The transfer of fuel element supply contracts, the corresponding Al-materials, structure parts, documents, uranium metal, customers related know-how, tools and equipment from NUKEM to CERCA has been completed, thus now giving a high flexibility for CERCA's workshop to fabricate and inspect large quantities of several types of fuel elements simultaneously. Based on this fact, on strategic planning for the next couple of years and on the fact that after 10 years of RERTR program the necessary high density fuel has been successfully developed and implemented, 'business as usual' in the field of fabrication has well become possible. The RERTR community should now use the great chance to concentrate all its efforts on problems which still strongly influence the fabrication and the use of MTR fuel elements: supply of enriched uranium,reprocessing capabilities and politics, transports of nuclear materials. (author)

  15. Dry storage of MTR spent fuel from the Argentine radioisotope production reactor RA-3; Proyecto de compactado y reubicacion de los elementos combustibles quemados del RA-3 en el deposito de combustibles MTR del Centro Atomico Ezeiza

    Energy Technology Data Exchange (ETDEWEB)

    Di Marco, A; Gillaume, E J; Ruggirello, G; Zaweruchi, A [Comision Nacional de Energia Atomica, San Martin (Argentina). Unidad de Actividad Combustibles Nucleares

    1997-12-31

    The nuclear fuel elements of the RA-3 reactor consist in 19 rectangular fuel plates held in position by two lateral structural plates. The whole assembly is coupled to the lower nozzles that fits in the reactor core grid. The inner plates are 1.5 mm thick, 70.5 mm wide and 655 mm long and the outer plates are 100 mm longer. The fuel plates are formed by a core of an AI-U alloy co-laminated between two plates of Al. Enrichment is 90% {sup 235}U. After being extracted from the reactor, the fuel elements have been let to cool down in the reactor storage pool and finally moved to the storage facility. This facility is a grid of vertical underground channels connected by a piping system. The system is filled with processed and controlled water. At the present the storage capacity of the facility is near to be depleted and some indications of deterioration of the fuel elements has been detected. Due to the present status of the facility and the spent fuel stored there, a decision has been taken to proceed to modify the present underwater storage to dry storage. The project consist in: a) Decontamination and conditioning of the storage channels to prepare them for dry storage. b) Disassembly of the fuel elements in hot cells in order to can only the active fuel plates in an adequate tight canister. c) The remnant structural pieces will be treated as low level waste. (author). 10 figs.

  16. Embrittlement of the Shippingport reactor shield tank

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1989-01-01

    Surveillance specimens from the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory showed an unexpectedly high degree of embrittlement relative to the data obtained on similar materials in Materials Testing Reactors (MTRs). The results suggest a possible negative flux effect and raise the issue of embrittlement of the pressure vessel support structures of commercial light water reactors. To help resolve this issues, a program was initiated to characterize the irradiation embrittlement of the neutron shield tank (NST) from the decommissioned Shippingport reactor. The Shippingport NST operated at 55 degree C (130 degree F) and was fabricated from A212 Grade B steel, similar to the vessel material in HFIR. The inner wall of the NST was exposed to a total maximum fluence of ∼ 6 x 10 17 n/cm 2 (E > 1 MeV) over a life of 9.25 effective full power years. This corresponds to a fast flux of 2.1 x 10 9 n/cm 2 x s and is comparable to the conditions for the HFIR surveillance specimens. The results indicate that irradiation increases the 15 ft x lb Charpy transition temperature (CTT) by ∼25 degree C (45 degree F) and decreases the upper shelf energy. The shift in CTT is not as severe as that observed in the HFIR surveillance specimens and is consistent with that expected from the MTR data base. However, the actual value of CTT is high, and the toughness at service temperature is low, even when compared with the HFIR data. The increase in yield stress is ∼50 MPa, which is comparable to the HFIR data. The results also indicate a lower impact strength and higher transition temperature for the TL orientation than that for the LT orientation. Some effects of the location across the thickness of the wall are also observed for the LT specimens; CTT is slightly greater for the specimens from the inner region of the wall

  17. Experimental investigation of critical velocity in a parallel plate research reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alfredo J.A.; Scuro, Nikolas L.; Andrade, Delvonei A., E-mail: ajcastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    The fuel elements of a MTR (Material Testing Reactor) type nuclear reactor are mostly composed of aluminum coated fuel plates containing the core of uranium silica (U{sub 3}Si{sub 2}) dispersed in an aluminum matrix. These plates have a thickness of the order of millimeters and are much longer in relation to their thickness. They are arranged in parallel in the assembly of the fuel element to form channels between them a few millimeters in thickness, through which there is a flow of the coolant. This configuration, combined with the need for a flow at high flow rates to ensure the cooling of the fuel element in operation, may create problems of mechanical failure of fuel plate due to the vibration induced by the flow in the channels. In the case of critical velocity excessive permanent deflections of the plates can cause blockage of the flow channel in the reactor core and lead to overheating in the plates. For this study an experimental bench capable of high volume flows and a test section that simulates a plate-like fuel element with three cooling channels were developed. The dimensions of the test section were based on the dimensions of the Fuel Element of the Brazilian Multipurpose Reactor (RMB), whose project is being coordinated by the National Commission of Nuclear Energy (CNEN). The experiments performed attained the objective of reaching Miller's critical velocity condition. The critical velocity was reached with 14.5 m/s leading to the consequent plastic deformation of the flow channel plates. (author)

  18. Refurbishment programme for the BR2-reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koonen, E [Centre d' Etude de l' Energie Nucleaire, Studiecentrum voor Kernenergie, BR2 Department, Boeretang, Mol (Belgium)

    1992-07-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  19. Refurbishment programme for the BR2-reactor

    International Nuclear Information System (INIS)

    Koonen, E.

    1992-01-01

    BR2 is a high flux engineering test reactor, which differs from comparable material testing reactors by its specific core array (fig. 1). It is a heterogeneous, thermal, tank-in-pool type reactor, moderated by beryllium and light water, which serves also as coolant. The fuel elements consist of cylindrical assemblies loaded in channels materialized by hexagonal beryllium prisms. The central 200 mm channel is vertical, while all others are inclined and form a hyperbolical arrangement around the central one. This feature combines a very compact core with the requirement of sufficient space for individual access to all channels through penetrations in the top cover of the aluminium pressure vessel. Each channel may hold a fuel element, a control rod, an experiment, an irradiation device or a beryllium plug. The refurbishment Program According to the present programme of C.E.N./S.C.K., BR2 will be in operation until 1996. At that time, the beryllium matrix will reach its foreseen end-of-life. In order to continue operation beyond this point, a thorough refurbishment of the reactor is foreseen, in addition to the unavoidable replacement of the matrix, to ensure quality of the installation and compliance with modern standards. Some fundamental options have been taken as a starting point: BR2 will continue to be used as a classical MTR, i.e. fuel and material irradiations and safety experiments with some additional service-activities. The present configuration is optimized for that use and there is no specific experimental requirement to change the basic concepts and performance characteristics. From the customers viewpoint, it is desirable to go ahead with the well-known features of BR2, to maintain a high degree of availability and reliability and to minimize the duration of the long shutdown. It is also important to limit the amount of nuclear liabilities. So the objective of the refurbishment programme is the life extension of BR2 for about 15 years, corresponding to

  20. ISO 9001 and ISO 14001: An Integrated Quality Management System for an MTR Facility SAFARI-1 Research Reactor

    International Nuclear Information System (INIS)

    Du Bruyn, J.F.; Piani, C.S.B.

    2005-01-01

    The SAFARI-1 research reactor, owned and operated by the South African Nuclear Energy Corporation (Necsa), initially obtained ISO 9001 accreditation of its Quality, Health, Safety and Environmental (QHSE) management system via international affiliation from the South African Bureau of Standards (SABS) during 1998 and re-certification according to ISO 9001 (2000) in 2003. With ever-increasing demands on nuclear facilities to demonstrate conformance to environmental policies, SAFARI-1 has now developed an Environmental Management System (EMS) that is compliant with ISO 14001 (1996) and is fully integrated with the SAFARI-1 Quality Management System (QMS). The dynamic involvement of SAFARI-1 in commercial applications demanded that any transition of the original QMS to a fully incorporated QHSE system had to be done in a way that would ensure sustained delivery of a safe and reliable service with continuous quality. At the same time, the primary vision of operating a facility under an efficient financial management programme was essential. The criteria established by the original ISO 9001 compliant QMS were appraised against the additional requirements of ISO 14001 and a suitable superstructure derived for generation and implementation of an inclusive EMS. The transitional integration of this system was planned so as to produce a QMS suitable to quality, environmental and other management related issues for application to the unique function of a nuclear research reactor. (author)

  1. Systems for neutronic, thermohydraulic and shielding calculation in personal computers

    International Nuclear Information System (INIS)

    Villarino, E.A.; Abbate, P.; Lovotti, O.; Santini, M.

    1990-01-01

    The MTR-PC (Materials Testing Reactors-Personal Computers) system has been developed by the Nuclear Engineering Division of INVAP S.E. with the aim of providing working conditions integrated with personal computers for design and neutronic, thermohydraulic and shielding analysis for reactors employing plate type fuel. (Author) [es

  2. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)], E-mail: mfarhan_73@yahoo.co.uk; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)

    2008-09-15

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease.

  3. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2008-01-01

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease

  4. Measurements of combined neutron and photon fluxes for the accurate characterization of the future Jules Horowitz irradiation reactor experimental conditions

    International Nuclear Information System (INIS)

    Fourmentel, D.

    2013-01-01

    A new Material Testing Reactor (MTR), the Jules Horowitz Reactor (JHR), is under construction at the CEA Cadarache (French Alternatives Energies and Atomic Energy Commission). From 2016 this new MTR will be a new facility for the nuclear research on materials and fuels. The quality of the experiments to be conducted in this reactor is largely linked to the good knowledge of the irradiation conditions. Since 2009, a new research program called IN-CORE1 'Instrumentation for Nuclear radiations and Calorimetry Online in Reactor' is under progress between CEA and Aix-Marseille University in the framework of a joint laboratory LIMMEX2. This program aims to improve knowledge of the neutron and photon fluxes in the RJH core, with one hand, an innovative instrumentation performing mapping of experimental locations, and on the other hand by coupling neutron flux, photon flux and thermal measurements. Neutron flux expected in the JHR core is about 10 15 n.cm -2 .s -1 and nuclear heating up to 20 W.g -1 for a nominal power of 100 MWth. One of the challenges is to identify sensors able to measure such fluxes in JHR experimental conditions and to determine how to analyse the signals delivered by these sensors with the most appropriate methods. The thesis is part of this ambitious program and aims to study the potential and the interest of the combination of radiation measurements in the prospect of a better assessment of the levels of neutron flux, gamma radiation and nuclear heating in the JHR experimental locations. The first step of IN-CORE program is to develop and operate an instrumented device called CARMEN-1 adapted to the mapping of the OSIRIS reactor, then to develop a second version called CARMEN-2 dedicated to experiments in the JHR core, especially for its start-up. This experiment was the opportunity to test all the radiation sensors which could meet the needs of JHR, including recently developed sensors. Reference neutron measurements are performed by activation

  5. Jules Horowitz Reactor: Organisation for the Preparation of the Commissioning Phase and Normal Operation

    Energy Technology Data Exchange (ETDEWEB)

    Estrade, J.; Fabre, J. L.; Marcille, O. [French Alternative Energies end Atomic Energy Commission, Provence (France)

    2013-07-01

    The Jules Horowitz Reactor (JHR) is a new modern Material Testing Reactor (MTR) currently under construction at CEA Cadarache research centre in the south of France. It will be a major research facility in support to the development and the qualification of materials and fuels under irradiation with sizes and environment conditions relevant for nuclear power plants in order to optimise and demonstrate safe operations of existing power reactors as well as to support future reactors design. It will represent also an important research infrastructure for scientific studies dealing with material and fuel behaviour under irradiation. The JHR will contribute also to secure the production of radioisotope for medical application. This is a key public health stake. The construction of JHR which started in 2007 is going-on with target of commissioning by the end of 2017. The design of the reactor provides modern experimental capacity in support to R and D programs for the nuclear energy for the next 60 years. In parallel to the facility construction, the preparation of the future staff and of the organisation to operate the reactor safely, reliably and efficiently is an important issue. In this framework, many actions are in progress to elaborate: Ο the staffing and the organisational structure for the commissioning test phases and also for normal operation, Ο the documentation in support to the reactor operation (safety analysis report, general operating rules, procedures, instructions, ···), Ο the maintenance, in service and periodic test programs, Ο staff training programs by using dedicated facilities (simulator, ···) Ο commissioning test programs for ensuring that the layout of systems and subcomponents is completed in accordance with the design requirements, the specification performances and the safety criteria. These commissioning tests will also be helpful for transferring the knowledge on the installed systems to the operating group. This paper gives the

  6. Testing of HTR UO{sub 2} TRISO fuels in AVR and in material test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kania, Michael J., E-mail: MichaelJKania@googlemail.com [Retired from Lockheed Martin Corp, 20 Beach Road, Averill Park, NY 12018 (United States); Nabielek, Heinz, E-mail: heinznabielek@me.com [Retired from Research Center Jülich, Monschauerstrasse 61, 52355 Düren (Germany); Verfondern, Karl [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Allelein, Hans-Josef [Research Center Juelich,Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); RWTH Aachen, 52072 Aachen (Germany)

    2013-10-15

    The German High Temperature Reactor Fuel Development Program successfully developed, licensed and manufactured many thousands of spherical fuel elements that were used to power the experimental AVR reactor and the commercial THTR reactor. In the 1970s, this program extended the performance envelope of HTR fuels by developing and qualifying the TRISO-coated particle system. Irradiation testing in real-time AVR tests and accelerated MTR tests demonstrated the superior manufacturing process of this fuel and its irradiation performance. In the 1980s, another program direction change was made to a low enriched UO{sub 2} TRISO-coated particle system coupled with high-quality manufacturing specifications designed to meet new HTR plant design needs. These needs included requirements for inherent safety under normal operation and accident conditions. Again, the German fuel development program met and exceeded these challenges by manufacturing and qualifying the low-enriched UO{sub 2} TRISO-fuel system for HTR systems with steam generation, gas-turbine systems and very high temperature process heat applications. Fuel elements were manufactured in production scale facilities that contained near defect free UO{sub 2} TRISO coated particles, homogeneously distributed within a graphite matrix with very low levels of uranium contamination. Good irradiation performance for these elements was demonstrated under normal operating conditions to 12% FIMA and under accident conditions not exceeding 1600 °C.

  7. Non-destructive evaluation methods to improve quality control in low enrichment MTR fuel plate production

    International Nuclear Information System (INIS)

    Milne, J.M.; Lidington, B.; Hawker, B.M.

    1991-01-01

    This paper summarises some preliminary non-destructive measurements made recently at the Harwell Laboratory on a prototype low enrichment MTR fuel plate. The measurements were intended to indicate the potential of two different techniques for improving quality control in plate production. Pulse Video Thermography (PVT) is being considered as an alternative to ultrasound transmission measurements for the detection and sizing of lack of thermal bonding between the fuel and the clad layers, either to verify the indications from the established ultrasonic methods before destroying the plate or as a replacement method of inspection. High frequency pulse-echo ultrasonics is being considered for providing maps of clad layer thickness on each side of the plate. The measurements have indicated the potential for both methods, but more work is required, using a test plate containing controlled defects, to establish their capability. (orig.)

  8. Note on current position regarding the development by the UKAEA of Reduced Enrichment fuels for Research and Test Reactors

    International Nuclear Information System (INIS)

    Hickey, B.

    1983-01-01

    The United Kingdom Atomic Energy Authority have an MTR fuel fabrication plant located at Dounreay on the north coast of Scotland. The prime function of the plant is to manufacture fuel elements for the UKAEA's own DIDO and PLUTO heavy water reactors located at their research establishment at Harwell. The plant, which has a capacity of about 1000 fuel elements per annum, also manufactures fuel elements, on a commercial basis, for university reactors in the United Kingdom and for a number of customers in overseas countries. The UKAEA have been manufacturing MTR fuel elements of a wide range of designs for over twenty-five years. Following the initiative of the US Government's RERTR programme, the UKAEA have embarked on a modest programme of MTR fuel manufacturing development., irradiation and post-irradiation examination to establish the techniques required to manufacture fuel elements containing uranium of a significantly lower enrichment than that in the fuel elements they currently manufacture. In the first instance this work is being directed towards the production of fuel elements containing uranium of 45% enrichment. After an initial analysis it was recognised that although a satisfactory 45% enriched version of certain of the designs of fuel elements currently manufactured could probably be produced using established U/Al alloy technology, it would be necessary to utilise powder technology for other elements in order to achieve the higher uranium density required. Studies of published information and consideration of the technology and facilities already available at Dounreay prompted the decision to concentrate on the development Of U 3 O 8 /Al cermet type fuel elements of similar geometry to those currently manufactured. Some of the fuel element designs currently manufactured by the UKAEA are listed: Concentric (Extruded) 74% enriched; Concentric Plates 80% enriched with densities 0.60 and 0.53 g U/ cm 3 ; Flat Plate (Swaged) 80% enriched and Flat Plate

  9. Multi-physic simulations of irradiation experiments in a technological irradiation reactor

    International Nuclear Information System (INIS)

    Bonaccorsi, Th.

    2007-09-01

    A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)

  10. Determination of doses to different organs and prediction of health detriment, after hypothetical accident in mtr reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Amin, E A; Abd El-Ghani, A H [National Center of Nuclear Safety and Radiation Control Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    As a result of pypothetical accidents with release of high amount of fission products, the doses to different organs consequent upon inhalation of radioactive fission products are calculated. The processes are modeled using the ORIGIN and TIRION-4 codes: source term, containment and activity enclosure, time dependent activity behaviour in the building, and radiation exposure in the reactor building. Prediction of health detriments were calculated using ICRP-60 nominal probability coefficients and organ doses determined for bone, lung, and thyroid gland, after whole body exposure from internal inhalation and external emmersion. 11 tabs.

  11. MTR2: a discriminator and dead-time module used in counting systems

    International Nuclear Information System (INIS)

    Bouchard, J.

    2000-01-01

    In the field of radioactivity measurement, there is a constant need for highly specialized electronic modules such as ADCs, amplifiers, discriminators, dead-time modules, etc. But sometimes it is almost impossible to find on the market the modules having the performances corresponding to our needs. The purpose of the module presented here, called MTR2 (Module de Temps-mort Reconductible), is to process, in terms of pulse height discrimination and dead-time corrections, the pulses delivered by the detectors used in counting systems. This dead-time, of the extendible type, is triggered by both the positive and negative parts of the incoming pulse and the dead-time corrections are made according to the live-time method. This module, which has been developed and tested at LPRI, can be used alone in simple counting channels or in more complex systems such as coincidence systems. The philosophy governing the choice and the implementation of this type of dead-time as well as the system used for the dead-time corrections is presented. The electronic scheme and the performances are also presented. This module is available in the NIM standard

  12. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J; Millot, J P [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m{sup 3}/h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  13. Moving into the 21st century - The United States' Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Huizenga, David G.; Mustin, Tracy P.; Saris, Elizabeth C.; Reilly, Jill E.

    1999-01-01

    Since 1996, when the United States Department of Energy and the Department of State jointly adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, twelve shipments totaling 2,985 MTR and TRIGA spent nuclear fuel assemblies from research reactors around the world have been accepted into the United States. These shipments have contained approximately 1.7 metric tons of HEU and 0.6 metric tons of LEU. Foreign research reactor operators played a significant role in this success. A new milestone in the acceptance program occurred during the summer of 1999 with the arrival of TRIGA spent nuclear fuel from Europe through the Charleston Naval Weapons Station via the Savannah River Site to the Idaho National Engineering and Environmental Laboratory. This shipment consisted of five casks of TRIGA spent nuclear fuel from research reactors in Germany, Italy, Slovenia, and Romania. These casks were transported by truck approximately 2,400 miles across the United States (one cask packaged in an ISO container per truck). Drawing upon lessons learned in previous shipments, significant technical, legal, and political challenges were addressed to complete this cross-country shipment. Other program activities since the last RERTR meeting have included: formulation of a methodology to determine the quantity of spent nuclear fuel in a damaged condition that may be transported in a particular cask (containment analysis for transportation casks); publication of clarification of the fee policy; and continued planning for the outyears of the acceptance policy including review of reactors and eligible material quantities. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues to demonstrate success due to the continuing commitment between the United States and the research reactor community to make this program work. We strongly encourage all eligible research reactors to decide as soon as possible to

  14. Reactivity feedback coefficients of a material test research reactor fueled with high-density U{sub 3}Si{sub 2} dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)], E-mail: farhan73@hotmail.com; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2008-10-15

    The reactivity feedback coefficients of a material test research reactor fueled with high-density U{sub 3}Si{sub 2} dispersion fuels were calculated. For this purpose, the low-density LEU fuel of an MTR was replaced with high-density U{sub 3}Si{sub 2} LEU fuels currently being developed under the RERTR program. Calculations were carried out to find the fuel temperature reactivity coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the average values of fuel temperature reactivity feedback coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient from 20 deg. C to 100 deg. C, at the beginning of life, followed the relationships (in units of {delta}k/k x 10{sup -5} K{sup -1}) -2.116 - 0.118 {rho}{sub U}, 0.713 - 37.309/{rho}{sub U} and -12.765 - 34.309/{rho}{sub U}, respectively for 4.0 {<=} {rho}{sub U} (g/cm{sup 3}) {<=} 6.0.

  15. Spent fuel strategy for the BR2 reactor

    International Nuclear Information System (INIS)

    Gubel, P.; Collard, G.

    1998-01-01

    The Belgian MTR reactor is fuelled with HEU UAl x elements and the fuel cycle was normally closed by reprocessing consecutively in Belgium (Eurochemic), France (Marcoule) and finally in the U.S.A. (Idaho Falls and Savannah River). When the acceptance of spent fuel by the U.S. was terminated, the facility was left with a huge backlog of used elements stored under water. After a few years, urgent and mandatory actions were required to maintain the BR2 facility operating. Later the accent was put on the evaluation of an optimum long term solution for the BR2 spent fuel during the projected 15 years life extension after the refurbishment executed between 1995 and 1997. The paper gives an overview of these successive actions taken during the last years as well as the handled various criteria for comparing and evaluating the available long-term alternatives. After commitment to reprocessing in existing facilities operated for aluminum fuels the focus of the BR2 fuel cycle strategy is now moving to the procurement of the necessary HEU fuel for securing the long-term operation of the facility. (author)

  16. Safety analysis of the IAEA reference research reactor during loss of flow accident using the code MERSAT

    International Nuclear Information System (INIS)

    Hainoun, A.; Ghazi, N.; Abdul-Moaiz, B. Mansour

    2010-01-01

    Using the thermal hydraulic code MERSAT detailed model including primary and secondary loop was developed for the IAEA's reference research reactor MTR 10 MW. The developed model enables the simulation of expected neutronic and thermal hydraulic phenomena during normal operation, reactivity and loss of flow accidents. Two different loss of flow accident (LOFA) have been simulated using slow and fast decrease time of core mass flow. In both cases the expected flow reversal from downward forced to upward natural circulation has been successfully simulated. The results indicate that in both accidents the limit of onset of subcooled boiling was not arrived and consequently no exceed of design limits in term of thermal hydraulic instability or DNB is observed. Finally, the simulation results show good agreement with previous international benchmark analyses accomplished with other qualified channel and thermal hydraulic system codes.

  17. Prevention of criticality accidents. Fuel elements storage

    International Nuclear Information System (INIS)

    Canavese, S.I.; Capadona, N.M.

    1990-01-01

    Before the need to store fuel elements of the plate type MTR (Materials Testing Reactors), produced with enriched uranium at 20% in U235 for research reactors, it requires the design of a deposit for this purpose, which will give intrinsic security at a great extent and no complaints regarding its construction, is required. (Author) [es

  18. Static analysis of material testing reactor cores:critical core calculations

    International Nuclear Information System (INIS)

    Nawaz, A. A.; Khan, R. F. H.; Ahmad, N.

    1999-01-01

    A methodology has been described to study the effect of number of fuel plates per fuel element on critical cores of Material Testing Reactors (MTR). When the number of fuel plates are varied in a fuel element by keeping the fuel loading per fuel element constant, the fuel density in the fuel plates varies. Due to this variation, the water channel width needs to be recalculated. For a given number of fuel plates, water channel width was determined by optimizing k i nfinity using a transport theory lattice code WIMS-D/4. The dimensions of fuel element and control fuel element were determined using this optimized water channel width. For the calculated dimensions, the critical cores were determined for the given number of fuel plates per fuel element by using three dimensional diffusion theory code CITATION. The optimization of water channel width gives rise to a channel width of 2.1 mm when the number of fuel plates is 23 with 290 g ''2''3''5U fuel loading which is the same as in the case of Pakistan Reactor-1 (PARR-1). Although the decrease in number of fuel element results in an increase in optimal water channel width but the thickness of standard fuel element (SFE) and control fuel element (CFE) decreases and it gives rise to compact critical and equilibrium cores. The criticality studies of PARR-1 are in good agreement with the predictions

  19. Reprocessing of LEU silicide fuel at Dounreay

    International Nuclear Information System (INIS)

    Cartwright, P.

    1996-01-01

    UKAEA have recently reprocessed two LEU silicide fuel elements in their MTR fuel reprocessing plant at Dounreay. The reprocessing was undertaken to demonstrate UKAEA's commitment to the world-wide research reactor communities future needs. Reprocessing of LEU silicide fuel is seen as a waste treatment process, resulting in the production of a liquid feed suitable for conditioning in a stable form of disposal. The uranium product from the reprocessing can be used as a blending feed with the HEU to produce LEU for use in the MTR cycle. (author)

  20. Association study of folate-related enzymes (MTHFR, MTR, MTRR genetic variants with non-obstructive male infertility in a Polish population

    Directory of Open Access Journals (Sweden)

    Mateusz Kurzawski

    2015-03-01

    Full Text Available Spermatogenesis is a process where an important contribution of genes involved in folate-mediated one-carbon metabolism is observed. The aim of the present study was to investigate the association between male infertility and the MTHFR (677C > T; 1298A > C, MTR (2756A > G and MTRR (66A > G polymorphisms in a Polish population. No significant differences in genotype or allele frequencies were detected between the groups of 284 infertile men and of 352 fertile controls. These results demonstrate that common polymorphisms in folate pathway genes are not major risk factors for non-obstructive male infertility in the Polish population.

  1. Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence

    Energy Technology Data Exchange (ETDEWEB)

    Remy, L.; Cheymol, G. [CEA, French Nuclear Energy Commission, Nuclear Energy Division, DPC/SEARS/LISL Bat 467 CEA Saclay 91191 Gif/Yvette Cedex (France); Gusarov, A. [SCK.CEN - Belgian Nuclear Research center, Boeretang 200 2400 Mol (Belgium); Morana, A.; Marin, E.; Girard, S. [Universite de Saint-Etienne, Laboratoire Hubert Curien, UMR CNRS5516, 18, rue du Pr. Lauras, F-42000 Saint-Etienne (France)

    2015-07-01

    In the framework of the development by CEA and SCK.CEN of a Fabry Perot Sensor (FPS) able to measure dimensional changes in Material Testing Reactor (MTR), the first goal of the SAKE 1 (Smirnof extention - Additional Key-tests on Elongation of glass fibres) irradiation was to measure the linear compaction of single mode fibres under high fast neutron fluence. Indeed, the compaction of the fibre which forms one side of the Fabry Perot cavity, may in particular cause a noticeable measurement error. An accurate quantification of this effect is then required to predict the radiation-induced drift and optimize the sensor design. To achieve this, an innovative approach was used. Approximately seventy uncoated fibre tips (length: 30 to 50 mm) have been prepared from several different fibre samples and were installed in the SCK.CEN BR2 reactor (Mol Belgium). After 22 days of irradiation a total fast (E > 1 MeV) fluence of 3 to 5x10{sup 19} n{sub fast}/cm{sup 2}, depending on the sample location, was accumulated. The temperature during irradiation was 291 deg. C, which is not far from the condition of the intended FPS use. A precise measurement of each fibre tip length was made before the irradiation and compared to the post irradiation measurement highlighting a decrease of the fibres' length corresponding to about 0.25% of linear compaction. The amplitude of the changes is independent of the capsule, which could mean that the compaction effect saturates even at the lowest considered fluence. In the prospect of performing distributed temperature measurement in MTR, several fibre Bragg gratings written using a femtosecond laser have been also irradiated. All the gratings were written in radiation hardened fibres, and underwent an additional treatment with a procedure enhancing their resistance to ionizing radiations. A special mounting made it possible to test the reflection and the transmission of the gratings on fibre samples cut down to 30 to 50 mm. The comparison

  2. The reactor Cabri; La pile cabri

    Energy Technology Data Exchange (ETDEWEB)

    Ailloud, J.; Millot, J.P. [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1964-07-01

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m{sup 3}/h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under

  3. Study on the technical feasibility of Fission-Track dating at two irradiation positions of the RA-6 research reactor

    International Nuclear Information System (INIS)

    Dorval, Eric

    2005-01-01

    The method of Fission-Track dating is based upon the detection of the damage caused by fission fragments from the Uranium contained in geological samples.In order to determine the age of a sample, both the amount of spontaneous fissions occurred and the Uranium concentration must be known.The latter requires the irradiation of the samples inside a reactor with a well-thermalized flux, so that fissions are induced over 235 U targets only. Therefore, the Uranium concentration may be determined.The main inconvenient presented by the irradiation sites at the RA-6 MTR-type reactor is that neutron flux is not completely thermal there, which means that fissions due to epithermal and fast neutrons will not be negligible.In the same way, tracks due to fissions of 238 U and 232 Th will be detected. In order to know the corrections that must be applied to those measurements performed in this reactor, it is necessary to characterize fast flux.Because of it, this laboratory's gamma spectrometry equipment had to be calibrated. After that, several activation detectors were irradiated and results were analyzed. Finally, it was determined that it is feasible to Fission-Track date at the I6 position. However, limitations associated to this method were analyzed for the values of flux measured in the different sites

  4. A continuing success - The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Mustin, Tracy P.; Clapper, Maureen; Reilly, Jill E.

    2000-01-01

    The United States Department of Energy, in consultation with the Department of State, adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. To date, the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program, established under this policy, has completed 16 spent fuel shipments. 2,651 material test reactor (MTR) assemblies, one Slowpoke core containing less than 1 kilogram of U.S.-origin enriched uranium, 824 Training, Research, Isotope, General Atomic (TRIGA) rods, and 267 TRIGA pins from research reactors around the world have been shipped to the United States so far under this program. As the FRR SNF Acceptance Program progresses into the fifth year of implementation, a second U.S. cross country shipment has been completed, as well as a second overland truck shipment from Canada. Both the cross country shipment and the Canadian shipment were safely and successfully completed, increasing our knowledge and experience in these types of shipments. In addition, two other shipments were completed since last year's RERTR meeting. Other program activities since the last meeting included: taking pre-emptive steps to avoid license amendment pitfalls/showstoppers for spent fuel casks, publication of a revision to the Record of Decision allowing up to 16 casks per ocean going vessel, and the issuance of a cable to 16 of the 41 eligible countries reminding their governments and the reactor operators that the U.S.-origin uranium in their research reactors may be eligible for return to the United States under the Acceptance Program and urging them to begin discussions on shipping schedules. The FRR SNF program has also supported the Department's implementation of the competitive pricing policy for uranium and resumption of shipments of fresh uranium for fabrication into assemblies for research reactors. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues

  5. RRFC hardware operation manual

    International Nuclear Information System (INIS)

    Abhold, M.E.; Hsue, S.T.; Menlove, H.O.; Walton, G.

    1996-05-01

    The Research Reactor Fuel Counter (RRFC) system was developed to assay the 235 U content in spent Material Test Reactor (MTR) type fuel elements underwater in a spent fuel pool. RRFC assays the 235 U content using active neutron coincidence counting and also incorporates an ion chamber for gross gamma-ray measurements. This manual describes RRFC hardware, including detectors, electronics, and performance characteristics

  6. Reactivity feedbacks of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The reactivity feedbacks of a material test research reactor using various low enriched uranium fuels, having same uranium density were calculated. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Calculations were carried out to find the fuel temperature reactivity feedback, moderator temperature reactivity feedback, moderator density reactivity feedback and moderator void reactivity feedback. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that the magnitudes all the respective reactivity feedbacks from 38 deg. C to 50 deg. C and 100 deg. C, at the beginning of life, of all the fuels were very close to each other. The fuel temperature reactivity feedback of the U 3 O 8 -Al was about 2% more than the original UAl x -Al fuel. The magnitudes of the moderator temperature, moderator density and moderator void reactivity feedbacks of all the fuels, showed very minor variations from the original aluminide fuel.

  7. Final Physics Report for the Engineering Test Reactor

    International Nuclear Information System (INIS)

    Wolfe, I. B.

    1956-01-01

    This report is a summary of the physics design work performed on the Engineering Test Reactor. The ETR presents computational difficulties not found in other reactors because of the large number of experimental holes in the core. The physics of the ETR depends strongly upon the contents of the in-core experimental facilities. In order to properly evaluate the reactor' taking into account the experiments in the core, multi-region, two-dimensional calculations are required. These calculations require the use of a large computer such as the Remington Rand Univac and are complex and expensive enough to warrant a five-stage program: 1. In the early stages of design, only preliminary two-dimensional calculations were performed .in order to obtain a rough idea of the general behavior of the reactor and its critical mass with tentative experiments in place. 2. A large amount of work was carried out in which the reactor was approximated as one with a uniform homogeneous core. With this model, detailed studies were carried out to investigate the feasibility and to obtain general design data on such points as the design and properties of the gray and black control rods, the design of the beryllium reflector, gamma and neutron heating, the use of burnable poisons, etc. In performing these calculations, use was made of the IBM 650 PROD code obtained from KAPL. 3. With stages 1 and 2 carried out, two-dimensional calculations of the core at start-up conditions were performed on the Univac computer. 4. Detailed two-dimensional calculations of the properties of the ETR with a proposed first set of experiments in place were carried out. 5. A series of nuclear tests were performed at the reactivity measurements facility at the MTR site in order to confirm the validity of the analytical techniques in physics analysis. In performing the two-dimensional Univac calculations, the MUG code developed by KAPL and the Cuthill code developed at the David Taylor Model Basin were utilized. In

  8. Effects of high density dispersion fuel loading on the uncontrolled reactivity insertion transients of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)], E-mail: farhan73@hotmail.com; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2009-08-15

    The effects of using high density low enriched uranium on the uncontrolled reactivity insertion transients of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density U-Mo (9w/o) LEU fuels currently being developed under the RERTR program having uranium densities of 6.57 gU/cm{sup 3}, 7.74 gU/cm{sup 3} and 8.57 gU/cm{sup 3}. Simulations were carried out to determine the reactor performance under reactivity insertion transients with totally failed control rods. Ramp reactivities of 0.25$/0.5 s and 1.35$/0.5 s were inserted with reactor operating at full power level of 10 MW. Nuclear reactor analysis code PARET was employed to carry out these calculations. It was observed that when reactivity insertion was 0.25$/0.5 s, the new power level attained increased by 5.8% as uranium density increases from 6.57 gU/cm{sup 3} to 8.90 gU/cm{sup 3}. This results in increased maximum temperatures of fuel, clad and coolant outlet, achieved at the new power level, by 4.7 K, 4.4 K and 2.4 K, respectively. When reactivity insertion was 1.35$/0.5 s, the feedback reactivities were unable to control the reactor which resulted in the bulk boiling of the coolant; the one with the highest fuel density was the first to reach the boiling point.

  9. Methodological study for management of the generated effluents during MTR-type fuel elements fabrication at IPEN/CNEN-SP plant

    International Nuclear Information System (INIS)

    Tanzillo Santos, Glaucia Regina

    2008-01-01

    Full text: The aim of the industrial activities success, front to a more and more informed and demanding society and to a more and more competitive market demands an environmental administration policy which doesn't limit itself to assist the legislation but anticipate and prevent, in a responsible way, possible damages to the environment. One of the main programs of the Institute of Energetic and Nuclear Research of the National Commission of Nuclear Energy located in Brazil, through the Center of Nuclear Fuel -CCN- is to manufacture MTR-type fuel elements using low-enrichment uranium (20 wt % 235 U), to supply its IEA-R1 research reactor. Integrated in this program, this work aims at well developing and assuring a methodology to implant an environment, health and safety policy, foreseeing its management with the use of detailed data reports and through the adoption of new tools for improving the management, in order to fulfil the applicable legislation and accomplish all the environmental, operational and works aspects. The applied methodology for the effluents management comprises different aspects, including the specific environmental legislation of a country, main available effluents treatment techniques, process flow analyses from raw materials and intakes to products, generated effluents, residuals and emissions. Data collections were accomplished for points gathering and tests characterization, classification and compatibility of the generated effluents and their eventual environmental impacts. This study aims to implant the sustainability concept in order to guarantee access to financial resources, allowing cost reduction, maximizing long-term profits, preventing and reducing environmental accident risks and stimulating both the attraction and the keeping of a motivated manpower. Work on this project has already started and, even though many technical actions have not still ended, the results have being extremely valuable. These results can already give to

  10. Progress towards a new Canadian irradiation-research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.

    1993-01-01

    As reported at the second meeting of the International Group on Research Reactors, Atomic Energy of Canada Limited (AECL) is evaluating its options for future irradiation facilities. During the past year significant progress has been made towards achieving consensus on the irradiation requirements for AECL's major research programs and interpreting those requirements in terms of desirable characteristics for experimental facilities in a research reactor. The next stage of the study involves identifying near-term and long-term options for irradiation-research facilities to meet the requirements. The near-term options include assessing the availability of the NRU reactor and the capabilities of existing research reactors. The long-term options include developing a new irradiation-research facility by adapting the technology base for the MAPLE-X10 reactor design. Because materials testing in support of CANDU power reactors dominates AECL's irradiation requirements, the new reactor concept is called the MAPLE Materials Testing Reactor (MAPLE-MTR). Parametric physics and engineering studies are in progress on alternative MAPLE-MTR configurations to assess the capabilities for the following types of test facilities: - fast-neutron sites, that accommodate materials-irradiation assemblies, - small-diameter vertical fuel test loops that accommodate multielement assemblies, - large-diameter vertical fuel test loops, each able to hold one or more CANDU fuel bundles, - horizontal test loops, each able to hold full-size CANDU fuel bundles or small-diameter multi-element assemblies, and - horizontal beam tubes

  11. Fission yields and cross section uncertainty propagation in Boltzmann/Bateman coupled problems: Global and local parameters analysis with a focus on MTR

    International Nuclear Information System (INIS)

    Frosio, Thomas; Bonaccorsi, Thomas; Blaise, Patrick

    2016-01-01

    Highlights: • Nuclear data uncertainty propagation for neutronic quantities in coupled problems. • Uncertainties are detailed for local isotopic concentrations and local power maps. • Correlations are built between space areas of the core and for different burnups. - Abstract: In a previous paper, a method was investigated to calculate sensitivity coefficients in coupled Boltzmann/Bateman problem for nuclear data (ND) uncertainties propagation on the reactivity. Different methodologies were discussed and applied on an actual example of multigroup cross section uncertainty problem for a 2D Material Testing Reactor (MTR) benchmark. It was shown that differences between methods arose from correlations between input parameters, as far as the method enables to take them into account. Those methods, unlike Monte Carlo (MC) sampling for uncertainty propagation and quantification (UQ), allow obtaining sensitivity coefficients, as well as correlations values between nuclear data, during the depletion calculation for the parameters of interest. This work is here extended to local parameters such as power factors and isotopic concentrations. It also includes fission yield (FY) uncertainty propagation, on both reactivity and power factors. Furthermore, it introduces a new methodology enabling to decorrelate direct and transmutation terms for local quantities: a Monte-Carlo method using built samples from a multidimensional Gaussian law is used to extend the previous studies, and propagate fission yield uncertainties from the CEA’s COMAC covariance file. It is shown that, for power factors, the most impacting ND are the scattering reactions, principally coming from 27 Al and (bounded hydrogen in) H 2 O. The overall effect is a reduction of the propagated uncertainties throughout the cycle thanks to negatively correlated terms. For fission yield (FY), the results show that neither reactivity nor local power factors are strongly affected by uncertainties. However, they

  12. MTHFR C677T and MTR A2756G polymorphisms and the homocysteine lowering efficacy of different doses of folic acid in hypertensive Chinese adults

    Directory of Open Access Journals (Sweden)

    Qin Xianhui

    2012-01-01

    Full Text Available Abstract Background This study aimed to investigate if the homocysteine-lowering efficacy of two commonly used physiological doses (0.4 mg/d and 0.8 mg/d of folic acid (FA can be modified by individual methylenetetrahydrofolate reductase (MTHFR C677T and/or methionine synthase (MTR A2756G polymorphisms in hypertensive Chinese adults. Methods A total of 480 subjects with mild or moderate essential hypertension were randomly assigned to three treatment groups: 1 enalapril only (10 mg, control group; 2 enalapril-FA tablet [10:0.4 mg (10 mg enalapril combined with 0.4 mg of FA, low FA group]; and 3 enalapril-FA tablet (10:0.8 mg, high FA group, once daily for 8 weeks. Results After 4 or 8 weeks of treatment, homocysteine concentrations were reduced across all genotypes and FA dosage groups, except in subjects with MTR 2756AG /GG genotype in the low FA group at week 4. However, compared to subjects with MTHFR 677CC genotype, homocysteine concentrations remained higher in subjects with CT or TT genotype in the low FA group (P P P = 0.005, but not in the low FA group (CC 9.9% vs. TT 11.2%, P = 0.989. Conclusions This study demonstrated that MTHFR C677T polymorphism can not only affect homocysteine concentration at baseline and post-FA treatment, but also can modify therapeutic responses to various dosages of FA supplementation.

  13. Experimental validation of the 'DELFIN' system with heavy water multicell measurements

    International Nuclear Information System (INIS)

    Grant, C.R.

    1990-01-01

    The DELFIN system, developed by the Analysis and Calculation Department of the Nuclear Power Plants Branch of the National Atomic Energy Commission, uses the finite elements method for the neutronic networks simulation and was validated through comparisons with other calculation codes and experiences with MTR (Materials Testing Reactors) reactors. This work compares calculations applying this system, with experiences carried out at the ZED-2 Canadian research reactor with vertical and horizontal adjusting steel rods, that is, bi- and tridimensional cases. (Author) [es

  14. Evaluation of the use of nodal methods for MTR neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reitsma, F.; Mueller, E.Z.

    1997-08-01

    Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict time limitations such as are required for the RERTR program.

  15. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D.; Villard, J. F.; Lyoussi, A. [DEN Reactor Studies Dept., French Nuclear Energy and Alternative Energies Commission, CEA Cadarache, 13108 Saint Paul-Lez-Durance (France); Reynard-Carette, C. [Laboratoire Chimie Provence LCP UMR 6264, Univ. of Provence, Centre St. Jerome, 13397 Marseille Cedex 20 (France); Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y. [DEN Reactor Studies Dept., French Nuclear Energy and Alternative Energies Commission, CEA Cadarache, 13108 Saint Paul-Lez-Durance (France); Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J. [Laboratoire Chimie Provence LCP UMR 6264, Univ. of Provence, Centre St. Jerome, 13397 Marseille Cedex 20 (France)

    2011-07-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  16. Combined analysis of neutron and photon flux measurements for the Jules Horowitz reactor core mapping

    International Nuclear Information System (INIS)

    Fourmentel, D.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Bignan, G.; Chauvin, J. P.; Gonnier, C.; Guimbal, P.; Malo, J. Y.; Carette, M.; Janulyte, A.; Merroun, O.; Brun, J.; Zerega, Y.; Andre, J.

    2011-01-01

    We study the combined analysis of nuclear measurements to improve the knowledge of the irradiation conditions in the experimental locations of the future Jules Horowitz Reactor (JHR). The goal of the present work is to measure more accurately neutron flux, photon flux and nuclear heating in the reactor. In a Material Testing Reactor (MTR), nuclear heating is a crucial parameter to design the experimental devices to be irradiated in harsh nuclear conditions. This parameter drives the temperature of the devices and of the samples. The numerical codes can predict this parameter but in-situ measurements are necessary to reach the expected accuracy. For this reason, one objective of the IN-CORE program [1] is to study the combined measurements of neutron and photon flux and their cross advanced interpretation. It should be reminded that both neutron and photon sensors are not totally selective as their signals are due to neutron and photon interactions. We intend to measure the neutron flux by three different kinds of sensors (Uranium Fission chamber, Plutonium Fission chamber and Self Powered Neutron Detector), the photon flux by two different sensors (Ionization chamber and Self Powered Gamma Detector) and the nuclear heating by two different ones (Differential calorimeter and Gamma Thermometer). For the same parameter, we expect that the use of different kinds of sensors will allow a better estimation of the aimed parameter by mixing different spectrum responses and different neutron and gamma contributions. An experimental test called CARMEN-1 is scheduled in OSIRIS reactor (CEA Saclay - France) at the end of 2011, with the goal to map irradiation locations in the reactor reflector to get a first validation of the analysis model. This article focuses on the sensor selection for CARMEN-1 experiment and to the way to link neutron and photon flux measurements in view to reduce their uncertainties but also to better assess the neutron and photon contributions to nuclear

  17. The Puerto Rico nuclear center reactor conversion project

    Energy Technology Data Exchange (ETDEWEB)

    Brown-Campos, R [Puerto Rico Nuclear Center (Puerto Rico)

    1974-07-01

    For the purpose of upgrading the control and instrumentation system to meet new AEC requirements, to increase the available neutron flux for experimenters and to replace burned out fuel the Puerto Rico Nuclear Center started a modification program on its old MTR type, one megawatt reactor on March 1971. A TRIGA core utilizing the newly developed FLIP fuel, capable of operating at two megawatts with natural convection cooling and with pulsing capabilities was chosen. The major conversion tasks included: 1. Modification of the bridge, tower and grid plate structures, 2. Modification of the water cooling system (inside the reactor pool), 3. Installation of a larger heat exchanger and cooling tower, 4. Installation of a new instrumentation and control console (including neutron detectors and rod drive mechanisms). 5. Installation of a TRIGA FLIP core. Initial criticality was achieved on January 1972. For the chosen operating configuration the critical mass was 11,522 grams of uranium 235. Core excess reactivity was $7.12 and the total (5) rod worth was $12.06. During the early stages of the startup program to determine the basic core parameters and while conducting a stepwise increase in power to the design power level of two megawatts a power fluctuation on all neutron detectors was noticed. It was determined that the power fluctuations started at about 1.4 megawatts and sharply increased as power approached 2 megawatts. Experiments to determine the cause of the problem and to correct the condition were conducted on July and December 1972 and June 1973. Modifications to the core included changing fuel pin pitch and the addition of dummy elements in the central region of the core. Final acceptance by AEC Headquarters was requested on October 1973. (author)

  18. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R.; Harrison, R. [UKAEA, Nuclear Materials Control Dep., Dounreay (United Kingdom)

    1997-07-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  19. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    International Nuclear Information System (INIS)

    Barrett, T.R.; Harrison, R.

    1997-01-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  20. The obtainment of highly concentrated uranium pellets for plate type (MTR) fuel by dispersion of uranium aluminides in aluminium

    International Nuclear Information System (INIS)

    Morando, R.A.; Raffaeli, H.A.; Balzaretti, D.E.

    1980-01-01

    The use of the intermetallic UAl 3 for manufacturing plate type MTR fuel with 20% U 235 enriched uranium and a density of about 20 kg/m 3 is analyzed. The technique used is the dispersion of UAl 3 particles in aluminium powder. The obtainment of the UAl 3 intermetallic was performed by fusion in an induction furnace in an atmosphere of argon at a pressure of 0.7 BAR (400 mm) using an alumina melting pot. To make the aluminide powder and attain the wished granulometry a cutting and a rotating crusher were used. Aluminide powders of different granulometries and different pressures of compactation were analyzed. In each case the densities were measured. The compacts were colaminated with the 'Picture Frame' technique at temperatures of 490 and 0 deg C with excellent results from the manufacturing view point. (M.E.L.) [es

  1. An effective surveillance strategy for reactor pressure vessel assessment in the long term operation perspective

    International Nuclear Information System (INIS)

    Chaouadi, R.; Gerard, R.

    2015-01-01

    The reactor pressure vessel (RPV) irradiation embrittlement is monitored by means of surveillance capsules containing the RPV belt-line materials, inserted inside the reactor pressure vessel (RPV) before the start of operation. These capsules are placed at location where they receive a higher neutron flux than the vessel wall, by a factor of the order of 2 to 3. They are regularly retrieved and tested to evaluate the RPV irradiation embrittlement according to specific regulatory procedures and standards, in order to guarantee the safe operation of the RPV throughout its lifetime. These procedures are often relying on empirical but conservative concepts. In parallel, material research reactor (MTR) irradiations are often used to support the surveillance data and to develop a better understanding of irradiation effects, not only qualitatively but also quantitatively. Taking advantage of the increased understanding of irradiation effects, analytical tools were developed to improve the evaluation embrittlement and quality assurance of the RPV embrittlement assessment. In this framework, an alternative but complementary surveillance program assessment was developed in Belgium, the so-called enhanced surveillance, in order to benefit from the latest developments in the area of materials science and irradiation effects. The neutron flux and fracture properties of the surveillance materials can be reliably characterized and correlated to each other using physically-based rather than empirical concepts. The enhanced surveillance approach is complementary to the mandatory regulatory procedure and allows quantifying the conservatism of the regulatory approach. The enhanced surveillance approach that uses the reconstitution technology to fabricate additional small size specimens, appropriate modeling tools and microstructural examination when required, makes it possible to rationalize all available information in a physically-based way

  2. Selective separation of actinides and long-lived fission products from 1 AW MTR liquid waste: pilot plant tests part II

    International Nuclear Information System (INIS)

    Grossi, G.; Marrocchelli, A.; Pietrelli, L.; Calle, C.; Gili, M.; Luce, A.; Troiani, F.

    1992-01-01

    In Italy there are some 120 m 3 of liquid High-level radioactive Wastes coming from MTR, Candu and EPK River fuel elements reprocessing. These High-level radioactive wastes contain a large amount of chemicals and inert salts together with cesium, strontium and transuranium elements. Transuranium elements and strontium are separated from the inert salts by means of a selective precipitation while Cesium is adsorbed on synthetic zeolithes (AZE Process) or precipitated with sodium Tetraphenyl borate (NaTPB) (ATE process). The benchscale experiments have confirmed the feasibility of selective separation processes and have showed that decontamination efficiency for strontium, plutonium and cesium were, respectively, 100, 5000 and 1000. This second part of the CEC final report describes Searse pilot plant tests with cold experiments. 37 Refs.; 17 Figs.; 16 Tabs

  3. Research reactor status for future nuclear research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel [Commissariat a l' Energie Atomique - CEA (France)

    2010-07-01

    Scandinavia). The nuclear renaissance is effective worldwide, with 33 power plants today under construction in the world and a lot of projects in discussion or in preparation in various countries (England, Italy, South Africa, USA...). In Europe, some countries, who phase-out the development nuclear energy, are also coming back in nuclear perspectives as Sweden, Italy, England, Poland,.. All these facts begin to give more work to the MTR (material testing reactors) for testing new materials and new fuels to improve their capacities and their performances. For the ZPR (Zero Power Reactors) test with new fuels allowing additives to suppress Bore utilisation, or allowing to reduce uranium consumption, will be necessary in the near future. For the safety dedicated reactors, test for compliance to last safety requirements are necessary. In this field the refurbishment of the CABRI reactor for Reactivity Insertion Accident studies, is now almost finished for test that should begin in 2010. For the radio isotope production the world demand is increasing year after year, especially for {sup 99}Mo, used in about 70 millions of medicine procedures each year in the world. Today 95% of this world production is assumed by five reactors: HFR (Netherlands), OSIRIS (France), SAFARI (South Africa), BRII (Belgium), and NRU (Canada). The youngest is OSIRIS (41 years) and should be close in 2015. Due to ageing problems NRU and HFR were shut down in 2009 for necessary repair. These points have conduced to some radio isotopes crisis in 2009. This paper explains some projects in line for the future to avoid this type of problems (FRMII initiative, RJH utilisation and PALLAS project). For training activities, needs are huge with nuclear renaissance, especially for the new countries coming back in nuclear field. It will also give a lot of opportunities to low power reactors and to the universities reactors. This paper also provides information on the status of the new projects such as the JHR ongoing

  4. Research reactor status for future nuclear research in Europe

    International Nuclear Information System (INIS)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel

    2010-01-01

    renaissance is effective worldwide, with 33 power plants today under construction in the world and a lot of projects in discussion or in preparation in various countries (England, Italy, South Africa, USA...). In Europe, some countries, who phase-out the development nuclear energy, are also coming back in nuclear perspectives as Sweden, Italy, England, Poland,.. All these facts begin to give more work to the MTR (material testing reactors) for testing new materials and new fuels to improve their capacities and their performances. For the ZPR (Zero Power Reactors) test with new fuels allowing additives to suppress Bore utilisation, or allowing to reduce uranium consumption, will be necessary in the near future. For the safety dedicated reactors, test for compliance to last safety requirements are necessary. In this field the refurbishment of the CABRI reactor for Reactivity Insertion Accident studies, is now almost finished for test that should begin in 2010. For the radio isotope production the world demand is increasing year after year, especially for 99 Mo, used in about 70 millions of medicine procedures each year in the world. Today 95% of this world production is assumed by five reactors: HFR (Netherlands), OSIRIS (France), SAFARI (South Africa), BRII (Belgium), and NRU (Canada). The youngest is OSIRIS (41 years) and should be close in 2015. Due to ageing problems NRU and HFR were shut down in 2009 for necessary repair. These points have conduced to some radio isotopes crisis in 2009. This paper explains some projects in line for the future to avoid this type of problems (FRMII initiative, RJH utilisation and PALLAS project). For training activities, needs are huge with nuclear renaissance, especially for the new countries coming back in nuclear field. It will also give a lot of opportunities to low power reactors and to the universities reactors. This paper also provides information on the status of the new projects such as the JHR ongoing construction on the Cadarache

  5. Nuclear fuel cycle head-end enriched uranium purification and conversion into metal

    International Nuclear Information System (INIS)

    Bonini, A.; Cabrejas, J.; Lio, L. de; Dell'Occhio, L.; Devida, C.; Dupetit, G.; Falcon, M.; Gauna, A.; Gil, D.; Guzman, G.; Neuringer, P.; Pascale, A.; Stankevicius, A.

    1998-01-01

    The CNEA (Comision Nacional de Energia Atomica - Argentina) operated two facilities at the Ezeiza Atomic Center which supply purified enriched uranium employed in the production of nuclear fuels. At one of those facilities, the Triple Height Laboratory scraps from the production of MTR type fuel elements (mainly out of specification U 3 O 8 plates or powder) are purified to nuclear grade. The purification is accomplished by a solvent extraction process. The other facility, the Enriched Uranium Laboratory produces 90% enriched uranium metal to be used in Mo 99 production (originally the uranium was used for the manufacture of MTR fuel elements made of aluminium-uranium alloy). This laboratory also provided metallic uranium with a lower enrichment (20%) for a first uranium-silicon testing fuel element, and in the near future it is going to recommence 20% enriched uranium related activities in order to provide the metal for the silicon-based fuel elements production (according to the policy of enrichment reduction for MTR reactors). (author)

  6. Experience on wet storage spent fuel sipping at IEA-R1 Brazilian research reactor

    International Nuclear Information System (INIS)

    Perrotta, J.A.; Terremoto, L.A.A.; Zeituni, C.A.

    1998-01-01

    The IEA-R1 research reactor of the Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) is a pool type reactor of B and W design, that has been operating since 1957 at a power of 2 MW. Irradiated (spent) fuels have been stored at the facility during the various years of operation. At present there are 40 spent fuel assemblies at dry storage, 79 spent fuel assemblies at wet storage and 30 fuel assemblies in the core. The oldest fuels are of United States origin, made with U-Al alloy, both of LEU and HEU MTR fuel type. Many of these fuel assemblies have corrosion pits along their lateral fuel plates. These pits originate by galvanic corrosion between the fuel plate and the stainless steel storage racks. As a consequence of the possibility of sending the irradiated old fuels back the U.S.A., sipping tests were performed with the spent fuel assemblies. The reason for this was to evaluate their 137 Cs leaking rate, if any. This work describes the procedure and methodology used to perform the sipping tests with the fuel assemblies at the storage pool, and presents the results obtained for the 137 Cs sipping water activity for each fuel assembly. A correlation is made between the corrosion pits and the activity values measured. A 137 Cs leaking rate is determined and compared to the criteria established for canning spent fuel assemblies before shipment

  7. Conceptual analyses of neutronic and equilibrium refueling parameters to develop a cost-effective multi-purpose pool-type research reactor using WIMSD and CITVAP codes

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aeoi.org.ir

    2016-12-01

    Highlights: • Introducing a high-beneficent and low-cost multipurpose research reactor. • High technical documents and standard safety issues are introduced coherently. • High effective conceptual neutronic analyses and fuel management strategy. • Gaining high score design criteria and safety margins via 3-D core modeling. • Capacity and capability to produce all medical and industrial radioisotopes. - Abstract: In this paper, neutronic and equilibrium refueling parameters of a multi-purpose cost-effective research reactor have been studied and analyzed. It has been tried to provide periodic and long-term requirements of the irradiating applications coherently. The WIMSD5B and CITVAP codes are used to calculate neutronic parameters and simulate fuel management strategy. The used nuclear data, codes, and calculating methods have been severally benchmarked and verified, successfully. Fundamental concepts, design criteria, and safety issues are introduced and discussed, coherently. Design criteria are selected to gain the most economic benefits per capital costs via minimum required reactor power. Accurate, fast and simplified models have been tried for an integrated decision making and analyses using deterministic codes. Core management, power effects, fuel consumption and burn up effects, and also a complete simulation of the fuel management strategy are presented and analyzed. Results show that the supposed reactor core design can be promisingly suitable in accordance with the commercial multi-purpose irradiating applications. It also retains Operating Limits and Conditions (OLCs) due to standard safety issues, conservatively where safety parameters are calculated using best estimate tools. Such reactor core configuration and integrated refueling task can effectively enhance the Quality Assurance (QA) of the general irradiating applications of the current MTR within their power limits and corresponding OLCs.

  8. HEATHYD, Steady-State Thermal Hydraulic Analysis of Low-Enriched U Fuel Reactor

    International Nuclear Information System (INIS)

    NABBI, R.

    1989-01-01

    1 - Description of program or function: HEATHYD is a code for the steady-state heat transfer calculation of research nuclear reactors with forced convection. It models heat transfer and coolant flow for assemblies of parallel fuel plates of MTR type with any axial power distribution. The thermodynamic model accounts for single phase cooling and sub- cooled boiling condition using the transition criterion of Bergeles-Rosenow. In addition to the calculation of the channel flow velocities and coolant pressure drops, HEATHYD calculates axial distribution of the coolant and clad-surface temperatures. Safety margins to the critical heat flux as a result of burnout condition or flow instability are determined. 2 - Method of solution: Applying the finite difference method, HEATHYD solves the equations of heat conduction and heat transfer to the coolant. For the physical properties of the coolant as a function of the coolant temperature polynomials of degree 6 are used. Depending on the coolant condition, different correlations for the heat transfer coefficient can be applied. The analysis of the critical cooling conditions resulting in burnout or flow instability, is performed according to the correlations developed by Mirshak/ Labuntsov and Forgan/Whittle

  9. CERCA 01: a new safe multi-design MTR transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Faure-Geors, B.S. [Framatome ANP Nuclear Fuel, CERCA, F-26104 Romans (France); Doucet, M.E. [Framatome ANP Nuclear Fuel, F-69006 Lyon (France)

    2001-07-01

    CERCA, a subsidiary company of FRAMATOME ANP, manufactures fuel for research reactors all over the world. To comply with customer requirements, fabrication of material testing reactors elements is a mixed of various parameters. Worldwide transportation of elements requires a flexible cask, which accommodates different designs and meets international transportation regulations. To be able to deliver most of fuel elements, and to cope with non-validation of casks used previously, CERCA decided to design its own cask. All regulatory tests were successfully performed. They completely validated and qualified the safety of this new cask concept. No matter the accidental conditions are, a 5 % {delta}K subcriticality margin is always met.

  10. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    International Nuclear Information System (INIS)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y.; Fourmentel, D.; Destouches, C.; Villard, J.F.

    2015-01-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m -2 .K -1 and 130 μC.N -1 for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in order to

  11. Thick Films acoustic sensors devoted to MTR environment measurements. Thick Films acoustic sensors devoted to Material Testing Reactor environment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Very, F.; Rosenkrantz, E.; Combette, P.; Ferrandis, J.Y. [University Montpellier, IES, UMR 5214, F-34000, Montpellier (France); CNRS, IES, UMR 5214, F-34000, Montpellier (France); Fourmentel, D.; Destouches, C.; Villard, J.F. [CEA, DEN, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul lez Durance (France)

    2015-07-01

    The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce by screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in

  12. Design of the Fuel Element for the RRR Reactor (Australia)

    International Nuclear Information System (INIS)

    Estevez, E.A.; Markiewicz, M.E.; Gerding, R.

    2003-01-01

    The supply to the Replacement Research Reactor ( RRR ) to Australia represents a technological goal for our country, as much for the designers and manufacturers of this irradiation facility ( Invap SE ), as well for the responsibles of the fuel elements ( FE ) design and the suppliers of the first core ( CNEA ).In relation with the FE, although the conceptual design and fabrication technology of the FE are similar to the just developed and qualified by CNEA ( plane plates MTR fuel type ), the characteristics of this new reactor imposes most severe operation conditions on them than in previous supplies.In that sense, two distinguishing characteristics deserve to be shown: a) The magnitude of the hydrodynamics loads acting on the FE due to the coolant ascendent flow direction, and mainly, the very high flow velocities between the fuel plates ( aproximately five times higher than which presents in others Argentine FE actually in operation. b) The use of U3Si2 as fuel material.CNEA has started a programme to qualify this type of fuel.As result of these higher loads under irradiations and with the objective to maintain the high reliability level reached by our FE ( very low failure rates ), it was necessary to introduce FE mechanical-structural design modifications respect to the ECBE or standard design version, and to verify these changes through hydrodynamics tests on a 1:1 scale prototype.In this paper it is described the mechanical-structural FE design with special emphasis in the innovatives aspects incorporated.The design criteria established in function of the solicitations and limitating effects present under irradiation conditions.Also, a brief description of the proposed programme to verify and evaluate this design is presented, including analytical and numerical calculus of stresses acting on the fuel plates and others FE components, pressure loss hydrodynamics tests and endurance essays

  13. Kinetic parameters of a material test research reactor fueled with various low enriched uranium dispersion fuels

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2009-01-01

    The effects of using different low enriched uranium fuels, having same uranium density, on the kinetic parameters of a material test research reactor were studied. For this purpose, the original aluminide fuel (UAl x -Al) containing 4.40 gU/cm 3 of an MTR was replaced with silicide (U 3 Si-Al and U 3 Si 2 -Al) and oxide (U 3 O 8 -Al) dispersion fuels having the same uranium density as of the original fuel. Simulations were carried out to calculate prompt neutron generation time, effective delayed-neutron fraction, core excess reactivity and neutron flux spectrum. Nuclear reactor analysis codes including WIMS-D4 and CITATION were used to carry out these calculations. It was observed that both the silicide fuels had the same prompt neutron generation time 0.02% more than that of the original aluminide fuel, while the oxide fuel had a prompt neutron generation time 0.05% less than that of the original aluminide fuel. The effective delayed-neutron fraction decreased for all the fuels; the decrease was maximum at 0.06% for U 3 Si 2 -Al followed by 0.03% for U 3 Si-Al, and 0.01% for U 3 O 8 -Al fuel. The U 3 O 8 -Al fueled reactor gave the maximum ρ excess at BOL which was 21.67% more than the original fuel followed by U 3 Si-Al which was 2.55% more, while that of U 3 Si 2 -Al was 2.50% more than the original UAl x -Al fuel. The neutron flux of all the fuels was more thermalized, than in the original fuel, in the active fuel region of the core. The thermalization was maximum for U 3 O 8 -Al followed by U 3 Si-Al and then U 3 Si 2 -Al fuel.

  14. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  15. Health and safety plan for characterization sampling of ETR and MTR facilities

    International Nuclear Information System (INIS)

    Baxter, D.E.

    1994-10-01

    This health and safety plan establishes the procedures and requirements that will be used to minimize health and safety risks to persons performing Engineering Test Reactor and Materials Test Reactor characterization sampling activities, as required by the Occupational Safety and Health Administration standard, 29 CFR 1910.120. It contains information about the hazards involved in performing the tasks, and the specific actions and equipment that will be used to protect persons working at the site

  16. Experimental verification of the fission chamber gamma signal suppression by the Campbelling mode

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L.; Weber, M. [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium); Oriol, L.; Breaud, S.; Filliatre, P.; Geslot, B.; Jammes, C. [CEA, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance (France); Normand, S.; Lescop, B. [CEA, Centre de Saclay, F-91191 Gif sur Yvette Cedex (France)

    2009-07-01

    For the on-line monitoring of high fast neutron fluxes in the presence of a strong thermal neutron component, SCK-CEN and CEA are jointly developing a Fast Neutron Detector System, based on {sup 242}Pu fission chambers as sensors and including dedicated electronics and data processing systems. Irradiation tests in the BR2 reactor of {sup 242}Pu fission chambers operating in current mode showed that in typical MTR (Materials Test Reactors) conditions the fission chamber currents are dominated by the gamma contribution. In order to reduce the gamma contribution to the signal, it was proposed to use the fission chambers in Campbelling mode. An irradiation experiment in the BR2 reactor with a {sup 242}Pu and a {sup 235}U fission chamber, both equipped with a suitable cable for measurements in Campbelling mode, proved the effectiveness of the suppression of the gamma-induced signal component by the Campbelling mode: gamma contribution reduction factors of 26 for the {sup 235}U fission chamber and more than 80 for the {sup 242}Pu fission chamber were obtained. The experimental data also prove that photofission contributions are negligibly small. Consequently, in typical MTR conditions the gamma contribution to the fission chamber Campbelling signal can be neglected. (authors)

  17. Multi-physic simulations of irradiation experiments in a technological irradiation reactor; Modelisation pluridisciplinaire d'experiences d'irradiation dans un reacteur d'irradiation technologique

    Energy Technology Data Exchange (ETDEWEB)

    Bonaccorsi, Th

    2007-09-15

    A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)

  18. Quantitative determination of uranium distribution homogeneity in MTR fuel type plates

    International Nuclear Information System (INIS)

    Ferrufino, Felipe Bonito Jaldin

    2011-01-01

    IPEN/CNEN-SP produces the fuel to supply its nuclear research reactor IEA-R1. The fuel is assembled with fuel plates containing an U 3 Si 2 -Al composite meat. A good homogeneity in the uranium distribution inside the fuel plate meat is important from the standpoint of irradiation performance. Considering the lower power of reactor IEA-R1, the uranium distribution in the fuel plate has been evaluated only by visual inspection of radiographs. However, with the possibility of IPEN to manufacture the fuel for the new Brazilian Multipurpose Reactor (RMB), with higher power, it urges to develop a methodology to determine quantitatively the uranium distribution into the fuel. This paper presents a methodology based on X-ray attenuation, in order to quantify the uranium concentration distribution in the meat of the fuel plate by using optical densities in radiographs and comparison with standards. The results demonstrated the inapplicability of the method, considering the current specification for the fuel plates due to the high intrinsic error to the method. However, the study of the errors involved in the methodology, seeking to increase their accuracy and precision, can enable the application of the method to qualify the final product. (author)

  19. Neutron flux measurement and thermal power calibration of the IAN-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sarta Fuentes, Jose A.; Castiblanco Bohorquez, Luis A

    2008-10-29

    The IAN-R1 TRIGA reactor in Colombia was initially fueled with MTR-HEU enriched to 93% U-235, operated since 1965 at 10 kW, and was upgraded to 30 kW in 1980. General Atomics achieved in 1997 the conversion of HEU fuel to LEU fuel TRIGA type, and upgraded the reactor power to 100 kW. Since the IAN-R1 TRIGA reactor was in an extended shutdown during seven years, it was necessary to repeat some results of the commissioning test conducted in 1997. The thermal power calibration was carried out using the calorimetric method. The reactor was operated approximately at 20 kW during 3.5 hours, with manual power corrections since the automatic control system failed and with the forced refrigeration off. During the calorimetric experiment, the pool temperature was measured with a RTD which is installed near to the core. The dates were collected in intervals of 30 minutes. For establishing thermal power reactor, the water temperature versus the running were registered. For a calculated tank volume of 16 m{sup 3}, the tank constant calculated for the IAN-R1 TRIGA reactor is 0.0539 C/kW-hr. The reactor power determined was 19 kW. The core configuration is a rectangular grid plate that holds a combination of 4-rod and 3-rod clusters. The core contains 50 fuel rods with LEU fuel TRIGA (UZr H1.6) type enriched to 19.7%. The radial reflector consists of twenty graphite elements six of which are used for isotope production. The top an bottom reflectors are the cylindrical graphite end reflectors which are installed above and below of the active fuel section in each fuel rod. The spatial dependence of thermal neutron flux was measured axially in the 3-rod clusters 4C, 3D, 5E and in the 4F graphite element. The spatial distribution of the thermal neutron was determined using a self-powered detector and the absolute value of thermal neutron flux was determined by a gold activation detector. The (n, b- ) reaction is applied to determine the relative spatial distribution of thermal

  20. Operating experience, measurements, and analysis of the LEU whole core demonstration at the FNR

    International Nuclear Information System (INIS)

    Weha, D.K.; Drumm, C.R.; King, J.S.; Martin, W.R.; Lee, J.C.

    1984-01-01

    The 2-MW Ford Nuclear Reactor at the University of Michigan is serving as the demonstration reactor for the MTR-type low enrichment (LEU) fuel for the Reduced Enrichment for Research and Test Reactor program. Operational experience gained through six months of LEU core operation and seven months of mixed HEU-LEU core operation is presented. Subcadmium flux measurements performed with rhodium self-powered neutron detectors and iron wire activations are compared with calculations. Measured reactivity parameters are compared for HEU and LEU cores. Finally, the benchmark calculations for several HEU, LEU, and mixed HEU-LEU FNR cores and the International Atomic Energy Agency (IAEA) benchmark problem are presented. (author)

  1. LEU fuel element produced by the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.

    2000-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a Material Testing Reactor type (MTR) fuel element facility, for producing the specified fuel elements required for the Egyptian Second Research Reactor, ETRR-2. The plant uses uranium hexafluoride (UF 6 , 19.75% U 235 by wt) as a raw material which is processed through a series of the manufacturing, inspection and test plan to produce the final specified fuel elements. Radiological safety aspects during design, construction, operation, and all reasonably accepted steps should be taken to prevent or reduce the chance of accidents occurrence. (author)

  2. Research and development projects, new processes binded at the stop of a fuel fabrication plant (Nukem-A)

    International Nuclear Information System (INIS)

    Wehner, E.; Sohnius, B.

    1992-01-01

    This research work is aimed at the assessment of new procedures in the framework of the decommissioning of the NUKEM-A facility, a plant used for over 30 years for the fabrication of Material Test Reactor (MTR) and Thorium High Temperature Reactor (THTR) fuel elements. Important issues in this work are the preparation of detailed uranium and thorium contamination distribution maps in walls and floors, the execution of various dismantling and decontamination operations under health physics control, the large-scale treatment of arising primary waste and the minimization of secondary waste

  3. Methodology comparison for gamma-heating calculations in material-testing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, M.; Vaglio-Gaudard, C.; Lyoussi, A. [CEA, DEN, DER, Cadarache F-13108 Saint Paul les Durance (France); Reynard-Carette, C. [Aix Marseille Universite, CNRS, Universite de Toulon, IM2NP UMR 7334, 13397, Marseille (France)

    2015-07-01

    The Jules Horowitz Reactor (JHR) is a Material-Testing Reactor (MTR) under construction in the south of France at CEA Cadarache (French Alternative Energies and Atomic Energy Commission). It will typically host about 20 simultaneous irradiation experiments in the core and in the beryllium reflector. These experiments will help us better understand the complex phenomena occurring during the accelerated ageing of materials and the irradiation of nuclear fuels. Gamma heating, i.e. photon energy deposition, is mainly responsible for temperature rise in non-fuelled zones of nuclear reactors, including JHR internal structures and irradiation devices. As temperature is a key parameter for physical models describing the behavior of material, accurate control of temperature, and hence gamma heating, is required in irradiation devices and samples in order to perform an advanced suitable analysis of future experimental results. From a broader point of view, JHR global attractiveness as a MTR depends on its ability to monitor experimental parameters with high accuracy, including gamma heating. Strict control of temperature levels is also necessary in terms of safety. As JHR structures are warmed up by gamma heating, they must be appropriately cooled down to prevent creep deformation or melting. Cooling-power sizing is based on calculated levels of gamma heating in the JHR. Due to these safety concerns, accurate calculation of gamma heating with well-controlled bias and associated uncertainty as low as possible is all the more important. There are two main kinds of calculation bias: bias coming from nuclear data on the one hand and bias coming from physical approximations assumed by computer codes and by general calculation route on the other hand. The former must be determined by comparison between calculation and experimental data; the latter by calculation comparisons between codes and between methodologies. In this presentation, we focus on this latter kind of bias. Nuclear

  4. Loading procedures for shipment of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bates, E F; Feltz, D E; Sandel, P S; Schoenbucher, B [Texas A and M University (United States)

    1974-07-01

    The Nuclear Science Center at Texas A and M does not have proper equipment and facilities for transferring irradiated fuel from the reactor pool to the transport vehicle. To accomplish the transfer of 23 MTR type fuel elements procedures were developed using a modified fork lift and flex-lift obtained locally. The transfer was accomplished without incident and with negligible personnel exposure. (author)

  5. Chilean fuel elements fabrication progress report

    International Nuclear Information System (INIS)

    Baeza, J.; Contreras, H.; Chavez, J.; Klein, J.; Mansilla, R.; Marin, J.; Medina, R.

    1993-01-01

    Due to HEU-LEU core conversion necessity for the Chilean MTR reactors, the Fuel Elements Plant is being implemented to LEU nuclear fuel elements fabrication. A glove box line for powder-compact processing designed at CCHEN, which supposed to operate under an automatic control system, is at present under initial tests. Results of first natural uranium fuel plates manufacturing runs are shown

  6. Reactivity effects due to beryllium poisoning of BR2

    International Nuclear Information System (INIS)

    Kalcheva, S.; Ponsard, B.; Koonen, E.

    2004-01-01

    This paper illustrates the impact of the poisoning of the beryllium reflector on reactivity variations of the Belgian MTR BR2 in SCK.CEN. Detailed calculations by MCNP-4C of reactivity effects caused by strong neutron absorbers 3 He and 6 Li during reactor operation history are presented. The importance of beryllium poisoning for the accuracy of reactivity predictions is discussed. (authors)

  7. Loading procedures for shipment of irradiated fuel

    International Nuclear Information System (INIS)

    Bates, E.F.; Feltz, D.E.; Sandel, P.S.; Schoenbucher, B.

    1974-01-01

    The Nuclear Science Center at Texas A and M does not have proper equipment and facilities for transferring irradiated fuel from the reactor pool to the transport vehicle. To accomplish the transfer of 23 MTR type fuel elements procedures were developed using a modified fork lift and flex-lift obtained locally. The transfer was accomplished without incident and with negligible personnel exposure. (author)

  8. The operational and logistic experience on transportation of Brazilian spent fuel to USA

    International Nuclear Information System (INIS)

    Maiorino, Jose Rubens; Frajndlich, Roberto; Mandlae, Martin; Bensberg, Werner; Renger, August; Grabow, Karsten

    2000-01-01

    A shipment of 127 spent MTR fuel assemblies was made from IEA-R1 Research Reactor located at the Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, Brazil to Savannah River Site Laboratory in the United States. This paper describes the operational and logistic experience on this transportation made by IPEN staff and the Consortium NCS/GNS. (author)

  9. AERE contracts with DoE on the treatment and disposal of intermediate level wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1984-11-01

    Reports are presented on work on the following topics concerned with the treatment and disposal of intermediate-level radioactive wastes: comparative evaluation of α and β γ irradiated medium level waste forms; modelling and characterisation of intermediate level waste forms based on polymers; optimisation of processing parameters for polymer and bitumen modified cements; α damage in non-reference waste form matrix materials; leaching mechanisms and modelling; inorganic ion exchange treatment of medium active effluents; electrical processes for the treatment of medium active liquid waste; fast reactor fuel element cladding; dissolver residues; effects of radiation on the properties of cemented MTR waste forms; equilibrium leach testing of cemented MTR waste forms; radiolytic oxidation of radionuclides; immobilisation of liquid organic waste; quality control, non-conformances and corrective action. (U.K.)

  10. Review Paper: Review of Instrumentation for Irradiation Testing of Nuclear Fuels and Materials

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Rempe, Joy L.; Villard, Jean-Francois; Solstadd, Steinar

    2011-01-01

    Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in material test reactors (MTRs). Recently, there is increased interest to irradiate new materials and reactor fuels for advanced pressurized water reactors and Gen-IV reactor systems, such as sodium-cooled fast reactors, very high temperature reactors, supercritical water-cooled reactors, and gas-cooled fast reactors. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes ongoing research efforts to deploy new sensors. As described in this paper, a wide range of sensors is available to measure key parameters of interest during fuels and materials irradiations in MTRs. Ongoing development efforts focus on providing MTR users a wider range of parameter measurements with smaller, higher accuracy sensors.

  11. Multi-physic simulations of irradiation experiments in a technological irradiation reactor; Modelisation pluridisciplinaire d'experiences d'irradiation dans un reacteur d'irradiation technologique

    Energy Technology Data Exchange (ETDEWEB)

    Bonaccorsi, Th

    2007-09-15

    A Material Testing Reactor (MTR) makes it possible to irradiate material samples under intense neutron and photonic fluxes. These experiments are carried out in experimental devices localised in the reactor core or in periphery (reflector). Available physics simulation tools only treat, most of the time, one physics field in a very precise way. Multi-physic simulations of irradiation experiments therefore require a sequential use of several calculation codes and data exchanges between these codes: this corresponds to problems coupling. In order to facilitate multi-physic simulations, this thesis sets up a data model based on data-processing objects, called Technological Entities. This data model is common to all of the physics fields. It permits defining the geometry of an irradiation device in a parametric way and to associate information about materials to it. Numerical simulations are encapsulated into interfaces providing the ability to call specific functionalities with the same command (to initialize data, to launch calculations, to post-treat, to get results,... ). Thus, once encapsulated, numerical simulations can be re-used for various studies. This data model is developed in a SALOME platform component. The first application case made it possible to perform neutronic simulations (OSIRIS reactor and RJH) coupled with fuel behavior simulations. In a next step, thermal hydraulics could also be taken into account. In addition to the improvement of the calculation accuracy due to the physical phenomena coupling, the time spent in the development phase of the simulation is largely reduced and the possibilities of uncertainty treatment are under consideration. (author)

  12. Eugene Wigner and nuclear energy: a reminiscence

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1987-01-01

    Dr. Weinberg reviews Wigner's contributions in each of the fields to which he contributed: designs for fast breeders and thermal breeders and some of the earliest calculations on water moderated cooling systems; Clinton Laboratories, 1946-47, The Materials Testing Reactor (MTR); gas-cooled reactors; the Nautilus; Savannah River Reactors, Project Hope; a chemical plant that would reprocess spent fuel at an affordable cost in a full-fledged breeder; reactor physics and general engineering; microscopic reactor theory; spherical harmonics method; correction to the sphericized cell calculation, the fast effect; macroscopic reactor theory; two-group theory; perturbation theory; control rod theory (statics); kinetics; pile oscillator; shielding; fission products; temperature effects; The Wigner-Wilkins Distribution; solid state physics; the Wigner Disease; neutron diffraction; and general energy policy. Eugene Wigner was one of the early contributors to the debate on the role of nuclear power

  13. Irradiation performance of uranium-molybdenum alloy dispersion fuels

    International Nuclear Information System (INIS)

    Almeida, Cirila Tacconi de

    2005-01-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm 3 were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm 3 showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  14. Experimental Verification of the Fission Chamber Gamma Signal Suppression by the Campbelling Mode

    International Nuclear Information System (INIS)

    Vermeeren, L.; Weber, M.; Oriol, L.; Breaud, S.; Filliatre, P.; Geslot, B.; Jammes, C.; Normand, S.; Lescop, B.

    2011-01-01

    For the on-line monitoring of high fast neutron fluxes in the presence of a strong thermal neutron component, SCK-CEN and CEA are jointly developing a Fast Neutron Detector System, based on 242 Pu fission chambers as sensors and including dedicated electronics and data processing systems. Irradiation tests in the BR2 reactor of 242 Pu fission chambers operating in current mode showed that in typical MTR conditions the fission chamber currents are dominated by the gamma contribution. In order to reduce the gamma contribution to the signal, it was proposed to use the fission chambers in Campbelling mode. An irradiation experiment in the BR2 reactor with a 242 Pu and a 235 U fission chamber, both equipped with a suitable cable for measurements in Campbelling mode, proved the effectiveness of the suppression of the gamma-induced signal component by the Campbelling mode: gamma contribution reduction factors of 26 for the 235 U fission chamber and more than 80 for the 242 Pu fission chamber were obtained. The experimental data also prove that photofission contributions are negligibly small. Consequently, in typical MTR conditions the gamma contribution to the fission chamber Campbelling signal can be neglected. (authors)

  15. CERCA's 25 years experience in U3Si2 fuel manufacturing

    International Nuclear Information System (INIS)

    Durand, JP.; Duban, B.; Lavastre, Y.; Perthuis, S. de

    2003-01-01

    This paper documents the experience gained at CERCA in manufacturing, testing, and inspecting U 3 Si 2 fuel elements for various Material Test Reactors (MTR) since the beginning of the RERTR Program in 1978, up to now. It emphasises how the company controls the product to insure compliance with the fuel-related safety parameters. Finally, those statements are considered in the UMo fuel production perspective. (author)

  16. High enrichment to low enrichment core's conversion. Technical securities

    International Nuclear Information System (INIS)

    Abbate, P.; Madariaga, M.R.

    1990-01-01

    This work presents the fulfillment of the technical securities subscribed by INVAP S.E. for the conversion of a high enriched uranium core. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. These are neutronic and thermohydraulic securities. (Author) [es

  17. Reconstruction of Extracellular Respiratory Pathways for Iron(III Reduction in Shewanella oneidensis strain MR-1

    Directory of Open Access Journals (Sweden)

    Dan eCoursolle

    2012-02-01

    Full Text Available Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA, an integral outer membrane β-barrel protein (MtrB and an outer membrane-anchored c-type cytochrome (MtrC. Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III citrate. We also evaluate which mtrC / mtrA paralog pairs (a total of 12 combinations are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA / MtrE / OmcA is able to reduce iron(III citrate at a level significantly above background. The results presented here have implications towards the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.

  18. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  19. General description and production lines of the Egyptian fuel manufacturing pilot plant

    International Nuclear Information System (INIS)

    Zidan, W.I.; Elseaidy, I.M.

    1999-01-01

    The Egyptian Fuel Manufacturing Pilot Plant, FMPP, is a new facility, producing an MTR-type fuel elements required for the Egyptian Second Research Reactor, ETRR-2, as well as other plates or elements for an external clients with the same type and enrichment percent or lower, (LEU). General description is presented. The production lines in FMPP, which begin from uranium hexaflouride (UF 6 , 19.7±0.2 % U 235 by wt), aluminum powder, and nuclear grade 6061 aluminium alloy in sheets, bars, and rods with the different heat treatments and dimensions as a raw materials, are processed through a series of the manufacturing, inspection, and quality control plan to produce the final specified MTR-type fuel elements. All these processes and the product control in each step are presented. The specifications of the final product are presented. (author)

  20. AERE contracts with DOE on the treatment and disposal of Intermediate Level Wastes

    International Nuclear Information System (INIS)

    Partridge, B.A.

    1985-07-01

    Individual summaries are provided for each contract report, under the titles: comparative evaluation of α and βγ irradiated medium level waste forms; modelling and characterisation of intermediate level waste forms based on polymers; optimisation of processing parameters for polymer and bitumen modified cements; α damage in non-reference matrix materials; leaching mechanisms and modelling; inorganic ion exchange treatment of medium active effluents; electrical processes for the treatment of medium active liquid waste; fast reactor fuel element cladding; dissolver residues; effects of radiation on the properties of cemented MTR waste forms; equilibrium leach testing of cemented MTR waste forms; radiolytic oxidation of radionuclides; immobilisation of liquid organic wastes; quality control, non-conformances and corrective action; application of gel processes in the treatment of actinide-containing liquid wastes; the role of colloids in the release of radionuclides from nuclear waste. (author)

  1. Reactor core in FBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1989-01-01

    In a reactor core in FBR type reactors, a portion of homogenous fuels constituting the homogenous reactor core is replaced with multi-region fuels in which the enrichment degree of fissile materials is lower nearer to the axial center. This enables to condition the composition such that a reactor core having neutron flux distribution either of a homogenous reactor core or a heterogenous reactor core has substantially identical reactivity. Accordingly, in the transfer from the homogenous reactor core to the axially heterogenous reactor core, the average reactivity in the reactor core is substantially equal in each of the cycles. Further, by replacing a portion of the homogenous fuels with a multi-region fuels, thereby increasing the heat generation near the axial center, it is possiable to reduce the linear power output in the regions above and below thereof and, in addition, to improve the thermal margin in the reactor core. (T.M.)

  2. Estimates of health risks associated with uranium transportation by air

    International Nuclear Information System (INIS)

    Elert, M.; Skagius, K.; Ericsson, A.M.; Karlsson, L.G.; Markstroem, A.

    1989-01-01

    There is today an increased interest for air transport of large quantities of uranium compounds. In this report the health risks from an aircrash where uraniumhexafluoride, uraniumdioxide powder, low enriched unirradiated fuel used in Swedish power reactors and unirradiated MTR-fuel used in the research reactor in Studsvik, is analysed. The radiation doses to personnel and the general public is calculated as well as the ground contamination from the spreaded material. Also air concentration of hydrogenflouride, from uraniumhexaflouride reacting with moisture in the air, is calculated. A number of intermediate results are presented. (authors) (69 refs.)

  3. Irradiation performance of uranium-molybdenum alloy dispersion fuels; Desempenho sob irradiacao de elementos combustiveis do tipo U-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Cirila Tacconi de

    2005-07-01

    The U-Mo-Al dispersion fuels of Material Test Reactors (MTR) are analyzed in terms of their irradiation performance. The irradiation performance aspects are associated to the neutronic and thermal hydraulics aspects to propose a new core configuration to the IEA-R1 reactor of IPEN-CNEN/SP using U-Mo-Al fuels. Core configurations using U-10Mo-Al fuels with uranium densities variable from 3 to 8 gU/cm{sup 3} were analyzed with the computational programs Citation and MTRCR-IEA R1. Core configurations for fuels with uranium densities variable from 3 to 5 gU/cm{sup 3} showed to be adequate to use in IEA-R1 reactor e should present a stable in reactor performance even at high burn-up. (author)

  4. Pakistan upgrades PARR-1 and converts to LEU

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The Pakistan Research Reactor, PARR-1, is a 5MW swimming pool type reactor originally designed to use MTR type fuel elements fabricated from uranium enriched to more than 90%. After about 24 years of satisfactory operation it is now planned to convert the reactor to use low enriched (20%) uranium fuel. The opportunity will also be taken to upgrade the reactor power to about 9MW. This power upgrading will meet the demand for higher neutron fluxes for experimental and radioisotope production as well as compensating for the neutron flux penalty arising from conversion from high enriched to low enriched fuel. During the process of conversion and upgrading it is also proposed to renovate existing services and associated systems and to add certain new safety related engineering. (author)

  5. Neutronic performance of high-density LEU fuels in water-moderated and water-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.

    1996-01-01

    At the Reduced Enrichment for Research and Test Reactors (RERTR) meeting in September 1994, Durand reported that the maximum uranium loading attainable with U 3 Si 2 fuel is about 6.0 g U/cm 3 . The French Commissariat a l'Energie Atomique (CEA) plan to perform irradiation tests with 5 plates at this loading. Compagnie pour L'Etude et La Realisation de Combustibles Atomiques (CERCA) has also fabricated a few uranium nitride (UN) plates with a uranium density in the fuel meat of 7.0 g/cm 3 and found that UN is compatible with the aluminum matrix at temperatures below 500 C. High density dispersion fuels proposed for development include U-Zr(4 wt%)-Nb(2 wt%), U-Mo(5 wt%), and U-Mo(9 wt%). The purpose of this note is to examine the relative neutronic behavior of these high density fuels in a typical light water-reflected and water-moderated MTR-type research reactor. The results show that a dispersion of the U-Zr-Nb alloy has the most favorable neutronic properties and offers the potential for uranium densities greater than 8.0 g/cm 3 . On the other hand, UN is the least reactive fuel because of the relatively large 14 N(n,p) cross section. For a fixed value of k eff , the required 235 U loading per fuel element is least for the U-Zr-Nb fuel and steadily increases for the U-Mo(5%), U-Mo(9%), and UN fuels. Because of volume fraction limitations, the UO 2 dispersions are only useful for uranium densities below 5.0 g/cm 3 . In this density range, however, UO 2 is more reactive than U 3 Si 2

  6. First results of U3Si2 production and its relevance in the power scale-up of IPEN research reactor IEA-R1m

    International Nuclear Information System (INIS)

    Saliba-Silva, A.M.; Souza, J.A.B.; Frajndlich, E.U.C.; Durazzo, M.; Perrotta, J.A.

    1997-01-01

    The own supply of LEU U 3 Si 2 is crucial for IPEN, since the whole scale-up of IPEN MTR IEA-Rlm reactor will rely on it. The Brazilian request for radioisotopes production is fully linked with the already made power scale-up from 2 to 5 MW for this reactor. IPEN now depends on fuel element material upgrading from U 3 O 8 towards LEU U 3 Si 2 . The fuel plate productive technology from the powdered material is already well established, only needing simple making of minor adjustments, but to reach the stage of producing U 3 Si 2 we need a fully settled chemical pilot plant in order to reach a LEU UF 4 productive routine. Complementing this process, it was also needed to scale down the previous practice of uranium magnesiothermic reduction to around a sub-critical safe uranium mass of approximately 3000g. To complete the metallurgical processing, it is being developed the production of U 3 Si 2 in a vacuum induction furnace. Some experiments to get this intermetallic, using natural uranium, have already been carried out in order to build up a general idea of the future process of LEU U 3 Si 2 . These experiments are described in this paper and also some of the initial characterization results, such as the qualification pattern of the ingot. It is also discussed some new features of inhomogeneity of solidified phases that may be deleterious to future production routine. (author)

  7. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  8. The text of the agreement of 18 September 1987 between Chile and the Agency for the application of safeguards to nuclear material supplied from the People's Republic of China

    International Nuclear Information System (INIS)

    1988-03-01

    The text of the Agreement between the Government of the Republic of Chile and the Agency for the application of safeguards to nuclear material in the form of UF 6 , enriched to 20% in the isotope U-235, supplied from the People's Republic of China for the fabrication of MTR-type fuel elements for Lo Aguirre research reactor, is reproduced. The agreement entered into force on 18 September 1987

  9. analysis of reactivity accidents in MTR for various protection system parameters and core condition

    International Nuclear Information System (INIS)

    Mohamed, F.M.

    2011-01-01

    Egypt Second Research Reactor (ETRR-2) core was modified to irradiate LEU (Low Enriched Uranium) plates in two irradiation boxes for fission 99 Mo production. The old core comprising 29 fuel elements and one Co Irradiation Device (CID) and the new core comprising 27 fuel elements, CID, and two 99 Mo production boxes. The in core irradiation has the advantage of no special cooling or irradiation loop is required. The purpose of the present work is the analysis of reactivity accidents (RIA) for ETRR-2 cores. The analysis was done to evaluate the accidents from different point of view:1- Analysis of the new core for various Reactor Protection System (RPS) parameters 2- Comparison between the two cores. 3- Analysis of the 99 Mo production boxes.PARET computer code was employed to compute various parameters. Initiating events in RIA involve various modes of reactivity insertion, namely, prompt critical condition (p=1$), accidental ejection of partial and complete CID uncontrolled withdrawal of a control rod accident, and sudden cooling of the reactor core. The time histories of reactor power, energy released, and the maximum fuel, clad and coolant temperatures of fuel elements and LEU plates were calculated for each of these accidents. The results show that the maximum clad temperatures remain well below the clad melting of both fuel and uranium plates during these accidents. It is concluded that for the new core, the RIA with scram will not result in fuel or uranium plate failure.

  10. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  11. Reactor core of FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Ichimiya, Masakazu.

    1994-01-01

    A reactor core is a homogeneous reactor core divided into two regions of an inner reactor core region at the center and an outer reactor core region surrounding the outside of the inner reactor core region. In this case, the inner reactor core region has a lower plutonium enrichment degree and less amount of neutron leakage in the radial direction, and the outer reactor core region has higher plutonium enrichment degree and greater amount of neutron leakage in the radial direction. Moderator materials containing hydrogen are added only to the inner reactor core fuels in the inner reactor core region. Pins loaded with the fuels with addition of the moderator materials are inserted at a ratio of from 3 to 10% of the total number of the fuel pins. The moderator materials containing hydrogen comprise zirconium hydride, titanium hydride, or calcium hydride. With such a constitution, fluctuation of the power distribution in the radial direction along with burning is suppressed. In addition, an absolute value of the Doppler coefficient can be increased, and a temperature coefficient of coolants can be reduced. (I.N.)

  12. Neutron flux effect on the fracture toughness behavior of Tihange-III RPV material

    International Nuclear Information System (INIS)

    Gerard, R.; Chaouadi, R.; Bertolis, D.

    2015-01-01

    The question whether material test reactor (MTR) data can be used to supplement power reactor pressure vessel (RPV) surveillance data is still debated in the international community and its implications are particularly important in the perspective of long term operation (LTO). However, addressing the flux effect can be confusing if specific material and irradiation variables are not taken into account. This means that the answer to whether there is flux effect or not is neither 'no' nor 'yes' without specifying the application range. Indeed, neutron flux effect was recognized to occur in high Cu-containing steels in the low fluence range. But at high fluence, relevant for long term operation, it becomes difficult to clearly distinguish the differences between high flux and low flux. In this work, we irradiated the low Cu base metal and weld of the Tihange-III surveillance coupon in the BR2 reactor at high flux. The BR2 flux is about two orders of magnitude higher than the flux in the surveillance position. Tensile, Charpy impact and fracture toughness tests were performed on both the surveillance and MTR specimens and compared to assess the neutron flux effect. The results confirm that, at high fluence levels, the flux effect on mechanical properties is not significant, offering therefore the possibility of accelerated irradiation to investigate RPV embrittlement in the high fluence regime relevant for long term operation. (authors)

  13. Conversion program in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, E.B. [Studsvik Nuclear AB, Nykoeping (Sweden)

    1997-08-01

    The conversion of the Swedish 50 MW R2 reactor from HEU to LEU fuel has been successfully accomplished over a 16 cycles long process. The conversion started in January 1991 with the introduction of 6 LEU assemblies in the 8*8 core. The first all LEU core was loaded in March 1993 and physics measurements were performed for the final licensing reports. A total of 142 LEU fuel assemblies have been irradiated up until September 1994 without any fuel incident. The operating licence for the R2 reactor was renewed in mid 1994 taking into account new fuel type. The Swedish Nuclear Inspectorate (SKI) pointed out one crucial problem with the LEU operation, that the back end of the LEU fuel cycle has not yet been solved. For the HEU fuel Sweden had the reprocessing alternative. The country is now relying heavily on the success of the USDOEs Off Site Fuels Policy to take back the spent fuel from the research reactors. They have in the meantime increased their intermediate storage facilities. There is, however, a limit both in time and space for storage of MTR-type of assemblies in water. The penalty of the lower thermal neutron flux in LEU cores has been reduced by improvements of the new irradiation rigs and by fine tuning the core calculations. The Studsvik code package, CASMO-SIMULATE, widely used for ICFM in LWRs has been modified to suit the compact MTR type of core.

  14. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  15. Transport of nuclear material (Part II)

    International Nuclear Information System (INIS)

    Staake, Theo; Schmidt, Thomas

    1983-01-01

    Providing a complete back-end service for MTR reactors is one of the fundamental and traditional tasks of TRANSNUKLEAR GmbH (TN). TN's services in this field cover everything from supplying the ideal transport cask, providing technical assistance during the loading operation, obtaining the necessary package approval and transport licenses, providing the required insurance cover, carrying out the transport, right thru to settling the reprocessing contract. Up until 1976, TN carried out transports of MTR fuel elements to the European reprocessing plants at Mol in Belgium and Marcoule in France. In all, some 1000 fuel elements were transported in this p e ri od. However, following the decision by these plants not to reprocess these elements anymore, subsequent transports had to be made to the US-DOE reprocessing plants. TN pooled together the interests of all her MTR customers and signed a reprocessing contract with the US-DOE, which ensured a complete back-end service for these reactors well into the future. In close cooperation with our associated company, Transnuclear Inc. in New York and Washington, a new transport concept was developed, which proved itself to be both economic and reliable. Up to now, a total of about 2050 MTR fuel elements have been transported by TN-Germany to the USA in 65 separate shipments. The total number of shipments performed by the TN group is 165 shipments. All shipments were carried out routinely without any incident. In March this year, the US-DOE made use of a clause in the contract, in which 90 days' notice was given of a change in reprocessing plant. Whereas previously all elements had been taken to the Savannah River Plant (SRP) in South Carolina, in future all elements have to go to the Idaho Chemical Processing Plant (ICPP) near Idaho Falls. This change presented TN with the not inconsiderable problem of finding a suitable transport route. Due to the large number of influencing factors, the TN-group carried out a special

  16. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  17. OSIRIS: the first M.T.R. with a new instrumentation and control system based on digital logic of vote

    International Nuclear Information System (INIS)

    Joly, C.; Thiercelin, C.; Corre, J.; Dubois, J.F.; Contenson, G. de.

    1993-01-01

    OSIRIS, one of the french C.E.A. research reactors located at SACLAY, near PARIS, is since 27 years mainly devoted to production and irradiation technologies. To satisfy these objectives, OSIRIS is equipped by different test sections allowing mainly: - the long time irradiation of different materials including fuel rods, reactor vessel materials, fusion reactor components, - the power ramps of fuel rods, the Silicon doping, the radioelements production, the neutronography of materials and test sections. In most of the loops, the nuclear reactor conditions are fully simulated to approach as far as possible the exact behaviour of the materials. Through the new irradiation facilities under development, let's cite the OPERA test section foreseen for the simultaneous irradiation of 32 fuel rods with a maximum length of 2 m. To guarantee the safety and the high performances of the reactor, a continuous maintenance and improvement programme took place during the whole life of the reactor. The paper gives an overview of the part of this programme devoted to the replacement of the instrumentation and control system of the reactor. After 5 years study and development, the on site work took place in the second part of 1992 allowing a reactor start up beginning of 1993. (authors). 10 figs

  18. Cobalt irradiation box ejection accident of ETRR-2

    International Nuclear Information System (INIS)

    El-Messiry, A.M.

    2000-01-01

    The new Egyptian test and research reactor number 2 ETRR-2, MTR type, is now under operational tests. It has a main central irradiation channel for the purpose of Co 60 isotope production with an intended rated capacity of 50000 Ci per year. The reactivity introduced in the reactor due to accidental ejection of the Co 60 irradiation box (CIB) should be discussed. This reactivity insertion accident (RIA) may be fast or slow with maximum reactivity worth 2.9428 $. The CIB may move with constant speed or variable acceleration according to its initial speed and the applied forces. This results in a linear, parabolic or sinusoidal motion, which in turn affects the reactivity insertion rate (RIR). The present work analyzes this type of perturbation during normal operating conditions: 22 MW full power and 1900 kg s -1 forced core cooling flow. The work serves as a part of the safety evaluation process applicable to similar MTR cores. The RIA code TRANSP20 is developed for this study. It simulates various types of RIR, fast or slow resulting from different CIB ejections. Scram signal due to power, period, inlet and outlet temperatures, or temperature difference is expected to activate the shutdown system. The work presents five case studies, two for fast ejection and three for slow. The transient behavior of the reactor during this is illustrated. The results show that the reactor can withstand slow ejection if the scram is available. However, for fast ejection the scram system does not prevent the clad temperature from exceeding safety limits. Recommendations to prevent or mitigate this accident are highlighted. (orig.)

  19. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  20. Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Klein, J.A.; Turner, D.W.

    1994-01-01

    Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation's total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shielding Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory's (ORNL's) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels

  1. Neutronic study on conversion of SAFARI-1 to LEU silicide fuel

    International Nuclear Information System (INIS)

    Ball, G.; Pond, R.; Hanan, N.; Matos, J.

    1995-01-01

    This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions

  2. FRG compact core - one year experience

    International Nuclear Information System (INIS)

    Knop, W.; Schreiner, P.

    2001-01-01

    The GKSS research centre Geesthacht GmbH operates the MTR-type swimming pool reactor FRG-1 (5 MW) for more than 40 years. The FRG-1 has been upgraded and refurbished many times to follow the changing demands of safe operation and today's needs of high neutron flux for scientific research. High neutron fluxes with highest availability is the permanent demand of the science on the operation of a neutron source. (orig.)

  3. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  4. GABA and glutamate levels correlate with MTR and clinical disability: Insights from multiple sclerosis.

    Science.gov (United States)

    Nantes, Julia C; Proulx, Sébastien; Zhong, Jidan; Holmes, Scott A; Narayanan, Sridar; Brown, Robert A; Hoge, Richard D; Koski, Lisa

    2017-08-15

    Converging areas of research have implicated glutamate and γ-aminobutyric acid (GABA) as key players in neuronal signalling and other central functions. Further research is needed, however, to identify microstructural and behavioral links to regional variability in levels of these neurometabolites, particularly in the presence of demyelinating disease. Thus, we sought to investigate the extent to which regional glutamate and GABA levels are related to a neuroimaging marker of microstructural damage and to motor and cognitive performance. Twenty-one healthy volunteers and 47 people with multiple sclerosis (all right-handed) participated in this study. Motor and cognitive abilities were assessed with standard tests used in the study of multiple sclerosis. Proton magnetic resonance spectroscopy data were acquired from sensorimotor and parietal regions of the brains' left cerebral hemisphere using a MEGA-PRESS sequence. Our analysis protocol for the spectroscopy data was designed to account for confounding factors that could contaminate the measurement of neurometabolite levels due to disease, such as the macromolecule signal, partial volume effects, and relaxation effects. Glutamate levels in both regions of interest were lower in people with multiple sclerosis. In the sensorimotor (though not the parietal) region, GABA concentration was higher in the multiple sclerosis group compared to controls. Lower magnetization transfer ratio within grey and white matter regions from which spectroscopy data were acquired was linked to neurometabolite levels. When adjusting for age, normalized brain volume, MTR, total N-acetylaspartate level, and glutamate level, significant relationships were found between lower sensorimotor GABA level and worse performance on several tests, including one of upper limb motor function. This work highlights important methodological considerations relevant to analysis of spectroscopy data, particularly in the afflicted human brain. These findings

  5. The predetermined sites of examination for tender points in fibromyalgia syndrome are frequently associated with myofascial trigger points

    DEFF Research Database (Denmark)

    Ge, Hongyou; Wang, Ying; Danneskiold-Samsøe, Bente

    2010-01-01

    . PERSPECTIVE: This article underlies the importance of active MTrPs in FMS patients. Most of the TP sites in FMS are MTrPs. Active MTrPs may serve as a peripheral generator of fibromyalgia pain and inactivation of active MTrPs may thus be an alternative for the treatment of FMS.......The aim of this present study is to test the hypotheses that the 18 predetermined sites of examination for tender points (TP sites) in fibromyalgia syndrome (FMS) are myofascial trigger points (MTrPs), and that the induced pain from active MTrPs at TP sites may mimic fibromyalgia pain. Each TP site......), but not latent MTrPs (r = -.001, P = .99), was positively correlated with spontaneous pain intensity in FMS. The current study provides first evidence that pain from active MTrPs at TP sites mimics fibromyalgia pain. MTrPs may relate to generalized increased sensitivity in FMS due to central sensitization...

  6. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sato, Morihiko.

    1994-01-01

    Liquid metals such as liquid metal sodium are filled in a reactor container as primary coolants. A plurality of reactor core containers are disposed in a row in the circumferential direction along with the inner circumferential wall of the reactor container. One or a plurality of intermediate coolers are disposed at the inside of an annular row of the reactor core containers. A reactor core constituted with fuel rods and control rods (module reactor core) is contained at the inside of each of the reactor core containers. Each of the intermediate coolers comprises a cylindrical intermediate cooling vessels. The intermediate cooling vessel comprises an intermediate heat exchanger for heat exchange of primary coolants and secondary coolants and recycling pumps for compulsorily recycling primary coolants at the inside thereof. Since a plurality of reactor core containers are thus assembled, a great reactor power can be attained. Further, the module reactor core contained in one reactor core vessel may be small sized, to facilitate the control for the reactor core operation. (I.N.)

  7. The CAREM reactor and present currents in reactor design

    International Nuclear Information System (INIS)

    Ordonez, J.P.

    1990-01-01

    INVAP has been working on the CAREM project since 1983. It concerns a very low power reactor for electrical energy generation. The design of the reactor and the basic criteria used were described in 1984. Since then, a series of designs have been presented for reactors which are similar to CAREM regarding the solutions presented to reduce the chance of major nuclear accidents. These designs have been grouped under different names: Advanced Reactors, Second Generation Reactors, Inherently Safe Reactors, or even, Revolutionary Reactors. Every reactor fabrication firm has, at least, one project which can be placed in this category. Presently, there are two main currents of Reactor Design; Evolutionary and Revolutionary. The present work discusses characteristics of these two types of reactors, some revolutionary designs and common criteria to both types. After, these criteria are compared with CAREM reactor design. (Author) [es

  8. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  9. Fission product phases in irradiated carbide fuels

    International Nuclear Information System (INIS)

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  10. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  11. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  12. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  13. Radiation embrittlement of PWR vessel supports

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Robinson, G.C.; Pennell, W.E.; Nanstad, R.K.

    1989-01-01

    Several studies pertaining to radiation damage of PWR vessel supports were conducted between 1978 and 1987. During this period, apparently there was no reason to believe that low-temperature (<100 degree C) MTR embrittlement data were not appropriate for evaluating embrittlement of PWR vessel supports. However, late in 1986, data from the High Flux Isotope Reactor (HFIR) vessel surveillance program indicated that the embrittlement rates of the several HFIR vessel materials (A212-B, A350-LF3, A105-II) were substantially greater than anticipated on the basis of MTR data. Further evaluation of the HFIR data suggested that a fluence-rate effect was responsible for the apparent discrepancy, and shortly thereafter it became apparent that this rate effect was applicable to the evaluation of LWR vessel supports. As a result, the Nuclear Regulatory Commission (NRC) requested that the Oak Ridge National Laboratory (ORNL) evaluate the impact of the apparent embrittlement rate effect on the integrity of light-water-reactor (LWR) vessel supports. The purpose of the study was to provide an indication of whether the integrity of reactor vessel supports is likely to be challenged by radiation-induced embrittlement. The scope of the evaluation included correlation of the HFIR data for application to the evaluation of LWR vessel supports; a survey and cursory evaluation of all US LWR vessel support designs, selection of two plants for specific-plant evaluation, and a specific-plant evaluation of both plants to determine critical flaw sizes for their vessel supports. 19 refs., 8 figs., 2 tabs

  14. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  15. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  16. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  17. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  18. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  19. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  20. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  1. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  2. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  3. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  4. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  5. Development of MTR fuel plate with U-Al dispersion core constituents

    International Nuclear Information System (INIS)

    Bressiani, Jose Carlos

    1979-01-01

    This work is a contribution to the development of fuel plates for Research Nuclear Reaction Materials Test Reactors. The plates have the core constituted by dispersions of metallic uranium in aluminum. The main topics of this work are: 1) The preparation of uranium powder with particle sizes in the 53-105μm diameter range; 2) The mixture and cold-pressing of uranium and aluminum powders for different uranium concentrations; 3) The behavior of the dispersions in the roll milling conditions; 4) Blister, radiographic, metallographic and irradiation tests for quality control of the plates. The irradiation test was performed in the IEA-R1 swimming-pool reactor using a prototype with a dispersion of aluminum and natural uranium (45 w/o ), reaching an integrated neutron flux of 8.663 X 10 18 n/cm 2 , no visual changes being noticed after the completion of the experiment. The behavior of the uranium-aluminum reaction for dispersions with 45% w/o uranium also studied. X-ray diffraction experiments showed the formation of UAl 2 UAl 3 and UAl 4 , while energy dispersive analysis of X-rays(EDAX) demonstrated that the diffusion of aluminum in uranium is the mechanism responsible for that reaction. The activation energy for the U-Al reaction was determined by dilatometric experiments yielding 20.2 kcal/mol.The aluminum-uranium reaction reaches an end when extended to 96 h at 600 deg C, namely, when all the uranium is found in the UAl 4 composition. (author)

  6. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  7. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  8. Improved nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding liquid metal coolant and housing the core within the pool. A generally cylindrical concrete containment structure surrounds the reactor vessel and a central support pedestal is anchored to the containment structure base mat and supports the bottom wall of the reactor vessel and the reactor core. The periphery of the reactor vessel bore is supported by an annular structure which allows thermal expansion but not seismic motion of the vessel, and a bed of thermally insulating material uniformly supports the vessel base whilst allowing expansion thereof. A guard ring prevents lateral seismic motion of the upper end of the reactor vessel. The periphery of the core is supported by an annular structure supported by the vessel base and keyed to the vessel wall so as to be able to expand but not undergo seismic motion. A deck is supported on the containment structure above the reactor vessel open top by annular bellows, the deck carrying the reactor control rods such that heating of the reactor vessel results in upward expansion against the control rods. (author)

  9. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  10. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  11. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  12. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  13. Last Improvements of the CALMOS Calorimeter Dedicated to Thermal Neutron Flux and Nuclear Heating Measurements inside the OSIRIS Reactor

    Directory of Open Access Journals (Sweden)

    Carcreff H.

    2018-01-01

    Full Text Available Nuclear heating inside an MTR reactor needs to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. To improve the nuclear heating knowledge, an innovative calorimetric system CALMOS has been studied, manufactured and tested for the 70MWth OSIRIS reactor operated by CEA. This device is based on a mobile calorimetric probe which can be inserted in any in-core experimental location and can be moved axially from the bottom of the core to 1000 mm above the core mid-plane. Obtained results and advantages brought by the first CALMOS-1 equipment have been already presented. However, some difficulties appeared with this first version. A thermal limitation in cells did not allow to monitor nuclear heating up to the 70 MW nominal power, and some significant discrepancies were observed at high heating rates between results deduced from the calibration and those obtained by the “zero method”. Taking this feedback into account, the new CALMOS-2 calorimeter has been designed both for extending the heating range up to 13W.g-1 and for improving the “zero method” measurement thanks to the implementation of a 4-wires technique. In addition, the new calorimeter has been designed as a real operational measurement system, well suited to characterize and to follow the radiation field evolution throughout the reactor cycle. To meet this requirement, a programmable system associated with a specific software allows automatic complete cell mobility in the core, the data acquisition and the measurements processing. This paper presents the analysis of results collected during the 2015 comprehensive measurement campaign. The 4-wires technique was tested up to around a 4 W.g-1 heating level and allowed to quantify discrepancies between “zero” and calibration methods. Thermal neutron flux and nuclear heating measurements from CALMOS-1 and CALMOS-2 are compared. Thermal neutron flux distributions

  14. Last Improvements of the CALMOS Calorimeter Dedicated to Thermal Neutron Flux and Nuclear Heating Measurements inside the OSIRIS Reactor

    Science.gov (United States)

    Carcreff, H.; Salmon, L.; Lepeltier, V.; Guyot, J. M.; Bouard, E.

    2018-01-01

    Nuclear heating inside an MTR reactor needs to be known in order to design and to run irradiation experiments which have to fulfill target temperature constraints. To improve the nuclear heating knowledge, an innovative calorimetric system CALMOS has been studied, manufactured and tested for the 70MWth OSIRIS reactor operated by CEA. This device is based on a mobile calorimetric probe which can be inserted in any in-core experimental location and can be moved axially from the bottom of the core to 1000 mm above the core mid-plane. Obtained results and advantages brought by the first CALMOS-1 equipment have been already presented. However, some difficulties appeared with this first version. A thermal limitation in cells did not allow to monitor nuclear heating up to the 70 MW nominal power, and some significant discrepancies were observed at high heating rates between results deduced from the calibration and those obtained by the "zero method". Taking this feedback into account, the new CALMOS-2 calorimeter has been designed both for extending the heating range up to 13W.g-1 and for improving the "zero method" measurement thanks to the implementation of a 4-wires technique. In addition, the new calorimeter has been designed as a real operational measurement system, well suited to characterize and to follow the radiation field evolution throughout the reactor cycle. To meet this requirement, a programmable system associated with a specific software allows automatic complete cell mobility in the core, the data acquisition and the measurements processing. This paper presents the analysis of results collected during the 2015 comprehensive measurement campaign. The 4-wires technique was tested up to around a 4 W.g-1 heating level and allowed to quantify discrepancies between "zero" and calibration methods. Thermal neutron flux and nuclear heating measurements from CALMOS-1 and CALMOS-2 are compared. Thermal neutron flux distributions, obtained with the Self-Power Neutron

  15. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  16. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  17. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  18. NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stevenson, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tsai, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    KSU delivered fissile HT MPFD parts to INL for final construction of HT MPFD prototype. • A prototype HT MPFD was constructed and analyzed at INL. • The HT MPFD has been modeled in MCNP to optimize the amount of fissile material deposition. • The HT MPFD has been modeled in MCNP to optimize the sensor location in the irradiation test. • The fissile material deposition is undergoing independent verifications. • Detector amplifier electronics have been revised and tested by KSU. • Several project meetings were held at INL and KSU to discuss the roles and responsibilities between INL, KSU, and CEA for development and deployment of the HT MPFDs. As documented in this report, FY16 funding has allowed the project to meet year two planned accomplishments to develop a HT MPFD. In addition, the accomplishments of this project have attracted independent funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for MTR irradiations of the MPFD technology. These are significant opportunities for this NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors project because the irradiation expense of these experiments could not be included in the original project scope.

  19. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  20. First In-Core Simultaneous Measurements of Nuclear Heating and Thermal Neutron Flux Obtained With the Innovative Mobile Calorimeter CALMOS Inside the OSIRIS Reactor

    Science.gov (United States)

    Carcreff, Hubert; Salmon, Laurent; Bubendorff, Jacques; Lepeltier, Valérie

    2016-10-01

    Nuclear heating inside a MTR reactor has to be known in order to design and run irradiation experiments which have to fulfill target temperature constraints. This measurement is usually carried out by calorimetry. The innovative calorimetric system, CALMOS, has been studied and built in 2011 for the 70MWth OSIRIS reactor operated by CEA. Thanks to a new type of calorimetric probe, associated to a specific displacement system, it provides measurements along the fissile height and above the core. Calorimeter working modes, measurement procedures, main modeling and experimental results and expected advantages of this new technique have been already presented in previous papers. However, these first in-core measurements were not performed beyond 6 W · g-1, due to an inside temperature limitation imposed by a safety authority requirement. In this paper, we present the first in-core simultaneous measurements of nuclear heating and conventional thermal neutron flux obtained by the CALMOS device at 70 MW nominal reactor power. For the first time, this experimental system was operated in nominal in-core conditions, with nominal neutron flux up to 2.7 1014 n · cm-2 · s-1 and nuclear heating up to 12 W · g-1. After a brief reminder of the calorimetric cell configuration and displacement system specificities, first nuclear heating distributions at nominal power are presented and discussed. In order to reinforce the heating evaluation, a comparison is made between results obtained by the probe calibration coefficient and the zero methods. Thermal neutron flux evaluation from SPND signal processing required a specific TRIPOLI-4 Monte Carlo calculation which has been performed with the precise CALMOS cell geometry. In addition, the Finite Element model for temperatures map prediction inside the calorimetric cell has been upgraded with recent experimental data obtained up to 12 W · g-1. Finally, the experience feedback led us to improvement perspectives. A second device is

  1. Molecular Underpinnings of Fe(III Oxide Reduction by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Liang eShi

    2012-02-01

    Full Text Available In the absence of O2 and other electron acceptors, the Gram-negative bacterium Shewanella oneidensis MR-1 can use ferric [Fe(III] (oxy(hydroxide minerals as the terminal electron acceptors for anaerobic respiration. At circumneutral pH and in the absence of strong complexing ligands, Fe(III oxides are relatively insoluble and thus are external to the bacterial cells. S. oneidensis MR-1 has evolved the machinery (i.e., metal-reducing or Mtr pathway for transferring electrons across the entire cell envelope to the surface of extracellular Fe(III oxides. The protein components identified to date for the Mtr pathway include CymA, MtrA, MtrB, MtrC and OmcA. CymA is an inner-membrane tetraheme c-type cytochrome (c-Cyt that is proposed to oxidize the quinol in the inner-membrane and transfers the released electrons to redox proteins in the periplasm. Although the periplasmic proteins receiving electrons from CymA during Fe(III oxidation have not been identified, they are believed to relay the electrons to MtrA. A decaheme c-Cyt, MtrA is thought to be embedded in the trans outer-membrane and porin-like protein MtrB. Together, MtrAB deliver the electrons across the outer-membrane to the MtrC and OmcA on the outmost bacterial surface. Functioning as terminal reductases, the outer membrane and decaheme c-Cyts MtrC and OmcA can bind the surface of Fe(III oxides and transfer electrons directly to these minerals. To increase their reaction rates, MtrC and OmcA can use the flavins secreted by S. oneidensis MR-1 cells as diffusible co-factors for reduction of Fe(III oxides. MtrC and OmcA can also serve as the terminal reductases for soluble forms of Fe(III. Although our understanding of the Mtr pathway is still far from complete, it is the best characterized microbial pathway used for extracellular electron exchange. Characterizations of the Mtr pathway have made significant contributions to the molecular understanding of microbial reduction of Fe(III oxides.

  2. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Kazumi

    1998-01-01

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  3. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  4. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  5. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  6. RB Research nuclear reactor RB reactor, Annual report for 2000

    International Nuclear Information System (INIS)

    Milosevic, M.

    2000-12-01

    Report on RB reactor operation during 2000 contains 3 parts. Part one contains a brief description of reactor operation and reactor components, relevant dosimetry data and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level-meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization with a comprehensive list of publications resulting from experiments done at the RB reactor. It contains data about reactor operation during previous 14 years, i.e. from 1986 - 2000

  7. Reactor container

    International Nuclear Information System (INIS)

    Kato, Masami; Nishio, Masahide.

    1987-01-01

    Purpose: To prevent the rupture of the dry well even when the melted reactor core drops into a reactor pedestal cavity. Constitution: In a reactor container in which a dry well disposed above the reactor pedestal cavity for containing the reactor pressure vessel and a torus type suppression chamber for containing pressure suppression water are connected with each other, the pedestal cavity and the suppression chamber are disposed such that the flow level of the pedestal cavity is lower than the level of the pressure suppression water. Further, a pressure suppression water introduction pipeway for introducing the pressure suppression water into the reactor pedestal cavity is disposed by way of an ON-OFF valve. In case if the melted reactor core should fall into the pedestal cavity, the ON-OFF valve for the pressure suppression water introduction pipeway is opened to introduce the pressure suppression water in the suppression chamber into the pedestal cavity to cool the melted reactor core. (Ikeda, J.)

  8. CNEA/ANL collaboration program to develop an optimized version of DART validation and assessment by means of U3 Six and U3 O8-Al dispersed CNEA mini plate irradiation behavior

    International Nuclear Information System (INIS)

    Solis, Diego; Taboada, Horacio; Rest, Jeffrey

    1998-01-01

    The DART code is based upon a thermochemical model that can predict swelling, recrystallization, fuel-meat interdiffusion and other issues related with MTR dispersed FE behavior under irradiation. As a part of a common effort to develop an optimized version of DART, a comparison between DART predictions and CNEA miniplates irradiation experimental data was made. The irradiation took place during 1981-82 for U3O8 miniplates and 1985-86 for U 3 Si x at Oak Ridge Research Reactor. (author)

  9. Simulating a partial LOCA in a narrow channel using the DSNP simulating system

    International Nuclear Information System (INIS)

    Saphier, D.

    2007-01-01

    A partial LOCA accident in a pool type research reactor was investigated. A new MTR type fuel channel model for the DSNP simulation system was developed; permitting detailed axial and radial temperature distribution. New and older heat transfer correlations were incorporated in the model. Simulation for water levels of 14 and 35 cm in a 62 cm channel were performed. The resulting maximum temperatures remain significantly below the aluminium melting point, and no damage to the core will take place under these conditions

  10. Parameters calculation of fuel assembly with complex geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Ju Haitao; Yao Dong

    2006-01-01

    The code DRAGON was developed for CANDU reactor by Ecole Polytechnique de Montreal of Canada. In order to validate the DRAGON code's applicability for complex geometry fuel assembly calculation, the rod shape fuel assembly of PWR benchmark problem and the plate shape fuel assembly of MTR benchmark problem were analyzed by DRAGON code. Some other shape fuel assemblies were also discussed simply. Calculation results show that the DRAGON code can be used to calculate variform fuel assembly and the precision is high. (authors)

  11. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  12. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  13. The pre-licensing of a multi-purpose hybrid research reactor for high-tech applications 'MYRRHA'

    International Nuclear Information System (INIS)

    Hakimi, N.; Dams, C.; Wertelaers, A.; Nys, V.; Schrauben, M.; Dresselaers, R.

    2013-01-01

    The Belgian Nuclear Research Centre in Mol has been working for several years on the design of a multi-purpose flexible irradiation facility in order to replace the ageing BR2, a multipurpose materials testing reactor (MTR), in operation since 1962. MYRRHA, a flexible fast spectrum research reactor is conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a proton accelerator of 600 MeV, a spallation target and a multiplying medium with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). Since February 2011, the Belgian Nuclear Research Centre has engaged in a 'pre-licensing' process with the regulatory authority for an estimated period up to mid 2014. The paper presents on the one hand the objectives of the pre-licensing phase as well as its implementation process and on the other hand, 2 implementing instruments which have been developed by the regulatory authority providing guidance to the designer of MYRRHA in order to meet the pre-licensing phase objectives. The first instrument is a strategic note for the design and operation of MYRRHA where as the second instrument is a guidance document for the format and content of a design options and provisions file (DOPF). Both instruments have been developed taking into account that MYRRHA is an irradiation facility using a Generation IV nuclear power system's type technology (liquid metal cooled fast neutron reactor). The strategic note overview aims to cover the safety approach as well as the security requirements and safeguards obligation applicable to MYRRHA. In particular, in the strategic note, a specific attention has been paid in order to ensure that a safety, security and safeguards integrated approach will drive the development of the MYRRHA design. The safety approach focuses on the safety goals and the minimum safety objectives set by the regulatory authority for this innovative design. The DOPF overview presents its objectives and structure resuming

  14. Assessment of the requirements for placing and maintaining Savannah River Site spent fuel storage basins under International Atomic Energy Agency safeguards

    International Nuclear Information System (INIS)

    Amacker, O.P. Jr.; Curtis, M.M.; Delegard, C.H.; Hsue, S.T.; Whitesel, R.N.

    1997-03-01

    The United States is considering the offer of irradiated research reactor spent fuel (RRSF) for international safeguards applied by the International Atomic Energy Agency (IAEA). The offer would be to add one or more spent fuel storage basins to the list of facilities eligible for IAEA safeguards. The fuel to be safeguarded would be stored in basins on the Savannah River Site (SRS). This RRSF potentially can include returns of Material Test Reactor (MTR) VAX fuel from Argentina, Brazil, and Chile (ABC); returns from other foreign research reactors; and fuel from domestic research reactors. Basins on the SRS being considered for this fuel storage are the Receiving Basin for Offsite Fuel (RBOF) and the L-Area Disassembly Basin (L-Basin). A working group of SRS, U.S. Department of Energy International Safeguards Division (NN-44), and National Laboratory personnel with experience in IAEA safeguards was convened to consider the requirements for applying the safeguards to this material. The working group projected the safeguards requirements and described alternatives

  15. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  16. Nuclear reactor, reactor core thereof, and device for constituting the reactor

    International Nuclear Information System (INIS)

    Takiyama, Masashi.

    1994-01-01

    A reactor core is constituted by charging coolants (light water) in a reactor pressure vessel and distributing fuel assemblies, reflecting material sealing pipes, moderator (heavy water and helium gas) sealing pipes, and gas sealing pipes therein. A fuel guide tube is surrounded by a cap and the gap therebetween is made hollow and filled with coolant steams. The cap is supported by a baffle plate. The moderator sealing pipe is disposed in a flow channel of coolants in adjacent with the cap. The position of the moderator sealing tube in the reactor core is controlled by water stream from a hydraulic pump with a guide tube extending below the baffle plate being as a guide. Then, the position of the moderator sealing tube is varied to conduct power control, burnup degree compensation, and reactor shut down. With such procedures, moderator cooling facility is no more necessary to simplify the structure. Further, heat generated from the moderator is transferred to the coolants thereby improving heat efficiency of the reactor. (I.N.)

  17. Development and verifications of fast reactor fuel design code ''Ceptar''

    International Nuclear Information System (INIS)

    Ozawa, T.; Nakazawa, H.; Abe, T.

    2001-01-01

    The annular fuel is very beneficial for fast reactors, because it is available for both high power and high burn-up. Concerning the irradiation behavior of the annular fuel, most of annular pellets irradiated up to high burn-up showed shrinkage of the central hole due to deformation and restructuring of the pellets. It is needed to predict precisely the shrinkage of the central hole during irradiation, because it has a great influence on power-to-melt. In this paper, outline of CEPTAR code (Calculation code to Evaluate fuel pin stability for annular fuel design) developed to meet this need is presented. In this code, the radial profile of fuel density can be computed by using the void migration model, and law of conservation of mass defines the inner diameter. For the mechanical analysis, the fuel and cladding deformation caused by the thermal expansion, swelling and creep is computed by the stress-strain analysis using the approximation of plane-strain. In addition, CEPTAR can also take into account the effect of Joint-Oxide-Gain (JOG) which is observed in fuel-cladding gap of high burn-up fuel. JOG has an effect to decrease the fuel swelling and to improve the gap conductance due to deposition of solid fission product. Based on post-irradiation data on PFR annular fuel, we developed an empirical model for JOG. For code verifications, the thermal and mechanical data obtained from various irradiation tests and post-irradiation examinations were compared with the predictions of this code. In this study, INTA (instrumented test assembly) test in JOYO, PTM (power-to-melt) test in JOYO, EBR-II, FFTF and MTR in Harwell laboratory, and post-irradiation examinations on a number of PFR fuels, were used as verification data. (author)

  18. Slurry reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuerten, H; Zehner, P [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1979-08-01

    Slurry reactors are designed on the basis of empirical data and model investigations. It is as yet not possible to calculate the flow behavior of such reactors. The swarm of gas bubbles and cluster formations of solid particles and their interaction in industrial reactors are not known. These effects control to a large extent the gas hold-up, the gas-liquid interface and, similarly as in bubble columns, the back-mixing of liquids and solids. These hydrodynamic problems are illustrated in slurry reactors which constructionally may be bubble columns, stirred tanks or jet loop reactors. The expected effects are predicted by means of tests with model systems modified to represent the conditions in industrial hydrogenation reactors. In his book 'Mass Transfer in Heterogeneous Catalysis' (1970) Satterfield complained of the lack of knowledge about the design of slurry reactors and hence of the impossible task of the engineer who has to design a plant according to accepted rules. There have been no fundamental changes since then. This paper presents the problems facing the engineer in designing slurry reactors, and shows new development trends.

  19. Optimal reactor strategy for commercializing fast breeder reactors

    International Nuclear Information System (INIS)

    Yamaji, Kenji; Nagano, Koji

    1988-01-01

    In this paper, a fuel cycle optimization model developed for analyzing the condition of selecting fast breeder reactors in the optimal reactor strategy is described. By dividing the period of planning, 1966-2055, into nine ten-year periods, the model was formulated as a compact linear programming model. With the model, the best mix of reactor types as well as the optimal timing of reprocessing spent fuel from LWRs to minimize the total cost were found. The results of the analysis are summarized as follows. Fast breeder reactors could be introduced in the optimal strategy when they can economically compete with LWRs with 30 year storage of spent fuel. In order that fast breeder reactors monopolize the new reactor market after the achievement of their technical availability, their capital cost should be less than 0.9 times as much as that of LWRs. When a certain amount of reprocessing commitment is assumed, the condition of employing fast breeder reactors in the optimal strategy is mitigated. In the optimal strategy, reprocessing is done just to meet plutonium demand, and the storage of spent fuel is selected to adjust the mismatch of plutonium production and utilization. The price hike of uranium ore facilitates the commercial adoption of fast breeder reactors. (Kako, I.)

  20. Computerized reactor monitor and control for nuclear reactors

    International Nuclear Information System (INIS)

    Buerger, L.

    1982-01-01

    The analysis of a computerized process control system developed by Transelektro-KFKI-Videoton (Hangary) for a twenty-year-old research reactor in Budapest and or a new one in Tajura (Libya) is given. The paper describes the computer hardware (R-10) and the implemented software (PROCESS-24K) as well as their applications at nuclear reactors. The computer program provides for man-machine communication, data acquisition and processing, trend and alarm analysis, the control of the reactor power, reactor physical calculations and additional operational functions. The reliability and the possible further development of the computerized systems which are suitable for application at reactors of different design are also discussed. (Sz.J.)

  1. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  2. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  3. A Novel Mechanism of High-Level, Broad-Spectrum Antibiotic Resistance Caused by a Single Base Pair Change in Neisseria gonorrhoeae

    Science.gov (United States)

    2011-09-20

    respect, Eisenstein and Sparling noted that a single base pair deletion in the inverted repeat in the mtrR promoter, a mutation which also confers high...Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 196:1804 –1812. 21. Eisenstein BI

  4. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    International Nuclear Information System (INIS)

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed

  5. Reactor core for FBR type reactor

    International Nuclear Information System (INIS)

    Fujita, Tomoko; Watanabe, Hisao; Kasai, Shigeo; Yokoyama, Tsugio; Matsumoto, Hiroshi.

    1996-01-01

    In a gas-sealed assembly for a FBR type reactor, two or more kinds of assemblies having different eigen frequency and a structure for suppressing oscillation of liquid surface are disposed in a reactor core. Coolant introduction channels for introducing coolants from inside and outside are disposed in the inside of structural members of an upper shielding member to form a shielding member-cooling structure in the reactor core. A structure for promoting heat conduction between a sealed gas in the assembly and coolants at the inner side or the outside of the assembly is disposed in the reactor core. A material which generates heat by neutron irradiation is disposed in the assembly to heat the sealed gases positively by radiation heat from the heat generation member also upon occurrence of power elevation-type event to cause temperature expansion. Namely, the coolants flown out from or into the gas sealed-assemblies cause differential fluctuation on the liquid surface, and the change of the capacity of a gas region is also different on every gas-sealed assemblies thereby enabling to suppress fluctuation of the reactor power. Pressure loss is increased by a baffle plate or the like to lower the liquid surface of the sodium coolants or decrease the elevating speed thereof thereby suppressing fluctuation of the reactor power. (N.H.)

  6. Space-time reactor kinetics for heterogeneous reactor structure

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1969-11-15

    An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.

  7. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  8. Feasible reactor power cutback logic development for an integral reactor

    International Nuclear Information System (INIS)

    Han, Soon-Kyoo; Lee, Chung-Chan; Choi, Suhn; Kang, Han-Ok

    2013-01-01

    Major features of integral reactors that have been developed around the world recently are simplified operating systems and passive safety systems. Even though highly simplified control system and very reliable components are utilized in the integral reactor, the possibility of major component malfunction cannot be ruled out. So, feasible reactor power cutback logic is required to cope with the malfunction of components without inducing reactor trip. Simplified reactor power cutback logic has been developed on the basis of the real component data and operational parameters of plant in this study. Due to the relatively high rod worth of the integral reactor the control rod assembly drop method which had been adapted for large nuclear power plants was not desirable for reactor power cutback of the integral reactor. Instead another method, the control rod assembly control logic of reactor regulating system controls the control rod assembly movements, was chosen as an alternative. Sensitivity analyses and feasibility evaluations were performed for the selected method by varying the control rod assembly driving speed. In the results, sensitivity study showed that the performance goal of reactor power cutback system could be achieved with the limited range of control rod assembly driving speed. (orig.)

  9. RA Reactor

    International Nuclear Information System (INIS)

    1978-02-01

    In addition to basic characteristics of the RA reactor, organizational scheme and financial incentives, this document covers describes the state of the reactor components after 18 years of operation, problems concerned with obtaining the licence for operation with 80% fuel, problems of spent fuel storage in the storage pool of the reactor building and the need for renewal of reactor equipment, first of all instrumentation [sr

  10. Description of ECRI (CNEA'S MTR fuel fabrication plant)

    International Nuclear Information System (INIS)

    Echenique, P.; Fabro, J.; Podesta, D.; Restelli, M.; Rossi, G.; Alvarez, L.; Adelfang, P.

    2002-01-01

    The ECRI Plant is dedicated to the development and fabrication of high-density fuel elements and targets for 99 Mo. In this sector had been done the start up Fuel Elements for the Reactors of Peru, Iran, Algeria and Egypt. All of them were made with U 3 O 8 . The targets for 99 Mo using HEU were fabricated too in the last years. The new material of high-density for Fuel Elements as U 3 Si 2 were done in this sector, three prototypes were fabricated, two are still under irradiation. (P06 and P07). As new developments we are working with U-Mo (7%) Fuel Plates with both material Korean and HMD. This work is under the RERTR Program and two fuel elements, manufactured by us, with both powders, will be irradiated in Petten. For 99 Mo targets, we are fabricating miniplates of LEU with an AlUx powder by pulvi-metallurgy technique. And it is under development the foils targets under the RERTR Program. A general view of the fabrication facilities and control sector will be shown. The different operations that are done in each sector will be explained. All our activities will be certified under the ISO 9000 and we are working hard to get it in the middle of 2003. (author)

  11. Milling uranium silicide powder for dispersion nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, E.; Silva, D.G.; Souza, J.A.B.; Durazzo, M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2009-07-01

    Full text: Uranium silicide (U3Si2) is presently considered the best fuel qualified so far in terms of uranium loading and performance. Stability of the U3Si2 fuel with uranium density of 4.8 g/cm3 was confirmed by burnup stability tests performed during the Reduced Enrichment for Research and Test Reactors (RERTR) program. This fuel was chosen to compose the first core of the new Brazilian Multipurpose Research Reactor (RMB), planned to be constructed in the next years. This new reactor will consume bigger quantities of U3Si2 powder, when compared with the small consumption of the IEA-R1 research reactor of IPEN-CNEN/SP, the unique MTR type research reactor operating in the country. At the present time, the milling operation of U3Si2 ingots is made manually. In order to increase the powder production capacity, the manual milling must be replaced by an automated procedure. This paper describes a new milling machine and procedure developed to produce U3Si2 powder with higher efficiency. (author)

  12. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  13. Reactor container

    International Nuclear Information System (INIS)

    Naruse, Yoshihiro.

    1990-01-01

    The thickness of steel shell plates in a reactor container embedded in sand cussions is monitored to recognize the corrosion of the steel shell plates. That is, the reactor pressure vessel is contained in a reactor container shell and the sand cussions are disposed on the lower outside of the reactor container shell to elastically support the shell. A pit is disposed at a position opposing to the sand cussions for measuring the thickness of the reactor container shell plates. The pit is usually closed by a closing member. In the reactor container thus constituted, the closing member can be removed upon periodical inspection to measure the thickness of the shell plates. Accordingly, the corrosion of the steel shell plates can be recognized by the change of the plate thickness. (I.S.)

  14. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  15. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  16. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    2001-04-01

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  17. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  18. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  19. Multiregion reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The study of reflected reactors can be done employing the multigroup diffusion method. The neutron conservation equations, inside the intervals, can be written by fluxes and group constants. A reflected reactor (one and two groups) for a slab geometry is studied, aplying the continuity of flux and current in the interface. At the end, the appropriated solutions for a infinite cylindrical reactor and for a spherical reactor are presented. (Author) [pt

  20. Irradiation of full size UMo plates

    International Nuclear Information System (INIS)

    Vacelet, H.; Lavastre, Y.; Grasse, M.; Sacristan, P.; Languille, A.

    1999-01-01

    An important development program for a UMo MTR fuel has been launched in France. The goal of the French working group is to develop a high performing and reprocessable fuel before the end of the US return policy. This paper is focussed on the fabrication of full-sized UMo plates with LEU (Low Enriched Enrichment) and their irradiation in OSIRIS reactor which was started on the 22nd of September. The results of the plates inspection are presented here as well as the irradiation conditions. (author)

  1. Set up of Uranium-Molybdenum powder production (HMD process)

    International Nuclear Information System (INIS)

    Lopez, Marisol; Pasqualini, Enrique E.; Gonzalez, Alfredo G.

    2003-01-01

    Powder metallurgy offers different alternatives for the production of Uranium-Molybdenum (UMo) alloy powder in sizes smaller than 150 microns. This powder is intended to be used as a dispersion fuel in an aluminum matrix for research, testing and radioisotopes production reactors (MTR). A particular process of massive hydriding the UMo alloy in gamma phase has been developed. This work describes the final adjustments of process variables to obtain UMo powder by hydriding-milling-de hydriding (HMD) and its capability for industrial scaling up. (author)

  2. Reactor building

    International Nuclear Information System (INIS)

    Maruyama, Toru; Murata, Ritsuko.

    1996-01-01

    In the present invention, a spent fuel storage pool of a BWR type reactor is formed at an upper portion and enlarged in the size to effectively utilize the space of the building. Namely, a reactor chamber enhouses reactor facilities including a reactor pressure vessel and a reactor container, and further, a spent fuel storage pool is formed thereabove. A second spent fuel storage pool is formed above the auxiliary reactor chamber at the periphery of the reactor chamber. The spent fuel storage pool and the second spent fuel storage pool are disposed in adjacent with each other. A wall between both of them is formed vertically movable. With such a constitution, the storage amount for spent fuels is increased thereby enabling to store the entire spent fuels generated during operation period of the plant. Further, since requirement of the storage for the spent fuels is increased stepwisely during periodical exchange operation, it can be used for other usage during the period when the enlarged portion is not used. (I.S.)

  3. Nuclear reactor

    International Nuclear Information System (INIS)

    Garabedian, G.

    1988-01-01

    A liquid reactor is described comprising: (a) a reactor vessel having a core; (b) one or more satellite tanks; (c) pump means in the satellite tank; (d) heat exchanger means in the satellite tank; (e) an upper liquid metal conduit extending between the reactor vessel and the satellite tank; (f) a lower liquid metal duct extending between the reactor vessel and satellite tanks the upper liquid metal conduit and the lower liquid metal duct being arranged to permit free circulation of liquid metal between the reactor vessel core and the satellite tank by convective flow of liquid metal; (g) a separate sealed common containment vessel around the reactor vessel, conduits and satellite tanks; (h) the satellite tank having space for a volume of liquid metal that is sufficient to dampen temperature transients resulting from abnormal operating conditions

  4. Statistical calculation of hot channel factors

    International Nuclear Information System (INIS)

    Farhadi, K.

    2007-01-01

    It is a conventional practice in the design of nuclear reactors to introduce hot channel factors to allow for spatial variations of power generation and flow distribution. Consequently, it is not enough to be able to calculate the nominal temperature distributions of fuel element, cladding, coolant, and central fuel. Indeed, one must be able to calculate the probability that the imposed temperature or heat flux limits in the entire core is not exceeded. In this paper, statistical methods are used to calculate hot channel factors for a particular case of a heterogeneous, Material Testing Reactor (MTR) and compare the results obtained from different statistical methods. It is shown that among the statistical methods available, the semi-statistical method is the most reliable one

  5. Reactor physics challenges in GEN-IV reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Michael K.; Hejzlar, Pavel [Massachusetts Institute of Technology, MA (United States)

    2005-02-15

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources.

  6. Reactor physics challenges in GEN-IV reactor design

    International Nuclear Information System (INIS)

    Driscoll, Michael K.; Hejzlar, Pavel

    2005-01-01

    An overview of the reactor physics aspects of GENeration Four (GEN-IV) advanced reactors is presented, emphasizing how their special requirements for enhanced sustainability, safety and economics motivates consideration of features not thoroughly analyzed in the past. The resulting concept-specific requirements for better data and methods are surveyed, and some approaches and initiatives are suggested to meet the challenges faced by the international reactor physics community. No unresolvable impediments to successful development of any of the six major types of proposed reactors are identified, given appropriate and timely devotion of resources

  7. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  8. JHR Project: a future Material Testing Reactor working as an International user Facility: The key-role of instrumentation in support to the development of modern experimental capacity

    Energy Technology Data Exchange (ETDEWEB)

    Bignan, G. [CEA, DEN, DER, JHR user Facility Interface Manager' , Cadarache, F-13108 St-Paul-Lez-Durance (France); Gonnier, C. [CEA, DEN, DER, SRJH Jules Horowitz Reactor Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Maugard, B. [CEA, DEN, DER, Reactor Department Studies, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and D support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under

  9. The first step in using a robot in brain injury rehabilitation: patients' and health-care professionals' perspective.

    Science.gov (United States)

    Boman, Inga-Lill; Bartfai, Aniko

    2015-01-01

    To evaluate the usability of a mobile telepresence robot (MTR) in a hospital training apartment (HTA). The MTR was manoeuvred remotely and was used for communication when assessing independent living skills, and for security monitoring of cognitively impaired patients. Occupational therapists (OTs) and nurses received training in how to use the MTR. The nurses completed a questionnaire regarding their expectations of using the MTR. OTs and patients staying in the HTA were interviewed about their experiences of the MTR. Interviews and questionnaires were analysed qualitatively. The HTA patients were very satisfied with the MTR. The OTs and nurses reported generally positive experiences. The OT's found that assessment via the MTR was more neutral than being physically present. However, the use of the MTR implied considerable difficulties for health-care professionals. The main obstacle for the nurses was the need for fast and easy access in emergency situations while protecting the patients' integrity. The results indicate that the MTR could be a useful tool to support daily living skills and safety monitoring of HTA patients. However, when designing technology for multiple users, such as health-care professionals, the needs of all users, their routines and support services involved, should also be considered. Implications for Rehabilitation A mobile telepresence robot (MTR) can be a useful tool for assessments and communication in rehabilitation. The design of the robot has to allow easy use by remote users, particularly in emergency situations. When designing MTRs the needs of ALL users have to be taken into consideration.

  10. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  11. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  12. Test-retest reliability of myofascial trigger point detection in hip and thigh areas.

    Science.gov (United States)

    Rozenfeld, E; Finestone, A S; Moran, U; Damri, E; Kalichman, L

    2017-10-01

    Myofascial trigger points (MTrP's) are a primary source of pain in patients with musculoskeletal disorders. Nevertheless, they are frequently underdiagnosed. Reliable MTrP palpation is the necessary for their diagnosis and treatment. The few studies that have looked for intra-tester reliability of MTrPs detection in upper body, provide preliminary evidence that MTrP palpation is reliable. Reliability tests for MTrP palpation on the lower limb have not yet been performed. To evaluate inter- and intra-tester reliability of MTrP recognition in hip and thigh muscles. Reliability study. 21 patients (15 males and 6 females, mean age 21.1 years) referred to the physical therapy clinic, 10 with knee or hip pain and 11 with pain in an upper limb, low back, shin or ankle. Two experienced physical therapists performed the examinations, blinded to the subjects' identity, medical condition and results of the previous MTrP evaluation. Each subject was evaluated four times, twice by each examiner in a random order. Dichotomous findings included a palpable taut band, tenderness, referred pain, and relevance of referred pain to patient's complaint. Based on these, diagnosis of latent MTrP's or active MTrP's was established. The evaluation was performed on both legs and included a total of 16 locations in the following muscles: rectus femoris (proximal), vastus medialis (middle and distal), vastus lateralis (middle and distal) and gluteus medius (anterior, posterior and distal). Inter- and intra-tester reliability (Cohen's kappa (κ)) values for single sites ranged from -0.25 to 0.77. Median intra-tester reliability was 0.45 and 0.46 for latent and active MTrP's, and median inter-tester reliability was 0.51 and 0.64 for latent and active MTrPs, respectively. The examination of the distal vastus medialis was most reliable for latent and active MTrP's (intra-tester k = 0.27-0.77, inter-tester k = 0.77 and intra-tester k = 0.53-0.72, inter-tester k = 0.72, correspondingly

  13. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  14. Computerized reactor monitor and control for research reactors

    International Nuclear Information System (INIS)

    Buerger, L.; Vegh, E.

    1981-09-01

    The computerized process control system developed in the Central Research Institute for Physics, Budapest, Hungary, is described together with its special applications at research reactors. The nuclear power of the Hungarian research reactor is controlled by this computerized system, too, while in Lybia many interesting reactor-hpysical calculations are built into the computerized monitor system. (author)

  15. FRG-1: new millenium - new compact core

    International Nuclear Information System (INIS)

    Schreiner, P.; Knop, W.

    2001-01-01

    The GKSS research center Geesthacht GmbH operates the MTR-type swimming pool research reactor FRG-1 (5 MW) for more than 40 years. The FRG-1 has been converted in February 1991 from HEU (93 %) to LEU (20 %) in one step and at that time the core size was reduced from 49 to 26 fuel elements. Consequently the thermal neutron flux in beam tube positions could be increased by more than a factor of two. It is the strong intention of GKSS to continue the operation of the FRG-1 research reactor for at least an additional 15 years with high availability and utilization. The reactor has been operated during the last years for approximately 250 full power days per year. To prepare the FRG-1 for an efficient future use, the core size has been reduced in a second step from 26 fuel elements to 12 fuel elements. (author)

  16. Computer simulation of variform fuel assemblies using Dragon code

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun; Yao Dong

    2005-01-01

    The DRAGON is a cell code that developed for the CANDU reactor by the Ecole Polytechnique de Montreal of CANADA. Although, the DRAGON is mainly used to simulate the CANDU super-cell fuel assembly, it has an ability to simulate other geometries of the fuel assembly. However, only NEACRP benchmark problem of the BWR lattice cell was analyzed until now except for the CANDU reactor. We also need to develop the code to simulate the variform fuel assemblies, especially, for design of the advanced reactor. We validated that the cell code DRAGON is useful for simulating various kinds of the fuel assembly by analyzing the rod-shape fuel assembly of the PWR and the MTR plate-shape fuel assembly. Some other kinds of geometry of geometry were computed. Computational results show that the DRAGON is able to analyze variform fuel assembly problems and the precision is high. (authors)

  17. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  18. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  19. Reactor. Mind picture of the future Jules-Horowitz Reactor (RHJ)

    International Nuclear Information System (INIS)

    Eustache, S.

    1999-01-01

    This paper gives information about the future research reactor, named Reactor Jules-Horowitz (RJH). This irradiation reactor will be placed at industrialists disposal, for research concerning the competitiveness and the safety french electro-nuclear park. Principles and innovations are detailed. This reactor will respect the ALARA principle (as low as reasonably achievable). (A.L.B.)

  20. The analysis for inventory of experimental reactor high temperature gas reactor type

    International Nuclear Information System (INIS)

    Sri Kuntjoro; Pande Made Udiyani

    2016-01-01

    Relating to the plan of the National Nuclear Energy Agency (BATAN) to operate an experimental reactor of High Temperature Gas Reactors type (RGTT), it is necessary to reactor safety analysis, especially with regard to environmental issues. Analysis of the distribution of radionuclides from the reactor into the environment in normal or abnormal operating conditions starting with the estimated reactor inventory based on the type, power, and operation of the reactor. The purpose of research is to analyze inventory terrace for Experimental Power Reactor design (RDE) high temperature gas reactor type power 10 MWt, 20 MWt and 30 MWt. Analyses were performed using ORIGEN2 computer code with high temperatures cross-section library. Calculation begins with making modifications to some parameter of cross-section library based on the core average temperature of 570 °C and continued with calculations of reactor inventory due to RDE 10 MWt reactor power. The main parameters of the reactor 10 MWt RDE used in the calculation of the main parameters of the reactor similar to the HTR-10 reactor. After the reactor inventory 10 MWt RDE obtained, a comparison with the results of previous researchers. Based upon the suitability of the results, it make the design for the reactor RDE 20MWEt and 30 MWt to obtain the main parameters of the reactor in the form of the amount of fuel in the pebble bed reactor core, height and diameter of the terrace. Based on the main parameter or reactor obtained perform of calculation to get reactor inventory for RDE 20 MWT and 30 MWT with the same methods as the method of the RDE 10 MWt calculation. The results obtained are the largest inventory of reactor RDE 10 MWt, 20 MWt and 30 MWt sequentially are to Kr group are about 1,00E+15 Bq, 1,20E+16 Bq, 1,70E+16 Bq, for group I are 6,50E+16 Bq, 1,20E+17 Bq, 1,60E+17 Bq and for groups Cs are 2,20E+16 Bq, 2,40E+16 Bq, 2,60E+16 Bq. Reactor inventory will then be used to calculate the reactor source term and it

  1. FBR type reactors

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Yamakawa, Masanori.

    1985-01-01

    Purpose: To enable safety and reliable after-heat removal from a reactor core. Constitution: During ordinary operation of a FBR type reactor, sodium coolants heated to a high temperature in a reactor core are exhausted therefrom, collide against the reactor core upper mechanisms to radially change the flowing direction and then enter between each of the guide vanes. In the case if a main recycling pump is failed and stopped during reactor operation and the recycling force is eliminated, the swirling stream of sodium that has been resulted by the flow guide mechanism during normal reactor operation is continuously maintained within a plenum at a high temperature. Accordingly, the sodium recycling force in the coolant flow channels within the reactor vessel can surely be maintained for a long period of time due to the centrifugal force of the sodium swirling stream. In this way, since the reactor core recycling flow rate can be secured even after the stopping of the main recycling pump, after-heat from the reactor core can safely and surely be removed. (Seki, T.)

  2. FBR type reactor

    International Nuclear Information System (INIS)

    Hayase, Tamotsu.

    1991-01-01

    The present invention concerns an FBR type reactor in which transuranium elements are eliminated by nuclear conversion. There are loaded reactor core fuels being charged with mixed oxides of plutonium and uranium, and blanket fuels mainly comprising depleted uranium. Further, liquid sodium is used as coolants. As transuranium elements, isotope elements of neptunium, americium and curium contained in wastes taken out from light water reactors or the composition thereof are used. The reactor core comprises a region with a greater mixing ratio and a region with a less mixing ratio of the transuranium elements. The mixing ratio of the transuranium elements is made greater for the fuels in the reactor core region at the boundary with the blanket of great neutron leakage. With such a constitution, since the positive reactivity value at the reactor core central portion is small in the Na void reactivity distribution in the reactor core, the positive reactivity is small upon Na boiling in the reactor core central region upon occurrence of imaginable accident, to attain reactor safety. (I.N.)

  3. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ugorowski, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ito, Takashi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chamber and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A

  4. Mechanism of 232U production in MTR fuel evolution of activity in reprocessed uranium

    International Nuclear Information System (INIS)

    Harbonnier, G.; Lelievre, B.; Fanjas, Y.; Naccache, S.J.P.

    1993-01-01

    The use of reprocessed uranium for research reactor fuel fabrication implies to keep operators safe from the hard gamma rays emitted by 232 U daughter products. CERCA has carried out, with the help of French CEA and COGEMA, a detailed study to determine the evolution of the radiation dose rate associated with the use of this material. (author)

  5. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  6. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  7. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  8. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  9. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  10. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  11. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  12. BWR type reactor

    International Nuclear Information System (INIS)

    Watanabe, Shoichi

    1983-01-01

    Purpose : To flatten the radial power distribution in the reactor core thereby improve the thermal performance of the reactor core by making the moderator-fuel ratio of fuel assemblies different depending on their position in the reactor core. Constitution : The volume of fuels disposed in the peripheral area of the reactor core is decreased by the increase of the volume of moderators in fuel assemblies disposed in the peripheral area of the reactor core to thereby make the moderator-fuel volume greater in the peripheral area than that in the central area. The moderator-fuel ratio adjustment is attained by making the number of water rods greater, decreasing the diameter of fuel pellets or decreasing the number of fuel pins in fuel assemblies disposed at the peripheral area of the reactor core as compared with fuel assemblies disposed at the central area of the reactor core. In this way, the infinite multiplication factors of fuels can be increased to thereby improve the reactor core performance. (Aizawa, K.)

  13. Prevention device for rapid reactor core shutdown in BWR type reactors

    International Nuclear Information System (INIS)

    Koshi, Yuji; Karatsu, Hiroyuki.

    1986-01-01

    Purpose: To surely prevent rapid shutdown of a nuclear reactor upon partial load interruption due to rapid increase in the system frequency. Constitution: If a partial load interruption greater than the sum of the turbine by-pass valve capacity and the load setting bias portion is applied in a BWR type power plant, the amount of main steams issued from the reactor is decreased, the thermal input/output balance of the reactor is lost, the reactor pressure is increased, the void is collapsed, the neutron fluxes are increased and the reactor power rises to generate rapid reactor shutdown. In view of the above, the turbine speed signal is compared with a speed setting value in a recycling flowrate control device and the recycling pump is controlled to decrease the recycling flowrate in order to compensate the increase in the neutron fluxes accompanying the reactor power up. In this way, transient changes in the reactor core pressure and the neutron fluxes are kept within a setting point for the rapid reactor shutdown operation thereby enabling to continue the plant operation. (Horiuchi, T.)

  14. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  15. Magnetization transfer imaging of normal and abnormal testis: preliminary results

    International Nuclear Information System (INIS)

    Tsili, Athina C.; Ntorkou, Alexandra; Maliakas, Vasilios; Argyropoulou, Maria I.; Baltogiannis, Dimitrios; Sylakos, Anastasios; Sofikitis, Nikolaos; Stavrou, Sotirios; Astrakas, Loukas G.

    2016-01-01

    The aim was to determine the magnetization transfer ratio (MTR) of normal testes, possible variations with age and to assess the feasibility of MTR in characterizing various testicular lesions. Eighty-six men were included. A three-dimensional gradient-echo MT sequence was performed, with/without an on-resonance binomial prepulse. MTR was calculated as: (SIo-SIm)/(SIo) x 100 %, where SIm and SIo refers to signal intensities with and without the saturation pulse, respectively. Subjects were classified as: group 1, 20-39 years; group 2, 40-65 years; and group 3, older than 65 years of age. Analysis of variance (ANOVA) followed by the least significant difference test was used to assess variations of MTR with age. Comparison between the MTR of normal testis, malignant and benign testicular lesions was performed using independent-samples t testing. ANOVA revealed differences of MTR between age groups (F = 7.51, P = 0.001). Significant differences between groups 1, 2 (P = 0.011) and 1, 3 (P < 0.001) were found, but not between 2, 3 (P = 0.082). The MTR (in percent) of testicular carcinomas was 55.0 ± 3.2, significantly higher than that of benign lesions (50.3 ± 4.0, P = 0.02) and of normal testes (47.4 ± 2.2, P < 0.001). MTR of normal testes decreases with age. MTR might be helpful in the diagnostic work-up of testicular lesions. (orig.)

  16. High-temperature and breeder reactors - economic nuclear reactors of the future

    International Nuclear Information System (INIS)

    Djalilzadeh, A.M.

    1977-01-01

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  17. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  18. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  19. Metabolism of 5-methylthioribose to methionine

    International Nuclear Information System (INIS)

    Miyazaki, J.H.; Yang, S.F.

    1987-01-01

    During ethylene biosynthesis, the H 3 CS-group of S-adenosylmethionine is released as 5'-methylthioadenosine, which is recycled to methionine via 5-methylthioribose (MTR). In mungbean hypocotyls and cell-free extracts of avocado, [ 14 C]MTR was converted into labeled methionine via 2-keto-4-methylthiobutyric acid (KMB) and 2-hydroxy-4-methylthiobutyric acid (HMB), as intermediates. Incubation of [ribose-U- 14 C]MTR with avocado extract resulted in the production of [ 14 C]formate, indicating the conversion of MTR to KMB involves a loss of formate, presumably from C-1 of MTR. Tracer studies showed that KMB was converted readily in vivo and in vitro to methionine, while HMB was converted much more slowly. The conversion of KMB to methionine by dialyzed avocado extract requires an amino donor. Among several potential donors examined, L-glutamine was the most efficient. Anaerobiosis inhibited only partially the oxidation of MTR to formate, KMB/HMB, and methionine by avocado extract. The role of O 2 in the conversion of MTR to methionine is discussed

  20. Fast breeder reactors

    International Nuclear Information System (INIS)

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de