WorldWideScience

Sample records for mtdna import validation

  1. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies

    Directory of Open Access Journals (Sweden)

    Specht Günther

    2010-03-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. Description eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle, security aspects (by using database technology and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs. It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. Conclusions The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt.

  2. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies.

    Science.gov (United States)

    Weissensteiner, Hansi; Schönherr, Sebastian; Specht, Günther; Kronenberg, Florian; Brandstätter, Anita

    2010-03-09

    Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt.

  3. Ancient mtDNA genetic variants modulate mtDNA transcription and replication.

    Directory of Open Access Journals (Sweden)

    Sarit Suissa

    2009-05-01

    Full Text Available Although the functional consequences of mitochondrial DNA (mtDNA genetic backgrounds (haplotypes, haplogroups have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74% and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%. The variant defining Caucasian haplogroup J (C295T increased the binding of TFAM (Electro Mobility Shift Assay and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1, a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA

  4. Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin

    Directory of Open Access Journals (Sweden)

    Mayra Eduardoff

    2017-09-01

    Full Text Available The analysis of mitochondrial DNA (mtDNA has proven useful in forensic genetics and ancient DNA (aDNA studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR is commonly sequenced using established Sanger-type Sequencing (STS protocols involving fragment sizes down to approximately 150 base pairs (bp. Recent developments include Massively Parallel Sequencing (MPS of (multiplex PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less, and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples, and tested challenging forensic samples (n = 2 as well as compromised solid tissue samples (n = 15 up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS

  5. Melanesian mtDNA complexity.

    Directory of Open Access Journals (Sweden)

    Jonathan S Friedlaender

    Full Text Available Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA sequences from hypervariable regions 1 and 2 (HVR1 and HVR2 from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups. Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at approximately 30-50,000 years before present (YBP, and a second important expansion from Island Southeast Asia/Taiwan during the interval approximately 3,500-8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal Austronesian influence in this region remains unresolved.

  6. A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA.

    Science.gov (United States)

    Diot, Alan; Hinks-Roberts, Alex; Lodge, Tiffany; Liao, Chunyan; Dombi, Eszter; Morten, Karl; Brady, Stefen; Fratter, Carl; Carver, Janet; Muir, Rebecca; Davis, Ryan; Green, Charlotte J; Johnston, Iain; Hilton-Jones, David; Sue, Carolyn; Mortiboys, Heather; Poulton, Joanna

    2015-10-01

    Mitophagy is a cellular mechanism for the recycling of mitochondrial fragments. This process is able to improve mitochondrial DNA (mtDNA) quality in heteroplasmic mtDNA disease, in which mutant mtDNA co-exists with normal mtDNA. In disorders where the load of mutant mtDNA determines disease severity it is likely to be an important determinant of disease progression. Measuring mitophagy is technically demanding. We used pharmacological modulators of autophagy to validate two techniques for quantifying mitophagy. First we used the IN Cell 1000 analyzer to quantify mitochondrial co-localisation with LC3-II positive autophagosomes. Unlike conventional fluorescence and electron microscopy, this high-throughput system is sufficiently sensitive to detect transient low frequency autophagosomes. Secondly, because mitophagy preferentially removes pathogenic heteroplasmic mtDNA mutants, we developed a heteroplasmy assay based on loss of m.3243A>G mtDNA, during culture conditions requiring oxidative metabolism ("energetic stress"). The effects of the pharmacological modulators on these two measures were consistent, confirming that the high throughput imaging output (autophagosomes co-localising with mitochondria) reflects mitochondrial quality control. To further validate these methods, we performed a more detailed study using metformin, the most commonly prescribed antidiabetic drug that is still sometimes used in Maternally Inherited Diabetes and Deafness (MIDD). This confirmed our initial findings and revealed that metformin inhibits mitophagy at clinically relevant concentrations, suggesting that it may have novel therapeutic uses. Copyright © 2015. Published by Elsevier Ltd.

  7. Keeping mtDNA in shape between generations.

    Directory of Open Access Journals (Sweden)

    James B Stewart

    2014-10-01

    Full Text Available Since the unexpected discovery that mitochondria contain their own distinct DNA molecules, studies of the mitochondrial DNA (mtDNA have yielded many surprises. In animals, transmission of the mtDNA genome is explicitly non-Mendelian, with a very high number of genome copies being inherited from the mother after a drastic bottleneck. Recent work has begun to uncover the molecular details of this unusual mode of transmission. Many surprising variations in animal mitochondrial biology are known; however, a series of recent studies have identified a core of evolutionarily conserved mechanisms relating to mtDNA inheritance, e.g., mtDNA bottlenecks during germ cell development, selection against specific mtDNA mutation types during maternal transmission, and targeted destruction of sperm mitochondria. In this review, we outline recent literature on the transmission of mtDNA in animals and highlight the implications for human health and ageing.

  8. Hypervariable region polymorphism of mtDNA of recurrent oral ulceration in Chinese.

    Directory of Open Access Journals (Sweden)

    Mao Sun

    Full Text Available BACKGROUND: MtDNA haplogroups could have important implication for understanding of the relationship between the mutations of the mitochondrial genome and diseases. Distribution of a variety of diseases among these haplogroups showed that some of the mitochondrial haplogroups are predisposed to disease. To examine the susceptibility of mtDNA haplogroups to ROU, we sequenced the mtDNA HV1, HV2 and HV3 in Chinese ROU. METHODOLOGY/PRINCIPAL FINDINGS: MtDNA haplogroups were analyzed in the 249 cases of ROU patients and the 237 cases of healthy controls respectively by means of primer extension analysis and DNA sequencing. Haplogroups G1 and H were found significantly more abundant in ROU patients than in healthy persons, while haplogroups D5 and R showed a trend toward a higher frequency in control as compared to those in patients. The distribution of C-stretch sequences polymorphism in mtDNA HV1, HV2 and HV3 regions was found in diversity. CONCLUSIONS/SIGNIFICANCE: For the first time, the relationship of mtDNA haplogroups and ROU in Chinese was investigated. Our results indicated that mtDNA haplogroups G1 and H might constitute a risk factor for ROU, which possibly increasing the susceptibility of ROU. Meanwhile, haplogroups D5 and R were indicated as protective factors for ROU. The polymorphisms of C-stretch sequences might being unstable and influence the mtDNA replication fidelity.

  9. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    Science.gov (United States)

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  10. A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease

    Directory of Open Access Journals (Sweden)

    Johanna H.K. Kauppila

    2016-09-01

    Full Text Available Mutations of mtDNA are an important cause of human disease, but few animal models exist. Because mammalian mitochondria cannot be transfected, the development of mice with pathogenic mtDNA mutations has been challenging, and the main strategy has therefore been to introduce mutations found in cell lines into mouse embryos. Here, we describe a phenotype-driven strategy that is based on detecting clonal expansion of pathogenic mtDNA mutations in colonic crypts of founder mice derived from heterozygous mtDNA mutator mice. As proof of concept, we report the generation of a mouse line transmitting a heteroplasmic pathogenic mutation in the alanine tRNA gene of mtDNA displaying typical characteristics of classic mitochondrial disease. In summary, we describe a straightforward and technically simple strategy based on mouse breeding and histology to generate animal models of mtDNA-mutation disease, which will be of great importance for studies of disease pathophysiology and preclinical treatment trials.

  11. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Kukat, Alexandra; Edgar, Daniel; Bratic, Ivana; Maiti, Priyanka; Trifunovic, Aleksandra

    2011-01-01

    Highlights: → Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. → This process is independent of endogenous ROS production. → Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O 2 ) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  12. Inspecting close maternal relatedness: Towards better mtDNA population samples in forensic databases.

    Science.gov (United States)

    Bodner, Martin; Irwin, Jodi A; Coble, Michael D; Parson, Walther

    2011-03-01

    Reliable data are crucial for all research fields applying mitochondrial DNA (mtDNA) as a genetic marker. Quality control measures have been introduced to ensure the highest standards in sequence data generation, validation and a posteriori inspection. A phylogenetic alignment strategy has been widely accepted as a prerequisite for data comparability and database searches, for forensic applications, for reconstructions of human migrations and for correct interpretation of mtDNA mutations in medical genetics. There is continuing effort to enhance the number of worldwide population samples in order to contribute to a better understanding of human mtDNA variation. This has often lead to the analysis of convenience samples collected for other purposes, which might not meet the quality requirement of random sampling for mtDNA data sets. Here, we introduce an additional quality control means that deals with one aspect of this limitation: by combining autosomal short tandem repeat (STR) marker with mtDNA information, it helps to avoid the bias introduced by related individuals included in the same (small) sample. By STR analysis of individuals sharing their mitochondrial haplotype, pedigree construction and subsequent software-assisted calculation of likelihood ratios based on the allele frequencies found in the population, closely maternally related individuals can be identified and excluded. We also discuss scenarios that allow related individuals in the same set. An ideal population sample would be representative for its population: this new approach represents another contribution towards this goal. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Decreased Circulating mtDNA Levels in Professional Male Volleyball Players.

    Science.gov (United States)

    Nasi, Milena; Cristani, Alessandro; Pinti, Marcello; Lamberti, Igor; Gibellini, Lara; De Biasi, Sara; Guazzaloca, Alessandro; Trenti, Tommaso; Cossarizza, Andrea

    2016-01-01

    Exercise exerts various effects on the immune system, and evidence is emerging on its anti-inflammatory effects; the mechanisms on the basis of these modifications are poorly understood. Mitochondrial DNA (mtDNA) released from damaged cells acts as a molecule containing the so-called damage-associated molecular patterns and can trigger sterile inflammation. Indeed, high plasma levels of mtDNA are associated to several inflammatory conditions and physiological aging and longevity. The authors evaluated plasma mtDNA in professional male volleyball players during seasonal training and the possible correlation between mtDNA levels and clinical parameters, body composition, and physical performance. Plasma mtDNA was quantified by real-time PCR every 2 mo in 12 professional volleyball players (PVPs) during 2 consecutive seasons. As comparison, 20 healthy nonathlete male volunteers (NAs) were analyzed. The authors found lower levels of mtDNA in plasma of PVPs than in NAs. However, PVPs showed a decrease of circulating mtDNA only in the first season, while no appreciable variations were observed during the second season. No correlation was observed among mtDNA, hematochemical, and anthropometric parameters. Regular physical activity appeared associated with lower levels of circulating mtDNA, further confirming the protective, anti-inflammatory effect of exercise.

  14. Metabolic rescue in pluripotent cells from patients with mtDNA disease.

    Science.gov (United States)

    Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat

    2015-08-13

    Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.

  15. Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells

    International Nuclear Information System (INIS)

    Akimoto, Miho; Niikura, Mamoru; Ichikawa, Masami; Yonekawa, Hiromichi; Nakada, Kazuto; Honma, Yoshio; Hayashi, Jun-Ichi

    2005-01-01

    Recent studies showed high frequencies of homoplasmic mtDNA mutations in various human tumor types, suggesting that the mutated mtDNA haplotypes somehow contribute to expression of tumor phenotypes. We directly addressed this issue by isolating mouse mtDNA-less (ρ 0 ) cells for complete mtDNA replacement between normal cells and their carcinogen-induced transformants, and examined the effect of the mtDNA replacement on expression of tumorigenicity, a phenotype forming tumors in nude mice. The results showed that genome chimera cells carrying nuclear DNA from tumor cells and mtDNA from normal cells expressed tumorigenicity, whereas those carrying nuclear DNA from normal cells and mtDNA from tumor cells did not. These observations provided direct evidence that nuclear DNA, but not mtDNA, is responsible for carcinogen-induced malignant transformation, although it remains possible that mtDNA mutations and resultant respiration defects may influence the degree of malignancy, such as invasive or metastatic properties

  16. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  17. mtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPRmt).

    Science.gov (United States)

    Kenny, Timothy C; Germain, Doris

    2017-01-01

    While several studies have confirmed a link between mitochondrial DNA (mtDNA) mutations and cancer cell metastasis, much debate remains regarding the nature of the alternations in mtDNA leading to this effect. Meanwhile, the mitochondrial unfolded protein response (UPR mt ) has gained much attention in recent years, with most studies of this pathway focusing on its role in aging. However, the UPR mt has also been studied in the context of cancer. More recent work suggests that rather than a single mutation or alternation, specific combinatorial mtDNA landscapes able to activate the UPR mt may be those that are selected by metastatic cells, while mtDNA landscapes unable to activate the UPR mt do not. This review aims at offering an overview of the confusing literature on mtDNA mutations and metastasis and the more recent work on the UPR mt in this setting.

  18. An economical mtDNA SNP assay detecting different mitochondrial haplogroups in identical HVR 1 samples of Caucasian ancestry.

    Science.gov (United States)

    Köhnemann, Stephan; Hohoff, Carsten; Pfeiffer, Heidi

    2009-09-01

    We had sequenced 329 Caucasian samples in Hypervariable Region 1 (HVR 1) and found that they belong to eleven different mitochondrial DNA (mtDNA) haplotypes. The sample set was further analysed by an mtDNA assay examining 32 single nucleotide polymorphisms (SNPs) for haplogroup discrimination. In a validation study on 160 samples of different origin it was shown that these SNPs were able to discriminate between the evolved superhaplogroups worldwide (L, M and N) and between the nine most common Caucasian haplogroups (H, I, J, K, T, U, V, W and X). The 32 mtDNA SNPs comprised 42 different SNP haplotypes instead of only eleven haplotypes after HVR 1 sequencing. The assay provided stable results in a range of 5ng genomic DNA down to virtually no genomic DNA per reaction. It was possible to detect samples of African, Asian and Eurasian ancestry, respectively. The 32 mtDNA SNP assay is a helpful adjunct to further distinguish between identical HVR 1 sequences of Caucasian origin. Our results suggest that haplogroup prediction using HVR 1 sequencing provides instable results. The use of coding region SNPs for haplogroup assignment is more suited than using HVR 1 haplotypes.

  19. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    Science.gov (United States)

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  20. Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance

    Directory of Open Access Journals (Sweden)

    Keeney Paula M

    2009-09-01

    Full Text Available Abstract Background Sporadic Parkinson's disease (sPD is a nervous system-wide disease that presents with a bradykinetic movement disorder and is frequently complicated by depression and cognitive impairment. sPD likely has multiple interacting causes that include increased oxidative stress damage to mitochondrial components and reduced mitochondrial bioenergetic capacity. We analyzed mitochondria from postmortem sPD and CTL brains for evidence of oxidative damage to mitochondrial DNA (mtDNA, heteroplasmic mtDNA point mutations and levels of electron transport chain proteins. We sought to determine if sPD brains possess any mtDNA genotype-respiratory phenotype relationships. Results Treatment of sPD brain mtDNA with the mitochondrial base-excision repair enzyme 8-oxyguanosine glycosylase-1 (hOGG1 inhibited, in an age-dependent manner, qPCR amplification of overlapping ~2 kbase products; amplification of CTL brain mtDNA showed moderate sensitivity to hOGG1 not dependent on donor age. hOGG1 mRNA expression was not different between sPD and CTL brains. Heteroplasmy analysis of brain mtDNA using Surveyor nuclease® showed asymmetric distributions and levels of heteroplasmic mutations across mtDNA but no patterns that statistically distinguished sPD from CTL. sPD brain mitochondria displayed reductions of nine respirasome proteins (respiratory complexes I-V. Reduced levels of sPD brain mitochondrial complex II, III and V, but not complex I or IV proteins, correlated closely with rates of NADH-driven electron flow. mtDNA levels and PGC-1α expression did not differ between sPD and CTL brains. Conclusion PD brain mitochondria have reduced mitochondrial respiratory protein levels in complexes I-V, implying a generalized defect in respirasome assembly. These deficiencies do not appear to arise from altered point mutational burden in mtDNA or reduction of nuclear signaling for mitochondrial biogenesis, implying downstream etiologies. The origin of age

  1. Mitochondrial DNA copy number threshold in mtDNA depletion myopathy.

    Science.gov (United States)

    Durham, S E; Bonilla, E; Samuels, D C; DiMauro, S; Chinnery, P F

    2005-08-09

    The authors measured the absolute amount of mitochondrial DNA (mtDNA) within single muscle fibers from two patients with thymidine kinase 2 (TK2) deficiency and two healthy controls. TK2 deficient fibers containing more than 0.01 mtDNA/microm3 had residual cytochrome c oxidase (COX) activity. This defines the minimum amount of wild-type mtDNA molecules required to maintain COX activity in skeletal muscle and provides an explanation for the mosaic histochemical pattern seen in patients with mtDNA depletion syndrome.

  2. Primary quantitative analysis of the mtDNA4977bp deletion induced by lonizing radiation in human peripheral blood u-sing real-time PCR

    International Nuclear Information System (INIS)

    Duan Zhikai; Liu Jiangong; Guo Wanlong; Zhang Shuxian

    2011-01-01

    Objective: To observe the influence of mtDNA4977bp deletion induced by different dose of γ ray in human peripheral blood in order to explore the feasibility of mtDNA4977bp deletion as biodosimeter. Methods: Human peripheral blood samples were collected from three healthy donors and irradiated by γ ray, MtDNA4977bp deletion was detected by real-time PCR. Results: It indicated that that from the range of 0 ∼ 8 Gy, the relationship between mtDNA4977bp deletion and irradiation dose represents certain curvilinear correlation (Y=1.2693+1.0660X+0.0198X 2 ). Conclusion: We find that γ ray has influence on the mtDNA4977bp deletion, so it may be an important biodosmeter in future. (authors)

  3. Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction

    Science.gov (United States)

    Furda, Amy M.; Marrangoni, Adele M.; Lokshin, Anna; Van Houten, Bennett

    2013-01-01

    Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H2O2) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60 min treatment with H2O2 causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60 min treatment with 2 mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction. PMID:22766155

  4. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.

    Science.gov (United States)

    Loutre, Romuald; Heckel, Anne-Marie; Jeandard, Damien; Tarassov, Ivan; Entelis, Nina

    2018-01-01

    Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion

  5. mtDNA sequence diversity of Hazara ethnic group from Pakistan.

    Science.gov (United States)

    Rakha, Allah; Fatima; Peng, Min-Sheng; Adan, Atif; Bi, Rui; Yasmin, Memona; Yao, Yong-Gang

    2017-09-01

    The present study was undertaken to investigate mitochondrial DNA (mtDNA) control region sequences of Hazaras from Pakistan, so as to generate mtDNA reference database for forensic casework in Pakistan and to analyze phylogenetic relationship of this particular ethnic group with geographically proximal populations. Complete mtDNA control region (nt 16024-576) sequences were generated through Sanger Sequencing for 319 Hazara individuals from Quetta, Baluchistan. The population sample set showed a total of 189 distinct haplotypes, belonging mainly to West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) haplogroups. Compared with other populations from Pakistan, the Hazara population had a relatively high haplotype diversity (0.9945) and a lower random match probability (0.0085). The dataset has been incorporated into EMPOP database under accession number EMP00680. The data herein comprises the largest, and likely most thoroughly examined, control region mtDNA dataset from Hazaras of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    Science.gov (United States)

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  7. Evidence of animal mtDNA recombination between divergent populations of the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Hoolahan, Angelique H; Blok, Vivian C; Gibson, Tracey; Dowton, Mark

    2012-03-01

    Recombination is typically assumed to be absent in animal mitochondrial genomes (mtDNA). However, the maternal mode of inheritance means that recombinant products are indistinguishable from their progenitor molecules. The majority of studies of mtDNA recombination assess past recombination events, where patterns of recombination are inferred by comparing the mtDNA of different individuals. Few studies assess contemporary mtDNA recombination, where recombinant molecules are observed as direct mosaics of known progenitor molecules. Here we use the potato cyst nematode, Globodera pallida, to investigate past and contemporary recombination. Past recombination was assessed within and between populations of G. pallida, and contemporary recombination was assessed in the progeny of experimental crosses of these populations. Breeding of genetically divergent organisms may cause paternal mtDNA leakage, resulting in heteroplasmy and facilitating the detection of recombination. To assess contemporary recombination we looked for evidence of recombination between the mtDNA of the parental populations within the mtDNA of progeny. Past recombination was detected between a South American population and several UK populations of G. pallida, as well as between two South American populations. This suggests that these populations may have interbred, paternal mtDNA leakage occurred, and the mtDNA of these populations subsequently recombined. This evidence challenges two dogmas of animal mtDNA evolution; no recombination and maternal inheritance. No contemporary recombination between the parental populations was detected in the progeny of the experimental crosses. This supports current arguments that mtDNA recombination events are rare. More sensitive detection methods may be required to adequately assess contemporary mtDNA recombination in animals.

  8. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  9. Evolutionary analyses of entire genomes do not support the association of mtDNA mutations with Ras/MAPK pathway syndromes.

    Directory of Open Access Journals (Sweden)

    Alberto Gómez-Carballa

    Full Text Available BACKGROUND: There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS and related disorders (such as LEOPARD, neurofibromatosis type 1, although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM, which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45, most of them classified as NS patients (n = 42. METHODS/PRINCIPAL FINDINGS: The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg patterns of a typical Iberian dataset (including hgs H, T, J, and U. Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5 are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. CONCLUSIONS/SIGNIFICANCE: As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS.

  10. Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    Science.gov (United States)

    Cerezo, María; Balboa, Emilia; Heredia, Claudia; Castro-Feijóo, Lidia; Rica, Itxaso; Barreiro, Jesús; Eirís, Jesús; Cabanas, Paloma; Martínez-Soto, Isabel; Fernández-Toral, Joaquín; Castro-Gago, Manuel; Pombo, Manuel; Carracedo, Ángel; Barros, Francisco

    2011-01-01

    Background There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). Methods/Principal Findings The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. Conclusions/Significance As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS. PMID:21526175

  11. No evidence of Neandertal mtDNA contribution to early modern humans.

    Directory of Open Access Journals (Sweden)

    David Serre

    2004-03-01

    Full Text Available The retrieval of mitochondrial DNA (mtDNA sequences from four Neandertal fossils from Germany, Russia, and Croatia has demonstrated that these individuals carried closely related mtDNAs that are not found among current humans. However, these results do not definitively resolve the question of a possible Neandertal contribution to the gene pool of modern humans since such a contribution might have been erased by genetic drift or by the continuous influx of modern human DNA into the Neandertal gene pool. A further concern is that if some Neandertals carried mtDNA sequences similar to contemporaneous humans, such sequences may be erroneously regarded as modern contaminations when retrieved from fossils. Here we address these issues by the analysis of 24 Neandertal and 40 early modern human remains. The biomolecular preservation of four Neandertals and of five early modern humans was good enough to suggest the preservation of DNA. All four Neandertals yielded mtDNA sequences similar to those previously determined from Neandertal individuals, whereas none of the five early modern humans contained such mtDNA sequences. In combination with current mtDNA data, this excludes any large genetic contribution by Neandertals to early modern humans, but does not rule out the possibility of a smaller contribution.

  12. The amount and integrity of mtDNA in maize decline with development.

    Science.gov (United States)

    Oldenburg, Delene J; Kumar, Rachana A; Bendich, Arnold J

    2013-02-01

    In maize and other grasses there is a developmental gradient from the meristematic cells at the base of the stalk to the differentiated cells at the leaf tip. This gradient presents an opportunity to investigate changes in mitochondrial DNA (mtDNA) that accompany growth under light and dark conditions, as done previously for plastid DNA. Maize mtDNA was analyzed by DAPI-DNA staining of individual mitochondria, gel electrophoresis/blot hybridization, and real-time qPCR. Both the amount and integrity of the mtDNA were found to decline with development. There was a 20-fold decline in mtDNA copy number per cell from the embryo to the light-grown leaf blade. The amount of DNA per mitochondrial particle was greater in dark-grown leaf blade (24 copies, on average) than in the light (2 copies), with some mitochondria lacking any detectable DNA. Three factors that influence the demise of mtDNA during development are considered: (1) the decision to either repair or degrade mtDNA molecules that are damaged by the reactive oxygen species produced as byproducts of respiration; (2) the generation of ATP by photophosphorylation in chloroplasts, reducing the need for respiratory-competent mitochondria; and (3) the shift in mitochondrial function from energy-generating respiration to photorespiration during the transition from non-green to green tissue.

  13. Do mtDNA Deletions Play a Role in the Development of Nasal Polyposis?

    Directory of Open Access Journals (Sweden)

    Arzu Tatar

    2014-04-01

    Full Text Available Objective:Nasal polyposis (NP is an inflammatory disease of the nasal mucosa and paranasal sinuses. Mitochondria are the cellular organelles which produce cellular energy by Oxidative Phosphorylation (OXPHOS, and they have own inheritance material, mtDNA. mtDNA is affected by reactive oxygen samples (ROS which are produced by both OXPHOS and the inflammatory process. The aim of this study was to investigate the 4977 bp and 7400 bp deletions of mtDNA in nasal polyposis tissue, and to indicate the possible association of mtDNA deletions with NP. Methods:Thirty-three patients, aged 15 to 65 years, with nasal polyposis were selected to be assessed for mitochondrial DNA deletions. The patients with possible mtDNA mutations due to mitochondrial disease, being treated with radiotherapy, of advanced age, with a familiar history, aspirin hypersensitivity, or a history of asthma, were excluded. Polyp excision surgery was applied to the treatment of the NP, and after histopathological diagnosis 1x1 cm of polyp tissue samples were used to isolate mtDNA. The 4977 bp and 7400 bp deletion regions, and two control regions of mtDNA were assessed by using four pairs of primers. DNA extractions from the NP tissues and peripheral blood samples of the patients were made, and then Polymerase Chain Reactions (PCR were made. PCR products were separated in 2% agarose gel.Results:No patient had either the 4977 bp deletion or the 7400 bp deletion in their NP tissue, and neither were these deletions evident in their peripheral blood. Two control sequences, one of them from a non-deleted region, and the other from a possible deletion region, were detected in the NP tissues and peripheral blood of all the patients.Conclusions:We had anticipated that some mtDNA deletion might have occurred in NP tissue due to the increased ROS levels caused by chronic inflammation, but we did not detect any deletion. Probably, the duration of inflammation in NP is insufficient to form mtDNA

  14. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    Science.gov (United States)

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  15. Estimates of Continental Ancestry Vary Widely among Individuals with the Same mtDNA Haplogroup

    Science.gov (United States)

    Emery, Leslie S.; Magnaye, Kevin M.; Bigham, Abigail W.; Akey, Joshua M.; Bamshad, Michael J.

    2015-01-01

    The association between a geographical region and an mtDNA haplogroup(s) has provided the basis for using mtDNA haplogroups to infer an individual’s place of origin and genetic ancestry. Although it is well known that ancestry inferences using mtDNA haplogroups and those using genome-wide markers are frequently discrepant, little empirical information exists on the magnitude and scope of such discrepancies between multiple mtDNA haplogroups and worldwide populations. We compared genetic-ancestry inferences made by mtDNA-haplogroup membership to those made by autosomal SNPs in ∼940 samples of the Human Genome Diversity Panel and recently admixed populations from the 1000 Genomes Project. Continental-ancestry proportions often varied widely among individuals sharing the same mtDNA haplogroup. For only half of mtDNA haplogroups did the highest average continental-ancestry proportion match the highest continental-ancestry proportion of a majority of individuals with that haplogroup. Prediction of an individual’s mtDNA haplogroup from his or her continental-ancestry proportions was often incorrect. Collectively, these results indicate that for most individuals in the worldwide populations sampled, mtDNA-haplogroup membership provides limited information about either continental ancestry or continental region of origin. PMID:25620206

  16. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2006-03-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin, by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea. Results The mtDNA surveyed (630 bp of cytochrome oxidase subunit I was invariant among individuals sampled from 18 populations spanning 3000 km of the range of B. elegans, despite high levels of variation and population subdivision for allozymes over these same populations. The synonymous substitution rate between B. elegans and T. coccinea (0.05%/site/106 years is similar to that in most plants, but 50–100 times lower than rates typical for most animals. In addition, while substitutions to mtDNA in most animals exhibit a strong bias toward transitions, mtDNA from these corals does not. Conclusion Slow rates of mitochondrial nucleotide substitution result in low levels of intraspecific mtDNA variation in corals, even when nuclear loci vary. Slow mtDNA evolution appears to be the basal condition among eukaryotes. mtDNA substitution rates switch from slow to fast abruptly and unidirectionally. This switch may stem from the loss of just one or a few mitochondrion-specific DNA repair or replication genes.

  17. Clustering of Caucasian Leber hereditary optic neuropathy patients containing the 11778 or 14484 mutations on an mtDNA lineage

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.D.; Sun, F.; Wallace, D.C. [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1997-02-01

    Leber hereditary optic neuropathy (LHON) is a type of blindness caused by mtDNA mutations. Three LHON mtDNA mutations at nucleotide positions 3460, 11778, and 14484 are specific for LHON and account for 90% of worldwide cases and are thus designated as {open_quotes}primary{close_quotes} LHON mutations. Fifteen other {open_quotes}secondary{close_quotes} LHON mtDNA mutations have been identified, but their pathogenicity is unclear. mtDNA haplotype and phylogenetic analysis of the primary LHON mutations in North American Caucasian patients and controls has shown that, unlike the 3460 and 11778 mutations, which are distributed throughout the European-derived (Caucasian) mtDNA phylogeny, patients containing the 14484 mutation tended to be associated with European mtDNA haplotype J. To investigate this apparent clustering, we performed {chi}{sup 2}-based statistical analyses to compare the distribution of LHON patients on the Caucasian phylogenetic tree. Our results indicate that, unlike the 3460 and 11778 mutations, the 14484 mutation was not distributed on the phylogeny in proportion to the frequencies of the major Caucasian mtDNA haplogroups found in North America. The 14484 mutation was next shown to occur on the haplogroup J background more frequently that expected, consistent with the observation that {approximately}75% of worldwide 14484-positive LHON patients occur in association with haplogroup J. The 11778 mutation also exhibited a moderate clustering on haplogroup J. These observations were supported by statistical analysis using all available mutation frequencies reported in the literature. This paper thus illustrates the potential importance of genetic background in certain mtDNA-based diseases, speculates on a pathogenic role for a subset of LHON secondary mutations and their interaction with primary mutations, and provides support for a polygenic model for LHON expression in some cases. 18 refs., 3 tabs.

  18. Reduced Mtdna Diversity in the Ngobe Amerinds of Panama

    Science.gov (United States)

    Kolman, C. J.; Bermingham, E.; Cooke, R.; Ward, R. H.; Arias, T. D.; Guionneau-Sinclair, F.

    1995-01-01

    Mitochondrial DNA (mtDNA) haplotype diversity was determined for 46 Ngobe Amerinds sampled widely across their geographic range in western Panama. The Ngobe data were compared with mtDNA control region I sequences from two additional Amerind groups located at the northern and southern extremes of Amerind distribution, the Nuu-Chah-Nulth of the Pacific Northwest and the Chilean Mapuche and from one Na-Dene group, the Haida of the Pacific Northwest. The Ngobe exhibit the lowest mtDNA control region sequence diversity yet reported for an Amerind group. Moreover, they carry only two of the four Amerind founding lineages first described by Wallace and coworkers. We posit that the Ngobe passed through a population bottleneck caused by ethnogenesis from a small founding population and/or European conquest and colonization. Dating of the Ngobe population expansion using the HARPENDING et al. approach to the analysis of pairwise genetic differences indicates a Ngobe expansion at roughly 6800 years before present (range: 1850-14,000 years before present), a date more consistent with a bottleneck at Chibcha ethnogenesis than a conquest-based event. PMID:7635293

  19. Characterization of mtDNA haplogroups in 14 Mexican indigenous populations.

    Science.gov (United States)

    Peñaloza-Espinosa, Rosenda I; Arenas-Aranda, Diego; Cerda-Flores, Ricardo M; Buentello-Malo, Leonor; González-Valencia, Gerardo; Torres, Javier; Alvarez, Berenice; Mendoza, Irma; Flores, Mario; Sandoval, Lucila; Loeza, Francisco; Ramos, Irma; Muñoz, Leopoldo; Salamanca, Fabio

    2007-06-01

    In this descriptive study we investigated the genetic structure of 513 Mexican indigenous subjects grouped in 14 populations (Mixteca-Alta, Mixteca-Baja, Otomi, Purépecha, Tzeltal, Tarahumara, Huichol, Nahua-Atocpan, Nahua-Xochimilco, Nahua-Zitlala, Nahua-Chilacachapa, Nahua-Ixhuatlancillo, Nahua-Necoxtla, and Nahua-Coyolillo) based on mtDNA haplogroups. These communities are geographically and culturally isolated; parents and grandparents were born in the community. Our data show that 98.6% of the mtDNA was distributed in haplogroups A1, A2, B1, B2, C1, C2, D1, and D2. Haplotype X6 was present in the Tarahumara (1/53) and Huichol (3/15), and haplotype L was present in the Nahua-Coyolillo (3/38). The first two principal components accounted for 95.9% of the total variation in the sample. The mtDNA haplogroup frequencies in the Purépecha and Zitlala were intermediate to cluster 1 (Otomi, Nahua-Ixhuatlancillo, Nahua-Xochimilco, Mixteca-Baja, and Tzeltal) and cluster 2 (Nahua-Necoxtla, Nahua-Atocpan, and Nahua-Chilacachapa). The Huichol, Tarahumara, Mixteca-Alta, and Nahua-Coyolillo were separated from the rest of the populations. According to these findings, the distribution of mtDNA haplogroups found in Mexican indigenous groups is similar to other Amerindian haplogroups, except for the African haplogroup found in one population.

  20. DNA methyltransferase 1 mutations and mitochondrial pathology: is mtDNA methylated?

    Directory of Open Access Journals (Sweden)

    Alessandra eMaresca

    2015-03-01

    Full Text Available Autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5-methyltransferase 1. DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is

  1. mtDNA mutation C1494T, haplogroup A, and hearing loss in Chinese

    International Nuclear Information System (INIS)

    Wang Chengye; Kong Qingpeng; Yao Yonggang; Zhang Yaping

    2006-01-01

    Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To test this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL

  2. Alterations in mtDNA, gastric carcinogenesis and early diagnosis.

    Science.gov (United States)

    Rodrigues-Antunes, S; Borges, B N

    2018-05-26

    Gastric cancer remains one of the most prevalent cancers in the world. Due to this, efforts are being made to improve the diagnosis of this neoplasm and the search for molecular markers that may be involved in its genesis. Within this perspective, the mitochondrial DNA is considered as a potential candidate, since it has several well documented changes and is readily accessible. However, numerous alterations have been reported in mtDNA, not facilitating the visualization of which alterations and molecular markers are truly involved with gastric carcinogenesis. This review presents a compilation of the main known changes relating mtDNA to gastric cancer and their clinical significance.

  3. Multiplexed SNP Typing of Ancient DNA Clarifies the Origin of Andaman mtDNA Haplogroups amongst South Asian Tribal Populations

    Science.gov (United States)

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J.

    2006-01-01

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∼30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity. PMID:17218991

  4. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    Science.gov (United States)

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  5. The Validity of Attribute-Importance Measurement: A Review

    NARCIS (Netherlands)

    Ittersum, van K.; Pennings, J.M.E.; Wansink, B.; Trijp, van J.C.M.

    2007-01-01

    A critical review of the literature demonstrates a lack of validity among the ten most common methods for measuring the importance of attributes in behavioral sciences. The authors argue that one of the key determinants of this lack of validity is the multi-dimensionality of attribute importance.

  6. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Energy Technology Data Exchange (ETDEWEB)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček, Tomáš; Pajuelo Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-07-01

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent TFAM

  7. mtDNA point and length heteroplasmy in high- and low radiation areas of Kerala

    International Nuclear Information System (INIS)

    Forster, L.; Forster, P.; Gurney, S.M.; Spencer, M.; Huang, C.; Röhl, A.; Brinkmann, B.

    2010-01-01

    A coastal peninsula in Kerala (India) contains the world's highest level of natural radioactivity in a densely populated area, offering an opportunity to characterize radiation-associated DNA mutations. Here, we focus on mitochondrial DNA (mtDNA) mutations, which are passed exclusively from the mother to her children. To analyse point mutations, we sampled 248 pedigrees (988 individuals) in the high-radiation peninsula and in nearby low-radiation islands as a control population. Then, in an extended sample of 1,172 mtDNA sequences (containing some non-Indians for comparison), we also analysed length mutations, which in mtDNA can lead to the phenomenon of length heteroplasmy, i.e. the existence of different DNA types in the same cell. We wished to find out how fast mtDNA mutates between generations, and whether the mutation rate is increased in radioactive conditions compared to the low-irradiation sample

  8. Mitochondrial DNA (mtDNA haplogroups in 1526 unrelated individuals from 11 Departments of Colombia

    Directory of Open Access Journals (Sweden)

    Juan J. Yunis

    2013-01-01

    Full Text Available The frequencies of four mitochondrial Native American DNA haplogroups were determined in 1526 unrelated individuals from 11 Departments of Colombia and compared to the frequencies previously obtained for Amerindian and Afro-Colombian populations. Amerindian mtDNA haplogroups ranged from 74% to 97%. The lowest frequencies were found in Departments on the Caribbean coast and in the Pacific region, where the frequency of Afro-Colombians is higher, while the highest mtDNA Amerindian haplogroup frequencies were found in Departments that historically have a strong Amerindian heritage. Interestingly, all four mtDNA haplogroups were found in all Departments, in contrast to the complete absence of haplogroup D and high frequencies of haplogroup A in Amerindian populations in the Caribbean region of Colombia. Our results indicate that all four Native American mtDNA haplogroups were widely distributed in Colombia at the time of the Spanish conquest.

  9. A defect in the thymidine kinase 2 gene causing isolated mitochondrial myopathy without mtDNA depletion.

    Science.gov (United States)

    Leshinsky-Silver, E; Michelson, M; Cohen, S; Ginsberg, M; Sadeh, M; Barash, V; Lerman-Sagie, T; Lev, D

    2008-07-01

    Isolated mitochondrial myopathies (IMM) are either due to primary defects in mtDNA, in nuclear genes that control mtDNA abundance and structure such as thymidine kinase 2 (TK2), or due to CoQ deficiency. Defects in the TK2 gene have been found to be associated with mtDNA depletion attributed to a depleted mitochondrial dNTP pool in non-dividing cells. We report an unusual case of IMM, homozygous for the H90N mutation in the TK2 gene but unlike other cases with the same mutation, does not demonstrate mtDNA depletion. The patient's clinical course is relatively mild and a muscle biopsy showed ragged red muscle fibers with a mild decrease in complexes I and an increase in complexes IV and II activities. This report extends the phenotypic expression of TK2 defects and suggests that all patients who present with an IMM even with normal quantities of mtDNA should be screened for TK2 mutations.

  10. Infantile presentation of the mtDNA A3243G tRNA(Leu (UUR)) mutation.

    NARCIS (Netherlands)

    Okhuijsen-Kroes, E.J.; Trijbels, J.M.F.; Sengers, R.C.A.; Mariman, E.C.M.; Heuvel, L.P.W.J. van den; Wendel, U.A.H.; Koch, G.; Smeitink, J.A.M.

    2001-01-01

    Mitochondrial DNA (mtDNA) disorders are clinically very heterogeneous, ranging from single organ involvement to severe multisystem disease. One of the most frequently observed mtDNA mutations is the A-to-G transition at position 3243 of the tRNA(Leu (UUR)) gene. This mutation is often related to

  11. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Directory of Open Access Journals (Sweden)

    Xiaoshan Zhou

    Full Text Available Thymidine kinase 2 (TK2 deficiency in humans causes mitochondrial DNA (mtDNA depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/- that progressively loses its mtDNA. The TK2(-/- mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/- mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/- mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/- mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/- mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  12. Thymidine kinase 2 deficiency-induced mtDNA depletion in mouse liver leads to defect β-oxidation.

    Science.gov (United States)

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Döbeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathological role of progressive mtDNA depletion in liver for the severe outcome of TK2 deficiency. We observed that a gradual depletion of mtDNA in the liver of the TK2(-/-) mice was accompanied by increasingly hypertrophic mitochondria and accumulation of fat vesicles in the liver cells. The levels of cholesterol and nonesterified fatty acids were elevated and there was accumulation of long chain acylcarnitines in plasma of the TK2(-/-) mice. In mice with hepatic mtDNA levels below 20%, the blood sugar and the ketone levels dropped. These mice also exhibited reduced mitochondrial β-oxidation due to decreased transport of long chain acylcarnitines into the mitochondria. The gradual loss of mtDNA in the liver of the TK2(-/-) mice causes impaired mitochondrial function that leads to defect β-oxidation and, as a result, insufficient production of ketone bodies and glucose. This study provides insight into the mechanism of encephalomyopathy caused by TK2 deficiency-induced mtDNA depletion that may be used to explore novel therapeutic strategies.

  13. Development and small-scale validation of a novel pigeon-associated mitochondrial DNA source tracking marker for the detection of fecal contamination in harvested rainwater.

    Science.gov (United States)

    Waso, M; Khan, S; Khan, W

    2018-02-15

    The current study was aimed at designing and validating (on a small-scale) a novel pigeon mitochondrial DNA (mtDNA) microbial source tracking (MST) marker for the detection of pigeon fecal matter in harvested rainwater. The pigeon mtDNA MST marker was designed to target the mtDNA Cytochrome b gene by employing mismatch amplification mutation assay kinetics. The pigeon marker was validated by screening 69 non-pigeon and 9 pigeon fecal samples. The host-sensitivity of the assay was determined as 1.00 while the host-specificity of the assay was 0.96. Harvested rainwater samples (n=60) were screened for the prevalence of the marker with the mtDNA Cytochrome b marker detected in 78% of the samples. Bayes' theorem was applied to calculate the conditional probability of the marker detecting true pigeon contamination and the marker subsequently displayed a 99% probability of detecting true pigeon contamination in the harvested rainwater samples. In addition, the mtDNA Cytochrome b marker displayed high concurrence frequencies versus heterotrophic bacteria (78.3%), E. coli (73.3%), total coliforms (71.1%) and fecal coliforms (66.7%). This study thus validates that targeting mtDNA for the design of source tracking markers may be a valuable tool to detect avian fecal contamination in environmental waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mitochondrial mosaics in the liver of 3 infants with mtDNA defects

    Directory of Open Access Journals (Sweden)

    Scalais Emmanuel

    2009-06-01

    Full Text Available Abstract Background In muscle cytochrome oxidase (COX negative fibers (mitochondrial mosaics have often been visualized. Methods COX activity staining of liver for light and electron microscopy, muscle stains, blue native gel electrophoresis and activity assays of respiratory chain proteins, their immunolocalisation, mitochondrial and nuclear DNA analysis. Results Three unrelated infants showed a mitochondrial mosaic in the liver after staining for COX activity, i.e. hepatocytes with strongly reactive mitochondria were found adjacent to cells with many negative, or barely reactive, mitochondria. Deficiency was most severe in the patient diagnosed with Pearson syndrome. Ragged-red fibers were absent in muscle biopsies of all patients. Enzyme biochemistry was not diagnostic in muscle, fibroblasts and lymphocytes. Blue native gel electrophoresis of liver tissue, but not of muscle, demonstrated a decreased activity of complex IV; in both muscle and liver subcomplexes of complex V were seen. Immunocytochemistry of complex IV confirmed the mosaic pattern in two livers, but not in fibroblasts. MRI of the brain revealed severe white matter cavitation in the Pearson case, but only slight cortical atrophy in the Alpers-Huttenlocher patient, and a normal image in the 3rd. MtDNA in leucocytes showed a common deletion in 50% of the mtDNA molecules of the Pearson patient. In the patient diagnosed with Alpers-Huttenlocher syndrome, mtDNA was depleted for 60% in muscle. In the 3rd patient muscular and hepatic mtDNA was depleted for more than 70%. Mutations in the nuclear encoded gene of POLG were subsequently found in both the 2nd and 3rd patients. Conclusion Histoenzymatic COX staining of a liver biopsy is fast and yields crucial data about the pathogenesis; it indicates whether mtDNA should be assayed. Each time a mitochondrial disorder is suspected and muscle data are non-diagnostic, a liver biopsy should be recommended. Mosaics are probably more frequent

  15. Canis mtDNA HV1 database: a web-based tool for collecting and surveying Canis mtDNA HV1 haplotype in public database.

    Science.gov (United States)

    Thai, Quan Ke; Chung, Dung Anh; Tran, Hoang-Dung

    2017-06-26

    Canine and wolf mitochondrial DNA haplotypes, which can be used for forensic or phylogenetic analyses, have been defined in various schemes depending on the region analyzed. In recent studies, the 582 bp fragment of the HV1 region is most commonly used. 317 different canine HV1 haplotypes have been reported in the rapidly growing public database GenBank. These reported haplotypes contain several inconsistencies in their haplotype information. To overcome this issue, we have developed a Canis mtDNA HV1 database. This database collects data on the HV1 582 bp region in dog mitochondrial DNA from the GenBank to screen and correct the inconsistencies. It also supports users in detection of new novel mutation profiles and assignment of new haplotypes. The Canis mtDNA HV1 database (CHD) contains 5567 nucleotide entries originating from 15 subspecies in the species Canis lupus. Of these entries, 3646 were haplotypes and grouped into 804 distinct sequences. 319 sequences were recognized as previously assigned haplotypes, while the remaining 485 sequences had new mutation profiles and were marked as new haplotype candidates awaiting further analysis for haplotype assignment. Of the 3646 nucleotide entries, only 414 were annotated with correct haplotype information, while 3232 had insufficient or lacked haplotype information and were corrected or modified before storing in the CHD. The CHD can be accessed at http://chd.vnbiology.com . It provides sequences, haplotype information, and a web-based tool for mtDNA HV1 haplotyping. The CHD is updated monthly and supplies all data for download. The Canis mtDNA HV1 database contains information about canine mitochondrial DNA HV1 sequences with reconciled annotation. It serves as a tool for detection of inconsistencies in GenBank and helps identifying new HV1 haplotypes. Thus, it supports the scientific community in naming new HV1 haplotypes and to reconcile existing annotation of HV1 582 bp sequences.

  16. Identification of West Eurasian mitochondrial haplogroups by mtDNA SNP screening: results of the 2006-2007 EDNAP collaborative exercise

    DEFF Research Database (Denmark)

    Parson, Walther; Fendt, Liane; Ballard, David

    2008-01-01

    no previous experience with the technology and/or mtDNA analysis. The results of this collaborative exercise stimulate the expansion of screening methods in forensic laboratories to increase efficiency and performance of mtDNA typing, and thus demonstrates that mtDNA SNP typing is a powerful tool for forensic......The European DNA Profiling (EDNAP) Group performed a collaborative exercise on a mitochondrial (mt) DNA screening assay that targeted 16 nucleotide positions in the coding region and allowed for the discrimination of major west Eurasian mtDNA haplogroups. The purpose of the exercise was to evaluate...

  17. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    Science.gov (United States)

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  18. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice

    Science.gov (United States)

    Safdar, Adeel; Bourgeois, Jacqueline M.; Ogborn, Daniel I.; Little, Jonathan P.; Hettinga, Bart P.; Akhtar, Mahmood; Thompson, James E.; Melov, Simon; Mocellin, Nicholas J.; Kujoth, Gregory C.; Prolla, Tomas A.; Tarnopolsky, Mark A.

    2011-01-01

    A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities. PMID:21368114

  19. Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest

    Directory of Open Access Journals (Sweden)

    Cook James M

    2009-03-01

    Full Text Available Abstract Background Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities. Results The mtDNA phylogeny of 95 individuals sampled from 10 countries on four continents revealed two major clades. One contained only Wolbachia-infected individuals from Malaysia and Kenya, while the other contained only uninfected individuals, from all countries including Malaysia and Kenya. Within the uninfected group was a further clade containing all individuals from Australasia and displaying very limited sequence variation. In contrast, a biparental nuclear gene phylogeny did not have infected and uninfected clades, supporting the notion that maternally-inherited Wolbachia are responsible for the mtDNA pattern. Only about 5% (15/306 of our global sample of individuals was infected with the plutWB1 isolate and even within infected local populations, many insects were uninfected. Comparisons of infected and uninfected isofemale lines revealed that plutWB1 is associated with sex ratio distortion. Uninfected lines have a 1:1 sex ratio, while infected ones show a 2:1 female bias. Conclusion The main correlate of mtDNA variation in P. xylostella is presence or absence of the plutWB1 infection. This is associated with substantial sex ratio distortion and the underlying mechanisms deserve further study. In contrast, geographic origin is a poor predictor of moth mtDNA sequences, reflecting human activity in moving the insects around the globe. The exception is a clade of Australasian individuals, which may

  20. MtDNA genomes reveal a relaxation of selective constraints in low-BMI individuals in a Uyghur population.

    Science.gov (United States)

    Zheng, Hong-Xiang; Li, Lei; Jiang, Xiao-Yan; Yan, Shi; Qin, Zhendong; Wang, Xiaofeng; Jin, Li

    2017-10-01

    Considerable attention has been focused on the effect of deleterious mutations caused by the recent relaxation of selective constraints on human health, including the prevalence of obesity, which might represent an adaptive response of energy-conserving metabolism under the conditions of modern society. Mitochondrial DNA (mtDNA) encoding 13 core subunits of oxidative phosphorylation plays an important role in metabolism. Therefore, we hypothesized that a relaxation of selection constraints on mtDNA and an increase in the proportion of deleterious mutations have played a role in obesity prevalence. In this study, we collected and sequenced the mtDNA genomes of 722 Uyghurs, a typical population with a high prevalence of obesity. We identified the variants that occurred in the Uyghur population for each sample and found that the number of nonsynonymous mutations carried by Uyghur individuals declined with elevation of their BMI (P = 0.015). We further calculated the nonsynonymous and synonymous ratio (N/S) of the high-BMI and low-BMI haplogroups, and the results showed that a significantly higher N/S occurred in the whole mtDNA genomes of the low-BMI haplogroups (0.64) than in that of the high-BMI haplogroups (0.35, P = 0.030) and ancestor haplotypes (0.41, P = 0.032); these findings indicated that low-BMI individuals showed a recent relaxation of selective constraints. In addition, we investigated six clinical characteristics and found that fasting plasma glucose might be correlated with the N/S and selective pressures. We hypothesized that a higher proportion of deleterious mutations led to mild mitochondrial dysfunction, which helps to drive glucose consumption and thereby prevents obesity. Our results provide new insights into the relationship between obesity predisposition and mitochondrial genome evolution.

  1. MtDNA T4216C variation in multiple sclerosis

    DEFF Research Database (Denmark)

    Andalib, Sasan; Emamhadi, Mohammadreza; Yousefzadeh-Chabok, Shahrokh

    2016-01-01

    MtDNA T4216C variation has frequently been investigated in Multiple Sclerosis (MS) patients; nonetheless, controversy has existed about the evidence of association of this variation with susceptibility to MS. The present systematic review and meta-analysis converge the results of the preceding pu...

  2. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    Science.gov (United States)

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  3. mtDNA copy number in oocytes of different sizes from individual pre- and post-pubertal pigs

    DEFF Research Database (Denmark)

    Pedersen, Hanne Skovsgaard; Løvendahl, Peter; Larsen, Knud Erik

    2014-01-01

    from ovaries of 10 pre- and 10 post-pubertal pigs. Cumulus cells were removed and the oocytes were measured (inside-ZP-diameter). Oocytes were transferred to DNAase-free tubes, snap-frozen, and stored at –80°C. The genes ND1 and COX1 were used to determine the mtDNA copy number. Plasmid preparations...... Reproduction 131, 233–245). However, the correlation between size and mtDNA copy number in single oocytes has not been determined. This study describes the relation between oocytes of defined diameters from individual pre- and postpubertal pigs and mtDNA copy number. Cumulus-oocyte complexes were aspirated...

  4. MtDNA variation in the Altai-Kizhi population of southern Siberia: a synthesis of genetic variation.

    Science.gov (United States)

    Phillips-Krawczak, Christine; Devor, Eric; Zlojutro, Mark; Moffat-Wilson, Kristin; Crawford, Michael H

    2006-08-01

    The native peoples of Gorno Altai in southern Siberia represent a genetically diverse population and have been of great interest to anthropological genetics. In particular, the southern Altaian population is argued to be the best candidate for the New World ancestral population. In this study we sampled Altai-Kizhi from the southern Altaian village of Mendur-Sokkon, analyzed mtDNA RFLP markers and HVS-I sequences, and compared the results to other published mtDNA data from Derenko et al. (2003) and Shields et al. (1993) encompassing the same region. Because each independent study uses different sampling techniques in characterizing gene pools, in this paper we explore the accuracy and reliability of evolutionary studies on human populations. All the major Native American haplogroups (A, B, C, and D) were identified in the Mendur-Sokkon sample, including a single individual belonging to haplogroup X. The most common mtDNA lineages are C (35.7%) and D (13.3%), which is consistent with the haplogroup profiles of neighboring Siberian groups. The Mendur-Sokkon sample exhibits depressed HVS-I diversity values and neutrality test scores, which starkly differs from the Derenko et al. (2003) data set and more closely resembles the results for neighboring south Siberian groups. Furthermore, the multidimensional scaling plot of DA genetic distances does not cluster the Altai samples, showing different genetic affinities with various Asian groups. The findings underscore the importance of sampling strategy in the reconstruction of evolutionary history at the population level.

  5. A new view on dam lines in Polish Arabian horses based on mtDNA analysis

    Directory of Open Access Journals (Sweden)

    Sell Jerzy

    2007-09-01

    Full Text Available Abstract Polish Arabian horses are one of the oldest and the most important Arab populations in the world. The Polish Arabian Stud Book and the Genealogical Charts by Skorkowski are the main sources of information on the ancestors of Polish Arabs. Both publications were viewed as credible sources of information until the 1990s when the data regarding one of the dam lines was questioned. The aim of the current study was to check the accuracy of the pedigree data of Polish dam lines using mtDNA analysis. The analyses of a 458 bp mtDNA D-loop fragment from representatives of 15 Polish Arabian dam lines revealed 14 distinct haplotypes. The results were inconsistent with pedigree data in the case of two lines. A detailed analysis of the historical sources was performed to explain these discrepancies. Our study revealed that representatives of different lines shared the same haplotypes. We also noted a genetic identity between some lines founded by Polish mares of unknown origin and lines established by desert-bred mares.

  6. SG-ADVISER mtDNA: a web server for mitochondrial DNA annotation with data from 200 samples of a healthy aging cohort.

    Science.gov (United States)

    Rueda, Manuel; Torkamani, Ali

    2017-08-18

    Whole genome and exome sequencing usually include reads containing mitochondrial DNA (mtDNA). Yet, state-of-the-art pipelines and services for human nuclear genome variant calling and annotation do not handle mitochondrial genome data appropriately. As a consequence, any researcher desiring to add mtDNA variant analysis to their investigations is forced to explore the literature for mtDNA pipelines, evaluate them, and implement their own instance of the desired tool. This task is far from trivial, and can be prohibitive for non-bioinformaticians. We have developed SG-ADVISER mtDNA, a web server to facilitate the analysis and interpretation of mtDNA genomic data coming from next generation sequencing (NGS) experiments. The server was built in the context of our SG-ADVISER framework and on top of the MtoolBox platform (Calabrese et al., Bioinformatics 30(21):3115-3117, 2014), and includes most of its functionalities (i.e., assembly of mitochondrial genomes, heteroplasmic fractions, haplogroup assignment, functional and prioritization analysis of mitochondrial variants) as well as a back-end and a front-end interface. The server has been tested with unpublished data from 200 individuals of a healthy aging cohort (Erikson et al., Cell 165(4):1002-1011, 2016) and their data is made publicly available here along with a preliminary analysis of the variants. We observed that individuals over ~90 years old carried low levels of heteroplasmic variants in their genomes. SG-ADVISER mtDNA is a fast and functional tool that allows for variant calling and annotation of human mtDNA data coming from NGS experiments. The server was built with simplicity in mind, and builds on our own experience in interpreting mtDNA variants in the context of sudden death and rare diseases. Our objective is to provide an interface for non-bioinformaticians aiming to acquire (or contrast) mtDNA annotations via MToolBox. SG-ADVISER web server is freely available to all users at https://genomics.scripps.edu/mtdna .

  7. Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders.

    Science.gov (United States)

    Lorenz, Carmen; Lesimple, Pierre; Bukowiecki, Raul; Zink, Annika; Inak, Gizem; Mlody, Barbara; Singh, Manvendra; Semtner, Marcus; Mah, Nancy; Auré, Karine; Leong, Megan; Zabiegalov, Oleksandr; Lyras, Ekaterini-Maria; Pfiffer, Vanessa; Fauler, Beatrix; Eichhorst, Jenny; Wiesner, Burkhard; Huebner, Norbert; Priller, Josef; Mielke, Thorsten; Meierhofer, David; Izsvák, Zsuzsanna; Meier, Jochen C; Bouillaud, Frédéric; Adjaye, James; Schuelke, Markus; Wanker, Erich E; Lombès, Anne; Prigione, Alessandro

    2017-05-04

    Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Human Retinal Transmitochondrial Cybrids with J or H mtDNA Haplogroups Respond Differently to Ultraviolet Radiation: Implications for Retinal Diseases

    Science.gov (United States)

    Malik, Deepika; Hsu, Tiffany; Falatoonzadeh, Payam; Cáceres-del-Carpio, Javier; Tarek, Mohamed; Chwa, Marilyn; Atilano, Shari R.; Ramirez, Claudio; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin; Kenney, M. Cristina

    2014-01-01

    Background It has been recognized that cells do not respond equally to ultraviolet (UV) radiation but it is not clear whether this is due to genetic, biochemical or structural differences of the cells. We have a novel cybrid (cytoplasmic hybrids) model that allows us to analyze the contribution of mitochondrial DNA (mtDNA) to cellular response after exposure to sub-lethal dose of UV. mtDNA can be classified into haplogroups as defined by accumulations of specific single nucleotide polymorphisms (SNPs). Recent studies have shown that J haplogroup is high risk for age-related macular degeneration while the H haplogroup is protective. This study investigates gene expression responses in J cybrids versus H cybrids after exposure to sub-lethal doses of UV-radiation. Methodology/Principal Findings Cybrids were created by fusing platelets isolated from subjects with either H (n = 3) or J (n = 3) haplogroups with mitochondria-free (Rho0) ARPE-19 cells. The H and J cybrids were cultured for 24 hours, treated with 10 mJ of UV-radiation and cultured for an additional 120 hours. Untreated and treated cybrids were analyzed for growth rates and gene expression profiles. The UV-treated and untreated J cybrids had higher growth rates compared to H cybrids. Before treatment, J cybrids showed lower expression levels for CFH, CD55, IL-33, TGF-A, EFEMP-1, RARA, BCL2L13 and BBC3. At 120 hours after UV-treatment, the J cybrids had decreased CFH, RARA and BBC3 levels but increased CD55, IL-33 and EFEMP-1 compared to UV-treated H cybrids. Conclusion/Significance In cells with identical nuclei, the cellular response to sub-lethal UV-radiation is mediated in part by the mtDNA haplogroup. This supports the hypothesis that differences in growth rates and expression levels of complement, inflammation and apoptosis genes may result from population-specific, hereditary SNP variations in mtDNA. Therefore, when analyzing UV-induced damage in tissues, the mtDNA haplogroup background may be

  9. Internucleotide correlations and nucleotide periodicity in Drosophila mtDNA: New evidence for panselective evolution

    Directory of Open Access Journals (Sweden)

    Carlos Y Valenzuela

    2010-01-01

    Full Text Available Analysis for the homogeneity of the distribution of the second base of dinucleotides in relation to the first, whose bases are separated by 0, 1, 2,... 21 nucleotide sites, was performed with the VIH-1 genome (cDNA, the Drosophila mtDNA, the Drosophila Torso gene and the human p-globin gene. These four DNA segments showed highly significant heterogeneities of base distributions that cannot be accounted for by neutral or nearly neutral evolution or by the "neighbor influence" of nucleotides on mutation rates. High correlations are found in the bases of dinucleotides separated by 0, 1 and more number of sites. A periodicity of three consecutive significance values (measured by the x²9 was found only in Drosophila mtDNA. This periodicity may be due to an unknown structure or organization of mtDNA. This non-random distribution of the two bases of dinucleotides widespread throughout these DNA segments is rather compatible with panselective evolution and generalized internucleotide co-adaptation.

  10. Mechanisms of mtDNA segregation and mitochondrial signalling in cells with the pathogenic A3243G mutation

    NARCIS (Netherlands)

    Jahangir Tafrechi, Roshan Sakineh

    2008-01-01

    Using newly developed single cell A3243G mutation load assays a novel mechanism of mtDNA segregation was identified in which the multi-copy mtDNA nucleoid takes a central position. Furthermore, likely due to low level changes in gene expression, no genes or gene sets could be identified with gene

  11. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization.

    Science.gov (United States)

    Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano

    2016-09-01

    To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Allozyme and mtDNA variation of white seabream Diplodus sargus ...

    African Journals Online (AJOL)

    These results can be explained by the chaotic genetic patchiness hypothesis. In contrast, the mtDNA data indicated genetic homogeneity among localities showing the absence of structure in white seabream populations across the Siculo-Tunisian Strait. Historical demography of this species suggests that it has undergone ...

  13. Land, language, and loci: mtDNA in Native Americans and the genetic history of Peru.

    Science.gov (United States)

    Lewis, Cecil M; Tito, Raúl Y; Lizárraga, Beatriz; Stone, Anne C

    2005-07-01

    Despite a long history of complex societies and despite extensive present-day linguistic and ethnic diversity, relatively few populations in Peru have been sampled for population genetic investigations. In order to address questions about the relationships between South American populations and about the extent of correlation between genetic distance, language, and geography in the region, mitochondrial DNA (mtDNA) hypervariable region I sequences and mtDNA haplogroup markers were examined in 33 individuals from the state of Ancash, Peru. These sequences were compared to those from 19 American Indian populations using diversity estimates, AMOVA tests, mismatch distributions, a multidimensional scaling plot, and regressions. The results show correlations between genetics, linguistics, and geographical affinities, with stronger correlations between genetics and language. Additionally, the results suggest a pattern of differential gene flow and drift in western vs. eastern South America, supporting previous mtDNA and Y chromosome investigations. (c) 2004 Wiley-Liss, Inc

  14. Deep sequencing shows that oocytes are not prone to accumulate mtDNA heteroplasmic mutations during ovarian ageing.

    Science.gov (United States)

    Boucret, L; Bris, C; Seegers, V; Goudenège, D; Desquiret-Dumas, V; Domin-Bernhard, M; Ferré-L'Hotellier, V; Bouet, P E; Descamps, P; Reynier, P; Procaccio, V; May-Panloup, P

    2017-10-01

    Does ovarian ageing increase the number of heteroplasmic mitochondrial DNA (mtDNA) point mutations in oocytes? Our results suggest that oocytes are not subject to the accumulation of mtDNA point mutations during ovarian ageing. Ageing is associated with the alteration of mtDNA integrity in various tissues. Primary oocytes, present in the ovary since embryonic life, may accumulate mtDNA mutations during the process of ovarian ageing. This was an observational study of 53 immature oocyte-cumulus complexes retrieved from 35 women undergoing IVF at the University Hospital of Angers, France, from March 2013 to March 2014. The women were classified in two groups, one including 19 women showing signs of ovarian ageing objectified by a diminished ovarian reserve (DOR), and the other, including 16 women with a normal ovarian reserve (NOR), which served as a control group. mtDNA was extracted from isolated oocytes, and from their corresponding cumulus cells (CCs) considered as a somatic cell compartment. The average mtDNA content of each sample was assessed by using a quantitative real-time PCR technique. Deep sequencing was performed using the Ion Torrent Proton for Next-Generation Sequencing. Signal processing and base calling were done by the embedded pre-processing pipeline and the variants were analyzed using an in-house workflow. The distribution of the different variants between DOR and NOR patients, on one hand, and oocyte and CCs, on the other, was analyzed with the generalized mixed linear model to take into account the cluster of cells belonging to a given mother. There were no significant differences between the numbers of mtDNA variants between the DOR and the NOR patients, either in the oocytes (P = 0.867) or in the surrounding CCs (P = 0.154). There were also no differences in terms of variants with potential functional consequences. De-novo mtDNA variants were found in 28% of the oocytes and in 66% of the CCs with the mean number of variants being

  15. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors

    International Nuclear Information System (INIS)

    Pereira, Luísa; Soares, Pedro; Máximo, Valdemar; Samuels, David C

    2012-01-01

    The presence of somatic mitochondrial DNA (mtDNA) mutations in cancer cells has been interpreted in controversial ways, ranging from random neutral accumulation of mutations, to positive selection for high pathogenicity, or conversely to purifying selection against high pathogenicity variants as occurs at the population level. Here we evaluated the predicted pathogenicity of somatic mtDNA mutations described in cancer and compare these to the distribution of variations observed in the global human population and all possible protein variations that could occur in human mtDNA. We focus on oncocytic tumors, which are clearly associated with mitochondrial dysfunction. The protein variant pathogenicity was predicted using two computational methods, MutPred and SNPs&GO. The pathogenicity score of the somatic mtDNA variants were significantly higher in oncocytic tumors compared to non-oncocytic tumors. Variations in subunits of Complex I of the electron transfer chain were significantly more common in tumors with the oncocytic phenotype, while variations in Complex V subunits were significantly more common in non-oncocytic tumors. Our results show that the somatic mtDNA mutations reported over all tumors are indistinguishable from a random selection from the set of all possible amino acid variations, and have therefore escaped the effects of purifying selection that act strongly at the population level. We show that the pathogenicity of somatic mtDNA mutations is a determining factor for the oncocytic phenotype. The opposite associations of the Complex I and Complex V variants with the oncocytic and non-oncocytic tumors implies that low mitochondrial membrane potential may play an important role in determining the oncocytic phenotype

  16. Mutations of mtDNA polymerase-γ and hyperlactataemia in the HIV ...

    African Journals Online (AJOL)

    Mutations of mtDNA polymerase-γ and hyperlactataemia in the HIV-infected Zulu population of South Africa. ... D B A Ojwach, C Aldous, P Kocheleff, B Sartorius ... of their capacity to impede human mitochondrial DNA polymerase-γ (POLG), ...

  17. mtDNA variation in caste populations of Andhra Pradesh, India.

    Science.gov (United States)

    Bamshad, M; Fraley, A E; Crawford, M H; Cann, R L; Busi, B R; Naidu, J M; Jorde, L B

    1996-02-01

    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.

  18. Dysphagia is prevalent in patients with CPEO and single, large-scale deletions in mtDNA

    DEFF Research Database (Denmark)

    Pedersen, Gitte Hedermann; Løkken, Nicoline; Dahlqvist, Julia R.

    2017-01-01

    Background  The aim of this study was to assess the frequency of subjective and objective dysphagia in patients with chronic progressive external ophthalmoplegia (CPEO) due to single, large-scale deletions (LSDs) of mitochondrial DNA (mtDNA). Methods  Sixteen patients with CPEO and single LSDs...... and single LSDs of mtDNA had a prolonged cold-water test, including one with a PEG-tube, who was unable to perform the test, and nine patients reported subjective swallowing problems (56.3%). All mitochondrial myopathy patients in the control group had a normal duration of the cold-water test.  Conclusions......  The study shows that dysphagia is a common problem in patients with CPEO and LSDs of mtDNA. Dysphagia seems to be progressive with age as abnormal swallowing occurred preferentially in persons ≥ 45 years. The study shows that increased awareness of this symptom should be given to address appropriate...

  19. Thymidine Kinase 2 Deficiency-Induced mtDNA Depletion in Mouse Liver Leads to Defect beta-Oxidation

    OpenAIRE

    Zhou, Xiaoshan; Kannisto, Kristina; Curbo, Sophie; von Dobeln, Ulrika; Hultenby, Kjell; Isetun, Sindra; Gåfvels, Mats; Karlsson, Anna

    2013-01-01

    Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy. Here, we have studied the TK2(-/-) mouse model to clarify the pathologica...

  20. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    Science.gov (United States)

    Easton, R D; Merriwether, D A; Crews, D E; Ferrell, R E

    1996-07-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.

  1. MtDNA diversity among four Portuguese autochthonous dog breeds: a fine-scale characterisation

    Directory of Open Access Journals (Sweden)

    Santa-Rita Pedro

    2005-06-01

    Full Text Available Abstract Background The picture of dog mtDNA diversity, as obtained from geographically wide samplings but from a small number of individuals per region or breed, has revealed weak geographic correlation and high degree of haplotype sharing between very distant breeds. We aimed at a more detailed picture through extensive sampling (n = 143 of four Portuguese autochthonous breeds – Castro Laboreiro Dog, Serra da Estrela Mountain Dog, Portuguese Sheepdog and Azores Cattle Dog-and comparatively reanalysing published worldwide data. Results Fifteen haplotypes belonging to four major haplogroups were found in these breeds, of which five are newly reported. The Castro Laboreiro Dog presented a 95% frequency of a new A haplotype, while all other breeds contained a diverse pool of existing lineages. The Serra da Estrela Mountain Dog, the most heterogeneous of the four Portuguese breeds, shared haplotypes with the other mainland breeds, while Azores Cattle Dog shared no haplotypes with the other Portuguese breeds. A review of mtDNA haplotypes in dogs across the world revealed that: (a breeds tend to display haplotypes belonging to different haplogroups; (b haplogroup A is present in all breeds, and even uncommon haplogroups are highly dispersed among breeds and continental areas; (c haplotype sharing between breeds of the same region is lower than between breeds of different regions and (d genetic distances between breeds do not correlate with geography. Conclusion MtDNA haplotype sharing occurred between Serra da Estrela Mountain dogs (with putative origin in the centre of Portugal and two breeds in the north and south of the country-with the Castro Laboreiro Dog (which behaves, at the mtDNA level, as a sub-sample of the Serra da Estrela Mountain Dog and the southern Portuguese Sheepdog. In contrast, the Azores Cattle Dog did not share any haplotypes with the other Portuguese breeds, but with dogs sampled in Northern Europe. This suggested that the

  2. Y-chromosome and mtDNA genetics reveal significant contrasts in affinities of modern Middle Eastern populations with European and African populations.

    Science.gov (United States)

    Badro, Danielle A; Douaihy, Bouchra; Haber, Marc; Youhanna, Sonia C; Salloum, Angélique; Ghassibe-Sabbagh, Michella; Johnsrud, Brian; Khazen, Georges; Matisoo-Smith, Elizabeth; Soria-Hernanz, David F; Wells, R Spencer; Tyler-Smith, Chris; Platt, Daniel E; Zalloua, Pierre A

    2013-01-01

    The Middle East was a funnel of human expansion out of Africa, a staging area for the Neolithic Agricultural Revolution, and the home to some of the earliest world empires. Post LGM expansions into the region and subsequent population movements created a striking genetic mosaic with distinct sex-based genetic differentiation. While prior studies have examined the mtDNA and Y-chromosome contrast in focal populations in the Middle East, none have undertaken a broad-spectrum survey including North and sub-Saharan Africa, Europe, and Middle Eastern populations. In this study 5,174 mtDNA and 4,658 Y-chromosome samples were investigated using PCA, MDS, mean-linkage clustering, AMOVA, and Fisher exact tests of F(ST)'s, R(ST)'s, and haplogroup frequencies. Geographic differentiation in affinities of Middle Eastern populations with Africa and Europe showed distinct contrasts between mtDNA and Y-chromosome data. Specifically, Lebanon's mtDNA shows a very strong association to Europe, while Yemen shows very strong affinity with Egypt and North and East Africa. Previous Y-chromosome results showed a Levantine coastal-inland contrast marked by J1 and J2, and a very strong North African component was evident throughout the Middle East. Neither of these patterns were observed in the mtDNA. While J2 has penetrated into Europe, the pattern of Y-chromosome diversity in Lebanon does not show the widespread affinities with Europe indicated by the mtDNA data. Lastly, while each population shows evidence of connections with expansions that now define the Middle East, Africa, and Europe, many of the populations in the Middle East show distinctive mtDNA and Y-haplogroup characteristics that indicate long standing settlement with relatively little impact from and movement into other populations.

  3. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    Science.gov (United States)

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji

    2018-01-01

    Background Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. Methodology We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. Conclusions We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity. PMID:29304129

  4. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    Science.gov (United States)

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji; Mannen, Hideyuki

    2018-01-01

    Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity.

  5. Defining mtDNA origins and population stratification in Rio de Janeiro.

    Science.gov (United States)

    Simão, Filipa; Ferreira, Ana Paula; de Carvalho, Elizeu Fagundes; Parson, Walther; Gusmão, Leonor

    2018-05-01

    The genetic composition of the Brazilian population was shaped by interethnic admixture between autochthonous Native Americans, Europeans settlers and African slaves. This structure, characteristic of most American populations, implies the need for large population forensic databases to capture the high diversity that is usually associated with admixed populations. In the present work, we sequenced the control region of mitochondrial DNA from 205 non-related individuals living in the Rio de Janeiro metropolitan region. Overall high haplotype diversity (0.9994 ± 0.0006) was observed, and pairwise comparisons showed a high proportion of haplotype pairs with more than one-point differences. When ignoring homopolymeric tracts, pairwise comparisons showed no differences 0.18% of the time, and differences in a single position were found with a frequency of 0.32%. A high percentage of African mtDNA was found (42%), with lineages showing a major South West origin. For the West Eurasian and Native American haplogroups (representing 32% and 26%, respectively) it was not possible to evaluate a clear geographic or linguistic affiliation. When grouping the mtDNA lineages according to their continental origin (Native American, European and African), differences were observed for the ancestry proportions estimated with autosomal ancestry-informative markers, suggesting some level of genetic substructure. The results from this study are in accordance with historical data where admixture processes are confirmed with a strong maternal contribution of African maternal ancestry and a relevant contribution of Native American maternal ancestry. Moreover, the evidence for some degree of association between mtDNA and autosomal information should be considered when combining these types of markers in forensic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Novel 12S mtDNA findings in sloths (Pilosa, Folivora and anteaters (Pilosa, Vermilingua suggest a true case of long branch attraction

    Directory of Open Access Journals (Sweden)

    Maria Claudene Barros

    2008-01-01

    Full Text Available We sequenced 12S RNA mtDNA for the majority of the extant species of sloths and anteaters and compared our results with previous data obtained by our group using 16S RNA mtDNA in the same specimens and to GenBank sequences of the extinct giant sloth Mylodon. Our results suggest that pigmy-anteaters may be a case of the long-branch attraction phenomenon and also show the large genetic difference between the Amazonian and Atlantic forest three-toed sloths, contrasting with the small differences observed between the two non-Atlantic forest forms of sloths. These results have important implications for the taxonomy of sloths and anteaters and strongly suggest the placement of pigmy anteaters in their own family (Cyclopidae and raising the taxonomic status of Bradypus torquatus to a genus.

  7. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice.

    Science.gov (United States)

    Shimizu, Akinori; Tani, Haruna; Takibuchi, Gaku; Ishikawa, Kaori; Sakurazawa, Ryota; Inoue, Takafumi; Hashimoto, Tetsuo; Nakada, Kazuto; Takenaga, Keizo; Hayashi, Jun-Ichi

    2017-11-04

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29 H (sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29 H (sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola

    Directory of Open Access Journals (Sweden)

    Beleza Sandra

    2009-04-01

    Full Text Available Abstract Background Current information about the expansion of Bantu-speaking peoples is hampered by the scarcity of genetic data from well identified populations from southern Africa. Here, we fill an important gap in the analysis of the western edge of the Bantu migrations by studying for the first time the patterns of Y-chromosome, mtDNA and lactase persistence genetic variation in four representative groups living around the Namib Desert in southwestern Angola (Ovimbundu, Ganguela, Nyaneka-Nkumbi and Kuvale. We assessed the differentiation between these populations and their levels of admixture with Khoe-San groups, and examined their relationship with other sub-Saharan populations. We further combined our dataset with previously published data on Y-chromosome and mtDNA variation to explore a general isolation with migration model and infer the demographic parameters underlying current genetic diversity in Bantu populations. Results Correspondence analysis, lineage sharing patterns and admixture estimates indicate that the gene pool from southwestern Angola is predominantly derived from West-Central Africa. The pastoralist Herero-speaking Kuvale people were additionally characterized by relatively high frequencies of Y-chromosome (12% and mtDNA (22% Khoe-San lineages, as well as by the presence of the -14010C lactase persistence mutation (6%, which likely originated in non-Bantu pastoralists from East Africa. Inferred demographic parameters show that both male and female populations underwent significant size growth after the split between the western and eastern branches of Bantu expansions occurring 4000 years ago. However, males had lower population sizes and migration rates than females throughout the Bantu dispersals. Conclusion Genetic variation in southwestern Angola essentially results from the encounter of an offshoot of West-Central Africa with autochthonous Khoisan-speaking peoples from the south. Interactions between the Bantus

  9. Complex analyses of inverted repeats in mitochondrial genomes revealed their importance and variability.

    Science.gov (United States)

    Cechová, Jana; Lýsek, Jirí; Bartas, Martin; Brázda, Václav

    2018-04-01

    The NCBI database contains mitochondrial DNA (mtDNA) genomes from numerous species. We investigated the presence and locations of inverted repeat sequences (IRs) in these mtDNA sequences, which are known to be important for regulating nuclear genomes. IRs were identified in mtDNA in all species. IR lengths and frequencies correlate with evolutionary age and the greatest variability was detected in subgroups of plants and fungi and the lowest variability in mammals. IR presence is non-random and evolutionary favoured. The frequency of IRs generally decreased with IR length, but not for IRs 24 or 30 bp long, which are 1.5 times more abundant. IRs are enriched in sequences from the replication origin, followed by D-loop, stem-loop and miscellaneous sequences, pointing to the importance of IRs in regulatory regions of mitochondrial DNA. Data were produced using Palindrome analyser, freely available on the web at http://bioinformatics.ibp.cz. vaclav@ibp.cz. Supplementary data are available at Bioinformatics online.

  10. Does aerobic exercises induce mtDNA mutation in human blood ...

    African Journals Online (AJOL)

    The aim of this study was to determine the effect of eight weeks aerobic training on mitochondrial DNA (mtDNA) mutation in human blood leucocytes. Twenty untrained healthy students (training group: n =10, age = 20.7±1.5 yrs, weight = 67.7±10 kg, BF% = 17.5±7.35 & control group: n =10, age = 21±1.3 yrs, weight ...

  11. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  12. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.

    Science.gov (United States)

    Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes

    2014-10-01

    It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.

  13. Somatic point mutations in mtDNA control region are influenced by genetic background and associated with healthy aging: a GEHA study

    DEFF Research Database (Denmark)

    Rose, Giuseppina; Romeo, Giuseppe; Dato, Serena

    2010-01-01

    and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions....

  14. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds.

    Science.gov (United States)

    Guo, H W; Li, C; Wang, X N; Li, Z J; Sun, G R; Li, G X; Liu, X J; Kang, X T; Han, R L

    2017-10-01

    1. To explore the genetic diversity of Chinese indigenous chicken breeds, a 585 bp fragment of the mitochondrial DNA (mtDNA) region was sequenced in 102 birds from the Xichuan black-bone chicken, Yunyang black-bone chicken and Lushi chicken. In addition, 30 mtDNA D-loop sequences of Silkie fowls were downloaded from NCBI. The mtDNA D-loop sequence polymorphism and maternal origin of 4 chicken breeds were analysed in this study. 2. The results showed that a total of 33 mutation sites and 28 haplotypes were detected in the 4 chicken breeds. The haplotype diversity and nucleotide diversity of these 4 native breeds were 0.916 ± 0.014 and 0.012 ± 0.002, respectively. Three clusters were formed in 4 Chinese native chickens and 12 reference breeds. Both the Xichuan black-bone chicken and Yunyang black-bone chicken were grouped into one cluster. Four haplogroups (A, B, C and E) emerged in the median-joining network in these breeds. 3. It was concluded that these 4 Chinese chicken breeds had high genetic diversity. The phylogenetic tree and median network profiles showed that Chinese native chickens and its neighbouring countries had at least two maternal origins, one from Yunnan, China and another from Southeast Asia or its surrounding area.

  15. Human aging and somatic point mutations in mtDNA: a comparative study of generational differences (grandparents and grandchildren

    Directory of Open Access Journals (Sweden)

    Anderson Nonato do Rosário Marinho

    2011-01-01

    Full Text Available The accumulation of somatic mutations in mtDNA is correlated with aging. In this work, we sought to identify somatic mutations in the HVS-1 region (D-loop of mtDNA that might be associated with aging. For this, we compared 31 grandmothers (mean age: 63 ± 2.3 years and their 62 grandchildren (mean age: 15 ± 4.1 years, the offspring of their daughters. Direct DNA sequencing showed that mutations absent in the grandchildren were detected in a presumably homoplasmic state in three grandmothers and in a heteroplasmic state in an additional 13 grandmothers; no mutations were detected in the remaining 15 grandmothers. However, cloning followed by DNA sequencing in 12 grandmothers confirmed homoplasia in only one of the three mutations previously considered to be homoplasmic and did not confirm heteroplasmy in three out of nine grandmothers found to be heteroplasmic by direct sequencing. Thus, of 12 grandmothers in whom mtDNA was analyzed by cloning, eight were heteroplasmic for mutations not detected in their grandchildren. In this study, the use of genetically related subjects allowed us to demonstrate the occurrence of age-related (> 60 years old mutations (homoplasia and heteroplasmy. It is possible that both of these situations (homoplasia and heteroplasmy were a long-term consequence of mitochondrial oxidative phosphorylation that can lead to the accumulation of mtDNA mutations throughout life.

  16. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing.

    Science.gov (United States)

    Coon, Keith D; Valla, Jon; Szelinger, Szabolics; Schneider, Lonnie E; Niedzielko, Tracy L; Brown, Kevin M; Pearson, John V; Halperin, Rebecca; Dunckley, Travis; Papassotiropoulos, Andreas; Caselli, Richard J; Reiman, Eric M; Stephan, Dietrich A

    2006-08-01

    The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and

  17. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    Science.gov (United States)

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  18. Detailed mtDNA genotypes permit a reassessment of the settlement and population structure of the Andaman Islands.

    Science.gov (United States)

    Barik, S S; Sahani, R; Prasad, B V R; Endicott, P; Metspalu, M; Sarkar, B N; Bhattacharya, S; Annapoorna, P C H; Sreenath, J; Sun, D; Sanchez, J J; Ho, S Y W; Chandrasekar, A; Rao, V R

    2008-05-01

    The population genetics of the Indian subcontinent is central to understanding early human prehistory due to its strategic location on the proposed corridor of human movement from Africa to Australia during the late Pleistocene. Previous genetic research using mtDNA has emphasized the relative isolation of the late Pleistocene colonizers, and the physically isolated Andaman Island populations of Island South-East Asia remain the source of claims supporting an early split between the populations that formed the patchy settlement pattern along the coast of the Indian Ocean. Using whole-genome sequencing, combined with multiplexed SNP typing, this study investigates the deep structure of mtDNA haplogroups M31 and M32 in India and the Andaman Islands. The identification of a so far unnoticed rare polymorphism shared between these two lineages suggests that they are actually sister groups within a single haplogroup, M31'32. The enhanced resolution of M31 allows for the inference of a more recent colonization of the Andaman Islands than previously suggested, but cannot reject the very early peopling scenario. We further demonstrate a widespread overlap of mtDNA and cultural markers between the two major language groups of the Andaman archipelago. Given the "completeness" of the genealogy based on whole genome sequences, and the multiple scenarios for the peopling of the Andaman Islands sustained by this inferred genealogy, our study hints that further mtDNA based phylogeographic studies are unlikely to unequivocally support any one of these possibilities. (c) 2008 Wiley-Liss, Inc.

  19. Circumpolar diversity and geographic differentiation of mtDNA in the critically endangered Antarctic blue whale (Balaenoptera musculus intermedia.

    Directory of Open Access Journals (Sweden)

    Angela L Sremba

    Full Text Available The Antarctic blue whale (Balaenoptera musculus intermedia was hunted to near extinction between 1904 and 1972, declining from an estimated initial abundance of more than 250,000 to fewer than 400. Here, we describe mtDNA control region diversity and geographic differentiation in the surviving population of the Antarctic blue whale, using 218 biopsy samples collected under the auspices of the International Whaling Commission (IWC during research cruises from 1990-2009. Microsatellite genotypes and mtDNA sequences identified 166 individuals among the 218 samples and documented movement of a small number of individuals, including a female that traveled at least 6,650 km or 131° longitude over four years. mtDNA sequences from the 166 individuals were aligned with published sequences from 17 additional individuals, resolving 52 unique haplotypes from a consensus length of 410 bp. From this minimum census, a rarefaction analysis predicted that only 72 haplotypes (95% CL, 64, 86 have survived in the contemporary population of Antarctic blue whales. However, haplotype diversity was relatively high (0.968±0.004, perhaps as a result of the longevity of blue whales and the relatively recent timing of the bottleneck. Despite the potential for circumpolar dispersal, we found significant differentiation in mtDNA diversity (F(ST = 0.032, p<0.005 and microsatellite alleles (F(ST = 0.005, p<0.05 among the six Antarctic Areas historically used by the IWC for management of blue whales.

  20. Somatic mtDNA mutation spectra in the aging human putamen.

    Directory of Open Access Journals (Sweden)

    Siôn L Williams

    Full Text Available The accumulation of heteroplasmic mitochondrial DNA (mtDNA deletions and single nucleotide variants (SNVs is a well-accepted facet of the biology of aging, yet comprehensive mutation spectra have not been described. To address this, we have used next generation sequencing of mtDNA-enriched libraries (Mito-Seq to investigate mtDNA mutation spectra of putamen from young and aged donors. Frequencies of the "common" deletion and other "major arc" deletions were significantly increased in the aged cohort with the fold increase in the frequency of the common deletion exceeding that of major arc deletions. SNVs also increased with age with the highest rate of accumulation in the non-coding control region which contains elements necessary for translation and replication. Examination of predicted amino acid changes revealed a skew towards pathogenic SNVs in the coding region driven by mutation bias. Levels of the pathogenic m.3243A>G tRNA mutation were also found to increase with age. Novel multimeric tandem duplications that resemble murine control region multimers and yeast ρ(- mtDNAs, were identified in both young and aged specimens. Clonal ∼50 bp deletions in the control region were found at high frequencies in aged specimens. Our results reveal the complex manner in which the mitochondrial genome alters with age and provides a foundation for studies of other tissues and disease states.

  1. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers.

    Science.gov (United States)

    Østbye, K; Bernatchez, L; Naesje, T F; Himberg, K-J M; Hindar, K

    2005-12-01

    We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.

  2. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    Science.gov (United States)

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  3. [Sequence polymorphism of mtDNA HVR Iand HVR II of Oroqen ethnic group in Inner Mongolia].

    Science.gov (United States)

    Yan, Chun-Xia; Chen, Feng; Dang, Yong-Hui; Li, Tao; Zheng, Hai-Bo; Chen, Teng; Li, Sheng-Bin

    2008-04-01

    Venous blood samples from 50 unrelated Oroqen individuals living in Inner Mongolia were collected and their mtDNA HVR I and HVR II sequences were detected by using ABI PRISM377 sequencers. The number of polymorphic loci, haplotype, haplotype frequence, average nucleotide variability and other polymorphic parameters were calculated. Based on Oroqen mtDNA sequence data obtained in our experiments and published data, genetic distance between Oroqen ethnic group and other populations were computered by Nei's measure. Phylogenetic tree was constructed by Neighbor Joining method. Comparing with Anderson sequence, 52 polymorphic loci in HVR I and 24 loci in HVR II were found in Oroqen mtDNA sequence, 38 and 27 haplotypes were defined herewith. Haplotype diversity and average nucleotide variability were 0.964+/-0.018 and 7.379 in HVR I, 0.929+/-0.019 and 2.408 in HVR II respectively. Fst and dA genetic distance between 12 populations were calculated based on HVR I sequence, and their relative coefficients were 0.993(P HVR I and HVR II in Oroqen ethnic group has some specificities compared with that of other populations. These data provide a useful tool in forensic identification, population genetic study and other research fields.

  4. Comparative mtDNA analyses of three sympatric macropodids from a conservation area on the Huon Peninsula, Papua New Guinea.

    Science.gov (United States)

    McGreevy, Thomas J; Dabek, Lisa; Husband, Thomas P

    2016-07-01

    Matschie's tree kangaroo (Dendrolagus matschiei), New Guinea pademelon (Thylogale browni), and small dorcopsis (Dorcopsulus vanheurni) are sympatric macropodid taxa, of conservation concern, that inhabit the Yopno-Urawa-Som (YUS) Conservation Area on the Huon Peninsula, Papua New Guinea. We sequenced three partial mitochondrial DNA (mtDNA) genes from the three taxa to (i) investigate network structure; and (ii) identify conservation units within the YUS Conservation Area. All three taxa displayed a similar pattern in the spatial distribution of their mtDNA haplotypes and the Urawa and Som rivers on the Huon may have acted as a barrier to maternal gene flow. Matschie's tree kangaroo and New Guinea pademelon within the YUS Conservation Area should be managed as single conservation units because mtDNA nucleotides were not fixed for a given geographic area. However, two distinct conservation units were identified for small dorcopsis from the two different mountain ranges within the YUS Conservation Area.

  5. Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans

    Directory of Open Access Journals (Sweden)

    Mastana Sarabjit

    2004-08-01

    Full Text Available Abstract Background Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia. Results Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades. Conclusions Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.

  6. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  7. The extremely divergent maternally- and paternally-transmitted mitochondrial genomes are co-expressed in somatic tissues of two freshwater mussel species with doubly uniparental inheritance of mtDNA

    Science.gov (United States)

    Breton, Sophie; Bouvet, Karim; Auclair, Gabrielle; Ghazal, Stephanie; Sietman, Bernard E.; Johnson, Nathan A.; Bettinazzi, Stefano; Dtewart, Donald T.; Guerra, Davide

    2017-01-01

    Freshwater mussel species with doubly uniparental inheritance (DUI) of mtDNA are unique because they are naturally heteroplasmic for two extremely divergent mtDNAs with ~50% amino acid differences for protein-coding genes. The paternally-transmitted mtDNA (or M mtDNA) clearly functions in sperm in these species, but it is still unknown whether it is transcribed when present in male or female soma. In the present study, we used PCR and RT-PCR to detect the presence and expression of the M mtDNA in male and female somatic and gonadal tissues of the freshwater mussel species Venustaconcha ellipsiformis and Utterbackia peninsularis (Unionidae). This is the first study demonstrating that the M mtDNA is transcribed not only in male gonads, but also in male and female soma in freshwater mussels with DUI. Because of the potentially deleterious nature of heteroplasmy, we suggest the existence of different mechanisms in DUI species to deal with this possibly harmful situation, such as silencing mechanisms for the M mtDNA at the transcriptional, post-transcriptional and/or post-translational levels. These hypotheses will necessitate additional studies in distantly-related DUI species that could possess different mechanisms of action to deal with heteroplasmy.

  8. mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency.

    Science.gov (United States)

    Saada, Ann; Shaag, Avraham; Elpeleg, Orly

    2003-05-01

    Decreased mitochondrial thymidine kinase (TK2) activity is associated with mitochondrial DNA (mtDNA) depletion and respiratory chain dysfunction and is manifested by isolated, fatal skeletal myopathy. Other tissues such as liver, brain, heart, and skin remain unaffected throughout the patients' life. In order to elucidate the mechanism of tissue specificity in the disease we have investigated the expression of the mitochondrial deoxynucleotide carrier, the mtDNA content and the activity of TK2 in mitochondria of various tissues. Our results suggest that low basal TK2 activity combined with a high requirement for mitochondrial encoded proteins in muscle predispose this tissue to the devastating effect of TK2 deficiency.

  9. Heterogeneous periodicity of drosophila mtDNA: new refutations of neutral and nearly neutral evolution

    Directory of Open Access Journals (Sweden)

    Carlos Y Valenzuela

    2011-01-01

    Full Text Available We found a consistent 3-site periodicity of the X²9 values for the heterogeneity of the distribution of the second base in relation to the first base of dinucleotides separated by 0 (contiguous, 1, 2, 3 ... 17 (K nucleotide sites in Drosophila mtDNA. Triplets of X²9 values were found where the first was over 300 and the second and third ranged between 37 and 114 (previous studies. In this study, the periodicity was significant until separation of 2011K, and a structure of deviations from randomness among dinucleotides was found. The most deviant dinucleotides were G-G, G-C and C-G for the first, second and third element of the triplet, respectively. In these three cases there were more dinucleotides observed than expected. This inter-bases correlation and periodicity may be related to the tertiary structure of circular DNA, like that of prokaryotes and mitochondria, to protect and preserve it. The mtDNA with 19.517 bp was divided into four equal segments of 4.879 bp. The fourth sub-segment presented a very low proportion of G and C, the internucleotide interaction was weaker in this sub-segment and no periodicity was found. The maintenance of this mtDNA structure and organization for millions of generations, in spite of a high recurrent mutation rate, does not support the notion of neutralism or near neutralism. The high level of internucleotide interaction and periodicity indicate that every nucleotide is co-adapted with the residual genome.

  10. Comprehensive view of the population history of Arabia as inferred by mtDNA variation

    Czech Academy of Sciences Publication Activity Database

    Černý, Viktor; Čížková, M.; Poloni, E. S.; Al-Meeri, A.; Mulligan, C. J.

    2016-01-01

    Roč. 159, č. 4 (2016), s. 607-616 ISSN 0002-9483 R&D Projects: GA ČR GA13-37998S Institutional support: RVO:67985912 Keywords : mtDNA variation * Arabian Peninsula * migrations Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 2.552, year: 2016

  11. Recent introgressive hybridization revealed by exclusive mtDNA transfer from Oreochromis leucostictus (Trewavas, 1933) to Oreochromis niloticus (Linnaeus, 1758) in Lake Baringo, Kenya

    OpenAIRE

    Nyingi, Dorothy W.; Agnèse, Jean-François

    2007-01-01

    Nuclear DNA and mtDNA polymorphisms were surveyed in various species of East African Oreochromis. In Lake Baringo, where only Oreochromis niloticus baringoensis is present, alien mtDNA haplotypes were observed, apparently the result of introgressive hybridization with Oreochromis leucostictus. This introgression is not accompanied by any substantial or recorded transfer of nuclear genes into O. n. baringoensis.

  12. Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenzhou, E-mail: jiangcpu@yahoo.com.cn; Bao, Qingli, E-mail: bao_ql@126.com; Sun, Lixin, E-mail: slxcpu@126.com; Huang, Xin, E-mail: huangxinhx66@sohu.com; Wang, Tao, E-mail: wangtao1331@126.com; Zhang, Shuang, E-mail: cat921@sina.com; Li, Han, E-mail: hapo1101@163.com; Zhang, Luyong, E-mail: lyzhang@cpu.edu.cn

    2013-01-15

    This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged and dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.

  13. The Expansion of mtDNA Haplogroup L3 within and out of Africa

    Czech Academy of Sciences Publication Activity Database

    Soares, P.; Alshamali, F.; Pereira, J. B.; Fernandes, V.; Silva, N. M.; Afonso, C.; Costa, M. D.; Musilová, E.; Macaulay, V.; Richards, M. B.; Černý, Viktor; Pereira, L.

    2012-01-01

    Roč. 29, č. 3 (2012), s. 915-927 ISSN 0737-4038 R&D Projects: GA MŠk ME 917 Institutional research plan: CEZ:AV0Z80020508 Keywords : mtDNA * complete genomes * haplogroup L3 * out of Africa * modern human expansions Sub ject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 10.353, year: 2012

  14. Pleistocene-Holocene boundary in Southern Arabia from the perspective of human mtDNA variation

    Czech Academy of Sciences Publication Activity Database

    Al-Abri, A.-R.; Podgorná, E.; Rose, J. I.; Pereira, L.; Mulligan, C. J.; Silva, N. M.; Bayoumi, R.; Soares, P.; Černý, Viktor

    2012-01-01

    Roč. 149, č. 2 (2012), s. 291-298 ISSN 0002-9483 R&D Projects: GA MŠk ME 917 Institutional research plan: CEZ:AV0Z80020508 Keywords : mtDNA variation * Arabian Peninsula * migrations Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 2.481, year: 2012

  15. mtDNA of Fulani Nomads and Their Genetic Relationships to Neighboring Sedentary Populations

    Czech Academy of Sciences Publication Activity Database

    Černý, Viktor; Hájek, Martin; Bromová, Markéta; Čmejla, R.; Diallo, I.; Brdička, R.

    2006-01-01

    Roč. 78, č. 1 (2006), s. 9-27 ISSN 0018-7143 R&D Projects: GA ČR(CZ) GA404/03/0318 Institutional research plan: CEZ:AV0Z80020508 Keywords : mtDNA variation * HVS-I * Fulani nomads * sub-Saharan populations * Chad * Cameroon * Burkina Faso Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 1.132, year: 2006

  16. Data from complete mtDNA sequencing of Tunisian centenarians: testing haplogroup association and the "golden mean" to longevity.

    Science.gov (United States)

    Costa, Marta D; Cherni, Lotfi; Fernandes, Verónica; Freitas, Fernando; Ammar El Gaaied, Amel Ben; Pereira, Luísa

    2009-04-01

    Since the mitochondrial theory of ageing was proposed, mitochondrial DNA (mtDNA) diversity has been largely studied in old people, however complete genomes are still rare, being limited to Japanese and UK/US samples. In this work, we evaluated possible longevity associated polymorphisms/haplogroups in an African population, from Tunisia, by performing complete mtDNA sequencing. This population has a mixed Eurasian/sub-Saharan mtDNA gene pool, which could potentially facilitate the evaluation of association for sub-Saharan lineages. Sub-Saharan haplogroups were shown to be significantly less represented in centenarians (9.5%) than in controls (54.5%), but it is not possible to rule out an influence of population structure, which is high in these populations. No recurrent polymorphism were more frequent in centenarians than in controls, and although the Tunisian centenarians presented less synonymous and replacement polymorphisms than controls, this difference was not statistically significant. So far, it does not seem that centenarians have significantly less mildly deleterious substitutions, not only in Tunisia but also in Japanese and UK/US samples, as tested here, not favouring a "golden mean" to longevity.

  17. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function.

    Science.gov (United States)

    Zhuo, Ming; Gorgun, Murat F; Englander, Ella W

    2018-06-01

    Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Major Population Expansion of East Asians Began before Neolithic Time: Evidence of mtDNA Genomes

    Science.gov (United States)

    Qin, Zhen-Dong; Wang, Yi; Tan, Jing-Ze; Li, Hui; Jin, Li

    2011-01-01

    It is a major question in archaeology and anthropology whether human populations started to grow primarily after the advent of agriculture, i.e., the Neolithic time, especially in East Asia, which was one of the centers of ancient agricultural civilization. To answer this question requires an accurate estimation of the time of lineage expansion as well as that of population expansion in a population sample without ascertainment bias. In this study, we analyzed all available mtDNA genomes of East Asians ascertained by random sampling, a total of 367 complete mtDNA sequences generated by the 1000 Genome Project, including 249 Chinese (CHB, CHD, and CHS) and 118 Japanese (JPT). We found that major mtDNA lineages underwent expansions, all of which, except for two JPT-specific lineages, including D4, D4b2b, D4a, D4j, D5a2a, A, N9a, F1a1'4, F2, B4, B4a, G2a1 and M7b1'2'4, occurred before 10 kya, i.e., before the Neolithic time (symbolized by Dadiwan Culture at 7.9 kya) in East Asia. Consistent to this observation, the further analysis showed that the population expansion in East Asia started at 13 kya and lasted until 4 kya. The results suggest that the population growth in East Asia constituted a need for the introduction of agriculture and might be one of the driving forces that led to the further development of agriculture. PMID:21998705

  19. The congruence between matrilineal genetic (mtDNA) and geographic diversity of Iranians and the territorial populations

    Science.gov (United States)

    Bahmanimehr, Ardeshir; Eskandari, Ghafar; Nikmanesh, Fatemeh

    2015-01-01

    Objective(s): From the ancient era, emergence of Agriculture in the connecting region of Mesopotamia and the Iranian plateau at the foothills of the Zagros Mountains, made Iranian gene pool as an important source of populating the region. It has differentiated the population spread and different language groups. In order to trace the maternal genetic affinity between Iranians and other populations of the area and to establish the place of Iranians in a broad framework of ethnically and linguistically diverse groups of Middle Eastern and South Asian populations, a comparative study of territorial groups was designed and used in the population statistical analysis. Materials and Methods: Mix of 616 samples was sequenced for complete mtDNA or hyper variable regions in this study. A published dataset of neighboring populations was used as a comparison in the Iranian matrilineal lineage study based on mtDNA haplogroups. Results: Statistical analyses data, demonstrate a close genetic structure of all Iranian populations, thus suggesting their origin from a common maternal ancestral gene pool and show that the diverse maternal genetic structure does not reflect population differentiation in the region in their language. Conclusion: In the aggregate of the eastward spreads of proto-Elamo-Dravidian language from the Southwest region of Iran, the Elam province, a reasonable degree of homogeneity has been observed among Iranians in this study. The approach will facilitate our perception of the more detailed relationship of the ethnic groups living in Iran with the other ancient peoples of the area, testing linguistic hypothesis and population movements. PMID:25810873

  20. Analysis of mtDNA sequence variants in colorectal adenomatous polyps

    Directory of Open Access Journals (Sweden)

    Grizzle William

    2010-10-01

    Full Text Available Abstract Colorectal tumors mostly arise from sporadic adenomatous polyps. Polyps are defined as a mass of cells that protrudes into the lumen of the colon. Adenomatous polyps are benign neoplasms that, by definition display some characteristics of dysplasia. It has been shown that polyps were benign tumors which may undergo malignant transformation. Adenomatous polyps have been classified into three histologic types; tubular, tubulovillous, and villous with increasing malignant potential. The ability to differentially diagnose these colorectal adenomatous polyps is important for therapeutic intervention. To date, little efforts have been directed to identifying genetic changes involved in adenomatous polyps. This study was designed to examine the relevance of mitochondrial genome alterations in the three adenomatous polyps. Using high resolution restriction endonucleases and PCR-based sequencing, fifty-seven primary fresh frozen tissues of adenomatous polyps (37 tumors and 20 matched surrounding normal tissues obtained from the southern regional Cooperative Human Tissue Network (CHTN and Grady Memorial Hospital at Atlanta were screened with three mtDNA regional primer pairs that spanned 5.9 kbp. Results from our data analyses revealed the presence of forty-four variants in some of these mitochondrial genes that the primers spanned; COX I, II, III, ATP 6, 8, CYT b, ND 5, 6 and tRNAs. Based on the MITODAT database as a sequence reference, 25 of the 44 (57% variants observed were unreported. Notably, a heteroplasmic variant C8515G/T in the MT-ATP 8 gene and a germline variant 8327delA in the tRNAlys was observed in all the tissue samples of the three adenomatous polyps in comparison to the referenced database sequence. A germline variant G9055A in the MT-ATP 6 gene had a frequency of 100% (17/17 in tubular and 57% (13/23 in villous adenomas; no corresponding variant was in tubulovillous adenomas. Furthermore, A9006G variant at MT-ATP 6 gene was

  1. MtDNA barcode identification of fish larvae in the southern Great Barrier Reef – Australia

    Directory of Open Access Journals (Sweden)

    Graham G. Pegg

    2006-10-01

    Full Text Available Planktonic larvae were captured above a shallow coral reef study site on the Great Barrier Reef (GBR around spring-summer new moon periods (October-February using light trap or net capture devices. Larvae were identified to the genus or species level by comparison with a phylogenetic tree of tropical marine fish species using mtDNA HVR1 sequence data. Further analysis showed that within-species HVR1 sequence variation was typically 1-3%, whereas between-species variation for the same genus ranged up to 50%, supporting the suitability of HVR1 for species identification. Given the current worldwide interest in DNA barcoding and species identification using an alternative mtDNA gene marker (cox1, we also explored the efficacy of different primer sets for amplification of cox1 in reef fish, and its suitability for species identification. Of those tested, the Fish-F1 and -R1 primer set recently reported by Ward et al. (2005 gave the best results.

  2. Construct validity of adolescents' self-reported big five personality traits: importance of conceptual breadth and initial validation of a short measure.

    Science.gov (United States)

    Morizot, Julien

    2014-10-01

    While there are a number of short personality trait measures that have been validated for use with adults, few are specifically validated for use with adolescents. To trust such measures, it must be demonstrated that they have adequate construct validity. According to the view of construct validity as a unifying form of validity requiring the integration of different complementary sources of information, this article reports the evaluation of content, factor, convergent, and criterion validities as well as reliability of adolescents' self-reported personality traits. Moreover, this study sought to address an inherent potential limitation of short personality trait measures, namely their limited conceptual breadth. In this study, starting with items from a known measure, after the language-level was adjusted for use with adolescents, items tapping fundamental primary traits were added to determine the impact of added conceptual breadth on the psychometric properties of the scales. The resulting new measure was named the Big Five Personality Trait Short Questionnaire (BFPTSQ). A group of expert judges considered the items to have adequate content validity. Using data from a community sample of early adolescents, the results confirmed the factor validity of the Big Five structure in adolescence as well as its measurement invariance across genders. More important, the added items did improve the convergent and criterion validities of the scales, but did not negatively affect their reliability. This study supports the construct validity of adolescents' self-reported personality traits and points to the importance of conceptual breadth in short personality measures. © The Author(s) 2014.

  3. Data on haplotype diversity in the hypervariable region I, II and III of mtDNA amongst the Brahmin population of Haryana

    Directory of Open Access Journals (Sweden)

    Kapil Verma

    2018-04-01

    Full Text Available Human mitochondrial DNA (mtDNA is routinely analysed for pathogenic mutations, evolutionary studies, estimation of time of divergence within or between species, phylogenetic studies and identification of degraded remains. The data on various regions of human mtDNA has added enormously to the knowledge pool of population genetics as well as forensic genetics. The displacement-loop (D-loop in the control region of mtDNA is rated as the most rapidly evolving part, due to the presence of variations in this region. The control region consists of three hypervariable regions. These hypervariable regions (HVI, HVII and HVIII tend to mutate 5–10 times faster than nuclear DNA. The high mutation rate of these hypervariable regions is used in population genetic studies and human identity testing. In the present data, potentially informative hypervariable regions of mitochondrial DNA (mtDNA i.e. HVI (np 16024–16365, HVII (np 73–340 and HVIII (np 438–576 were estimated to understand the genetic diversity amongst Brahmin population of Haryana. Blood samples had been collected from maternally unrelated individuals from the different districts of Haryana. An array of parameters comprising of polymorphic sites, transitions, transversions, deletions, gene diversity, nucleotide diversity, pairwise differences, Tajima's D test, Fu's Fs test, mismatch observed variance and expected heterozygosity were estimated. The observed polymorphisms with their respective haplogroups in comparison to rCRS were assigned. Keywords: Mitochondrial DNA, D-loop, Hypervariable regions, Forensic genetics

  4. Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region

    Science.gov (United States)

    Delfin, Frederick; Min-Shan Ko, Albert; Li, Mingkun; Gunnarsdóttir, Ellen D; Tabbada, Kristina A; Salvador, Jazelyn M; Calacal, Gayvelline C; Sagum, Minerva S; Datar, Francisco A; Padilla, Sabino G; De Ungria, Maria Corazon A; Stoneking, Mark

    2014-01-01

    The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago. PMID:23756438

  5. Adaptive importance sampling for probabilistic validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Schutter, B. de; Verhaegen, M.

    2006-01-01

    We present an approach for validation of advanced driver assistance systems, based on randomized algorithms. The new method consists of an iterative randomized simulation using adaptive importance sampling. The randomized algorithm is more efficient than conventional simulation techniques. The

  6. Rare mtDNA haplogroups and genetic differences in rich and poor Danish Iron-Age villages

    DEFF Research Database (Denmark)

    Melchior, L; Gilbert, M T P; Kivisild, T

    2008-01-01

    The Roman Iron-Age (0-400 AD) in Southern Scandinavia was a formative period, where the society changed from archaic chiefdoms to a true state formation, and the population composition has likely changed in this period due to immigrants from Middle Scandinavia. We have analyzed mtDNA from 22 indi...

  7. The phylogeny of the four pan-American MtDNA haplogroups: implications for evolutionary and disease studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Achilli

    Full Text Available Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s contributed only six (successful founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds.

  8. mtDNA as a Mediator for Expression of Hypoxia-Inducible Factor 1α and ROS in Hypoxic Neuroblastoma Cells.

    Science.gov (United States)

    Kuo, Chung-Wen; Tsai, Meng-Han; Lin, Tsu-Kung; Tiao, Mao-Meng; Wang, Pei-Wen; Chuang, Jiin-Haur; Chen, Shang-Der; Liou, Chia-Wei

    2017-06-07

    Mitochondria consume O₂ to produce ATP and are critical for adaption of hypoxia, but the role of mitochondria in HIF-1α pathway is as yet unclear. In this study, mitochondrial DNA (mtDNA) enriched (SK-N-AS) and depleted (ρ⁰) cells of neuroblastoma were cultured in a hypoxic chamber to simulate a hypoxic condition and then the major components involved in mitochondrial related pathways, hypoxia-inducible factor 1α (HIF-1α) and reactive oxygen species (ROS) were measured. The results showed that hypoxia-stimulated exposure elevated expression of HIF-1α, which was additionally influenced by level of generated ROS within the cytosol. Moreover, elevation of HIF-1α also resulted in increases of lactate dehydrogenase A (LDH-A) and pyruvate dehydrogenase kinase 1 (PDK1) in both hypoxic cells. The expression of mitochondrial biogenesis related proteins and metabolic components were noted to increase significantly in hypoxic SK-N-AS cells, indicating that mtDNA was involved in mitochondrial retrograde signaling and metabolic pathways. An analysis of dynamic proteins found elevated levels of HIF-1α causing an increased expression of dynamin-related protein 1 (DRP1) during hypoxia; further, the existence of mtDNA also resulted in higher expression of DRP1 during hypoxia. By using siRNA of HIF-1α or DRP1, expression of DRP1 decreased after suppression of HIF-1α; moreover, the expression of HIF-1α was also affected by the suppression of DRP1. In this study, we demonstrated that mtDNA is a mediator of HIF-1α in eliciting metabolic reprogramming, and mitochondrial biogenesis. Identification of a mutual relationship between HIF-1α and DRP1 may be a critical tool in the future development of clinical applications.

  9. Novel 12S mtDNA findings in sloths (Pilosa, Folivora) and anteaters (Pilosa, Vermilingua) suggest a true case of long branch attraction

    OpenAIRE

    Barros, Maria Claudene; Sampaio, Iracilda; Schneider, Horacio

    2008-01-01

    We sequenced 12S RNA mtDNA for the majority of the extant species of sloths and anteaters and compared our results with previous data obtained by our group using 16S RNA mtDNA in the same specimens and to GenBank sequences of the extinct giant sloth Mylodon. Our results suggest that pigmy-anteaters may be a case of the long-branch attraction phenomenon and also show the large genetic difference between the Amazonian and Atlantic forest three-toed sloths, contrasting with the small differences...

  10. Forensic and phylogeographic characterisation of mtDNA lineages from Somalia

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Fendt, Liane; Röck, Alexander W.

    2012-01-01

    Somali individuals to enrich the severely underrepresented African mtDNA pool. The majority (60.5 %) of the haplotypes were of sub-Saharan origin with L0a1d, L2a1h and L3f being the most frequently observed haplogroups. This is in sharp contrast to previous data reported from the Y-chromosome, where only...... about 5 % of the observed haplogroups were of sub-Saharan provenance. We compared the genetic distances based on population pairwise F (st) values between 11 published East, Central and North African as well as western Asian populations and the Somali sequences and displayed them in a multi...

  11. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    Science.gov (United States)

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  12. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Wen C Aw

    Full Text Available Here we determine the sex-specific influence of mtDNA type (mitotype and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle's maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number and four physiological traits (fecundity, longevity, lipid content, and starvation resistance. Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males.

  13. Phenotypic and mtDNA variation in Philippine Kappaphycus cottonii (Gigartinales, Rhodophyta).

    Science.gov (United States)

    Dumilag, Richard V; Gallardo, William George M; Garcia, Christian Philip C; You, YeaEun; Chaves, Alyssa Keren G; Agahan, Lance

    2017-11-09

    Members of the carrageenan-producing seaweeds of the genus Kappapphycus have a complicated taxonomic history particularly with regard to species identification. Many taxonomic challenges in this group have been currently addressed with the use of mtDNA sequences. The phylogenetic status and genetic diversity of one of the lesser known species, Kappaphycus cottonii, have repeatedly come into question. This study explored the genetic variation in Philippine K. cottonii using the mtDNA COI-5P gene and cox2-3 spacer sequences. The six phenotypic forms in K. cottonii did not correspond to the observed genetic variability; hinting at the greater involvement of environmental factors in determining changes to the morphology of this alga. Our results revealed that the Philippine K. cottonii has the richest number of haplotypes that have been detected, so far, for any Kappaphycus species. Our inferred phylogenetic trees suggested two lineages: a lineage, which exclusively includes K. cottonii and another lineage comprising the four known Kappaphycus species: K. alvarezii, K. inermis, K. malesianus, and K. striatus. The dichotomy supports the apparent synamorphy for each of these lineages (the strictly terete thalli, lack of protuberances, and the presence of a hyphal central core in the latter group, while the opposite of these morphologies in K. cottonii). These findings shed new light on understanding the evolutionary history of the genus. Assessing the breadth of the phenotypic and genetic variation in K. cottonii has implications for the conservation and management of the overall Kappaphycus genetic resources, especially in the Philippines.

  14. A trans-Amazonian screening of mtDNA reveals deep intraspecific divergence in forest birds and suggests a vast underestimation of species diversity.

    Directory of Open Access Journals (Sweden)

    Borja Milá

    Full Text Available The Amazonian avifauna remains severely understudied relative to that of the temperate zone, and its species richness is thought to be underestimated by current taxonomy. Recent molecular systematic studies using mtDNA sequence reveal that traditionally accepted species-level taxa often conceal genetically divergent subspecific lineages found to represent new species upon close taxonomic scrutiny, suggesting that intraspecific mtDNA variation could be useful in species discovery. Surveys of mtDNA variation in Holarctic species have revealed patterns of variation that are largely congruent with species boundaries. However, little information exists on intraspecific divergence in most Amazonian species. Here we screen intraspecific mtDNA genetic variation in 41 Amazonian forest understory species belonging to 36 genera and 17 families in 6 orders, using 758 individual samples from Ecuador and French Guiana. For 13 of these species, we also analyzed trans-Andean populations from the Ecuadorian Chocó. A consistent pattern of deep intraspecific divergence among trans-Amazonian haplogroups was found for 33 of the 41 taxa, and genetic differentiation and genetic diversity among them was highly variable, suggesting a complex range of evolutionary histories. Mean sequence divergence within families was the same as that found in North American birds (13%, yet mean intraspecific divergence in Neotropical species was an order of magnitude larger (2.13% vs. 0.23%, with mean distance between intraspecific lineages reaching 3.56%. We found no clear relationship between genetic distances and differentiation in plumage color. Our results identify numerous genetically and phenotypically divergent lineages which may result in new species-level designations upon closer taxonomic scrutiny and thorough sampling, although lineages in the tropical region could be older than those in the temperate zone without necessarily representing separate species. In

  15. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    Science.gov (United States)

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  16. Association of low race performance with mtDNA haplogroup L3b of Australian thoroughbred horses.

    Science.gov (United States)

    Lin, Xiang; Zheng, Hong-Xiang; Davie, Allan; Zhou, Shi; Wen, Li; Meng, Jun; Zhang, Yong; Aladaer, Qimude; Liu, Bin; Liu, Wu-Jun; Yao, Xin-Kui

    2018-03-01

    Mitochondrial DNA (mtDNA) encodes the genes for respiratory chain sub-units that determine the efficiency of oxidative phosphorylation in mitochondria. The aim of this study was to determine if there were any haplogroups and variants in mtDNA that could be associated with athletic performance of Thoroughbred horses. The whole mitochondrial genomes of 53 maternally unrelated Australian Thoroughbred horses were sequenced and an association study was performed with the competition histories of 1123 horses within their maternal lineages. A horse mtDNA phylogenetic tree was constructed based on a total of 195 sequences (including 142 from previous reports). The association analysis showed that the sample groups with poor racing performance history were enriched in haplogroup L3b (p = .0003) and its sub-haplogroup L3b1a (p = .0007), while those that had elite performance appeared to be not significantly associated with haplogroups G2 and L3a1a1a (p > .05). Haplogroup L3b and L3b1a bear two and five specific variants of which variant T1458C (site 345 in 16s rRNA) is the only potential functional variant. Furthermore, secondary reconstruction of 16s RNA showed considerable differences between two types of 16s RNA molecules (with and without T1458C), indicating a potential functional effect. The results suggested that haplogroup L3b, could have a negative association with elite performance. The T1458C mutation harboured in haplogroup L3b could have a functional effect that is related to poor athletic performance.

  17. Genetic structure in contemporary south Tyrolean isolated populations revealed by analysis of Y-chromosome, mtDNA, and Alu polymorphisms.

    Science.gov (United States)

    Pichler, Irene; Mueller, Jakob C; Stefanov, Stefan A; De Grandi, Alessandro; Volpato, Claudia Beu; Pinggera, Gerd K; Mayr, Agnes; Ogriseg, Martin; Ploner, Franz; Meitinger, Thomas; Pramstaller, Peter P

    2006-08-01

    Most of the inhabitants of South Tyrol in the eastern Italian Alps can be considered isolated populations because of their physical separation by mountain barriers and their sociocultural heritage. We analyzed the genetic structure of South Tyrolean populations using three types of genetic markers: Y-chromosome, mitochondrial DNA (mtDNA), and autosomal Alu markers. Using random samples taken from the populations of Val Venosta, Val Pusteria, Val Isarco, Val Badia, and Val Gardena, we calculated genetic diversity within and among the populations. Microsatellite diversity and unique event polymorphism diversity (on the Y chromosome) were substantially lower in the Ladin-speaking population of Val Badia compared to the neighboring German-speaking populations. In contrast, the genetic diversity of mtDNA haplotypes was lowest for the upper Val Venosta and Val Pusteria. These data suggest a low effective population size, or little admixture, for the gene pool of the Ladin-speaking population from Val Badia. Interestingly, this is more pronounced for Ladin males than for Ladin females. For the pattern of genetic Alu variation, both Ladin samples (Val Gardena and Val Badia) are among the samples with the lowest diversity. An admixture analysis of one German-speaking valley (Val Venosta) indicates a relatively high genetic contribution of Ladin origin. The reduced genetic diversity and a high genetic differentiation in the Rhaetoroman- and German-speaking South Tyrolean populations may constitute an important basis for future medical genetic research and gene mapping studies in South Tyrol.

  18. MtDNA and nuclear data reveal patterns of low genetic differentiation for the isopods Stenosoma lancifer and Stenosoma acuminatum, with low dispersal ability along the northeast Atlantic coast

    Directory of Open Access Journals (Sweden)

    Raquel Xavier

    2011-11-01

    Full Text Available Evidence for a general lack of genetic differentiation of intertidal invertebrate assemblages in the North Atlantic, based on mtDNA sequence variation, has been interpreted as resulting from recent colonization following the Last Glacial Maximum. In the present study, the phylogeographic patterns of one nuclear and one mtDNA gene fragments of two isopods, Stenosoma lancifer (Miers, 1881 and Stenosoma acuminatum Leach, 1814, from the northeast Atlantic were investigated. These organisms have direct development, which makes them poor dispersers, and are therefore expected to maintain signatures of past historical events in their genomes. Lack of genetic structure, significant deviations from neutrality and star-like haplotype networks have been observed for both mtDNA and nuclear markers of S. lancifer, as well as for the mtDNA of S. acuminatum. No sequence variation was observed for the nuclear gene fragment of S. acuminatum. These results suggest a scenario of recent colonization and demographic expansion and/or high population connectivity driven by ocean currents and sporadic long-distance dispersal through rafting.

  19. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples.

    Science.gov (United States)

    Peck, Michelle A; Sturk-Andreaggi, Kimberly; Thomas, Jacqueline T; Oliver, Robert S; Barritt-Ross, Suzanne; Marshall, Charla

    2018-05-01

    Generating mitochondrial genome (mitogenome) data from reference samples in a rapid and efficient manner is critical to harnessing the greater power of discrimination of the entire mitochondrial DNA (mtDNA) marker. The method of long-range target enrichment, Nextera XT library preparation, and Illumina sequencing on the MiSeq is a well-established technique for generating mitogenome data from high-quality samples. To this end, a validation was conducted for this mitogenome method processing up to 24 samples simultaneously along with analysis in the CLC Genomics Workbench and utilizing the AQME (AFDIL-QIAGEN mtDNA Expert) tool to generate forensic profiles. This validation followed the Federal Bureau of Investigation's Quality Assurance Standards (QAS) for forensic DNA testing laboratories and the Scientific Working Group on DNA Analysis Methods (SWGDAM) validation guidelines. The evaluation of control DNA, non-probative samples, blank controls, mixtures, and nonhuman samples demonstrated the validity of this method. Specifically, the sensitivity was established at ≥25 pg of nuclear DNA input for accurate mitogenome profile generation. Unreproducible low-level variants were observed in samples with low amplicon yields. Further, variant quality was shown to be a useful metric for identifying sequencing error and crosstalk. Success of this method was demonstrated with a variety of reference sample substrates and extract types. These studies further demonstrate the advantages of using NGS techniques by highlighting the quantitative nature of heteroplasmy detection. The results presented herein from more than 175 samples processed in ten sequencing runs, show this mitogenome sequencing method and analysis strategy to be valid for the generation of reference data. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Feather barbs as a good source of mtDNA for bird species identification in forensic wildlife investigations.

    Science.gov (United States)

    Speller, Camilla F; Nicholas, George P; Yang, Dongya Y

    2011-07-28

    The ability to accurately identify bird species is crucial for wildlife law enforcement and bird-strike investigations. However, such identifications may be challenging when only partial or damaged feathers are available for analysis. By applying vigorous contamination controls and sensitive PCR amplification protocols, we found that it was feasible to obtain accurate mitochondrial (mt)DNA-based species identification with as few as two feather barbs. This minimally destructive DNA approach was successfully used and tested on a variety of bird species, including North American wild turkey (Meleagris gallopavo), Canada goose (Branta canadensis), blue heron (Ardea herodias) and pygmy owl (Glaucidium californicum). The mtDNA was successfully obtained from 'fresh' feathers, historic museum specimens and archaeological samples, demonstrating the sensitivity and versatility of this technique. By applying appropriate contamination controls, sufficient quantities of mtDNA can be reliably recovered and analyzed from feather barbs. This previously overlooked substrate provides new opportunities for accurate DNA species identification when minimal feather samples are available for forensic analysis.

  1. A Signal, from Human mtDNA, of Postglacial Recolonization in Europe

    Science.gov (United States)

    Torroni, Antonio; Bandelt, Hans-Jürgen; Macaulay, Vincent; Richards, Martin; Cruciani, Fulvio; Rengo, Chiara; Martinez-Cabrera, Vicente; Villems, Richard; Kivisild, Toomas; Metspalu, Ene; Parik, Jüri; Tolk, Helle-Viivi; Tambets, Kristiina; Forster, Peter; Karger, Bernd; Francalacci, Paolo; Rudan, Pavao; Janicijevic, Branka; Rickards, Olga; Savontaus, Marja-Liisa; Huoponen, Kirsi; Laitinen, Virpi; Koivumäki, Satu; Sykes, Bryan; Hickey, Eileen; Novelletto, Andrea; Moral, Pedro; Sellitto, Daniele; Coppa, Alfredo; Al-Zaheri, Nadia; Santachiara-Benerecetti, A. Silvana; Semino, Ornella; Scozzari, Rosaria

    2001-01-01

    Mitochondrial HVS-I sequences from 10,365 subjects belonging to 56 populations/geographical regions of western Eurasia and northern Africa were first surveyed for the presence of the T→C transition at nucleotide position 16298, a mutation which has previously been shown to characterize haplogroup V mtDNAs. All mtDNAs with this mutation were then screened for a number of diagnostic RFLP sites, revealing two major subsets of mtDNAs. One is haplogroup V proper, and the other has been termed “pre*V,” since it predates V phylogenetically. The rather uncommon pre*V tends to be scattered throughout Europe (and northwestern Africa), whereas V attains two peaks of frequency: one situated in southwestern Europe and one in the Saami of northern Scandinavia. Geographical distributions and ages support the scenario that pre*V originated in Europe before the Last Glacial Maximum (LGM), whereas the more recently derived haplogroup V arose in a southwestern European refugium soon after the LGM. The arrival of V in eastern/central Europe, however, occurred much later, possibly with (post-)Neolithic contacts. The distribution of haplogroup V mtDNAs in modern European populations would thus, at least in part, reflect the pattern of postglacial human recolonization from that refugium, affecting even the Saami. Overall, the present study shows that the dissection of mtDNA variation into small and well-defined evolutionary units is an essential step in the identification of spatial frequency patterns. Mass screening of a few markers identified using complete mtDNA sequences promises to be an efficient strategy for inferring features of human prehistory. PMID:11517423

  2. Rozmanitost projevů heteroplazmické mtDNA mutace 8993 T>G ve dvou rodinách

    Czech Academy of Sciences Publication Activity Database

    Tesařová, M.; Hansíková, H.; Hlavatá, A.; Klement, P.; Houšťková, H.; Houštěk, Josef; Zeman, J.

    2002-01-01

    Roč. 141, č. 17 (2002), s. 551-554 ISSN 0008-7335 R&D Projects: GA MZd(CZ) NE6533; GA MZd(CZ) NE6555; GA MŠk(CZ) LN00A079 Institutional research plan: CEZ:AV0Z5011922 Keywords : NARP syndrome * mtDNA mutation 8993 T>G Subject RIV: EB - Genetics ; Molecular Biology

  3. Three reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of Grant's gazelles

    DEFF Research Database (Denmark)

    Lorenzen, Eline Deidre; Arctander, Peter; Siegismund, Hans Redlef

    2008-01-01

    are discussed in reference to the four currently recognised subspecies. We suggest Grant's gazelles be raised to the superspecies Nanger (granti) comprising three taxonomic units corresponding to the three mtDNA lineages. There was no evidence of gene flow between the notata and granti lineages, despite...... their geographic proximity, suggesting reproductive isolation. These constitute evolutionary significant units within the adaptive evolutionary framework. Due to its restricted geographic distribution and genetic and morphological distinctiveness, we suggest the petersii lineage be raised to the species Nanger...

  4. Limited phylogeographic signal in sex-linked and autosomal loci despite geographically, ecologically, and phenotypically concordant structure of mtDNA variation in the Holarctic avian genus Eremophila.

    Directory of Open Access Journals (Sweden)

    Sergei V Drovetski

    Full Text Available Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early-Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris with respect to the Temminck's lark (E. bilopha. In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species.

  5. Human mtDNA hypervariable regions, HVR I and II, hint at deep common maternal founder and subsequent maternal gene flow in Indian population groups.

    Science.gov (United States)

    Sharma, Swarkar; Saha, Anjana; Rai, Ekta; Bhat, Audesh; Bamezai, Ramesh

    2005-01-01

    We have analysed the hypervariable regions (HVR I and II) of human mitochondrial DNA (mtDNA) in individuals from Uttar Pradesh (UP), Bihar (BI) and Punjab (PUNJ), belonging to the Indo-European linguistic group, and from South India (SI), that have their linguistic roots in Dravidian language. Our analysis revealed the presence of known and novel mutations in both hypervariable regions in the studied population groups. Median joining network analyses based on mtDNA showed extensive overlap in mtDNA lineages despite the extensive cultural and linguistic diversity. MDS plot analysis based on Fst distances suggested increased maternal genetic proximity for the studied population groups compared with other world populations. Mismatch distribution curves, respective neighbour joining trees and other statistical analyses showed that there were significant expansions. The study revealed an ancient common ancestry for the studied population groups, most probably through common founder female lineage(s), and also indicated that human migrations occurred (maybe across and within the Indian subcontinent) even after the initial phase of female migration to India.

  6. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities.

    Science.gov (United States)

    Hertweck, Kate L; Dasgupta, Santanu

    2017-01-01

    Mitochondria from normal and cancerous cells represent a tale of two cities, wherein both execute similar processes but with different cellular and molecular effects. Given the number of reviews currently available which describe the functional implications of mitochondrial mutations in cancer, this article focuses on documenting current knowledge in the abundance and distribution of somatic mitochondrial mutations, followed by elucidation of processes which affect the fate of mutations in cancer cells. The conclusion includes an overview of translational implications for mtDNA mutations, as well as recommendations for future research uniting mitochondrial variants and tumorigenesis.

  7. Abundant mtDNA diversity and ancestral admixture in Colombian criollo cattle (Bos taurus).

    Science.gov (United States)

    Carvajal-Carmona, Luis G; Bermudez, Nelson; Olivera-Angel, Martha; Estrada, Luzardo; Ossa, Jorge; Bedoya, Gabriel; Ruiz-Linares, Andrés

    2003-11-01

    Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 individuals from seven breeds. Old World haplogroup T3 is the most commonly observed CR lineage in criollo (0.65), in agreement with a mostly European ancestry for these cattle. However, criollo also shows considerable frequencies of haplogroups T2 (0.9) and T1 (0.26), with T1 lineages in criollo being more diverse than those reported for West Africa. The distribution and diversity of Old World lineages suggest some North African ancestry for criollo, probably as a result of the Arab occupation of Iberia prior to the European migration to the New World. The mtDNA diversity of criollo is higher than that reported for European and African cattle and is consistent with a differentiated ancestry for some criollo breeds.

  8. Molecular Characterization of Sudanese and Southern Sudanese Chicken Breeds Using mtDNA D-Loop

    Directory of Open Access Journals (Sweden)

    Charles E. Wani

    2014-01-01

    Full Text Available The objective of this study was to assess the genetic relationships and diversity and to estimate the amount of gene flow among the five chicken populations from Sudan and South Sudan and commercial strain of egg line White Leghorn chickens. The chicken populations were genotyped using mtDNA D-loop as a molecular marker. PCR product of the mtDNA D-loop segment was 600 bp and 14 haplotypes were identified. The neighbor-joining phylogenetic tree indicated that the indigenous Sudanese chickens can be grouped into two clades, IV and IIIa only. Median joining networks analysis showed that haplotype LBB49 has the highest frequency. The hierarchal analysis of molecular variance (AMOVA showed that genetic variation within the population was 88.6% and the differentiation among the population was 11.4%. When the populations was redefined into two geographical zones, rich and poor Savanna, the results were fractioned into three genetic variations: between individuals within population 95.5%, between populations within the group 0.75%, and genetic variation between groups 3.75%. The pair wise Fst showed high genetic difference between Betwil populations and the rest with Fst ranging from 0.1492 to 0.2447. We found that there is large number of gene exchanges within the Sudanese indigenous chicken (Nm=4.622.

  9. Demography or selection on linked cultural traits or genes? Investigating the driver of low mtDNA diversity in the sperm whale using complementary mitochondrial and nuclear genome analyses.

    Science.gov (United States)

    Morin, Phillip A; Foote, Andrew D; Baker, C Scott; Hancock-Hanser, Brittany L; Kaschner, Kristin; Mate, Bruce R; Mesnick, Sarah L; Pease, Victoria L; Rosel, Patricia E; Alexander, Alana

    2018-04-19

    Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates, and cultural hitchhiking (linkage of genetic variation to culturally transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion versus a selective sweep due to cultural-hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean-specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance, and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides.

    Directory of Open Access Journals (Sweden)

    Lygia T Budnik

    Full Text Available There is a need for a panel of suitable biomarkers for detection of environmental chemical exposure leading to the initiation or progression of degenerative diseases or potentially, to cancer. As the peripheral blood may contain increased levels of circulating cell-free DNA in diseased individuals, we aimed to evaluate this DNA as effect biomarker recognizing vulnerability after exposure to environmental chemicals. We recruited 164 individuals presumably exposed to halo-alkane-based pesticides. Exposure evaluation was based on human biomonitoring analysis; as biomarker of exposure parent halo-methanes, -ethanes and their metabolites, as well as the hemoglobin-adducts methyl valine and hydroxyl ethyl valine in blood were used, complemented by expert evaluation of exposure and clinical intoxication symptoms as well as a questionnaire. Assessment showed exposures to halo alkanes in the concentration range being higher than non-cancer reference doses (RfD but (mostly lower than the occupational exposure limits. We quantified circulating DNA in serum from 86 individuals with confirmed exposure to off-gassing halo-alkane pesticides (in storage facilities or in home environment and 30 non-exposed controls, and found that exposure was significantly associated with elevated serum levels of circulating mitochondrial DNA (in size of 79 bp, mtDNA-79, p = 0.0001. The decreased integrity of mtDNA (mtDNA-230/mtDNA-79 in exposed individuals implicates apoptotic processes (p = 0.015. The relative amounts of mtDNA-79 in serum were positively associated with the lag-time after intoxication to these chemicals (r = 0.99, p<0.0001. Several months of post-exposure the specificity of this biomarker increased from 30% to 97% in patients with intoxication symptoms. Our findings indicate that mitochondrial DNA has a potential to serve as a biomarker recognizing vulnerable risk groups after exposure to toxic/carcinogenic chemicals.

  11. Uniparental (mtDNA, Y-chromosome) polymorphisms in French Guiana and two related populations--implications for the region's colonization.

    Science.gov (United States)

    Mazières, S; Guitard, E; Crubézy, E; Dugoujon, J-M; Bortolini, M C; Bonatto, S L; Hutz, M H; Bois, E; Tiouka, F; Larrouy, G; Salzano, F M

    2008-01-01

    Blood samples collected in four Amerindian French Guiana populations (Palikur, Emerillon, Wayampi and Kali'na) in the early 1980s were screened for selected mtDNA and Y-chromosome length polymorphisms, and sequenced for the mtDNA hypervariable segment I (HVS-I). In addition, two other Amerindian populations (Apalaí and Matsiguenga) were examined for the same markers to establish the genetic relationships in the area. Strong dissimilarities were observed in the distribution of the founding Amerindian haplogroups, and significant p-values were obtained from F(ST) genetic distances. Interpopulation similarities occurred mainly due to geography. The Palikur did not show obvious genetic similarity to the Matsiguenga, who speak the same language and live in a region from where they could have migrated to French Guiana. The African-origin admixture observed in the Kali'na probably derives from historical contacts they had with the Bushinengue (Noir Marron), a group of escaped slaves who now lead independent lives in a nearby region. This analysis has identified significant clues about the Amerindian peopling of the North-East Amazonian region.

  12. Eurasian otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia.

    Science.gov (United States)

    Ferrando, Ainhoa; Ponsà, Montserrat; Marmi, Josep; Domingo-Roura, Xavier

    2004-01-01

    The Eurasian otter, Lutra lutra, has a Palaearctic distribution and has suffered a severe decline throughout Europe during the last century. Previous studies in this and other mustelids have shown reduced levels of variability in mitochondrial DNA, although otter phylogeographic studies were restricted to central-western Europe. In this work we have sequenced 361 bp of the mtDNA control region in 73 individuals from eight countries and added our results to eight sequences available from GenBank and the literature. The range of distribution has been expanded in relation to previous works north towards Scandinavia, east to Russia and Belarus, and south to the Iberian Peninsula. We found a single dominant haplotype in 91.78% of the samples, and six more haplotypes deviating a maximum of two mutations from the dominant haplotype restricted to a single country. Variability was extremely low in western Europe but higher in eastern countries. This, together with the lack of phylogeographical structuring, supports the postglacial recolonization of Europe from a single refugium. The Eurasian otter mtDNA control region has a 220-bp variable minisatellite in Domain III that we sequenced in 29 otters. We found a total of 19 minisatellite haplotypes, but they showed no phylogenetic information.

  13. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity.

    Science.gov (United States)

    Gomes, Sibylle M; Bodner, Martin; Souto, Luis; Zimmermann, Bettina; Huber, Gabriela; Strobl, Christina; Röck, Alexander W; Achilli, Alessandro; Olivieri, Anna; Torroni, Antonio; Côrte-Real, Francisco; Parson, Walther

    2015-02-14

    Distinct, partly competing, "waves" have been proposed to explain human migration in(to) today's Island Southeast Asia and Australia based on genetic (and other) evidence. The paucity of high quality and high resolution data has impeded insights so far. In this study, one of the first in a forensic environment, we used the Ion Torrent Personal Genome Machine (PGM) for generating complete mitogenome sequences via stand-alone massively parallel sequencing and describe a standard data validation practice. In this first representative investigation on the mitochondrial DNA (mtDNA) variation of East Timor (Timor-Leste) population including >300 individuals, we put special emphasis on the reconstruction of the initial settlement, in particular on the previously poorly resolved haplogroup P1, an indigenous lineage of the Southwest Pacific region. Our results suggest a colonization of southern Sahul (Australia) >37 kya, limited subsequent exchange, and a parallel incubation of initial settlers in northern Sahul (New Guinea) followed by westward migrations <28 kya. The temporal proximity and possible coincidence of these latter dispersals, which encompassed autochthonous haplogroups, with the postulated "later" events of (South) East Asian origin pinpoints a highly dynamic migratory phase.

  14. Regional Variation in mtDNA of the Lesser Prairie-Chicken

    Science.gov (United States)

    Hagen, Christian A.; Pitman, James C.; Sandercock, Brett K.; Wolfe, Don H.; Robel, Robel J.; Applegate, Roger D.; Oyler-McCance, Sara J.

    2010-01-01

    Cumulative loss of habitat and long-term decline in the populations of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) have led to concerns for the species' viability throughout its range in the southern Great Plains. For more efficient conservation past and present distributions of genetic variation need to be understood. We examined the distribution of mitochondrial DNA (mtDNA) variation in the Lesser Prairie-Chicken across Kansas, Colorado, Oklahoma, and New Mexico. Throughout the range we found little genetic differentiation except for the population in New Mexico, which was significantly different from most other publications. We did, however, find significant isolation by distance at the rangewide scale (r=0.698). We found no relationship between haplotype phylogeny and geography, and our analyses provide evidence for a post-glacial population expansion within the species that is consistent with the idea that speciation within Tympanuchus is recent. Conservation actions that increase the likelihood of genetically viable populations in the future should be evaluated for implementation.

  15. Multiple differences in calling songs and other traits between solitary and gregarious Mormon crickets from allopatric mtDNA clades

    Directory of Open Access Journals (Sweden)

    Bailey William V

    2007-01-01

    Full Text Available Abstract Background In acoustic species, traits such as male calling song are likely to diverge quickly between allopatric populations due to sexual selection, and divergence in parameters such as carrier frequency, chirp structure, and other important song characters can influence sexual isolation. Here we make use of two forms of Mormon crickets to examine differences in a broad suite of traits that have the potential to influence speciation via sexual isolation. Mormon crickets in "gregarious" populations aggregate into dense migratory bands, and females are the sexually competitive sex (sex-role reversal. There is also a non-outbreak "solitary" form. These two forms are largely but not perfectly correlated with a significant mtDNA subdivision within the species that is thought to have arisen in allopatry. Combined information about multiple, independently evolving traits, such as morphology and structural and behavioural differences in calling song, provides greater resolution of the overall differences between these allopatric populations, and allows us to assess their stage of divergence. We test two predictions, first that the forms differ in song and second that gregarious males are more reluctant to sing than solitary males due to sex role reversal. We also tested for a difference in the relationship between the size of the forewing resonator, the mirror, and carrier frequency, as most models of sound production in crickets indicate that mirror size should predict carrier frequency. Results Multivariate analyses showed that solitary and gregarious individuals from different populations representing the two mtDNA clades had almost non-overlapping distributions based on multiple song and morphological measurements. Carrier frequency differed between the two, and gregarious males were more reluctant to sing overall. Mirror size predicted carrier frequency; however, the relationship between mirror size and surface area varied between

  16. Regional Differences in the Distribution of the Sub-Saharan, West Eurasian, and South Asian mtDNA Lineages in Yemen

    Czech Academy of Sciences Publication Activity Database

    Černý, Viktor; Mulligan, C. J.; Rídl, J.; Žaloudková, M.; Edens, C. M.; Hájek, Martin; Pereira, L.

    2008-01-01

    Roč. 136, č. 2 (2008), s. 128-137 ISSN 0002-9483 R&D Projects: GA MŠk ME 917 Institutional research plan: CEZ:AV0Z80020508 Keywords : mtDNA diversity * regional sampling * population distances * phylogeography Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 2.353, year: 2008 http://www3.interscience.wiley.com/journal/117899911/abstract

  17. Variation and association to diabetes in 2000 full mtDNA sequences mined from an exome study in a Danish population

    DEFF Research Database (Denmark)

    Li, Shengting; Besenbacher, Soren; Li, Yingrui

    2014-01-01

    In this paper, we mine full mtDNA sequences from an exome capture data set of 2000 Danes, showing that it is possible to get high-quality full-genome sequences of the mitochondrion from this resource. The sample includes 1000 individuals with type 2 diabetes and 1000 controls. We characterise...

  18. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    Science.gov (United States)

    Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchitelli, Annamaria; Mallegni, Francesco; Casoli, Antonella; Bertorelle, Giorgio; Barbujani, Guido

    2008-01-01

    Background DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans. PMID:18628960

  19. A 28,000 years old Cro-Magnon mtDNA sequence differs from all potentially contaminating modern sequences.

    Directory of Open Access Journals (Sweden)

    David Caramelli

    Full Text Available BACKGROUND: DNA sequences from ancient specimens may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal and early modern (Cro-Magnoid Europeans. METHODOLOGY/PRINCIPAL FINDINGS: We typed the mitochondrial DNA (mtDNA hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23 and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. CONCLUSIONS/SIGNIFICANCE: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans.

  20. Individual Importance Weighting of Domain Satisfaction Ratings does Not Increase Validity

    Science.gov (United States)

    Rohrer, Julia M.; Schmukle, Stefan C.

    2018-01-01

    Bottom-up models of life satisfaction are based on the assumption that individuals judge the overall quality of their lives by aggregating information across various life domains, such as health, family, and income. This aggregation supposedly involves a weighting procedure because individuals care about different parts of their lives to varying degrees. Thus, composite measures of well-being should be more accurate if domain satisfaction scores are weighted by the importance that respondents assign to the respective domains. Previous studies have arrived at mixed conclusions about whether such a procedure actually works. In the present study, importance weighting was investigated in the Panel Study of Income Dynamics (PSID; N = 5,049). Both weighted composite scores and moderated regression analyses converged in producing the conclusion that individual importance weights did not result in higher correlations with the outcome variable, a global measure of life satisfaction. By contrast, using weights that vary normatively across domains (e.g., assigning a larger weight to family satisfaction than to housing satisfaction for all respondents) significantly increased the correlation with global life satisfaction (although incremental validity was rather humble). These results converge with findings from other fields such as self-concept research, where evidence for individual importance weighting seems elusive as best. PMID:29652406

  1. Individual Importance Weighting of Domain Satisfaction Ratings does Not Increase Validity.

    Science.gov (United States)

    Rohrer, Julia M; Schmukle, Stefan C

    2018-01-01

    Bottom-up models of life satisfaction are based on the assumption that individuals judge the overall quality of their lives by aggregating information across various life domains, such as health, family, and income. This aggregation supposedly involves a weighting procedure because individuals care about different parts of their lives to varying degrees. Thus, composite measures of well-being should be more accurate if domain satisfaction scores are weighted by the importance that respondents assign to the respective domains. Previous studies have arrived at mixed conclusions about whether such a procedure actually works. In the present study, importance weighting was investigated in the Panel Study of Income Dynamics (PSID; N = 5,049). Both weighted composite scores and moderated regression analyses converged in producing the conclusion that individual importance weights did not result in higher correlations with the outcome variable, a global measure of life satisfaction. By contrast, using weights that vary normatively across domains (e.g., assigning a larger weight to family satisfaction than to housing satisfaction for all respondents) significantly increased the correlation with global life satisfaction (although incremental validity was rather humble). These results converge with findings from other fields such as self-concept research, where evidence for individual importance weighting seems elusive as best.

  2. Male infertility is significantly associated with multiple deletions in an 8.7-kb segment of sperm mtDNA in Pakistan.

    Science.gov (United States)

    Mughal, Irfan Afzal; Irfan, Asma; Jahan, Sarwat; Hameed, Abdul

    2017-06-12

    This study aimed to find a link between sperm mitochondrial DNA mutations and male infertility in Pakistan. DNA from semen samples was extracted and amplified by PCR using 7.8-kb deletion-specific primers. The PCR products were separated on agarose gel, visualized under UV-illumination, and then photographed. The results were genotyped and the data were analyzed using SPSS. Deletion analysis of the 8.7-kb fragment by long PCR revealed multiple deletions. The frequency of deletion was much higher in infertile groups as compared to the control group. Further, on comparison between different subtypes of infertile groups, the deletions were highest in the oligoasthenoteratozoospermia (OAT) group. The statistical analysis of case and control groups showed a significant association of the 8.7-kb deletion with human male infertile groups (P = 0.031), and particularly a very significant association with the OAT subgroup (P = 0.019). A significant association has been found between human male infertility and mtDNA deletions in an 8.7-kb segment of sperm mtDNA in a Pakistani population.

  3. Siberian population of the New Stone Age: mtDNA haplotype diversity in the ancient population from the Ust'-Ida I burial ground, dated 4020-3210 BC by 14C.

    Science.gov (United States)

    Naumova O, Y u; Rychkov S, Y u

    1998-03-01

    On the basis of analysis of mtDNA from skeletal remains, dated by 14C 4020-3210 BC, from the Ust'-Ida I Neolithic burial ground in Cis-Baikal area of Siberia, we obtained genetic characteristics of the ancient Mongoloid population. Using the 7 restriction enzymes for the analysis of site's polymorphism in 16,106-16,545 region of mtDNA, we studied the structure of the most frequent DNA haplotypes, and estimated the intrapopulational nucleotide diversity of the Neolithic population. Comparison of the Neolithic and modern indigeneous populations from Siberia, Mongolia and Ural showed, that the ancient Siberian population is one of the ancestors of the modern population of Siberia. From genetic distance, in the assumption of constant nucleotide substitution rate, we estimated the divergence time between the Neolithic and the modern Siberian population. This divergence time (5572 years ago) is conformed to the age of skeletal remains (5542-5652 years). With use of the 14C dates of the skeletal remains, nucleotide substitution rate in mtDNA was estimated as 1% sequence divergence for 8938-9115 years.

  4. Mitochondrial DNA (mtDNA haplogroups and serum levels of anti-oxidant enzymes in patients with osteoarthritis

    Directory of Open Access Journals (Sweden)

    Fernandez-Moreno Mercedes

    2011-11-01

    Full Text Available Abstract Background Oxidative stress play a main role in the initiation and progression of the OA disease and leads to the degeneration of mitochondria. To prevent this, the chondrocytes possess a well-coordinated enzymatic antioxidant system. Besides, the mitochondrial DNA (mtDNA haplogroups are associated with the OA disease. Thus, the main goal of this work is to assess the incidence of the mtDNA haplogroups on serum levels of two of the main antioxidant enzymes, Manganese Superoxide Dismutase (Mn-SOD or SOD2 and catalase, and to test the suitability of these two proteins for potential OA-related biomarkers. Methods We analyzed the serum levels of SOD2 and catalase in 73 OA patients and 77 healthy controls carrying the haplogroups J, U and H, by ELISA assay. Knee and hip radiographs were classified according to Kellgren and Lawrence (K/L scoring from Grade 0 to Grade IV. Appropriate statistical analyses were performed to test the effects of clinical variables, including gender, body mass index (BMI, age, smoking status, diagnosis, haplogroups and radiologic K/L grade on serum levels of these enzymes. Results Serum levels of SOD2 appeared statistically increased in OA patients when compared with healthy controls (p Conclusions The increased levels of SOD2 in OA patients indicate an increased oxidative stress OA-related, therefore this antioxidant enzyme could be a suitable candidate biomarker for diagnosis of OA. Mitochondrial haplogroups significantly correlates with serum levels of catalase

  5. Tracing the phylogeography of human populations in Britain based on 4th-11th century mtDNA genotypes.

    Science.gov (United States)

    Töpf, A L; Gilbert, M T P; Dumbacher, J P; Hoelzel, A R

    2006-01-01

    Some of the transitional periods of Britain during the first millennium A.D. are traditionally associated with the movement of people from continental Europe, composed largely of invading armies (e.g., the Roman, Saxon, and Viking invasions). However, the extent to which these were migrations (as opposed to cultural exchange) remains controversial. We investigated the history of migration by women by amplifying mitochondrial DNA (mtDNA) from ancient Britons who lived between approximately A.D. 300-1,000 and compared these with 3,549 modern mtDNA database genotypes from England, Europe, and the Middle East. The objective was to assess the dynamics of the historical population composition by comparing genotypes in a temporal context. Towards this objective we test and calibrate the use of rho statistics to identify relationships between founder and source populations. We find evidence for shared ancestry between the earliest sites (predating Viking invasions) with modern populations across the north of Europe from Norway to Estonia, possibly reflecting common ancestors dating back to the last glacial epoch. This is in contrast with a late Saxon site in Norwich, where the genetic signature is consistent with more recent immigrations from the south, possibly as part of the Saxon invasions.

  6. Greek pre-service physical education teachers’ beliefs about curricular orientations: Instrument validation and examination of four important goals

    Directory of Open Access Journals (Sweden)

    Manolis Adamakis

    2013-12-01

    Full Text Available BACKGROUND: The way people interpret reality is influenced by their mental constructions, their cognitive abilities and their beliefs. Physical Education (PE students have a wide range of formed beliefs concerning the purposes of PE, which cannot be easily modified, even during undergraduate studies. OBJECTIVE: This study validated the scores from a previously constructed questionnaire and investigated the Physical Education students’ belief systems toward the Greek curricular outcome goals. METHODS: Students (N = 483; males = 259, females = 224 from a Greek Faculty of Physical Education and Sport Science shared their beliefs about curricular outcomes. They completed the Greek version of the four factor instrument “Attitudes/beliefs toward curriculum in physical education”. A confirmatory factor analysis was conducted for the validation of the instrument and MANOVAs followed in order to control for group differences. Finally, a profile analysis was run in order to determine if PE students considered each goal to be equally important. RESULTS: The validation of the instrument confirmed the proposed four factors dependant model. Both internal consistency and the confirmatory factor analysis fit indices produced valid and reliable scores. The profile analysis was significant, indicating that students did not view the outcome goals as equally important. The leading goal was physical activity and fitness, followed by self-actualization, social development and motor skill development. MANOVA results for comparisons between sub-groups revealed significant differences only between genders. CONCLUSIONS: Between groups similarities and differences are discussed, focusing on the classification of the four important outcome goals. Currently, Greek Physical Education students consider physical activity and fitness outcome goal as the most important, while motor skill development is considered the least important one.

  7. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway

    Science.gov (United States)

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the...

  8. Anthropology. Response to Comment on "Late Pleistocene human skeleton and mtDNA link Paleoamericans and modern Native Americans".

    Science.gov (United States)

    Kemp, Brian M; Lindo, John; Bolnick, Deborah A; Malhi, Ripan S; Chatters, James C

    2015-02-20

    Prüfer and Meyer raise concerns over the mitochondrial DNA (mtDNA) results we reported for the Hoyo Negro individual, citing failure of a portion of these data to conform to their expectations of ancient DNA (aDNA). Because damage patterns in aDNA vary, outright rejection of our findings on this basis is unwarranted, especially in light of our other observations. Copyright © 2015, American Association for the Advancement of Science.

  9. GENETIC DIFFERENTIATION AMONG POPULATIONS OF Chromobotia macracanthus BLEEKER FROM SUMATRA AND KALIMANTAN BASED ON SEQUENCING GENE OF MTDNA CYTOCHROME B AND NUCLEUS DNA RAG2

    Directory of Open Access Journals (Sweden)

    Sudarto Sudarto

    2008-12-01

    Full Text Available Research on genetic differentiation among populations of Chromobotia macracanthus Bleeker from Sumatra, based on sequencing gene of mtDNA Cytochrome b and nucleus DNA RAG2 has been done. The objectives of the study were to obtain the representation of genetic differentiation among population of clown loach fishes or botia (Chromobotia macracanthus from Sumatra and Kalimantan and to estimate the time divergence of both population group of botia. Samples of botia population were taken from 3 rivers in Sumatra namely Batanghari, Musi, and Tulang Bawang and one river from Kalimantan namely Kapuas. The genetic analysis was based on the sequencing of mtDNA Cytochrome b and nucleus DNA RAG2. The statistical analysis was done by using APE package on R language. The parameters observed were: nucleotide diversity, genetic distance, and neighbor-joining tree. The result showed that the highest nucleotide diversity was fish population of Musi, while the other two populations, Tulang Bawang (Sumatra and Kapuas (Kalimantan, were considered as the lowest genetic diversity especially based on nucleus DNA RAG2 sequencing. Based on mtDNA Cytochrome-b sequencing, the most distinct population among those populations based on genetic distance were fish populations of Musi and Kapuas. According to the result of neighbor-joining tree analysis, the populations of botia were classified into two groups namely group of Sumatra and group of Kalimantan. The estimation of time divergence among group of population of Sumatra and Kalimantan based on mtDNA Cytochrome b was about 9.25—9.46 million years (Miocene era. The high genetic differences between groups of Sumatra and Kalimantan suggested that the effort of restocking botia from Sumatra into Kalimantan has to be done carefully, because it may disturb the gene originality of both botia populations.

  10. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    Imbalanced dNTP pools are highly mutagenic due to a deleterious effect on DNA polymerase fidelity. Mitochondrial DNA defects, including mutations and deletions, are commonly found in a wide variety of different cancer types. In order to further study the interconnection between dNTP pools...... and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...... shows that normal mitochondrial function is prerequisite for retaining stable dNTP pools upon DNA damage. Therefore it is likely that mitochondrial deficiency defects may cause an increase in DNA mutations by disrupting dNTP pool balance....

  11. Thimerosal-Derived Ethylmercury Is a Mitochondrial Toxin in Human Astrocytes: Possible Role of Fenton Chemistry in the Oxidation and Breakage of mtDNA

    Directory of Open Access Journals (Sweden)

    Martyn A. Sharpe

    2012-01-01

    Full Text Available Thimerosal generates ethylmercury in aqueous solution and is widely used as preservative. We have investigated the toxicology of Thimerosal in normal human astrocytes, paying particular attention to mitochondrial function and the generation of specific oxidants. We find that ethylmercury not only inhibits mitochondrial respiration leading to a drop in the steady state membrane potential, but also concurrent with these phenomena increases the formation of superoxide, hydrogen peroxide, and Fenton/Haber-Weiss generated hydroxyl radical. These oxidants increase the levels of cellular aldehyde/ketones. Additionally, we find a five-fold increase in the levels of oxidant damaged mitochondrial DNA bases and increases in the levels of mtDNA nicks and blunt-ended breaks. Highly damaged mitochondria are characterized by having very low membrane potentials, increased superoxide/hydrogen peroxide production, and extensively damaged mtDNA and proteins. These mitochondria appear to have undergone a permeability transition, an observation supported by the five-fold increase in Caspase-3 activity observed after Thimerosal treatment.

  12. Phylogeographical analysis of mtDNA data indicates postglacial expansion from multiple glacial refugia in woodland caribou (Rangifer tarandus caribou.

    Directory of Open Access Journals (Sweden)

    Cornelya F C Klütsch

    Full Text Available Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ~1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544-22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou.

  13. Minding the gap: Frequency of indels in mtDNA control region sequence data and influence on population genetic analyses

    Science.gov (United States)

    Pearce, J.M.

    2006-01-01

    Insertions and deletions (indels) result in sequences of various lengths when homologous gene regions are compared among individuals or species. Although indels are typically phylogenetically informative, occurrence and incorporation of these characters as gaps in intraspecific population genetic data sets are rarely discussed. Moreover, the impact of gaps on estimates of fixation indices, such as FST, has not been reviewed. Here, I summarize the occurrence and population genetic signal of indels among 60 published studies that involved alignments of multiple sequences from the mitochondrial DNA (mtDNA) control region of vertebrate taxa. Among 30 studies observing indels, an average of 12% of both variable and parsimony-informative sites were composed of these sites. There was no consistent trend between levels of population differentiation and the number of gap characters in a data block. Across all studies, the average influence on estimates of ??ST was small, explaining only an additional 1.8% of among population variance (range 0.0-8.0%). Studies most likely to observe an increase in ??ST with the inclusion of gap characters were those with control region DNA appears small, dependent upon total number of variable sites in the data block, and related to species-specific characteristics and the spatial distribution of mtDNA lineages that contain indels. ?? 2006 Blackwell Publishing Ltd.

  14. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target.

    Science.gov (United States)

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring.

  15. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  16. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A

    International Nuclear Information System (INIS)

    Wang Huawei; Jia Xiaoyun; Ji Yanli; Kong Qingpeng; Zhang Qingjiong; Yao Yonggang; Zhang Yaping

    2008-01-01

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON

  17. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific

    DEFF Research Database (Denmark)

    Raule, Nicola; Sevini, Federica; Li, Shengting

    2014-01-01

    To re-examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high-resolution classification...

  18. Species phylogeny and diversification process of Northeast Asian Pungitius revealed by AFLP and mtDNA markers

    DEFF Research Database (Denmark)

    Takahashi, Hiroshi; Møller, Peter Rask; Shedko, Sergei V.

    2016-01-01

    Pungitius is a highly diversified genus of sticklebacks (Gasterosteidae) occurring widely in northern parts of the Northern Hemisphere. Several ecologically and genetically divergent types that are largely isolated reproductively but occasionally hybridize in sympatry have been discovered...... of hybridization and mtDNA introgression among distinct species. Our results highlight that the marginal seas of Northeast Asia played a key role as barriers to or facilitators of gene flow in the evolution of species diversity of Pungitius concentrated in this region...

  19. MELAS and Kearns–Sayre overlap syndrome due to the mtDNA m. A3243G mutation and large-scale mtDNA deletions

    Directory of Open Access Journals (Sweden)

    Nian Yu

    2016-09-01

    Full Text Available This paper reported an unusual manifestation of a 19-year-old Chinese male patient presented with a complex phenotype of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS syndrome and Kearns–Sayre syndrome (KSS. He was admitted to our hospital with the chief complaint of “acute fever, headache and slow reaction for 21 days”. He was initially misdiagnosed as “viral encephalitis”. This Chinese man with significant past medical history of intolerating fatigue presented paroxysmal neurobehavioral attacks that started about 10 years ago. During this span, 3 or 4 attack clusters were described during which several attacks occurred over a few days. The further examination found that the hallmark signs of this patient included progressive myoclonus epilepsy, cerebellar ataxia, hearing loss, myopathic weakness, ophthalmoparesis, pigmentary retinopathy and bifascicular heart block (Wolff–Parkinson–White syndrome. By young age the disease progression is characterized by the addition of migraine, vomiting, and stroke-like episodes, symptoms of MELAS expression, which indicated completion of the MELAS/KSS overlap syndrome. The m. A3243G mitochondrial DNA mutation and single large-scale mtDNA deletions were found in this patient. This mutation has been reported with MELAS, KSS, myopathy, deafness and mental disorder with cognitive impairment. This is the first description with a MELAS/KSS syndrome in Chinese.

  20. MtDNA diversity and genetic lineages of four cattle breeds in Malaysia

    Directory of Open Access Journals (Sweden)

    Somarny, W.W.M.Z.

    2015-06-01

    Full Text Available There is lack of comprehensive studies on the genetic diversity or phylogenetic analysis of beef cattle breeds in Malaysia. In this study, the partial sequence of mitochondrial DNA cytochrome b gene (cyt b was analysed from blood samples obtained from 25 Chinese Yellow Cattle (CY, 33 Kedah-Kelantan (KK, 32 Brakmas (BM and 30 Bali cattle (BC. Based on these 120 individuals, 19 mtDNA haplotypes (GenBank Accession No. GU67340 - GU67358 were identified by polymorphisms at 31 sites. Hap19 was predominant in BM (78%, KK (82% and CY (100% indicating similar origin or gene flow between breeds whilst Hap11 was exclusively for BC. However, there were only two nucleotide differences between these two major haplotypes. These results can be interpreted that these representative cattle in these haplotypes are admixtures of B. indicus or B. javanicus through maternal ancestry. Conversely, the CY cattle investigated are highly inbred where no variation could be observed in the short segment investigated.

  1. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala) and a New DNA Mini-Barcode Target

    Science.gov (United States)

    Lee, Ping-Shin; Sing, Kong-Wah; Wilson, John-James

    2015-01-01

    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring. PMID:25898278

  2. Reading Mammal Diversity from Flies: The Persistence Period of Amplifiable Mammal mtDNA in Blowfly Guts (Chrysomya megacephala and a New DNA Mini-Barcode Target.

    Directory of Open Access Journals (Sweden)

    Ping-Shin Lee

    Full Text Available Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp DNA mini-barcode could distinguish most mammal species (including separating dark taxa and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring.

  3. Mutation of mtDNA ND1 Gene in 20 Type 2 Diabetes Mellitus Patients of Gorontalonese and Javanese Ethnicity

    Directory of Open Access Journals (Sweden)

    AMIEN RAMADHAN ISHAK

    2014-12-01

    Full Text Available Mitochondrial gene mutation plays a role in the development of type two diabetes mellitus (T2DM. A point mutation in the mitochondrial gene Nicotinamide adenine dinucleotide dehydrogenase 1 (mtDNA ND1 gene mainly reported as the most common mutation related to T2DM. However, several studies have identified another SNP (single-nucleotide polymorphisms in the RNA region of mtDNA from patients from specific ethnic populations in Indonesia. Building on those findings, this study aimed to use PCR and DNA sequencing technology to identify nucleotides in RNA and ND1 fragment from 20 Gorontalonese and 20 Javanese T2DM patients, that may trigger T2DM expression. The results showed successful amplification of RNA along 294 bp for all samples. From these samples, we found two types of point mutation in Javanese patients in the G3316A and T3200C points of the rRNA and ND1 gene. In samples taken from Gorontalonese patients, no mutation were found in the RNA or ND1 region. We conclude that T2DM was triggered differently in our two populations. While genetic mutation is implicated for the 20 Javanese patients, T2DM pathogenesis in the Gorontalonese patients must be traced to other genetic, environmental, or behavioral factors.

  4. Strikingly different penetrance of LHON in two Chinese families with primary mutation G11778A is independent of mtDNA haplogroup background and secondary mutation G13708A

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huawei [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China); Jia Xiaoyun; Ji Yanli [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China); Kong Qingpeng [State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China); Zhang Qingjiong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060 (China)], E-mail: qingjiongzhang@yahoo.com; Yao Yonggang [Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)], E-mail: ygyaozh@yahoo.com; Zhang Yaping [Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091 (China)]|[State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 (China)

    2008-08-25

    The penetrance of Leber's hereditary optic neuropathy (LHON) in families with primary mitochondrial DNA (mtDNA) mutations is very complex. Matrilineal and nuclear genetic background, as well as environmental factors, have been reported to be involved in different affected pedigrees. Here we describe two large Chinese families that show a striking difference in the penetrance of LHON, in which 53.3% and 15.0% of members were affected (P < 0.02), respectively. Analysis of the complete mtDNA genome of the two families revealed the presence of the primary mutation G11778A and several other variants suggesting the same haplogroup status G2a. The family with higher penetrance contained a previously described secondary mutation G13708A, which presents a polymorphism in normal Chinese samples and does not affect in vivo mitochondrial oxidative metabolism as described in a previous study. Evolutionary analysis failed to indicate any putatively pathogenic mutation that cosegregated with G11778A in these two pedigrees. Our results suggest that the variable penetrance of LHON in the two Chinese families is independent of both their mtDNA haplotype background and a secondary mutation G13708A. As a result, it is likely that unknown nuclear gene involvement and/or other factors contribute to the strikingly different penetrance of LHON.

  5. Forensic and phylogeographic characterisation of mtDNA lineages from Somalia.

    Science.gov (United States)

    Mikkelsen, Martin; Fendt, Liane; Röck, Alexander W; Zimmermann, Bettina; Rockenbauer, Eszter; Hansen, Anders J; Parson, Walther; Morling, Niels

    2012-07-01

    The African mitochondrial (mt) phylogeny is coarsely resolved but the majority of population data generated so far is limited to the analysis of the first hypervariable segment (HVS-1) of the control region (CR). Therefore, this study aimed on the investigation of the entire CR of 190 unrelated Somali individuals to enrich the severely underrepresented African mtDNA pool. The majority (60.5 %) of the haplotypes were of sub-Saharan origin with L0a1d, L2a1h and L3f being the most frequently observed haplogroups. This is in sharp contrast to previous data reported from the Y-chromosome, where only about 5 % of the observed haplogroups were of sub-Saharan provenance. We compared the genetic distances based on population pairwise F (st) values between 11 published East, Central and North African as well as western Asian populations and the Somali sequences and displayed them in a multi-dimensional scaling plot. Genetic proximity evidenced by clustering roughly reflected the relative geographic location of the populations. The sequences will be included in the EMPOP database ( www.empop.org ) under accession number EMP00397 upon publication (Parson and Dür Forensic Sci Int Genet 1:88-92, 2007).

  6. Migration and interaction in a contact zone: mtDNA variation among Bantu-speakers in Southern Africa.

    Directory of Open Access Journals (Sweden)

    Chiara Barbieri

    Full Text Available Bantu speech communities expanded over large parts of sub-Saharan Africa within the last 4000-5000 years, reaching different parts of southern Africa 1200-2000 years ago. The Bantu languages subdivide in several major branches, with languages belonging to the Eastern and Western Bantu branches spreading over large parts of Central, Eastern, and Southern Africa. There is still debate whether this linguistic divide is correlated with a genetic distinction between Eastern and Western Bantu speakers. During their expansion, Bantu speakers would have come into contact with diverse local populations, such as the Khoisan hunter-gatherers and pastoralists of southern Africa, with whom they may have intermarried. In this study, we analyze complete mtDNA genome sequences from over 900 Bantu-speaking individuals from Angola, Zambia, Namibia, and Botswana to investigate the demographic processes at play during the last stages of the Bantu expansion. Our results show that most of these Bantu-speaking populations are genetically very homogenous, with no genetic division between speakers of Eastern and Western Bantu languages. Most of the mtDNA diversity in our dataset is due to different degrees of admixture with autochthonous populations. Only the pastoralist Himba and Herero stand out due to high frequencies of particular L3f and L3d lineages; the latter are also found in the neighboring Damara, who speak a Khoisan language and were foragers and small-stock herders. In contrast, the close cultural and linguistic relatives of the Herero and Himba, the Kuvale, are genetically similar to other Bantu-speakers. Nevertheless, as demonstrated by resampling tests, the genetic divergence of Herero, Himba, and Kuvale is compatible with a common shared ancestry with high levels of drift, while the similarity of the Herero, Himba, and Damara probably reflects admixture, as also suggested by linguistic analyses.

  7. Integration of mtDNA pseudogenes into the nuclear genome coincides with speciation of the human genus. A hypothesis.

    Science.gov (United States)

    Gunbin, Konstantin; Peshkin, Leonid; Popadin, Konstantin; Annis, Sofia; Ackermann, Rebecca R; Khrapko, Konstantin

    2017-05-01

    Fragments of mitochondrial DNA are known to get inserted into nuclear DNA to form NUMTs, i.e. nuclear pseudogenes of the mtDNA. The insertion of a NUMT is a rare event. Hundreds of pseudogenes have been cataloged in the human genome. NUMTs are, in essence, a special type of mutation with their own internal timer, which is synchronized with an established molecular clock, the mtDNA. Thus insertion of NUMTs can be timed with respect to evolution milestones such as the emergence of new species. We asked whether NUMTs were inserted uniformly over time or preferentially during certain periods of evolution, as implied by the "punctuated evolution" model. To our surprise, the NUMT insertion times do appear nonrandom with at least one cluster positioned at around 2.8 million years ago (Ma). Interestingly, 2.8Ma closely corresponds to the time of emergence of the genus Homo, and to a well-documented period of major climate change ca. 2.9-2.5Ma. It is tempting to hypothesize that the insertion of NUMTs is related to the speciation process. NUMTs could be either "riders", i.e., their insertion could be facilitated by the overall higher genome rearrangement activity during speciation, or "drivers", i.e. they may more readily get fixed in the population due to positive selection associated with speciation. If correct, the hypothesis would support the idea that evolution of our genus may have happened in a rapid, punctuated manner. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  8. Genetic divergence and phylogenetic relationships in grey mullets (Teleostei: Mugilidae) based on PCR-RFLP analysis of mtDNA segments.

    Science.gov (United States)

    Papasotiropoulos, V; Klossa-Kilia, E; Kilias, G; Alahiotis, S

    2002-04-01

    The genetic differentiation and phylogenetic relationships among five species of the Mugilidae family (Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens) were investigated at the mtDNA level, on samples taken from Messolongi lagoon-Greece. RFLP analysis of three PCR-amplified mtDNA gene segments (12s rRNA, 16s rRNA, and CO I) was used. Ten, eight, and nine restriction enzymes were found to have at least one recognition site at 12s rRNA, 16s rRNA, and CO I genes, respectively. Several fragment patterns were revealed to be species-specific, and thus they could be useful in species taxonomy as diagnostic markers, as well as for further evolutionary studies. Seven different haplotypes were detected. The greatest amount of genetic differentiation was observed at the interspecific level, while little variation was revealed at the intraspecific level. The highest values of nucleotide sequence divergence were observed between M. cephalus and all the other species, while the lowest was found between C. labrosus and L. saliens. Dendrograms obtained by the three different methods (UPGMA, Neighbor-Joining, and Dollo parsimony), were found to exhibit in all cases the same topology. According to this, the most distinct species is M. cephalus, while the other species are clustered in two separate groups, thefirst one containing L. aurata and L. ramada, the other L. saliens and C. labrosus. This last clustering makes the monophyletic origin of the genus Liza questionable.

  9. A validated methodology for genetic identification of tuna species (genus Thunnus.

    Directory of Open Access Journals (Sweden)

    Jordi Viñas

    2009-10-01

    Full Text Available Tuna species of the genus Thunnus, such as the bluefin tunas, are some of the most important and yet most endangered trade fish in the world. Identification of these species in traded forms, however, may be difficult depending on the presentation of the products, which may hamper conservation efforts on trade control. In this paper, we validated a genetic methodology that can fully distinguish between the eight Thunnus species from any kind of processed tissue.After testing several genetic markers, a complete discrimination of the eight tuna species was achieved using Forensically Informative Nucleotide Sequencing based primarily on the sequence variability of the hypervariable genetic marker mitochondrial DNA control region (mtDNA CR, followed, in some specific cases, by a second validation by a nuclear marker rDNA first internal transcribed spacer (ITS1. This methodology was able to distinguish all tuna species, including those belonging to the subgenus Neothunnus that are very closely related, and in consequence can not be differentiated with other genetic markers of lower variability. This methodology also took into consideration the presence of introgression that has been reported in past studies between T. thynnus, T. orientalis and T. alalunga. Finally, we applied the methodology to cross-check the species identity of 26 processed tuna samples.Using the combination of two genetic markers, one mitochondrial and another nuclear, allows a full discrimination between all eight tuna species. Unexpectedly, the genetic marker traditionally used for DNA barcoding, cytochrome oxidase 1, could not differentiate all species, thus its use as a genetic marker for tuna species identification is questioned.

  10. Burden to importance ratio as a quantitative measure to validate the RISC-3 SSC in OPTION-2

    International Nuclear Information System (INIS)

    Ha, J. S.; Sung, P. H.

    2004-01-01

    A Risk-Informed Safety Significance Categorization (RISSC) is to categorize structures, systems, or components (SSCs) of a Nuclear Power Plant (NPP) into two or more groups, according to their safety significance using both probabilistic and deterministic insights. Recently, OPTION-2 (which is an emerging risk-informed paradigm) recommends that SSCs should be categorized into four groups according to whether they are safety-related or not as well as their safety significance. With the change of 10 CFR 50, safety-related components which categorized into low safety significant SSC (RISC-3 SSC) can be exempted from the existing conservative requirements. Consequently, as OPTION-2 paradigm is applied, a validation process focused on the RISC-3 SSC is needed to assure the categorization results, because most of existing RISSC methods focused on the categorization of the whole SSCs of NPPs based on importance measures obtained from probabilistic and deterministic insights. In this work, Burden to Importance Ratio (BIR) is utilized as a measure for the validation of RISC-3 SSC in OPTION-2. To demonstrate the usefulness of the proposed approach, the approach is applied to 22 components selected from 512 In-Service Test (IST) components of Ulchin unit 3. The results of the application show that the proposed approach is useful for the validation of RISC-3 SSC in OPTION-2

  11. Screening of respiration deficiency mutants of yeasts (Saccharomyces cerevisiae) induced by ion irradiation and the mtDNA restriction analysis

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Ma Qiufeng; Gu Ying

    2005-01-01

    Screening of the respiration deficiency mutants of Saccharomyces cerevisiae induced by 5.19 MeV/u 22 Ne 5+ ion irradiation is reported in this paper. Some respiration deficiency mutants of white colony phenotype, in a condition of selective culture of TTC medium, were obtained. A new and simplified method based on mtDNA restriction analysis is described. The authors found that there are many obvious differences in mtDNAs between wild yeasts and the respiration deficiency mutants. The mechanism of obtaining the respiration deficiency mutants induced by heavy ion irradiation is briefly discussed. (authors)

  12. Individualism: a valid and important dimension of cultural differences between nations.

    Science.gov (United States)

    Schimmack, Ulrich; Oishi, Shigehiro; Diener, Ed

    2005-01-01

    Oyserman, Coon, and Kemmelmeier's (2002) meta-analysis suggested problems in the measurement of individualism and collectivism. Studies using Hofstede's individualism scores show little convergent validity with more recent measures of individualism and collectivism. We propose that the lack of convergent validity is due to national differences in response styles. Whereas Hofstede statistically controlled for response styles, Oyserman et al.'s meta-analysis relied on uncorrected ratings. Data from an international student survey demonstrated convergent validity between Hofstede's individualism dimension and horizontal individualism when response styles were statistically controlled, whereas uncorrected scores correlated highly with the individualism scores in Oyserman et al.'s meta-analysis. Uncorrected horizontal individualism scores and meta-analytic individualism scores did not correlate significantly with nations' development, whereas corrected horizontal individualism scores and Hofstede's individualism dimension were significantly correlated with development. This pattern of results suggests that individualism is a valid construct for cross-cultural comparisons, but that the measurement of this construct needs improvement.

  13. Post-glacial recolonization of the Great Lakes region by the common gartersnake (Thamnophis sirtalis) inferred from mtDNA sequences.

    Science.gov (United States)

    Placyk, John S; Burghardt, Gordon M; Small, Randall L; King, Richard B; Casper, Gary S; Robinson, Jace W

    2007-05-01

    Pleistocene events played an important role in the differentiation of North American vertebrate populations. Michigan, in particular, and the Great Lakes region, in general, were greatly influenced by the last glaciation. While several hypotheses regarding the recolonization of this region have been advanced, none have been strongly supported. We generated 148 complete ND2 mitochondrial DNA (mtDNA) sequences from common gartersnake (Thamnophis sirtalis) populations throughout the Great Lakes region to evaluate phylogeographic patterns and population structure and to determine whether the distribution of haplotypic variants is related to the post-Pleistocene retreat of the Wisconsinan glacier. The common gartersnake was utilized, as it is believed to have been one of the primary vertebrate invaders of the Great Lakes region following the most recent period of glacial retreat and because it has been a model species for a variety of evolutionary, ecological, behavioral, and physiological studies. Several genetically distinct evolutionary lineages were supported by both genealogical and molecular population genetic analyses, although to different degrees. The geographic distribution of the majority of these lineages is interpreted as reflecting post-glacial recolonization dynamics during the late Pleistocene. These findings generally support previous hypotheses of range expansion in this region.

  14. Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups.

    Science.gov (United States)

    Chen, Feng; Dang, Yong-hui; Yan, Chun-xia; Liu, Yan-ling; Deng, Ya-jun; Fulton, David J R; Chen, Teng

    2009-10-01

    The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=-0.961, Ppopulations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.

  15. Comparison of two Neolithic mtDNA haplotypes from a Czech excavation site with the results of mitochondrial DNA studies on European Neolithic and Mesolithic individuals

    Czech Academy of Sciences Publication Activity Database

    Votrubová, J.; Emmerová, B.; Brzobohatá, Hana; Šumberová, Radka; Vaněk, D.

    2017-01-01

    Roč. 6, December (2017), „e125”-„e128” ISSN 1875-1768 R&D Projects: GA ČR GB14-36938G Institutional support: RVO:67985912 Keywords : ancient DNA * mtDNA * sequencing * haplotype * haplogroup Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology http://www.fsigeneticssup.com/article/S1875-1768(17)30162-2/pdf

  16. MtDNA and Y-chromosomal diversity in the Chachapoya, a population from the northeast Peruvian Andes-Amazon divide.

    Science.gov (United States)

    Guevara, Evelyn K; Palo, Jukka U; Guillén, Sonia; Sajantila, Antti

    2016-11-01

    The ancient Chachapoya were an aggregate of several ethnic groups that shared a common language, religion, and material culture. They inhabited a territory at the juncture of the Andes and the Amazon basin. Their position between those ecozones most likely influenced their genetic composition. We attempted to better understand their population history by assessing the contemporary genetic diversity in the Chachapoya and three of their immediate neighbors (Huancas, Jivaro, and Cajamarca). We inferred signatures of demographic history and genetic affinities, and contrasted the findings with data from other populations on local and continental scales. We studied mitochondrial DNA (mtDNA; hypervariable segment [HVSI and HVSII]) and Y chromosome (23 short tandem repeats (STRs)) marker data in 382 modern individuals. We used Sanger sequencing for mtDNA and a commercially available kit for Y-chromosomal STR typing. The Chachapoya had affinities with various populations of Andean and Amazonian origin. When examining the Native American component, the Chachapoya displayed high levels of genetic diversity. Together with other parameters, for example, large Tajima's D and Fu's Fs, the data indicated no drastic reduction of the population size in the past. The high level of diversity in the Chachapoya, the lack of evidence of drift in the past, and genetic affinities with a broad range of populations in the Americas reflects an intricate population history in the region. The new genetic data from the Chachapoya indeed seems to point to a genetic complexity that is not yet resolved but beginning to be elucidated. Am. J. Hum. Biol. 28:857-867, 2016. © 2016Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Importance of Computer Model Validation in Pyroprocessing Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Li, Hui; Yim, M. S. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    In this research, we developed a plan for experimental validation of one of the computer models developed for ER process modeling, i. e., the ERAD code. Several candidate surrogate materials are selected for the experiment considering the chemical and physical properties. Molten salt-based pyroprocessing technology is being examined internationally as an alternative to treat spent nuclear fuel over aqueous technology. The central process in pyroprocessing is electrorefining(ER) which separates uranium from transuranic elements and fission products present in spent nuclear fuel. ER is a widely used process in the minerals industry to purify impure metals. Studies of ER by using actual spent nuclear fuel materials are problematic for both technical and political reasons. Therefore, the initial effort for ER process optimization is made by using computer models. A number of models have been developed for this purpose. But as validation of these models is incomplete and often times problematic, the simulation results from these models are inherently uncertain.

  18. Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity

    Directory of Open Access Journals (Sweden)

    Feng Gui

    2011-04-01

    Full Text Available Abstract Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

  19. Phylogeography of mtDNA haplogroup R7 in the Indian peninsula

    Directory of Open Access Journals (Sweden)

    Shukla Parul

    2008-08-01

    Full Text Available Abstract Background Human genetic diversity observed in Indian subcontinent is second only to that of Africa. This implies an early settlement and demographic growth soon after the first 'Out-of-Africa' dispersal of anatomically modern humans in Late Pleistocene. In contrast to this perspective, linguistic diversity in India has been thought to derive from more recent population movements and episodes of contact. With the exception of Dravidian, which origin and relatedness to other language phyla is obscure, all the language families in India can be linked to language families spoken in different regions of Eurasia. Mitochondrial DNA and Y chromosome evidence has supported largely local evolution of the genetic lineages of the majority of Dravidian and Indo-European speaking populations, but there is no consensus yet on the question of whether the Munda (Austro-Asiatic speaking populations originated in India or derive from a relatively recent migration from further East. Results Here, we report the analysis of 35 novel complete mtDNA sequences from India which refine the structure of Indian-specific varieties of haplogroup R. Detailed analysis of haplogroup R7, coupled with a survey of ~12,000 mtDNAs from caste and tribal groups over the entire Indian subcontinent, reveals that one of its more recently derived branches (R7a1, is particularly frequent among Munda-speaking tribal groups. This branch is nested within diverse R7 lineages found among Dravidian and Indo-European speakers of India. We have inferred from this that a subset of Munda-speaking groups have acquired R7 relatively recently. Furthermore, we find that the distribution of R7a1 within the Munda-speakers is largely restricted to one of the sub-branches (Kherwari of northern Munda languages. This evidence does not support the hypothesis that the Austro-Asiatic speakers are the primary source of the R7 variation. Statistical analyses suggest a significant correlation between

  20. Methodology and tools for independent verification and validation of computerized I and C systems important to safety

    International Nuclear Information System (INIS)

    Lindner, A.; Miedl, H.

    1998-01-01

    Modular software based I and C systems are state-of-the-art in industrial automation. For I and C systems important to safety in nuclear power plants, software based systems are also more and more applied. According to existing national and international guidelines and standards, the assessment of these systems calls for appropriate test methods and tools. By use of tools quality of the assessment process should be improved and expense should be limited. The paper outlines the structure of the independent verification and validation (V and V) process of the Teleperm XS system and the lessons learnt from this process. Furthermore, tools are discussed used for V and V of the Teleperm XS software. The recently developed tool VALIDATOR, dedicated to V and V of the plant specific I and C functions is described in more detail. We consider V and V of the basic software components and the system software to be required only once, but the C source codes of the plant specific functional diagrams have to be checked for each application separately. The VALIDATOR is designed to perform this task. It gives evidence of compliance of the automatically generated C source codes with the graphical design of the functional diagrams in reasonable time and with acceptable costs. The working method, performance and results of the VALIDATOR are shown by means of an actual example. (author)

  1. Understanding influences of culture and history on mtDNA variation and population structure in three populations from Assam, Northeast India.

    Science.gov (United States)

    Rej, Peter H; Deka, Ranjan; Norton, Heather L

    2017-05-06

    Positioned at the nexus of India, China, and Southeast Asia, Northeast India is presumed to have served as a channel for land-based human migration since the Upper Pleistocene. Assam is the largest state in the Northeast. We characterized the genetic background of three populations and examined the ways in which their population histories and cultural practices have influenced levels of intrasample and intersample variation. We examined sequence data from the mtDNA hypervariable control region and selected diagnostic mutations from the coding region in 128 individuals from three ethnic groups currently living in Assam: two Scheduled tribes (Sonowal Kachari and Rabha), and the non-Scheduled Tai Ahom. The populations of Assam sampled here express mtDNA lineages indicative of South Asian, Southeast Asian, and East Asian ancestry. We discovered two completely novel haplogroups in Assam that accounted for 6.2% of the lineages in our sample. We also identified a new subhaplogroup of M9a that is prevalent in the Sonowal Kachari of Assam (19.1%), but not present in neighboring Arunachal Pradesh, indicating substantial regional population structuring. Employing a large comparative dataset into a series of multidimensional scaling (MDS) analyses, we saw the Rabha cluster with populations sampled from Yunnan Province, indicating that the historical matrilineality of the Rabha has maintained lineages from Southern China. Assam has undergone multiple colonization events in the time since the initial peopling event, with populations from Southern China and Southeast Asia having the greatest influence on maternal lineages in the region. © 2017 Wiley Periodicals, Inc.

  2. Deciphering the link between doubly uniparental inheritance of mtDNA and sex determination in bivalves: Clues from comparative transcriptomics

    Science.gov (United States)

    Capt, Charlotte; Renaut, Sébastien; Ghiselli, Fabrizio; Milani, Liliana; Johnson, Nathan A.; Sietman, Bernard E.; Stewart, Donald; Breton, Sophie

    2018-01-01

    Bivalves exhibit an astonishing diversity of sexual systems and sex-determining mechanisms. They can be gonochoric, hermaphroditic or androgenetic, with both genetic and environmental factors known to determine or influence sex. One unique sex-determining system involving the mitochondrial genome has also been hypothesized to exist in bivalves with doubly uniparental inheritance (DUI) of mtDNA. However, the link between DUI and sex determination remains obscure. In this study, we performed a comparative gonad transcriptomics analysis for two DUI-possessing freshwater mussel species to better understand the mechanisms underlying sex determination and DUI in these bivalves. We used a BLAST reciprocal analysis to identify orthologs between Venustaconcha ellipsiformis and Utterbackia peninsularis and compared our results with previously published sex-specific bivalve transcriptomes to identify conserved sex-determining genes. We also compared our data with other DUI species to identify candidate genes possibly involved in the regulation of DUI. A total of ∼12,000 orthologous relationships were found, with 2,583 genes differentially expressed in both species. Among these genes, key sex-determining factors previously reported in vertebrates and in bivalves (e.g., Sry, Dmrt1, Foxl2) were identified, suggesting that some steps of the sex-determination pathway may be deeply conserved in metazoans. Our results also support the hypothesis that a modified ubiquitination mechanism could be responsible for the retention of the paternal mtDNA in male bivalves, and revealed that DNA methylation could also be involved in the regulation of DUI. Globally, our results suggest that sets of genes associated with sex determination and DUI are similar in distantly-related DUI species.

  3. Comparison between Mt-DNA D-Loop and Cyt B primers for porcine DNA detection in meat products

    Science.gov (United States)

    Hamzah, Azhana; Mutalib, Sahilah Abd.; Babji, Abdul Salam

    2013-11-01

    This study was conducted to detect the presence of porcine DNA in meat products in the market using conventional polymerase chain reaction (PCR) and commercial PCR-southern hybridization analysis. Porcine DNA detection in meat products was tested due to some issues associated with the adulteration of food products in Malaysia. This is an important issue especially for Halal authentication which is required for some religious practices such as in Islam and Hinduisms. Many techniques have been developed for determining the Halal status of food products. In this paper, mt-DNA D-loop primer and cytochrome (cyt) b were used to detect the presence of porcine DNA in meat products. Positive and negative controls were always present for each batch of extraction. DNA of raw pork meat was used as a positive control while nucleus free water is used as negative control. A pair of oligonucleotide primer was used namely Pork1 and Pork2 which produced amplicon of 531 base pair (bp) in size. While, PCR-southern hybridization was conducted using primers readily supplied by commercial PCR-Southern hybridization and produced amplicon with 276 bp in size. In the present study, demonstrated that none of the samples were contaminated with porcine residuals but selected samples with pork meat were positive. The species-specific PCR amplification yielded excellent results for identification of pork derivatives in food products and it is a potentially reliable and suitable technique in routine food analysis for Halal certification.

  4. Validation of survey information on smoking and alcohol consumption against import statistics, Greenland 1993-2010.

    Science.gov (United States)

    Bjerregaard, Peter; Becker, Ulrik

    2013-01-01

    Questionnaires are widely used to obtain information on health-related behaviour, and they are more often than not the only method that can be used to assess the distribution of behaviour in subgroups of the population. No validation studies of reported consumption of tobacco or alcohol have been published from circumpolar indigenous communities. The purpose of the study is to compare information on the consumption of tobacco and alcohol obtained from 3 population surveys in Greenland with import statistics. Estimates of consumption of cigarettes and alcohol using several different survey instruments in cross-sectional population studies from 1993-1994, 1999-2001 and 2005-2010 were compared with import statistics from the same years. For cigarettes, survey results accounted for virtually the total import. Alcohol consumption was significantly under-reported with reporting completeness ranging from 40% to 51% for different estimates of habitual weekly consumption in the 3 study periods. Including an estimate of binge drinking increased the estimated total consumption to 78% of the import. Compared with import statistics, questionnaire-based population surveys capture the consumption of cigarettes well in Greenland. Consumption of alcohol is under-reported, but asking about binge episodes in addition to the usual intake considerably increased the reported intake in this population and made it more in agreement with import statistics. It is unknown to what extent these findings at the population level can be inferred to population subgroups.

  5. History of Lipizzan horse maternal lines as revealed by mtDNA analysis

    Directory of Open Access Journals (Sweden)

    Dovč Peter

    2002-09-01

    Full Text Available Abstract Sequencing of the mtDNA control region (385 or 695 bp of 212 Lipizzans from eight studs revealed 37 haplotypes. Distribution of haplotypes among studs was biased, including many private haplotypes but only one haplotype was present in all the studs. According to historical data, numerous Lipizzan maternal lines originating from founder mares of different breeds have been established during the breed's history, so the broad genetic base of the Lipizzan maternal lines was expected. A comparison of Lipizzan sequences with 136 sequences of domestic- and wild-horses from GenBank showed a clustering of Lipizzan haplotypes in the majority of haplotype subgroups present in other domestic horses. We assume that haplotypes identical to haplotypes of early domesticated horses can be found in several Lipizzan maternal lines as well as in other breeds. Therefore, domestic horses could arise either from a single large population or from several populations provided there were strong migrations during the early phase after domestication. A comparison of Lipizzan haplotypes with 56 maternal lines (according to the pedigrees showed a disagreement of biological parentage with pedigree data for at least 11% of the Lipizzans. A distribution of haplotype-frequencies was unequal (0.2%–26%, mainly due to pedigree errors and haplotype sharing among founder mares.

  6. Hearing aids in children: the importance of the verification and validation processes.

    Science.gov (United States)

    Rissatto, Mara Renata; Novaes, Beatriz Cavalcanti de Albuquerque Caiuby

    2009-01-01

    during the fitting of hearing aids in children it is important, besides using a verification protocol, to have a validation process. to describe and discuss the use of a protocol for the fitting and the verification of hearing aids in children, as well as the impact of the adjustment of the acoustic characteristics in speech perception tasks. ten children aging from three to eleven years were enrolled in this study. All children presented bilateral sensorineural hearing impairment, were users of hearing aids and were followed at a public hearing health care service in Bahia. The children were submitted to the following procedures: pure tone air and bone conduction thresholds; real-ear coupler difference (RECD); verification with real-ear measurement equipment: coupler gain/output and insertion gain and to speech perception tasks: 'The Six-Sound Test' (Ling, 2006) and the 'Word Associations for Syllable Perception' (WASP - Koch, 1999). The programmed electro acoustic characteristics of the hearing aids were compared to the electro acoustic characteristics prescribed by the DSL [i/o] v4.1 software. The speech perception tasks were reapplied on three occasions: straight after the modification of the electro acoustic characteristics, after 30 days and 60 days. for more than 50% of the tested children, the programmed electro acoustic characteristics of the hearing aids did not correspond to that suggested by the DSL [i/o] software. Adequate prescription was verified in 70% of the investigated sample; this was also confirmed by the results in the speech perception tasks (p=0.000). This data confirmed that the mean percentage of correct answers increased after the modification of the electro acoustic characteristics. the use of a protocol that verifies and validates the fitting of hearing aids in children is necessary.

  7. Validity, responsiveness, and minimal clinically important difference of EQ-5D-5L in stroke patients undergoing rehabilitation.

    Science.gov (United States)

    Chen, Poyu; Lin, Keh-Chung; Liing, Rong-Jiuan; Wu, Ching-Yi; Chen, Chia-Ling; Chang, Ku-Chou

    2016-06-01

    To examine the criterion validity, responsiveness, and minimal clinically important difference (MCID) of the EuroQoL 5-Dimensions Questionnaire (EQ-5D-5L) and visual analog scale (EQ-VAS) in people receiving rehabilitation after stroke. The EQ-5D-5L, along with four criterion measures-the Medical Research Council scales for muscle strength, the Fugl-Meyer assessment, the functional independence measure, and the Stroke Impact Scale-was administered to 65 patients with stroke before and after 3- to 4-week therapy. Criterion validity was estimated using the Spearman correlation coefficient. Responsiveness was analyzed by the effect size, standardized response mean (SRM), and criterion responsiveness. The MCID was determined by anchor-based and distribution-based approaches. The percentage of patients exceeding the MCID was also reported. Concurrent validity of the EQ-Index was better compared with the EQ-VAS. The EQ-Index has better power for predicting the rehabilitation outcome in the activities of daily living than other motor-related outcome measures. The EQ-Index was moderately responsive to change (SRM = 0.63), whereas the EQ-VAS was only mildly responsive to change. The MCID estimation of the EQ-Index (the percentage of patients exceeding the MCID) was 0.10 (33.8 %) and 0.10 (33.8 %) based on the anchor-based and distribution-based approaches, respectively, and the estimation of EQ-VAS was 8.61 (41.5 %) and 10.82 (32.3 %). The EQ-Index has shown reasonable concurrent validity, limited predictive validity, and acceptable responsiveness for detecting the health-related quality of life in stroke patients undergoing rehabilitation, but not for EQ-VAS. Future research considering different recovery stages after stroke is warranted to validate these estimations.

  8. [Questionnaire to evaluate the importance of the family in nursing care. Validation of the Spanish version (FINC-NA)].

    Science.gov (United States)

    Pascual Fernández, M C; Ignacio Cerro, M C; Cervantes Estévez, L; Jiménez Carrascosa, M A; Medina Torres, M; García Pozo, A M

    2015-01-01

    The nursing profession is focused on patient care, without forgetting that patients are part of a social group, the family. The aim of this study was the adaptation of the "Families' Importance in Nursing Care-Nurses' Attitudes" (FINC-NA) scale to the Spanish language and its validation. A descriptive cross-sectional study was carried out, using the bidirectional translation method for linguistic-cultural adaptation. It was applied to the nursing staff in the Paediatric Department of a University Hospital in Madrid. To evaluate the psychometric properties of the Spanish version, reliability, internal consistence and construct validity were calculated. The sample consisted of 274 professionals. Cronbach´s Alpha coefficient for the total scale was 0.864, oscillating between 0.888 and 0.769 in the subscales. The principal components factor analysis identified 4 factors, which explained 54.22% of total variance. The new instrument makes it possible to determine the importance nurses give to participation by family members and their attitude to involving the latter in patient care, and the possibility of involving them in planning. It has been adapted to the Spanish population with good psychometrics results and enough evidence for its use in this context.

  9. Fascioliasis transmission by Lymnaea neotropica confirmed by nuclear rDNA and mtDNA sequencing in Argentina.

    Science.gov (United States)

    Mera y Sierra, Roberto; Artigas, Patricio; Cuervo, Pablo; Deis, Erika; Sidoti, Laura; Mas-Coma, Santiago; Bargues, Maria Dolores

    2009-12-03

    Fascioliasis is widespread in livestock in Argentina. Among activities included in a long-term initiative to ascertain which are the fascioliasis areas of most concern, studies were performed in a recreational farm, including liver fluke infection in different domestic animal species, classification of the lymnaeid vector and verification of natural transmission of fascioliasis by identification of the intramolluscan trematode larval stages found in naturally infected snails. The high prevalences in the domestic animals appeared related to only one lymnaeid species present. Lymnaeid and trematode classification was verified by means of nuclear ribosomal DNA and mitochondrial DNA marker sequencing. Complete sequences of 18S rRNA gene and rDNA ITS-2 and ITS-1, and a fragment of the mtDNA cox1 gene demonstrate that the Argentinian lymnaeid belongs to the species Lymnaea neotropica. Redial larval stages found in a L. neotropica specimen were ascribed to Fasciola hepatica after analysis of the complete ITS-1 sequence. The finding of L. neotropica is the first of this lymnaeid species not only in Argentina but also in Southern Cone countries. The total absence of nucleotide differences between the sequences of specimens from Argentina and the specimens from the Peruvian type locality at the levels of rDNA 18S, ITS-2 and ITS-1, and the only one mutation at the mtDNA cox1 gene suggest a very recent spread. The ecological characteristics of this lymnaeid, living in small, superficial water collections frequented by livestock, suggest that it may be carried from one place to another by remaining in dried mud stuck to the feet of transported animals. The presence of L. neotropica adds pronounced complexity to the transmission and epidemiology of fascioliasis in Argentina, due to the great difficulties in distinguishing, by traditional malacological methods, between the three similar lymnaeid species of the controversial Galba/Fossaria group present in this country: L. viatrix

  10. Effects of mtDNA in SHR-mtF344 versus SHR conplastic strains on reduced OXPHOS enzyme levels, insulin resistance, cardiac hypertrophy, and systolic dysfunction

    Czech Academy of Sciences Publication Activity Database

    Houštěk, Josef; Vrbacký, Marek; Hejzlarová, Kateřina; Zídek, Václav; Landa, Vladimír; Šilhavý, Jan; Šimáková, Miroslava; Mlejnek, Petr; Kazdová, L.; Mikšík, Ivan; Neckář, Jan; Papoušek, František; Kolář, František; Kurtz, T. W.; Pravenec, Michal

    2014-01-01

    Roč. 46, č. 18 (2014), s. 671-678 ISSN 1094-8341 R&D Projects: GA MŠk(CZ) LL1204; GA ČR(CZ) GB14-36804G; GA ČR(CZ) GA13-10267S; GA MŠk(CZ) 7E10067 Institutional support: RVO:67985823 Keywords : SHR conplastic strain with F344 mtDNA * impaired glucose tolerance * systolic dysfunction Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.374, year: 2014

  11. Investigating the prehistory of Tungusic peoples of Siberia and the Amur-Ussuri region with complete mtDNA genome sequences and Y-chromosomal markers.

    Science.gov (United States)

    Duggan, Ana T; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north.

  12. Investigating the prehistory of Tungusic peoples of Siberia and the Amur-Ussuri region with complete mtDNA genome sequences and Y-chromosomal markers.

    Directory of Open Access Journals (Sweden)

    Ana T Duggan

    Full Text Available Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north.

  13. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa

    Directory of Open Access Journals (Sweden)

    Pennarun Erwan

    2012-12-01

    Full Text Available Abstract Background A Southwest Asian origin and dispersal to North Africa in the Early Upper Palaeolithic era has been inferred in previous studies for mtDNA haplogroups M1 and U6. Both haplogroups have been proposed to show similar geographic patterns and shared demographic histories. Results We report here 24 M1 and 33 U6 new complete mtDNA sequences that allow us to refine the existing phylogeny of these haplogroups. The resulting phylogenetic information was used to genotype a further 131 M1 and 91 U6 samples to determine the geographic spread of their sub-clades. No southwest Asian specific clades for M1 or U6 were discovered. U6 and M1 frequencies in North Africa, the Middle East and Europe do not follow similar patterns, and their sub-clade divisions do not appear to be compatible with their shared history reaching back to the Early Upper Palaeolithic. The Bayesian Skyline Plots testify to non-overlapping phases of expansion, and the haplogroups’ phylogenies suggest that there are U6 sub-clades that expanded earlier than those in M1. Some M1 and U6 sub-clades could be linked with certain events. For example, U6a1 and M1b, with their coalescent ages of ~20,000–22,000 years ago and earliest inferred expansion in northwest Africa, could coincide with the flourishing of the Iberomaurusian industry, whilst U6b and M1b1 appeared at the time of the Capsian culture. Conclusions Our high-resolution phylogenetic dissection of both haplogroups and coalescent time assessments suggest that the extant main branching pattern of both haplogroups arose and diversified in the mid-later Upper Palaeolithic, with some sub-clades concomitantly with the expansion of the Iberomaurusian industry. Carriers of these maternal lineages have been later absorbed into and diversified further during the spread of Afro-Asiatic languages in North and East Africa.

  14. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations.

    Science.gov (United States)

    Elkamel, Sarra; Boussetta, Sami; Khodjet-El-Khil, Houssein; Benammar Elgaaied, Amel; Cherni, Lotfi

    2018-05-01

    Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE. © 2018 Wiley Periodicals, Inc.

  15. Genetic variations of ND5 gene of mtDNA in populations of Anopheles sinensis (Diptera: Culicidae) malaria vector in China

    Science.gov (United States)

    2013-01-01

    Background Anopheles sinensis is a principal vector for Plasmodium vivax malaria in most parts of China. Understanding of genetic structure and genetic differentiation of the mosquito should contribute to the vector control and malaria elimination in China. Methods The present study investigated the genetic structure of An. sinensis populations using a 729 bp fragment of mtDNA ND5 among 10 populations collected from seven provinces in China. Results ND5 was polymorphic by single mutations within three groups of An. sinensis that were collected from 10 different geographic populations in China. Out of 140 specimens collected from 10 representative sites, 84 haplotypes and 71 variable positions were determined. The overall level of genetic differentiation of An. sinensis varied from low to moderate across China and with a FST range of 0.00065 – 0.341. Genealogy analysis clustered the populations of An. sinensis into three main clusters. Each cluster shared one main haplotype. Pairwise variations within populations were higher (68.68%) than among populations (31.32%) and with high fixation index (FST = 0.313). The results of the present study support population growth and expansion in the An. sinensis populations from China. Three clusters of An. sinensis populations were detected in this study with each displaying different proportion patterns over seven Chinese provinces. No correlation between genetic and geographic distance was detected in overall populations of An. sinensis (R2 = 0.058; P = 0.301). Conclusions The results indicate that the ND5 gene of mtDNA is highly polymorphic in An. sinensis and has moderate genetic variability in the populations of this mosquito in China. Demographic and spatial results support evidence of expansion in An. sinensis populations. PMID:24192424

  16. Validation of survey information on smoking and alcohol consumption against import statistics, Greenland 1993–2010

    Directory of Open Access Journals (Sweden)

    Peter Bjerregaard

    2013-03-01

    Full Text Available Background. Questionnaires are widely used to obtain information on health-related behaviour, and they are more often than not the only method that can be used to assess the distribution of behaviour in subgroups of the population. No validation studies of reported consumption of tobacco or alcohol have been published from circumpolar indigenous communities. Objective. The purpose of the study is to compare information on the consumption of tobacco and alcohol obtained from 3 population surveys in Greenland with import statistics. Design. Estimates of consumption of cigarettes and alcohol using several different survey instruments in cross-sectional population studies from 1993–1994, 1999–2001 and 2005–2010 were compared with import statistics from the same years. Results. For cigarettes, survey results accounted for virtually the total import. Alcohol consumption was significantly under-reported with reporting completeness ranging from 40% to 51% for different estimates of habitual weekly consumption in the 3 study periods. Including an estimate of binge drinking increased the estimated total consumption to 78% of the import. Conclusion. Compared with import statistics, questionnaire-based population surveys capture the consumption of cigarettes well in Greenland. Consumption of alcohol is under-reported, but asking about binge episodes in addition to the usual intake considerably increased the reported intake in this population and made it more in agreement with import statistics. It is unknown to what extent these findings at the population level can be inferred to population subgroups.

  17. A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae based on mtDNA COI gene: a test of traditional classification

    Directory of Open Access Journals (Sweden)

    Mahir Budak

    2011-09-01

    Full Text Available Cephinae is traditionally divided into three tribes and about 24 genera based on morphology and host utilization. There has been no study testing the monophyly of taxa under a strict phylogenetic criterion. A molecular phylogeny of Cephinae based on a total of 68 sequences of mtDNA COI gene, representing seven genera of Cephinae, is reconstructed to test the traditional limits and relationships of taxa. Monophyly of the traditional tribes is not supported. Monophyly of the genera are largely supported except for Pachycephus. A few host shift events are suggested based on phylogenetic relationships among taxa. These results indicate that a more robust phylogeny is required for a more plausible conclusion. We also report two species of Cephus for the first time from Turkey.

  18. Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer

    International Nuclear Information System (INIS)

    Xia, Peng; An, Han-Xiang; Dang, Cheng-Xue; Radpour, Ramin; Kohler, Corina; Fokas, Emmanouil; Engenhart-Cabillic, Rita; Holzgreve, Wolfgang; Zhong, Xiao Yan

    2009-01-01

    Alterations of mitochondrial DNA (mtDNA) have been implicated in carcinogenesis. We developed an accurate multiplex quantitative real-time PCR for synchronized determination of mtDNA and nuclear DNA (nDNA). We sought to investigate whether mtDNA content in the peripheral blood of breast cancer patients is associated with clinical and pathological parameters. Peripheral blood samples were collected from 60 patients with breast cancer and 51 age-matched healthy individuals as control. DNA was extracted from peripheral blood for the quantification of mtDNA and nDNA, using a one-step multiplex real-time PCR. A FAM labeled MGB probe and primers were used to amplify the mtDNA sequence of the ATP 8 gene, and a VIC labeled MGB probe and primers were employed to amplify the glyceraldehyde-3-phosphate-dehydrogenase gene. mtDNA content was correlated with tumor stage, menstruation status, and age of patients as well as lymph node status and the expression of estrogen receptor (ER), progesterone receptor (PR) and Her-2/neu protein. The content of mtDNA in stage I breast cancer patients was significantly lower than in other stages (overall P = 0.023). Reduced mtDNA was found often in post menopausal cancer group (P = 0.024). No difference in mtDNA content, in regards to age (p = 0.564), lymph node involvement (p = 0.673), ER (p = 0.877), PR (p = 0.763), and Her-2/neu expression (p = 0.335), was observed. Early detection of breast cancer has proved difficult and current detection methods are inadequate. In the present study, decreased mtDNA content in the peripheral blood of patients with breast cancer was strongly associated with stage I. The use of mtDNA may have diagnostic value and further studies are required to validate it as a potential biomarker for early detection of breast cancer

  19. Molecular phylogeny of grey mullets (Teleostei: Mugilidae) in Greece: evidence from sequence analysis of mtDNA segments.

    Science.gov (United States)

    Papasotiropoulos, Vasilis; Klossa-Kilia, Elena; Alahiotis, Stamatis N; Kilias, George

    2007-08-01

    Mitochondrial DNA sequence analysis has been used to explore genetic differentiation and phylogenetic relationships among five species of the Mugilidae family, Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens. DNA was isolated from samples originating from the Messolongi Lagoon in Greece. Three mtDNA segments (12s rRNA, 16s rRNA, and CO I) were PCR amplified and sequenced. Sequencing analysis revealed that the greatest genetic differentiation was observed between M. cephalus and all the other species studied, while C. labrosus and L. aurata were the closest taxa. Dendrograms obtained by the neighbor-joining method and Bayesian inference analysis exhibited the same topology. According to this topology, M. cephalus is the most distinct species and the remaining taxa are clustered together, with C. labrosus and L. aurata forming a single group. The latter result brings into question the monophyletic origin of the genus Liza.

  20. Investigating the Prehistory of Tungusic Peoples of Siberia and the Amur-Ussuri Region with Complete mtDNA Genome Sequences and Y-chromosomal Markers

    Science.gov (United States)

    Duggan, Ana T.; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north. PMID:24349531

  1. Design for validation: An approach to systems validation

    Science.gov (United States)

    Carter, William C.; Dunham, Janet R.; Laprie, Jean-Claude; Williams, Thomas; Howden, William; Smith, Brian; Lewis, Carl M. (Editor)

    1989-01-01

    Every complex system built is validated in some manner. Computer validation begins with review of the system design. As systems became too complicated for one person to review, validation began to rely on the application of adhoc methods by many individuals. As the cost of the changes mounted and the expense of failure increased, more organized procedures became essential. Attempts at devising and carrying out those procedures showed that validation is indeed a difficult technical problem. The successful transformation of the validation process into a systematic series of formally sound, integrated steps is necessary if the liability inherent in the future digita-system-based avionic and space systems is to be minimized. A suggested framework and timetable for the transformtion are presented. Basic working definitions of two pivotal ideas (validation and system life-cyle) are provided and show how the two concepts interact. Many examples are given of past and present validation activities by NASA and others. A conceptual framework is presented for the validation process. Finally, important areas are listed for ongoing development of the validation process at NASA Langley Research Center.

  2. Enhancing importance-performance analysis

    DEFF Research Database (Denmark)

    Eskildsen, Jacob Kjær; Kristensen, Kai

    2006-01-01

    Purpose: The interpretation of the importance/performance map is based on an assumption of independence between importance and performance but many studies question the validity of this assumption. The aim of this research is to develop a new typology for job satisfaction attributes as well...... as a new importance/performance map that can be an aid for organizations when they prioritize their improvement actions based on a job satisfaction study. Design/methodology/approach: A typology for possible relationships between importance and performance in job satisfaction studies is developed based...... on theoretical considerations. This typology is then applied and validated on approximately 10,000 responses from the European Employee Index 2002. Ultimately a new importance/performance map for priority setting in job satisfaction studies is developed based on the new typology for possible relationships...

  3. Validating spatiotemporal predictions of an important pest of small grains.

    Science.gov (United States)

    Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J

    2015-01-01

    Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.

  4. Capillary electrophoresis of Big-Dye terminator sequencing reactions for human mtDNA Control Region haplotyping in the identification of human remains.

    Science.gov (United States)

    Montesino, Marta; Prieto, Lourdes

    2012-01-01

    Cycle sequencing reaction with Big-Dye terminators provides the methodology to analyze mtDNA Control Region amplicons by means of capillary electrophoresis. DNA sequencing with ddNTPs or terminators was developed by (1). The progressive automation of the method by combining the use of fluorescent-dye terminators with cycle sequencing has made it possible to increase the sensibility and efficiency of the method and hence has allowed its introduction into the forensic field. PCR-generated mitochondrial DNA products are the templates for sequencing reactions. Different set of primers can be used to generate amplicons with different sizes according to the quality and quantity of the DNA extract providing sequence data for different ranges inside the Control Region.

  5. The German version of the Expanded Prostate Cancer Index Composite (EPIC): translation, validation and minimal important difference estimation.

    Science.gov (United States)

    Umbehr, Martin H; Bachmann, Lucas M; Poyet, Cedric; Hammerer, Peter; Steurer, Johann; Puhan, Milo A; Frei, Anja

    2018-02-20

    No official German translation exists for the 50-item Expanded Prostate Cancer Index Composite (EPIC), and no minimal important difference (MID) has been established yet. The aim of the study was to translate and validate a German version of the EPIC with cultural adaptation to the different German speaking countries and to establish the MID. We translated and culturally adapted the EPIC into German. For validation, we included a consecutive subsample of 92 patients with localized prostate cancer undergoing radical prostatectomy who participated the Prostate Cancer Outcomes Cohort. Baseline and follow-up assessments took place before and six weeks after prostatectomy in 2010 and 2011. We assessed the EPIC, EORTC QLQ-PR25, Feeling Thermometer, SF-36 and a global rating of health state change variable. We calculated the internal consistency, test-retest reliability, construct validity, responsiveness and MID. For most EPIC domains and subscales, our a priori defined criteria for reliability were fulfilled (construct reliability: Cronbach's alpha 0.7-0.9; test-retest reliability: intraclass-correlation coefficient ≥ 0.7). Cross-sectional and longitudinal correlations between EPIC and EORTC QLQ-PR25 domains ranged from 0.14-0.79, and 0.06-0.5 and 0.08-0.72 for Feeling Thermometer and SF-36, respectively. We established MID values of 10, 4, 12, and 6 for the urinary, bowel, sexual and hormonal domain. The German version of the EPIC is reliable, responsive and valid to measure HRQL in prostate cancer patients and is now available in German language. With the suggested MID we provide interpretation to what extent changes in HRQL are clinically relevant for patients. Hence, study results are of interest beyond German speaking countries.

  6. The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates.

    Directory of Open Access Journals (Sweden)

    Jonci N Wolff

    Full Text Available In most species mitochondrial DNA (mtDNA is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of

  7. The importance of content and face validity in instrument development: lessons learnt from service users when developing the Recovering Quality of Life measure (ReQoL).

    Science.gov (United States)

    Connell, Janice; Carlton, Jill; Grundy, Andrew; Taylor Buck, Elizabeth; Keetharuth, Anju Devianee; Ricketts, Thomas; Barkham, Michael; Robotham, Dan; Rose, Diana; Brazier, John

    2018-07-01

    Service user involvement in instrument development is increasingly recognised as important, but is often not done and seldom reported. This has adverse implications for the content validity of a measure. The aim of this paper is to identify the types of items that service users felt were important to be included or excluded from a new Recovering Quality of Life measure for people with mental health difficulties. Potential items were presented to service users in face-to-face structured individual interviews and focus groups. The items were primarily taken or adapted from current measures and covered themes identified from earlier qualitative work as being important to quality of life. Content and thematic analysis was undertaken to identify the types of items which were either important or unacceptable to service users. We identified five key themes of the types of items that service users found acceptable or unacceptable; the items should be relevant and meaningful, unambiguous, easy to answer particularly when distressed, do not cause further upset, and be non-judgemental. Importantly, this was from the perspective of the service user. This research has underlined the importance of service users' views on the acceptability and validity of items for use in developing a new measure. Whether or not service users favoured an item was associated with their ability or intention to respond accurately and honestly to the item which will impact on the validity and sensitivity of the measure.

  8. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  9. HUBUNGAN KEKERABATAN BEBERAPA POPULASI KERANG HIJAU (Perna viridis DI INDONESIA BERDASARKAN SEKUEN CYTROCROME B mtDNA

    Directory of Open Access Journals (Sweden)

    Achmad Sudradjat

    2016-11-01

    Full Text Available Penelitian ini dilakukan untuk mengetahui hubungan kekerabatan stok kerang hijau (Perna viridis di beberapa perairan Indonesia sebagai informasi dasar bagi program pemuliaan. Sampel kerang hijau yang berasal dari populasi alam perairan Tanjung Kait, Kamal, Panimbang, Cirebon, Pasuruan, Kenjeran, dan Pangkep diambil secara acak. Amplifikasi PCR dan sekuensing mitokondria daerah cytochrome B adalah HCO (F: 5’-TAA ACT TCA GGG TGA CCA AAA AAT CA-3’ (26 bp dan LCO (R: 5’-GGT CAA CAA ATC ATA AAG ATA TTG G-3’ (25 bp. Sekuen DNA yang diperoleh digunakan untuk analisis homologi, analisis genetic distance dan analisis kekerabatan. Hasil analisis homologi susunan nukleotida berdasarkan BLAST-N terhadap sekuen mtDNA Perna viridis yang tersimpan di Genebank menunjukkan similaritas 97%. Hasil analisis didapatkan jarak genetik yang terdekat adalah populasi Tanjung Kait dengan Kenjeran sedangkan jarak genetik terjauh adalah populasi Cirebon dengan Kamal. Hubungan kekerabatan yang ditunjukkan dengan dendrogram diperoleh 2 kelompok yaitu 6 populasi membentuk satu kelompok dan populasi Cirebon membentuk kluster tersendiri. Sekuens tersebut mungkin dapat digunakan sebagai penanda dalam program breeding kerang hijau di Indonesia

  10. The mitochondrial genome in embryo technologies.

    Science.gov (United States)

    Hiendleder, S; Wolf, E

    2003-08-01

    The mammalian mitochondrial genome encodes for 37 genes which are involved in a broad range of cellular functions. The mitochondrial DNA (mtDNA) molecule is commonly assumed to be inherited through oocyte cytoplasm in a clonal manner, and apparently species-specific mechanisms have evolved to eliminate the contribution of sperm mitochondria after natural fertilization. However, recent evidence for paternal mtDNA inheritance in embryos and offspring questions the general validity of this model, particularly in the context of assisted reproduction and embryo biotechnology. In addition to normal mt DNA haplotype variation, oocytes and spermatozoa show remarkable differences in mtDNA content and may be affected by inherited or acquired mtDNA aberrations. All these parameters have been correlated with gamete quality and reproductive success rates. Nuclear transfer (NT) technology provides experimental models for studying interactions between nuclear and mitochondrial genomes. Recent studies demonstrated (i) a significant effect of mtDNA haplotype or other maternal cytoplasmic factors on the efficiency of NT; (ii) phenotypic differences between transmitochondrial clones pointing to functionally relevant nuclear-cytoplasmic interactions; and (iii) neutral or non-neutral selection of mtDNA haplotypes in heteroplasmic conditions. Mitochondria form a dynamic reticulum, enabling complementation of mitochondrial components and possibly mixing of different mtDNA populations in heteroplasmic individuals. Future directions of research on mtDNA in the context of reproductive biotechnology range from the elimination of adverse effects of artificial heteroplasmy, e.g. created by ooplasm transfer, to engineering of optimized constellations of nuclear and cytoplasmic genes for the production of superior livestock.

  11. Molecular oncology focus - Is carcinogenesis a 'mitochondriopathy'?

    Directory of Open Access Journals (Sweden)

    Ścińska Anna

    2010-04-01

    Full Text Available Abstract Mitochondria are sub-cellular organelles that produce adenosine triphosphate (ATP through oxidative phosphorylation (OXPHOS. As suggested over 70 years ago by Otto Warburg and recently confirmed with molecular techniques, alterations in respiratory activity and in mitochondrial DNA (mtDNA appear to be common features of malignant cells. Somatic mtDNA mutations have been reported in many types of cancer cells, and some reports document the prevalence of inherited mitochondrial DNA polymorphisms in cancer patients. Nevertheless, a careful reanalysis of methodological criteria and methodology applied in those reports has shown that numerous papers can't be used as relevant sources of data for systematic review, meta-analysis, or finally for establishment of clinically applicable markers. In this review technical and conceptual errors commonly occurring in the literature are summarized. In the first place we discuss, why many of the published papers cannot be used as a valid and clinically useful sources of evidence in the biomedical and healthcare contexts. The reasons for introduction of noise in data and in consequence - bias for the interpretation of the role of mitochondrial DNA in the complex process of tumorigenesis are listed. In the second part of the text practical aspects of mtDNA research and requirements necessary to fulfill in order to use mtDNA analysis in clinics are shown. Stringent methodological criteria of a case-controlled experiment in molecular medicine are indicated. In the third part we suggest, what lessons can be learned for the future and propose guidelines for mtDNA analysis in oncology. Finally we conclude that, although several conceptual and methodological difficulties hinder the research on mitochondrial patho-physiology in cancer cells, this area of molecular medicine should be considered of high importance for future clinical practice.

  12. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA

    Directory of Open Access Journals (Sweden)

    Arthur Gusman

    2016-12-01

    Full Text Available There is only one exception to strict maternal inheritance of mitochondrial DNA (mtDNA in the animal kingdom: a system named doubly uniparental inheritance (DUI, which is found in several bivalve species. Why and how such a radically different system of mitochondrial transmission evolved in bivalve remains obscure. Obtaining a more complete taxonomic distribution of DUI in the Bivalvia may help to better understand its origin and function. In this study we provide evidence for the presence of sex-linked heteroplasmy (thus the possible presence of DUI in two bivalve species, i.e., the nuculanoid Yoldia hyperborea(Gould, 1841and the veneroid Scrobicularia plana(Da Costa,1778, increasing the number of families in which DUI has been found by two. An update on the taxonomic distribution of DUI in the Bivalvia is also presented.

  13. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    Science.gov (United States)

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  14. The current status of studies on mitochondrial DNA with tumor, radiation biological effects and aging

    International Nuclear Information System (INIS)

    Liu Qingjie; Sang Lu

    2004-01-01

    The mitochondrial plays a very important role in sustaining the normal physiological function, because it is the center of energy making and mitochondrial DNA (mtDNA) is the only genetic material outside the nuclear. The result of studies showed that many diseases have a close relationship with mtDNA mutation and deletion. This article reviewed the current status of research on mtDNA with tumor, radiation biological effects and aging, in order to initiate the application study of mtDNA in the circle of radiation medicine

  15. MtDNA genetic diversity and structure of Eurasian Collared Dove (Streptopelia decaocto).

    Science.gov (United States)

    Bagi, Zoltán; Dimopoulos, Evangelos Antonis; Loukovitis, Dimitrios; Eraud, Cyril; Kusza, Szilvia

    2018-01-01

    The Eurasian Collared Dove (Streptopelia decaocto) is one of the most successful biological invaders among terrestrial vertebrates. However, little information is available on the genetic diversity of the species. A total of 134 Eurasian Collared Doves from Europe, Asia and the Caribbean (n = 20) were studied by sequencing a 658-bp length of mitochondrial DNA (mtDNA) cytochrome oxidase I (COI). Fifty-two different haplotypes and relatively high haplotype and nucleotide diversities (Hd±SD = 0.843±0.037 and π±SD = 0.026±0.013) were detected. Haplotype Ht1 was particularly dominant: it included 44.03% of the studied individuals, and contained sequences from 75% of the studied countries. Various analyses (FST, AMOVA, STRUCTURE) distinguished 2 groups on the genetic level, designated 'A' and 'B'. Two groups were also separated in the median-joining network and the maximum likelihood tree. The results of the neutrality tests were negative (Fu FS = -25.914; Tajima D = -2.606) and significantly different from zero (P≤0.001) for group A, whereas both values for group B were positive (Fu FS = 1.811; Tajima D = 0.674) and not significant (P>0.05). Statistically significant positive autocorrelation was revealed among individuals located up to 2000 km apart (r = 0.124; P = 0.001). The present results provide the first information on the genetic diversity and structure of the Eurasian Collared Dove, and can thereby serve as a factual and comparative basis for similar studies in the future.

  16. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer.

    Science.gov (United States)

    Srirattana, Kanokwan; St John, Justin C

    2018-05-08

    We generated cattle embryos using mitochondrial supplementation and somatic cell nuclear transfer (SCNT), named miNT, to determine how additional mitochondrial DNA (mtDNA) modulates the nuclear genome. To eliminate any confounding effects from somatic cell mtDNA in intraspecies SCNT, donor cell mtDNA was depleted prior to embryo production. Additional oocyte mtDNA did not affect embryo development rates but increased mtDNA copy number in blastocyst stage embryos. Moreover, miNT-derived blastocysts had different gene expression profiles when compared with SCNT-derived blastocysts. Additional mtDNA increased expression levels of genes involved in oxidative phosphorylation, cell cycle and DNA repair. Supplementing the embryo culture media with a histone deacetylase inhibitor, Trichostatin A (TSA), had no beneficial effects on the development of miNT-derived embryos, unlike SCNT-derived embryos. When compared with SCNT-derived blastocysts cultured in the presence of TSA, additional mtDNA alone had beneficial effects as the activity of glycolysis may increase and embryonic cell death may decrease. However, these beneficial effects were not found with additional mtDNA and TSA together, suggesting that additional mtDNA alone enhances reprogramming. In conclusion, additional mtDNA increased mtDNA copy number and expression levels of genes involved in energy production and embryo development in blastocyst stage embryos emphasising the importance of nuclear-mitochondrial interactions.

  17. Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    John P Grady

    Full Text Available Accurate and reliable quantification of the abundance of mitochondrial DNA (mtDNA molecules, both wild-type and those harbouring pathogenic mutations, is important not only for understanding the progression of mtDNA disease but also for evaluating novel therapeutic approaches. A clear understanding of the sensitivity of mtDNA measurement assays under different experimental conditions is therefore critical, however it is routinely lacking for most published mtDNA quantification assays. Here, we comprehensively assess the variability of two quantitative Taqman real-time PCR assays, a widely-applied MT-ND1/MT-ND4 multiplex mtDNA deletion assay and a recently developed MT-ND1/B2M singleplex mtDNA copy number assay, across a range of DNA concentrations and mtDNA deletion/copy number levels. Uniquely, we provide a specific guide detailing necessary numbers of sample and real-time PCR plate replicates for accurately and consistently determining a given difference in mtDNA deletion levels and copy number in homogenate skeletal muscle DNA.

  18. Geographic structure and demographic history of Iranian brown bear (Ursus arctos based on mtDNA control region sequences

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ashrafzadeh

    2015-12-01

    Full Text Available In recent years, the brown bear's range has declined and its populations in some areas have faced extinction. Therefore, to have a comprehensive picture of genetic diversity and geographic structure of populations is essential for effective conservation strategies. In this research, we sequenced a 271bp segment of mtDNA control region of seven Iranian brown bears, where a total dataset of 467 sequences (brown and polar bears were used in analyses. Overall, 113 different haplotypes and 77 polymorphic sites were identified within the segment. Based on phylogenetic analyses, Iranian brown bears were not nested in any other clades. The low values of Nm (range=0.014-0.187 and high values of Fst (range=0.728-0.972 among Iranian bears and others revealed a genetically significant differentiation. We aren't found any significant signal of demographic reduction in Iranian bears. The time to the most recent common ancestor of Iranian brown bears (Northern Iran was found to be around 19000 BP.

  19. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA

    DEFF Research Database (Denmark)

    Rebolledo-Jaramillo, Boris; Su, Marcia Shu-Wei; Stoler, Nicholas

    2014-01-01

    The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis......, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies...... and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome....

  20. The Consequences of Consequential Validity.

    Science.gov (United States)

    Mehrens, William A.

    1997-01-01

    There is no agreement at present about the importance or meaning of the term "consequential validity." It is important that the authors of revisions to the "Standards for Educational and Psychological Testing" recognize the debate and relegate discussion of consequences to a context separate from the discussion of validity.…

  1. Content validity and its estimation

    Directory of Open Access Journals (Sweden)

    Yaghmale F

    2003-04-01

    Full Text Available Background: Measuring content validity of instruments are important. This type of validity can help to ensure construct validity and give confidence to the readers and researchers about instruments. content validity refers to the degree that the instrument covers the content that it is supposed to measure. For content validity two judgments are necessary: the measurable extent of each item for defining the traits and the set of items that represents all aspects of the traits. Purpose: To develop a content valid scale for assessing experience with computer usage. Methods: First a review of 2 volumes of International Journal of Nursing Studies, was conducted with onlyI article out of 13 which documented content validity did so by a 4-point content validity index (CV! and the judgment of 3 experts. Then a scale with 38 items was developed. The experts were asked to rate each item based on relevance, clarity, simplicity and ambiguity on the four-point scale. Content Validity Index (CVI for each item was determined. Result: Of 38 items, those with CVIover 0.75 remained and the rest were discarded reSulting to 25-item scale. Conclusion: Although documenting content validity of an instrument may seem expensive in terms of time and human resources, its importance warrants greater attention when a valid assessment instrument is to be developed. Keywords: Content Validity, Measuring Content Validity

  2. Green turtles (Chelonia mydas foraging at Arvoredo Island in Southern Brazil: genetic characterization and mixed stock analysis through mtDNA control region haplotypes

    Directory of Open Access Journals (Sweden)

    Maíra Carneiro Proietti

    2009-01-01

    Full Text Available We analyzed mtDNA control region sequences of green turtles (Chelonia mydas from Arvoredo Island, a foraging ground in southern Brazil, and identified eight haplotypes. Of these, CM-A8 (64% and CM-A5 (22% were dominant, the remainder presenting low frequencies ( 0.05. Mixed Stock Analysis, incorporating eleven Atlantic and one Mediterranean rookery as possible sources of individuals, indicated Ascension and Aves islands as the main contributing stocks to the Arvoredo aggregation (68.01% and 22.96%, respectively. These results demonstrate the extensive relationships between Arvoredo Island and other Atlantic foraging and breeding areas. Such an understanding provides a framework for establishing adequate management and conservation strategies for this endangered species.

  3. Nickel exposure induces oxidative damage to mitochondrial DNA in Neuro2a cells: the neuroprotective roles of melatonin.

    Science.gov (United States)

    Xu, Shang-Cheng; He, Min-Di; Lu, Yong-Hui; Li, Li; Zhong, Min; Zhang, Yan-Wen; Wang, Yuan; Yu, Zheng-Ping; Zhou, Zhou

    2011-11-01

    Recent studies suggest that oxidative stress and mitochondrial dysfunction play important roles in the neurotoxicity of nickel. Because mitochondrial DNA (mtDNA) is highly vulnerable to oxidative stress and melatonin can efficiently protect mtDNA against oxidative damage in various pathological conditions, the aims of this study were to determine whether mtDNA oxidative damage was involved in the neurotoxicity of nickel and to assay the neuroprotective effects of melatonin in mtDNA. In this study, we exposed mouse neuroblastoma cell lines (Neuro2a) to different concentrations of nickel chloride (NiCl(2), 0.125, 0.25, and 0.5 mm) for 24 hr. We found that nickel significantly increased reactive oxygen species (ROS) production and mitochondrial superoxide levels. In addition, nickel exposure increased mitochondrial 8-hydroxyguanine (8-OHdG) content and reduced mtDNA content and mtDNA transcript levels. Consistent with this finding, nickel was found to destroy mtDNA nucleoid structure and decrease protein levels of Tfam, a key protein component for nucleoid organization. However, all the oxidative damage to mtDNA induced by nickel was efficiently attenuated by melatonin pretreatment. Our results suggest that oxidative damage to mtDNA may account for the neurotoxicity of nickel. Melatonin has great pharmacological potential in protecting mtDNA against the adverse effects of nickel in the nervous system. © 2011 John Wiley & Sons A/S.

  4. Validation of self-reported erythema

    DEFF Research Database (Denmark)

    Petersen, B; Thieden, E; Lerche, C M

    2013-01-01

    Most epidemiological data of sunburn related to skin cancer have come from self-reporting in diaries and questionnaires. We thought it important to validate the reliability of such data.......Most epidemiological data of sunburn related to skin cancer have come from self-reporting in diaries and questionnaires. We thought it important to validate the reliability of such data....

  5. Some considerations for validation of repository performance assessment models

    International Nuclear Information System (INIS)

    Eisenberg, N.

    1991-01-01

    Validation is an important aspect of the regulatory uses of performance assessment. A substantial body of literature exists indicating the manner in which validation of models is usually pursued. Because performance models for a nuclear waste repository cannot be tested over the long time periods for which the model must make predictions, the usual avenue for model validation is precluded. Further impediments to model validation include a lack of fundamental scientific theory to describe important aspects of repository performance and an inability to easily deduce the complex, intricate structures characteristic of a natural system. A successful strategy for validation must attempt to resolve these difficulties in a direct fashion. Although some procedural aspects will be important, the main reliance of validation should be on scientific substance and logical rigor. The level of validation needed will be mandated, in part, by the uses to which these models are put, rather than by the ideal of validation of a scientific theory. Because of the importance of the validation of performance assessment models, the NRC staff has engaged in a program of research and international cooperation to seek progress in this important area. 2 figs., 16 refs

  6. Oocyte mitochondrial deletions and heteroplasmy in a bovine model of ageing and ovarian stimulation.

    Science.gov (United States)

    Hammond, Elizabeth R; Green, Mark P; Shelling, Andrew N; Berg, Martin C; Peek, John C; Cree, Lynsey M

    2016-04-01

    the detection threshold for mtDNA heteroplasmy levels in individual oocytes, a novel NGS methodology was validated; artificial mixtures of the Bos taurus and Bos indicus mitochondrial genome were generated at 1, 2, 5, 15 and 50% ratios to experimentally mimic different levels of heteroplasmy. This NGS methodology was then employed to determine mtDNA heteroplasmy levels in single oocytes (n = 24). Oocyte mtDNA deletion and heteroplasmy data were analysed by binary logistic regression with respect to the effects of ovarian ageing and ovarian stimulation regimens. Ovarian ageing, but not ovarian stimulation, increased the number of oocytes exhibiting mtDNA deletions (P = 0.04). A minimum mtDNA heteroplasmy level of 2% was validated as a sensitive (97-100%) threshold for variant detection in individual oocytes using NGS. Few mtDNA heteroplasmies were detected across the individual oocytes, with only 15 oocyte-specific variants confined to two of the 24 oocytes studied. There was no relationship (P > 0.05) evident between ovarian ageing or ovarian stimulation and the presence of mtDNA heteroplasmies. The low number of oocytes collected from the natural ovarian cycles limited the analysis. Fertilization and developmental potential of the oocytes was not assessed as the oocytes were destroyed for mtDNA deletion and heteroplasmy analysis. If the findings of this model apply to the human, this study suggests that the incidence of mtDNA deletions increases with age, but not with degree of ovarian stimulation, while the frequency of mtDNA heteroplasmies may be low regardless of ovarian ageing or level of ovarian stimulation. Funding was provided by Fertility Associates, the Nurture Foundation for Reproductive Research, the Fertility Society of Australia, and the Auckland Medical Research Foundation. J.C.P. is a shareholder of Fertility Associates and M.P.G. received a fellowship from Fertility Associates. The other authors of this manuscript declare no conflict of interest that

  7. Probing the phylogenetic relationships of a few newly recorded intertidal zoanthids of Gujarat coast (India) with mtDNA COI sequences.

    Science.gov (United States)

    Joseph, Sneha; Poriya, Paresh; Kundu, Rahul

    2016-11-01

    The present study reports the phylogenetic relationship of six zoanthid species belonging to three genera, Isaurus, Palythoa, and Zoanthus identified using systematic computational analysis of mtDNA gene sequences. All six species are first recorded from the coasts of Kathiawar Peninsula, India. Genus: Isaurus is represented by Isaurus tuberculatus, genus Zoanthus is represented by Zoanthus kuroshio and Zoanthus sansibaricus, while genus Palythoa is represented by Palythoa tuberculosa, P. sp. JVK-2006 and Palythoa heliodiscus. Results of the present study revealed that among the various species observed along the coastline, a minimum of 99% sequence divergence and a maximum of 96% sequence divergence were seen. An interspecific divergence of 1-4% and negligible intraspecific divergence was observed. These results not only highlighted the efficiency of the COI gene region in species identification but also demonstrated the genetic variability of zoanthids along the Saurashtra coastline of the west coast of India.

  8. Application of oligonucleotide array CGH to the simultaneous detection of a deletion in the nuclear TK2 gene and mtDNA depletion.

    Science.gov (United States)

    Zhang, Shulin; Li, Fang-Yuan; Bass, Harold N; Pursley, Amber; Schmitt, Eric S; Brown, Blaire L; Brundage, Ellen K; Mardach, Rebecca; Wong, Lee-Jun

    2010-01-01

    Thymidine kinase 2 (TK2), encoded by the TK2 gene on chromosome 16q22, is one of the deoxyribonucleoside kinases responsible for the maintenance of mitochondrial deoxyribonucleotide pools. Defects in TK2 mainly cause a myopathic form of the mitochondrial DNA depletion syndrome (MDDS). Currently, only point mutations and small insertions and deletions have been reported in TK2 gene; gross rearrangements of TK2 gene and possible hepatic involvement in patients with TK2 mutations have not been described. We report a non-consanguineous Jordanian family with three deceased siblings due to mtDNA depletion. Sequence analysis of the father detected a heterozygous c.761T>A (p.I254N) mutation in his TK2 gene; however, point mutations in the mother were not detected. Subsequent gene dosage analysis using oligonucleotide array CGH identified an intragenic approximately 5.8-kb deletion encompassing the 5'UTR to intron 2 of her TK2 gene. Sequence analysis confirmed that the deletion spans c.1-495 to c.283-2899 of the TK2 gene (nucleotide 65,136,256-65,142,086 of chromosome 16). Analysis of liver and muscle specimens from one of the deceased infants in this family revealed compound heterozygosity for the paternal point mutation and maternal intragenic deletion. In addition, a significant reduction of the mtDNA content in liver and muscle was detected (10% and 20% of age- and tissue-matched controls, respectively). Prenatal diagnosis was performed in the third pregnancy. The fetus was found to carry both the point mutation and the deletion. This child died 6months after birth due to myopathy. A serum specimen demonstrated elevated liver transaminases in two of the infants from whom results were available. This report expands the mutation spectrum associated with TK2 deficiency. While the myopathic form of MDDS appears to be the main phenotype of TK2 mutations, liver dysfunction may also be a part of the mitochondrial depletion syndrome caused by TK2 gene defects.

  9. Mitochondrial DNA Copy Number in Peripheral Blood Is Independently Associated with Visceral Fat Accumulation in Healthy Young Adults

    Directory of Open Access Journals (Sweden)

    Jee-Yon Lee

    2014-01-01

    Full Text Available Aims. Visceral obesity is associated with an increased risk of cardiometabolic diseases and it is important to identify the underlying mechanisms. There is growing evidence that mitochondrial dysfunction is associated with metabolic disturbances related to visceral obesity. In addition, maintaining mitochondrial DNA (mtDNA copy number is important for preserving mitochondrial function. Therefore, we investigated the relationship between mtDNA copy number and visceral fat in healthy young adults. Methods. A total of 94 healthy young subjects were studied. Biomarkers of metabolic risk factors were assessed along with body composition by computed tomography. mtDNA copy number was measured in peripheral leukocytes using real-time polymerase chain reaction (PCR methods. Results. The mtDNA copy number correlated with BMI (r=-0.22, P=0.04, waist circumference (r=-0.23, P=0.03, visceral fat area (r=-0.28, P=-0.01, HDL-cholesterol levels (r=0.25, P=0.02, and hs-CRP (r=0.32, P=0.02 after adjusting for age and sex. Both stepwise and nonstepwise multiple regression analyses confirmed that visceral fat area was independently associated with mtDNA copy number (β=-0.33, P<0.01, β=0.32, and P=0.03, resp.. Conclusions. An independent association between mtDNA content and visceral adiposity was identified. These data suggest that mtDNA copy number is a potential predictive marker for metabolic disturbances. Further studies are required to understand the causality and clinical significance of our findings.

  10. How valid are commercially available medical simulators?

    Science.gov (United States)

    Stunt, JJ; Wulms, PH; Kerkhoffs, GM; Dankelman, J; van Dijk, CN; Tuijthof, GJM

    2014-01-01

    Background Since simulators offer important advantages, they are increasingly used in medical education and medical skills training that require physical actions. A wide variety of simulators have become commercially available. It is of high importance that evidence is provided that training on these simulators can actually improve clinical performance on live patients. Therefore, the aim of this review is to determine the availability of different types of simulators and the evidence of their validation, to offer insight regarding which simulators are suitable to use in the clinical setting as a training modality. Summary Four hundred and thirty-three commercially available simulators were found, from which 405 (94%) were physical models. One hundred and thirty validation studies evaluated 35 (8%) commercially available medical simulators for levels of validity ranging from face to predictive validity. Solely simulators that are used for surgical skills training were validated for the highest validity level (predictive validity). Twenty-four (37%) simulators that give objective feedback had been validated. Studies that tested more powerful levels of validity (concurrent and predictive validity) were methodologically stronger than studies that tested more elementary levels of validity (face, content, and construct validity). Conclusion Ninety-three point five percent of the commercially available simulators are not known to be tested for validity. Although the importance of (a high level of) validation depends on the difficulty level of skills training and possible consequences when skills are insufficient, it is advisable for medical professionals, trainees, medical educators, and companies who manufacture medical simulators to critically judge the available medical simulators for proper validation. This way adequate, safe, and affordable medical psychomotor skills training can be achieved. PMID:25342926

  11. Characterization of a Dairy Gyr herd with respect to its mitochondrial DNA (mt DNA origin

    Directory of Open Access Journals (Sweden)

    Anibal Eugênio Vercesi Filho

    2010-01-01

    Full Text Available The Zebu breeds were introduced in Brazil mainly in the last century by imports from the Indian subcontinent. When the Zebu cattle arrived, the national herd suffered a significative change by backcrossing the national cows of taurine origin with Zebu sires. These processes created a polymorphism in the mitochondrial DNA (mtDNA in the Zebu animals with are in a major part derived from backcrossing and sharing mtDNA of taurine origin. To verify the maternal origin of cows belonging to the Dairy Gyr herd of APTA, Mococa 60 females were analyzed and 33 presented mtDNA from Bos taurus origin and 27 presented mtDNA from Bos indicus origin. None of these animals presented patterns of both mtDNA origins, indicating absence of heteroplasmy for these mitochondrial genotypes.

  12. Monitoring Saccharomyces cerevisiae populations by mtDNA restriction analysis and other molecular typing methods during spontaneous fermentation for production of the artisanal cachaça Monitoramento das populações de Saccharomyces cerevisiae pela análise de restrição do mtDNA e outros métodos de tipagem molecular durante a fermentação espontânea para a produção da cachaça artesanal

    Directory of Open Access Journals (Sweden)

    Roberta A.C. Araújo

    2007-06-01

    Full Text Available An ecological study on Saccharomyces cerevisiae populations in spontaneous fermentation has been conducted in three vats of a cachaça distillery in Minas Gerais, Brazil. Ninety-seven yeast isolates were collected at the beginning, the middle and at the end of the production period, and were identified by standard methods. Differentiation between the indigenous S. cerevisiae strains isolated was performed by mitochondrial DNA (mtDNA restriction analysis, RAPD-PCR, and PCR fingerprint using an intron splice primer. Analysis of the mtDNA restriction profiles revealed 12 different patterns, 11 corresponding to indigenous yeasts (I to XI and one (XII to a commercial strain of the bakery yeast. Pattern II (53.6% of the population and pattern IV strains were present in all the vats. Pattern IV strain raised from the middle to the end of the period reaching proportions near those of pattern II strain. PCR methods allowed the differentiation of 41 molecular profiles. Both methods showed population fluctuation of S. cerevisiae strains along the period of cachaça production and among different vats of the distillery.Um estudo ecológico das populações de Saccharomyces cerevisiae em fermentações espontâneas foi conduzido em três dornas de uma destilaria de cachaça em Minas Gerais, Brasil. Noventa e sete isolados foram coletados no início, meio e final do período de produção, e identificados por métodos padrões. A diferenciação entre as linhagens isoladas de S. cerevisiae indígenas foi feita pela analise de restrição do DNA mitocondrial (mtDNA, RAPD-PCR, e PCR por impressão digital do DNA utilizando um iniciador complementar a sítios de processamento de íntron. As análises dos perfis de restrição do mtDNA mostraram a ocorrência de 12 perfis diferentes, sendo 11 correspondentes as leveduras indígenas (I ao XI e um (XII a uma linhagem comercial de levedura de panificação. Linhagens com o perfil II (53,6% da população e o perfil

  13. Reconstructing the origin of the Lapita Cultural Complex: mtDNA analyses of East Sepik Province, PNG.

    Science.gov (United States)

    Vilar, Miguel G; Kaneko, Akira; Hombhanje, Francis W; Tsukahara, Takahiro; Hwaihwanje, Ilomo; Lum, J Koji

    2008-01-01

    The colonization of Oceania occurred in two waves. By 32,000 BP, humans had reached New Guinea and settled all intervisible islands east to the Solomon Islands. Around 3,500 BP, a distinct intrusive group from Southeast Asia reached coastal New Guinea, integrated their components with indigenous resources, and gave rise to the Lapita Cultural Complex. Within 2,500 years, Lapita and its descendant cultures colonized the Pacific. To uncover the origin of the Lapita Cultural Complex, we analyzed the hypervariable region I of the mitochondrial deoxyribonucleic acid (mtDNA) in 219 individuals from eight East Sepik Province villages: two villages in each of four environmental zones. Same-zone villages spoke different languages: one Austronesian and three Papuan (Arapesh, Abelam, and Boiken). Our analysis examined whether language or geography better predicted gene flow. In general, language better predicted genetic affinities. Boiken villages across all four zones showed no significant genetic difference (F(ST) P value > 0.05). In contrast, the Austronesian village was significantly different to most other villages (P 0.05). We interpret the data to reflect limited gene flow inland by Austronesians overshadowed by a regional displacement by inland Boiken speakers migrating seaward. These results are consistent with oral histories and ethnographic accounts.

  14. In search of the genetic footprints of Sumerians: a survey of Y-chromosome and mtDNA variation in the Marsh Arabs of Iraq

    Directory of Open Access Journals (Sweden)

    Olivieri Anna

    2011-10-01

    Full Text Available Abstract Background For millennia, the southern part of the Mesopotamia has been a wetland region generated by the Tigris and Euphrates rivers before flowing into the Gulf. This area has been occupied by human communities since ancient times and the present-day inhabitants, the Marsh Arabs, are considered the population with the strongest link to ancient Sumerians. Popular tradition, however, considers the Marsh Arabs as a foreign group, of unknown origin, which arrived in the marshlands when the rearing of water buffalo was introduced to the region. Results To shed some light on the paternal and maternal origin of this population, Y chromosome and mitochondrial DNA (mtDNA variation was surveyed in 143 Marsh Arabs and in a large sample of Iraqi controls. Analyses of the haplogroups and sub-haplogroups observed in the Marsh Arabs revealed a prevalent autochthonous Middle Eastern component for both male and female gene pools, with weak South-West Asian and African contributions, more evident in mtDNA. A higher male than female homogeneity is characteristic of the Marsh Arab gene pool, likely due to a strong male genetic drift determined by socio-cultural factors (patrilocality, polygamy, unequal male and female migration rates. Conclusions Evidence of genetic stratification ascribable to the Sumerian development was provided by the Y-chromosome data where the J1-Page08 branch reveals a local expansion, almost contemporary with the Sumerian City State period that characterized Southern Mesopotamia. On the other hand, a more ancient background shared with Northern Mesopotamia is revealed by the less represented Y-chromosome lineage J1-M267*. Overall our results indicate that the introduction of water buffalo breeding and rice farming, most likely from the Indian sub-continent, only marginally affected the gene pool of autochthonous people of the region. Furthermore, a prevalent Middle Eastern ancestry of the modern population of the marshes of

  15. The Role of Generalizability in Validity.

    Science.gov (United States)

    Kane, Michael

    The relationship between generalizability and validity is explained, making four important points. The first is that generalizability coefficients provide upper bounds on validity. The second point is that generalization is one step in most interpretive arguments, and therefore, generalizability is a necessary condition for the validity of these…

  16. How valid are commercially available medical simulators?

    Directory of Open Access Journals (Sweden)

    Stunt JJ

    2014-10-01

    Full Text Available JJ Stunt,1 PH Wulms,2 GM Kerkhoffs,1 J Dankelman,2 CN van Dijk,1 GJM Tuijthof1,2 1Orthopedic Research Center Amsterdam, Department of Orthopedic Surgery, Academic Medical Centre, Amsterdam, the Netherlands; 2Department of Biomechanical Engineering, Faculty of Mechanical, Materials and Maritime Engineering, Delft University of Technology, Delft, the Netherlands Background: Since simulators offer important advantages, they are increasingly used in medical education and medical skills training that require physical actions. A wide variety of simulators have become commercially available. It is of high importance that evidence is provided that training on these simulators can actually improve clinical performance on live patients. Therefore, the aim of this review is to determine the availability of different types of simulators and the evidence of their validation, to offer insight regarding which simulators are suitable to use in the clinical setting as a training modality. Summary: Four hundred and thirty-three commercially available simulators were found, from which 405 (94% were physical models. One hundred and thirty validation studies evaluated 35 (8% commercially available medical simulators for levels of validity ranging from face to predictive validity. Solely simulators that are used for surgical skills training were validated for the highest validity level (predictive validity. Twenty-four (37% simulators that give objective feedback had been validated. Studies that tested more powerful levels of validity (concurrent and predictive validity were methodologically stronger than studies that tested more elementary levels of validity (face, content, and construct validity. Conclusion: Ninety-three point five percent of the commercially available simulators are not known to be tested for validity. Although the importance of (a high level of validation depends on the difficulty level of skills training and possible consequences when skills are

  17. Assessment of reliability, validity, responsiveness and minimally important change of the German Hip dysfunction and osteoarthritis outcome score (HOOS) in patients with osteoarthritis of the hip.

    Science.gov (United States)

    Arbab, Dariusch; van Ochten, Johannes H M; Schnurr, Christoph; Bouillon, Bertil; König, Dietmar

    2017-12-01

    Patient-reported outcome measures are a critical tool in evaluating the efficacy of orthopedic procedures. The intention of this study was to evaluate reliability, validity, responsiveness and minimally important change of the German version of the Hip dysfunction and osteoarthritis outcome score (HOOS). The German HOOS was investigated in 251 consecutive patients before and 6 months after total hip arthroplasty. All patients completed HOOS, Oxford-Hip Score, Short-Form (SF-36) and numeric scales for pain and disability. Test-retest reliability, internal consistency, floor and ceiling effects, construct validity and minimal important change were analyzed. The German HOOS demonstrated excellent test-retest reliability with intraclass correlation coefficient values > 0.7. Cronbach´s alpha values demonstrated strong internal consistency. As hypothesized, HOOS subscales strongly correlated with corresponding OHS and SF-36 domains. All subscales showed excellent (effect size/standardized response means > 0.8) responsiveness between preoperative assessment and postoperative follow-up. The HOOS and all subdomains showed higher changes than the minimal detectable change which indicates true changes. The German version of the HOOS demonstrated good psychometric properties. It proved to be valid, reliable and responsive to the changes instrument for use in patients with hip osteoarthritis undergoing total hip replacement.

  18. Farm-by-farm analysis of microsatellite, mtDNA and SNP genotype data reveals inbreeding and crossbreeding as threats to the survival of a native Spanish pig breed.

    Science.gov (United States)

    Herrero-Medrano, J M; Megens, H J; Crooijmans, R P; Abellaneda, J M; Ramis, G

    2013-06-01

    The Chato Murciano (CM), a pig breed from the Murcia region in the southeastern region of Spain, is a good model for endangered livestock populations. The remaining populations are bred on approximately 15 small farms, and no herdbook exists. To assess the genetic threats to the integrity and survival of the CM breed, and to aid in designing a conservation program, three genetic marker systems - microsatellites, SNPs and mtDNA - were applied across the majority of the total breeding stock. In addition, mtDNA and SNPs were genotyped in breeds that likely contributed genetically to the current CM gene pool. The analyses revealed the levels of genetic diversity within the range of other European local breeds (H(e) = 0.53). However, when the eight farms that rear at least 10 CM pigs were independently analyzed, high levels of inbreeding were found in some. Despite the evidence for recent crossbreeding with commercial breeds on a few farms, the entire breeding stock remains readily identifiable as CM, facilitating the design of traceability assays. The genetic management of the breed is consistent with farm size, farm owner and presence of other pig breeds on the farm, demonstrating the highly ad hoc nature of current CM breeding. The results of genetic diversity and substructure of the entire breed, as well as admixture and crossbreeding obtained in the present study, provide a benchmark to develop future conservation strategies. Furthermore, this study demonstrates that identifying farm-based practices and farm-based breeding stocks can aid in the design of a sustainable breeding program for minority breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  19. Population Genetic Structure of Rock Bream (Oplegnathus fasciatus Temminck & Schlegel, 1884) Revealed by mtDNA COI Sequence in Korea and China

    Science.gov (United States)

    Park, Hyun Suk; Kim, Choong-Gon; Kim, Sung; Park, Yong-Joo; Choi, Hee-Jung; Xiao, Zhizhong; Li, Jun; Xiao, Yongshuang; Lee, Youn-Ho

    2018-04-01

    The rock bream, Oplegnathus fasciatus, is a common rocky reef game fish in East Asia and recently has become an aquaculture species. Despite its commercial importance, the population genetic structure of this fish species remains poorly understood. In this study, 163 specimens were collected from 6 localities along the coastal waters of Korea and China and their genetic variation was analyzed with mtDNA COI sequences. A total of 34 polymorphic sites were detected which determined 30 haplotypes. The genetic pattern reveals a low level of nucleotide diversity (0.04 ± 0.003) but a high level of haplotype diversity (0.83 ± 0.02). The 30 haplotypes are divided into two major genealogical clades: one that consists of only Zhoushan (ZS, East China Sea) specific haplotypes from the southern East China Sea and the other that consists of the remaining haplotypes from the northern East China Sea, Yellow Sea, Korea Strait, and East Sea/Sea of Japan. The two clades are separated by approximately 330 435 kyBP. Analyses of AMOVA and F st show a significant population differentiation between the ZS sample and the other ones, corroborating separation of the two genealogical clades. Larval dispersal and the fresh Yangtze River plume are invoked as the main determining factors for this population genetic structure of O. fasciatus. Neutrality tests and mismatch distribution analyses indicate late Pleistocene population expansion along the coastal waters of Korea and China approximately 133-183 kyBP during which there were periodic cycles of glaciations and deglaciations. Such population information needs to be taken into account when stock enhancement and conservation measures are implemented for this fisheries species.

  20. CFD validation experiments for hypersonic flows

    Science.gov (United States)

    Marvin, Joseph G.

    1992-01-01

    A roadmap for CFD code validation is introduced. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments could provide new validation data.

  1. Calibration, validation, and sensitivity analysis: What's what

    International Nuclear Information System (INIS)

    Trucano, T.G.; Swiler, L.P.; Igusa, T.; Oberkampf, W.L.; Pilch, M.

    2006-01-01

    One very simple interpretation of calibration is to adjust a set of parameters associated with a computational science and engineering code so that the model agreement is maximized with respect to a set of experimental data. One very simple interpretation of validation is to quantify our belief in the predictive capability of a computational code through comparison with a set of experimental data. Uncertainty in both the data and the code are important and must be mathematically understood to correctly perform both calibration and validation. Sensitivity analysis, being an important methodology in uncertainty analysis, is thus important to both calibration and validation. In this paper, we intend to clarify the language just used and express some opinions on the associated issues. We will endeavor to identify some technical challenges that must be resolved for successful validation of a predictive modeling capability. One of these challenges is a formal description of a 'model discrepancy' term. Another challenge revolves around the general adaptation of abstract learning theory as a formalism that potentially encompasses both calibration and validation in the face of model uncertainty

  2. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    International Nuclear Information System (INIS)

    Jackson, Christopher B.; Gallati, Sabina; Schaller, André

    2012-01-01

    Highlights: ► Serial qPCR accurately determines fragmentation state of any given DNA sample. ► Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. ► Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. ► Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze–thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λ nDNA ) and mtDNAmtDNA ) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two

  3. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  4. Forensics and mitochondrial DNA: applications, debates, and foundations.

    Science.gov (United States)

    Budowle, Bruce; Allard, Marc W; Wilson, Mark R; Chakraborty, Ranajit

    2003-01-01

    Debate on the validity and reliability of scientific methods often arises in the courtroom. When the government (i.e., the prosecution) is the proponent of evidence, the defense is obliged to challenge its admissibility. Regardless, those who seek to use DNA typing methodologies to analyze forensic biological evidence have a responsibility to understand the technology and its applications so a proper foundation(s) for its use can be laid. Mitochondrial DNA (mtDNA), an extranuclear genome, has certain features that make it desirable for forensics, namely, high copy number, lack of recombination, and matrilineal inheritance. mtDNA typing has become routine in forensic biology and is used to analyze old bones, teeth, hair shafts, and other biological samples where nuclear DNA content is low. To evaluate results obtained by sequencing the two hypervariable regions of the control region of the human mtDNA genome, one must consider the genetically related issues of nomenclature, reference population databases, heteroplasmy, paternal leakage, recombination, and, of course, interpretation of results. We describe the approaches, the impact some issues may have on interpretation of mtDNA analyses, and some issues raised in the courtroom.

  5. Investigation of yeast genes possibly involved in mtDNA stability ...

    African Journals Online (AJOL)

    Phelim Isichei

    maintenance was performed using our previous validated method of RNAi combined with ethidium bromide. ..... cytoskeleton-based segregation machinery. Mol. Biol. ... Axonal transport of mitochondria requires milton to recruit kinesin heavy.

  6. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang Yu-Fen

    2006-04-01

    Full Text Available Abstract Background The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. Methods The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE, followed by direct DNA sequencing to identify the mutations. Results Fourteen somatic mtDNA mutations were identified in 55% (11/20 of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64% were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. Conclusion Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations.

  7. FastaValidator: an open-source Java library to parse and validate FASTA formatted sequences.

    Science.gov (United States)

    Waldmann, Jost; Gerken, Jan; Hankeln, Wolfgang; Schweer, Timmy; Glöckner, Frank Oliver

    2014-06-14

    Advances in sequencing technologies challenge the efficient importing and validation of FASTA formatted sequence data which is still a prerequisite for most bioinformatic tools and pipelines. Comparative analysis of commonly used Bio*-frameworks (BioPerl, BioJava and Biopython) shows that their scalability and accuracy is hampered. FastaValidator represents a platform-independent, standardized, light-weight software library written in the Java programming language. It targets computer scientists and bioinformaticians writing software which needs to parse quickly and accurately large amounts of sequence data. For end-users FastaValidator includes an interactive out-of-the-box validation of FASTA formatted files, as well as a non-interactive mode designed for high-throughput validation in software pipelines. The accuracy and performance of the FastaValidator library qualifies it for large data sets such as those commonly produced by massive parallel (NGS) technologies. It offers scientists a fast, accurate and standardized method for parsing and validating FASTA formatted sequence data.

  8. Mechanism of Homologous Recombination and Implications for Aging-Related Deletions in Mitochondrial DNA

    Science.gov (United States)

    2013-01-01

    SUMMARY Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells. PMID:24006472

  9. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ray K. Boyapati

    2017-02-01

    Full Text Available Mitochondrial DNA (mtDNA has many similarities with bacterial DNA because of their shared common ancestry. Increasing evidence demonstrates mtDNA to be a potent danger signal that is recognised by the innate immune system and can directly modulate the inflammatory response. In humans, elevated circulating mtDNA is found in conditions with significant tissue injury such as trauma and sepsis and increasingly in chronic organ-specific and systemic illnesses such as steatohepatitis and systemic lupus erythematosus. In this review, we examine our current understanding of mtDNA-mediated inflammation and how the mechanisms regulating mitochondrial homeostasis and mtDNA release represent exciting and previously under-recognised important factors in many human inflammatory diseases, offering many new translational opportunities.

  10. Diagnostic Methods of Helicobacter pylori Infection for Epidemiological Studies: Critical Importance of Indirect Test Validation.

    Science.gov (United States)

    Miftahussurur, Muhammad; Yamaoka, Yoshio

    2016-01-01

    Among the methods developed to detect H. pylori infection, determining the gold standard remains debatable, especially for epidemiological studies. Due to the decreasing sensitivity of direct diagnostic tests (histopathology and/or immunohistochemistry [IHC], rapid urease test [RUT], and culture), several indirect tests, including antibody-based tests (serology and urine test), urea breath test (UBT), and stool antigen test (SAT) have been developed to diagnose H. pylori infection. Among the indirect tests, UBT and SAT became the best methods to determine active infection. While antibody-based tests, especially serology, are widely available and relatively sensitive, their specificity is low. Guidelines indicated that no single test can be considered as the gold standard for the diagnosis of H. pylori infection and that one should consider the method's advantages and disadvantages. Based on four epidemiological studies, culture and RUT present a sensitivity of 74.2-90.8% and 83.3-86.9% and a specificity of 97.7-98.8% and 95.1-97.2%, respectively, when using IHC as a gold standard. The sensitivity of serology is quite high, but that of the urine test was lower compared with that of the other methods. Thus, indirect test validation is important although some commercial kits propose universal cut-off values.

  11. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    Science.gov (United States)

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  12. Importance of Statistical Evidence in Estimating Valid DEA Scores.

    Science.gov (United States)

    Barnum, Darold T; Johnson, Matthew; Gleason, John M

    2016-03-01

    Data Envelopment Analysis (DEA) allows healthcare scholars to measure productivity in a holistic manner. It combines a production unit's multiple outputs and multiple inputs into a single measure of its overall performance relative to other units in the sample being analyzed. It accomplishes this task by aggregating a unit's weighted outputs and dividing the output sum by the unit's aggregated weighted inputs, choosing output and input weights that maximize its output/input ratio when the same weights are applied to other units in the sample. Conventional DEA assumes that inputs and outputs are used in different proportions by the units in the sample. So, for the sample as a whole, inputs have been substituted for each other and outputs have been transformed into each other. Variables are assigned different weights based on their marginal rates of substitution and marginal rates of transformation. If in truth inputs have not been substituted nor outputs transformed, then there will be no marginal rates and therefore no valid basis for differential weights. This paper explains how to statistically test for the presence of substitutions among inputs and transformations among outputs. Then, it applies these tests to the input and output data from three healthcare DEA articles, in order to identify the effects on DEA scores when input substitutions and output transformations are absent in the sample data. It finds that DEA scores are badly biased when substitution and transformation are absent and conventional DEA models are used.

  13. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa.

    Science.gov (United States)

    Bertola, Laura D; Tensen, Laura; van Hooft, Pim; White, Paula A; Driscoll, Carlos A; Henschel, Philipp; Caragiulo, Anthony; Dias-Freedman, Isabela; Sogbohossou, Etotépé A; Tumenta, Pricelia N; Jirmo, Tuqa H; de Snoo, Geert R; de Iongh, Hans H; Vrieling, Klaas

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.

  14. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa.

    Directory of Open Access Journals (Sweden)

    Laura D Bertola

    Full Text Available The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1 West/Central Africa, 2 East Africa, 3 Southern Africa and 4 India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.

  15. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa

    Science.gov (United States)

    Bertola, Laura D.; Tensen, Laura; van Hooft, Pim; White, Paula A.; Driscoll, Carlos A.; Henschel, Philipp; Caragiulo, Anthony; Dias-Freedman, Isabela; Sogbohossou, Etotépé A.; Tumenta, Pricelia N.; Jirmo, Tuqa H.; de Snoo, Geert R.

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted. PMID:26466139

  16. Validity and Reliability in Social Science Research

    Science.gov (United States)

    Drost, Ellen A.

    2011-01-01

    In this paper, the author aims to provide novice researchers with an understanding of the general problem of validity in social science research and to acquaint them with approaches to developing strong support for the validity of their research. She provides insight into these two important concepts, namely (1) validity; and (2) reliability, and…

  17. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes.

    Science.gov (United States)

    Xia, Jun Hong; Li, Hong Lian; Zhang, Yong; Meng, Zi Ning; Lin, Hao Ran

    2018-05-01

    Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.

  18. An important natural genetic resource of Oreochromis niloticus (Linnaeus, 1758) threatened by aquaculture activities in Loboi drainage, Kenya.

    Science.gov (United States)

    Ndiwa, Titus Chemandwa; Nyingi, Dorothy Wanja; Agnese, Jean-François

    2014-01-01

    The need to improve food security in Africa through culture of tilapias has led to transfer of different species from their natural ranges causing negative impacts on wild fish genetic resources. Loboi swamp in Kenya is fed by three hot springs: Lake Bogoria Hotel, Chelaba and Turtle Springs, hosting natural populations of Oreochromis niloticus. The present study aimed at better genetic characterization of these threatened populations. Partial mtDNA sequences of the D-loop region and variations at 16 microsatellite loci were assessed in the three hot spring populations and compared with three other natural populations of O. niloticus in the region. Results obtained indicated that the hot spring populations had mitochondrial and nuclear genetic variability similar to or higher than the large closely related populations. This may be attributed to the perennial nature of the hot springs, which do not depend on rainfall but rather receive permanent water supply from deep aquifers. The study also revealed that gene flow between the three different hot spring populations was sufficiently low thus allowing their differentiation. This differentiation was unexpected considering the very close proximity of the springs to each other. It is possible that the swamp creates a barrier to free movement of fish from one spring to the other thereby diminishing gene flow. Finally, the most surprising and worrying results were that the three hot spring populations are introgressed by mtDNA genes of O. leucostictus, while microsatellite analysis suggested that some nuclear genes may also have crossed the species barrier. It is very likely that the recent intensification of aquaculture activities in the Loboi drainage may be responsible for these introgressions. Taking into account the importance of these new genetic resources, protection and management actions of the Loboi swamp should be accorded top priority to prevent the loss of these spring populations.

  19. An important natural genetic resource of Oreochromis niloticus (Linnaeus, 1758 threatened by aquaculture activities in Loboi drainage, Kenya.

    Directory of Open Access Journals (Sweden)

    Titus Chemandwa Ndiwa

    Full Text Available The need to improve food security in Africa through culture of tilapias has led to transfer of different species from their natural ranges causing negative impacts on wild fish genetic resources. Loboi swamp in Kenya is fed by three hot springs: Lake Bogoria Hotel, Chelaba and Turtle Springs, hosting natural populations of Oreochromis niloticus. The present study aimed at better genetic characterization of these threatened populations. Partial mtDNA sequences of the D-loop region and variations at 16 microsatellite loci were assessed in the three hot spring populations and compared with three other natural populations of O. niloticus in the region. Results obtained indicated that the hot spring populations had mitochondrial and nuclear genetic variability similar to or higher than the large closely related populations. This may be attributed to the perennial nature of the hot springs, which do not depend on rainfall but rather receive permanent water supply from deep aquifers. The study also revealed that gene flow between the three different hot spring populations was sufficiently low thus allowing their differentiation. This differentiation was unexpected considering the very close proximity of the springs to each other. It is possible that the swamp creates a barrier to free movement of fish from one spring to the other thereby diminishing gene flow. Finally, the most surprising and worrying results were that the three hot spring populations are introgressed by mtDNA genes of O. leucostictus, while microsatellite analysis suggested that some nuclear genes may also have crossed the species barrier. It is very likely that the recent intensification of aquaculture activities in the Loboi drainage may be responsible for these introgressions. Taking into account the importance of these new genetic resources, protection and management actions of the Loboi swamp should be accorded top priority to prevent the loss of these spring populations.

  20. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions.

    Science.gov (United States)

    Ladoukakis, Emmanuel D; Zouros, Eleftherios

    2017-12-01

    Mitochondrial DNA (mtDNA) has been studied intensely for "its own" merit. Its role for the function of the cell and the organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interaction with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, how these changes affect the information we have accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research.

  1. Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency.

    Science.gov (United States)

    Saada, Ann; Ben-Shalom, Efrat; Zyslin, Rivka; Miller, Chaya; Mandel, Hanna; Elpeleg, Orly

    2003-10-24

    Deficiency of mitochondrial thymidine kinase (TK2) is associated with mitochondrial DNA (mtDNA) depletion and manifests by severe skeletal myopathy in infancy. In order to elucidate the pathophysiology of this condition, mitochondrial deoxyribonucleoside triphosphate (dNTP) pools were determined in patients' fibroblasts. Despite normal mtDNA content and cytochrome c oxidase (COX) activity, mitochondrial dNTP pools were imbalanced. Specifically, deoxythymidine triphosphate (dTTP) content was markedly decreased, resulting in reduced dTTP:deoxycytidine triphosphate ratio. These findings underline the importance of balanced mitochondrial dNTP pools for mtDNA synthesis and may serve as the basis for future therapeutic interventions.

  2. A CFD validation roadmap for hypersonic flows

    Science.gov (United States)

    Marvin, Joseph G.

    1993-01-01

    A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.

  3. KERAGAMAN GENETIK BENIH IKAN KERAPU SUNU, Plectrophomus leopardus TURUNAN PERTAMA (F1 DENGAN ANALISIS RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP MT-DNA

    Directory of Open Access Journals (Sweden)

    Gusti Ngurah Permana

    2016-11-01

    The variability of differences size was occurred on every culture period of coral trout. The aimed of this study was to know genetics variability and evaluated of which are expressed on large, medium, and small size fry on total of length sizes and different weight. Amplification of single fragment using set primer 16 SrDNA (F5’CGCCTG TTTAACAAAAACAT-3’ and reverse (R: 5’-CCGGTCTGAACTCAGATCATGT-3’. Result showed that PCR amplification of mt-DNA was 625 bp. Restriction digestion processed with Mnl I enzyme showed that polymorphism in large size and monomorphic in both medium and small sizes. Two types of haplotype were found in large size (ABABB and ABAAB while one haplotype observed in medium and small sizes ABABB. The heterozygosities value of large, medium and small sizes from Bali location were 0.480, 0.000, and 0.000 restectively. Heterozygosities value of samples from East Java were 0.211, 0.000, and 0.000 restectively. Samples from Lampung were monomorphic (0.000.

  4. [Genetic structure of Hemibarbus labeo and Hemibarbus medius in South China based on mtDNA COI and ND5 genes].

    Science.gov (United States)

    Lan, Zhao Jun; Lin, Long Feng; Zhao, Jun

    2017-04-18

    Both Hemibarbus labeo and H. medius (Cypriniformes: Cyprinidae: Gobioninae) are primary freshwater fishes and are widely distributed. As such, they provide an ideal model for phylogeographical studies. However, the similarity in morphological characters between these two species made the description of their distributions and the validation of species quite challenging. Here we employed variations in the DNA sequences of mitochondrial COI and ND5 genes (2151 bp) to solve this challenge and to study the population genetics structure of these two species. Among the 130 specimens belonging to 8 populations of H. labeo and 9 populations of H. medius from 17 drainage systems in southern China,196 variable sites (9.1% in the full sequences) falling into 50 haplotypes were identified. The haplotype diversity (h) and the nucleotide diversity (π) were 0.964 and 0.019, respectively, indicating a high level of genetic diversity and an evolutionary potential in both species. The result of neighbor-joining tree based on composite nucleotide sequences of the mtDNA COI and ND5 genes showed that the H. labeo and H. medius fell into two major clades (clade1and clade2): clade1was composed of some specimens of Oujiang River, all the specimens of Hanjiang River and Jiulongjiang River, whereas all remaining populations fell in clade2. The genetic distance between clade I and clade II was 0.036, while that between H. labeo and H. medius was 0.027. The haplotype network analyses indicated that the populations of Hanjiang River and Jiulongjiang River had relatively high genetic variation with the rest rivers. The po-pulations of Hainan Island migrated northward to Moyangjaing River. Haplotypes of the rivers of Hainan Island and Moyangjang River had relatively higher genetic variation with the Yangtze River than Pearl River. The populations of Xiangjiang River had no genetic variation with the populations of Guijiang River and Liujiang River. Analysis of molecular variance (AMOVA

  5. The pathophysiology of mitochondrial disease as modeled in the mouse.

    Science.gov (United States)

    Wallace, Douglas C; Fan, Weiwei

    2009-08-01

    It is now clear that mitochondrial defects are associated with a plethora of clinical phenotypes in man and mouse. This is the result of the mitochondria's central role in energy production, reactive oxygen species (ROS) biology, and apoptosis, and because the mitochondrial genome consists of roughly 1500 genes distributed across the maternal mitochondrial DNA (mtDNA) and the Mendelian nuclear DNA (nDNA). While numerous pathogenic mutations in both mtDNA and nDNA mitochondrial genes have been identified in the past 21 years, the causal role of mitochondrial dysfunction in the common metabolic and degenerative diseases, cancer, and aging is still debated. However, the development of mice harboring mitochondrial gene mutations is permitting demonstration of the direct cause-and-effect relationship between mitochondrial dysfunction and disease. Mutations in nDNA-encoded mitochondrial genes involved in energy metabolism, antioxidant defenses, apoptosis via the mitochondrial permeability transition pore (mtPTP), mitochondrial fusion, and mtDNA biogenesis have already demonstrated the phenotypic importance of mitochondrial defects. These studies are being expanded by the recent development of procedures for introducing mtDNA mutations into the mouse. These studies are providing direct proof that mtDNA mutations are sufficient by themselves to generate major clinical phenotypes. As more different mtDNA types and mtDNA gene mutations are introduced into various mouse nDNA backgrounds, the potential functional role of mtDNA variation in permitting humans and mammals to adapt to different environments and in determining their predisposition to a wide array of diseases should be definitively demonstrated.

  6. Construct Validation of the Behavior and Instructional Management Scale

    Science.gov (United States)

    Martin, Nancy K.; Sass, Daniel A.

    2010-01-01

    Beliefs related to classroom management vary among teachers and play an important role in classrooms. Despite the importance of this construct, valid measures have proven difficult to develop. This study evaluated the psychometric properties of the Behavior and Instructional Management Scale (BIMS), a short but valid measure of teachers'…

  7. Genetic variation in the mitochondrial genome of the giant grouper Epinephelus lanceolatus (Bloch, 1790 and its application for the identification of broodstock

    Directory of Open Access Journals (Sweden)

    Seng S. Cheng

    2015-11-01

    Full Text Available Mitochondrial DNA (mtDNA markers are ideal for the validation of maternal inheritance and the identification of brood-stock in aquaculture breeding programs. The complete mitochondrial genomes of 11 species of grouper are currently available at the GenBank. This study was directed towards the characterization of mtDNA loci which can be applied for identification of interspecific F1 hybrids developed from Epinephelus fuscoguttatus and Epinephelus lanceolatus in aquaculture breeding programs. DNA was extracted from the fin clip of one specimen of E. lanceolatus which the source of sperm for the artificial spawning of the interspecific F1 hybrid E. fuscoguttatus × E. lanceolatus. Specific primers were designed to amplify the DNA after comparative analysis of the mtDNA genomes available at the GenBank. The primers were applied to test for cross-amplification in F1 hybrids as well as in the maternal parent E. fuscoguttatus (Forsskål, 1775 and the genetically related species Epinephelus coioides and Epinephelus corallicola (Valenciennes, 1828. DNA sequence analysis revealed that the Malaysian variety of E. lanceolatus exhibited variation at 11 of the 13 ORFs when compared to the variety from Taiwan. A distinct segmented duplication was observed in the D-loop region which was determined to be unique to the E. lanceolatus specimen obtained from Sabah, Malaysia. Cross amplification of mtDNA loci in the groupers E. fuscoguttatus, E. coioides, E. corallicola and the F1 hybrid of E. fuscoguttatus × E. lanceolatus revealed distinct profiles for each of the species with a clear indication that mtDNA were inherited from the maternal parent of the F1 hybrid.. mtDNA loci can be applied by fish breeders to determine interspecific hybridization events.

  8. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.

    Science.gov (United States)

    Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K

    2017-11-01

    with profile generation, AQME reported accurate haplogroups for 18 of the 19 samples analyzed. The single errant haplogroup assignment, although phylogenetically close, identified a bug that only affects partial mitogenome data. Future adjustments to AQME's haplogrouping tool will address this bug as well as enhance the overall scoring strategy to better refine and automate haplogroup assignments. As NGS enables broader use of the mtDNA locus in forensics, the availability of AQME and other forensic-focused mtDNA analysis tools will ease the transition and further support mitogenome analysis within routine casework. Toward this end, the AFMES-AFDIL has utilized the AQME toolbox in conjunction with the CLC Genomics Workbench to successfully validate and implement two NGS mitogenome methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. CosmoQuest:Using Data Validation for More Than Just Data Validation

    Science.gov (United States)

    Lehan, C.; Gay, P.

    2016-12-01

    It is often taken for granted that different scientists completing the same task (e.g. mapping geologic features) will get the same results, and data validation is often skipped or under-utilized due to time and funding constraints. Robbins et. al (2014), however, demonstrated that this is a needed step, as large variation can exist even among collaborating team members completing straight-forward tasks like marking craters. Data Validation should be much more than a simple post-project verification of results. The CosmoQuest virtual research facility employs regular data-validation for a variety of benefits, including real-time user feedback, real-time tracking to observe user activity while it's happening, and using pre-solved data to analyze users' progress and to help them retain skills. Some creativity in this area can drastically improve project results. We discuss methods of validating data in citizen science projects and outline the variety of uses for validation, which, when used properly, improves the scientific output of the project and the user experience for the citizens doing the work. More than just a tool for scientists, validation can assist users in both learning and retaining important information and skills, improving the quality and quantity of data gathered. Real-time analysis of user data can give key information in the effectiveness of the project that a broad glance would miss, and properly presenting that analysis is vital. Training users to validate their own data, or the data of others, can significantly improve the accuracy of misinformed or novice users.

  10. Phylogeny and patterns of diversity of goat mtDNA haplogroup A revealed by resequencing complete mitogenomes.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Doro

    Full Text Available We sequenced to near completion the entire mtDNA of 28 Sardinian goats, selected to represent the widest possible diversity of the most widespread mitochondrial evolutionary lineage, haplogroup (Hg A. These specimens were reporters of the diversity in the island but also elsewhere, as inferred from their affiliation to each of 11 clades defined by D-loop variation. Two reference sequences completed the dataset. Overall, 206 variations were found in the full set of 30 sequences, of which 23 were protein-coding non-synonymous single nucleotide substitutions. Many polymorphic sites within Hg A were informative for the reconstruction of its internal phylogeny. Bayesian and network clustering revealed a general similarity over the entire molecule of sequences previously assigned to the same D-loop clade, indicating evolutionarily meaningful lineages. Two major sister groupings emerged within Hg A, which parallel distinct geographical distributions of D-loop clades in extant stocks. The pattern of variation in protein-coding genes revealed an overwhelming role of purifying selection, with the quota of surviving variants approaching neutrality. However, a simple model of relaxation of selection for the bulk of variants here reported should be rejected. Non-synonymous diversity of Hg's A, B and C denoted that a proportion of variants not greater than that allowed in the wild was given the opportunity to spread into domesticated stocks. Our results also confirmed that a remarkable proportion of pre-existing Hg A diversity became incorporated into domestic stocks. Our results confirm clade A11 as a well differentiated and ancient lineage peculiar of Sardinia.

  11. Validation of software releases for CMS

    International Nuclear Information System (INIS)

    Gutsche, Oliver

    2010-01-01

    The CMS software stack currently consists of more than 2 Million lines of code developed by over 250 authors with a new version being released every week. CMS has setup a validation process for quality assurance which enables the developers to compare the performance of a release to previous releases and references. The validation process provides the developers with reconstructed datasets of real data and MC samples. The samples span the whole range of detector effects and important physics signatures to benchmark the performance of the software. They are used to investigate interdependency effects of all CMS software components and to find and fix bugs. The release validation process described here is an integral part of CMS software development and contributes significantly to ensure stable production and analysis. It represents a sizable contribution to the overall MC production of CMS. Its success emphasizes the importance of a streamlined release validation process for projects with a large code basis and significant number of developers and can function as a model for future projects.

  12. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    International Nuclear Information System (INIS)

    Villarroya, Joan; Lara, Mari-Carmen; Dorado, Beatriz; Garrido, Marta; Garcia-Arumi, Elena; Meseguer, Anna; Hirano, Michio; Vila, Maya R.

    2011-01-01

    Highlights: → We impaired TK2 expression in Ost TK1 - cells via siRNA-mediated interference (TK2 - ). → TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. → Despite mtDNA depletion, TK2 - cells show high cytochrome oxidase activity. → Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. → Nuclear-encoded ENT1, DNA-pol γ, TFAM and TP gene expression is lowered in TK2 - cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1 - cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase γ, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity despite profound depletion in mtDNA levels.

  13. Sequencing and comparing whole mitochondrial genomes ofanimals

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  14. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins.

    Science.gov (United States)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra; Vitiello, Michael V; Bamshad, Michael; Noonan, Carolyn; Christiansen, Lene; Christensen, Kaare; Watson, Nathaniel F

    2015-10-01

    Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins. Academic clinical research center. 15 sleep duration discordant monozygotic twin pairs (30 twins, 80% female; mean age 42.1 years [SD 15.0]). Sleep duration was phenotyped with wrist actigraphy. Each twin pair included a "normal" (7-9 h/24) and "short" (sleeping twin. Fasting peripheral blood leukocyte DNA was assessed for mtDNA copy number via the n-fold difference between qPCR measured mtDNA and nuclear DNA creating an mtDNA measure without absolute units. We used generalized estimating equation linear regression models accounting for the correlated data structure to assess within-pair effects of sleep duration on mtDNA copy number. Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P sleep efficiency (β = 0.51; 95% CI 0.06, 0.95; P sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated with a decrease in mtDNA copy number of 0.51. Reduced sleep duration and sleep efficiency were associated with reduced mitochondrial DNA copy number in sleep duration discordant monozygotic twins offering a potential mechanism whereby short sleep impairs health and longevity through mitochondrial stress. © 2015 Associated Professional Sleep Societies, LLC.

  15. Validation of survey information on smoking and alcohol consumption against import statistics, Greenland 1993-2010

    DEFF Research Database (Denmark)

    Bjerregaard, Peter; Becker, Ulrik

    2013-01-01

    Questionnaires are widely used to obtain information on health-related behaviour, and they are more often than not the only method that can be used to assess the distribution of behaviour in subgroups of the population. No validation studies of reported consumption of tobacco or alcohol have been...

  16. The Treatment Validity of Autism Screening Instruments

    Science.gov (United States)

    Livanis, Andrew; Mouzakitis, Angela

    2010-01-01

    Treatment validity is a frequently neglected topic of screening instruments used to identify autism spectrum disorders. Treatment validity, however, should represent an important aspect of these instruments to link the resulting data to the selection of interventions as well as make decisions about treatment length and intensity. Research…

  17. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins

    DEFF Research Database (Denmark)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra

    2015-01-01

    STUDY OBJECTIVES: Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins...... structure to assess within-pair effects of sleep duration on mtDNA copy number. MEASUREMENTS AND RESULTS: Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P sleep efficiency (β = 0.51; 95% CI 0.......06, 0.95; P DNA copy number within twin pairs. Thus every 1-minute decrease in actigraphy-defined sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated...

  18. A study of the peopling of Greenland using next generation sequencing of complete mitochondrial genomes

    DEFF Research Database (Denmark)

    Lopopolo, Maria; Børsting, Claus; Pereira, Vania

    2016-01-01

    the migration patterns in the Greenlandic population from a female inheritance demographic perspective. Methods We investigated the maternal genetic variation in the Greenlandic population by sequencing the whole mtDNA genome in 127 Greenlandic individuals using the Illumina MiSeq® platform. Results All......Objectives The Greenlandic population history is characterized by a number of migrations of people of various ethnicities. In this work, the analysis of the complete mtDNA genome aimed to contribute to the ongoing debate on the origin of current Greenlanders and, at the same time, to address...... Greenlandic individuals belonged to the Inuit mtDNA lineages A2a, A2b1, and D4b1a2a1. No European haplogroup was found. Discussion The mtDNA lineages seem to support the hypothesis that the Inuit in Greenland are descendants from the Thule migration. The results also reinforce the importance of isolation...

  19. Identifications of Captive and Wild Tilapia Species Existing in Hawaii by Mitochondrial DNA Control Region Sequence

    Science.gov (United States)

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    Background The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. Methodology/Principal Findings In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. Conclusions/Significance This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species

  20. Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA.

    Science.gov (United States)

    E, Guang-Xin; Zhao, Yong-Ju; Chen, Li-Peng; Ma, Yue-Hui; Chu, Ming-Xing; Li, Xiang-Long; Hong, Qiong-Hua; Li, Lan-Hui; Guo, Ji-Jun; Zhu, Lan; Han, Yan-Guo; Gao, Hui-Jiang; Zhang, Jia-Hua; Jiang, Huai-Zhi; Jiang, Cao-De; Wang, Gao-Fu; Ren, Hang-Xing; Jin, Mei-Lan; Sun, Yuan-Zhi; Zhou, Peng; Huang, Yong-Fu

    2018-05-01

    The objective of this study was to assess the genetic diversity and population structure of goats in the Yangtze River region using microsatellite and mtDNA to better understand the current status of those goat genetic diversity and the effects of natural landscape in fashion of domestic animal genetic diversity. The genetic variability of 16 goat populations in the littoral zone of the Yangtze River was estimated using 21 autosomal microsatellites, which revealed high diversity and genetic population clustering with a dispersed geographical distribution. A phylogenetic analysis of the mitochondrial D-loop region (482 bp) was conducted in 494 goats from the Yangtze River region. In total, 117 SNPs were reconstructed, and 173 haplotypes were identified, 94.5% of which belonged to lineages A and B. Lineages C, D, and G had lower frequencies (5.2%), and lineage F haplotypes were undetected. Several high-frequency haplotypes were shared by different ecogeographically distributed populations, and the close phylogenetic relationships among certain low-frequency haplotypes indicated the historical exchange of genetic material among these populations. In particular, the lineage G haplotype suggests that some west Asian goat genetic material may have been transferred to China via Muslim migration.

  1. Validating MEDIQUAL Constructs

    Science.gov (United States)

    Lee, Sang-Gun; Min, Jae H.

    In this paper, we validate MEDIQUAL constructs through the different media users in help desk service. In previous research, only two end-users' constructs were used: assurance and responsiveness. In this paper, we extend MEDIQUAL constructs to include reliability, empathy, assurance, tangibles, and responsiveness, which are based on the SERVQUAL theory. The results suggest that: 1) five MEDIQUAL constructs are validated through the factor analysis. That is, importance of the constructs have relatively high correlations between measures of the same construct using different methods and low correlations between measures of the constructs that are expected to differ; and 2) five MEDIQUAL constructs are statistically significant on media users' satisfaction in help desk service by regression analysis.

  2. Test-driven verification/validation of model transformations

    Institute of Scientific and Technical Information of China (English)

    László LENGYEL; Hassan CHARAF

    2015-01-01

    Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans-formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/ validating model transformations. We provide a solution that makes it possible to automatically generate test input models for model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model transformations.

  3. MPV17-related mitochondrial DNA maintenance defect: New cases and review of clinical, biochemical, and molecular aspects.

    Science.gov (United States)

    El-Hattab, Ayman W; Wang, Julia; Dai, Hongzheng; Almannai, Mohammed; Staufner, Christian; Alfadhel, Majid; Gambello, Michael J; Prasun, Pankaj; Raza, Saleem; Lyons, Hernando J; Afqi, Manal; Saleh, Mohammed A M; Faqeih, Eissa A; Alzaidan, Hamad I; Alshenqiti, Abduljabbar; Flore, Leigh Anne; Hertecant, Jozef; Sacharow, Stephanie; Barbouth, Deborah S; Murayama, Kei; Shah, Amit A; Lin, Henry C; Wong, Lee-Jun C

    2018-04-01

    Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis. © 2017 Wiley Periodicals, Inc.

  4. Restricted gene flow at the micro- and macro-geographical scale in marble trout based on mtDNA and microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Patarnello Tomaso

    2011-04-01

    Full Text Available Abstract Background The genetic structure of the marble trout Salmo trutta marmoratus, an endemic salmonid of northern Italy and the Balkan peninsula, was explored at the macro- and micro-scale level using a combination of mitochondrial DNA (mtDNA and microsatellite data. Results Sequence variation in the mitochondrial control region showed the presence of nonindigenous haplotypes indicative of introgression from brown trout into marble trout. This was confirmed using microsatellite markers, which showed a higher introgression at nuclear level. Microsatellite loci revealed a strong genetic differentiation across the geographical range of marble trout, which suggests restricted gene flow both at the micro-geographic (within rivers and macro-geographic (among river systems scale. A pattern of Isolation-by-Distance was found, in which genetic samples were correlated with hydrographic distances. A general West-to-East partition of the microsatellite polymorphism was observed, which was supported by the geographic distribution of mitochondrial haplotypes. Conclusion While introgression at both mitochondrial and nuclear level is unlikely to result from natural migration and might be the consequence of current restocking practices, the pattern of genetic substructuring found at microsatellites has been likely shaped by historical colonization patterns determined by the geological evolution of the hydrographic networks.

  5. Human maternal heritage in Andalusia (Spain): its composition reveals high internal complexity and distinctive influences of mtDNA haplogroups U6 and L in the western and eastern side of region.

    Science.gov (United States)

    Hernández, Candela L; Reales, Guillermo; Dugoujon, Jean-Michel; Novelletto, Andrea; Rodríguez, Juan Nicolás; Cuesta, Pedro; Calderón, Rosario

    2014-01-24

    The archeology and history of the ancient Mediterranean have shown that this sea has been a permeable obstacle to human migration. Multiple cultural exchanges around the Mediterranean have taken place with presumably population admixtures. A gravitational territory of those migrations has been the Iberian Peninsula. Here we present a comprehensive analysis of the maternal gene pool, by means of control region sequencing and PCR-RFLP typing, of autochthonous Andalusians originating from the coastal provinces of Huelva and Granada, located respectively in the west and the east of the region. The mtDNA haplogroup composition of these two southern Spanish populations has revealed a wide spectrum of haplogroups from different geographical origins. The registered frequencies of Eurasian markers, together with the high incidence and diversification of African maternal lineages (15% of the total mitochondrial variability) among Huelva Andalusians when compared to its eastwards relatives of Granada and other Iberian populations, constitute relevant findings unknown up-to-date on the characteristics of mtDNA within Andalusia that testifies a female population substructure. Therefore, Andalusia must not be considered a single, unique population. The maternal legacy among Andalusians reflects distinctive local histories, pointing out the role of the westernmost territory of Peninsular Spain as a noticeable recipient of multiple and diverse human migrations. The obtained results underline the necessity of further research on genetic relationships in both sides of the western Mediterranean, using carefully collected samples from autochthonous individuals. Many studies have focused on recent North African gene flow towards Iberia, yet scientific attention should be now directed to thoroughly study the introduction of European genes in northwest Africa across the sea, in order to determine its magnitude, timescale and methods, and to compare them to those terrestrial movements

  6. Mitochondrial DNA reveals regional and interregional importance of the central Mediterranean African shelf for loggerhead sea turtles (Caretta caretta

    Directory of Open Access Journals (Sweden)

    Paolo Casale

    2008-09-01

    Full Text Available The wide north African continental shelf in the central Mediterranean is known to be one of the few important areas in the basin for loggerhead turtles in the neritic stage. In order to assess the origin of these turtles, sequences of the mtDNA control region were obtained from 70 turtles caught by bottom trawlers in the area, and compared with known sequences from turtles from Mediterranean and Atlantic nesting sites. Five haplotypes were identified (Haplotype diversity = 0.262; nucleotide diversity = 5.4×10-3. Specific haplotypes indicate contributions from distant rookeries such as Turkey and the Atlantic, which shows that Atlantic turtles entering the Mediterranean while in the oceanic phase use at least one Mediterranean continental shelf as a neritic foraging ground. A new haplotype and another one previously found only in foraging areas, highlight the genetic information gaps for nesting sites, which undermine powerful mixed stock analyses. Despite these limitations, the results reveal the regional importance of the study area as a neritic foraging ground for turtles that are probably from most of the Mediterranean nesting aggregates. Therefore, reducing turtle mortality resulting from the high fishing effort in the area should be regarded as key for Mediterranean turtle conservation and is also possibly important for Atlantic populations.

  7. A Practical Approach to Validating a PD Model

    NARCIS (Netherlands)

    Medema, L.; Koning, de R.; Lensink, B.W.

    2009-01-01

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their

  8. A practical approach to validating a PD model

    NARCIS (Netherlands)

    Medema, Lydian; Koning, Ruud H.; Lensink, Robert; Medema, M.

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their

  9. Mitochondrial DNA variation, but not nuclear DNA, sharply divides morphologically identical chameleons along an ancient geographic barrier.

    Directory of Open Access Journals (Sweden)

    Dan Bar Yaacov

    Full Text Available The Levant is an important migration bridge, harboring border-zones between Afrotropical and palearctic species. Accordingly, Chameleo chameleon, a common species throughout the Mediterranean basin, is morphologically divided in the southern Levant (Israel into two subspecies, Chamaeleo chamaeleon recticrista (CCR and C. c. musae (CCM. CCR mostly inhabits the Mediterranean climate (northern Israel, while CCM inhabits the sands of the north-western Negev Desert (southern Israel. AFLP analysis of 94 geographically well dispersed specimens indicated moderate genetic differentiation (PhiPT = 0.097, consistent with the classical division into the two subspecies, CCR and CCM. In contrast, sequence analysis of a 637 bp coding mitochondrial DNA (mtDNA fragment revealed two distinct phylogenetic clusters which were not consistent with the morphological division: one mtDNA cluster consisted of CCR specimens collected in regions northern of the Jezreel Valley and another mtDNA cluster harboring specimens pertaining to both the CCR and CCM subspecies but collected southern of the Jezreel Valley. AMOVA indicated clear mtDNA differentiation between specimens collected northern and southern to the Jezreel Valley (PhiPT = 0.79, which was further supported by a very low coalescent-based estimate of effective migration rates. Whole chameleon mtDNA sequencing (∼17,400 bp generated from 11 well dispersed geographic locations revealed 325 mutations sharply differentiating the two mtDNA clusters, suggesting a long allopatric history further supported by BEAST. This separation correlated temporally with the existence of an at least 1 million year old marine barrier at the Jezreel Valley exactly where the mtDNA clusters meet. We discuss possible involvement of gender-dependent life history differences in maintaining such mtDNA genetic differentiation and suggest that it reflects (ancient local adaptation to mitochondrial-related traits.

  10. Association of genetic variations in the mitochondrial DNA control region with presbycusis.

    Science.gov (United States)

    Falah, Masoumeh; Farhadi, Mohammad; Kamrava, Seyed Kamran; Mahmoudian, Saeid; Daneshi, Ahmad; Balali, Maryam; Asghari, Alimohamad; Houshmand, Massoud

    2017-01-01

    The prominent role of mitochondria in the generation of reactive oxygen species, cell death, and energy production contributes to the importance of this organelle in the intracellular mechanism underlying the progression of the common sensory disorder of the elderly, presbycusis. Reduced mitochondrial DNA (mtDNA) gene expression and coding region variation have frequently been reported as being associated with the development of presbycusis. The mtDNA control region regulates gene expression and replication of the genome of this organelle. To comprehensively understand of the role of mitochondria in the progression of presbycusis, we compared variations in the mtDNA control region between subjects with presbycusis and controls. A total of 58 presbycusis patients and 220 control subjects were enrolled in the study after examination by the otolaryngologist and audiology tests. Variations in the mtDNA control region were investigated by polymerase chain reaction and Sanger sequencing. A total of 113 sequence variants were observed in mtDNA, and variants were detected in 100% of patients, with 84% located in hypervariable regions. The frequencies of the variants, 16,223 C>T, 16,311 T>C, 16,249 T>C, and 15,954 A>C, were significantly different between presbycusis and control subjects. The statistically significant difference in the frequencies of four nucleotide variants in the mtDNA control region of presbycusis patients and controls is in agreement with previous experimental evidence and supports the role of mitochondria in the intracellular mechanism underlying presbycusis development. Moreover, these variants have potential as diagnostic markers for individuals at a high risk of developing presbycusis. The data also suggest the possible presence of changes in the mtDNA control region in presbycusis, which could alter regulatory factor binding sites and influence mtDNA gene expression and copy number.

  11. New progress in snake mitochondrial gene rearrangement.

    Science.gov (United States)

    Chen, Nian; Zhao, Shujin

    2009-08-01

    To further understand the evolution of snake mitochondrial genomes, the complete mitochondrial DNA (mtDNA) sequences were determined for representative species from two snake families: the Many-banded krait, the Banded krait, the Chinese cobra, the King cobra, the Hundred-pace viper, the Short-tailed mamushi, and the Chain viper. Thirteen protein-coding genes, 22-23 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNAPro gene were two notable features of the snake mtDNAs. These results from the gene rearrangement comparisons confirm the correctness of traditional classification schemes and validate the utility of comparing complete mtDNA sequences for snake phylogeny reconstruction.

  12. Changes in the human mitochondrial genome after treatment of malignant disease

    International Nuclear Information System (INIS)

    Wardell, Theresa M.; Ferguson, Elaine; Chinnery, Patrick F.; Borthwick, Gillian M.; Taylor, Robert W.; Jackson, Graham; Craft, Alan; Lightowlers, Robert N.; Howell, Neil; Turnbull, Douglass M.

    2003-01-01

    Mitochondrial DNA (mtDNA) is the only extrachromosomal DNA in human cells. The mitochondrial genome encodes essential information for the synthesis of the mitochondrial respiratory chain. Inherited defects of this genome are an important cause of human disease. In addition, the mitochondrial genome seems to be particularly prone to DNA damage and acquired mutations may have a role in ageing, cancer and neurodegeneration. We wished to determine if radiotherapy and chemotherapy used in the treatment of cancer could induce changes in the mitochondrial genome. Such changes would be an important genetic marker of DNA damage and may explain some of the adverse effects of treatment. We studied samples from patients who had received radiotherapy and chemotherapy for point mutations within the mtDNA control region, and for large-scale deletions. In blood samples from patients, we found a significantly increased number of point mutations compared to the control subjects. In muscle biopsies from 7 of 8 patients whom had received whole body irradiation as well as chemotherapy, the level of a specific mtDNA deletion was significantly greater than in control subjects. Our studies have shown that in patients who have been treated for cancer there is an increased level of mtDNA damage

  13. Measuring perceptions related to e-cigarettes: Important principles and next steps to enhance study validity.

    Science.gov (United States)

    Gibson, Laura A; Creamer, MeLisa R; Breland, Alison B; Giachello, Aida Luz; Kaufman, Annette; Kong, Grace; Pechacek, Terry F; Pepper, Jessica K; Soule, Eric K; Halpern-Felsher, Bonnie

    2018-04-01

    Measuring perceptions associated with e-cigarette use can provide valuable information to help explain why youth and adults initiate and continue to use e-cigarettes. However, given the complexity of e-cigarette devices and their continuing evolution, measures of perceptions of this product have varied greatly. Our goal, as members of the working group on e-cigarette measurement within the Tobacco Centers of Regulatory Science (TCORS) network, is to provide guidance to researchers developing surveys concerning e-cigarette perceptions. We surveyed the 14 TCORS sites and received and reviewed 371 e-cigarette perception items from seven sites. We categorized the items based on types of perceptions asked, and identified measurement approaches that could enhance data validity and approaches that researchers may consider avoiding. The committee provides suggestions in four areas: (1) perceptions of benefits, (2) harm perceptions, (3) addiction perceptions, and (4) perceptions of social norms. Across these 4 areas, the most appropriate way to assess e-cigarette perceptions depends largely on study aims. The type and number of items used to examine e-cigarette perceptions will also vary depending on respondents' e-cigarette experience (i.e., user vs. non-user), level of experience (e.g., experimental vs. established), type of e-cigarette device (e.g., cig-a-like, mod), and age. Continuous formative work is critical to adequately capture perceptions in response to the rapidly changing e-cigarette landscape. Most important, it is imperative to consider the unique perceptual aspects of e-cigarettes, building on the conventional cigarette literature as appropriate, but not relying on existing conventional cigarette perception items without adjustment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Self-assessed health-related quality of life (HRQOL) in men who completed radiotherapy for prostate cancer: Instrument validation and its relation to patient-assessed importance of symptoms

    International Nuclear Information System (INIS)

    Wang, Herbert; Huang, Edward; Dale, William; Ignacio, Lani; Ray, Paul; Kopnick, Mitchell; Vijayakumar, Srinivasan

    1997-01-01

    Purpose: The focus of this study is on the development of a questionnaire designed to assess the disease-specific dimensions of health related quality of life (HRQOL) in the urinary function (UF), bowel function (BF), and sexual function (SF) domains in prostate cancer (PC) patients treated with radiation therapy. The scales created were tested for reliability and validity. In addition, we assessed the relationship between these dimensions and the degree to which a decreased HRQOL increases the degrees to which patients feel bothered about their symptoms. A similar study was conducted for patients during radiotherapy for PC, and similar validation was performed. Materials and Methods: Patients were given a six-page questionnaire during their follow-up visits after completing radiotherapy for PC. Questionnaire design is based on clinical experience and a literature review for assessment of three HRQOL dimensions. Likert-type questions were employed related to BF (12 items), UR (11 items), and SF (9 items), as well as a single question for each asking how bothersome the reported symptoms are to the patient. Items in each section were analyzed with principal components factor analysis for identifying factors from which were formed scales. Items found to have high factor loadings were grouped together to form 6 scales, two for each dimension, and the reliability and validity of the created scales were assessed. The scale scores were used for assessment whether increased symptoms resulted in increases in the perceived importance of the symptoms to patients. Results: For 93 cases, 2 scales were identified within each dimension from the factor analysis. For BF, the 2 scales were an Urgency scale (4 items) and a Daily Living scale (3 items). For UF, the 2 scales were an Urgency scale (5 items) and a Weakness of (Urinary) Stream scale (3 items). For SF, the 2 scales were an Interest/Satisfaction scale (5 items) and an Impotence scale (3 items). Internal

  15. Genetic characterization of uniparental lineages in populations from Southwest Iberia with past malaria endemicity

    DEFF Research Database (Denmark)

    Pereira, Vania; Gomes, Verónica; Amorim, António

    2010-01-01

    then compared with data from other Portuguese and non-Portuguese populations. In Coruche, the genetic profile was similar to the profile usually found in Portugal. In Alcacer do Sal, the frequency of sub-Saharan mtDNA L lineages was the highest ever reported (22%) in Europe. In Pias, mtDNA diversity revealed...... influence might be traced to ancient contacts with Greeks, Phoenicians, and Carthaginians, who established important trading networks in southern Iberia....

  16. The Nursing Diagnosis of risk for pressure ulcer: content validation

    Directory of Open Access Journals (Sweden)

    Cássia Teixeira dos Santos

    2016-01-01

    Full Text Available Abstract Objective: to validate the content of the new nursing diagnosis, termed risk for pressure ulcer. Method: the content validation with a sample made up of 24 nurses who were specialists in skin care from six different hospitals in the South and Southeast of Brazil. Data collection took place electronically, through an instrument constructed using the SurveyMonkey program, containing a title, definition, and 19 risk factors for the nursing diagnosis. The data were analyzed using Fehring's method and descriptive statistics. The project was approved by a Research Ethics Committee. Results: title, definition and seven risk factors were validated as "very important": physical immobilization, pressure, surface friction, shearing forces, skin moisture, alteration in sensation and malnutrition. Among the other risk factors, 11 were validated as "important": dehydration, obesity, anemia, decrease in serum albumin level, prematurity, aging, smoking, edema, impaired circulation, and decrease in oxygenation and in tissue perfusion. The risk factor of hyperthermia was discarded. Conclusion: the content validation of these components of the nursing diagnosis corroborated the importance of the same, being able to facilitate the nurse's clinical reasoning and guiding clinical practice in the preventive care for pressure ulcers.

  17. The Chimera of Validity

    Science.gov (United States)

    Baker, Eva L.

    2013-01-01

    Background/Context: Education policy over the past 40 years has focused on the importance of accountability in school improvement. Although much of the scholarly discourse around testing and assessment is technical and statistical, understanding of validity by a non-specialist audience is essential as long as test results drive our educational…

  18. Y-chromosome and mtDNA variation confirms independent domestications and directional hybridization in South American camelids.

    Science.gov (United States)

    Marín, J C; Romero, K; Rivera, R; Johnson, W E; González, B A

    2017-10-01

    Investigations of genetic diversity and domestication in South American camelids (SAC) have relied on autosomal microsatellite and maternally-inherited mitochondrial data. We present the first integrated analysis of domestic and wild SAC combining male and female sex-specific markers (male specific Y-chromosome and female-specific mtDNA sequence variation) to assess: (i) hypotheses about the origin of domestic camelids, (ii) directionality of introgression among domestic and/or wild taxa as evidence of hybridization and (iii) currently recognized subspecies patterns. Three male-specific Y-chromosome markers and control region sequences of mitochondrial DNA are studied here. Although no sequence variation was found in SRY and ZFY, there were seven variable sites in DBY generating five haplotypes on the Y-chromosome. The haplotype network showed clear separation between haplogroups of guanaco-llama and vicuña-alpaca, indicating two genetically distinct patrilineages with near absence of shared haplotypes between guanacos and vicuñas. Although we document some examples of directional hybridization, the patterns strongly support the hypothesis that llama (Lama glama) is derived from guanaco (Lama guanicoe) and the alpaca (Vicugna pacos) from vicuña (Vicugna vicugna). Within male guanacos we identified a haplogroup formed by three haplotypes with different geographical distributions, the northernmost of which (Peru and northern Chile) was also observed in llamas, supporting the commonly held hypothesis that llamas were domesticated from the northernmost populations of guanacos (L. g. cacilensis). Southern guanacos shared the other two haplotypes. A second haplogroup, consisting of two haplotypes, was mostly present in vicuñas and alpacas. However, Y-chromosome variation did not distinguish the two subspecies of vicuñas. © 2017 Stichting International Foundation for Animal Genetics.

  19. Mitochondrial DNA assessment in adipocytes and peripheral blood mononuclear cells of HIV-infected patients with lipodystrophy according to a validated case definition

    NARCIS (Netherlands)

    Casula, M.; van der Valk, M.; Wit, F. W.; Nievaard, M. A.; Reiss, P.

    2007-01-01

    BACKGROUND: Several studies have compared mitochondrial DNA (mtDNA) content in tissue from HIV-1-infected patients on highly active antiretroviral therapy with and without evidence of lipodystrophy, the diagnosis of which was based on subjective clinical assessment. OBJECTIVES: The aim of this study

  20. Developing a model for validation and prediction of bank customer ...

    African Journals Online (AJOL)

    Credit risk is the most important risk of banks. The main approaches of the bank to reduce credit risk are correct validation using the final status and the validation model parameters. High fuel of bank reserves and lost or outstanding facilities of banks indicate the lack of appropriate validation models in the banking network.

  1. Four tenets of modern validity theory for medical education assessment and evaluation.

    Science.gov (United States)

    Royal, Kenneth D

    2017-01-01

    Validity is considered by many to be the most important criterion for evaluating a set of scores, yet few agree on what exactly the term means. Since the mid-1800s, scholars have been concerned with the notion of validity, but over time, the term has developed a variety of meanings across academic disciplines and contexts. Accordingly, when scholars with different academic backgrounds, many of whom hold deeply entrenched perspectives about validity conceptualizations, converge in the field of medical education assessment, it is a recipe for confusion. Thus, it is important to work toward a consensus about validity in the context of medical education assessment. Thus, the purpose of this work was to present four fundamental tenets of modern validity theory in an effort to establish a framework for scholars in the field of medical education assessment to follow when conceptualizing validity, interpreting validity evidence, and reporting research findings.

  2. Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury.

    Science.gov (United States)

    Lee, Yann-Leei; King, Madelyn B; Gonzalez, Richard P; Brevard, Sidney B; Frotan, M Amin; Gillespie, Mark N; Simmons, Jon D

    2014-10-01

    Transfusion-related acute lung injury (TRALI) is the most frequent and severe complication in patients receiving multiple blood transfusions. Current pathogenic concepts hold that proinflammatory mediators present in transfused blood products are responsible for the initiation of TRALI, but the identity of the critical effector molecules is yet to be determined. We hypothesize that mtDNA damage-associated molecular patterns (DAMPs) are present in blood transfusion products, which may be important in the initiation of TRALI. DNA was extracted from consecutive samples of packed red blood cells, fresh frozen plasma (FFP), and platelets procured from the local blood bank. Quantitative real-time polymerase chain reaction was used to quantify ≈200 bp sequences from the COX1, ND1, ND6, and D-loop regions of the mitochondrial genome. A range of mtDNA DAMPs were detected in all blood components measured, with FFP displaying the largest variation. We conclude that mtDNA DAMPs are present in packed red blood cells, FFP, and platelets. These observations provide proof of the concept that mtDNA DAMPs may be mediators of TRALI. Further studies are needed to test this hypothesis and to determine the origin of mtDNA DAMPs in transfused blood. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. CARVEDILOL POPULATION PHARMACOKINETIC ANALYSIS – APPLIED VALIDATION PROCEDURE

    Directory of Open Access Journals (Sweden)

    Aleksandra Catić-Đorđević

    2013-09-01

    Full Text Available Carvedilol is a nonselective beta blocker/alpha-1 blocker, which is used for treatment of essential hypertension, chronic stable angina, unstable angina and ischemic left ventricular dysfunction. The aim of this study was to describe carvedilol population pharmacokinetic (PK analysis as well as the validation of analytical procedure, which is an important step regarding this approach. In contemporary clinical practice, population PK analysis is often more important than standard PK approach in setting a mathematical model that describes the PK parameters. Also, it includes the variables that have particular importance in the drugs pharmacokinetics such as sex, body mass, dosage, pharmaceutical form, pathophysiological state, disease associated with the organism or the presence of a specific polymorphism in the isoenzyme important for biotransformation of the drug. One of the most frequently used approach in population PK analysis is the Nonlinear Modeling of Mixed Effects - NONMEM modeling. Analytical methods used in the data collection period is of great importance for the implementation of a population PK analysis of carvedilol in order to obtain reliable data that can be useful in clinical practice. High performance liquid chromatography (HPLC analysis of carvedilol is used to confirm the identity of a drug and provide quantitative results and also to monitor the efficacy of the therapy. Analytical procedures used in other studies could not be fully implemented in our research as it was necessary to perform certain modification and validation of the method with the aim of using the obtained results for the purpose of a population pharmacokinetic analysis. Validation process is a logical terminal phase of analytical procedure development that provides applicability of the procedure itself. The goal of validation is to ensure consistency of the method and accuracy of results or to confirm the selection of analytical method for a given sample

  4. Clinical importance of electromagnetic fields

    International Nuclear Information System (INIS)

    Ruppe, I.

    1993-01-01

    The clinical importance of most of the electromagnetic fields is not highly. Mostly they only have thermal effects, produced by energy-absorption. About 1 C increase of whole-body-temperature is valid for tolerable limit. For measuring is used the SAR-Value (Specific Absorption Rate) in W/kg body mass. SAR = 0,8W/kg for the whole body is valid to be safety. For the evaluation of possible other effects of electromagnetic fields the scientific knowledges are till now not sufficient to allow a final statement. That could be impacts of electromagnetic fields to conduction or switch processes in the nerves or brains, in the framwork of cellular regulations, in the genetic reactions are occurig is little, but if is necessary to find it out in scinentific investigations. (orig.) [de

  5. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage.

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Morales-Nebreda, Luisa; Cheng, Yuan; Hogan, Erin; Yeldandi, Anjana; Chi, Monica; Piseaux, Raul; Ridge, Karen; Michael Hart, C; Chandel, Navdeep; Scott Budinger, G R; Kamp, David W

    2016-12-01

    Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. Crocidolite asbestos (100µg/50µL), TiO 2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role

  6. Validation of CARE-Q in residential aged-care: rating of importance of caring behaviours from an e-cohort sub-study.

    Science.gov (United States)

    Tuckett, Anthony G; Hughes, Karen; Schluter, Philip J; Turner, Cathy

    2009-05-01

    To validate the Caring Assessment Report Evaluation Q-sort questionnaire in the residential aged-care setting. Based on this determination, to conclude with what degree of confidence the questionnaire can be used to determine the ranking of the importance of caring behaviours amongst aged-care nurses and residents in residential aged-care. Perceptions of caring may be context specific. Caring in residential aged-care may stand in contrast to the sense of caring understood and practiced in other settings. Self-administered survey. Residents from three not-for-profit aged-care facilities, across both high-care (nursing-home) and low-care (hostel care) were surveyed relying on the Caring Assessment Report Evaluation Q-sort questionnaire. A sub-sample of registered and enrolled nurses working in residential aged-care and registered with the Nurses & Midwives e-cohort study completed the same survey. Although the Caring Assessment Report Evaluation Q-sort questionnaire showed good internal consistency for the sample of nurses, the results for the residents were more erratic. Both groups displayed large ranges for the inter-item correlations. The results of the Mann-Whitney U-test indicated that the nurses rated the Comforts, Anticipates and Trusting relationship as significantly more important than the residents. Both groups rated the Explains and facilitates subscale as least important. All subscales, however, received median scores greater than, or equal to, six (seven-point, Likert scale) indicating that all were considered important overall. Based on poor Cronbach's alpha coefficients, negative inter-item correlations and qualitative observations, without further development within the residential aged-care facility the free response format version of the Caring Assessment Report Evaluation Q-sort may not be an appropriate measure to use with residential aged-care residents. More research needs to be conducted into how residents and nurses are interpreting the items

  7. Mitochondrially-Encoded Adenosine Triphosphate Synthase 6 Gene Haplotype Variation among World Population during 2003-2013

    OpenAIRE

    Steven Steven; Yoni F Syukriani; Julius B Dewanto

    2016-01-01

    Background: Adaptation and natural selection serve as an important part of evolution. Adaptation in molecular level can lead to genetic drift which causes mutation of genetic material; one of which is polymorphism of mitochondrial DNA (mtDNA). The aim of this study is to verify the polymorphism of mitochondrially-encoded Adenosine Triphosphate synthase6gene (MT-ATP6) as one of mtDNA building blocks among tropic, sub-tropic, and polar areas. Methods: This descriptive quantitative research used...

  8. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Drautz, Daniela I; Lesk, Arthur M

    2008-01-01

    We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis...... to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep....

  9. Verification and Validation in Systems Engineering

    CERN Document Server

    Debbabi, Mourad; Jarraya, Yosr; Soeanu, Andrei; Alawneh, Luay

    2010-01-01

    "Verification and validation" represents an important process used for the quality assessment of engineered systems and their compliance with the requirements established at the beginning of or during the development cycle. Debbabi and his coauthors investigate methodologies and techniques that can be employed for the automatic verification and validation of systems engineering design models expressed in standardized modeling languages. Their presentation includes a bird's eye view of the most prominent modeling languages for software and systems engineering, namely the Unified Model

  10. Regulatory perspectives on human factors validation

    International Nuclear Information System (INIS)

    Harrison, F.; Staples, L.

    2001-01-01

    Validation is an important avenue for controlling the genesis of human error, and thus managing loss, in a human-machine system. Since there are many ways in which error may intrude upon system operation, it is necessary to consider the performance-shaping factors that could introduce error and compromise system effectiveness. Validation works to this end by examining, through objective testing and measurement, the newly developed system, procedure or staffing level, in order to identify and eliminate those factors which may negatively influence human performance. It is essential that validation be done in a high-fidelity setting, in an objective and systematic manner, using appropriate measures, if meaningful results are to be obtained, In addition, inclusion of validation work in any design process can be seen as contributing to a good safety culture, since such activity allows licensees to eliminate elements which may negatively impact on human behaviour. (author)

  11. The Legality and Validity of Administrative Enforcement

    Directory of Open Access Journals (Sweden)

    Sergei V. Iarkovoi

    2018-01-01

    Full Text Available The article discusses the concept and content of the validity of adopted by the executive authorities and other bodies of public administration legal acts and committed by them legal actions as an important characteristic of law enforcement by these bodies. The Author concludes that the validity of the administrative law enforcement is not an independent requirement for it, and acts as an integral part of its legal requirements.

  12. Direct Importance Estimation with Gaussian Mixture Models

    Science.gov (United States)

    Yamada, Makoto; Sugiyama, Masashi

    The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.

  13. Worldwide Protein Data Bank validation information: usage and trends.

    Science.gov (United States)

    Smart, Oliver S; Horský, Vladimír; Gore, Swanand; Svobodová Vařeková, Radka; Bendová, Veronika; Kleywegt, Gerard J; Velankar, Sameer

    2018-03-01

    Realising the importance of assessing the quality of the biomolecular structures deposited in the Protein Data Bank (PDB), the Worldwide Protein Data Bank (wwPDB) partners established Validation Task Forces to obtain advice on the methods and standards to be used to validate structures determined by X-ray crystallography, nuclear magnetic resonance spectroscopy and three-dimensional electron cryo-microscopy. The resulting wwPDB validation pipeline is an integral part of the wwPDB OneDep deposition, biocuration and validation system. The wwPDB Validation Service webserver (https://validate.wwpdb.org) can be used to perform checks prior to deposition. Here, it is shown how validation metrics can be combined to produce an overall score that allows the ranking of macromolecular structures and domains in search results. The ValTrends DB database provides users with a convenient way to access and analyse validation information and other properties of X-ray crystal structures in the PDB, including investigating trends in and correlations between different structure properties and validation metrics.

  14. Mean-Variance-Validation Technique for Sequential Kriging Metamodels

    International Nuclear Information System (INIS)

    Lee, Tae Hee; Kim, Ho Sung

    2010-01-01

    The rigorous validation of the accuracy of metamodels is an important topic in research on metamodel techniques. Although a leave-k-out cross-validation technique involves a considerably high computational cost, it cannot be used to measure the fidelity of metamodels. Recently, the mean 0 validation technique has been proposed to quantitatively determine the accuracy of metamodels. However, the use of mean 0 validation criterion may lead to premature termination of a sampling process even if the kriging model is inaccurate. In this study, we propose a new validation technique based on the mean and variance of the response evaluated when sequential sampling method, such as maximum entropy sampling, is used. The proposed validation technique is more efficient and accurate than the leave-k-out cross-validation technique, because instead of performing numerical integration, the kriging model is explicitly integrated to accurately evaluate the mean and variance of the response evaluated. The error in the proposed validation technique resembles a root mean squared error, thus it can be used to determine a stop criterion for sequential sampling of metamodels

  15. Genetic diversity and phylogeography of highly zoonotic Echinococcus granulosus genotype G1 in the Americas (Argentina, Brazil, Chile and Mexico) based on 8279bp of mtDNA.

    Science.gov (United States)

    Laurimäe, Teivi; Kinkar, Liina; Andresiuk, Vanessa; Haag, Karen Luisa; Ponce-Gordo, Francisco; Acosta-Jamett, Gerardo; Garate, Teresa; Gonzàlez, Luis Miguel; Saarma, Urmas

    2016-11-01

    Echinococcus granulosus is a taeniid cestode and the etiological agent of an infectious zoonotic disease known as cystic echinococcosis (CE) or hydatid disease. CE is a serious public health concern in many parts of the world, including the Americas, where it is highly endemic in many regions. Echinococcus granulosus displays high intraspecific genetic variability and is divided into multiple genotypes (G1-G8, G10) with differences in their biology and etiology. Of these, genotype G1 is responsible for the majority of human and livestock infections and has the broadest host spectrum. However, despite the high significance to the public and livestock health, the data on genetic variability and regional genetic differences of genotype G1 in America are scarce. The aim of this study was to evaluate the genetic variability and phylogeography of G1 in several countries in America by sequencing a large portion of the mitochondrial genome. We analysed 8279bp of mtDNA for 52 E. granulosus G1 samples from sheep, cattle and pigs collected in Argentina, Brazil, Chile and Mexico, covering majority of countries in the Americas where G1 has been reported. The phylogenetic network revealed 29 haplotypes and a high haplotype diversity (Hd=0.903). The absence of phylogeographic segregation between different regions in America suggests the importance of animal transportation in shaping the genetic structure of E. granulosus G1. In addition, our study revealed many highly divergent haplotypes, indicating a long and complex evolutionary history of E. granulosus G1 in the Americas. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Mitoepigenetics and drug addiction.

    Science.gov (United States)

    Sadakierska-Chudy, Anna; Frankowska, Małgorzata; Filip, Małgorzata

    2014-11-01

    Being the center of energy production in eukaryotic cells, mitochondria are also crucial for various cellular processes including intracellular Ca(2+) signaling and generation of reactive oxygen species (ROS). Mitochondria contain their own circular DNA which encodes not only proteins, transfer RNA and ribosomal RNAs but also non-coding RNAs. The most recent line of evidence indicates the presence of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (mtDNA); thus, the level of gene expression - in a way similar to nuclear DNA - can be regulated by direct epigenetic modifications. Up to now, very little data shows the possibility of epigenetic regulation of mtDNA. Mitochondria and mtDNA are particularly important in the nervous system and may participate in the initiation of drug addiction. In fact, some addictive drugs enhance ROS production and generate oxidative stress that in turn alters mitochondrial and nuclear gene expression. This review summarizes recent findings on mitochondrial function, mtDNA copy number and epigenetics in drug addiction. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Short Communication Validation of growth zone deposition rate in ...

    African Journals Online (AJOL)

    Flathead mullet Mugil cephalus and freshwater mullet Myxus capensis are important components in South African estuarine fish communities and fisheries, but there is little information on their age and growth or age validation. This study validated the periodicity of growth zone formation in sectioned sagittal otoliths and ...

  18. Mitochondrial DNA paradox: sex-specific genetic structure in a marine mussel – despite maternal inheritance and passive dispersal

    Directory of Open Access Journals (Sweden)

    Teske Peter R

    2012-06-01

    Full Text Available Abstract Background When genetic structure is identified using mitochondrial DNA (mtDNA, but no structure is identified using biparentally-inherited nuclear DNA, the discordance is often attributed to differences in dispersal potential between the sexes. Results We sampled the intertidal rocky shore mussel Perna perna in a South African bay and along the nearby open coast, and sequenced maternally-inherited mtDNA (there is no evidence for paternally-inherited mtDNA in this species and a biparentally-inherited marker. By treating males and females as different populations, we identified significant genetic structure on the basis of mtDNA data in the females only. Conclusions This is the first study to report sex-specific differences in genetic structure based on matrilineally-inherited mtDNA in a passively dispersing species that lacks social structure or sexual dimorphism. The observed pattern most likely stems from females being more vulnerable to selection in habitats from which they did not originate, which also manifests itself in a male-biased sex ratio. Our results have three important implications for the interpretation of population genetic data. First, even when mtDNA is inherited exclusively in the female line, it also contains information about males. For that reason, using it to identify sex-specific differences in genetic structure by contrasting it with biparentally-inherited markers is problematic. Second, the fact that sex-specific differences were found in a passively dispersing species in which sex-biased dispersal is unlikely highlights the fact that significant genetic structure is not necessarily a function of low dispersal potential or physical barriers. Third, even though mtDNA is typically used to study historical demographic processes, it also contains information about contemporary processes. Higher survival rates of males in non-native habitats can erase the genetic structure present in their mothers within a single

  19. Developing a validation for environmental sustainability

    Science.gov (United States)

    Adewale, Bamgbade Jibril; Mohammed, Kamaruddeen Ahmed; Nawi, Mohd Nasrun Mohd; Aziz, Zulkifli

    2016-08-01

    One of the agendas for addressing environmental protection in construction is to reduce impacts and make the construction activities more sustainable. This important consideration has generated several research interests within the construction industry, especially considering the construction damaging effects on the ecosystem, such as various forms of environmental pollution, resource depletion and biodiversity loss on a global scale. Using Partial Least Squares-Structural Equation Modeling technique, this study validates environmental sustainability (ES) construct in the context of large construction firms in Malaysia. A cross-sectional survey was carried out where data was collected from Malaysian large construction firms using a structured questionnaire. Results of this study revealed that business innovativeness and new technology are important in determining environmental sustainability (ES) of the Malaysian construction firms. It also established an adequate level of internal consistency reliability, convergent validity and discriminant validity for each of this study's constructs. And based on this result, it could be suggested that the indicators for organisational innovativeness dimensions (business innovativeness and new technology) are useful to measure these constructs in order to study construction firms' tendency to adopt environmental sustainability (ES) in their project execution.

  20. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  1. Importance classification

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Kobayashi, Masahide

    2008-01-01

    Conventionally, the design of a nuclear reactor has been performed from a viewpoint of a safety function and the importance on earthquake-proof on the basis of not giving off the mainly included radioactivity outside. In this Niigataken-Chuetsuoki earthquake, there is almost no damage to the system, components and structure on safe also in the earthquake beyond assumption, and the validity of the design was checked. But, the situation peculiar to a big earthquake was also generated. The emergency plan room which should serve as a connection center with the exterior was not able to open a door and use at the beginning. Fire-extinguishing system piping fractured and self-defense fire fighting was not made. And so on. Discussion from the following three viewpoints was performed. 1st: The importance from a viewpoint which should maintain a function also with the disaster in case of an earthquake like an emergency plan room etc. 2nd: In the earthquake, since the safe system and un-safe system was influenced, the importance from a viewpoint which may have influence safely inquired when the un-safe system broke down. 3rd: Although it was not directly related safely, discussion from a viewpoint which influences fear of insecurity, such as taking out smoke, for example, was performed (author)

  2. Empirical Validation and Application of the Computing Attitudes Survey

    Science.gov (United States)

    Dorn, Brian; Elliott Tew, Allison

    2015-01-01

    Student attitudes play an important role in shaping learning experiences. However, few validated instruments exist for measuring student attitude development in a discipline-specific way. In this paper, we present the design, development, and validation of the computing attitudes survey (CAS). The CAS is an extension of the Colorado Learning…

  3. NSSE Benchmarks and Institutional Outcomes: A Note on the Importance of Considering the Intended Uses of a Measure in Validity Studies

    Science.gov (United States)

    Pike, Gary R.

    2013-01-01

    Surveys play a prominent role in assessment and institutional research, and the NSSE College Student Report is one of the most popular surveys of enrolled undergraduates. Recent studies have raised questions about the validity of the NSSE survey. Although these studies have themselves been criticized, documenting the validity of an instrument…

  4. The earliest settlers' antiquity and evolutionary history of Indian populations: evidence from M2 mtDNA lineage

    Directory of Open Access Journals (Sweden)

    Kotal M

    2008-08-01

    Full Text Available Abstract Background The "out of Africa" model postulating single "southern route" dispersal posits arrival of "Anatomically Modern Human" to Indian subcontinent around 66–70 thousand years before present (kyBP. However the contributions and legacy of these earliest settlers in contemporary Indian populations, owing to the complex past population dynamics and later migrations has been an issue of controversy. The high frequency of mitochondrial lineage "M2" consistent with its greater age and distribution suggests that it may represent the phylogenetic signature of earliest settlers. Accordingly, we attempted to re-evaluate the impact and contribution of earliest settlers in shaping the genetic diversity and structure of contemporary Indian populations; using our newly sequenced 72 and 4 published complete mitochondrial genomes of this lineage. Results The M2 lineage, harbouring two deep rooting subclades M2a and M2b encompasses approximately one tenth of the mtDNA pool of studied tribes. The phylogeographic spread and diversity indices of M2 and its subclades among the tribes of different geographic regions and linguistic phyla were investigated in detail. Further the reconstructed demographic history of M2 lineage as a surrogate of earliest settlers' component revealed that the demographic events with pronounced regional variations had played pivotal role in shaping the complex net of populations phylogenetic relationship in Indian subcontinent. Conclusion Our results suggest that tribes of southern and eastern region along with Dravidian and Austro-Asiatic speakers of central India are the modern representatives of earliest settlers of subcontinent. The Last Glacial Maximum aridity and post LGM population growth mechanised some sort of homogeneity and redistribution of earliest settlers' component in India. The demic diffusion of agriculture and associated technologies around 3 kyBP, which might have marginalized hunter-gatherer, is

  5. Cross-validation pitfalls when selecting and assessing regression and classification models.

    Science.gov (United States)

    Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon

    2014-03-29

    We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.

  6. Static validation of licence conformance policies

    DEFF Research Database (Denmark)

    Hansen, Rene Rydhof; Nielson, Flemming; Nielson, Hanne Riis

    2008-01-01

    Policy conformance is a security property gaining importance due to commercial interest like Digital Rights Management. It is well known that static analysis can be used to validate a number of more classical security policies, such as discretionary and mandatory access control policies, as well...... as communication protocols using symmetric and asymmetric cryptography. In this work we show how to develop a Flow Logic for validating the conformance of client software with respect to a licence conformance policy. Our approach is sufficiently flexible that it extends to fully open systems that can admit new...

  7. Reconceptualising the external validity of discrete choice experiments.

    Science.gov (United States)

    Lancsar, Emily; Swait, Joffre

    2014-10-01

    External validity is a crucial but under-researched topic when considering using discrete choice experiment (DCE) results to inform decision making in clinical, commercial or policy contexts. We present the theory and tests traditionally used to explore external validity that focus on a comparison of final outcomes and review how this traditional definition has been empirically tested in health economics and other sectors (such as transport, environment and marketing) in which DCE methods are applied. While an important component, we argue that the investigation of external validity should be much broader than a comparison of final outcomes. In doing so, we introduce a new and more comprehensive conceptualisation of external validity, closely linked to process validity, that moves us from the simple characterisation of a model as being or not being externally valid on the basis of predictive performance, to the concept that external validity should be an objective pursued from the initial conceptualisation and design of any DCE. We discuss how such a broader definition of external validity can be fruitfully used and suggest innovative ways in which it can be explored in practice.

  8. The Importance of Music in Early Childhood.

    Science.gov (United States)

    Levinowitz, Lili M.

    1998-01-01

    Surveys some of the research in music education that validates the inclusion of music for its own sake in models for early childhood learning. Focuses on topics that include, but are not limited to, child and vocal development, the importance of movement for children, and adult involvement in music education. (CMK)

  9. Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Elliot Bradshaw

    2017-09-01

    Full Text Available Small mitochondrial genomes can behave as selfish elements by displacing wild-type genomes regardless of their detriment to the host organism. In the budding yeast Saccharomyces cerevisiae, small hypersuppressive mtDNA transiently coexist with wild-type in a state of heteroplasmy, wherein the replicative advantage of the small mtDNA outcompetes wild-type and produces offspring without respiratory capacity in >95% of colonies. The cytosolic enzyme ribonucleotide reductase (RNR catalyzes the rate-limiting step in dNTP synthesis and its inhibition has been correlated with increased petite colony formation, reflecting loss of respiratory function. Here, we used heteroplasmic diploids containing wild-type (rho+ and suppressive (rho− or hypersuppressive (HS rho− mitochondrial genomes to explore the effects of RNR activity on mtDNA heteroplasmy in offspring. We found that the proportion of rho+ offspring was significantly increased by RNR overexpression or deletion of its inhibitor, SML1, while reducing RNR activity via SML1 overexpression produced the opposite effects. In addition, using Ex Taq and KOD Dash polymerases, we observed a replicative advantage for small over large template DNA in vitro, but only at low dNTP concentrations. These results suggest that dNTP insufficiency contributes to the replicative advantage of small mtDNA over wild-type and cytosolic dNTP synthesis by RNR is an important regulator of heteroplasmy involving small mtDNA molecules in yeast.

  10. A Clinical, Neuropathological and Genetic Study of Homozygous A467T POLG-Related Mitochondrial Disease.

    Directory of Open Access Journals (Sweden)

    Sanjeev Rajakulendran

    Full Text Available Mutations in the nuclear gene POLG (encoding the catalytic subunit of DNA polymerase gamma are an important cause of mitochondrial disease. The most common POLG mutation, A467T, appears to exhibit considerable phenotypic heterogeneity. The mechanism by which this single genetic defect results in such clinical diversity remains unclear. In this study we evaluate the clinical, neuropathological and mitochondrial genetic features of four unrelated patients with homozygous A467T mutations. One patient presented with the severe and lethal Alpers-Huttenlocher syndrome, which was confirmed on neuropathology, and was found to have a depletion of mitochondrial DNA (mtDNA. Of the remaining three patients, one presented with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS, one with a phenotype in the Myoclonic Epilepsy, Myopathy and Sensory Ataxia (MEMSA spectrum and one with Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO. All three had secondary accumulation of multiple mtDNA deletions. Complete sequence analysis of muscle mtDNA using the MitoChip resequencing chip in all four cases demonstrated significant variation in mtDNA, including a pathogenic MT-ND5 mutation in one patient. These data highlight the variable and overlapping clinical and neuropathological phenotypes and downstream molecular defects caused by the A467T mutation, which may result from factors such as the mtDNA genetic background, nuclear genetic modifiers and environmental stressors.

  11. Cattle phenotypes can disguise their maternal ancestry.

    Science.gov (United States)

    Srirattana, Kanokwan; McCosker, Kieren; Schatz, Tim; St John, Justin C

    2017-06-26

    Cattle are bred for, amongst other factors, specific traits, including parasite resistance and adaptation to climate. However, the influence and inheritance of mitochondrial DNA (mtDNA) are not usually considered in breeding programmes. In this study, we analysed the mtDNA profiles of cattle from Victoria (VIC), southern Australia, which is a temperate climate, and the Northern Territory (NT), the northern part of Australia, which has a tropical climate, to determine if the mtDNA profiles of these cattle are indicative of breed and phenotype, and whether these profiles are appropriate for their environments. A phylogenetic tree of the full mtDNA sequences of different breeds of cattle, which were obtained from the NCBI database, showed that the mtDNA profiles of cattle do not always reflect their phenotype as some cattle with Bos taurus phenotypes had Bos indicus mtDNA, whilst some cattle with Bos indicus phenotypes had Bos taurus mtDNA. Using D-loop sequencing, we were able to contrast the phenotypes and mtDNA profiles from different species of cattle from the 2 distinct cattle breeding regions of Australia. We found that 67 of the 121 cattle with Bos indicus phenotypes from NT (55.4%) had Bos taurus mtDNA. In VIC, 92 of the 225 cattle with Bos taurus phenotypes (40.9%) possessed Bos indicus mtDNA. When focusing on oocytes from cattle with the Bos taurus phenotype in VIC, their respective oocytes with Bos indicus mtDNA had significantly lower levels of mtDNA copy number compared with oocytes possessing Bos taurus mtDNA (P cattle with a Bos taurus phenotype. The phenotype of cattle is not always related to their mtDNA profiles. MtDNA profiles should be considered for breeding programmes as they also influence phenotypic traits and reproductive capacity in terms of oocyte quality.

  12. River classification is important for reporting ecological status and ...

    African Journals Online (AJOL)

    River classification is important for reporting ecological status and for the general ecological management of river systems by partitioning natural variability. A priori river classification by abiotic variables and validation of classifications obtained.

  13. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    Science.gov (United States)

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  14. Verification and validation in computational fluid dynamics

    Science.gov (United States)

    Oberkampf, William L.; Trucano, Timothy G.

    2002-04-01

    Verification and validation (V&V) are the primary means to assess accuracy and reliability in computational simulations. This paper presents an extensive review of the literature in V&V in computational fluid dynamics (CFD), discusses methods and procedures for assessing V&V, and develops a number of extensions to existing ideas. The review of the development of V&V terminology and methodology points out the contributions from members of the operations research, statistics, and CFD communities. Fundamental issues in V&V are addressed, such as code verification versus solution verification, model validation versus solution validation, the distinction between error and uncertainty, conceptual sources of error and uncertainty, and the relationship between validation and prediction. The fundamental strategy of verification is the identification and quantification of errors in the computational model and its solution. In verification activities, the accuracy of a computational solution is primarily measured relative to two types of highly accurate solutions: analytical solutions and highly accurate numerical solutions. Methods for determining the accuracy of numerical solutions are presented and the importance of software testing during verification activities is emphasized. The fundamental strategy of validation is to assess how accurately the computational results compare with the experimental data, with quantified error and uncertainty estimates for both. This strategy employs a hierarchical methodology that segregates and simplifies the physical and coupling phenomena involved in the complex engineering system of interest. A hypersonic cruise missile is used as an example of how this hierarchical structure is formulated. The discussion of validation assessment also encompasses a number of other important topics. A set of guidelines is proposed for designing and conducting validation experiments, supported by an explanation of how validation experiments are different

  15. Defying Intuition: Demonstrating the Importance of the Empirical Technique.

    Science.gov (United States)

    Kohn, Art

    1992-01-01

    Describes a classroom activity featuring a simple stay-switch probability game. Contends that the exercise helps students see the importance of empirically validating beliefs. Includes full instructions for conducting and discussing the exercise. (CFR)

  16. CONCURRENT VALIDITY OF THE STUDENT TEACHER PROFESSIONAL IDENTITY SCALE

    Directory of Open Access Journals (Sweden)

    Predrag Živković

    2018-04-01

    Full Text Available The main purpose of study was to examine concurrent validity of the Student Teachers Professional Identity Scale–STPIS (Fisherman and Abbot, 1998 that was for the first time used in Serbia. Indicators of concurrent validity was established by correlation with student teacher self-reported well-being, self-esteem, burnout stress and resilience. Based on the results we can conclude that the STPIS meets the criterion of concurrent validity. The implications of these results are important for researchers and decisions makers in teacher education

  17. Estimating uncertainty of inference for validation

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Jane M [Los Alamos National Laboratory; Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Ross, Timothy J [UNM

    2010-09-30

    We present a validation process based upon the concept that validation is an inference-making activity. This has always been true, but the association has not been as important before as it is now. Previously, theory had been confirmed by more data, and predictions were possible based on data. The process today is to infer from theory to code and from code to prediction, making the role of prediction somewhat automatic, and a machine function. Validation is defined as determining the degree to which a model and code is an accurate representation of experimental test data. Imbedded in validation is the intention to use the computer code to predict. To predict is to accept the conclusion that an observable final state will manifest; therefore, prediction is an inference whose goodness relies on the validity of the code. Quantifying the uncertainty of a prediction amounts to quantifying the uncertainty of validation, and this involves the characterization of uncertainties inherent in theory/models/codes and the corresponding data. An introduction to inference making and its associated uncertainty is provided as a foundation for the validation problem. A mathematical construction for estimating the uncertainty in the validation inference is then presented, including a possibility distribution constructed to represent the inference uncertainty for validation under uncertainty. The estimation of inference uncertainty for validation is illustrated using data and calculations from Inertial Confinement Fusion (ICF). The ICF measurements of neutron yield and ion temperature were obtained for direct-drive inertial fusion capsules at the Omega laser facility. The glass capsules, containing the fusion gas, were systematically selected with the intent of establishing a reproducible baseline of high-yield 10{sup 13}-10{sup 14} neutron output. The deuterium-tritium ratio in these experiments was varied to study its influence upon yield. This paper on validation inference is the

  18. Some guidance on preparing validation plans for the DART Full System Models.

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Genetha Anne; Hough, Patricia Diane; Hills, Richard Guy (Sandia National Laboratories, Albuquerque, NM)

    2009-03-01

    Planning is an important part of computational model verification and validation (V&V) and the requisite planning document is vital for effectively executing the plan. The document provides a means of communicating intent to the typically large group of people, from program management to analysts to test engineers, who must work together to complete the validation activities. This report provides guidelines for writing a validation plan. It describes the components of such a plan and includes important references and resources. While the initial target audience is the DART Full System Model teams in the nuclear weapons program, the guidelines are generally applicable to other modeling efforts. Our goal in writing this document is to provide a framework for consistency in validation plans across weapon systems, different types of models, and different scenarios. Specific details contained in any given validation plan will vary according to application requirements and available resources.

  19. Affective commitment to the employer brand: Development and validation of a scale

    Directory of Open Access Journals (Sweden)

    Susana Fernandez-Lores

    2016-01-01

    Full Text Available In recent years employer branding has become increasingly important as a source of sustainable competitive advantage. Companies are trying to engender affective commitment in the best employees in a global labour market. In this study, we develop and validate a multidimensional scale to measure the strength of an employee's affective commitment to the employer brand in five separate studies. In Studies 1 and 2 the Affective Commitment to the Employer Brand (ACEB scale was developed and tested for its structure, reliability and convergent validity. Study 3 examines additional reliability and discriminant validity. Study 4 provides evidence of external validity. Study 5 examines the scale's nomological validity showing that a positive experience with the employer brand is important in making the employee develop affective commitment towards it. The limitations of the scale and the boundary conditions of its applicability are also discussed.

  20. Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America.

    Science.gov (United States)

    Bermingham, E; Martin, A P

    1998-04-01

    Historical biogeography seeks to explain contemporary distributions of taxa in the context of intrinsic biological and extrinsic geological and climatic factors. To decipher the relative importance of biological characteristics vs. environmental conditions, it is necessary to ask whether groups of taxa with similar distributions share the same history of diversification. Because all of the taxa will have shared the same climatic and geological history, evidence of shared history across multiple species provides an estimate of the role of extrinsic factors in shaping contemporary biogeographic patterns. Similarly, differences in the records of evolutionary history across species will probably be signatures of biological differences. In this study, we focus on inferring the evolutionary history for geographical populations and closely related species representing three genera of primary freshwater fishes that are widely distributed in lower Central America (LCA) and northwestern Colombia. Analysis of mitochondrial gene trees provides the opportunity for robust tests of shared history across taxa. Moreover, because mtDNA permits inference of the temporal scale of diversification we can test hypotheses regarding the chronological development of the Isthmian corridor linking North and South America. We have focused attention on two issues. First, we show that many of the distinct populations of LCA fishes diverged in a relatively brief period of time thus limiting the phylogenetic signal available for tests of shared history. Second, our results provide reduced evidence of shared history when all drainages are included in the analysis because of inferred dispersion events that obscure the evolutionary history among drainage basins. When we restrict the analysis to areas that harbour endemic mitochondrial lineages, there is evidence of shared history across taxa. We hypothesize that there were two to three distinct waves of invasion into LCA from putative source

  1. Analysis of mtDNT 4977bp deletion induced by ionizing radiation in human peripheral blood nucleated cells using real-time PCR

    International Nuclear Information System (INIS)

    Fan Tianli; Wang Ping; Han Lin; Liu Yulong; Liu Yumin

    2010-01-01

    To detect mitochondrial DNA(mtDNA) 4977bp deletion(triangle open mtDNA 4977 ) in human peripheral blood nucleated cells exposed to ionizing radiation in vitro by using real-time PCR, and explore possibility of the index as biodosimetry for estimating biological dose in radiation accident,six healthy individuals' peripheral blood was collected,and the blood samples were irradiated with 0,1,2,3,4 and 5 Gy 60 Co gamma-ray. The triangle open mtDNA 4977 and total mtDNA copy number(mtDNA total ) in the mtDNA samples were detected, and then the deletion rates were calculated. The results showed that the mtDNA total and triangle open mtDNA 4977 copy number, and the deletion rates of mtDNA 4977bp in the mtDNA samples from 6 healthy individuals' blood exposed to 1-5 Gy radiation were higher than that with the samples exposed to 0 Gy radiation(p 0.05). The results indicated that ionizing radiation can induce accumulation of the triangle open mtDNA 4977 and increase of mtDNA total copy number in human peripheral blood nucleated cells,but both the mtDNA 4977bp deletion and exposure dose(0-5 Gy) were not obviously correlated. (authors)

  2. Genetic characterisation of populations of the critically endangered Goliath grouper ( Epinephelus itajara, Serranidae from the Northern Brazilian coast through analyses of mtDNA

    Directory of Open Access Journals (Sweden)

    Gláucia C. Silva-Oliveira

    2008-01-01

    Full Text Available The Goliath grouper ( Epinephelus itajara is one of the most endangered species of fish of the subfamily Epinephelinae. Slow to develop and mature, and dependent on mangrove habitats for breeding, the species also suffers intense harvesting, which has reduced drastically in numbers in many areas. To contribute to the understanding of the characteristics of E. itajara populations, we conducted a molecular genetics study of the species, focusing on populations from the Northern Brazilian coast. The mtDNA control region (D-loop of 116 individuals from five localities (Bragança, Ajuruteua, Parnaíba, Fortaleza and Natal was analysed, and a sequence of 499 base pairs identified. Analyses of the sequences indicated that genetic variability was generally lower in E. itajara than in other endangered species of the genus. AMOVA found no significant grouping structure among the populations. Nested Clade Analysis revealed a significant association between genetic variability and geographic distribution among only three populations (Ajuruteua, Parnaíba and Natal. Genetic diversity was higher in populations from the Amazon region, which may be related to the better conservation of mangrove habitats in this area. Therefore, the present study could be used for the implementation of conservation and management measures in order to protect and consolidate these populations.

  3. Stakeholder validation of a model of readiness for transition to adult care.

    Science.gov (United States)

    Schwartz, Lisa A; Brumley, Lauren D; Tuchman, Lisa K; Barakat, Lamia P; Hobbie, Wendy L; Ginsberg, Jill P; Daniel, Lauren C; Kazak, Anne E; Bevans, Katherine; Deatrick, Janet A

    2013-10-01

    That too few youth with special health care needs make the transition to adult-oriented health care successfully may be due, in part, to lack of readiness to transfer care. There is a lack of theoretical models to guide development and implementation of evidence-based guidelines, assessments, and interventions to improve transition readiness. To further validate the Social-ecological Model of Adolescent and Young Adult Readiness to Transition (SMART) via feedback from stakeholders (patients, parents, and providers) from a medically diverse population in need of life-long follow-up care, survivors of childhood cancer. Mixed-methods participatory research design. A large Mid-Atlantic children's hospital. Adolescent and young adult survivors of childhood cancer (n = 14), parents (n = 18), and pediatric providers (n = 10). Patients and parents participated in focus groups; providers participated in individual semi-structured interviews. Validity of SMART was assessed 3 ways: (1) ratings on importance of SMART components for transition readiness using a 5-point scale (0-4; ratings >2 support validity), (2) nominations of 3 "most important" components, and (3) directed content analysis of focus group/interview transcripts. Qualitative data supported the validity of SMART, with minor modifications to definitions of components. Quantitative ratings met criteria for validity; stakeholders endorsed all components of SMART as important for transition. No additional SMART variables were suggested by stakeholders and the "most important" components varied by stakeholders, thus supporting the comprehensiveness of SMART and need to involve multiple perspectives. SMART represents a comprehensive and empirically validated framework for transition research and program planning, supported by survivors of childhood cancer, parents, and pediatric providers. Future research should validate SMART among other populations with special health care needs.

  4. Network Security Validation Using Game Theory

    Science.gov (United States)

    Papadopoulou, Vicky; Gregoriades, Andreas

    Non-functional requirements (NFR) such as network security recently gained widespread attention in distributed information systems. Despite their importance however, there is no systematic approach to validate these requirements given the complexity and uncertainty characterizing modern networks. Traditionally, network security requirements specification has been the results of a reactive process. This however, limited the immunity property of the distributed systems that depended on these networks. Security requirements specification need a proactive approach. Networks' infrastructure is constantly under attack by hackers and malicious software that aim to break into computers. To combat these threats, network designers need sophisticated security validation techniques that will guarantee the minimum level of security for their future networks. This paper presents a game-theoretic approach to security requirements validation. An introduction to game theory is presented along with an example that demonstrates the application of the approach.

  5. Defining species boundaries in the Merodon avidus complex (Diptera, Syrphidae using integrative taxonomy, with the description of a new species

    Directory of Open Access Journals (Sweden)

    Jelena Ačanski

    2016-10-01

    Full Text Available Several recent studies have detected and described complexes of cryptic and sibling species in the genus Merodon (Diptera, Syrphidae. One representative of these complexes is the Merodon avidus complex that contains four sibling species, which have proven difficult to distinguish using traditional morphological characters. In the present study, we use two geometric morphometric approaches, as well as molecular characters of the 5’-end of the mtDNA COI gene, to delimit sibling taxa. Analyses based on these data were used to strengthen species boundaries within the complex, and to validate the status of a previously-recognized cryptic taxon from Lesvos Island (Greece, here described as Merodon megavidus Vujić & Radenković sp. nov. Geometric morphometric results of both wing and surstylus shape confirm the present classification for three sibling species-M. avidus (Rossi, 1790, M. moenium Wiedemann in Meigen, 1822 and M. ibericus Vujić, 2015-and, importantly, clearly discriminate the newly-described taxon Merodon megavidus sp. nov. In addition to our geometric morphometric results, supporting characters were obtained from molecular analyses of mtDNA COI sequences, which clearly differentiated M. megavidus sp. nov. from the other members of the M. avidus complex. Molecular analyses revealed that the earliest divergence of M. ibericus occurred around 800 ky BP, while the most recent separation happened between M. avidus and M. moenium around 87 ky BP.

  6. Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Wainstein Julio

    2009-06-01

    Full Text Available Abstract Background Although mitochondrial dysfunction is consistently manifested in patients with Type 2 Diabetes mellitus (T2DM, the association of mitochondrial DNA (mtDNA sequence variants with T2DM varies among populations. These differences might stem from differing environmental influences among populations. However, other potentially important considerations emanate from the very nature of mitochondrial genetics, namely the notable high degree of partitioning in the distribution of human mtDNA variants among populations, as well as the interaction of mtDNA and nuclear DNA-encoded factors working in concert to govern mitochondrial function. We hypothesized that association of mtDNA genetic variants with T2DM could be revealed while controlling for the effect of additional inherited factors, reflected in family history information. Methods To test this hypothesis we set out to investigate whether mtDNA genetic variants will be differentially associated with T2DM depending on the diabetes status of the parents. To this end, association of mtDNA genetic backgrounds (haplogroups with T2DM was assessed in 1055 Jewish patients with and without T2DM parents ('DP' and 'HP', respectively. Results Haplogroup J1 was found to be 2.4 fold under-represented in the 'HP' patients (p = 0.0035. These results are consistent with a previous observation made in Finnish T2DM patients. Moreover, assessing the haplogroup distribution in 'DP' versus 'HP' patients having diabetic siblings revealed that haplogroup J1 was virtually absent in the 'HP' group. Conclusion These results imply the involvement of inherited factors, which modulate the susceptibility of haplogroup J1 to T2DM.

  7. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men.

    Directory of Open Access Journals (Sweden)

    Shahriar Koochekpour

    Full Text Available Reduction or depletion of mitochondrial DNA (mtDNA has been associated with cancer progression. Although imbalanced mtDNA content is known to occur in prostate cancer, differences in mtDNA content between African American (AA and Caucasian American (CA men are not defined. We provide the first evidence that tumors in AA men possess reduced level of mtDNA compared to CA men. The median tumor mtDNA content was reduced in AA men. mtDNA content was also reduced in normal prostate tissues of AA men compared to CA men, suggesting a possible predisposition to cancer in AA men. mtDNA content was also reduced in benign prostatic hyperplasia (BPH tissue from AA men. Tumor and BPH tissues from patients ≥ 60 years of age possess reduced mtDNA content compared to patients 7 compared to ≤ 7, whereas reduced mtDNA content was observed in tumors of Gleason grade >7 compared to ≤ 7. Together, our data suggest that AA men possess lower mtDNA levels in normal and tumor tissues compared to CA men, which could contribute to higher risk and more aggressive prostate cancer in AA men.

  8. Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men.

    Science.gov (United States)

    Koochekpour, Shahriar; Marlowe, Timothy; Singh, Keshav K; Attwood, Kristopher; Chandra, Dhyan

    2013-01-01

    Reduction or depletion of mitochondrial DNA (mtDNA) has been associated with cancer progression. Although imbalanced mtDNA content is known to occur in prostate cancer, differences in mtDNA content between African American (AA) and Caucasian American (CA) men are not defined. We provide the first evidence that tumors in AA men possess reduced level of mtDNA compared to CA men. The median tumor mtDNA content was reduced in AA men. mtDNA content was also reduced in normal prostate tissues of AA men compared to CA men, suggesting a possible predisposition to cancer in AA men. mtDNA content was also reduced in benign prostatic hyperplasia (BPH) tissue from AA men. Tumor and BPH tissues from patients ≥ 60 years of age possess reduced mtDNA content compared to patients 7 compared to ≤ 7, whereas reduced mtDNA content was observed in tumors of Gleason grade >7 compared to ≤ 7. Together, our data suggest that AA men possess lower mtDNA levels in normal and tumor tissues compared to CA men, which could contribute to higher risk and more aggressive prostate cancer in AA men.

  9. Association of genetic variations in the mitochondrial DNA control region with presbycusis

    Directory of Open Access Journals (Sweden)

    Falah M

    2017-03-01

    Full Text Available Masoumeh Falah,1 Mohammad Farhadi,1 Seyed Kamran Kamrava,1 Saeid Mahmoudian,1 Ahmad Daneshi,1 Maryam Balali,1 Alimohamad Asghari,2 Massoud Houshmand1,3 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Skull Base Research Center, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran Background: The prominent role of mitochondria in the generation of reactive oxygen species, cell death, and energy production contributes to the importance of this organelle in the intracellular mechanism underlying the progression of the common sensory disorder of the elderly, presbycusis. Reduced mitochondrial DNA (mtDNA gene expression and coding region variation have frequently been reported as being associated with the development of presbycusis. The mtDNA control region regulates gene expression and replication of the genome of this organelle. To comprehensively understand of the role of mitochondria in the progression of presbycusis, we compared variations in the mtDNA control region between subjects with presbycusis and controls.Methods: A total of 58 presbycusis patients and 220 control subjects were enrolled in the study after examination by the otolaryngologist and audiology tests. Variations in the mtDNA control region were investigated by polymerase chain reaction and Sanger sequencing.Results: A total of 113 sequence variants were observed in mtDNA, and variants were detected in 100% of patients, with 84% located in hypervariable regions. The frequencies of the variants, 16,223 C>T, 16,311 T>C, 16,249 T>C, and 15,954 A>C, were significantly different between presbycusis and control subjects.Conclusion: The statistically significant difference in the frequencies of four nucleotide variants in the mtDNA control region of presbycusis patients and controls is in agreement with previous experimental

  10. Towards natural language question generation for the validation of ontologies and mappings.

    Science.gov (United States)

    Ben Abacha, Asma; Dos Reis, Julio Cesar; Mrabet, Yassine; Pruski, Cédric; Da Silveira, Marcos

    2016-08-08

    The increasing number of open-access ontologies and their key role in several applications such as decision-support systems highlight the importance of their validation. Human expertise is crucial for the validation of ontologies from a domain point-of-view. However, the growing number of ontologies and their fast evolution over time make manual validation challenging. We propose a novel semi-automatic approach based on the generation of natural language (NL) questions to support the validation of ontologies and their evolution. The proposed approach includes the automatic generation, factorization and ordering of NL questions from medical ontologies. The final validation and correction is performed by submitting these questions to domain experts and automatically analyzing their feedback. We also propose a second approach for the validation of mappings impacted by ontology changes. The method exploits the context of the changes to propose correction alternatives presented as Multiple Choice Questions. This research provides a question optimization strategy to maximize the validation of ontology entities with a reduced number of questions. We evaluate our approach for the validation of three medical ontologies. We also evaluate the feasibility and efficiency of our mappings validation approach in the context of ontology evolution. These experiments are performed with different versions of SNOMED-CT and ICD9. The obtained experimental results suggest the feasibility and adequacy of our approach to support the validation of interconnected and evolving ontologies. Results also suggest that taking into account RDFS and OWL entailment helps reducing the number of questions and validation time. The application of our approach to validate mapping evolution also shows the difficulty of adapting mapping evolution over time and highlights the importance of semi-automatic validation.

  11. Molecular Mechanisms for Age-Associated Mitochondrial Deficiency in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akira Wagatsuma

    2012-01-01

    Full Text Available The abundance, morphology, and functional properties of mitochondria decay in skeletal muscle during the process of ageing. Although the precise mechanisms remain to be elucidated, these mechanisms include decreased mitochondrial DNA (mtDNA repair and mitochondrial biogenesis. Mitochondria possess their own protection system to repair mtDNA damage, which leads to defects of mtDNA-encoded gene expression and respiratory chain complex enzymes. However, mtDNA mutations have shown to be accumulated with age in skeletal muscle. When damaged mitochondria are eliminated by autophagy, mitochondrial biogenesis plays an important role in sustaining energy production and physiological homeostasis. The capacity for mitochondrial biogenesis has shown to decrease with age in skeletal muscle, contributing to progressive mitochondrial deficiency. Understanding how these endogenous systems adapt to altered physiological conditions during the process of ageing will provide a valuable insight into the underlying mechanisms that regulate cellular homeostasis. Here we will summarize the current knowledge about the molecular mechanisms responsible for age-associated mitochondrial deficiency in skeletal muscle. In particular, recent findings on the role of mtDNA repair and mitochondrial biogenesis in maintaining mitochondrial functionality in aged skeletal muscle will be highlighted.

  12. Valid methods: the quality assurance of test method development, validation, approval, and transfer for veterinary testing laboratories.

    Science.gov (United States)

    Wiegers, Ann L

    2003-07-01

    Third-party accreditation is a valuable tool to demonstrate a laboratory's competence to conduct testing. Accreditation, internationally and in the United States, has been discussed previously. However, accreditation is only I part of establishing data credibility. A validated test method is the first component of a valid measurement system. Validation is defined as confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled. The international and national standard ISO/IEC 17025 recognizes the importance of validated methods and requires that laboratory-developed methods or methods adopted by the laboratory be appropriate for the intended use. Validated methods are therefore required and their use agreed to by the client (i.e., end users of the test results such as veterinarians, animal health programs, and owners). ISO/IEC 17025 also requires that the introduction of methods developed by the laboratory for its own use be a planned activity conducted by qualified personnel with adequate resources. This article discusses considerations and recommendations for the conduct of veterinary diagnostic test method development, validation, evaluation, approval, and transfer to the user laboratory in the ISO/IEC 17025 environment. These recommendations are based on those of nationally and internationally accepted standards and guidelines, as well as those of reputable and experienced technical bodies. They are also based on the author's experience in the evaluation of method development and transfer projects, validation data, and the implementation of quality management systems in the area of method development.

  13. Identification of a new human mtDNA polymorphism (A14290G in the NADH dehydrogenase subunit 6 gene

    Directory of Open Access Journals (Sweden)

    M. Houshmand

    2006-06-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity. The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid. We looked for base conservation using DNA star software (MEGALIGN program as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%. This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.

  14. Validation of the reactor dynamics code HEXTRAN

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    1994-05-01

    HEXTRAN is a new three-dimensional, hexagonal reactor dynamics code developed in the Technical Research Centre of Finland (VTT) for VVER type reactors. This report describes the validation work of HEXTRAN. The work has been made with the financing of the Finnish Centre for Radiation and Nuclear Safety (STUK). HEXTRAN is particularly intended for calculation of such accidents, in which radially asymmetric phenomena are included and both good neutron dynamics and two-phase thermal hydraulics are important. HEXTRAN is based on already validated codes. The models of these codes have been shown to function correctly also within the HEXTRAN code. The main new model of HEXTRAN, the spatial neutron kinetics model has been successfully validated against LR-0 test reactor and Loviisa plant measurements. Connected with SMABRE, HEXTRAN can be reliably used for calculation of transients including effects of the whole cooling system of VVERs. Further validation plans are also introduced in the report. (orig.). (23 refs., 16 figs., 2 tabs.)

  15. Paternal leakage of mitochondrial DNA in experimental crosses of populations of the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Hoolahan, Angelique H; Blok, Vivian C; Gibson, Tracey; Dowton, Mark

    2011-12-01

    Animal mtDNA is typically assumed to be maternally inherited. Paternal mtDNA has been shown to be excluded from entering the egg or eliminated post-fertilization in several animals. However, in the contact zones of hybridizing species and populations, the reproductive barriers between hybridizing organisms may not be as efficient at preventing paternal mtDNA inheritance, resulting in paternal leakage. We assessed paternal mtDNA leakage in experimental crosses of populations of a cyst-forming nematode, Globodera pallida. A UK population, Lindley, was crossed with two South American populations, P5A and P4A. Hybridization of these populations was supported by evidence of nuclear DNA from both the maternal and paternal populations in the progeny. To assess paternal mtDNA leakage, a ~3.4 kb non-coding mtDNA region was analyzed in the parental populations and in the progeny. Paternal mtDNA was evident in the progeny of both crosses involving populations P5A and P4A. Further, paternal mtDNA replaced the maternal mtDNA in 22 and 40 % of the hybrid cysts from these crosses, respectively. These results indicate that under appropriate conditions, paternal leakage occurs in the mtDNA of parasitic nematodes, and supports the hypothesis that hybrid zones facilitate paternal leakage. Thus, assumptions of strictly maternal mtDNA inheritance may be frequently violated, particularly when divergent populations interbreed.

  16. Construct Validity and Case Validity in Assessment

    Science.gov (United States)

    Teglasi, Hedwig; Nebbergall, Allison Joan; Newman, Daniel

    2012-01-01

    Clinical assessment relies on both "construct validity", which focuses on the accuracy of conclusions about a psychological phenomenon drawn from responses to a measure, and "case validity", which focuses on the synthesis of the full range of psychological phenomena pertaining to the concern or question at hand. Whereas construct validity is…

  17. A role for recombination junctions in the segregation of mitochondrial DNA in yeast.

    Science.gov (United States)

    Lockshon, D; Zweifel, S G; Freeman-Cook, L L; Lorimer, H E; Brewer, B J; Fangman, W L

    1995-06-16

    In S. cerevisiae, mitochondrial DNA (mtDNA) molecules, in spite of their high copy number, segregate as if there were a small number of heritable units. The rapid segregation of mitochondrial genomes can be analyzed using mtDNA deletion variants. These small, amplified genomes segregate preferentially from mixed zygotes relative to wild-type mtDNA. This segregation advantage is abolished by mutations in a gene, MGT1, that encodes a recombination junction-resolving enzyme. We show here that resolvase deficiency causes a larger proportion of molecules to be linked together by recombination junctions, resulting in the aggregation of mtDNA into a small number of cytological structures. This change in mtDNA structure can account for the increased mitotic loss of mtDNA and the altered pattern of mtDNA segregation from zygotes. We propose that the level of unresolved recombination junctions influences the number of heritable units of mtDNA.

  18. Validating Acquisition IS Integration Readiness with Drills

    DEFF Research Database (Denmark)

    Wynne, Peter J.

    2017-01-01

    To companies, mergers and acquisitions are important strategic tools, yet they often fail to deliver their expected value. Studies have shown the integration of information systems is a significant roadblock to the realisation of acquisition benefits, and for an IT department to be ready......), to understand how an IT department can use them to validate their integration plans. The paper presents a case study of two drills used to validate an IT department’s readiness to carry out acquisition IS integration, and suggests seven acquisition IS integration drill characteristics others could utilise when...

  19. Research on Cigarettes Customer Needs Importance Algorithm Based on KJ / RAHP / KANO

    Directory of Open Access Journals (Sweden)

    Ni Xiong-Jun

    2017-01-01

    Full Text Available To express the ambiguity and uncertainty of customer needs importance, an algorithm was proposed. It integrated KJ method, rough analytic Hierarchy Process and KANO model. It calculated the customer needs importance in rough set. A case study of cigarettes customer needs importance illustrated the feasibility and validity of the algorithm.

  20. Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer.

    Science.gov (United States)

    Kalsbeek, Anton M F; Chan, Eva K F; Grogan, Judith; Petersen, Desiree C; Jaratlerdsiri, Weerachai; Gupta, Ruta; Lyons, Ruth J; Haynes, Anne-Maree; Horvath, Lisa G; Kench, James G; Stricker, Phillip D; Hayes, Vanessa M

    2018-01-01

    Mitochondrial genome (mtDNA) content is depleted in many cancers. In prostate cancer, there is intra-glandular as well as inter-patient mtDNA copy number variation. In this study, we determine if mtDNA content can be used as a predictor for prostate cancer staging and outcomes. Fresh prostate cancer biopsies from 115 patients were obtained at time of surgery. All cores underwent pathological review, followed by isolation of cancer and normal tissue. DNA was extracted and qPCR performed to quantify the total amount of mtDNA as a ratio to genomic DNA. Differences in mtDNA content were compared for prostate cancer pathology features and disease outcomes. We showed a significantly reduced mtDNA content in prostate cancer compared with normal adjacent prostate tissue (mean difference 1.73-fold, P-value Prostate cancer with increased mtDNA content showed unfavorable pathologic characteristics including, higher disease stage (PT2 vs PT3 P-value = 0.018), extracapsular extension (P-value = 0.02) and a trend toward an increased Gleason score (P-value = 0.064). No significant association was observed between changes in mtDNA content and biochemical recurrence (median follow up of 107 months). Contrary to other cancer types, prostate cancer tissue shows no universally depleted mtDNA content. Rather, the change in mtDNA content is highly variable, mirroring known prostate cancer genome heterogeneity. Patients with high mtDNA content have an unfavorable pathology, while a high mtDNA content in normal adjacent prostate tissue is associated with worse prognosis. © 2017 Wiley Periodicals, Inc.

  1. Level validity of self-report whole-family measures.

    Science.gov (United States)

    Manders, Willeke A; Cook, William L; Oud, Johan H L; Scholte, Ron H J; Janssens, Jan M A M; De Bruyn, Eric E J

    2007-12-01

    This article introduces an approach to testing the level validity of family assessment instruments (i.e., whether a family instrument measures family functioning at the level of the system it purports to assess). Two parents and 2 adolescents in 69 families rated the warmth in each of their family relationships and in the family as a whole. Family members' ratings of whole-family warmth assessed family functioning not only at the family level (i.e., characteristics of the family as a whole) but also at the individual level of analysis (i.e., characteristics of family members as raters), indicating a lack of level validity. Evidence was provided for the level validity of a latent variable based on family members' ratings of whole-family warmth. The findings underscore the importance of assessing the level validity of individual ratings of whole-family functioning.

  2. User Validation of VIIRS Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Don Hillger

    2015-12-01

    Full Text Available Visible/Infrared Imaging Radiometer Suite (VIIRS Imagery from the Suomi National Polar-orbiting Partnership (S-NPP satellite is the finest spatial resolution (375 m multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR has been designated as a Key Performance Parameter (KPP for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.

  3. Prioritization of motor operated valves based on risk importances

    International Nuclear Information System (INIS)

    Vesely, W.E.; Weidenhamer, G.H.

    1994-01-01

    The plant Probabilistic Risk Assessment (PRA) can be a potentially useful and powerful tool for helping to define an effective response to GL 89-10. The plant PRA can be used to prioritize the Motor Operated Valves (MOV) dynamic test. The plant PRA can also be used to determine test schedules for the MOVs. In order for the PRA to be validly used to respond to GL 89-10, various issues need to be validly addressed. Eleven issues are specifically identified and responses to these issues are outlined. The issues of joint MOV importance, PRA truncation, and validation of the proposed approach are specifically highlighted and more detailed response considerations are described. As in all PRA applications, sensitivity studies and uncertainty considerations should be incorporated in the PRA evaluations. 4 refs, 3 tabs

  4. Standards and guidelines applicable for the validation of programmable automation systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Maskuniitty, M.

    1993-02-01

    The validation of programmable automation system for an application important to safety in a nuclear power plant requires a comprehensive view about the system quality and reliability. One central point is to get assured that proper international guidelines and standards have been followed in the design, construction and maintenance of the system. The study was directed to locate international standards and guidelines which can support the validation of programmable systems and to evaluate their applicability for the validation of systems on different levels of requirement during their life cycle. The publication reviews the most important international standards (IAEA, ISO, IEC, IEEE) and their basic principles both for system and application program. Several nuclear standards, which have drawn the main attention, and some general programmable automation standards have been examined. In addition one practical automation system has been examined in order to find essential questions. Based on these studies a set of important items for the qualification have been identified

  5. Chronic exposure to microcystin-LR affected mitochondrial DNA maintenance and caused pathological changes of lung tissue in mice

    International Nuclear Information System (INIS)

    Li, Xinxiu; Xu, Lizhi; Zhou, Wei; Zhao, Qingya; Wang, Yaping

    2016-01-01

    Microcystin-LR (MC-LR), an important variant of cyanotoxin family, was frequently encountered in the contaminated aquatic environment and taken as a potent hepatotoxin. However, a little was known on the association between the long-term MC-LR exposure and lung damage. In this study, we investigated the changes of the pulmonary histopathology, mitochondrial DNA (mtDNA) integrity and the expression of mtDNA encoded genes in the mice with chronic exposed to MC-LR at different concentrations (1, 5, 10, 20 and 40 μg/L) for 12 months. Our results showed that the long-term and persistent exposure to MC-LR disturbed the balance of redox system, influenced mtDNA stability, changed the expression of mitochondrial genes in the lung cells. Notably, MC-LR exposure influenced the level of inflammatory cytokines and resulted in thickening of the alveolar septa. In conclusion, chronic exposure to MC-LR affected mtDNA maintenance, and caused lung impairment in mice. - Highlights: • A simulated natural exposure to MC-LR caused the lung pathological changes. • The chronic exposure disturbed the redox system balance of lung tissue cells. • The chronic exposure impaired the mtDNA stability and mitochondria function. • The lung was one of the vulnerable organs to MC-LR exposure in mice. - Long-term exposure to MC-LR in drinking water disturbed the balance of redox system, affected mitochondrial DNA maintenance and caused lung impairment in mice.

  6. What cost mitochondria? The maintenance of functional mitochondrial DNA within and across generations

    NARCIS (Netherlands)

    Aanen, D.K.; Spelbrink, J.N.; Beekman, M.

    2014-01-01

    The peculiar biology of mitochondrial DNA (mtDNA) potentially has detrimental consequences for organismal health and lifespan. Typically, eukaryotic cells contain multiple mitochondria, each with multiple mtDNA genomes. The high copy number of mtDNA implies that selection on mtDNA functionality is

  7. TWO CRITERIA FOR GOOD MEASUREMENTS IN RESEARCH: VALIDITY AND RELIABILITY

    Directory of Open Access Journals (Sweden)

    Haradhan Kumar Mohajan

    2017-12-01

    Full Text Available Reliability and validity are two most important and fundamental features in the evaluation of any measurement instrument or toll for a good research. The purpose of this research is to discuss the validity and reliability of measurement instruments that are used in research. Validity concerns what an instrument measures, and how well it does so. Reliability concerns the faith that one can have in the data obtained from use of an instrument, that is, the degree to which any measuring tool controls for random error. An attempt has been taken here to review the reliability and validity, and threat to them in some details.

  8. Student mathematical imagination instruments: construction, cultural adaptation and validity

    Science.gov (United States)

    Dwijayanti, I.; Budayasa, I. K.; Siswono, T. Y. E.

    2018-03-01

    Imagination has an important role as the center of sensorimotor activity of the students. The purpose of this research is to construct the instrument of students’ mathematical imagination in understanding concept of algebraic expression. The researcher performs validity using questionnaire and test technique and data analysis using descriptive method. Stages performed include: 1) the construction of the embodiment of the imagination; 2) determine the learning style questionnaire; 3) construct instruments; 4) translate to Indonesian as well as adaptation of learning style questionnaire content to student culture; 5) perform content validation. The results stated that the constructed instrument is valid by content validation and empirical validation so that it can be used with revisions. Content validation involves Indonesian linguists, english linguists and mathematics material experts. Empirical validation is done through a legibility test (10 students) and shows that in general the language used can be understood. In addition, a questionnaire test (86 students) was analyzed using a biserial point correlation technique resulting in 16 valid items with a reliability test using KR 20 with medium reability criteria. While the test instrument test (32 students) to find all items are valid and reliability test using KR 21 with reability is 0,62.

  9. Applications of autoassociative neural networks for signal validation in accident management

    International Nuclear Information System (INIS)

    Fantoni, P.; Mazzola, A.

    1994-01-01

    The OECD Halden Reactor Project has been working for several years with computer based systems for determination on plant status including early fault detection and signal validation. The method here presented explores the possibility to use a neural network approach to validate important process signals during normal and abnormal plant conditions. In BWR plants, signal validation has two important applications: reliable thermal limits calculation and reliable inputs to other computerized systems that support the operator during accident scenarious. This work shows how a properly trained autoassociative neural network can promptly detect faulty process signal measurements and produce a best estimate of the actual process value. Noise has been artificially added to the input to evaluate the network ability to respond in a very low signal to noise ratio environment. Training and test datasets have been simulated by the real time transient simulator code APROS. Future development addresses the validation of the model through the use of real data from the plant. (author). 5 refs, 17 figs

  10. Validity in qualitative research: Interview and the appearance of truth through dialogue

    Directory of Open Access Journals (Sweden)

    Marja Kuzmanić

    2009-07-01

    Full Text Available This paper addresses several issues related to validity in qualitative research and, more specifically, explores the ways in which validity has been discussed and applied in research with qualitative interviews. The central question is to what extent, if at all, traditional positivist validity criteria are applicable, but also relevant, for evaluation of research with qualitative interviewing. The qualitative interview has been chosen as the focal point of this paper because of its peculiarity in terms of the relationship between the interviewer and the interviewee or, in other words, the ways in which during an interview meaning and narrative are constructed through discourse between the participants. The importance of the relationship (with its characteristics between research participants (interviewer and interviewee for the outcome of a qualitative interview cannot be overemphasized and is as such of particular interest for the assessment of its validity. I introduce and summarize the main approaches to the study and establishment of validity and scrutinize their significance for the example of qualitative interviewing and research in particular. This paper shows the importance of considering research context (in this instance interview for any assessment of validity, if validity at all ought to assume the same role in qualitative and quantitative research. As alternatives to the positivist notion of validity concepts such as reflexivity, transparency and credibility throughout the research process are introduced and advocated.

  11. Validation of MCNP and WIMS-AECL/DRAGON/RFSP for ACR-1000 applications

    International Nuclear Information System (INIS)

    Bromley, Blair P.; Adams, Fred P.; Zeller, Michael B.; Watts, David G.; Shukhman, Boris V.; Pencer, Jeremy

    2008-01-01

    This paper gives a summary of the validation of the reactor physics codes WIMS-AECL, DRAGON, RFSP and MCNP5, which are being used in the design, operation, and safety analysis of the ACR-1000 R . The standards and guidelines being followed for code validation of the suite are established in CSA Standard N286.7-99 and ANS Standard ANS-19.3-2005. These codes are being validated for the calculation of key output parameters associated with various reactor physics phenomena of importance during normal operations and postulated accident conditions in an ACR-1000 reactor. Experimental data from a variety of sources are being used for validation. The bulk of the validation data is from critical experiments in the ZED-2 research reactor with ACR-type lattices. To supplement and complement ZED-2 data, qualified and applicable data are being taken from other power and research reactors, such as existing CANDU R units, FUGEN, NRU and SPERT research reactors, and the DCA critical facility. MCNP simulations of the ACR-1000 are also being used for validating WIMS-AECL/ DRAGON/RFSP, which involves extending the validation results for MCNP through the assistance of TSUNAMI analyses. Code validation against commissioning data in the first-build ACR-1000 will be confirmatory. The code validation is establishing the biases and uncertainties in the calculations of the WIMS-AECL/DRAGON/RFSP suite for the evaluation of various key parameters of importance in the reactor physics analysis of the ACR-1000. (authors)

  12. Measuring Nutrition Literacy in Spanish-Speaking Latinos: An Exploratory Validation Study.

    Science.gov (United States)

    Gibbs, Heather D; Camargo, Juliana M T B; Owens, Sarah; Gajewski, Byron; Cupertino, Ana Paula

    2017-11-21

    Nutrition is important for preventing and treating chronic diseases highly prevalent among Latinos, yet no tool exists for measuring nutrition literacy among Spanish speakers. This study aimed to adapt the validated Nutrition Literacy Assessment Instrument for Spanish-speaking Latinos. This study was developed in two phases: adaptation and validity testing. Adaptation included translation, expert item content review, and interviews with Spanish speakers. For validity testing, 51 participants completed the Short Assessment of Health Literacy-Spanish (SAHL-S), the Nutrition Literacy Assessment Instrument in Spanish (NLit-S), and socio-demographic questionnaire. Validity and reliability statistics were analyzed. Content validity was confirmed with a Scale Content Validity Index of 0.96. Validity testing demonstrated NLit-S scores were strongly correlated with SAHL-S scores (r = 0.52, p internal consistency was excellent (Cronbach's α = 0.92). The NLit-S demonstrates validity and reliability for measuring nutrition literacy among Spanish-speakers.

  13. A Systematic Review of the Reliability and Validity of Behavioural Tests Used to Assess Behavioural Characteristics Important in Working Dogs.

    Science.gov (United States)

    Brady, Karen; Cracknell, Nina; Zulch, Helen; Mills, Daniel Simon

    2018-01-01

    Working dogs are selected based on predictions from tests that they will be able to perform specific tasks in often challenging environments. However, withdrawal from service in working dogs is still a big problem, bringing into question the reliability of the selection tests used to make these predictions. A systematic review was undertaken aimed at bringing together available information on the reliability and predictive validity of the assessment of behavioural characteristics used with working dogs to establish the quality of selection tests currently available for use to predict success in working dogs. The search procedures resulted in 16 papers meeting the criteria for inclusion. A large range of behaviour tests and parameters were used in the identified papers, and so behaviour tests and their underpinning constructs were grouped on the basis of their relationship with positive core affect (willingness to work, human-directed social behaviour, object-directed play tendencies) and negative core affect (human-directed aggression, approach withdrawal tendencies, sensitivity to aversives). We then examined the papers for reports of inter-rater reliability, within-session intra-rater reliability, test-retest validity and predictive validity. The review revealed a widespread lack of information relating to the reliability and validity of measures to assess behaviour and inconsistencies in terminologies, study parameters and indices of success. There is a need to standardise the reporting of these aspects of behavioural tests in order to improve the knowledge base of what characteristics are predictive of optimal performance in working dog roles, improving selection processes and reducing working dog redundancy. We suggest the use of a framework based on explaining the direct or indirect relationship of the test with core affect.

  14. Phylogenetic relationships of Scomberomorus commerson using sequence analysis of the mtDNA D-loop region in the Persian Gulf, Oman Sea and Arabian Sea

    Directory of Open Access Journals (Sweden)

    Ana Mansourkiaei

    2016-04-01

    Full Text Available Abstract Narrow-barred Spanish mackerel, Scomberomorus commerson, is an epipelagic and migratory species of family Scombridae which have a significant role in terms of ecology and fishery. 100 samples were collected from the Persian Gulf, Oman Sea and Arabian Sea. Part of their dorsal fins was snipped and transferred to micro-tubes containing ethanol; then, DNAs were extracted and HRM-Real Time PCR was performed to designate representative specimens for sequencing. Phylogenetic relationships of S. commerson from Persian Gulf, Oman Sea and Arabian Sea were investigated using sequence data of mitochondrial DNA D-loop region. None clustered Neighbor Joining tree indicated the proximity amid S. commerson in four sites. As numbers demonstrated in sequence analyses of mitochondrial DNA D-Loop region a sublimely high degree of genetic similarity among S. commerson from the Persian Gulf and Oman Sea were perceived, thereafter, having one stock structure of S. commerson in four regions were proved, and this approximation can be merely justified by their migration process along the coasts of Oman Sea and Persian Gulf. Therefore, the assessment of distribution patterns of 20 haplotypes in the constructed phylogenetic tree using mtDNA D-Loop sequences ascertained that no significant clustering according to the sampling sites was concluded.

  15. Conserved PCR primer set designing for closely-related species to complete mitochondrial genome sequencing using a sliding window-based PSO algorithm.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: Complete mitochondrial (mt genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5' end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO, all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided. CONCLUSIONS/SIGNIFICANCE: In conclusion, it can be said that our proposed sliding window-based PSO

  16. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    International Nuclear Information System (INIS)

    Lushaj, Entela B.; Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi

    2012-01-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  17. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Takayuki Mito

    Full Text Available Mitochondrial DNA (mtDNA mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0 mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  18. Quality control analysis of imported fertilizers used in Ghana

    International Nuclear Information System (INIS)

    Enti-Brown, S.

    2010-01-01

    Twenty three (23) imported fertilizer samples of 5 fertilizer types have been analysed to determine their quality. The main objective of this research was to validate specifications indicated by manufacturers' on their fertilizer products. To achieve this objective, the fertilizer samples were analysed using five analytical techniques (INAA, AAS, flame photometer, kjeldahl method and UV-visible spectroscopy) to determine the concentrations of macronutrients (N, P, K, Mg, Ca and S), micronutrients (Cu, Na, Fe, Mn, Mo and Zn) and heavy metals (As, Cd, Co, Hg and Pd) in the fertilizer samples. Results obtained from analysis were compared with certified values obtained from the companies and with standard values obtained from MOFA to establish whether the imported fertilizers met standards. Two reference materials (IAEA Soil-7 and SRM 1646a Estuarine Sediment) were used to validate the quantitative methods employed in the INAA and AAS techniques. Good agreements (98%) were obtained between the measured and verified concentrations for most of the elements. Analytical results revealed that the concentrations of the primary macronutrients (N, P and K) claimed by the manufacturers were valid. In contrast, manufacturers' claims for micronutrient concentrations did not agree with analytical results. The concentrations recorded were far below the minimum plant nutrient guarantees. For instance, the highest values recorded for Cu and Zn were 0.0265% and 0.00305% respectively, whiles the minimum guaranteed values were set at 0.05%. Heavy metal levels recorded in the fertilizers were insignificant and therefore do not present possible contamination problems during fertilizer application. In conclusion, not all the nutrient requirements expected of imported fertilizers were met. There is therefore the need for a good quality control system to monitor the chemical compositions of fertilizers imported into Ghana (au).

  19. Range Wide Phylogeography of Dactylopius coccus (Hemiptera: Dactylopiidae)

    DEFF Research Database (Denmark)

    Van Dam, Alex; Portillo Martinez, Liberato; Jeri Chavez, Antonio

    2015-01-01

    The process of domestication and geographic origins of the cochineal insect (Dactylopius coccus Costa) has remained largely unstudied despite its importance as a global food colorant commodity. Ecological evidence supports Oaxaca Mexico as the geographic origin of this species. Other recent genet...... cochineal distributions. We find the center of origin of D. coccus to be Oaxaca Mexico based on mtDNA data and climate niche modeling. Further meta-genomic data are needed to rule out selective sweeps from past and present endosymbionts for these results to be definitive.......The process of domestication and geographic origins of the cochineal insect (Dactylopius coccus Costa) has remained largely unstudied despite its importance as a global food colorant commodity. Ecological evidence supports Oaxaca Mexico as the geographic origin of this species. Other recent genetic...... studies have been inconclusive. Here, we fill in the remaining gaps in the ecological record and look for corroboration from mtDNA markers as to the origin of this species. We use three mtDNA genes (CO1, tRNA-Leucine, and CO2) spanning 1294 bp, along with climate niche modeling of Holocene and Pleistocene...

  20. [Validated Instruments for the Psychological Assessment of Unaccompanied Refugee Minors - a Systematic Review].

    Science.gov (United States)

    Rassenhofer, Miriam; Fegert, Jörg Michael; Plener, Paul L; Witt, Andreas

    2016-01-01

    The German care system faces a growing number of unaccompanied refugee minors (URM). URM show high levels of traumatization, a variety of psychological symptoms and lack important resilience factors. Therefore an early and valid psychological assessment is important for intervention and service planning. Yet, no systematic review on validated instruments for the assessment of this group exists. Literature search revealed one study about translators in the assessment of URM and five validated instruments for proxy and self-report. These instruments are available in several languages and showed good psychometric properties. It has to be critically stated that all instruments have been validated by a single work group within a single population. Especially with regards to changing definitions of Posttraumatic Stress Disorder within the new (and upcoming) classification systems ICD-11 and DSM-5, increased awareness for diagnostic procedures is necessary. Additionally, more validated instruments for specific psychological disorders in multiple languages are needed. Under an economic perspective the use of open access questionnaires that are available in different languages seems useful, even if they are not especially validated for URM.

  1. [Data validation methods and discussion on Chinese materia medica resource survey].

    Science.gov (United States)

    Zhang, Yue; Ma, Wei-Feng; Zhang, Xiao-Bo; Zhu, Shou-Dong; Guo, Lan-Ping; Wang, Xing-Xing

    2013-07-01

    From the beginning of the fourth national survey of the Chinese materia medica resources, there were 22 provinces have conducted pilots. The survey teams have reported immense data, it put forward the very high request to the database system construction. In order to ensure the quality, it is necessary to check and validate the data in database system. Data validation is important methods to ensure the validity, integrity and accuracy of census data. This paper comprehensively introduce the data validation system of the fourth national survey of the Chinese materia medica resources database system, and further improve the design idea and programs of data validation. The purpose of this study is to promote the survey work smoothly.

  2. Explicating Validity

    Science.gov (United States)

    Kane, Michael T.

    2016-01-01

    How we choose to use a term depends on what we want to do with it. If "validity" is to be used to support a score interpretation, validation would require an analysis of the plausibility of that interpretation. If validity is to be used to support score uses, validation would require an analysis of the appropriateness of the proposed…

  3. Entropy Evaluation Based on Value Validity

    Directory of Open Access Journals (Sweden)

    Tarald O. Kvålseth

    2014-09-01

    Full Text Available Besides its importance in statistical physics and information theory, the Boltzmann-Shannon entropy S has become one of the most widely used and misused summary measures of various attributes (characteristics in diverse fields of study. It has also been the subject of extensive and perhaps excessive generalizations. This paper introduces the concept and criteria for value validity as a means of determining if an entropy takes on values that reasonably reflect the attribute being measured and that permit different types of comparisons to be made for different probability distributions. While neither S nor its relative entropy equivalent S* meet the value-validity conditions, certain power functions of S and S* do to a considerable extent. No parametric generalization offers any advantage over S in this regard. A measure based on Euclidean distances between probability distributions is introduced as a potential entropy that does comply fully with the value-validity requirements and its statistical inference procedure is discussed.

  4. Taino and African maternal heritage in the Greater Antilles.

    Science.gov (United States)

    Bukhari, Areej; Luis, Javier Rodriguez; Alfonso-Sanchez, Miguel A; Garcia-Bertrand, Ralph; Herrera, Rene J

    2017-12-30

    Notwithstanding the general interest and the geopolitical importance of the island countries in the Greater Antilles, little is known about the specific ancestral Native American and African populations that settled them. In an effort to alleviate this lacuna of information on the genetic constituents of the Greater Antilles, we comprehensively compared the mtDNA compositions of Cuba, Dominican Republic, Haiti, Jamaica and Puerto Rico. To accomplish this, the mtDNA HVRI and HVRII regions, as well as coding diagnostic sites, were assessed in the Haitian general population and compared to data from reference populations. The Taino maternal DNA is prominent in the ex-Spanish colonies (61.3%-22.0%) while it is basically non-existent in the ex-French and ex-English colonies of Haiti (0.0%) and Jamaica (0.5%), respectively. The most abundant Native American mtDNA haplogroups in the Greater Antilles are A2, B2 and C1. The African mtDNA component is almost fixed in Haiti (98.2%) and Jamaica (98.5%), and the frequencies of specific African haplogroups vary considerably among the five island nations. The strong persistence of Taino mtDNA in the ex-Spanish colonies (and especially in Puerto Rico), and its absence in the French and English excolonies is likely the result of different social norms regarding mixed marriages with Taino women during the early years after the first contact with Europeans. In addition, this article reports on the results of an integrative approach based on mtDNA analysis and demographic data that tests the hypothesis of a southward shift in raiding zones along the African west coast during the period encompassing the Transatlantic Slave Trade. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Automation of RELAP5 input calibration and code validation using genetic algorithm

    International Nuclear Information System (INIS)

    Phung, Viet-Anh; Kööp, Kaspar; Grishchenko, Dmitry; Vorobyev, Yury; Kudinov, Pavel

    2016-01-01

    Highlights: • Automated input calibration and code validation using genetic algorithm is presented. • Predictions generally overlap experiments for individual system response quantities (SRQs). • It was not possible to predict simultaneously experimental maximum flow rate and oscillation period. • Simultaneous consideration of multiple SRQs is important for code validation. - Abstract: Validation of system thermal-hydraulic codes is an important step in application of the codes to reactor safety analysis. The goal of the validation process is to determine how well a code can represent physical reality. This is achieved by comparing predicted and experimental system response quantities (SRQs) taking into account experimental and modelling uncertainties. Parameters which are required for the code input but not measured directly in the experiment can become an important source of uncertainty in the code validation process. Quantification of such parameters is often called input calibration. Calibration and uncertainty quantification may become challenging tasks when the number of calibrated input parameters and SRQs is large and dependencies between them are complex. If only engineering judgment is employed in the process, the outcome can be prone to so called “user effects”. The goal of this work is to develop an automated approach to input calibration and RELAP5 code validation against data on two-phase natural circulation flow instability. Multiple SRQs are used in both calibration and validation. In the input calibration, we used genetic algorithm (GA), a heuristic global optimization method, in order to minimize the discrepancy between experimental and simulation data by identifying optimal combinations of uncertain input parameters in the calibration process. We demonstrate the importance of the proper selection of SRQs and respective normalization and weighting factors in the fitness function. In the code validation, we used maximum flow rate as the

  6. Automation of RELAP5 input calibration and code validation using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Viet-Anh, E-mail: vaphung@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Vorobyev, Yury, E-mail: yura3510@gmail.com [National Research Center “Kurchatov Institute”, Kurchatov square 1, Moscow 123182 (Russian Federation); Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden)

    2016-04-15

    Highlights: • Automated input calibration and code validation using genetic algorithm is presented. • Predictions generally overlap experiments for individual system response quantities (SRQs). • It was not possible to predict simultaneously experimental maximum flow rate and oscillation period. • Simultaneous consideration of multiple SRQs is important for code validation. - Abstract: Validation of system thermal-hydraulic codes is an important step in application of the codes to reactor safety analysis. The goal of the validation process is to determine how well a code can represent physical reality. This is achieved by comparing predicted and experimental system response quantities (SRQs) taking into account experimental and modelling uncertainties. Parameters which are required for the code input but not measured directly in the experiment can become an important source of uncertainty in the code validation process. Quantification of such parameters is often called input calibration. Calibration and uncertainty quantification may become challenging tasks when the number of calibrated input parameters and SRQs is large and dependencies between them are complex. If only engineering judgment is employed in the process, the outcome can be prone to so called “user effects”. The goal of this work is to develop an automated approach to input calibration and RELAP5 code validation against data on two-phase natural circulation flow instability. Multiple SRQs are used in both calibration and validation. In the input calibration, we used genetic algorithm (GA), a heuristic global optimization method, in order to minimize the discrepancy between experimental and simulation data by identifying optimal combinations of uncertain input parameters in the calibration process. We demonstrate the importance of the proper selection of SRQs and respective normalization and weighting factors in the fitness function. In the code validation, we used maximum flow rate as the

  7. Multiple ways to prevent transmission of paternal mitochondrial DNA for maternal inheritance in animals.

    Science.gov (United States)

    Sato, Ken; Sato, Miyuki

    2017-10-01

    Mitochondria contain their own DNA (mtDNA). In most sexually reproducing organisms, mtDNA is inherited maternally (uniparentally); this type of inheritance is thus referred to as 'maternal (uniparental) inheritance'. Recent studies have revealed various mechanisms to prevent the transmission of sperm-derived paternal mtDNA to the offspring, thereby ensuring maternal inheritance of mtDNA. In the nematode Caenorhabditis elegans, paternal mitochondria and their mtDNA degenerate almost immediately after fertilization and are selectively degraded by autophagy, which is referred to as 'allophagy' (allogeneic [non-self] organelle autophagy). In the fruit fly Drosophila melanogaster, paternal mtDNA is largely eliminated by an endonuclease G-mediated mechanism. Paternal mitochondria are subsequently removed by endocytic and autophagic pathways after fertilization. In many mammals, including humans, paternal mitochondria enter fertilized eggs. However, the fate of paternal mitochondria and their mtDNA in mammals is still a matter of debate. In this review, we will summarize recent knowledge on the molecular mechanisms underlying the prevention of paternal mtDNA transmission, which ensures maternal mtDNA inheritance in animals. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  8. Validation of hospital discharge diagnoses for hypertensive disorders of pregnancy

    DEFF Research Database (Denmark)

    Møller Luef, Birgitte; Andersen, Louise B; Renault, Kristina Martha

    2016-01-01

    INTRODUCTION: A correct diagnosis of preeclampsia and gestational hypertension is important for treatment and epidemiological studies. Changes in diagnostic criteria and underreporting in certain subsets of patients may hamper validity of the diagnoses. MATERIALS AND METHODS: We validated....... After validation, significantly more patients fulfilled criteria for diagnosis of preeclampsia (n = 163, 7.5%, p = 0.002); more had severe preeclampsia, 14 (0.6%) vs. 70 (3.2%), p hypertension, 62 (2.9%) vs. 46 (2.1%), p = 0.12. The diagnostic sensitivity for preeclampsia...... of hypertensive disorders in pregnancy for research purposes....

  9. Validation of New Cancer Biomarkers

    DEFF Research Database (Denmark)

    Duffy, Michael J; Sturgeon, Catherine M; Söletormos, Georg

    2015-01-01

    BACKGROUND: Biomarkers are playing increasingly important roles in the detection and management of patients with cancer. Despite an enormous number of publications on cancer biomarkers, few of these biomarkers are in widespread clinical use. CONTENT: In this review, we discuss the key steps...... in advancing a newly discovered cancer candidate biomarker from pilot studies to clinical application. Four main steps are necessary for a biomarker to reach the clinic: analytical validation of the biomarker assay, clinical validation of the biomarker test, demonstration of clinical value from performance...... of the biomarker test, and regulatory approval. In addition to these 4 steps, all biomarker studies should be reported in a detailed and transparent manner, using previously published checklists and guidelines. Finally, all biomarker studies relating to demonstration of clinical value should be registered before...

  10. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    International Nuclear Information System (INIS)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela; Martinelli, Diego; Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella; Dionisi-Vici, Carlo; Nobili, Valerio; Francalanci, Paola; Boldrini, Renata; Callea, Francesco; Santorelli, Filippo Maria; Bertini, Enrico

    2011-01-01

    Highlights: ► Expanded array of mtDNA deletions. ► Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. ► Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. ► Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  11. The ALICE Software Release Validation cluster

    International Nuclear Information System (INIS)

    Berzano, D; Krzewicki, M

    2015-01-01

    One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future. (paper)

  12. Validation of comprehensive space radiation transport code

    International Nuclear Information System (INIS)

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-01-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation

  13. Development and initial validity of the in-hand manipulation assessment.

    Science.gov (United States)

    Klymenko, Gabrielle; Liu, Karen P Y; Bissett, Michelle; Fong, Kenneth N K; Welage, Nandana; Wong, Rebecca S M

    2018-04-01

    A review of the literature related to in-hand manipulation (IHM) revealed that there is no assessment which specifically measures this construct in the adult population. This study reports the face and content validity of an IHM assessment for adults with impaired hand function based on expert opinion. The definition of IHM skills, assessment tasks and scoring methods identified from literature was discussed in a focus group (n = 4) to establish face validity. An expert panel (n = 16) reviewed the content validity of the proposed assessment; evaluating the representativeness and relevance of encompassing the IHM skills in the proposed assessment tasks, the clarity and importance to daily life of the task and the clarity and applicability to clinical environment of the scoring method. The content validity was calculated using the content validity index for both the individual task and all tasks together (I-CVI and S-CVI). Feedback was incorporated to create the assessment. The focus group members agreed to include 10 assessment tasks that covered all IHM skills. In the expert panel review, all tasks received an I-CVI above 0.78 and S-CVI above 0.80 in representativeness and relevance ratings, representing good content validity. With the comments from the expert panel, tasks were modified to improve the clarity and importance to daily life. A four-point Likert scale was identified for assessing both the completion of the assessment tasks and the quality of IHM skills within the task performance. Face and content validity were established in this new IHM assessment. Further studies to examine psychometric properties and use within clinical practice are recommended. © 2018 Occupational Therapy Australia.

  14. Validation of three-dimensional micro injection molding simulation accuracy

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F.S.; Hansen, Hans Nørgaard

    2011-01-01

    length, injection pressure profile, molding mass and flow pattern. The importance of calibrated micro molding process monitoring for an accurate implementation strategy of the simulation and its validation has been demonstrated. In fact, inconsistencies and uncertainties in the experimental data must...... be minimized to avoid introducing uncertainties in the simulation calculations. Simulations of bulky sub-100 milligrams micro molded parts have been validated and a methodology for accurate micro molding simulations was established....

  15. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations.

    Science.gov (United States)

    Gonçalves, Vanessa F; Parra, Flavia C; Gonçalves-Dornelas, Higgor; Rodrigues-Carvalho, Claudia; Silva, Hilton P; Pena, Sergio Dj

    2010-12-01

    Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New World, especially when direct

  16. Age-related mitochondrial DNA depletion and the impact on pancreatic Beta cell function.

    Science.gov (United States)

    Nile, Donna L; Brown, Audrey E; Kumaheri, Meutia A; Blair, Helen R; Heggie, Alison; Miwa, Satomi; Cree, Lynsey M; Payne, Brendan; Chinnery, Patrick F; Brown, Louise; Gunn, David A; Walker, Mark

    2014-01-01

    Type 2 diabetes is characterised by an age-related decline in insulin secretion. We previously identified a 50% age-related decline in mitochondrial DNA (mtDNA) copy number in isolated human islets. The purpose of this study was to mimic this degree of mtDNA depletion in MIN6 cells to determine whether there is a direct impact on insulin secretion. Transcriptional silencing of mitochondrial transcription factor A, TFAM, decreased mtDNA levels by 40% in MIN6 cells. This level of mtDNA depletion significantly decreased mtDNA gene transcription and translation, resulting in reduced mitochondrial respiratory capacity and ATP production. Glucose-stimulated insulin secretion was impaired following partial mtDNA depletion, but was normalised following treatment with glibenclamide. This confirms that the deficit in the insulin secretory pathway precedes K+ channel closure, indicating that the impact of mtDNA depletion is at the level of mitochondrial respiration. In conclusion, partial mtDNA depletion to a degree comparable to that seen in aged human islets impaired mitochondrial function and directly decreased insulin secretion. Using our model of partial mtDNA depletion following targeted gene silencing of TFAM, we have managed to mimic the degree of mtDNA depletion observed in aged human islets, and have shown how this correlates with impaired insulin secretion. We therefore predict that the age-related mtDNA depletion in human islets is not simply a biomarker of the aging process, but will contribute to the age-related risk of type 2 diabetes.

  17. Circulatory mitochondrial DNA is a pro-inflammatory agent in maintenance hemodialysis patients.

    Directory of Open Access Journals (Sweden)

    Hongdi Cao

    Full Text Available Chronic inflammation is highly prevalent in maintenance hemodialysis (MHD patients, and it has been shown to be a strong predictor of morbidity and mortality. Mitochondrial DNA (mtDNA released into circulation after cell damage can promote inflammation in patients and animal models. However, the role and mechanisms of circulatory mtDNA in chronic inflammation in MHD patients remain unknown. Sixty MHD patients and 20 health controls were enrolled in this study. The circulatory mtDNA was detected by quantitative real-time PCR assay. Plasma interleukin 6 (IL-6 and tumor necrosis factor α (TNF-α were quantitated by ELISA assay. Dialysis systems in MHD patients and in vitro were used to evaluate the effect of different dialysis patterns on circulatory mtDNA. Circulatory mtDNA was elevated in MHD patients comparing to that of health control. Regression analysis demonstrated that plasma mtDNA was positively associated with TNF-α and the product of serum calcium and phosphorus, while negatively associated with hemoglobin and serum albumin in MHD patients. MtDNA induced the secretion of IL-6 and TNF-α in the THP-1 cells. Single high-flux hemodialysis (HF-HD and on line hemodiafiltration (OL-HDF but not low-flux hemodialysis (LF-HD could partially reduce plasma mtDNA in MHD patients. In vitro, both HD and hemofiltration (HF could fractional remove mtDNA. Collectively, circulatory mtDNA is elevated and its level is closely correlated with chronic inflammation in MHD patients. HF-HD and HDF can partially reduce circulatory mtDNA in MHD patients.

  18. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins.

    Directory of Open Access Journals (Sweden)

    Adam Ameur

    2011-03-01

    Full Text Available Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.

  19. Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.

    Science.gov (United States)

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil

    2014-08-01

    We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.

  20. Endangered species: mitochondrial DNA loss as a mechanism of human disease.

    Science.gov (United States)

    Herrera, Alan; Garcia, Iraselia; Gaytan, Norma; Jones, Edith; Maldonado, Alicia; Gilkerson, Robert

    2015-06-01

    Human mitochondrial DNA (mtDNA) is a small maternally inherited DNA, typically present in hundreds of copies in a single human cell. Thus, despite its small size, the mitochondrial genome plays a crucial role in the metabolic homeostasis of the cell. Our understanding of mtDNA genotype-phenotype relationships is derived largely from studies of the classical mitochondrial neuromuscular diseases, in which mutations of mtDNA lead to compromised mitochondrial bioenergetic function, with devastating pathological consequences. Emerging research suggests that loss, rather than mutation, of mtDNA plays a major role across a range of prevalent human diseases, including diabetes mellitus, cardiovascular disease, and aging. Here, we examine the 'rules' of mitochondrial genetics and function, the clinical settings in which loss of mtDNA is an emerging pathogenic mechanism, and explore mtDNA damage and its consequences for the organellar network and cell at large. As extranuclear genetic material arrayed throughout the cell to support metabolism, mtDNA is increasingly implicated in a host of disease conditions, opening a range of exciting questions regarding mtDNA and its role in cellular homeostasis.

  1. Evolution of mitochondrial DNA and its relation to basal metabolic rate.

    Science.gov (United States)

    Feng, Ping; Zhao, Huabin; Lu, Xin

    2015-08-01

    Energy metabolism is essential for the survival of animals, which can be characterized by maximum metabolic rate (MMR) and basal metabolic rate (BMR). Because of the crucial roles of mitochondria in energy metabolism, mitochondrial DNA (mtDNA) has been subjected to stronger purifying selection in strongly locomotive than weakly locomotive birds and mammals. Although maximum locomotive speed (an indicator of MMR) showed a negative correlation with the evolutionary rate of mtDNA, it is unclear whether BMR has driven the evolution of mtDNA. Here, we take advantage of the large amount of mtDNA and BMR data in 106 mammals to test whether BMR has influenced the mtDNA evolution. Our results showed that, in addition to the locomotive speed, mammals with higher BMR have subjected to stronger purifying selection on mtDNA than did those with lower BMR. The evolution of mammalian mtDNA has been modified by two levels of energy metabolism, including MMR and BMR. Our study provides a more comprehensive view of mtDNA evolution in relation to energy metabolism.

  2. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations.

    Science.gov (United States)

    Yang, Qi; Franco, Christopher M M; Sorokin, Shirley J; Zhang, Wei

    2017-02-02

    For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3-D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers.

  3. Detection of mitochondrial DNA with the compact bead array sensor system (cBASS)

    Science.gov (United States)

    Mulvaney, Shawn P.; Ibe, Carol N.; Caldwell, Jane M.; Levine, Jay F.; Whitman, Lloyd J.; Tamanaha, Cy R.

    2009-02-01

    Enteric pathogens are a significant contaminant in surface waters used for recreation, fish and shellfish harvesting, crop irrigation, and human consumption. The need for water monitoring becomes more pronounced when industrial, agricultural, and residential lands are found in close proximity. Fecal contamination is particularly problematic and identification of the pollution source essential to remediation efforts. Standard monitoring for fecal contamination relies on indicator organisms, but the technique is too broad to identify the source of contamination. Instead, real-time PCR of mitochondrial DNA (mtDNA) is an emerging method for identification of the contamination source. Presented herein, we evaluate an alternative technology, the compact Bead Array Sensor System (cBASS®) and its assay approach Fluidic Force Discrimination (FFD), for the detection of mtDNA. Previously, we achieved multiplexed, attomolar detection of toxins and femtomolar detection of nucleic acids in minutes with FFD assays. More importantly, FFD assays are compatible with a variety of complex matrices and therefore potentially applicable for samples where the matrix would interfere with PCR amplification. We have designed a triplex assay for the NADH gene found in human, swine, and bovine mtDNA and demonstrated the specific detection of human mtDNA spiked into a waste water sample.

  4. Deoxyribonucleoside kinases in mitochondrial DNA depletion.

    Science.gov (United States)

    Saada-Reisch, Ann

    2004-10-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.

  5. Skewed matrilineal genetic composition in a small wild chimpanzee community.

    Science.gov (United States)

    Shimada, Makoto K; Hayakawa, Sachiko; Fujita, Shiho; Sugiyama, Yukimaru; Saitou, Naruya

    2009-01-01

    Maternal kinship is important in primate societies because it affects individual behaviour as well as the sustainability of populations. All members of the Bossou chimpanzee community are descended from 8 individuals (herein referred to as original adults) who were already adults or subadults when field observations were initiated in 1976 and whose genetic relationships were unknown. Sequencing of the control region on the maternally inherited mtDNA revealed that 4 (1 male and 3 females) of the 8 original adults shared an identical haplotype. We investigated the effects of the skewed distribution of mtDNA haplotypes on the following two outcomes. First, we demonstrated that the probability of mtDNA haplotype extinction would be increased under such a skewed composition in a small community. Second, the ratio of potential mating candidates to competitors is likely to decrease if chimpanzees become aware of maternal kinship and avoid incest. We estimated that the magnitude of the decrease in the ratio is 10 times greater in males than in females. Here we demonstrate a scenario in which this matrilineal skewness in a small community accelerates extinction of mtDNA haplotype, which will make it more difficult to find a suitable mate within the community. 2008 S. Karger AG, Basel.

  6. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  7. The difference between traditional experiments and CFD validation benchmark experiments

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton L., E-mail: barton.smith@usu.edu

    2017-02-15

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  8. The difference between traditional experiments and CFD validation benchmark experiments

    International Nuclear Information System (INIS)

    Smith, Barton L.

    2017-01-01

    Computation Fluid Dynamics provides attractive features for design, and perhaps licensing, of nuclear power plants. The most important of these features is low cost compared to experiments. However, uncertainty of CFD calculations must accompany these calculations in order for the results to be useful for important decision making. In order to properly assess the uncertainty of a CFD calculation, it must be “validated” against experimental data. Unfortunately, traditional “discovery” experiments are normally ill-suited to provide all of the information necessary for the validation exercise. Traditionally, experiments are performed to discover new physics, determine model parameters, or to test designs. This article will describe a new type of experiment; one that is designed and carried out with the specific purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. We will demonstrate that the goals of traditional experiments and validation experiments are often in conflict, making use of traditional experimental results problematic and leading directly to larger predictive uncertainty of the CFD model.

  9. Convergent validity test, construct validity test and external validity test of the David Liberman algorithm

    Directory of Open Access Journals (Sweden)

    David Maldavsky

    2013-08-01

    Full Text Available The author first exposes a complement of a previous test about convergent validity, then a construct validity test and finally an external validity test of the David Liberman algorithm.  The first part of the paper focused on a complementary aspect, the differential sensitivity of the DLA 1 in an external comparison (to other methods, and 2 in an internal comparison (between two ways of using the same method, the DLA.  The construct validity test exposes the concepts underlined to DLA, their operationalization and some corrections emerging from several empirical studies we carried out.  The external validity test examines the possibility of using the investigation of a single case and its relation with the investigation of a more extended sample.

  10. Validation of ecological state space models using the Laplace approximation

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Albertsen, Christoffer Moesgaard; Berg, Casper Willestofte

    2017-01-01

    Many statistical models in ecology follow the state space paradigm. For such models, the important step of model validation rarely receives as much attention as estimation or hypothesis testing, perhaps due to lack of available algorithms and software. Model validation is often based on a naive...... for estimation in general mixed effects models. Implementing one-step predictions in the R package Template Model Builder, we demonstrate that it is possible to perform model validation with little effort, even if the ecological model is multivariate, has non-linear dynamics, and whether observations...... useful directions in which the model could be improved....

  11. Mutation of Mitochondrial DNA G13513A Presenting with Leigh Syndrome, Wolff-Parkinson-White Syndrome and Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Shi-Bing Wang

    2008-08-01

    Full Text Available Mutation of mitochondrial DNA (mtDNA G13513A, encoding the ND5 subunit of respiratory chain complex I, can cause mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS and Leigh syndrome. Wolff-Parkinson-White (WPW syndrome and optic atrophy were reported in a high proportion of patients with this mutation. We report an 18-month-old girl, with an 11-month history of psychomotor regression who was diagnosed with WPW syndrome and hypertrophic cardiomyopathy, in association with Leigh syndrome. Supplementation with coenzyme Q10, thiamine and carnitine prevented further regression in gross motor function but the patient's heart function deteriorated and dilated cardiomyopathy developed 11 months later. She was found to have a mutation of mtDNA G13513A. We suggest that mtDNA G13513A mutation is an important factor in patients with Leigh syndrome associated with WPW syndrome and/or optic atrophy, and serial heart function monitoring by echocardiography is recommended in this group of patients.

  12. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma.

    Science.gov (United States)

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-05-11

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mφ) direct trauma-induced inflammation, and Mφ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mφ and the subsequent regulation of Mφ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)-TLR4-MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mφ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mφ. However, autophagy activation also suppressed Mφ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mφ homeostasis in response to trauma.

  13. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Martinelli, Diego [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Dionisi-Vici, Carlo [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Nobili, Valerio [Gastroenterology and Liver Unit, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Francalanci, Paola; Boldrini, Renata; Callea, Francesco [Dept. Pathology, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Santorelli, Filippo Maria [UOC Neurogenetica e Malattie Neuromuscolari, Fondazione Stella Maris, Pisa (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  14. 78 FR 41259 - Importation of Fresh Citrus Fruit From Uruguay, Including Citrus

    Science.gov (United States)

    2013-07-10

    ... therefore opposed importation of fresh citrus fruit from Uruguay until its effectiveness could be validated...'' imports. The commenter stated that this argument is invalid due to the year-round marketing of citrus... metric tons, which is less than 3 percent of U.S. production. Uruguay's total fresh orange and lemon...

  15. V-MitoSNP: visualization of human mitochondrial SNPs

    Directory of Open Access Journals (Sweden)

    Tsui Ke-Hung

    2006-08-01

    Full Text Available Abstract Background Mitochondrial single nucleotide polymorphisms (mtSNPs constitute important data when trying to shed some light on human diseases and cancers. Unfortunately, providing relevant mtSNP genotyping information in mtDNA databases in a neatly organized and transparent visual manner still remains a challenge. Amongst the many methods reported for SNP genotyping, determining the restriction fragment length polymorphisms (RFLPs is still one of the most convenient and cost-saving methods. In this study, we prepared the visualization of the mtDNA genome in a way, which integrates the RFLP genotyping information with mitochondria related cancers and diseases in a user-friendly, intuitive and interactive manner. The inherent problem associated with mtDNA sequences in BLAST of the NCBI database was also solved. Description V-MitoSNP provides complete mtSNP information for four different kinds of inputs: (1 color-coded visual input by selecting genes of interest on the genome graph, (2 keyword search by locus, disease and mtSNP rs# ID, (3 visualized input of nucleotide range by clicking the selected region of the mtDNA sequence, and (4 sequences mtBLAST. The V-MitoSNP output provides 500 bp (base pairs flanking sequences for each SNP coupled with the RFLP enzyme and the corresponding natural or mismatched primer sets. The output format enables users to see the SNP genotype pattern of the RFLP by virtual electrophoresis of each mtSNP. The rate of successful design of enzymes and primers for RFLPs in all mtSNPs was 99.1%. The RFLP information was validated by actual agarose electrophoresis and showed successful results for all mtSNPs tested. The mtBLAST function in V-MitoSNP provides the gene information within the input sequence rather than providing the complete mitochondrial chromosome as in the NCBI BLAST database. All mtSNPs with rs number entries in NCBI are integrated in the corresponding SNP in V-MitoSNP. Conclusion V-MitoSNP is a web

  16. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda

    Science.gov (United States)

    Tay, Wee Tek; Walsh, Thomas K.; Kanyesigye, Dalton; Adumo, Stella; Abongosi, Joseph; Ochen, Stephen; Sserumaga, Julius; Alibu, Simon; Abalo, Grace; Asea, Godfrey; Agona, Ambrose

    2018-01-01

    The fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith) is a species native to the Americas. This polyphagous lepidopteran pest was first reported in Nigeria and the Democratic Republic of São Tomé and Principe in 2016, but its presence in eastern Africa has not been confirmed via molecular characterisation. In this study, FAW specimens from western and central Uganda were identified based on the partial mtDNA COI gene sequences, with mtDNA COI haplotypes matching those identified in Nigeria and São Tomé. In this study, we sequence an additional partial mtDNA Cyt b gene and also the partial mtDNA COIII gene in Ugandan FAW samples. We detected identical mitochondrial DNA haplotypes for both the mtDNA Cyt b and COI partial genes, while combining the mtDNA COI/Cyt b haplotypes and mtDNA COIII haplotypes enabled a new maternal lineage in the Ugandan corn-preferred FAW samples to be identified. Our results suggested that the African incursions of S. frugiperda involved at least three maternal lineages. Recent full genome, phylogenetic and microsatellite analyses provided evidence to support S. frugiperda as likely consisted of two sympatric sister species known as the corn-preferred and rice-preferred strains. In our Ugandan FAW populations, we identified the presence of mtDNA haplotypes representative of both sister species. It is not known if both FAW sister species were originally introduced together or separately, and whether they have since spread as a single population. Further analyses of additional specimens originally collected from São Tomé, Nigeria and throughout Africa would be required to clarify this issue. Importantly, our finding showed that the genetic diversity of the African corn-preferred FAW species is higher than previously reported. This potentially contributed to the success of FAW establishment in Africa. Furthermore, with the additional maternal lineages detected, there is likely an increase in paternal lineages, thereby increasing

  17. Certification & validation of biosafety level-2 & biosafety level-3 laboratories in Indian settings & common issues.

    Science.gov (United States)

    Mourya, Devendra T; Yadav, Pragya D; Khare, Ajay; Khan, Anwar H

    2017-10-01

    With increasing awareness regarding biorisk management worldwide, many biosafety laboratories are being setup in India. It is important for the facility users, project managers and the executing agencies to understand the process of validation and certification of such biosafety laboratories. There are some international guidelines available, but there are no national guidelines or reference standards available in India on certification and validation of biosafety laboratories. There is no accredited government/private agency available in India to undertake validation and certification of biosafety laboratories. Therefore, the reliance is mostly on indigenous experience, talent and expertise available, which is in short supply. This article elucidates the process of certification and validation of biosafety laboratories in a concise manner for the understanding of the concerned users and suggests the important parameters and criteria that should be considered and addressed during the laboratory certification and validation process.

  18. Model-based clinical dose optimization for phenobarbital in neonates: An illustration of the importance of data sharing and external validation.

    Science.gov (United States)

    Völler, Swantje; Flint, Robert B; Stolk, Leo M; Degraeuwe, Pieter L J; Simons, Sinno H P; Pokorna, Paula; Burger, David M; de Groot, Ronald; Tibboel, Dick; Knibbe, Catherijne A J

    2017-11-15

    Particularly in the pediatric clinical pharmacology field, data-sharing offers the possibility of making the most of all available data. In this study, we utilize previously collected therapeutic drug monitoring (TDM) data of term and preterm newborns to develop a population pharmacokinetic model for phenobarbital. We externally validate the model using prospective phenobarbital data from an ongoing pharmacokinetic study in preterm neonates. TDM data from 53 neonates (gestational age (GA): 37 (24-42) weeks, bodyweight: 2.7 (0.45-4.5) kg; postnatal age (PNA): 4.5 (0-22) days) contained information on dosage histories, concentration and covariate data (including birth weight, actual weight, post-natal age (PNA), postmenstrual age, GA, sex, liver and kidney function, APGAR-score). Model development was carried out using NONMEM ® 7.3. After assessment of model fit, the model was validated using data of 17 neonates included in the DINO (Drug dosage Improvement in NeOnates)-study. Modelling of 229 plasma concentrations, ranging from 3.2 to 75.2mg/L, resulted in a one compartment model for phenobarbital. Clearance (CL) and volume (V d ) for a child with a birthweight of 2.6kg at PNA day 4.5 was 0.0091L/h (9%) and 2.38L (5%), respectively. Birthweight and PNA were the best predictors for CL maturation, increasing CL by 36.7% per kg birthweight and 5.3% per postnatal day of living, respectively. The best predictor for the increase in V d was actual bodyweight (0.31L/kg). External validation showed that the model can adequately predict the pharmacokinetics in a prospective study. Data-sharing can help to successfully develop and validate population pharmacokinetic models in neonates. From the results it seems that both PNA and bodyweight are required to guide dosing of phenobarbital in term and preterm neonates. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Aggregated trustworthiness: Redefining online credibility through social validation

    DEFF Research Database (Denmark)

    Jessen, Johan; Jørgensen, Anker Helms

    2012-01-01

    This article investigates the impact of social dynamics on online credibility. Empirical studies by Pettingill (2006) and Hargittai, et al. (2010) suggest that social validation and online trustees play increasingly important roles when evaluating credibility online. This dynamic puts pressure...

  20. Validation and Error Characterization for the Global Precipitation Measurement

    Science.gov (United States)

    Bidwell, Steven W.; Adams, W. J.; Everett, D. F.; Smith, E. A.; Yuter, S. E.

    2003-01-01

    The Global Precipitation Measurement (GPM) is an international effort to increase scientific knowledge on the global water cycle with specific goals of improving the understanding and the predictions of climate, weather, and hydrology. These goals will be achieved through several satellites specifically dedicated to GPM along with the integration of numerous meteorological satellite data streams from international and domestic partners. The GPM effort is led by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan. In addition to the spaceborne assets, international and domestic partners will provide ground-based resources for validating the satellite observations and retrievals. This paper describes the validation effort of Global Precipitation Measurement to provide quantitative estimates on the errors of the GPM satellite retrievals. The GPM validation approach will build upon the research experience of the Tropical Rainfall Measuring Mission (TRMM) retrieval comparisons and its validation program. The GPM ground validation program will employ instrumentation, physical infrastructure, and research capabilities at Supersites located in important meteorological regimes of the globe. NASA will provide two Supersites, one in a tropical oceanic and the other in a mid-latitude continental regime. GPM international partners will provide Supersites for other important regimes. Those objectives or regimes not addressed by Supersites will be covered through focused field experiments. This paper describes the specific errors that GPM ground validation will address, quantify, and relate to the GPM satellite physical retrievals. GPM will attempt to identify the source of errors within retrievals including those of instrument calibration, retrieval physical assumptions, and algorithm applicability. With the identification of error sources, improvements will be made to the respective calibration

  1. Validation of Robotic Surgery Simulator (RoSS).

    Science.gov (United States)

    Kesavadas, Thenkurussi; Stegemann, Andrew; Sathyaseelan, Gughan; Chowriappa, Ashirwad; Srimathveeravalli, Govindarajan; Seixas-Mikelus, Stéfanie; Chandrasekhar, Rameella; Wilding, Gregory; Guru, Khurshid

    2011-01-01

    Recent growth of daVinci Robotic Surgical System as a minimally invasive surgery tool has led to a call for better training of future surgeons. In this paper, a new virtual reality simulator, called RoSS is presented. Initial results from two studies - face and content validity, are very encouraging. 90% of the cohort of expert robotic surgeons felt that the simulator was excellent or somewhat close to the touch and feel of the daVinci console. Content validity of the simulator received 90% approval in some cases. These studies demonstrate that RoSS has the potential of becoming an important training tool for the daVinci surgical robot.

  2. Validation of geotechnical software for repository performance assessment

    International Nuclear Information System (INIS)

    LeGore, T.; Hoover, J.D.; Khaleel, R.; Thornton, E.C.; Anantatmula, R.P.; Lanigan, D.C.

    1989-01-01

    An important step in the characterization of a high level nuclear waste repository is to demonstrate that geotechnical software, used in performance assessment, correctly models validation. There is another type of validation, called software validation. It is based on meeting the requirements of specifications documents (e.g. IEEE specifications) and does not directly address the correctness of the specifications. The process of comparing physical experimental results with the predicted results should incorporate an objective measure of the level of confidence regarding correctness. This paper reports on a methodology developed that allows the experimental uncertainties to be explicitly included in the comparison process. The methodology also allows objective confidence levels to be associated with the software. In the event of a poor comparison, the method also lays the foundation for improving the software

  3. A New Statistical Method to Determine the Degree of Validity of Health Economic Model Outcomes against Empirical Data.

    NARCIS (Netherlands)

    Corro Ramos, Isaac; van Voorn, George A K; Vemer, Pepijn; Feenstra, Talitha L; Al, Maiwenn J

    2017-01-01

    The validation of health economic (HE) model outcomes against empirical data is of key importance. Although statistical testing seems applicable, guidelines for the validation of HE models lack guidance on statistical validation, and actual validation efforts often present subjective judgment of

  4. Enhancing the Validity of a Quality of Life Measure for Autistic People

    Science.gov (United States)

    McConachie, Helen; Mason, David; Parr, Jeremy R.; Garland, Deborah; Wilson, Colin; Rodgers, Jacqui

    2018-01-01

    Accurate measurement of quality of life (QoL) is important for evaluation of autism services and trials of interventions. We undertook psychometric validation of the World Health Organisation measure--WHOQoL-BREF, examined construct validity of the WHO Disabilities module and developed nine additional autism-specific items (ASQoL) from extensive…

  5. Role of Mitochondrial DNA Mutations in Cellular Vulnerability to Mitochondria-Specific Environmental Toxins

    National Research Council Canada - National Science Library

    Hirsch, Etienne C

    2005-01-01

    In recent years, growing evidence has shown that mutations of mitochondrial DNA (mtDNA) are an important cause of mitochondrial disorders in humans, and have been associated with common neurodegenerative disorders, aging and cancers...

  6. Population Structure of mtDNA Variation due to Pleistocene Fluctuations in the South American Maned Wolf (Chrysocyon brachyurus, Illiger, 1815): Management Units for Conservation.

    Science.gov (United States)

    González, Susana; Cosse, Mariana; Franco, María del Rosario; Emmons, Louise; Vynne, Carly; Duarte, José Maurício Barbanti; Beccacesi, Marcelo D; Maldonado, Jesús E

    2015-01-01

    The maned wolf (Chrysocyon brachyurus) is one of the largest South American canids, and conservation across this charismatic carnivore's large range is presently hampered by a lack of knowledge about possible natural subdivisions which could influence the population's viability. To elucidate the phylogeographic patterns and demographic history of the species, we used 2 mtDNA markers (D-loop and cytochrome b) from 87 individuals collected throughout their range, in Argentina, Bolivia, Brazil, and Uruguay. We found moderate levels of haplotype and nucleotide diversity, and the 14 D-loop haplotypes were closely related. Genetic structure results revealed 4 groups, and when coupled with model inferences from a coalescent analysis, suggested that maned wolves have undergone demographic fluctuations due to changes in climate and habitat during the Pleistocene glaciation period approximately 24000 years before present (YBP). This genetic signature points to an event that occurred within the timing estimated for the start of the contraction of the Cerrado around 50000 YBP. Our results reveal a genetic signature of population size expansion followed by contraction during Pleistocene interglaciations, which had similar impacts on other South American mammals. The 4 groups should for now be considered management units, within which future monitoring efforts should be conducted independently. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. mtDNA from the early Bronze Age to the Roman period suggests a genetic link between the Indian subcontinent and Mesopotamian cradle of civilization.

    Directory of Open Access Journals (Sweden)

    Henryk W Witas

    Full Text Available Ancient DNA methodology was applied to analyse sequences extracted from freshly unearthed remains (teeth of 4 individuals deeply deposited in slightly alkaline soil of the Tell Ashara (ancient Terqa and Tell Masaikh (ancient Kar-Assurnasirpal Syrian archaeological sites, both in the middle Euphrates valley. Dated to the period between 2.5 Kyrs BC and 0.5 Kyrs AD the studied individuals carried mtDNA haplotypes corresponding to the M4b1, M49 and/or M61 haplogroups, which are believed to have arisen in the area of the Indian subcontinent during the Upper Paleolithic and are absent in people living today in Syria. However, they are present in people inhabiting today's Tibet, Himalayas, India and Pakistan. We anticipate that the analysed remains from Mesopotamia belonged to people with genetic affinity to the Indian subcontinent since the distribution of identified ancient haplotypes indicates solid link with populations from the region of South Asia-Tibet (Trans-Himalaya. They may have been descendants of migrants from much earlier times, spreading the clades of the macrohaplogroup M throughout Eurasia and founding regional Mesopotamian groups like that of Terqa or just merchants moving along trade routes passing near or through the region. None of the successfully identified nuclear alleles turned out to be ΔF508 CFTR, LCT-13910T or Δ32 CCR5.

  8. Mining Important Nodes in Directed Weighted Complex Networks

    Directory of Open Access Journals (Sweden)

    Yunyun Yang

    2017-01-01

    Full Text Available In complex networks, mining important nodes has been a matter of concern by scholars. In recent years, scholars have focused on mining important nodes in undirected unweighted complex networks. But most of the methods are not applicable to directed weighted complex networks. Therefore, this paper proposes a Two-Way-PageRank method based on PageRank for further discussion of mining important nodes in directed weighted complex networks. We have mainly considered the frequency of contact between nodes and the length of time of contact between nodes. We have considered the source of the nodes (in-degree and the whereabouts of the nodes (out-degree simultaneously. We have given node important performance indicators. Through numerical examples, we analyze the impact of variation of some parameters on node important performance indicators. Finally, the paper has verified the accuracy and validity of the method through empirical network data.

  9. Validation of the Organizational Culture Assessment Instrument

    Science.gov (United States)

    Heritage, Brody; Pollock, Clare; Roberts, Lynne

    2014-01-01

    Organizational culture is a commonly studied area in industrial/organizational psychology due to its important role in workplace behaviour, cognitions, and outcomes. Jung et al.'s [1] review of the psychometric properties of organizational culture measurement instruments noted many instruments have limited validation data despite frequent use in both theoretical and applied situations. The Organizational Culture Assessment Instrument (OCAI) has had conflicting data regarding its psychometric properties, particularly regarding its factor structure. Our study examined the factor structure and criterion validity of the OCAI using robust analysis methods on data gathered from 328 (females = 226, males = 102) Australian employees. Confirmatory factor analysis supported a four factor structure of the OCAI for both ideal and current organizational culture perspectives. Current organizational culture data demonstrated expected reciprocally-opposed relationships between three of the four OCAI factors and the outcome variable of job satisfaction but ideal culture data did not, thus indicating possible weak criterion validity when the OCAI is used to assess ideal culture. Based on the mixed evidence regarding the measure's properties, further examination of the factor structure and broad validity of the measure is encouraged. PMID:24667839

  10. Validation of the organizational culture assessment instrument.

    Directory of Open Access Journals (Sweden)

    Brody Heritage

    Full Text Available Organizational culture is a commonly studied area in industrial/organizational psychology due to its important role in workplace behaviour, cognitions, and outcomes. Jung et al.'s [1] review of the psychometric properties of organizational culture measurement instruments noted many instruments have limited validation data despite frequent use in both theoretical and applied situations. The Organizational Culture Assessment Instrument (OCAI has had conflicting data regarding its psychometric properties, particularly regarding its factor structure. Our study examined the factor structure and criterion validity of the OCAI using robust analysis methods on data gathered from 328 (females = 226, males = 102 Australian employees. Confirmatory factor analysis supported a four factor structure of the OCAI for both ideal and current organizational culture perspectives. Current organizational culture data demonstrated expected reciprocally-opposed relationships between three of the four OCAI factors and the outcome variable of job satisfaction but ideal culture data did not, thus indicating possible weak criterion validity when the OCAI is used to assess ideal culture. Based on the mixed evidence regarding the measure's properties, further examination of the factor structure and broad validity of the measure is encouraged.

  11. Molecular and morphological differentiation of Secret Toad-headed agama, Phrynocephalus mystaceus, with the description of a new subspecies from Iran (Reptilia, Agamidae).

    Science.gov (United States)

    Solovyeva, Evgeniya N; Dunayev, Evgeniy N; Nazarov, Roman A; Mehdi Radjabizadeh; Poyarkov, Nikolay A

    2018-01-01

    The morphological and genetic variation of a wide-ranging Secret Toad-headed agama, Phrynocephalus mystaceus that inhabits sand deserts of south-eastern Europe, Middle East, Middle Asia, and western China is reviewed. Based on the morphological differences and high divergence in COI (mtDNA) gene sequences a new subspecies of Ph. mystaceus is described from Khorasan Razavi Province in Iran. Partial sequences of COI mtDNA gene of 31 specimens of Ph. mystaceus from 17 localities from all major parts of species range were analyzed. Genetic distances show a deep divergence between Ph. mystaceus khorasanus ssp. n. from Khorasan Razavi Province and all other populations of Ph. mystaceus . The new subspecies can be distinguished from other populations of Ph. mystaceus by a combination of several morphological features. Molecular and morphological analyses do not support the validity of other Ph. mystaceus subspecies described from Middle Asia and Caspian basin. Geographic variations in the Ph. mystaceus species complex and the status of previously described subspecies were discussed.

  12. Polarographic validation of chemical speciation models

    International Nuclear Information System (INIS)

    Duffield, J.R.; Jarratt, J.A.

    2001-01-01

    It is well established that the chemical speciation of an element in a given matrix, or system of matrices, is of fundamental importance in controlling the transport behaviour of the element. Therefore, to accurately understand and predict the transport of elements and compounds in the environment it is a requirement that both the identities and concentrations of trace element physico-chemical forms can be ascertained. These twin requirements present the analytical scientist with considerable challenges given the labile equilibria, the range of time scales (from nanoseconds to years) and the range of concentrations (ultra-trace to macro) that may be involved. As a result of this analytical variability, chemical equilibrium modelling has become recognised as an important predictive tool in chemical speciation analysis. However, this technique requires firm underpinning by the use of complementary experimental techniques for the validation of the predictions made. The work reported here has been undertaken with the primary aim of investigating possible methodologies that can be used for the validation of chemical speciation models. However, in approaching this aim, direct chemical speciation analyses have been made in their own right. Results will be reported and analysed for the iron(II)/iron(III)-citrate proton system (pH 2 to 10; total [Fe] = 3 mmol dm -3 ; total [citrate 3- ] 10 mmol dm -3 ) in which equilibrium constants have been determined using glass electrode potentiometry, speciation is predicted using the PHREEQE computer code, and validation of predictions is achieved by determination of iron complexation and redox state with associated concentrations. (authors)

  13. e-Learning quality: Scale development and validation in Indian context

    Directory of Open Access Journals (Sweden)

    Arun Kumar Agariya

    2012-12-01

    Full Text Available The aim of this paper is to develop a reliable and valid e-learning quality measurement scales from the learner as well as faculty perspectives in Indian context. Exploratory factor analysis followed by confirmatory factor analysis was done which is presented in two forms; covariance model and the structural model. The covariance model shows that the factors namely collaboration, industry acceptance and value addition are important from the learner’s point of view whereas the factors namely transparency in assessment, technical know-how and engagement (from students are important from faculty point of view. Factors namely course content and design structures (technology/website design are found equally important for learner’s as well as faculty’s perspective. The structural models validate the previously extracted factors along with their indicators. The findings of this study validate the long held belief that e-learning quality is a multidimensional construct and serves as a critical success factor. The proposed scale will help in identifying issues that contribute towards e-learning quality in Indian context and thereby formulating strategies accordingly, resulting in efficient (in terms of cost and effective (outcomes e-learning practices, which is the necessity of the hour for the economic development of the country. A fair amount of literature on e-learning dealt with identifying factors explaining the constructs of quality, perceived value and satisfaction. But there is paucity of research pertaining to e-learning quality scale development and validation from the learner as well as faculty perspective. This study is an attempt to bridge this gap in the existing literature.

  14. Assessing students' communication skills: validation of a global rating.

    Science.gov (United States)

    Scheffer, Simone; Muehlinghaus, Isabel; Froehmel, Annette; Ortwein, Heiderose

    2008-12-01

    Communication skills training is an accepted part of undergraduate medical programs nowadays. In addition to learning experiences its importance should be emphasised by performance-based assessment. As detailed checklists have been shown to be not well suited for the assessment of communication skills for different reasons, this study aimed to validate a global rating scale. A Canadian instrument was translated to German and adapted to assess students' communication skills during an end-of-semester-OSCE. Subjects were second and third year medical students at the reformed track of the Charité-Universitaetsmedizin Berlin. Different groups of raters were trained to assess students' communication skills using the global rating scale. Validity testing included concurrent validity and construct validity: Judgements of different groups of raters were compared to expert ratings as a defined gold standard. Furthermore, the amount of agreement between scores obtained with this global rating scale and a different instrument for assessing communication skills was determined. Results show that communication skills can be validly assessed by trained non-expert raters as well as standardised patients using this instrument.

  15. Reliability and validity of emergency department triage systems

    NARCIS (Netherlands)

    van der Wulp, I.

    2010-01-01

    Reliability and validity of triage systems is important because this can affect patient safety. In this thesis, these aspects of two emergency department (ED) triage systems were studied as well as methodological aspects in these types of studies. The consistency, reproducibility, and criterion

  16. Detailed validation in PCDDF analysis. ISO17025 data from Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kernick Carvalhaes, G.; Azevedo, J.A.; Azevedo, G.; Machado, M.; Brooks, P. [Analytical Solutions, Rio de Janeiro (Brazil)

    2004-09-15

    When we define validation method we can use the ISO standard 8402, in reference to this, 'validation' is the 'confirmation by the examination and supplying of objective evidences that the particular requirements for a specific intended use are fulfilled'. This concept is extremely important to guarantee the quality of results. Validation method is based on the combined use of different validation procedures, but in this selection we have to analyze the cost benefit conditions. We must focus on the critical elements, and these critical factors must be the essential elements for providing good properties and results. If we have a solid validation methodology and a research of the source of uncertainty of our analytical method, we can generate results with confidence and veracity. When analyzing these two considerations, validation method and uncertainty calculations, we found out that there are very few articles and papers about these subjects, and it is even more difficult to find such materials on dioxins and furans. This short paper describes a validation and uncertainty calculation methodology using traditional studies with a few adaptations, yet it shows a new idea of recovery study as a source of uncertainty.

  17. Electronic health records: what are the most important barriers?

    Science.gov (United States)

    Ayatollahi, Haleh; Mirani, Nader; Haghani, Hamid

    2014-01-01

    The process of design and adoption of electronic health records may face a number of barriers. This study aimed to compare the importance of the main barriers from the experts' point of views in Iran. This survey study was completed in 2011. The potential participants (62 experts) included faculty members who worked in departments of health information technology and individuals who worked in the Ministry of Health in Iran and were in charge of the development and adoption of electronic health records. No sampling method was used in this study. Data were collected using a Likert-scale questionnaire ranging from 1 to 5. The validity of the questionnaire was established using content and face validity methods, and the reliability was calculated using Cronbach's alpha coefficient. The response rate was 51.6 percent. The participants' perspectives showed that the most important barriers in the process of design and adoption of electronic health records were technical barriers (mean = 3.84). Financial and ethical-legal barriers, with the mean value of 3.80 were other important barriers, and individual and organizational barriers, with the mean values of 3.59 and 3.50 were found to be less important than other barriers from the experts' perspectives. Strategic planning for the creation and adoption of electronic health records in the country, creating a team of experts to assess the potential barriers and develop strategies to eliminate them, and allocating financial resources can help to overcome most important barriers to the adoption of electronic health records.

  18. Bilingual Advantages in Executive Functioning: Problems in Convergent Validity, Discriminant Validity, and the Identification of the Theoretical Constructs

    Directory of Open Access Journals (Sweden)

    Kenneth R. Paap

    2014-09-01

    Full Text Available A sample of 58 bilingual and 62 monolingual university students completed four tasks commonly used to test for bilingual advantages in executive functioning (EF: antisaccade, flanker, Simon, and color-shape switching. Across the four tasks, 13 different indices were derived that are assumed to reflect individual differences in inhibitory control, monitoring, or switching. The effects of bilingualism on the 13 measures were explored by directly comparing the means of the two language groups and through regression analyses using a continuous measure of bilingualism and multiple demographic characteristics as predictors. Across the 13 different measures and two types of data analysis there were very few significant results and those that did occur supported a monolingual advantage. An equally important goal was to assess the convergent validity through cross-task correlations of indices assume to measure the same component of executive functioning. Most of the correlations using difference-score measures were nonsignificant and many near zero. Although modestly higher levels of convergent validity are sometimes reported, a review of the existing literature suggests that bilingual advantages (or disadvantages may reflect task-specific differences that are unlikely to generalize to important general differences in EF. Finally, as cautioned by Salthouse, assumed measures of executive functioning may also be threatened by a lack of divergent validity that separates individual or group differences in EF from those in general fluid intelligence or simple processing speed.

  19. Selective sweeps of mitochondrial DNA can drive the evolution of uniparental inheritance.

    Science.gov (United States)

    Christie, Joshua R; Beekman, Madeleine

    2017-08-01

    Although the uniparental (or maternal) inheritance of mitochondrial DNA (mtDNA) is widespread, the reasons for its evolution remain unclear. Two main hypotheses have been proposed: selection against individuals containing different mtDNAs (heteroplasmy) and selection against "selfish" mtDNA mutations. Recently, uniparental inheritance was shown to promote adaptive evolution in mtDNA, potentially providing a third hypothesis for its evolution. Here, we explore this hypothesis theoretically and ask if the accumulation of beneficial mutations provides a sufficient fitness advantage for uniparental inheritance to invade a population in which mtDNA is inherited biparentally. In a deterministic model, uniparental inheritance increases in frequency but cannot replace biparental inheritance if only a single beneficial mtDNA mutation sweeps through the population. When we allow successive selective sweeps of mtDNA, however, uniparental inheritance can replace biparental inheritance. Using a stochastic model, we show that a combination of selection and drift facilitates the fixation of uniparental inheritance (compared to a neutral trait) when there is only a single selective mtDNA sweep. When we consider multiple mtDNA sweeps in a stochastic model, uniparental inheritance becomes even more likely to replace biparental inheritance. Our findings thus suggest that selective sweeps of beneficial mtDNA haplotypes can drive the evolution of uniparental inheritance. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  20. Mitochondrial DNA copy number, but not haplogroup, confers a genetic susceptibility to leprosy in Han Chinese from Southwest China.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    Full Text Available BACKGROUND: Leprosy is a chronic infectious disease caused by Mycobacterium leprae, an unculturable pathogen with an exceptionally eroded genome. The high level of inactivation of gene function in M. leprae, including many genes in its metabolic pathways, has led to a dependence on host energy production and nutritional products. We hypothesized that host cellular powerhouse--the mitochondria--may affect host susceptibility to M. leprae and the onset of clinical leprosy, and this may be reflected by mitochondrial DNA (mtDNA background and mtDNA copy number. METHODS: We analyzed the mtDNA sequence variation of 534 leprosy patients and 850 matched controls from Yunnan Province and classified each subject by haplogroup. mtDNA copy number, taken to be proportional to mtDNA content, was measured in a subset of these subjects (296 patients and 231 controls and 12 leprosy patients upon diagnosis. RESULTS: Comparison of matrilineal components of the case and control populations revealed no significant difference. However, measurement of mtDNA copy number showed that lepromatous leprosy patients had a significantly higher mtDNA content than controls (P = 0.008. Past medical treatments had no effect on the alteration of mtDNA copy number. CONCLUSIONS: Our results suggested that mtDNA content, but not haplogroup, affects leprosy and this influence is limited to the clinical subtype of lepromatous leprosy.

  1. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of); Shim, Hosup [Department of Physiology, Dankook University School of Medicine, Cheonan 330 714 (Korea, Republic of); Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June [Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon (Korea, Republic of); Kim, Jin-Hoi [Department of Animal Biotechnology, Konkuk University, Seoul 143 701 (Korea, Republic of); Lee, Jeong Woong, E-mail: jwlee@kribb.re.kr [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  2. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee

    2009-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with 137 Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H 2 O 2 -treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H 2 O 2 -treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells

  3. The Childbirth Experience Questionnaire (CEQ) - validation of its use in a Danish population

    DEFF Research Database (Denmark)

    Boie, Sidsel; Glavind, Julie; Uldbjerg, Niels

    experience is lacking. The Childbirth Experience Questionnaire (CEQ) was developed in Sweden in 2010 and validated in Swedish women, but never validated in a Danish setting, and population. The purpose of our study was to validate the CEQ as a reliable tool for measuring the childbirth experience in Danish......Title The Childbirth Experience Questionnaire (CEQ) - validation the use in a Danish population Introduction Childbirth experience is arguably as important as measuring birth outcomes such as mode of delivery or perinatal morbidity. A robust, validated, Danish tool for evaluating childbirth...... index of agreement between the two scores. Case description (mandatory for Clinical Report) Results (mandatory for Original Research) Face validity: All respondents stated that it was easy to understand and complete the questionnaire. Construct validity: Statistically significant higher CEQ scores were...

  4. Selfish little circles: transmission bias and evolution of large deletion-bearing mitochondrial DNA in Caenorhabditis briggsae nematodes.

    Directory of Open Access Journals (Sweden)

    Katie A Clark

    Full Text Available Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA, in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans.

  5. Selfish Little Circles: Transmission Bias and Evolution of Large Deletion-Bearing Mitochondrial DNA in Caenorhabditis briggsae Nematodes

    Science.gov (United States)

    Clark, Katie A.; Howe, Dana K.; Gafner, Kristin; Kusuma, Danika; Ping, Sita; Estes, Suzanne; Denver, Dee R.

    2012-01-01

    Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans. PMID:22859984

  6. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  7. Certification & validation of biosafety level-2 & biosafety level-3 laboratories in Indian settings & common issues

    Directory of Open Access Journals (Sweden)

    Devendra T Mourya

    2017-01-01

    Full Text Available With increasing awareness regarding biorisk management worldwide, many biosafety laboratories are being setup in India. It is important for the facility users, project managers and the executing agencies to understand the process of validation and certification of such biosafety laboratories. There are some international guidelines available, but there are no national guidelines or reference standards available in India on certification and validation of biosafety laboratories. There is no accredited government/private agency available in India to undertake validation and certification of biosafety laboratories. Therefore, the reliance is mostly on indigenous experience, talent and expertise available, which is in short supply. This article elucidates the process of certification and validation of biosafety laboratories in a concise manner for the understanding of the concerned users and suggests the important parameters and criteria that should be considered and addressed during the laboratory certification and validation process.

  8. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.

    Science.gov (United States)

    Malik, Afshan N; Czajka, Anna; Cunningham, Phil

    2016-07-01

    Mitochondria contain an extra-nuclear genome in the form of mitochondrial DNA (MtDNA), damage to which can lead to inflammation and bioenergetic deficit. Changes in MtDNA levels are increasingly used as a biomarker of mitochondrial dysfunction. We previously reported that in humans, fragments in the nuclear genome known as nuclear mitochondrial insertion sequences (NumtS) affect accurate quantification of MtDNA. In the current paper our aim was to determine whether mouse NumtS affect the quantification of MtDNA and to establish a method designed to avoid this. The existence of NumtS in the mouse genome was confirmed using blast N, unique MtDNA regions were identified using FASTA, and MtDNA primers which do not co-amplify NumtS were designed and tested. MtDNA copy numbers were determined in a range of mouse tissues as the ratio of the mitochondrial and nuclear genome using real time qPCR and absolute quantification. Approximately 95% of mouse MtDNA was duplicated in the nuclear genome as NumtS which were located in 15 out of 21 chromosomes. A unique region was identified and primers flanking this region were used. MtDNA levels differed significantly in mouse tissues being the highest in the heart, with levels in descending order (highest to lowest) in kidney, liver, blood, brain, islets and lung. The presence of NumtS in the nuclear genome of mouse could lead to erroneous data when studying MtDNA content or mutation. The unique primers described here will allow accurate quantification of MtDNA content in mouse models without co-amplification of NumtS. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  9. The Validity of Two Education Requirement Measures

    Science.gov (United States)

    van der Meer, Peter H.

    2006-01-01

    In this paper we investigate the validity of two education requirement measures. This is important because a key part of the ongoing discussion concerning overeducation is about measurement. Thanks to the Dutch Institute for Labour Studies, we have been given a unique opportunity to compare two education requirement measures: first, Huijgen's…

  10. The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao.

    Science.gov (United States)

    Costa, Gustavo G L; Cabrera, Odalys G; Tiburcio, Ricardo A; Medrano, Francisco J; Carazzolle, Marcelo F; Thomazella, Daniela P T; Schuster, Stephen C; Carlson, John E; Guiltinan, Mark J; Bailey, Bryan A; Mieczkowski, Piotr; Pereira, Gonçalo A G; Meinhardt, Lyndel W

    2012-05-01

    In this study, we report the sequence of the mitochondrial (mt) genome of the Basidiomycete fungus Moniliophthora roreri, which is the etiologic agent of frosty pod rot of cacao (Theobroma cacao L.). We also compare it to the mtDNA from the closely-related species Moniliophthora perniciosa, which causes witches' broom disease of cacao. The 94 Kb mtDNA genome of M. roreri has a circular topology and codes for the typical 14 mt genes involved in oxidative phosphorylation. It also codes for both rRNA genes, a ribosomal protein subunit, 13 intronic open reading frames (ORFs), and a full complement of 27 tRNA genes. The conserved genes of M. roreri mtDNA are completely syntenic with homologous genes of the 109 Kb mtDNA of M. perniciosa. As in M. perniciosa, M. roreri mtDNA contains a high number of hypothetical ORFs (28), a remarkable feature that make Moniliophthoras the largest reservoir of hypothetical ORFs among sequenced fungal mtDNA. Additionally, the mt genome of M. roreri has three free invertron-like linear mt plasmids, one of which is very similar to that previously described as integrated into the main M. perniciosa mtDNA molecule. Moniliophthora roreri mtDNA also has a region of suspected plasmid origin containing 15 hypothetical ORFs distributed in both strands. One of these ORFs is similar to an ORF in the mtDNA gene encoding DNA polymerase in Pleurotus ostreatus. The comparison to M. perniciosa showed that the 15 Kb difference in mtDNA sizes is mainly attributed to a lower abundance of repetitive regions in M. roreri (5.8 Kb vs 20.7 Kb). The most notable differences between M. roreri and M. perniciosa mtDNA are attributed to repeats and regions of plasmid origin. These elements might have contributed to the rapid evolution of mtDNA. Since M. roreri is the second species of the genus Moniliophthora whose mtDNA genome has been sequenced, the data presented here contribute valuable information for understanding the evolution of fungal mt genomes among

  11. Clarification of the concept of Ganoderma orbiforme with high morphological plasticity.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Wang

    Full Text Available Ganoderma has been considered a very difficult genus among the polypores to classify and is currently in a state of taxonomic chaos. In a study of Ganoderma collections including numerous type specimens, we found that six species namely G. cupreum, G. densizonatum, G. limushanense, G. mastoporum, G. orbiforme, G. subtornatum, and records of G. fornicatum from Mainland China and Taiwan are very similar to one another in basidiocarp texture, pilear cuticle structure, context color, pore color and basidiospore characteristics. Further, we sequenced the nrDNA ITS region (ITS1 and ITS2 and partial mtDNA SSU region of the studied materials, and performed phylogenetic analyses based on these sequence data. The nrDNA ITS sequence analysis results show that the eight nrDNA ITS sequences derived from this study have single-nucleotide polymorphisms in ITS1 and/or ITS2 at inter- and intra-individual levels. In the nrDNA ITS phylogenetic trees, all the sequences from this study are grouped together with those of G. cupreum and G. mastoporum retrieved from GenBank to form a distinct clade. The mtDNA SSU sequence analysis results reveal that the five mtDNA SSU sequences derived from this study are clustered together with those of G. cupreum retrieved from GenBank and also form a distinct clade in the mtDNA SSU phylogenetic trees. Based on morphological and molecular data, we conclude that the studied taxa are conspecific. Among the names assigned to this species, G. fornicatum given to Asian collections has nomenclatural priority over the others. However, the type of G. fornicatum from Brazil is probably lost and a modern description based on the type lacks. The identification of the Asian collections to G. fornicatum therefore cannot be confirmed. To the best of our knowledge, G. orbiforme is the earliest valid name for use.

  12. Clarification of the Concept of Ganoderma orbiforme with High Morphological Plasticity

    Science.gov (United States)

    Wang, Dong-Mei; Wu, Sheng-Hua; Yao, Yi-Jian

    2014-01-01

    Ganoderma has been considered a very difficult genus among the polypores to classify and is currently in a state of taxonomic chaos. In a study of Ganoderma collections including numerous type specimens, we found that six species namely G. cupreum, G. densizonatum, G. limushanense, G. mastoporum, G. orbiforme, G. subtornatum, and records of G. fornicatum from Mainland China and Taiwan are very similar to one another in basidiocarp texture, pilear cuticle structure, context color, pore color and basidiospore characteristics. Further, we sequenced the nrDNA ITS region (ITS1 and ITS2) and partial mtDNA SSU region of the studied materials, and performed phylogenetic analyses based on these sequence data. The nrDNA ITS sequence analysis results show that the eight nrDNA ITS sequences derived from this study have single-nucleotide polymorphisms in ITS1 and/or ITS2 at inter- and intra-individual levels. In the nrDNA ITS phylogenetic trees, all the sequences from this study are grouped together with those of G. cupreum and G. mastoporum retrieved from GenBank to form a distinct clade. The mtDNA SSU sequence analysis results reveal that the five mtDNA SSU sequences derived from this study are clustered together with those of G. cupreum retrieved from GenBank and also form a distinct clade in the mtDNA SSU phylogenetic trees. Based on morphological and molecular data, we conclude that the studied taxa are conspecific. Among the names assigned to this species, G. fornicatum given to Asian collections has nomenclatural priority over the others. However, the type of G. fornicatum from Brazil is probably lost and a modern description based on the type lacks. The identification of the Asian collections to G. fornicatum therefore cannot be confirmed. To the best of our knowledge, G. orbiforme is the earliest valid name for use. PMID:24875218

  13. Probabilistic validation of protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Dashti, Hesam; Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel; Ulrich, Eldon L.; Markley, John L.

    2016-01-01

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/

  14. Probabilistic validation of protein NMR chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Dashti, Hesam [University of Wisconsin-Madison, Graduate Program in Biophysics, Biochemistry Department (United States); Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States); Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Biochemistry Department (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu, E-mail: jmarkley@wisc.edu [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States)

    2016-01-15

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/.

  15. Planet Candidate Validation in K2 Crowded Fields

    Science.gov (United States)

    Rampalli, Rayna; Vanderburg, Andrew; Latham, David; Quinn, Samuel

    2018-01-01

    In just three years, the K2 mission has yielded some remarkable outcomes with the discovery of over 100 confirmed planets and 500 reported planet candidates to be validated. One challenge with this mission is the search for planets located in star-crowded regions. Campaign 13 is one such example, located towards the galactic plane in the constellation of Taurus. We subject the potential planetary candidates to a validation process involving spectroscopy to derive certain stellar parameters. Seeing-limited on/off imaging follow-up is also utilized in order to rule out false positives due to nearby eclipsing binaries. Using Markov chain Monte Carlo analysis, the best-fit parameters for each candidate are generated. These will be suitable for finding a candidate’s false positive probability through methods including feeding such parameters into the Validation of Exoplanet Signals using a Probabilistic Algorithm (VESPA). These techniques and results serve as important tools for conducting candidate validation and follow-up observations for space-based missions such as the upcoming TESS mission since TESS’s large camera pixels resemble K2’s star-crowded fields.

  16. Reliability and validity of the Bowel Function Index for evaluating opioid-induced constipation: translation, cultural adaptation and validation of the Portuguese version (BFI-P).

    Science.gov (United States)

    Dueñas, María; Mendonça, Liliane; Sampaio, Rute; Gouvinhas, Cláudia; Oliveira, Daniela; Castro-Lopes, José Manuel; Azevedo, Luís Filipe

    2017-03-01

    The Bowel Function Index (BFI) is a simple and sound bowel function and opioid-induced constipation (OIC) screening tool. We aimed to develop the translation and cultural adaptation of this measure (BFI-P) and to assess its reliability and validity for the Portuguese language and a chronic pain population. The BFI-P was created after a process including translation, back translation and cultural adaptation. Participants (n = 226) were recruited in a chronic pain clinic and were assessed at baseline and after one week. Internal consistency, test-retest reliability, responsiveness, construct (convergent and known groups) and factorial validity were assessed. Test-retest reliability had an intra-class correlation of 0.605 for BFI mean score. Internal consistency of BFI had Cronbach's alpha of 0.865. The construct validity of BFI-P was shown to be excellent and the exploratory factor analysis confirmed its unidimensional structure. The responsiveness of BFI-P was excellent, with a suggested 17-19 point and 8-12 point change in score constituting a clinically relevant change in constipation for patients with and without previous constipation, respectively. This study had some limitations, namely, the criterion validity of BFI-P was not directly assessed; and the absence of a direct criterion for OIC precluded the assessment of the criterion based responsiveness of BFI-P. Nevertheless, BFI may importantly contribute to better OIC screening and its Portuguese version (BFI-P) has been shown to have excellent reliability, internal consistency, validity and responsiveness. Further suggestions regarding statistically and clinically important change cut-offs for this instrument are presented.

  17. Symptom validity issues in the psychological consultative examination for social security disability.

    Science.gov (United States)

    Chafetz, Michael D

    2010-08-01

    This article is about Social Security Administration (SSA) policy with regard to the Psychological Consultative Examination (PCE) for Social Security Disability, particularly with respect to validation of the responses and findings. First, the nature of the consultation and the importance of understanding the boundaries and ethics of the psychologist's role are described. Issues particular to working with low-functioning claimants usually form a large part of these examinations. The psychologist must understand various forms of non-credible behavior during the PCE, and how malingering might be considered among other non-credible presentations. Issues pertaining to symptom validity testing in low-functioning claimants are further explored. SSA policy with respect to symptom validity testing is carefully examined, with an attempt to answer specific concerns and show how psychological science can be of assistance, particularly with evidence-based practice. Additionally, the nature and importance of techniques to avoid the mislabeling of claimants as malingerers are examined. SSA requires the use of accepted diagnostic techniques with which to establish impairment, and this article describes the implementation of that requirement, particularly with respect to validating the findings.

  18. [Evaluation of Suicide Risk Levels in Hospitals: Validity and Reliability Tests].

    Science.gov (United States)

    Macagnino, Sandro; Steinert, Tilman; Uhlmann, Carmen

    2018-05-01

    Examination of in-hospital suicide risk levels concerning their validity and their reliability. The internal suicide risk levels were evaluated in a cross sectional study of in 163 inpatients. A reliability check was performed via determining interrater-reliability of senior physician, therapist and the responsible nurse. Within the scope of the validity check, we conducted analyses of criterion validity and construct validity. For the total sample an "acceptable" to "good" interrater-reliability (Kendalls W = .77) of suicide risk levels were obtained. Schizophrenic disorders showed the lowest values, for personality disorders we found the highest level of interrater-reliability. When examining the criterion validity, Item-9 of the BDI-II is substantial correlated to our suicide risk levels (ρ m  = .54, p validity check, affective disorders showed the highest correlation (ρ = .77), compatible also with "convergent validity". They differed with schizophrenic disorders which showed the least concordance (ρ = .43). In-hospital suicide risk levels may represent an important contribution to the assessment of suicidal behavior of inpatients experiencing psychiatric treatment due to their overall good validity and reliability. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey.

    Science.gov (United States)

    Spice, Erin K; Goodman, Damon H; Reid, Stewart B; Docker, Margaret F

    2012-06-01

    Most species with lengthy migrations display some degree of natal homing; some (e.g. migratory birds and anadromous salmonids) show spectacular feats of homing. However, studies of the sea lamprey (Petromyzon marinus) indicate that this anadromous species locates spawning habitat based on pheromonal cues from larvae rather than through philopatry. Previous genetic studies in the anadromous Pacific lamprey (Entosphenus tridentatus) have both supported and rejected the hypothesis of natal homing. To resolve this, we used nine microsatellite loci to examine the population structure in 965 Pacific lamprey from 20 locations from central British Columbia to southern California and supplemented this analysis with mitochondrial DNA restriction fragment length polymorphism analysis on a subset of 530 lamprey. Microsatellite analysis revealed (i) relatively low but often statistically significant genetic differentiation among locations (97% pairwise F(ST) values were <0.04 but 73.7% were significant); and (ii) weak but significant isolation by distance (r(2) = 0.0565, P = 0.0450) but no geographic clustering of samples. The few moderate F(ST) values involved comparisons with sites that were geographically distant or far upstream. The mtDNA analysis--although providing less resolution among sites (only 4.7%F(ST) values were significant)--was broadly consistent with the microsatellite results: (i) the southernmost site and some sites tributary to the Salish Sea were genetically distinct; and (ii) southern sites showed higher haplotype and private haplotype richness. These results are inconsistent with philopatry, suggesting that anadromous lampreys are unusual among species with long migrations, but suggest that limited dispersal at sea precludes panmixia in this species. © 2012 Blackwell Publishing Ltd.

  20. Evidence of Construct Validity for Work Values

    Science.gov (United States)

    Leuty, Melanie E.; Hansen, Jo-Ida C.

    2011-01-01

    Despite the importance of work values in the process of career adjustment (Dawis, 2002), little empirical research has focused on articulating the domains represented within the construct of work values and the examination of evidence of validity for the construct has been limited. Furthermore, the larger number of work values measures has made it…

  1. Validity in Mixed Methods Research in Education: The Application of Habermas' Critical Theory

    Science.gov (United States)

    Long, Haiying

    2017-01-01

    Mixed methods approach has developed into the third methodological movement in educational research. Validity in mixed methods research as an important issue, however, has not been examined as extensively as that of quantitative and qualitative research. Additionally, the previous discussions of validity in mixed methods research focus on research…

  2. The Development and Preliminary Validation of the Behavior, Environment, and Changeability Survey (BECS)

    Science.gov (United States)

    Walsh, Jennifer R.; Hebert, Angel; Byrd-Bredbenner, Carol; Carey, Gale; Colby, Sarah; Brown-Esters, Onikia N.; Greene, Geoffrey; Hoerr, Sharon; Horacek, Tanya; Kattelmann, Kendra; Kidd, Tandalayo; Koenings, Mallory; Phillips, Beatrice; Shelnutt, Karla P.; White, Adrienne A.

    2012-01-01

    Objective: To develop and test the validity of the Behavior, Environment, and Changeability Survey (BECS) for identifying the importance and changeability of nutrition, exercise, and stress management behavior and related aspects of the environment. Design: A cross-sectional, online survey of the BECS and selected validated instruments. Setting:…

  3. The PROMIS model to highlight the importance of the foetus to the validation of a pregnant woman model

    OpenAIRE

    AURIAULT, Florent; THOLLON, Lionel; PERES, Jérémie; DELOTTE, J; KAYVANTASH, K; BRUNET, Christian; BEHR, Michel

    2013-01-01

    The percentage of trauma during pregnancy related to road accident is between 50% and 75%. This type of trauma can result in premature birth or even foetal loss. To analyse and understand the injury mechanisms in pregnant women involved in a car accident, several studies proposed computational or physical tools to simulate accidents. Specific dummy and numerical models have been proposed and validated using experimental data from post-mortem human surrogate (PMHS) scaled with the equal-stress...

  4. A hybrid reliability algorithm using PSO-optimized Kriging model and adaptive importance sampling

    Science.gov (United States)

    Tong, Cao; Gong, Haili

    2018-03-01

    This paper aims to reduce the computational cost of reliability analysis. A new hybrid algorithm is proposed based on PSO-optimized Kriging model and adaptive importance sampling method. Firstly, the particle swarm optimization algorithm (PSO) is used to optimize the parameters of Kriging model. A typical function is fitted to validate improvement by comparing results of PSO-optimized Kriging model with those of the original Kriging model. Secondly, a hybrid algorithm for reliability analysis combined optimized Kriging model and adaptive importance sampling is proposed. Two cases from literatures are given to validate the efficiency and correctness. The proposed method is proved to be more efficient due to its application of small number of sample points according to comparison results.

  5. Validating soil phosphorus routines in the SWAT model

    Science.gov (United States)

    Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...

  6. [Authentic leadership. Concept and validation of the ALQ in Spain].

    Science.gov (United States)

    Moriano, Juan A; Molero, Fernando; Lévy Mangin, Jean-Pierre

    2011-04-01

    This study presents the validation of the Authentic Leadership Questionnaire (ALQ) in a sample of more than 600 Spanish employees. This questionnaire measures four distinct but related substantive components of authentic leadership. These components are: self-awareness, relational transparency, balanced processing, and internalized moral perspective. Structural equation modeling confirmed that the Spanish version of ALQ has high reliability and predictive validity for important leadership outputs such as perceived effectiveness of leadership, followers' extra effort and satisfaction with the leader.

  7. Importance of development factors in company dealing with cataphoresis coating method

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka-Tatar

    2014-06-01

    Full Text Available The main aim of presented in this paper results is analysis of the most important factors in the company activity. The questionnaire test were carried among persons employed by the company, which mainstream is method of cataphoresis anti-corrosion coating. In the paper also validity of the Toyota roof elements were defined. Based on research as the most important factors of the company mission, indicated the quality factor.

  8. Mitochondrial mutations in subjects with psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C. Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.

  9. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-06-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with {sup 137}Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H{sub 2}O{sub 2}-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H{sub 2}O{sub 2}-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.

  10. Using linked electronic data to validate algorithms for health outcomes in administrative databases.

    Science.gov (United States)

    Lee, Wan-Ju; Lee, Todd A; Pickard, Alan Simon; Shoaibi, Azadeh; Schumock, Glen T

    2015-08-01

    The validity of algorithms used to identify health outcomes in claims-based and administrative data is critical to the reliability of findings from observational studies. The traditional approach to algorithm validation, using medical charts, is expensive and time-consuming. An alternative method is to link the claims data to an external, electronic data source that contains information allowing confirmation of the event of interest. In this paper, we describe this external linkage validation method and delineate important considerations to assess the feasibility and appropriateness of validating health outcomes using this approach. This framework can help investigators decide whether to pursue an external linkage validation method for identifying health outcomes in administrative/claims data.

  11. Development and validation of analytical methods for dietary supplements

    International Nuclear Information System (INIS)

    Sullivan, Darryl; Crowley, Richard

    2006-01-01

    The expanding use of innovative botanical ingredients in dietary supplements and foods has resulted in a flurry of research aimed at the development and validation of analytical methods for accurate measurement of active ingredients. The pressing need for these methods is being met through an expansive collaborative initiative involving industry, government, and analytical organizations. This effort has resulted in the validation of several important assays as well as important advances in the method engineering procedures which have improved the efficiency of the process. The initiative has also allowed researchers to hurdle many of the barricades that have hindered accurate analysis such as the lack of reference standards and comparative data. As the availability for nutraceutical products continues to increase these methods will provide consumers and regulators with the scientific information needed to assure safety and dependable labeling

  12. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  13. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  14. Validity evidence and reliability of a simulated patient feedback instrument.

    Science.gov (United States)

    Schlegel, Claudia; Woermann, Ulrich; Rethans, Jan-Joost; van der Vleuten, Cees

    2012-01-27

    In the training of healthcare professionals, one of the advantages of communication training with simulated patients (SPs) is the SP's ability to provide direct feedback to students after a simulated clinical encounter. The quality of SP feedback must be monitored, especially because it is well known that feedback can have a profound effect on student performance. Due to the current lack of valid and reliable instruments to assess the quality of SP feedback, our study examined the validity and reliability of one potential instrument, the 'modified Quality of Simulated Patient Feedback Form' (mQSF). Content validity of the mQSF was assessed by inviting experts in the area of simulated clinical encounters to rate the importance of the mQSF items. Moreover, generalizability theory was used to examine the reliability of the mQSF. Our data came from videotapes of clinical encounters between six simulated patients and six students and the ensuing feedback from the SPs to the students. Ten faculty members judged the SP feedback according to the items on the mQSF. Three weeks later, this procedure was repeated with the same faculty members and recordings. All but two items of the mQSF received importance ratings of > 2.5 on a four-point rating scale. A generalizability coefficient of 0.77 was established with two judges observing one encounter. The findings for content validity and reliability with two judges suggest that the mQSF is a valid and reliable instrument to assess the quality of feedback provided by simulated patients.

  15. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    Science.gov (United States)

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  16. Mitochondrial DNA differentiates Alzheimer's disease from Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Podlesniy, Petar; Llorens, Franc; Golanska, Ewa; Sikorska, Beata; Liberski, Pawel; Zerr, Inga; Trullas, Ramon

    2016-05-01

    Low content of cell-free mitochondrial DNA (mtDNA) in cerebrospinal fluid (CSF) is a biomarker of early stage Alzheimer's disease (AD), but whether mtDNA is altered in a rapid neurodegenerative dementia such as Creutzfeldt-Jakob disease is unknown. CSF mtDNA was measured using digital polymerase chain reaction (dPCR) in two independent cohorts comprising a total of 112 patients diagnosed with sporadic Creutzfeldt-Jakob disease (sCJD), probable AD, or non-Alzheimer's type dementia. Patients with AD exhibit low mtDNA content in CSF compared with patients diagnosed with sCJD or with non-Alzheimer's type dementias. The CSF concentration of mtDNA does not correlate with Aβ, t-tau, p-tau, and 14-3-3 protein levels in CSF. Low-CSF mtDNA is not a consequence of brain damage and allows the differential diagnosis of AD from sCJD and other dementias. These results support the hypothesis that mtDNA in CSF is a pathophysiological biomarker of AD. Copyright © 2015 Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  17. Associations of mitochondrial haplogroups and mitochondrial DNA copy numbers with end-stage renal disease in a Han population.

    Science.gov (United States)

    Zhang, Yuheng; Zhao, Ying; Wen, Shuzhen; Yan, Rengna; Yang, Qinglan; Chen, Huimei

    2017-09-01

    Mitochondrial DNA (mtDNA) is closely related to mitochondrion function, and variations have been suggested to be involved in pathogenesis of complex diseases. The present study sought to elucidate mitochondrial haplogroups and mtDNA copy number in end-stage renal disease (ESRD) in a Han population. First, the mitochondrial haplogroups of 37 ESRD patients were clustered into several haplogroups, and haplogroup A & D were taken as the candidate risk haplogroups for ESRD. Second, the frequencies of A and D were assessed in 344 ESRD patients and 438 healthy controls, respectively. Haplogroup D was found to be risk maker for ESRD in young subjects (numbers were evaluated with quantitative-PCR. The ESRD patients exhibited greater cell-free mtDNA contents than the healthy controls but less intracellular mtDNA. Haplogroup D exhibited a further increase in cell-free mtDNA content and a decrease in intracellular mtDNA content among the ESRDs patients. Our findings suggest that mtNDA haplogroup D may contributes to pathogenesis of early-onset ESRD through alterations of mtDNA copy numbers.

  18. Mitochondrial DNA Variants Mediate Energy Production and Expression Levels for CFH, C3 and EFEMP1 Genes: Implications for Age-Related Macular Degeneration

    Science.gov (United States)

    Kenney, M. Cristina; Chwa, Marilyn; Atilano, Shari R.; Pavlis, Janelle M.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Hsu, Tiffany; Woo, Grace; Soe, Kyaw; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin

    2013-01-01

    Background Mitochondrial dysfunction is associated with the development and progression of age-related macular degeneration (AMD). Recent studies using populations from the United States and Australia have demonstrated that AMD is associated with mitochondrial (mt) DNA haplogroups (as defined by combinations of mtDNA polymorphisms) that represent Northern European Caucasians. The aim of this study was to use the cytoplasmic hybrid (cybrid) model to investigate the molecular and biological functional consequences that occur when comparing the mtDNA H haplogroup (protective for AMD) versus J haplogroup (high risk for AMD). Methodology/Principal Findings Cybrids were created by introducing mitochondria from individuals with either H or J haplogroups into a human retinal epithelial cell line (ARPE-19) that was devoid of mitochondrial DNA (Rho0). In cybrid lines, all of the cells carry the same nuclear genes but vary in mtDNA content. The J cybrids had significantly lower levels of ATP and reactive oxygen/nitrogen species production, but increased lactate levels and rates of growth. Q-PCR analyses showed J cybrids had decreased expressions for CFH, C3, and EFEMP1 genes, high risk genes for AMD, and higher expression for MYO7A, a gene associated with retinal degeneration in Usher type IB syndrome. The H and J cybrids also have comparatively altered expression of nuclear genes involved in pathways for cell signaling, inflammation, and metabolism. Conclusion/Significance Our findings demonstrate that mtDNA haplogroup variants mediate not only energy production and cell growth, but also cell signaling for major molecular pathways. These data support the hypothesis that mtDNA variants play important roles in numerous cellular functions and disease processes, including AMD. PMID:23365660

  19. Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    M Cristina Kenney

    Full Text Available Mitochondrial dysfunction is associated with the development and progression of age-related macular degeneration (AMD. Recent studies using populations from the United States and Australia have demonstrated that AMD is associated with mitochondrial (mt DNA haplogroups (as defined by combinations of mtDNA polymorphisms that represent Northern European Caucasians. The aim of this study was to use the cytoplasmic hybrid (cybrid model to investigate the molecular and biological functional consequences that occur when comparing the mtDNA H haplogroup (protective for AMD versus J haplogroup (high risk for AMD.Cybrids were created by introducing mitochondria from individuals with either H or J haplogroups into a human retinal epithelial cell line (ARPE-19 that was devoid of mitochondrial DNA (Rho0. In cybrid lines, all of the cells carry the same nuclear genes but vary in mtDNA content. The J cybrids had significantly lower levels of ATP and reactive oxygen/nitrogen species production, but increased lactate levels and rates of growth. Q-PCR analyses showed J cybrids had decreased expressions for CFH, C3, and EFEMP1 genes, high risk genes for AMD, and higher expression for MYO7A, a gene associated with retinal degeneration in Usher type IB syndrome. The H and J cybrids also have comparatively altered expression of nuclear genes involved in pathways for cell signaling, inflammation, and metabolism.Our findings demonstrate that mtDNA haplogroup variants mediate not only energy production and cell growth, but also cell signaling for major molecular pathways. These data support the hypothesis that mtDNA variants play important roles in numerous cellular functions and disease processes, including AMD.

  20. Content validity and nursing sensitivity of community-level outcomes from the Nursing Outcomes Classification (NOC).

    Science.gov (United States)

    Head, Barbara J; Aquilino, Mary Lober; Johnson, Marion; Reed, David; Maas, Meridean; Moorhead, Sue

    2004-01-01

    To evaluate the content validity and nursing sensitivity of six community-level outcomes from the Nursing Outcomes Classification (NOC; Johnson, Maas, & Moorhead, 2000). A survey research design was used. Questionnaires were mailed to 300 public health nursing experts; 102 nurses responded. Experts evaluated between 11 and 30 indicators for each of the six outcomes for: (a) importance of the indicators for measuring the outcome, and (b) influence of nursing on the indicators. Content validity and nursing sensitivity of the outcomes were estimated with a modified Fehring technique. All outcomes were deemed important; only Community Competence had an outcome content validity score < .80. The outcome sensitivity score for Community Health: Immunity was .80; other outcome scores ranged from .62-.70. Indicator ratios for all 102 indicators met the study criterion for importance, with 87% designated as critical and 13% as supplemental. Sensitivity ratios reflected judgments that 45% of the indicators were sensitive to nursing intervention. The study provided evidence of outcome content validity and nursing sensitivity of the study outcomes; further validation research is recommended, followed by testing of the study outcomes in clinical practice. Community-level nursing-sensitive outcomes will potentially enable study of the efficacy and effectiveness of public health interventions focused on improving health of populations and communities.