WorldWideScience

Sample records for mrr-family nuclease motif

  1. Preorganization of the catalytic Zn2+-binding site in the HNH nuclease motif-A solution study

    Czech Academy of Sciences Publication Activity Database

    Németh, E.; Kožíšek, Milan; Schilli, G. K.; Gyurcsik, B.

    2015-01-01

    Roč. 151, Oct (2015), s. 143-149 ISSN 0162-0134 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : HNH-motif * metallonuclease * Zn2+-binding * protein folding * ITC Subject RIV: CE - Biochemistry Impact factor: 3.205, year: 2015

  2. Origins of Programmable Nucleases for Genome Engineering.

    Science.gov (United States)

    Chandrasegaran, Srinivasan; Carroll, Dana

    2016-02-27

    Genome engineering with programmable nucleases depends on cellular responses to a targeted double-strand break (DSB). The first truly targetable reagents were the zinc finger nucleases (ZFNs) showing that arbitrary DNA sequences could be addressed for cleavage by protein engineering, ushering in the breakthrough in genome manipulation. ZFNs resulted from basic research on zinc finger proteins and the FokI restriction enzyme (which revealed a bipartite structure with a separable DNA-binding domain and a non-specific cleavage domain). Studies on the mechanism of cleavage by 3-finger ZFNs established that the preferred substrates were paired binding sites, which doubled the size of the target sequence recognition from 9 to 18bp, long enough to specify a unique genomic locus in plant and mammalian cells. Soon afterwards, a ZFN-induced DSB was shown to stimulate homologous recombination in cells. Transcription activator-like effector nucleases (TALENs) that are based on bacterial TALEs fused to the FokI cleavage domain expanded this capability. The fact that ZFNs and TALENs have been used for genome modification of more than 40 different organisms and cell types attests to the success of protein engineering. The most recent technology platform for delivering a targeted DSB to cellular genomes is that of the RNA-guided nucleases, which are based on the naturally occurring Type II prokaryotic CRISPR-Cas9 system. Unlike ZFNs and TALENs that use protein motifs for DNA sequence recognition, CRISPR-Cas9 depends on RNA-DNA recognition. The advantages of the CRISPR-Cas9 system-the ease of RNA design for new targets and the dependence on a single, constant Cas9 protein-have led to its wide adoption by research laboratories around the world. These technology platforms have equipped scientists with an unprecedented ability to modify cells and organisms almost at will, with wide-ranging implications across biology and medicine. However, these nucleases have also been shown to cut

  3. Design of a colicin E7 based chimeric zinc-finger nuclease

    Science.gov (United States)

    Németh, Eszter; Schilli, Gabriella K.; Nagy, Gábor; Hasenhindl, Christoph; Gyurcsik, Béla; Oostenbrink, Chris

    2014-08-01

    Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity—offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.

  4. Recombinant Cyclophilins Lack Nuclease Activity

    OpenAIRE

    Manteca, Angel; Sanchez, Jesus

    2004-01-01

    Several single-domain prokaryotic and eukaryotic cyclophilins have been identified as also being unspecific nucleases with a role in DNA degradation during the lytic processes that accompany bacterial cell death and eukaryotic apoptosis. Evidence is provided here that the supposed nuclease activity of human and bacterial recombinant cyclophilins is due to contamination of the proteins by the host Escherichia coli endonuclease and is not an intrinsic property of these proteins.

  5. Plant plasma membrane-bound staphylococcal-like DNases as a novel class of eukaryotic nucleases

    Directory of Open Access Journals (Sweden)

    Leśniewicz Krzysztof

    2012-10-01

    Full Text Available Abstract Background The activity of degradative nucleases responsible for genomic DNA digestion has been observed in all kingdoms of life. It is believed that the main function of DNA degradation occurring during plant programmed cell death is redistribution of nucleic acid derived products such as nitrogen, phosphorus and nucleotide bases. Plant degradative nucleases that have been studied so far belong mainly to the S1-type family and were identified in cellular compartments containing nucleic acids or in the organelles where they are stored before final application. However, the explanation of how degraded DNA components are exported from the dying cells for further reutilization remains open. Results Bioinformatic and experimental data presented in this paper indicate that two Arabidopsis staphylococcal-like nucleases, named CAN1 and CAN2, are anchored to the cell membrane via N-terminal myristoylation and palmitoylation modifications. Both proteins possess a unique hybrid structure in their catalytic domain consisting of staphylococcal nuclease-like and tRNA synthetase anticodon binding-like motifs. They are neutral, Ca2+-dependent nucleaces showing a different specificity toward the ssDNA, dsDNA and RNA substrates. A study of microarray experiments and endogenous nuclease activity revealed that expression of CAN1 gene correlates with different forms of programmed cell death, while the CAN2 gene is constitutively expressed. Conclusions In this paper we present evidence showing that two plant staphylococcal-like nucleases belong to a new, as yet unidentified class of eukaryotic nucleases, characterized by unique plasma membrane localization. The identification of this class of nucleases indicates that plant cells possess additional, so far uncharacterized, mechanisms responsible for DNA and RNA degradation. The potential functions of these nucleases in relation to their unique intracellular location are discussed.

  6. Genome Editing in Rats Using TALE Nucleases.

    Science.gov (United States)

    Tesson, Laurent; Remy, Séverine; Ménoret, Séverine; Usal, Claire; Thinard, Reynald; Savignard, Chloé; De Cian, Anne; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio

    2016-01-01

    The rat is an important animal model to understand gene function and model human diseases. Since recent years, the development of gene-specific nucleases has become important for generating new rat models of human diseases, to analyze the role of genes and to generate human antibodies. Transcription activator-like (TALE) nucleases efficiently create gene-specific knockout rats and lead to the possibility of gene targeting by homology-directed recombination (HDR) and generating knock-in rats. We describe a detailed protocol for generating knockout and knock-in rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.

  7. A sensitive assay for Staphylococcus aureus nucleases

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, J K; Vakil, B V; Patil, M S; Pandey, V N; Pradhan, D S [Bhabha Atomic Reserach Centre, Bombay (India). Biochemistry Div.

    1989-10-01

    A sensitive assay for staphylococcal nuclease involving incubation of the enzyme sample with heat-denatured ({sup 3}H) thymidine labelled DNA from E.coli, precipitation with trichloroacetic acid and measurement of the radioactivity of acid-soluble nucleotides released has been developed. The assay is sensitive enough to be used for comparing the levels of nucleases elaborated by different strains of S. aureus as well as for determining the extent of contamination of S. aureus in food and water samples even at levels at which the conventional spectrophotometric and toluidine blue-DNA methods are totally inadequate. (author). 26 refs., 3 figs ., 3 tabs.

  8. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.

    Science.gov (United States)

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-10-16

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9.

  9. Synthesis, characterisation, nuclease and cytotoxic activity of ...

    Indian Academy of Sciences (India)

    GULZAR A BHAT

    2018-02-07

    Feb 7, 2018 ... 2 were evaluated for their nuclease and in vitro anti-tumor activities against human breast and colorectal cancer cell lines. The DNA ... tive chemotherapeutic agent for the treatment of ovarian, lung, testicular, colon, and neck ... coma, leukemia, Hodgkin's lymphoma, brain tumours and cancer of the cervix, ...

  10. Eukaryotic zinc-dependent multifunctional nuclease I

    Czech Academy of Sciences Publication Activity Database

    Koval, Tomáš; Lipovová, P.; Podzimek, T.; Matoušek, Jaroslav; Stránský, Jan; Dušková, Jarmila; Fejfarová, Karla; Skálová, Tereza; Hašek, Jindřich; Dohnálek, Jan

    2014-01-01

    Roč. 70, Supplement /August/ (2014), C211 ISSN 0108-7673. [Congress and General Assembly of the International Union of Crystallography /23./ - IUCr 2014. 05.08.2014-12.08.2014, Montreal] R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:86652036 ; RVO:60077344 Keywords : nuclease * tomato * crystal structure Subject RIV: CE - Biochemistry

  11. Probing chromatin structure with nuclease sensitivity assays.

    Science.gov (United States)

    Gregory, R I; Khosla, S; Feil, R

    2001-01-01

    To further our understanding of genomic imprinting it will be essential to identify key control elements, and to investigate their regulation by both epigenetic modifications (such as DNA methylation) and trans-acting factors. So far, sequence elements that regulate parental allele-specific gene expression have been identified in a number of imprinted loci, either because of their differential DNA methylation or through functional studies in transgenic mice (1,2). A systematic search for allele-specific chromatin features constitutes an alternative strategy to identify elements that regulate imprinting. The validity of such an in vivo chromatin approach derives from the fact that in several known imprinting control-elements, a specialized organization of chromatin characterized by nuclease hypersensitivity is present on only one of the two parental chromosome (3). For example, the differentially methylated 5 -portion of the human SNRPN gene-a sequence element that controls imprinting in the Prader-Willi and Angelman syndromes' domain on chromosome 15q11- q13-has strong DNase-I hypersensitive sites on the unmethylated paternal chromosome (4). A differentially methylated region that regulates the imprinting of H19 and that of the neighboring insulin-like growth factor-2 gene on mouse chromosome 7 was also found to have parental chromosome-specific hypersensitive sites (5,6). The precise nature of the allelic nuclease hypersensitivity in these and other imprinted loci remains to be determined in more detail, for example, by applying complementary chromatin methodologies (7,8). However, it is commonly observed that a nuclease hypersensitive site corresponds to a small region where nucleosomes are absent or partially disrupted.

  12. CompariMotif: quick and easy comparisons of sequence motifs.

    Science.gov (United States)

    Edwards, Richard J; Davey, Norman E; Shields, Denis C

    2008-05-15

    CompariMotif is a novel tool for making motif-motif comparisons, identifying and describing similarities between regular expression motifs. CompariMotif can identify a number of different relationships between motifs, including exact matches, variants of degenerate motifs and complex overlapping motifs. Motif relationships are scored using shared information content, allowing the best matches to be easily identified in large comparisons. Many input and search options are available, enabling a list of motifs to be compared to itself (to identify recurring motifs) or to datasets of known motifs. CompariMotif can be run online at http://bioware.ucd.ie/ and is freely available for academic use as a set of open source Python modules under a GNU General Public License from http://bioinformatics.ucd.ie/shields/software/comparimotif/

  13. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Science.gov (United States)

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  14. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

    Science.gov (United States)

    Kleinstiver, Benjamin P; Prew, Michelle S; Tsai, Shengdar Q; Topkar, Ved V; Nguyen, Nhu T; Zheng, Zongli; Gonzales, Andrew P W; Li, Zhuyun; Peterson, Randall T; Yeh, Jing-Ruey Joanna; Aryee, Martin J; Joung, J Keith

    2015-07-23

    Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.

  15. TALE nucleases and next generation GM crops.

    KAUST Repository

    Mahfouz, Magdy M.

    2011-04-01

    Site-specific and adaptable DNA binding domains are essential modules to develop genome engineering technologies for crop improvement. Transcription activator-like effectors (TALEs) proteins are used to provide a highly specific and adaptable DNA binding modules. TALE chimeric nucleases (TALENs) were used to generate site-specific double strand breaks (DSBs) in vitro and in yeast, Caenorhabditis elegans, mammalian and plant cells. The genomic DSBs can be generated at predefined and user-selected loci and repaired by either the non-homologous end joining (NHEJ) or homology dependent repair (HDR). Thus, TALENs can be used to achieve site-specific gene addition, stacking, deletion or inactivation. TALE-based genome engineering tools should be powerful to develop new agricultural biotechnology approaches for crop improvement. Here, we discuss the recent research and the potential applications of TALENs to accelerate the generation of genomic variants through targeted mutagenesis and to produce a non-transgenic GM crops with the desired phenotype.

  16. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif....... A special viewing feature, MHC fight, allows for display of the specificity of two different MHC molecules side by side. We show how the web server can be used to discover and display surprising similarities as well as differences between MHC molecules within and between different species. The MHC motif...

  17. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  18. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    Science.gov (United States)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  19. Genetic correction using engineered nucleases for gene therapy applications.

    Science.gov (United States)

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  20. Motif enrichment tool.

    Science.gov (United States)

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Engineering nucleases for gene targeting: safety and regulatory considerations.

    Science.gov (United States)

    Pauwels, Katia; Podevin, Nancy; Breyer, Didier; Carroll, Dana; Herman, Philippe

    2014-01-25

    Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Halophilic Nuclease from a Moderately Halophilic Micrococcus varians

    Science.gov (United States)

    Kamekura, Masahiro; Onishi, Hiroshi

    1974-01-01

    The moderately halophilic bacterium Micrococcus varians, isolated from soy sauce mash, produced extracellular nuclease when cultivated aerobically in media containing 1 to 4 M NaCl or KCl. The enzyme, purified to an electrophoretically homogeneous state, had both ribonuclease and deoxyribonuclease activities. The nuclease had maximal activity in the presence of 2.9 M NaCl or 2.1 M KCl at 40 C. The enzymatic activity was lost by dialysis against low-salt buffer, whereas when the inactivated enzyme was dialyzed against 3.4 M NaCl buffer as much as 77% of the initial activity could be restored. Images PMID:4852218

  3. Evaluation of 5 ' nuclease assay for detection of Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Angen, Øystein; Jensen, J.; Lavritsen, D. T.

    2001-01-01

    Sequence detection by the 5' nuclease TaqMan assay uses online detection of internal fluorogenic probes in closed PCR tubes. Primers and probe were chosen from a part of the omlA gene common to all serotypes of Actinobacillus pleuropneumoniae, which gave an amplicon of 92 bp, The test was evaluat...

  4. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.

    Science.gov (United States)

    Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H

    2017-08-01

    Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  5. Antitumor activity od apoptotic nuclease TBN1 from L. esculentum

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Podzimek, Tomáš; Poučková, P.; Stehlík, Jan; Škvor, J.; Lipovová, P.; Matoušek, Josef

    2010-01-01

    Roč. 57, č. 4 (2010), s. 339-348 ISSN 0028-2685 R&D Projects: GA ČR GA521/06/1149; GA ČR GA521/09/1214 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50450515 Keywords : anticancerogenic and antiproliferative nuclease * dsRNase * human solid malignant tumors Subject RIV: FD - Oncology ; Hematology Impact factor: 1.449, year: 2010

  6. Nuclease-like activity of some Cu(II) complexes

    International Nuclear Information System (INIS)

    Durackova, Z.; Fenikova, L.; Svorenova, L.; Labudova, O.; Kollarova, M.; Labuda, J.

    1995-01-01

    The nuclease reaction of a copper complex with the macrocyclic Schiff base ligand tetrabenzo[b,f,j,n][a,3,9,13]tetraaza cyclohexadecine (TAAB) at the cleavage of DNA in aerobic conditions and the presence of ascorbic acid has been investigated and compared with that of the copper phenanthroline complex. The AT specifity of the Cu(TAAB) 2+ for both single-stranded and double-stranded DNA templates was observed. (authors), 4 figs., 6 refs

  7. Antitumor Effects and Cytotoxicity of Recombinant Plant Nucleases

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Podzimek, Tomáš; Pouckova, P.; Stehlík, Jan; Škvor, J.; Souček, J.; Matoušek, Josef

    2009-01-01

    Roč. 18, č. 4 (2009), s. 163-171 ISSN 0965-0407 R&D Projects: GA ČR GA521/09/1214 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50450515 Keywords : Anticarcinogenic and antiproliferative nucleases * Human melanoma * Tumor xenografts * Nicotiana benthamina Subject RIV: FD - Oncology ; Hematology Impact factor: 1.478, year: 2009

  8. The involvement of nuclear nucleases in rat thymocyte DNA degradation after γ-irradiation

    International Nuclear Information System (INIS)

    Nikonova, L.V.; Nelipovich, P.A.; Umansky, S.R.

    1982-01-01

    Possible mechanisms of internucleosomal DNA fragmentation in thymocytes of irradiated rats were studied. It was shown that thymocyte nuclei contain at least two nucleases that cleave DNA between nucleosomes - a Ca 2+ /Mg 2+ -dependent nuclease and an acidic one which does not depend on bivalent ions. 2 and 3 h after irradiation at a dose of 10 Gy the initial rate of DNA cleavage by Ca 2+ /Mg 2+ -dependent nuclease in isolated nuclei increased three and seven times, respectively, but the kinetics of DNA digestion by acidic nuclease did not change. The experiments with cycloheximide indicated that Ca 2+ /Mg 2+ -dependent endonuclease turns over at a high rate. The activity of the cytoplasmic acidic and Mg 2+ -dependent nucleases was shown to increase (by 40 and 50%, respectively) 3h after irradiation. The effect is caused by the de novo synthesis of the nucleases. At the same time the activity of nuclear nucleases did not essentially change. The chromatin isolated from rat thymocytes 3 h after irradiation did not differ in its sensitivity to some exogenic nucleases (DNAase I, micrococcal nuclease and nuclease from Serratia marcescens) from the control. Thus, Ca 2+ /Mg 2+ -dependent endonuclease seems to be responsible for the postirradiation internucleosomal DNA fragmentation in dying thymocytes. (Auth.)

  9. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  10. Phylogenomic analysis of the GIY-YIG nuclease superfamily

    Directory of Open Access Journals (Sweden)

    Bujnicki Janusz M

    2006-04-01

    Full Text Available Abstract Background The GIY-YIG domain was initially identified in homing endonucleases and later in other selfish mobile genetic elements (including restriction enzymes and non-LTR retrotransposons and in enzymes involved in DNA repair and recombination. However, to date no systematic search for novel members of the GIY-YIG superfamily or comparative analysis of these enzymes has been reported. Results We carried out database searches to identify all members of known GIY-YIG nuclease families. Multiple sequence alignments together with predicted secondary structures of identified families were represented as Hidden Markov Models (HMM and compared by the HHsearch method to the uncharacterized protein families gathered in the COG, KOG, and PFAM databases. This analysis allowed for extending the GIY-YIG superfamily to include members of COG3680 and a number of proteins not classified in COGs and to predict that these proteins may function as nucleases, potentially involved in DNA recombination and/or repair. Finally, all old and new members of the GIY-YIG superfamily were compared and analyzed to infer the phylogenetic tree. Conclusion An evolutionary classification of the GIY-YIG superfamily is presented for the very first time, along with the structural annotation of all (subfamilies. It provides a comprehensive picture of sequence-structure-function relationships in this superfamily of nucleases, which will help to design experiments to study the mechanism of action of known members (especially the uncharacterized ones and will facilitate the prediction of function for the newly discovered ones.

  11. Crystallization and preliminary crystallographic analysis of an Escherichia coli-selected mutant of the nuclease domain of the metallonuclease colicin E7

    International Nuclear Information System (INIS)

    Czene, Anikó; Tóth, Eszter; Gyurcsik, Béla; Otten, Harm; Poulsen, Jens-Christian N.; Lo Leggio, Leila; Larsen, Sine; Christensen, Hans E. M.; Nagata, Kyosuke

    2013-01-01

    An N-terminally truncated mutant of the colicin E7 nuclease domain was crystallized and diffraction data set was collected to 1.6 Å resolution. The metallonuclease colicin E7 is a member of the HNH family of endonucleases. It serves as a bacterial toxin in Escherichia coli, protecting the host cell from other related bacteria and bacteriophages by degradation of their chromosomal DNA under environmental stress. Its cell-killing activity is attributed to the nonspecific nuclease domain (NColE7), which possesses the catalytic ββα-type metal ion-binding HNH motif at its C-terminus. Mutations affecting the positively charged amino acids at the N-terminus of NColE7 (444–576) surprisingly showed no or significantly reduced endonuclease activity [Czene et al. (2013 ▶), J. Biol. Inorg. Chem.18, 309–321]. The necessity of the N-terminal amino acids for the function of the C-terminal catalytic centre poses the possibility of allosteric activation within the enzyme. Precise knowledge of the intramolecular interactions of these residues that affect the catalytic activity could turn NColE7 into a novel platform for artificial nuclease design. In this study, the N-terminal deletion mutant ΔN4-NColE7-C* of the nuclease domain of colicin E7 selected by E. coli was overexpressed and crystallized at room temperature by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.6 Å resolution and could be indexed and averaged in the trigonal space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 55.4, c = 73.1 Å. Structure determination by molecular replacement is in progress

  12. MotifMark: Finding regulatory motifs in DNA sequences.

    Science.gov (United States)

    Hassanzadeh, Hamid Reza; Kolhe, Pushkar; Isbell, Charles L; Wang, May D

    2017-07-01

    The interaction between proteins and DNA is a key driving force in a significant number of biological processes such as transcriptional regulation, repair, recombination, splicing, and DNA modification. The identification of DNA-binding sites and the specificity of target proteins in binding to these regions are two important steps in understanding the mechanisms of these biological activities. A number of high-throughput technologies have recently emerged that try to quantify the affinity between proteins and DNA motifs. Despite their success, these technologies have their own limitations and fall short in precise characterization of motifs, and as a result, require further downstream analysis to extract useful and interpretable information from a haystack of noisy and inaccurate data. Here we propose MotifMark, a new algorithm based on graph theory and machine learning, that can find binding sites on candidate probes and rank their specificity in regard to the underlying transcription factor. We developed a pipeline to analyze experimental data derived from compact universal protein binding microarrays and benchmarked it against two of the most accurate motif search methods. Our results indicate that MotifMark can be a viable alternative technique for prediction of motif from protein binding microarrays and possibly other related high-throughput techniques.

  13. Applications of Alternative Nucleases in the Age of CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Tuhin K. Guha

    2017-11-01

    Full Text Available Breakthroughs in the development of programmable site-specific nucleases, including zinc-finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs, meganucleases (MNs, and most recently, the clustered regularly interspaced short palindromic repeats (CRISPR associated proteins (including Cas9 have greatly enabled and accelerated genome editing. By targeting double-strand breaks to user-defined locations, the rates of DNA repair events are greatly enhanced relative to un-catalyzed events at the same sites. However, the underlying biology of each genome-editing nuclease influences the targeting potential, the spectrum of off-target cleavages, the ease-of-use, and the types of recombination events at targeted double-strand breaks. No single genome-editing nuclease is optimized for all possible applications. Here, we focus on the diversity of nuclease domains available for genome editing, highlighting biochemical properties and the potential applications that are best suited to each domain.

  14. Aggregation of fragmented chromatin associated with the appearance of products of its nuclease treatment

    International Nuclear Information System (INIS)

    Lobanenkov, V.V.; Mironov, N.M.; Kupriyanova, E.I.; Shapot, V.S.

    1986-01-01

    Isolated cell nuclei were incubated with nucleases, and then the chromatin was extracted with a low-salt buffer. When degradation of the nuclear chromatin DNase I or micrococcal nuclease is intensified, solubilization of the deoxyribonucleoprotein (DNP) in low-salt buffer at first increases, reaching a maximum in the case of hydrolysis of 2-4% of the nuclear DNA, but after intensive treatment with nucleases, it decreases sharply. Soluble fragmented chromatin is aggregated during treatment with DNase I. The addition of exogenous products of nuclease treatment of isolated nuclei to a preparation of gelatinous chromatin induces its aggregation. Pretreatment of nuclear chromatin with RNase prevents the solubilization of DNP by solutions with low ionic strength. Certain experimental data obtained using rigorous nuclease treatment are discussed; for their interpretation it is necessary to consider the effect of aggregation of fragmented chromatin by products of its nuclease degradation

  15. Chemical Approach to Biological Safety: Molecular-Level Control of an Integrated Zinc Finger Nuclease

    DEFF Research Database (Denmark)

    Németh, Eszter; Asaka, Masamitsu N; Kato, Kohsuke

    2018-01-01

    circular dichroism spectroscopy, and nano-electrospray ionisation mass spectrometry. In situ intramolecular activation of the nuclease domain was observed, resulting in specific cleavage of DNA with moderate activity. This study represents a new approach to AN design through integrated nucleases consisting......Application of artificial nucleases (ANs) in genome editing is still hindered by their cytotoxicity related to off-target cleavages. This problem can be targeted by regulation of the nuclease domain. Here, we provide an experimental survey of computationally designed integrated zinc finger...... nucleases, constructed by linking the inactivated catalytic centre and the allosteric activator sequence of the colicin E7 nuclease domain to the two opposite termini of a zinc finger array. DNA specificity and metal binding were confirmed by electrophoretic mobility shift assays, synchrotron radiation...

  16. Generation of knockout rabbits using transcription activator-like effector nucleases

    OpenAIRE

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large ...

  17. Intra and extracellular nuclease production by Aspergillus niger and Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Ferreira Adlane V. B.

    1998-01-01

    Full Text Available Intra and extracellular nuclease production by strains of Aspergillus niger and Aspergillus nidulans was estimated using a modified DNAse test agar and cell-free extract assays. Differences in the production of nucleases by A. niger and A. nidulans were observed. These observations suggest that the DNAse test agar can be helpful for a quick screening for some types of nucleases in filamentous fungi. The assays using cell-free extracts can also be useful for initial characterization of other types of nucleases.

  18. A RecB-family nuclease motif in the Type I restriction endonuclease EcoR124I

    Czech Academy of Sciences Publication Activity Database

    Šišáková, Eva; Stanley, L. K.; Weiserová, Marie; Szczelkun, M. D.

    2008-01-01

    Roč. 36, č. 12 (2008), s. 1-11 ISSN 0305-1048 R&D Projects: GA ČR GA204/07/0325 Grant - others:XE(XE) BioNano-Switch 043288 Institutional research plan: CEZ:AV0Z50200510 Keywords : restriction endonuclease * mutagenesis * dsdna Subject RIV: EE - Microbiology, Virology Impact factor: 6.878, year: 2008

  19. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    RNA serves a number of functions in the cell: mRNAs are the carriers of information between gene and protein, tRNAs and rRNAs are involved in the synthesis of proteins, whereas a number of additional RNA species are responsible for other functions in the cell. The quality of the different RNAs...... RNAs. We have solved the structures of two nucleases involved in 3'-5' degradation of RNA; the S. pombe Pop2p and the S. cerevisiae Rrp6p. Pop2p is part of the main cytoplasmatic deadenylation complex in yeast, which also contains the nuclease Ccr4p. Deadenylation, where the poly(A)-tail is removed...... specific transcripts. Here, we present the crystal structure of the S. pombe Pop2p protein to 1.4 Å resolution. The high resolution structure provides a clear picture of the active site architecture. Structural alignment of single nucleotides and poly(A)-oligonucleotides from earlier co-crystal structures...

  20. Application of a 5 ' nuclease assay for detection of Lawsonia intracellularis in fecal samples from pigs

    DEFF Research Database (Denmark)

    Lindecrona, R. H.; Jensen, Tim Kåre; Andersen, P. H.

    2002-01-01

    A 5' nuclease assay was developed to detect Lawsonia intracellularis in porcine fecal samples. The specific probe and primers were chosen by using the 16S ribosomal DNA gene as a target. The 5' nuclease assay was used with a total of 204 clinical samples, and the results were compared to those of...

  1. Transcription Activator-Like Effectors (TALEs) Hybrid Nucleases for Genome Engineering Application

    KAUST Repository

    Wibowo, Anjar

    2011-06-06

    Gene targeting is a powerful genome engineering tool that can be used for a variety of biotechnological applications. Genomic double-strand DNA breaks generated by engineered site-specific nucleases can stimulate gene targeting. Hybrid nucleases are composed of DNA binding module and DNA cleavage module. Zinc Finger Nucleases were used to generate double-strand DNA breaks but it suffers from failures and lack of reproducibility. The transcription activator–like effectors (TALEs) from plant pathogenic Xanthomonas contain a unique type of DNA-binding domain that bind specific DNA targets. The purpose of this study is to generate novel sequence specific nucleases by fusing a de novo engineered Hax3 TALE-based DNA binding domain to a FokI cleavage domain. Our data show that the de novo engineered TALE nuclease can bind to its target sequence and create double-strand DNA breaks in vitro. We also show that the de novo engineered TALE nuclease is capable of generating double-strand DNA breaks in its target sequence in vivo, when transiently expressed in Nicotiana benthamiana leaves. In conclusion, our data demonstrate that TALE-based hybrid nucleases can be tailored to bind a user-selected DNA sequence and generate site-specific genomic double-strand DNA breaks. TALE-based hybrid nucleases hold much promise as powerful molecular tools for gene targeting applications.

  2. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-01-01

    RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.

  3. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  4. Automated 5 ' nuclease PCR assay for identification of Salmonella enterica

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Ahrens, Peter; Rådström, P.

    2000-01-01

    -point fluorescence (FAM) signals for the samples and positive control (TET) signals (relative sensitivity [Delta Rn], >0.6). The diagnostic specificity of the method was assessed using 120 non-Salmonella strains, which all resulted in negative FAM signals (Delta Rn, less than or equal to 0.5). All 100 rough...... Salmonella strains tested resulted in positive FAM and TET signals. In addition, it was found that the complete PCR mixture, predispensed in microwell plates, could be stored for up to 3 months at -20 degrees C, Thus, the diagnostic TaqMan assay developed can be a useful and simple alternative method......A simple and ready-to-go test based on a 5' nuclease (TaqMan) PCR technique was developed for identification of presumptive Salmonella enterica isolates. The results were compared with those of conventional methods. The TaqMan assay was evaluated for its ability to accurately detect 210 S. enterica...

  5. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  6. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases.

    Science.gov (United States)

    Periwal, Vinita

    2017-07-01

    Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.

    Science.gov (United States)

    Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis

    2017-01-01

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

  8. Generation of knockout rabbits using transcription activator-like effector nucleases

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  9. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity ...

    Indian Academy of Sciences (India)

    s12039-016-1125-x. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity of lanthanide(III) complexes of 2-benzoylpyridine acetylhydrazone. KARREDDULA RAJA, AKKILI SUSEELAMMA and KATREDDI HUSSAIN REDDY. ∗.

  10. Generation of knockout rabbits using transcription activator-like effector nucleases.

    Science.gov (United States)

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  11. Kopi dan Kakao dalam Kreasi Motif Batik Khas Jember

    Directory of Open Access Journals (Sweden)

    Irfa'ina Rohana Salma

    2015-06-01

    Full Text Available ABSTRAK Batik Jember selama ini identik dengan motif daun tembakau. Visualisasi daun tembakau dalam motif Batik Jember cukup lemah, yaitu kurang berkarakter karena motif yang muncul adalah seperti gambar daun pada umumnya. Oleh karena itu perlu diciptakan desain motif batik khas Jember yang sumber inspirasinya digali dari kekayaan alam lainnya dari Jember yang mempunyai bentuk spesifik dan karakteristik sehingga identitas motif bisa didapatkan dengan lebih kuat. Hasil alam khas Jember tersebut adalah kopi dan kakao. Tujuan penciptaan seni ini adalah untuk menghasilkan motif batik  baru yang mempunyai ciri khas Jember. Metode yang digunakan yaitu pengumpulan data, pengamatan mendalam terhadap objek penciptaan, pengkajian sumber inspirasi, pembuatan desain motif, dan perwujudan menjadi batik. Dari penciptaan seni ini berhasil dikreasikan 6 (enam motif batik yaitu: (1 Motif Uwoh Kopi; (2 Motif Godong Kopi;  (3 Motif Ceplok Kakao; (4 Motif Kakao Raja; (5 Motif Kakao Biru; dan (6 Motif Wiji Mukti. Berdasarkan hasil penilaian “Selera Estetika” diketahui bahwa motif yang paling banyak disukai adalah Motif Uwoh Kopi dan Motif Kakao Raja. Kata kunci: Motif Woh Kopi, Motif Godong Kopi, Motif Ceplok Kakao, Motif Kakao Raja, Motif Kakao Biru, Motif Wiji Mukti ABSTRACTBatik Jember is synonymous with tobacco leaf motif. Tobacco leaf shape is quite weak in the visual appearance characterized as that motif emerges like a picture of leaves in general. Therefore, it is necessary to create a distinctive design motif extracted from other natural resources of Jember that have specific shapes and characteristics that can be obtained as the stronger motif identity. The typical natural resources from Jember are coffee and cocoa. The purpose of the creation of this art is to produce the unique, creative and innovative batik and have specific characteristics of Jember. The method used are data collection, observation of the object, reviewing inspiration sources

  12. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster

    OpenAIRE

    Simoni, A; Siniscalchi, C; Chan, Y-S; Huen, DS; Russell, S; Windbichler, N; Crisanti, A

    2014-01-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (S...

  13. Potential relationships between morphological differentiation and mutants with high nuclease P1 production of Penicillium citrinum

    Energy Technology Data Exchange (ETDEWEB)

    Xinle, Liang; Qian, Shou; Hong, Zhang; Min, Chen [Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang (China); Xuan, Liu [Beihai Institute of Environmental Science, Beihai, Guangxi (China)

    2009-08-15

    Diversification of colony characteristics of mutants derived from Penicillium citrinum CICC 4011 treated with {sup 60}Co {gamma}-irradiation and protoplast fusion were analyzed. There were distinct differences among mutants with different nuclease P1 activity, especially in pigment productivity. Color of colony was changed from the original green to white, grey-green, or yellow-green etc., while the nuclease P1 activity would be fluctuated with the color change. The hypothesis was suggested that there would be a relationship between pigments and nuclease P1 production. Mutants with grey-green colony would give out high nuclease P1 outputs in a high probability such as mutant J1Y6 (nuclease P1 activity, 167.3U/ml) and fusant F-13 (nuclease P1 activity, 568.7U/ml), while others with deep-green colony observed low nuclease outputs. Four variation strains didn't show any significant difference in growth rate. Broom branches of conidiophore stem in J1Y6 and F-13 were obviously reduced, conidiophores productivity reduced, but hyphae growth haled. These suggested that nuclease P1 production was associated with growth phase, but pigment synthesis course wasn't. RAPD from 6 randomly selected primers was used to analyze the polymorphic rich of the four strains, the results showed that there were 70 percent polymorphism detection rate among those. UPGMA cluster analysis and genetic map constructed by NTSYS-PC software, which showed that J1Y6 and F-14 were clustered as one group at similar coefficient 0.9, where there was an appear distance from the group of 4011 and F-R-33 strains (similar coefficient 0.8). (authors)

  14. Potential relationships between morphological differentiation and mutants with high nuclease P1 production of Penicillium citrinum

    International Nuclear Information System (INIS)

    Liang Xinle; Shou Qian; Zhang Hong; Chen Min; Liu Xuan

    2009-01-01

    Diversification of colony characteristics of mutants derived from Penicillium citrinum CICC 4011 treated with 60 Co γ-irradiation and protoplast fusion were analyzed. There were distinct differences among mutants with different nuclease P1 activity, especially in pigment productivity. Color of colony was changed from the original green to white, grey-green, or yellow-green etc., while the nuclease P1 activity would be fluctuated with the color change. The hypothesis was suggested that there would be a relationship between pigments and nuclease P1 production. Mutants with grey-green colony would give out high nuclease P1 outputs in a high probability such as mutant J1Y6( nuclease P1 activity, 167.3U/ml) and fusant F-13 (nuclease P1 activity, 568.7U/ml), while others with deep-green colony observed low nuclease outputs. Four variation strains didn't show any significant difference in growth rate. Broom branches of conidiophore stem in J1Y6 and F-13 were obviously reduced, conidiophores productivity reduced, but hyphae growth haled. These suggested that nuclease P1 production was associated with growth phase, but pigment synthesis course wasn't. RAPD from 6 randomly selected primers was used to analyze the polymorphic rich of the four strains, the results showed that there were 70 percent polymorphism detection rate among those. UPGMA cluster analysis and genetic map constructed by NTSYS-PC software, which showed that J1Y6 and F-14 were clustered as one group at similar coefficient 0.9, where there was an appear distance from the group of 4011 and F-R-33 strains (similar coefficient 0.8). (authors)

  15. Mung Bean nuclease mapping of RNAs 3' end

    Directory of Open Access Journals (Sweden)

    Barbieri Rainer

    2009-05-01

    Full Text Available Abstract A method is described that allows an accurate mapping of 3' ends of RNAs. In this method a labeled DNA probe, containing the presumed 3' end of the RNA under analysis is allowed to anneals to the RNA itself. Mung-bean nuclease is then used to digest single strands of both RNA and DNA. Electrophoretic fractionation of "protected" undigested, labeled DNA is than performed using a sequence reaction of a known DNA as length marker. This procedure was applied to the analysis of both a polyA RNA (Interleukin 10 mRNA and non polyA RNAs (sea urchin 18S and 26S rRNAs. This method might be potentially relevant for the evaluation of the role of posttrascriptional control of IL-10 in the pathogenesis of the immune and inflammatory mediated diseases associated to ageing. This might allow to develop new strategies to approach to the diagnosis and therapy of age related diseases.

  16. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent

    2007-03-01

    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  17. BayesMotif: de novo protein sorting motif discovery from impure datasets.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Fan

    2010-01-18

    Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of

  18. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  19. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    Science.gov (United States)

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-02-20

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

  20. MSDmotif: exploring protein sites and motifs

    Directory of Open Access Journals (Sweden)

    Henrick Kim

    2008-07-01

    Full Text Available Abstract Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures.

  1. Analysis of pyrimidine dimer content of isolated DNA by nuclease digestion

    International Nuclear Information System (INIS)

    Farland, W.H.; Sutherland, B.M.

    1980-01-01

    Isolated DNA is highly susceptible to degradation by exogenous nucleases. Complete digestion is possible with a number of well-characterized enzymes from a variety of sources. Treatment of DNA with a battery of enzymes including both phosphodiesterase and phosphatase activities yields a mixture of nucleosides and inorganic phosphate (P/sub i/) as a final product. Unlike native DNA, ultraviolet-irradiated DNA is resistant to complete digestion. Setlow et al. demonstrated that the structural changes in the DNA responsible for the nuclease resistance were the formation of cyclobutyl pyrimidine dimers, the major photoproduct in UV-irradiated DNA. Using venom phosphodiesterase, they demonstrated that UV irradiation of DNA affected both the rate and extent of enzymatic hydrolysis. In addition, it was demonstrated that the major nuclease-resistant product of this hydrolysis was an oligonucleotide containing dimerized pyrimidines. Treatment of the DNA to split the dimers, either photochemically or photoenzymatically, rendered the polymer more susceptible to hydrolysis by the phosphodiesterase. The specificity of photoreactivating enzyme for pyrimidine dimers lends support to the role of these structures in conferring nuclease resistance to UV-irradiated DNA. The nuclease resistance of DNA containing dimers has been the basis of several assays for the measurement of these photoproducts. Sutherland and Chamberlin reported the development of a rapid and sensitive assay for dimers in 32 P-labeled DNA

  2. Temporal motifs in time-dependent networks

    International Nuclear Information System (INIS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-01-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological–temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network

  3. Motif discovery in ranked lists of sequences

    DEFF Research Database (Denmark)

    Nielsen, Morten Muhlig; Tataru, Paula; Madsen, Tobias

    2016-01-01

    Motif analysis has long been an important method to characterize biological functionality and the current growth of sequencing-based genomics experiments further extends its potential. These diverse experiments often generate sequence lists ranked by some functional property. There is therefore...... advantage of the regular expression feature, including enrichments for combinations of different microRNA seed sites. The method is implemented and made publicly available as an R package and supports high parallelization on multi-core machinery....... a growing need for motif analysis methods that can exploit this coupled data structure and be tailored for specific biological questions. Here, we present an exploratory motif analysis tool, Regmex (REGular expression Motif EXplorer), which offers several methods to evaluate the correlation of motifs...

  4. Comprehensive analysis of the specificity of transcription activator-like effector nucleases

    DEFF Research Database (Denmark)

    Juillerat, Alexandre; Dubois, Gwendoline; Valton, Julien

    2014-01-01

    A key issue when designing and using DNA-targeting nucleases is specificity. Ideally, an optimal DNA-targeting tool has only one recognition site within a genomic sequence. In practice, however, almost all designer nucleases available today can accommodate one to several mutations within...... their target site. The ability to predict the specificity of targeting is thus highly desirable. Here, we describe the first comprehensive experimental study focused on the specificity of the four commonly used repeat variable diresidues (RVDs; NI:A, HD:C, NN:G and NG:T) incorporated in transcription activator......-like effector nucleases (TALEN). The analysis of >15 500 unique TALEN/DNA cleavage profiles allowed us to monitor the specificity gradient of the RVDs along a TALEN/DNA binding array and to present a specificity scoring matrix for RVD/nucleotide association. Furthermore, we report that TALEN can only...

  5. Characterization of a periplasmic S1-like nuclease coded by the Mesorhizobium loti symbiosis island

    International Nuclear Information System (INIS)

    Pimkin, Maxim; Miller, C. Glenn; Blakesley, Lauryn; Oleykowski, Catherine A.; Kodali, Nagendra S.; Yeung, Anthony T.

    2006-01-01

    DNA sequences encoding hypothetical proteins homologous to S1 nuclease from Aspergillus oryzae are found in many organisms including fungi, plants, pathogenic bacteria, and eukaryotic parasites. One of these is the M1 nuclease of Mesorhizobium loti which we demonstrate herein to be an enzymatically active, soluble, and stable S1 homolog that lacks the extensive mannosyl-glycosylation found in eukaryotic S1 nuclease homologs. We have expressed the cloned M1 protein in M. loti and purified recombinant native M1 to near homogeneity and have also isolated a homogeneous M1 carboxy-terminal hexahistidine tag fusion protein. Mass spectrometry and N-terminal Edman degradation sequencing confirmed the protein identity. The enzymatic properties of the purified M1 nuclease are similar to those of S1. At acidic pH M1 is 25 times more active on single-stranded DNA than on double-stranded DNA and 3 times more active on single-stranded DNA than on single-stranded RNA. At neutral pH the RNase activity of M1 exceeds the DNase activity. M1 nicks supercoiled RF-I plasmid DNA and rapidly cuts the phosphodiester bond across from the nick in the resultant relaxed RF-II plasmid DNA. Therefore, M1 represents an active bacterial S1 homolog in spite of great sequence divergence. The biochemical characterization of M1 nuclease supports our sequence alignment that reveals the minimal 21 amino acid residues that are necessarily conserved for the structure and functions of this enzyme family. The ability of M1 to degrade RNA at neutral pH implies previously unappreciated roles of these nucleases in biological systems

  6. MotifNet: a web-server for network motif analysis.

    Science.gov (United States)

    Smoly, Ilan Y; Lerman, Eugene; Ziv-Ukelson, Michal; Yeger-Lotem, Esti

    2017-06-15

    Network motifs are small topological patterns that recur in a network significantly more often than expected by chance. Their identification emerged as a powerful approach for uncovering the design principles underlying complex networks. However, available tools for network motif analysis typically require download and execution of computationally intensive software on a local computer. We present MotifNet, the first open-access web-server for network motif analysis. MotifNet allows researchers to analyze integrated networks, where nodes and edges may be labeled, and to search for motifs of up to eight nodes. The output motifs are presented graphically and the user can interactively filter them by their significance, number of instances, node and edge labels, and node identities, and view their instances. MotifNet also allows the user to distinguish between motifs that are centered on specific nodes and motifs that recur in distinct parts of the network. MotifNet is freely available at http://netbio.bgu.ac.il/motifnet . The website was implemented using ReactJs and supports all major browsers. The server interface was implemented in Python with data stored on a MySQL database. estiyl@bgu.ac.il or michaluz@cs.bgu.ac.il. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.

    Science.gov (United States)

    Zhu, Lihua Julie; Lawrence, Michael; Gupta, Ankit; Pagès, Hervé; Kucukural, Alper; Garber, Manuel; Wolfe, Scot A

    2017-05-15

    Genome editing technologies developed around the CRISPR-Cas9 nuclease system have facilitated the investigation of a broad range of biological questions. These nucleases also hold tremendous promise for treating a variety of genetic disorders. In the context of their therapeutic application, it is important to identify the spectrum of genomic sequences that are cleaved by a candidate nuclease when programmed with a particular guide RNA, as well as the cleavage efficiency of these sites. Powerful new experimental approaches, such as GUIDE-seq, facilitate the sensitive, unbiased genome-wide detection of nuclease cleavage sites within the genome. Flexible bioinformatics analysis tools for processing GUIDE-seq data are needed. Here, we describe an open source, open development software suite, GUIDEseq, for GUIDE-seq data analysis and annotation as a Bioconductor package in R. The GUIDEseq package provides a flexible platform with more than 60 adjustable parameters for the analysis of datasets associated with custom nuclease applications. These parameters allow data analysis to be tailored to different nuclease platforms with different length and complexity in their guide and PAM recognition sequences or their DNA cleavage position. They also enable users to customize sequence aggregation criteria, and vary peak calling thresholds that can influence the number of potential off-target sites recovered. GUIDEseq also annotates potential off-target sites that overlap with genes based on genome annotation information, as these may be the most important off-target sites for further characterization. In addition, GUIDEseq enables the comparison and visualization of off-target site overlap between different datasets for a rapid comparison of different nuclease configurations or experimental conditions. For each identified off-target, the GUIDEseq package outputs mapped GUIDE-Seq read count as well as cleavage score from a user specified off-target cleavage score prediction

  8. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    Science.gov (United States)

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  9. Improving Fab' fragment retention in an autonucleolytic Escherichia coli strain by swapping periplasmic nuclease translocation signal from OmpA to DsbA.

    Science.gov (United States)

    Schofield, Desmond M; Sirka, Ernestas; Keshavarz-Moore, Eli; Ward, John M; Nesbeth, Darren N

    2017-12-01

    To reduce unwanted Fab' leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab' fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives. We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab' grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab' coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab' leakage relative to the original autonucleolytic Fab' strain with OmpA-fused staphylococcal nuclease. We successfully rescued Fab' leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab' fragment to the surrounding growth media.

  10. Hunting Motifs in Situla Art

    Directory of Open Access Journals (Sweden)

    Andrej Preložnik

    2013-07-01

    Full Text Available Situla art developed as an echo of the toreutic style which had spread from the Near East through the Phoenicians, Greeks and Etruscans as far as the Veneti, Raeti, Histri, and their eastern neighbours in the region of Dolenjska (Lower Carniola. An Early Iron Age phenomenon (c. 600—300 BC, it rep- resents the major and most arresting form of the contemporary visual arts in an area stretching from the foot of the Apennines in the south to the Drava and Sava rivers in the east. Indeed, individual pieces have found their way across the Alpine passes and all the way north to the Danube. In the world and art of the situlae, a prominent role is accorded to ani- mals. They are displayed in numerous representations of human activities on artefacts crafted in the classic situla style – that is, between the late 6th  and early 5th centuries BC – as passive participants (e.g. in pageants or in harness or as an active element of the situla narrative. The most typical example of the latter is the hunting scene. Today we know at least four objects decorat- ed exclusively with hunting themes, and a number of situlae and other larger vessels where hunting scenes are embedded in composite narratives. All this suggests a popularity unparallelled by any other genre. Clearly recognisable are various hunting techniques and weapons, each associated with a particu- lar type of game (Fig. 1. The chase of a stag with javelin, horse and hound is depicted on the long- familiar and repeatedly published fibula of Zagorje (Fig. 2. It displays a hound mauling the stag’s back and a hunter on horseback pursuing a hind, her neck already pierced by the javelin. To judge by the (so far unnoticed shaft end un- der the stag’s muzzle, the hunter would have been brandishing a second jave- lin as well, like the warrior of the Vače fibula or the rider of the Nesactium situla, presumably himself a hunter. Many parallels to his motif are known from Greece, Etruria, and

  11. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Vakhrushev, Sergey Y; Vester-Christensen, Malene B

    2011-01-01

    Zinc-finger nuclease (ZFN) gene targeting is emerging as a versatile tool for engineering of multiallelic gene deficiencies. A longstanding obstacle for detailed analysis of glycoproteomes has been the extensive heterogeneities in glycan structures and attachment sites. Here we applied ZFN target...

  12. Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis

    DEFF Research Database (Denmark)

    Lonowski, Lindsey A; Narimatsu, Yoshiki; Riaz, Anjum

    2017-01-01

    , FACS enrichment of cells expressing nucleases linked to fluorescent proteins can be used to maximize knockout or knock-in editing efficiencies or to balance editing efficiency and toxic/off-target effects. The two methods can be combined to form a pipeline for cell-line editing that facilitates...

  13. Antitumor and biological effects of black pine (Pinus nigra) pollen nuclease

    Czech Academy of Sciences Publication Activity Database

    Lipovová, P.; Podzimek, T.; Orctová, Lidmila; Matoušek, Jaroslav; Poučková, P.; Souček, J.; Matoušek, Josef

    2008-01-01

    Roč. 55, - (2008), s. 158-164 ISSN 0028-2685 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50450515 Keywords : pollen nuclease * Antitumor effect Subject RIV: FD - Oncology ; Hematology Impact factor: 1.179, year: 2008

  14. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases

    DEFF Research Database (Denmark)

    Chen, Fuqiang; Pruett-Miller, Shondra M; Huang, Yuping

    2011-01-01

    Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point...

  15. Mung bean sprout (Phaseolus aureus) nuclease and its biological and antitumor effects

    Czech Academy of Sciences Publication Activity Database

    Souček, J.; Škvor, J.; Poučková, P.; Matoušek, Jaroslav; Slavík, Tomáš; Matoušek, Josef

    2006-01-01

    Roč. 53, - (2006), s. 402-409 ISSN 0028-2685 R&D Projects: GA ČR GA521/06/1149; GA ČR GA523/04/0755 Keywords : mung bean * nuclease Subject RIV: FD - Oncology ; Hematology Impact factor: 1.247, year: 2006

  16. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed; Mansour, Essam; Kalnis, Panos

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern

  17. Deciphering functional glycosaminoglycan motifs in development.

    Science.gov (United States)

    Townley, Robert A; Bülow, Hannes E

    2018-03-23

    Glycosaminoglycans (GAGs) such as heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate are linear glycans, which when attached to protein backbones form proteoglycans. GAGs are essential components of the extracellular space in metazoans. Extensive modifications of the glycans such as sulfation, deacetylation and epimerization create structural GAG motifs. These motifs regulate protein-protein interactions and are thereby repsonsible for many of the essential functions of GAGs. This review focusses on recent genetic approaches to characterize GAG motifs and their function in defined signaling pathways during development. We discuss a coding approach for GAGs that would enable computational analyses of GAG sequences such as alignments and the computation of position weight matrices to describe GAG motifs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Bayesian centroid estimation for motif discovery.

    Science.gov (United States)

    Carvalho, Luis

    2013-01-01

    Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  19. Bayesian centroid estimation for motif discovery.

    Directory of Open Access Journals (Sweden)

    Luis Carvalho

    Full Text Available Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  20. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain

    Science.gov (United States)

    Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang

    2017-01-01

    Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398

  1. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    Science.gov (United States)

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  2. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  3. Analisis Unsur Matematika pada Motif Sulam Usus

    Directory of Open Access Journals (Sweden)

    Fredi Ganda Putra

    2017-12-01

    Full Text Available Based on interviews with researchers sources said that the beginning of the intestine embroidery is an art of genuine crafts. Called the intestine embroidery because this technique is a technique of combining a strand of cloth resembling the intestine formed according to the pattern by means of embroidered using a thread. Intestinal embroidery techniques were originally used to create a cover of the women's customary wardrobe of Lampung or often referred to as bebe. But not many people in Lampung, especially people who live in Lampung are still many who do not know and recognize the intestine embroidery because most only know tapis only characteristic of Lampung, besides that there are other cultural results that is embroidered intestine. There are still many who do not know that the intestine motif there is a knowledge of mathematics. The researcher's problem formulation is whether there are mathematical elements contained in the intestine embroidery motif based on the concept of geometry. The purpose of this study is to determine whether there are elements of mathematics contained in the intestine motif based on the concept of geometry. Subjects in this study consisted of 4 people obtained by purposive sampling technique. From the results of data analysis conducted by using descriptive analysis and discussion as follows: (1 Intestinal embroidery motif contains the meaning of mathematics and culture or often called Etnomatematika. On the meaning of culture there is a link between the embroidery intestine with a culture that has been there before as the existence of cultural linkage between Hindu belief Buddhism and there are similarities of motifs and decorative patterns contained in the motif embroidery intestine with ornamental variety in Indonesia. (2 The relationship between the intestine with mathematical motifs there are elements of mathematics such as geometry elements in the form of geometry of dimension one and dimension two, and the

  4. Solving RNA's structural secrets: interaction with antibodies and crystal structure of a nuclease resistant RNA

    International Nuclear Information System (INIS)

    Wallace, S.T.

    1998-10-01

    This Ph.D. thesis concerns the structural characterization of RNA. The work is split into two sections: 1) in vitro selection and characterization of RNAs which bind antibiotics and 2) crystal structure of a nuclease resistant RNA molecule used in antisense applications. Understanding antibiotic-RNA interactions is crucial in aiding rational drug design. We were interested in studying antibiotic interactions with RNAs small enough to characterize at the molecular and possibly at the atomic level. In order to do so, we previously performed in vitro selection to find small RNAs which bind to the peptide antibiotic viomycin and the aminoglycoside antibiotic streptomycin. The characterization of the viomycin-binding RNAs revealed the necessity of a pseudoknot-structure in order to interact with the antibiotic. The RNAs which were selected to interact with streptomycin require the presence of magnesium to bind the antibiotic. One of the RNAs, upon interacting with streptomycin undergoes a significant conformational change spanning the entire RNA sequence needed to bind the antibiotic. In a quest to design oligodeoxynucleotides (ODNs) which are able to specifically bid and inactivate the mRNA of a gene, it is necessary to fulfill two criteria: 1) increase binding affinity between the ODN and the target RNA and 2) increase the ODN's resistance to nuclease degradation. An ODN with an aminopropyl modification at the 2' position of its ribose has emerged as the most successful candidate at fulfilling both criteria. It is the most nuclease resistant modification known to date. We were interested in explaining how this modification is able to circumvent degradation by nucleases. A dodecamer containing a single 2'-O-aminopropyl modified nucleotide was crystallized and the structure was solved to a resolution of 1.6 A. In an attempt to explain the nuclease resistance, the crystal coordinates were modeled into the active exonuclease site of DNA polymerase I. We propose the

  5. Crystallization and preliminary crystallographic analysis of an Escherichia coli-selected mutant of the nuclease domain of the metallonuclease colicin E7

    DEFF Research Database (Denmark)

    Czene, Aniko; Toth, Eszter; Gyurcsik, Bela

    2013-01-01

    The metallonuclease colicin E7 is a member of the HNH family of endonucleases. It serves as a bacterial toxin in Escherichia coli, protecting the host cell from other related bacteria and bacteriophages by degradation of their chromosomal DNA under environmental stress. Its cell-killing activity ....... X-ray diffraction data were collected to 1.6 Å resolution and could be indexed and averaged in the trigonal space group P3121 or P3221, with unit-cell parameters a = b = 55.4, c = 73.1 Å. Structure determination by molecular replacement is in progress.......The metallonuclease colicin E7 is a member of the HNH family of endonucleases. It serves as a bacterial toxin in Escherichia coli, protecting the host cell from other related bacteria and bacteriophages by degradation of their chromosomal DNA under environmental stress. Its cell-killing activity...... is attributed to the nonspecific nuclease domain (NColE7), which possesses the catalytic ββα-type metal ion-binding HNH motif at its C-terminus. Mutations affecting the positively charged amino acids at the N-terminus of NColE7 (444-576) surprisingly showed no or significantly reduced endonuclease activity...

  6. Armadillo motifs involved in vesicular transport.

    Directory of Open Access Journals (Sweden)

    Harald Striegl

    Full Text Available Armadillo (ARM repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family.

  7. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    Science.gov (United States)

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  8. Direct AUC optimization of regulatory motifs.

    Science.gov (United States)

    Zhu, Lin; Zhang, Hong-Bo; Huang, De-Shuang

    2017-07-15

    The discovery of transcription factor binding site (TFBS) motifs is essential for untangling the complex mechanism of genetic variation under different developmental and environmental conditions. Among the huge amount of computational approaches for de novo identification of TFBS motifs, discriminative motif learning (DML) methods have been proven to be promising for harnessing the discovery power of accumulated huge amount of high-throughput binding data. However, they have to sacrifice accuracy for speed and could fail to fully utilize the information of the input sequences. We propose a novel algorithm called CDAUC for optimizing DML-learned motifs based on the area under the receiver-operating characteristic curve (AUC) criterion, which has been widely used in the literature to evaluate the significance of extracted motifs. We show that when the considered AUC loss function is optimized in a coordinate-wise manner, the cost function of each resultant sub-problem is a piece-wise constant function, whose optimal value can be found exactly and efficiently. Further, a key step of each iteration of CDAUC can be efficiently solved as a computational geometry problem. Experimental results on real world high-throughput datasets illustrate that CDAUC outperforms competing methods for refining DML motifs, while being one order of magnitude faster. Meanwhile, preliminary results also show that CDAUC may also be useful for improving the interpretability of convolutional kernels generated by the emerging deep learning approaches for predicting TF sequences specificities. CDAUC is available at: https://drive.google.com/drive/folders/0BxOW5MtIZbJjNFpCeHlBVWJHeW8 . dshuang@tongji.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.

    Science.gov (United States)

    Bikard, David; Euler, Chad W; Jiang, Wenyan; Nussenzweig, Philip M; Goldberg, Gregory W; Duportet, Xavier; Fischetti, Vincent A; Marraffini, Luciano A

    2014-11-01

    Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.

  10. Glycoengineering of Human Cell Lines Using Zinc Finger Nuclease Gene Targeting

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric Paul; Clausen, Henrik

    2013-01-01

    Lectin affinity chromatography is a powerful technique for isolation of glycoproteins carrying a specific glycan structure of interest. However, the enormous diversity of glycans present on the cell surface, as well as on individual proteins, makes it difficult to isolate an entire glycoproteome...... with one or even a series of lectins. Here we present a technique to generate cell lines with homogenous truncated O-glycans using zinc finger nuclease gene targeting. Because of their simplified O-glycoproteome, the cells have been named SimpleCells. Glycoproteins from SimpleCells can be isolated...... in a single purification step by lectin chromatography performed on a long lectin column. This protocol describes Zinc finger nuclease gene targeting of human cells to simplify the glycoproteome, as well as lectin chromatography and isolation of glycopeptides from total cell lysates of SimpleCells....

  11. Automated 5 ' nuclease assay for detection of virulence factors in porcine Escherichia coli

    DEFF Research Database (Denmark)

    Frydendahl, K.; Imberechts, H.; Lehmann, S.

    2001-01-01

    (STa, STb, EAST1) and heat labile LT) enterotoxins and the verocytotoxin variant 2e (VT2e). To correctly identify false negative results, an endogenous internal control targeting the E. coil 16S rRNA gene was incorporated in each test tube. The assay was evaluated using a collection of E. coil...... reference strains which have previously been examined with phenotypical assays or DNA hybridization. Furthermore, the assay was evaluated by testing porcine E. coil field strains, previously characterized. The 5' nuclease assay correctly detected the presence of virulence genes in all reference strains....... When testing field strains there was generally excellent agreement with results obtained by laboratories in Belgium and Germany. In conclusion, the 5' nuclease assay developed is a fast and specific tool for detection of E. coli virulence genes in the veterinary diagnostic laboratory....

  12. Mapping of gene transcripts by nuclease protection assays and cDNA primer extension

    International Nuclear Information System (INIS)

    Calzone, F.J.; Britten, R.J.; Davidson, E.J.

    1987-01-01

    An important problem often faced in the molecular characterization of genes is the precise mapping of those genomic sequences transcribed into RNA. This requires identification of the genomic site initiating gene transcription, the location of genomic sequences removed from the primary gene transcript during RNA processing, and knowledge of sequences terminating the processed gene transcript. The objective of the protocols described here is the generation of transcription maps utilizing relatively uncharacterized gene fragments. The basic approach is hybridization of a single-stranded DNA probe with cellular RNA, followed by treatment with a single-strand-specific nuclease that does not attack DNA-RNA hybrids, in order to destroy any unreacted probe sequences. Thus the probe sequences included in the hybrid duplexes are protected from nuclease digestion. The sizes of the protected probe fragments determined by gel electrophoresis correspond to the lengths of the hybridized sequence elements

  13. Dynamics and denaturation of a protein. Simulations and neutron scattering on staphylococcus nuclease

    International Nuclear Information System (INIS)

    Goupil-Lamy, Anne

    1997-01-01

    This research thesis reports simulations and experiments of inelastic scattering on the whole frequency spectrum to analyse the vibrations of the staphylococcus nuclease and its fragment, in order to study protein folding. Based on these experiments, information on eigenvectors which describe vibration modes can be directly obtained. Inelastic intensities are indeed fully determined by nuclear cross sections and the mean square displacement of each atom. Some experimentally noticed peaks are then explained by calculating a theoretical spectrum from an analysis of normal modes. The studied fragment is made of 136 c-terminal residues. The fragment structure obtained by molecular dynamics simulation is compared with available experimental data. Then, experiments of neutron scattering on the nuclease of staphylococcus and its fragment have been performed. Quasi elastic scattering spectra have been measured. The author then used simulations to try to reproduce the quasi-elastic spectrum. Experiments of inelastic scattering have then been performed [fr

  14. Multispot array combined with S1 nuclease-mediated elimination of unpaired nucleotides

    DEFF Research Database (Denmark)

    Yoo, Seung Min; Kim, Dong Min; Lee, Sang Yup

    2015-01-01

    The accurate detection of mismatched base pairs is critical to many DNA hybridization-based applications in basic research and diagnostics. We herein demonstrate that mismatched DNAs on a multispot array can be accurately detected in a multiplexed way by employing the S1 nuclease-based mismatched...... base pair-specific cleavage system. After the optimization of the reaction condition, mismatched DNAs present in various pathogenic bacteria and genetic disorders could be successfully detected with stable hybridization signals regardless of the position of the fluorescent label relative to the probe......-target duplex. This technique of performing S1 nuclease-mediated cleavage on a multispot array offers high specificity and high-throughput detection of mismatched DNAs. It is expected that this assay system will prove useful for single-assay genotyping and/or the diagnosis of various diseases and pathogens....

  15. Phosphate binding in the active centre of tomato multifunctional nuclease TBN1 and analysis of superhelix formation by the enzyme

    Czech Academy of Sciences Publication Activity Database

    Stránský, Jan; Koval, Tomáš; Podzimek, T.; Týcová, Anna; Lipovová, P.; Matoušek, Jaroslav; Kolenko, Petr; Fejfarová, Karla; Dušková, Jarmila; Skálová, Tereza; Hašek, Jindřich; Dohnálek, Jan

    2015-01-01

    Roč. 71, č. 11 (2015), s. 1408-1415 ISSN 2053-230X R&D Projects: GA MŠk LG14009; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 ; RVO:60077344 Keywords : tomato multifunctional nuclease * TBN1 * type I nuclease * superhelix Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.647, year: 2015

  16. Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode.

    Science.gov (United States)

    Ding, Jiawang; Qin, Wei

    2013-09-15

    A simple, general and label-free potentiometric method to measure nuclease activities and oxidative DNA damage in a homogeneous solution using a polycation-sensitive membrane electrode is reported. Protamine, a linear polyionic species, is used as an indicator to report the cleavage of DNA by nucleases such as restriction and nonspecific nucleases, and the damage of DNA induced by hydroxyl radicals. Measurements can be done with a titration mode or a direct detection mode. For the potentiometric titration mode, the enzymatic cleavage dramatically affects the electrostatical interaction between DNA and protamine and thus shifts the response curve for the potentiometric titration of the DNA with protamine. Under the optimized conditions, the enzyme activities can be sensed potentiometrically with detection limits of 2.7×10(-4)U/µL for S1 nuclease, and of 3.9×10(-4)U/µL for DNase I. For the direct detection mode, a biocomplex between protamine and DNA is used as a substrate. The nuclease of interest cleaves the DNA from the protamine/DNA complex into smaller fragments, so that free protamine is generated and can be detected potentiometrically via the polycation-sensitive membrane electrode. Using a direct measurement, the nuclease activities could be rapidly detected with detection limits of 3.2×10(-4)U/µL for S1 nuclease, and of 4.5×10(-4)U/µL for DNase I. Moreover, the proposed potentiometric assays demonstrate the potential applications in the detection of hydroxyl radicals. It is anticipated that the present potentiometric strategy will provide a promising platform for high-throughput screening of nucleases, reactive oxygen species and the drugs with potential inhibition abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Phosphate binding in the active centre of tomato multifunctional nuclease TBN1 and analysis of superhelix formation by the enzyme

    Czech Academy of Sciences Publication Activity Database

    Stránský, J.; Koval, Tomáš; Podzimek, T.; Týcová, A.; Lipovová, P.; Matoušek, J.; Kolenko, Petr; Fejfarová, Karla; Dušková, J.; Skálová, T.; Hašek, J.; Dohnálek, Jan

    2015-01-01

    Roč. 71, č. 11 (2015), s. 1408-1415 ISSN 2053-230X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0029 Institutional support: RVO:61389013 Keywords : tomato multifunctional nuclease * TBN1 * type I nuclease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.647, year: 2015

  18. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs.

    Directory of Open Access Journals (Sweden)

    Finola E Moore

    Full Text Available Zinc Finger Nucleases (ZFNs made by Context-Dependent Assembly (CoDA and Transcription Activator-Like Effector Nucleases (TALENs provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%-76.8% compared to 1.1%-3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish.

  19. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    Science.gov (United States)

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Plant Ribonucleases and Nucleases as Antiproliferative Agens Targeting Human Tumors Growing in Mice

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Jaroslav; Matoušek, Josef

    2010-01-01

    Roč. 4, č. 1 (2010), s. 29-39 ISSN 1872-2156 R&D Projects: GA ČR GA521/06/1149; GA ČR GA521/09/1214 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50450515 Keywords : antiproliferative cytotoxic * effect human * plant nuclease Subject RIV: EB - Genetics ; Molecular Biology

  1. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa.

    Science.gov (United States)

    Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P

    2015-11-02

    The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5' end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5' but not 3' end, explaining how Rpa regulates cleavage polarity.

  2. Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae.

    Science.gov (United States)

    Moon, Andrea F; Gaudu, Philippe; Pedersen, Lars C

    2014-11-01

    The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae, facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structure of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. These structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.

  3. Identification of a New G-Quadruplex Motif in the KRAS Promoter and Design of Pyrene-Modified G4-Decoys with Antiproliferative Activity in Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Paramasivam, Manikandan; Filitchev, Vyacheslav Viatcheslav

    2009-01-01

    A new quadruplex motif located in the promoter of the human KRAS gene, within a nuclease hypersensitive element (NHE), has been characterized. Oligonucleotides mimicking this quadruplex are found to compete with a DNA-protein complex between NHE and a nuclear extract from pancreatic cancer cells........ When modified with (R)-1-O-[4-1-(1-pyrenylethynyl) phenylmethyl]glycerol insertions (TINA), the quadruplex oligonucleotides showed a dramatic increase of the Tm (ΔTm from 22 to 32 °C) and a strong antiproliferative effects in Panc-1 cells....

  4. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit; Bajic, Vladimir B.; Kaushik, Dinesh

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  5. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern applications require mining of motifs in one very long sequence (i.e., in the order of several gigabytes). For this case, there exist statistical approaches that are fast but inaccurate; or combinatorial methods that are sound and complete. Unfortunately, existing combinatorial methods are serial and very slow. Consequently, they are limited to very short sequences (i.e., a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and restricted types of motifs. This paper presents ACME, a combinatorial method for extracting motifs from a single very long sequence. ACME arranges the search space in contiguous blocks that take advantage of the cache hierarchy in modern architectures, and achieves almost an order of magnitude performance gain in serial execution. It also decomposes the search space in a smart way that allows scalability to thousands of processors with more than 90% speedup. ACME is the only method that: (i) scales to gigabyte-long sequences; (ii) handles large alphabets; (iii) supports interesting types of motifs with minimal additional cost; and (iv) is optimized for a variety of architectures such as multi-core systems, clusters in the cloud, and supercomputers. ACME reduces the extraction time for an exact-length query from 4 hours to 7 minutes on a typical workstation; handles 3 orders of magnitude longer sequences; and scales up to 16, 384 cores on a supercomputer. Copyright is held by the owner/author(s).

  6. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-01-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  7. DNA motif elucidation using belief propagation.

    Science.gov (United States)

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  8. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  9. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    Science.gov (United States)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  10. Annotating RNA motifs in sequences and alignments.

    Science.gov (United States)

    Gardner, Paul P; Eldai, Hisham

    2015-01-01

    RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterize RNA motifs, which are critical components of many RNA structure-function relationships. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterized RNAs. Moreover, we introduce a new profile-based database of RNA motifs--RMfam--and illustrate some applications for investigating the evolution and functional characterization of RNA. All the data and scripts associated with this work are available from: https://github.com/ppgardne/RMfam. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Dynamic motifs in socio-economic networks

    Science.gov (United States)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  12. Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption.

    Science.gov (United States)

    Gopalappa, Ramu; Suresh, Bharathi; Ramakrishna, Suresh; Kim, Hyongbum Henry

    2018-03-23

    The use of paired Cas9 nickases instead of Cas9 nuclease drastically reduces off-target effects. Because both nickases must function for a nickase pair to make a double-strand break, the efficiency of paired nickases can intuitively be expected to be lower than that of either corresponding nuclease alone. Here, we carefully compared the gene-disrupting efficiency of Cas9 paired nickases with that of nucleases. Interestingly, the T7E1 assay and deep sequencing showed that on-target efficiency of paired D10A Cas9 nickases was frequently comparable, but sometimes higher than that of either corresponding nucleases in mammalian cells. As the underlying mechanism, we found that the HNH domain, which is preserved in the D10A Cas9 nickase, has higher activity than the RuvC domain in mammalian cells. In this study, we showed: (i) the in vivo cleavage efficiency of the HNH domain of Cas9 in mammalian cells is higher than that of the RuvC domain, (ii) paired Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. We envision that our findings which were overlooked in previous reports will serve as a new potential guideline for tool selection for CRISPR-Cas9-mediated gene disruption, facilitating efficient and precise genome editing.

  13. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Anna Osiak

    Full Text Available Gene knockout in murine embryonic stem cells (ESCs has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6. In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs. Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.

  14. Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease.

    Directory of Open Access Journals (Sweden)

    Megan R Kiedrowski

    Full Text Available Staphylococcus aureus is a prominent bacterial pathogen that causes a diverse range of acute and chronic infections. Recently, it has been demonstrated that the secreted nuclease (Nuc enzyme is a virulence factor in multiple models of infection, and in vivo expression of nuc has facilitated the development of an infection imaging approach based on Nuc-activatable probes. Interestingly, S. aureus strains encode a second nuclease (Nuc2 that has received limited attention. With the growing interest in bacterial nucleases, we sought to characterize Nuc2 in more detail through localization, expression, and biochemical studies. Fluorescence microscopy and alkaline phosphatase localization approaches using Nuc2-GFP and Nuc2-PhoA fusions, respectively, demonstrated that Nuc2 is membrane bound with the C-terminus facing the extracellular environment, indicating it is a signal-anchored Type II membrane protein. Nuc2 enzyme activity was detectable on the S. aureus cell surface using a fluorescence resonance energy transfer (FRET assay, and in time courses, both nuc2 transcription and enzyme activity peaked in early logarithmic growth and declined in stationary phase. Using a mouse model of S. aureus pyomyositis, Nuc2 activity was detected with activatable probes in vivo in nuc mutant strains, demonstrating that Nuc2 is produced during infections. To assess Nuc2 biochemical properties, the protein was purified and found to cleave both single- and double-stranded DNA, and it exhibited thermostability and calcium dependence, paralleling the properties of Nuc. Purified Nuc2 prevented biofilm formation in vitro and modestly decreased biomass in dispersal experiments. Altogether, our findings confirm that S. aureus encodes a second, surface-attached and functional DNase that is expressed during infections and displays similar biochemical properties to the secreted Nuc enzyme.

  15. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down

    2007-01-01

    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  16. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases.

    Science.gov (United States)

    Buchner, John M; Robertson, Anne E; Poynter, David J; Denniston, Shelby S; Karls, Anna C

    2005-05-01

    Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.

  17. Plant multifunctional nuclease TBN1 with unexpected phospholipase activity: structural study and reaction-mechanism analysis

    Czech Academy of Sciences Publication Activity Database

    Koval, Tomáš; Lipovová, P.; Podzimek, T.; Matoušek, Jaroslav; Dušková, Jarmila; Skálová, Tereza; Štěpánková, Andrea; Hašek, Jindřich; Dohnálek, Jan

    2013-01-01

    Roč. 69, č. 2 (2013), s. 213-226 ISSN 0907-4449 R&D Projects: GA MŠk EE2.3.30.0029; GA ČR GAP302/11/0855; GA ČR GA310/09/1407; GA ČR GA521/09/1214 Grant - others:AV ČR(CZ) AP0802 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:61389013 ; RVO:60077344 Keywords : plant nucleases * catalytic zinc cluster * glycoproteins Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (BC-A) Impact factor: 7.232, year: 2013

  18. A metal-free DNA nuclease based on a cyclic peptide scaffold

    Czech Academy of Sciences Publication Activity Database

    Alkhader, S.; Ezra, A.; Kašpárková, Jana; Brabec, Viktor; Yavin, E.

    2010-01-01

    Roč. 21, č. 8 (2010), s. 1425-1431 ISSN 1043-1802 R&D Projects: GA AV ČR(CZ) IAA400040803; GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) KAN200200651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * cleavage * chemical nuclease Subject RIV: BO - Biophysics Impact factor: 5.002, year: 2010

  19. CONTEMPORARY USAGE OF TRADITIONAL TURKISH MOTIFS IN PRODUCT DESIGNS

    Directory of Open Access Journals (Sweden)

    Tulay Gumuser

    2012-12-01

    Full Text Available The aim of this study is to identify the traditional Turkish motifs and its relations among present industrial designs. Traditional Turkish motifs played a very important role in 16th century onwards. The arts of the Ottoman Empire were used because of their symbolic meanings and unique styles. When we examine these motifs we encounter; Tiger Stripe, Three Spot (Çintemani, Rumi, Hatayi, Penç, Cloud, Crescent, Star, Crown, Hyacinth, Tulip and Carnation motifs. Nowadays, Turkish designers have begun to use these traditional Turkish motifs in their designs so as to create differences and awareness in the world design. The examples of these industrial designs, using the Turkish motifs, have survived and have Ottoman heritage and historical value. In this study, the Turkish motifs will be examined along with their focus on contemporary Turkish industrial designs used today.

  20. Aplikasi Ornamen Khas Maluku untuk Pengembangan Desain Motif Batik

    Directory of Open Access Journals (Sweden)

    Masiswo Masiswo

    2016-04-01

    Full Text Available ABSTRAKMaluku memiliki banyak ragam hias budaya warisan nilai leluhur berupa ornamen etnis yang merupakan kesenian dan keterampilan kerajinan. Hasil warisan tersebut sampai saat ini masih lestari hidup serta dapat dinikmati sebagai konsumsi rohani yang memuaskan manusia. Berkaitan dengan keberlangsungan nilai-nilai tradisi etnis yang berwujud pada ornamen-ornamen daerah Maluku, maka dikembangkan untuk kebutuhan manusia berupa motif batik pada kain. Pengembangan ornamen ini lebih menekankan pada representasi akan bentuk-bentuk ornamen yang diterapkan pada kerajinan batik berupa motif khas Maluku. Pengembangan alternatif desain motif batik dibuat tiga variasi yang bersumber dari ornamen khas Maluku dibuat prototipe produknya dan diuji ketahanan luntur warnanya. Hasil uji ketahanan luntur warna terhadap gosokan basah dari tiga prototipe produk berpredikat baik sekali terdapat pada “Motif Siwa” dan predikat baik pada motif “Siwa Talang” dan motif “Matahari Siwa Talang”.Kata kunci: desain, Maluku, motif batik, ornamenABSTRACTMaluku has much decorative ancestral cultural heritage value in the form of ornament ethnic arts and crafts skills. The result of the legacy is still sustainable living can be enjoyed as well as satisfying spiritual human consumption.Related to the sustainability of traditional values in the form of ethnic ornaments Maluku, it was developed for human needs in the form of batik cloth . The development of these ornaments will be more emphasis on the representation forms of ornamentation that is applied to a batik motif Maluku. Development of alternative design motif made three variations. The development of three alternative design motifs derived from the Maluku ornaments made and tested a prototype product color fastness. The test results of color fastness to wet rubbing of the three prototypes are excellent products predicated on the "Motif Siwa" and a good rating on the motif "Siwa Talang" and motif "Matahari Siwa

  1. Identity and functions of CxxC-derived motifs.

    Science.gov (United States)

    Fomenko, Dmitri E; Gladyshev, Vadim N

    2003-09-30

    Two cysteines separated by two other residues (the CxxC motif) are employed by many redox proteins for formation, isomerization, and reduction of disulfide bonds and for other redox functions. The place of the C-terminal cysteine in this motif may be occupied by serine (the CxxS motif), modifying the functional repertoire of redox proteins. Here we found that the CxxC motif may also give rise to a motif, in which the C-terminal cysteine is replaced with threonine (the CxxT motif). Moreover, in contrast to a view that the N-terminal cysteine in the CxxC motif always serves as a nucleophilic attacking group, this residue could also be replaced with threonine (the TxxC motif), serine (the SxxC motif), or other residues. In each of these CxxC-derived motifs, the presence of a downstream alpha-helix was strongly favored. A search for conserved CxxC-derived motif/helix patterns in four complete genomes representing bacteria, archaea, and eukaryotes identified known redox proteins and suggested possible redox functions for several additional proteins. Catalytic sites in peroxiredoxins were major representatives of the TxxC motif, whereas those in glutathione peroxidases represented the CxxT motif. Structural assessments indicated that threonines in these enzymes could stabilize catalytic thiolates, suggesting revisions to previously proposed catalytic triads. Each of the CxxC-derived motifs was also observed in natural selenium-containing proteins, in which selenocysteine was present in place of a catalytic cysteine.

  2. Erasure of Tet-Oxidized 5-Methylcytosine by a SRAP Nuclease

    Directory of Open Access Journals (Sweden)

    Soo-Mi Kweon

    2017-10-01

    Full Text Available Enzymatic oxidation of 5-methylcytosine (5mC in DNA by the Tet dioxygenases reprograms genome function in embryogenesis and postnatal development. Tet-oxidized derivatives of 5mC such as 5-hydroxymethylcytosine (5hmC act as transient intermediates in DNA demethylation or persist as durable marks, yet how these alternative fates are specified at individual CpGs is not understood. Here, we report that the SOS response-associated peptidase (SRAP domain protein Srap1, the mammalian ortholog of an ancient protein superfamily associated with DNA damage response operons in bacteria, binds to Tet-oxidized forms of 5mC in DNA and catalyzes turnover of these bases to unmodified cytosine by an autopeptidase-coupled nuclease. Biallelic inactivation of murine Srap1 causes embryonic sublethality associated with widespread accumulation of ectopic 5hmC. These findings establish a function for a class of DNA base modification-selective nucleases and position Srap1 as a determinant of 5mC demethylation trajectories during mammalian embryonic development.

  3. Activity of some nucleases of cotton sorts and species of various radiosensitivity

    International Nuclear Information System (INIS)

    Nazirov, N.N.; Arslanova, S.B.

    1979-01-01

    The activity of some nucleases under the effect of gamma rays was studied on cotton varieties and species differing in radiosensitivity. It was found that acid nuclease was more active in wild cotton forms as compared to the cultivated varieties, whereas with alkaline DNA-ase it was opposite. At the radiation dose of 30 kR the activity of alkaline DNA-ase activated in 26-chromosome wild cotton G. arboreum ssp. alfusifalium and 52-chromosome S.h.ssp.mexicanum, while the activity of acid DNA-ase somewhat decreased. Under irradiating AN-402 variety (produced from ssp. mexicanum by irradiation) the activity of alkaline DNA-ase increased noticeably when budding, whereas the activity of acid DNA-ase was at the level of control. The activity of the alkaline DNA-ase form normalized in the phase of blooming. In C-70-59 variety (G.arboreum) the activity of both DNA-ases increased after irradiation in the phase of blooming. The activity of acid DNA-ase and RNA-ase drastically activated in guza 183 (G. herbaceum) under gamma irradiation, whereas that of alkaline ones remained unchanged

  4. Crystallization and preliminary X-ray characterization of two thermostable DNA nucleases

    International Nuclear Information System (INIS)

    Kuettner, E. Bartholomeus; Pfeifer, Sven; Keim, Antje; Greiner-Stöffele, Thomas; Sträter, Norbert

    2006-01-01

    Two thermostable DNA nucleases from archaea were crystallized in different space groups; the crystals were suitable for X-ray analysis. Temperature-tolerant organisms are an important source to enhance the stability of enzymes used in biotechnological processes. The DNA-cleaving enzyme exonuclease III from Escherichia coli is used in several applications in gene technology. A thermostable variant could expand the applicability of the enzyme in these methods. Two homologous nucleases from Archaeoglobus fulgidus (ExoAf) and Methanothermobacter thermoautrophicus (ExoMt) were studied for this purpose. Both enzymes were crystallized in different space groups using (poly)ethylene glycols, 2,4-methyl pentandiol, dioxane, ethanol or 2-propanol as precipitants. The addition of a 10-mer DNA oligonucleotide was important to obtain monoclinic crystals of ExoAf and ExoMt that diffracted to resolutions better than 2 Å using synchrotron radiation. The crystal structures of the homologous proteins can serve as templates for genetic engineering of the E. coli exonuclease III and will aid in understanding the different catalytic properties of the enzymes

  5. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.

    Science.gov (United States)

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-06-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as 'homing' similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Genome editing in mouse spermatogonial stem/progenitor cells using engineered nucleases.

    Directory of Open Access Journals (Sweden)

    Danielle A Fanslow

    Full Text Available Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse "GS" (germline stem cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro.

  7. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease

    Science.gov (United States)

    Flowers, G. Parker; Timberlake, Andrew T.; Mclean, Kaitlin C.; Monaghan, James R.; Crews, Craig M.

    2014-01-01

    Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability. PMID:24764077

  8. The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces

    Science.gov (United States)

    Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire

    2014-01-01

    Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284

  9. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    International Nuclear Information System (INIS)

    Do, To Uyen; Ho, Bay; Shih, Shyh-Jen; Vaughan, Andrew

    2012-01-01

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient

  10. Leishmania infantum EndoG is an endo/exo-nuclease essential for parasite survival.

    Directory of Open Access Journals (Sweden)

    Eva Rico

    Full Text Available EndoG, a member of the DNA/RNA non-specific ββα-metal family of nucleases, has been demonstrated to be present in many organisms, including Trypanosomatids. This nuclease participates in the apoptotic program in these parasites by migrating from the mitochondrion to the nucleus, where it takes part in the degradation of genomic DNA that characterizes this process. We now demonstrate that Leishmania infantum EndoG (LiEndoG is an endo-exonuclease that has a preferential 5' exonuclease activity on linear DNA. Regardless of its role during apoptotic cell death, this enzyme seems to be necessary during normal development of the parasites as indicated by the reduced growth rates observed in LiEndoG hemi-knockouts and their poor infectivity in differentiated THP-1 cells. The pro-life role of this protein is also corroborated by the higher survival rates of parasites that over-express this protein after treatment with the LiEndoG inhibitor Lei49. Taken together, our results demonstrate that this enzyme plays essential roles in both survival and death of Leishmania parasites.

  11. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    Science.gov (United States)

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    Energy Technology Data Exchange (ETDEWEB)

    Do, To Uyen [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Ho, Bay; Shih, Shyh-Jen [Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Vaughan, Andrew, E-mail: Andrew.vaughan@ucdmc.ucdavis.edu [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States)

    2012-12-15

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient.

  13. Mung bean nuclease treatment increases capture specificity of microdroplet-PCR based targeted DNA enrichment.

    Directory of Open Access Journals (Sweden)

    Zhenming Yu

    Full Text Available Targeted DNA enrichment coupled with next generation sequencing has been increasingly used for interrogation of select sub-genomic regions at high depth of coverage in a cost effective manner. Specificity measured by on-target efficiency is a key performance metric for target enrichment. Non-specific capture leads to off-target reads, resulting in waste of sequencing throughput on irrelevant regions. Microdroplet-PCR allows simultaneous amplification of up to thousands of regions in the genome and is among the most commonly used strategies for target enrichment. Here we show that carryover of single-stranded template genomic DNA from microdroplet-PCR constitutes a major contributing factor for off-target reads in the resultant libraries. Moreover, treatment of microdroplet-PCR enrichment products with a nuclease specific to single-stranded DNA alleviates off-target load and improves enrichment specificity. We propose that nuclease treatment of enrichment products should be incorporated in the workflow of targeted sequencing using microdroplet-PCR for target capture. These findings may have a broad impact on other PCR based applications for which removal of template DNA is beneficial.

  14. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, Emmanouil

    2012-01-01

    Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins...... are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...... and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate...

  15. Medium optimization for nuclease P1 production by Penicillium citrinum in solid-state fermentation using polyurethane foam as inert carrier

    NARCIS (Netherlands)

    Zhu, Y.; Knol, W.; Smits, J.P.; Bol, J.

    1996-01-01

    A solid-state fermentation system, using polyurethane foam as an inert carrier, was used for the production of nuclease P1 by Penicillium citrinum. Optimization of nuclease P1 production was carried out using a synthetic liquid medium. After a two-step medium optimization using a fractional

  16. A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer

    Science.gov (United States)

    2014-04-01

    the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in

  17. UKIRAN KERAWANG ACEH GAYO SEBAGAI INSPIRASI PENCIPTAAN MOTIF BATIK KHAS GAYO

    Directory of Open Access Journals (Sweden)

    Irfa ina Rohana Salma

    2016-12-01

    Full Text Available ABSTRAK Industri batik mulai berkembang di Gayo, tetapi belum memiliki motif batik khas daerah. Oleh karena itu perlu diciptakan motif batik khas Gayo, dengan mengambil inspirasi dari ukiran yang terdapat pada rumah tradisional yang biasa disebut ukiran kerawang Gayo. Tujuan penciptaan seni ini adalah untuk menciptakan motif batik yang memiliki ciri khas Gayo. Metode yang digunakan yaitu eksplorasi ide, perancangan, dan perwujudan menjadi motif batik. Dalam kegiatan ini telah diciptakan enam motif batik khas Gayo yaitu: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif Gayo Lurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. Hasil uji kesukaan terhadap motif kepada lima puluh responden menunjukkan bahwa Motif Ceplok Gayo paling banyak dipilih oleh responden yaitu sebesar 19%, sedangkan Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo Lurus 15% dan Motif Gayo Tegak 14%. Rata-rata motif yang dihasilkan mendapatkan apresiasi yang baik dari responden, sehingga semua motif layak diproduksi sebagai batik khas Gayo.Kata kunci: batik Gayo, Motif Ceplok Gayo, Motif Parang Gayo.ABSTRACTBatik industry began to develop in Gayo, but have not had a typical batik motif itself. Therefore, it is necessary to create batik motifs of Gayo, by taking inspiration from the carvings found in traditional houses commonly called kerawang Gayo. The purpose of this art is to create motifs those have a Gayo characteristic. The method used are the idea exploration, design, and motifs embodiment. In this activity has created six Gayo batik motifs, namely: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif GayoLurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. The test results fondness of the motives to fifty respondents indicated that the Motif Ceplok Gayo most preferred by respondents ie 19%, while Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo

  18. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III1

    International Nuclear Information System (INIS)

    Dexheimer, Thomas S.; Carey, Steven S.; Zuohe, Song; Gokhale, Vijay M.; Hu, Xiaohui; Murata, Lauren B.; Maes, Estelle M.; Weichsel, Andrzej; Sun, Daekyu; Meuillet, Emmanuelle J.; Montfort, William R.; Hurley, Laurence H.

    2009-01-01

    The formation of G-quadruplex structures within the nuclease hypersensitive element (NHE) III 1 region of the c-myc promoter and the ability of these structures to repress c-myc transcription have been well established. However, just how these extremely stable DNA secondary structures are transformed to activate c-myc transcription is still unknown. NM23-H2/nucleoside diphosphate kinase B has been recognized as an activator of c-myc transcription via interactions with the NHE III 1 region of the c-myc gene promoter. Through the use of RNA interference, we confirmed the transcriptional regulatory role of NM23-H2. In addition, we find that further purification of NM23-H2 results in loss of the previously identified DNA strand cleavage activity, but retention of its DNA binding activity. NM23-H2 binds to both single-stranded guanine- and cytosine-rich strands of the c-myc NHE III 1 and, to a lesser extent, to a random single-stranded DNA template. However, it does not bind to or cleave the NHE III 1 in duplex form. Significantly, potassium ions and compounds that stabilize the G-quadruplex and i-motif structures have an inhibitory effect on NM23-H2 DNA-binding activity. Mutation of Arg 88 to Ala 88 (R88A) reduced both DNA and nucleotide binding but had minimal effect on the NM23-H2 crystal structure. On the basis of these data and molecular modeling studies, we have proposed a stepwise trapping-out of the NHE III 1 region in a single-stranded form, thus allowing single-stranded transcription factors to bind and activate c-myc transcription. Furthermore, this model provides a rationale for how the stabilization of the G-quadruplex or i-motif structures formed within the c-myc gene promoter region can inhibit NM23-H2 from activating c-myc gene expression.

  19. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  20. Structural motifs of pre-nucleation clusters.

    Science.gov (United States)

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-07

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions.

  1. POWRS: position-sensitive motif discovery.

    Directory of Open Access Journals (Sweden)

    Ian W Davis

    Full Text Available Transcription factors and the short, often degenerate DNA sequences they recognize are central regulators of gene expression, but their regulatory code is challenging to dissect experimentally. Thus, computational approaches have long been used to identify putative regulatory elements from the patterns in promoter sequences. Here we present a new algorithm "POWRS" (POsition-sensitive WoRd Set for identifying regulatory sequence motifs, specifically developed to address two common shortcomings of existing algorithms. First, POWRS uses the position-specific enrichment of regulatory elements near transcription start sites to significantly increase sensitivity, while providing new information about the preferred localization of those elements. Second, POWRS forgoes position weight matrices for a discrete motif representation that appears more resistant to over-generalization. We apply this algorithm to discover sequences related to constitutive, high-level gene expression in the model plant Arabidopsis thaliana, and then experimentally validate the importance of those elements by systematically mutating two endogenous promoters and measuring the effect on gene expression levels. This provides a foundation for future efforts to rationally engineer gene expression in plants, a problem of great importance in developing biotech crop varieties.BSD-licensed Python code at http://grassrootsbio.com/papers/powrs/.

  2. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Science.gov (United States)

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-01

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations. PMID:28117683

  3. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  4. Parole, Sintagmatik, dan Paradigmatik Motif Batik Mega Mendung

    Directory of Open Access Journals (Sweden)

    Rudi - Nababan

    2012-04-01

    Full Text Available ABSTRACT   Discussing traditional batik is related a lot to the organization system of fine arts element ac- companying it, either the pattern of the motif or the technique of the making. In this case, the motif of Mega Mendung Cirebon certainly has patterns and rules which are traditionally different from the other motifs in other areas. Through  semiotics analysis especially with Saussure and Pierce concept, it can be traced that batik with Cirebon motif, in this case Mega Mendung motif, has parole and langue system, as unique fine arts language in batik, and structure of visual syntagmatic and paradigmatic. In the context of batik motif as fine arts language, it is surely related to sign system as symbol and icon.       Keywords: visual semiotic, Cirebon’s batik.

  5. HETEROGENEITY OF POLYCLONAL IMMUNOGLOBULINS NUCLEASE ACTIVITY IN RHEUMATOID AND REACTIVE ARTHRITIS

    Directory of Open Access Journals (Sweden)

    M. V. Volkova

    2017-01-01

    Full Text Available Catalytic properties of immunoglobulins are widely studied within recent years. It was found that nuclease activity of immunoglobulins is increased in systemic autoimmune diseases. Given some pathogenetic features of rheumatoid arthritis and reactive arthritis, it is appropriate to clarify the nature of nuclease activity in these diseases. Determination of DNAse activity of immunoglobulins with different DNA substrates, and search for specific substrates for distinct clinical entities could serve these purposes. The aim of present work is to determine DNase activity of the polyclonal class G immunoglobulins in rheumatoid and reactive arthritis using various methods.Different methods are used to evaluate nuclease activity. In this paper we present newly developed and modified techniques for determination of DNAse activity of polyclonal IgGs. Particular attention was paid to the electrophoretic method of DNase activity assessment. Polyclonal IgG isolated from blood serum of patients with rheumatoid arthritis and reactive arthritis were used for assays. In this study, we demonstrated the presence of an inhomogeneous DNase activity of immunoglobulins in relation to different substrates.Along with calf thymus DNA, we used bacterial plasmid DNA and PCR products based on bacterial gene sequences. Levels of DNase activity by rivanol clot method with calf thymus DNA as substrate proved to be higher in patients with rheumatoid arthritis than the control values (p < 0.01. DNase abzyme activity in patients with rheumatoid arthritis was elevated, as compared to the patients with reactive arthritis (p < 0.01.When examining ability of the IgG to hydrolyze procaryotic DNA (bacterial plasmid DNA and PCR products, based on bacterial genes, we obtained heterogeneous results. Different Ig samples showed varying degrees of DNA hydrolysis. Abzyme hydrolysis of DNA substrates longer than 700 bp was more pronounced, as compared to short DNA substrates (100 base pairs

  6. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells.

    Science.gov (United States)

    Kumar, S; Peng, X; Daley, J; Yang, L; Shen, J; Nguyen, N; Bae, G; Niu, H; Peng, Y; Hsieh, H-J; Wang, L; Rao, C; Stephan, C C; Sung, P; Ira, G; Peng, G

    2017-04-17

    Replication stress is a characteristic feature of cancer cells, which is resulted from sustained proliferative signaling induced by activation of oncogenes or loss of tumor suppressors. In cancer cells, oncogene-induced replication stress manifests as replication-associated lesions, predominantly double-strand DNA breaks (DSBs). An essential mechanism utilized by cells to repair replication-associated DSBs is homologous recombination (HR). In order to overcome replication stress and survive, cancer cells often require enhanced HR repair capacity. Therefore, the key link between HR repair and cellular tolerance to replication-associated DSBs provides us with a mechanistic rationale for exploiting synthetic lethality between HR repair inhibition and replication stress. DNA2 nuclease is an evolutionarily conserved essential enzyme in replication and HR repair. Here we demonstrate that DNA2 is overexpressed in pancreatic cancers, one of the deadliest and more aggressive forms of human cancers, where mutations in the KRAS are present in 90-95% of cases. In addition, depletion of DNA2 significantly reduces pancreatic cancer cell survival and xenograft tumor growth, suggesting the therapeutic potential of DNA2 inhibition. Finally, we develop a robust high-throughput biochemistry assay to screen for inhibitors of the DNA2 nuclease activity. The top inhibitors were shown to be efficacious against both yeast Dna2 and human DNA2. Treatment of cancer cells with DNA2 inhibitors recapitulates phenotypes observed upon DNA2 depletion, including decreased DNA double strand break end resection and attenuation of HR repair. Similar to genetic ablation of DNA2, chemical inhibition of DNA2 selectively attenuates the growth of various cancer cells with oncogene-induced replication stress. Taken together, our findings open a new avenue to develop a new class of anticancer drugs by targeting druggable nuclease DNA2. We propose DNA2 inhibition as new strategy in cancer therapy by targeting

  7. Recognition and repair of 2-aminofluorene- and 2-(acetylamino)fluorene-DNA adducts by UVRABC nuclease

    International Nuclear Information System (INIS)

    Pierce, J.R.; Case, R.; Tang, Moonshong

    1989-01-01

    Recognition of damage induced by N-hydroxy-2-aminofluorene (N-OH-AF) and N-acetoxy-2-(acetylamino)fluorene (NAAAF) in both φX174 RFI supercoiled DNA and a linear DNA fragment by purified UVRA, UVRB, and UVRC proteins was investigated. The authors have previously demonstrated that N-OH-AF and NAAAF treatments produce N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(deoxyguanosin-8-yl)-2-(acetylamino)fluorene (dG-C8-AAF), respectively, in DNA. Using a piperidine cleavage method and DNA sequence analysis, they have found that all guanine residues can be modified by N-OH-AF and NAAAF. These two kinds of adducts have different impacts on the DNA helix structure; while dG-C8-AF maintains the anti configuration, dG-C8-AAF is in the syn form. φX174 RF DNA-Escherichia coli transfection results indicate that while the uvrA, uvrB, and uvrC gene products are needed to repair dG-C8-AAF, the uvrC, but not the uvrA or uvrB gene products, is needed for repair of dG-C8-Af. However, they have found that in vitro the UVRA, UVRB, and UVRC proteins must work in concert to nick both dG-C8-AF and dG-C8-AAF. In general, the reactions of UVRABC nuclease toward dG-C8-AF are similar to those toward dG-C8-AAF; it incises seven to eight nucleotides from the 5' side and three to four nucleotides from the 3' side of the DNA adduct. Evidence is presented to suggest that hydrolysis on the 3' and 5' sides of the damaged base by UVRABC nuclease is not simultaneous and that at least occasionally hydrolysis occurs only on the 3' side or on the 5' side of the damage site. The possible mechanisms of UVRABC nuclease incision for AF-DNA are discussed

  8. Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5'-GMP.

    Science.gov (United States)

    Kamekura, M; Hamakawa, T; Onishi, H

    1982-01-01

    RNA was degraded at 60 degrees C for 24 h by halophilic nuclease H in supernatants from broth cultures of Micrococcus varians subsp. halophilus containing 12% NaCl. Since contaminating 5'-nucleotidase exhibited almost no activity under these conditions, the 5'-GMP formed could be recovered from the reaction mixture, and the yield was 805 mg from 5 g of RNA. PMID:6184020

  9. Rapid and Sensitive Detection of Breast Cancer Cells in Patient Blood with Nuclease-Activated Probe Technology

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2017-09-01

    Full Text Available A challenge for circulating tumor cell (CTC-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1 their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2 their enzymatic activity, which can be exploited for signal amplification in detection methods. Here, we describe a diagnostic assay based on quenched fluorescent nucleic acid probes that detect breast cancer CTCs via their nuclease activity. This assay exhibited robust performance in distinguishing breast cancer patients from healthy controls, and it is rapid, inexpensive, and easy to implement in most clinical labs. Given its broad applicability, this technology has the potential to have a substantive impact on the diagnosis and treatment of many cancers. Keywords: cancer, circulating tumor cells, diagnostic nucleic acids, nucleases, diagnostic markers, breast cancer, liquid biopsy

  10. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity.

    Directory of Open Access Journals (Sweden)

    Chisato Morita

    Full Text Available Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease, and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs. Recombinant SWAN protein (rSWAN digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+ and Ca(2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.

  11. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity.

    Science.gov (United States)

    Morita, Chisato; Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada

    2014-01-01

    Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+) and Ca(2+) for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.

  12. Crystallization and preliminary X-ray analysis of a RecB-family nuclease from the archaeon Pyrococcus abyssi

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Bin, E-mail: ren@csb.ki.se [Center for Structural Biochemistry, Karolinska Institute, NOVUM, S-141 57 Huddinge (Sweden); Kuhn, Joëlle; Meslet-Cladiere, Laurence; Myllykallio, Hannu [Université Paris-Sud, Institut de Génétique et Microbiologie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8621, F-91405 Orsay CEDEX (France); Ladenstein, Rudolf [Center for Structural Biochemistry, Karolinska Institute, NOVUM, S-141 57 Huddinge (Sweden)

    2007-05-01

    A RecB-like nuclease from the archaeon Pyrococcus abyssi was expressed, purified and crystallized. The crystals belong to the orthorhombic space group C222{sub 1} with a = 81.5, b = 159.8, c = 100.8 Å, and a native data set was collected to 2.65 Å resolution. Nucleases are required to process and repair DNA damage in living cells. One of the best studied nucleases is the RecB protein, which functions in Escherichia coli as a component of the RecBCD enzyme complex that amends double-strand breaks in DNA. Although archaea do not contain the RecBCD complex, a RecB-like nuclease from Pyrococcus abyssi has been cloned, expressed and purified. The protein was crystallized by the sitting-drop vapour-diffusion method using polyethylene glycol 8000 as the precipitant. The crystals belong to the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 81.5, b = 159.8, c = 100.8 Å. Self-rotation function and native Patterson map calculations revealed that there is a dimer in the asymmetric unit with its local twofold axis running parallel to the crystallographic twofold screw axis. The crystals diffracted to about 2 Å and a complete native data set was collected to 2.65 Å resolution.

  13. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2016-10-01

    Full Text Available Myostatin (MSTN can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos.

  14. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases.

    Science.gov (United States)

    Citorik, Robert J; Mimee, Mark; Lu, Timothy K

    2014-11-01

    Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.

  15. Design, construction, and analysis of specific zinc finger nucleases for microphthalmia - associate transcription factor

    Directory of Open Access Journals (Sweden)

    Wenwen Wang

    2012-08-01

    Full Text Available This work studied the design, construction, and cleavage analysis of zinc finger nucleases (ZFNs that could cut the specific sequences within microphthalmia - associate transcription factor (mitfa of zebra fish. The target site and ZFPs were selected and designed with zinc finger tools, while the ZFPs were synthesized using DNAWorks and two-step PCR. The ZFNs were constructed, expressed, purified, and analyzed in vitro. As expected, the designed ZFNs could create a double-stand break (DSB at the target site in vitro. The DNAWorks, two-step PCR, and an optimized process of protein expression were firstly induced in the construction of ZFNs successfully, which was an effective and simplified protocol. These results could be useful for further application of ZFNs - mediated gene targeting.

  16. Functional identification of the non-specific nuclease from white spot syndrome virus

    International Nuclear Information System (INIS)

    Li Li; Lin Shumei; Yanga Feng

    2005-01-01

    The product encoded by the wsv191 gene from shrimp white spot syndrome virus (WSSV) is homologous with non-specific nucleases (NSN) of other organisms. To functionally identify the protein, the wsv191 gene was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein with 6His-tag at C-terminal. The fusion protein (termed as rWSSV-NSN) was purified using Ni-NTA affinity chromatography under denatured conditions, renatured and characterized by three methods. The results showed that rWSSV-NSN could hydrolyze both DNA and RNA. 5'-RACE result revealed that the transcription initiation site of the wsv191 gene was located at nucleotide residue G of the predicted ATG triplet. Therefore, we concluded that the next ATG should be the genuine translation initiation codon of the wsv191 gene. Western blot analysis revealed that the molecular mass of natural WSSV-NSN was 37 kDa

  17. A novel mitochondrial nuclease-associated protein: a major executor of the programmed nuclear death in Tetrahymena thermophila.

    Science.gov (United States)

    Osada, Eriko; Akematsu, Takahiko; Asano, Tomoya; Endoh, Hiroshi

    2014-03-01

    Programmed nuclear death (PND) in the ciliate Tetrahymena is an apoptosis-like phenomenon that occurs in a restricted space of cytoplasm during conjugation. In the process, only the parental macronucleus is selectively eliminated from the progeny cytoplasm, in conjunction with differentiation of new macronuclei for the next generation. For the last decade, mitochondria have been elucidated to be a crucial executioner like apoptosis: apoptosis-inducing factor and yet-unidentified nucleases localised in mitochondria are major factors for PND. To identify such nucleases, we performed a DNase assay in a PAGE (SDS-DNA-PAGE) using total mitochondrial proteins. Some proteins showed DNase activity, but particularly a 17 kDa protein exhibited the highest and predominant activity. Mass spectrometric analysis revealed a novel mitochondrial nuclease, named TMN1, whose homologue has been discovered only in the ciliate Paramecium tetraurelia, but not in other eukaryotes. Gene disruption of TMN1 led to a drastic reduction of mitochondrial nuclease activity and blocked nuclear degradation during conjugation, but did not affect accumulation of autophagic and lysosomal machinery around the parental macronucleus. These observations strongly suggest that the mitochondrial nuclease-associated protein plays a key role in PND as a major executor. Taking the novel protein specific to ciliates in consideration, Tetrahymena would have diverted a different protein from common apoptotic factors shared in eukaryotes to PND in the course of ciliate evolution. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  18. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein–staphylococcal nuclease hybrid

    International Nuclear Information System (INIS)

    Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke; Fujita, Yusuke; Morisada, Ryosuke; Mori, Koichi; Tobimatsu, Takamasa; Sera, Takashi

    2016-01-01

    Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to construct an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.

  19. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs and 'functional' (partial subgraphs. Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  20. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.

    Science.gov (United States)

    Doetschman, Thomas; Georgieva, Teodora

    2017-03-03

    Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases. © 2017 American Heart Association, Inc.

  1. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification

    KAUST Repository

    Li, Lixin

    2012-01-22

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants. © 2012 Springer Science+Business Media B.V.

  2. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  3. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification.

    Science.gov (United States)

    Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M

    2012-03-01

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.

  4. Rekayasa Pengembangan Desain Motif Batik Khas Melayu

    Directory of Open Access Journals (Sweden)

    Eustasia Sri Murwati

    2016-04-01

    Full Text Available ABSTRAKPengembangan desain batik melalui rancang bangun perekayasaan desain menurut ragam hias Melayu meliputi pengembangan motif dan proses, termasuk pemilihan komposisi warna. Proses yang sering dilakukan yaitu proses celup, penghilangan lilin dan celup warna tumpangan atau proses colet, celup, penghilangan lilin atau celup kemudian penghilangan lilin yang disebut Batik Kelengan. Setiap pulau di Indonesia mempunyai ciri khas budaya dan kesenian yang dikenal dengan corak/ragam hias khas daerah, juga ornamen yang diminati oleh masyarakat dari daerah tersebut atau dari daerah lain. Kondisi demikian mendorong pertumbuhan industri kerajinan yang memanfaatkan unsur–unsur seni. Adapun motif yang diperoleh adalah: Ayam Berlaga, Bungo Matahari, Kuntum Bersanding, Lancang Kuning, Encong Kerinci, Durian Pecah, Bungo Bintang, Bungo Pauh Kecil, Riang-riang, Bungo Nagaro. Pengembangan desain tersebut dipilih 3 produk terbaik yang dinilai oleh 5 penilai yang ahli di bidang desain batik, yaitu motif Durian Pecah, Ayam Berlaga, dan Bungo Matahari. Rancang bangun diversifikasi desain dengan memanfaatkan unsur–unsur seni dan ketrampilan etnis Melayu yaitu pemilihan ragam hias dan motif batik Melayu untuk diterapkan ke bahan sandang dengan komposisi warna yang menarik, sehingga produk memenuhi selera konsumen. Memperbaiki keberagaman batik dengan meningkatkan desain produk antara lain menuangkan ragam hias Melayu ke dalam proses batik yang menggunakan berbagai macam warna sehingga komposisi warna memadai. Diperoleh hasil produk batik dengan ragam hias Melayu yang berkualitas dan komposisi warna yang sesuai dengan karakter ragam hias Melayu. Rancang bangun desain produk untuk mendapatkan formulasi desain serta kelayakan prosesnya dengan penekanan pada teknologi akrab lingkungan dilaksanakan dengan alternatif pendekatan yaitu penciptaan desain bentuk baru.Kata kunci: desain, batik, rancang bangun, ragam hias, MelayuABSTRACTDevelopment of batik design through

  5. Transnationalism as a motif in family stories.

    Science.gov (United States)

    Stone, Elizabeth; Gomez, Erica; Hotzoglou, Despina; Lipnitsky, Jane Y

    2005-12-01

    Family stories have long been recognized as a vehicle for assessing components of a family's emotional and social life, including the degree to which an immigrant family has been willing to assimilate. Transnationalism, defined as living in one or more cultures and maintaining connections to both, is now increasingly common. A qualitative study of family stories in the family of those who appear completely "American" suggests that an affiliation with one's home country is nevertheless detectable in the stories via motifs such as (1) positively connotated home remedies, (2) continuing denigration of home country "enemies," (3) extensive knowledge of the home country history and politics, (4) praise of endogamy and negative assessment of exogamy, (5) superiority of home country to America, and (6) beauty of home country. Furthermore, an awareness of which model--assimilationist or transnational--governs a family's experience may help clarify a clinician's understanding of a family's strengths, vulnerabilities, and mode of framing their cultural experiences.

  6. Motif decomposition of the phosphotyrosine proteome reveals a new N-terminal binding motif for SHIP2

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Hanke, S.; Hinsby, A. M.

    2008-01-01

    set of 481 unique phosphotyrosine (Tyr(P)) peptides by sequence similarity to known ligands of the Src homology 2 (SH2) and the phosphotyrosine binding (PTB) domains. From 20 clusters we extracted 16 known and four new interaction motifs. Using quantitative mass spectrometry we pulled down Tyr......(P)-specific binding partners for peptides corresponding to the extracted motifs. We confirmed numerous previously known interaction motifs and found 15 new interactions mediated by phosphosites not previously known to bind SH2 or PTB. Remarkably, a novel hydrophobic N-terminal motif ((L/V/I)(L/V/I)pY) was identified...

  7. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks

    KAUST Repository

    Mahfouz, Magdy M.

    2011-01-24

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  8. The limits of de novo DNA motif discovery.

    Directory of Open Access Journals (Sweden)

    David Simcha

    Full Text Available A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of

  9. DNA motif alignment by evolving a population of Markov chains.

    Science.gov (United States)

    Bi, Chengpeng

    2009-01-30

    Deciphering cis-regulatory elements or de novo motif-finding in genomes still remains elusive although much algorithmic effort has been expended. The Markov chain Monte Carlo (MCMC) method such as Gibbs motif samplers has been widely employed to solve the de novo motif-finding problem through sequence local alignment. Nonetheless, the MCMC-based motif samplers still suffer from local maxima like EM. Therefore, as a prerequisite for finding good local alignments, these motif algorithms are often independently run a multitude of times, but without information exchange between different chains. Hence it would be worth a new algorithm design enabling such information exchange. This paper presents a novel motif-finding algorithm by evolving a population of Markov chains with information exchange (PMC), each of which is initialized as a random alignment and run by the Metropolis-Hastings sampler (MHS). It is progressively updated through a series of local alignments stochastically sampled. Explicitly, the PMC motif algorithm performs stochastic sampling as specified by a population-based proposal distribution rather than individual ones, and adaptively evolves the population as a whole towards a global maximum. The alignment information exchange is accomplished by taking advantage of the pooled motif site distributions. A distinct method for running multiple independent Markov chains (IMC) without information exchange, or dubbed as the IMC motif algorithm, is also devised to compare with its PMC counterpart. Experimental studies demonstrate that the performance could be improved if pooled information were used to run a population of motif samplers. The new PMC algorithm was able to improve the convergence and outperformed other popular algorithms tested using simulated and biological motif sequences.

  10. Assessing local structure motifs using order parameters for motif recognition, interstitial identification, and diffusion path characterization

    Science.gov (United States)

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej

    2017-11-01

    Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  11. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    Directory of Open Access Journals (Sweden)

    Nils E. R. Zimmermann

    2017-11-01

    Full Text Available Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP database (61,422 compounds for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  12. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon; Patil, Sachin; Fhayli, Karim; Alsaiari, Shahad K.; Khashab, Niveen M.

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  13. The identification of functional motifs in temporal gene expression analysis

    Directory of Open Access Journals (Sweden)

    Michael G. Surette

    2005-01-01

    Full Text Available The identification of transcription factor binding sites is essential to the understanding of the regulation of gene expression and the reconstruction of genetic regulatory networks. The in silico identification of cis-regulatory motifs is challenging due to sequence variability and lack of sufficient data to generate consensus motifs that are of quantitative or even qualitative predictive value. To determine functional motifs in gene expression, we propose a strategy to adopt false discovery rate (FDR and estimate motif effects to evaluate combinatorial analysis of motif candidates and temporal gene expression data. The method decreases the number of predicted motifs, which can then be confirmed by genetic analysis. To assess the method we used simulated motif/expression data to evaluate parameters. We applied this approach to experimental data for a group of iron responsive genes in Salmonella typhimurium 14028S. The method identified known and potentially new ferric-uptake regulator (Fur binding sites. In addition, we identified uncharacterized functional motif candidates that correlated with specific patterns of expression. A SAS code for the simulation and analysis gene expression data is available from the first author upon request.

  14. RNA recognition motif (RRM)-containing proteins in Bombyx mori

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Recognition Motif (RRM), sometimes referred to as. RNP1, is one of the first identified domains for RNA interaction. RRM is very common ..... Apart from the RRM motif, eIF3-S9 has a Trp-Asp. (WD) repeat domain, Poly (A) ...

  15. BlockLogo: Visualization of peptide and sequence motif conservation

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian

    2013-01-01

    BlockLogo is a web-server application for the visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, se...

  16. Fingerprint motifs of phytases | Fan | African Journal of Biotechnology

    African Journals Online (AJOL)

    Among the total of potential 173 phytases gained in 11 plant genomes through MAST, PAPhys are the major phytases, and HAPhys are the minor, and other phytase groups are not found in planta. Keywords: Phytase, fingerprint motif, multiple EM for motif elicitation (MEME), MAST African Journal of Biotechnology Vol.

  17. Identification of sequence motifs significantly associated with antisense activity

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. Results We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. Conclusion The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic

  18. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  19. N-Terminal Cu-Binding Motifs (Xxx-Zzz-His, Xxx-His) and Their Derivatives: Chemistry, Biology and Medicinal Applications.

    Science.gov (United States)

    Gonzalez, Paulina; Bossak, Karolina; Stefaniak, Ewelina; Hureau, Christelle; Raibaut, Laurent; Bal, Wojciech; Faller, Peter

    2018-06-07

    Peptides and proteins with N-terminal amino acid sequences NH 2 -Xxx-His (XH) and NH 2 -Xxx-Zzz-His (XZH) form well-established high-affinity Cu II -complexes. Key examples are Asp-Ala-His (in serum albumin) and Gly-His-Lys, the wound healing factor. This opens a straightforward way to add a high-affinity Cu II -binding site to almost any peptide or protein, by chemical or recombinant approaches. Thus, these motifs, NH 2 -Xxx-Zzz-His in particular, have been used to equip peptides and proteins with a multitude of functions based on the redox activity of Cu, including nuclease, protease, glycosidase, or oxygen activation properties, useful in anticancer or antimicrobial drugs. More recent research suggests novel biological functions, mainly based on the redox inertness of Cu II in XZH, like PET imaging (with 64 Cu), chelation therapies (for instance in Alzheimer's disease and other types of neurodegeneration), antioxidant units, Cu transporters and activation of biological functions by strong Cu II binding. This Review gives an overview of the chemical properties of Cu-XH and -XZH motifs and discusses the pros and cons of the vastly different biological applications, and how they could be improved depending on the application. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    OpenAIRE

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand brea...

  1. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks

    KAUST Repository

    Mahfouz, Magdy M.; Li, Lixin; Shamimuzzaman, Md.; Wibowo, Anjar Tri; Fang, Xiaoyun; Zhu, Jian-Kang

    2011-01-01

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions

  2. TT2014 meeting report on the 12th Transgenic Technology meeting in Edinburgh: new era of transgenic technologies with programmable nucleases in the foreground

    Czech Academy of Sciences Publication Activity Database

    Beck, Inken; Sedláček, Radislav

    2015-01-01

    Roč. 24, č. 1 (2015), s. 179-183 ISSN 0962-8819 Institutional support: RVO:68378050 Keywords : Transgenic * Nuclease * Gene Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.054, year: 2015

  3. Motif statistics and spike correlations in neuronal networks

    International Nuclear Information System (INIS)

    Hu, Yu; Shea-Brown, Eric; Trousdale, James; Josić, Krešimir

    2013-01-01

    Motifs are patterns of subgraphs of complex networks. We studied the impact of such patterns of connectivity on the level of correlated, or synchronized, spiking activity among pairs of cells in a recurrent network of integrate and fire neurons. For a range of network architectures, we find that the pairwise correlation coefficients, averaged across the network, can be closely approximated using only three statistics of network connectivity. These are the overall network connection probability and the frequencies of two second order motifs: diverging motifs, in which one cell provides input to two others, and chain motifs, in which two cells are connected via a third intermediary cell. Specifically, the prevalence of diverging and chain motifs tends to increase correlation. Our method is based on linear response theory, which enables us to express spiking statistics using linear algebra, and a resumming technique, which extrapolates from second order motifs to predict the overall effect of coupling on network correlation. Our motif-based results seek to isolate the effect of network architecture perturbatively from a known network state. (paper)

  4. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  5. Triadic motifs in the dependence networks of virtual societies

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  6. RNA motif search with data-driven element ordering.

    Science.gov (United States)

    Rampášek, Ladislav; Jimenez, Randi M; Lupták, Andrej; Vinař, Tomáš; Brejová, Broňa

    2016-05-18

    In this paper, we study the problem of RNA motif search in long genomic sequences. This approach uses a combination of sequence and structure constraints to uncover new distant homologs of known functional RNAs. The problem is NP-hard and is traditionally solved by backtracking algorithms. We have designed a new algorithm for RNA motif search and implemented a new motif search tool RNArobo. The tool enhances the RNAbob descriptor language, allowing insertions in helices, which enables better characterization of ribozymes and aptamers. A typical RNA motif consists of multiple elements and the running time of the algorithm is highly dependent on their ordering. By approaching the element ordering problem in a principled way, we demonstrate more than 100-fold speedup of the search for complex motifs compared to previously published tools. We have developed a new method for RNA motif search that allows for a significant speedup of the search of complex motifs that include pseudoknots. Such speed improvements are crucial at a time when the rate of DNA sequencing outpaces growth in computing. RNArobo is available at http://compbio.fmph.uniba.sk/rnarobo .

  7. Triadic motifs in the dependence networks of virtual societies.

    Science.gov (United States)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  8. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  9. Genome Editing with Engineered Nucleases in Economically Important Animals and Plants: State of the Art in the Research Pipeline.

    Science.gov (United States)

    Sovová, Tereza; Kerins, Gerard; Demnerová, Kateřina; Ovesná, Jaroslava

    2017-01-01

    After induced mutagenesis and transgenesis, genome editing is the next step in the development of breeding techniques. Genome editing using site-directed nucleases - including meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system - is based on the mechanism of double strand breaks. The nuclease is directed to cleave the DNA at a specific place of the genome which is then repaired by natural repair mechanisms. Changes are introduced during the repair that are either accidental or can be targeted if a DNA template with the desirable sequence is provided. These techniques allow making virtually any change to the genome including specific DNA sequence changes, gene insertion, replacements or deletions with unprecedented precision and specificity while being less laborious and more straightforward compared to traditional breeding techniques or transgenesis. Therefore, the research in this field is developing quickly and, apart from model species, multiple studies have focused on economically important species and agronomically important traits that were the key subjects of this review. In plants, studies have been undertaken on disease resistance, herbicide tolerance, nutrient metabolism and nutritional value. In animals, the studies have mainly focused on disease resistance, meat production and allergenicity of milk. However, none of the promising studies has led to commercialization despite several patent applications. The uncertain legal status of genome-editing methods is one of the reasons for poor commercial development, as it is not clear whether the products would fall under the GMO regulation. We believe this issue should be clarified soon in order to allow promising methods to reach their full potential.

  10. Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions of human chromatin

    International Nuclear Information System (INIS)

    Smerdon, M.J.; Tlsty, T.D.; Lieberman, M.W.

    1978-01-01

    The distribution of ultraviolet radiation (uv) induced DNA repair synthesis within chromatin was examined in cultured human diploid fibroblasts (IMR-90). Measurement of the time course of repair synthesis yielded two distinct phases: An initial rapid phase (fast repair) which occurs during the first 2 to 3 h after damage and a slower phase (slow repair) associated with a tenfold decrease in the rate of nucleotide incorporation, which persists for at least 35 h after damage. Staphylococcal nuclease digests of nuclei from cells damaged with uv and labeled during the fast-repair phase revealed a marked preference of fast-repair synthesis for the nuclease-sensitive regions. A new method was developed to analyze the digestion data and showed that approximately 50% of the nucleotides incorporated during the fast-repair phase are located in staphylococcal nuclease-sensitive regions, which comprise about 30% of the genome. Calculations from these data indicate that in the staphylococcal nuclease-sensitive regions the number of newly inserted nucleotides per unit DNA is about twice that of resistant regions. These results were supported by electrophoresis studies which demonstrated a decreased representation of fast-repair synthesis in core particle DNA. In contrast, the distribution within chromatin of nucleotides incorporated during the slow-repair phase was found to be much more homogeneous with about 30% of the repair sites located in 25% of the genome. Digestion studieswith DNase I indicated a slight preference of repair synthesis for regions sensitive to this enzyme; however, no marked difference between the distributions of fast- and slow-repair synthesis was observed. This study provides evidence that the structural constraints placed upon DNA in chromatin also place constraints upon uv-induced DNA repair synthesis in human cells

  11. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula

    Science.gov (United States)

    Lomate, Purushottam R.; Bonning, Bryony C.

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  12. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells.

    Science.gov (United States)

    Heo, Young Tae; Quan, Xiaoyuan; Xu, Yong Nan; Baek, Soonbong; Choi, Hwan; Kim, Nam-Hyung; Kim, Jongpil

    2015-02-01

    Efficient and precise genetic engineering in livestock such as cattle holds great promise in agriculture and biomedicine. However, techniques that generate pluripotent stem cells, as well as reliable tools for gene targeting in livestock, are still inefficient, and thus not routinely used. Here, we report highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, we generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. We observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR/Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. To conclude, CRISPR/Cas9 nuclease-mediated homologous recombination targeting in bovine pluripotent cells is an efficient gene editing method that can be used to generate transgenic livestock in the future.

  13. Response surface optimization of carbon and nitrogen sources for nuclease P1 production by Penicillium citrinum F-5-5

    International Nuclear Information System (INIS)

    Liang Xinle; Huang Yingying; Zhang Hong; Chen Min; Liu Xuan

    2011-01-01

    Penicillium citrinum F-5-5, a nuclease P1 high-producing strain with 978.6 U/ml in potato glucose medium, was derived from the original Penicillium citrinum CICC 4011 with 60 Co γ-rays irradiation mutation and then protoplasts fusion treatment. Culture components were optimized for the nuclease P1 production, and response surface methodology was applied for the critical medium components(carbon and nitrogen sources) which were preselected by Plackett-Burman design approach. Glucose, soluble starch and corn steep powder showed significant effects on production of nuclease. Central composite design was used for the optimization levels by software Minitab 15, and it showed that, the optimal values for the concentration of glucose, soluble starch and corn steep powder were 30.89, 42.46 and 11.60 g/L, respectively. With this medium,an enzyme activity of 1687.16 U/ml could be obtained theoretically. Using this optimized medium, an experimental enzyme activity of 1672.6 U/ml was reached. (authors)

  14. Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9.

    Science.gov (United States)

    Kurihara, Takeshi; Fukuhara, Takasuke; Ono, Chikako; Yamamoto, Satomi; Uemura, Kentaro; Okamoto, Toru; Sugiyama, Masaya; Motooka, Daisuke; Nakamura, Shota; Ikawa, Masato; Mizokami, Masashi; Maehara, Yoshihiko; Matsuura, Yoshiharu

    2017-07-21

    Complete removal of hepatitis B virus (HBV) DNA from nuclei is difficult by the current therapies. Recent reports have shown that a novel genome-editing tool using Cas9 with a single-guide RNA (sgRNA) system can cleave the HBV genome in vitro and in vivo. However, induction of a double-strand break (DSB) on the targeted genome by Cas9 risks undesirable off-target cleavage on the host genome. Nickase-Cas9 cleaves a single strand of DNA, and thereby two sgRNAs are required for inducing DSBs. To avoid Cas9-induced off-target mutagenesis, we examined the effects of the expressions of nickase-Cas9 and nuclease dead Cas9 (d-Cas9) with sgRNAs on HBV replication. The expression of nickase-Cas9 with a pair of sgRNAs cleaved the target HBV genome and suppressed the viral-protein expression and HBV replication in vitro. Moreover, nickase-Cas9 with the sgRNA pair cleaved the targeted HBV genome in mouse liver. Interestingly, d-Cas9 expression with the sgRNAs also suppressed HBV replication in vitro without cleaving the HBV genome. These results suggest the possible use of nickase-Cas9 and d-Cas9 with a pair of sgRNAs for eliminating HBV DNA from the livers of chronic hepatitis B patients with low risk of undesirable off-target mutation on the host genome.

  15. LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis.

    Science.gov (United States)

    Hong, Ye; Sonneville, Remi; Wang, Bin; Scheidt, Viktor; Meier, Bettina; Woglar, Alexander; Demetriou, Sarah; Labib, Karim; Jantsch, Verena; Gartner, Anton

    2018-02-20

    Faithful chromosome segregation and genome maintenance requires the removal of all DNA bridges that physically link chromosomes before cells divide. Using C. elegans embryos we show that the LEM-3/Ankle1 nuclease defines a previously undescribed genome integrity mechanism by processing DNA bridges right before cells divide. LEM-3 acts at the midbody, the structure where abscission occurs at the end of cytokinesis. LEM-3 localization depends on factors needed for midbody assembly, and LEM-3 accumulation is increased and prolonged when chromatin bridges are trapped at the cleavage plane. LEM-3 locally processes chromatin bridges that arise from incomplete DNA replication, unresolved recombination intermediates, or the perturbance of chromosome structure. Proper LEM-3 midbody localization and function is regulated by AIR-2/Aurora B kinase. Strikingly, LEM-3 acts cooperatively with the BRC-1/BRCA1 homologous recombination factor to promote genome integrity. These findings provide a molecular basis for the suspected role of the LEM-3 orthologue Ankle1 in human breast cancer.

  16. DNA replication restart and cellular dynamics of Hef helicase/nuclease protein in Haloferax volcanii.

    Science.gov (United States)

    Lestini, Roxane; Delpech, Floriane; Myllykallio, Hannu

    2015-11-01

    Understanding how frequently spontaneous replication arrests occur and how archaea deal with these arrests are very interesting and challenging research topics. Here we will described how genetic and imaging studies have revealed the central role of the archaeal helicase/nuclease Hef belonging to the XPF/MUS81/FANCM family of endonucleases in repair of arrested replication forks. Special focus will be on description of a recently developed combination of genetic and imaging tools to study the dynamic localization of a functional Hef::GFP (Green Fluorescent Protein) fusion protein in the living cells of halophilic archaea Haloferax volcanii. As Archaea provide an excellent and unique model for understanding how DNA replication is regulated to allow replication of a circular DNA molecule either from single or multiple replication origins, we will also summarize recent studies that have revealed peculiar features regarding DNA replication, particularly in halophilic archaea. We strongly believe that fundamental knowledge of our on-going studies will shed light on the evolutionary history of the DNA replication machinery and will help to establish general rules concerning replication restart and the key role of recombination proteins not only in bacteria, yeast and higher eukaryotes but also in archaea. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Science.gov (United States)

    Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan

    2014-05-01

    A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  18. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Directory of Open Access Journals (Sweden)

    Yanwei Bi

    2014-05-01

    Full Text Available A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR-associated (Cas RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ and homology-directed repair (HDR pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  19. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps.

    Science.gov (United States)

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans . Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans : contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation.

  20. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    Directory of Open Access Journals (Sweden)

    Xinxia Zhao

    2016-03-01

    Full Text Available Myostatin (MSTN is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs in tandem with single-stranded DNA oligonucleotides (ssODNs. We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  1. DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair.

    Science.gov (United States)

    de Laat, W L; Appeldoorn, E; Sugasawa, K; Weterings, E; Jaspers, N G; Hoeijmakers, J H

    1998-08-15

    The human single-stranded DNA-binding replication A protein (RPA) is involved in various DNA-processing events. By comparing the affinity of hRPA for artificial DNA hairpin structures with 3'- or 5'-protruding single-stranded arms, we found that hRPA binds ssDNA with a defined polarity; a strong ssDNA interaction domain of hRPA is positioned at the 5' side of its binding region, a weak ssDNA-binding domain resides at the 3' side. Polarity appears crucial for positioning of the excision repair nucleases XPG and ERCC1-XPF on the DNA. With the 3'-oriented side of hRPA facing a duplex ssDNA junction, hRPA interacts with and stimulates ERCC1-XPF, whereas the 5'-oriented side of hRPA at a DNA junction allows stable binding of XPG to hRPA. Our data pinpoint hRPA to the undamaged strand during nucleotide excision repair. Polarity of hRPA on ssDNA is likely to contribute to the directionality of other hRPA-dependent processes as well.

  2. Targeting functional motifs of a protein family

    Science.gov (United States)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  3. ROMANIAN FOLKLORE MOTIFS IN FASHION DESIGN

    Directory of Open Access Journals (Sweden)

    MOCENCO Alexandra

    2014-05-01

    Full Text Available The traditional Romanian costume such as the entire popular art (architecture, woodcarvins, pottery etc. was born and lasted in our country since ancient times. Closely related to human existence, the traditional costume reflected over the years as reflected nowadays, the mentality and artistic conception of the people. Today the traditional Romanian costume became an inspiration source to the wholesale fashion production industry designers, both Romanian and international. Although the contemporary designers are working in accordance with a vision, using a wide area of styles, methods and current technology, they usually return to traditional techniques and ethnic folklore motifs, which converts and resize them, integrating them in their contemporary space. Adrian Oianu is a very appreciated Romanian designer who launched two collections inspired by his native’s country traditional costumes: “Suflecata pan’ la brau” (“Turned up ‘til the belt” and “Bucurie” (“Joy”. Dorin Negrau had as inspiration for his “Lost” collection the traditional costume from the Bihor region. Yves Saint Laurent had a collection inspired by the Romanian traditional flax blouses called “La blouse roumaine”. The paper presents the traditional Romanian values throw fashion collections. The research activity will create innovative concepts to support the garment industry in order to develop their own brand and to bring the design activities in Romania at an international level. The research was conducted during the initial stage of a project, financed through national founds, consisting in a documentary study on ethnographic characteristics of the popular costume from different regions of the country.

  4. Review article: The mountain motif in the plot of Matthew

    Directory of Open Access Journals (Sweden)

    Gert J. Volschenk

    2010-09-01

    Full Text Available This article reviewed T.L. Donaldson’s book, Jesus on the mountain: A study in Matthean theology, published in 1985 by JSOT Press, Sheffield, and focused on the mountain motif in the structure and plot of the Gospel of Matthew, in addition to the work of Donaldson on the mountain motif as a literary motif and as theological symbol. The mountain is a primary theological setting for Jesus’ ministry and thus is an important setting, serving as one of the literary devices by which Matthew structured and progressed his narrative. The Zion theological and eschatological significance and Second Temple Judaism serve as the historical and theological background for the mountain motif. The last mountain setting (Mt 28:16–20 is the culmination of the three theological themes in the plot of Matthew, namely Christology, ecclesiology and salvation history.

  5. Methods and statistics for combining motif match scores.

    Science.gov (United States)

    Bailey, T L; Gribskov, M

    1998-01-01

    Position-specific scoring matrices are useful for representing and searching for protein sequence motifs. A sequence family can often be described by a group of one or more motifs, and an effective search must combine the scores for matching a sequence to each of the motifs in the group. We describe three methods for combining match scores and estimating the statistical significance of the combined scores and evaluate the search quality (classification accuracy) and the accuracy of the estimate of statistical significance of each. The three methods are: 1) sum of scores, 2) sum of reduced variates, 3) product of score p-values. We show that method 3) is superior to the other two methods in both regards, and that combining motif scores indeed gives better search accuracy. The MAST sequence homology search algorithm utilizing the product of p-values scoring method is available for interactive use and downloading at URL http:/(/)www.sdsc.edu/MEME.

  6. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    ... machine (SVM) and its application in microarray experiment of Kashin-Beck disease. ... speed and amount of the corresponding mRNA in gene replication process. ... and revealed that some motifs may be related to the immune reactions.

  7. BEAM web server: a tool for structural RNA motif discovery.

    Science.gov (United States)

    Pietrosanto, Marco; Adinolfi, Marta; Casula, Riccardo; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2018-03-15

    RNA structural motif finding is a relevant problem that becomes computationally hard when working on high-throughput data (e.g. eCLIP, PAR-CLIP), often represented by thousands of RNA molecules. Currently, the BEAM server is the only web tool capable to handle tens of thousands of RNA in input with a motif discovery procedure that is only limited by the current secondary structure prediction accuracies. The recently developed method BEAM (BEAr Motifs finder) can analyze tens of thousands of RNA molecules and identify RNA secondary structure motifs associated to a measure of their statistical significance. BEAM is extremely fast thanks to the BEAR encoding that transforms each RNA secondary structure in a string of characters. BEAM also exploits the evolutionary knowledge contained in a substitution matrix of secondary structure elements, extracted from the RFAM database of families of homologous RNAs. The BEAM web server has been designed to streamline data pre-processing by automatically handling folding and encoding of RNA sequences, giving users a choice for the preferred folding program. The server provides an intuitive and informative results page with the list of secondary structure motifs identified, the logo of each motif, its significance, graphic representation and information about its position in the RNA molecules sharing it. The web server is freely available at http://beam.uniroma2.it/ and it is implemented in NodeJS and Python with all major browsers supported. marco.pietrosanto@uniroma2.it. Supplementary data are available at Bioinformatics online.

  8. Characterizing Motif Dynamics of Electric Brain Activity Using Symbolic Analysis

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2014-10-01

    Full Text Available Motifs are small recurring circuits of interactions which constitute the backbone of networked systems. Characterizing motif dynamics is therefore key to understanding the functioning of such systems. Here we propose a method to define and quantify the temporal variability and time scales of electroencephalogram (EEG motifs of resting brain activity. Given a triplet of EEG sensors, links between them are calculated by means of linear correlation; each pattern of links (i.e., each motif is then associated to a symbol, and its appearance frequency is analyzed by means of Shannon entropy. Our results show that each motif becomes observable with different coupling thresholds and evolves at its own time scale, with fronto-temporal sensors emerging at high thresholds and changing at fast time scales, and parietal ones at low thresholds and changing at slower rates. Finally, while motif dynamics differed across individuals, for each subject, it showed robustness across experimental conditions, indicating that it could represent an individual dynamical signature.

  9. Efficient motif finding algorithms for large-alphabet inputs

    Directory of Open Access Journals (Sweden)

    Pavlovic Vladimir

    2010-10-01

    Full Text Available Abstract Background We consider the problem of identifying motifs, recurring or conserved patterns, in the biological sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are embedded as exact or inexact instances in all or most of the input strings. Results The proposed algorithm (1 improves search efficiency compared to existing algorithms, and (2 scales well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA we observed reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin and Immunoglobin families. Conclusions Our algorithm reduces computational complexity of the current motif finding algorithms and demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult cases of large-alphabet sequences.

  10. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    Science.gov (United States)

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  11. An experimental test of a fundamental food web motif.

    Science.gov (United States)

    Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia

    2010-06-07

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities.

  12. PISMA: A Visual Representation of Motif Distribution in DNA Sequences

    Directory of Open Access Journals (Sweden)

    Rogelio Alcántara-Silva

    2017-03-01

    Full Text Available Background: Because the graphical presentation and analysis of motif distribution can provide insights for experimental hypothesis, PISMA aims at identifying motifs on DNA sequences, counting and showing them graphically. The motif length ranges from 2 to 10 bases, and the DNA sequences range up to 10 kb. The motif distribution is shown as a bar-code–like, as a gene-map–like, and as a transcript scheme. Results: We obtained graphical schemes of the CpG site distribution from 91 human papillomavirus genomes. Also, we present 2 analyses: one of DNA motifs associated with either methylation-resistant or methylation-sensitive CpG islands and another analysis of motifs associated with exosome RNA secretion. Availability and Implementation: PISMA is developed in Java; it is executable in any type of hardware and in diverse operating systems. PISMA is freely available to noncommercial users. The English version and the User Manual are provided in Supplementary Files 1 and 2, and a Spanish version is available at www.biomedicas.unam.mx/wp-content/software/pisma.zip and www.biomedicas.unam.mx/wp-content/pdf/manual/pisma.pdf .

  13. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Directory of Open Access Journals (Sweden)

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  14. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Robert C Shields

    Full Text Available BACKGROUND: The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS. Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. METHODS/PRINCIPAL FINDINGS: Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. CONCLUSION/SIGNIFICANCE: Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  15. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tatiana Flisikowska

    Full Text Available Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM(+ and IgG(+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ∼1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields.

  16. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees.

    Science.gov (United States)

    Peer, Reut; Rivlin, Gil; Golobovitch, Sara; Lapidot, Moshe; Gal-On, Amit; Vainstein, Alexander; Tzfira, Tzvi; Flaishman, Moshe A

    2015-04-01

    Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs. Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees-apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.

  17. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.

    Science.gov (United States)

    Gunner, M R; Zhu, Xuyu; Klein, Max C

    2011-12-01

    The pK(a)s of 96 acids and bases introduced into buried sites in the staphylococcal nuclease protein (SNase) were calculated using the multiconformation continuum electrostatics (MCCE) program and the results compared with experimental values. The pK(a)s are obtained by Monte Carlo sampling of coupled side chain protonation and position as a function of pH. The dependence of the results on the protein dielectric constant (ε(prot)) in the continuum electrostatics analysis and on the Lennard-Jones non-electrostatics parameters was evaluated. The pK(a)s of the introduced residues have a clear dependence on ε(prot,) whereas native ionizable residues do not. The native residues have electrostatic interactions with other residues in the protein favoring ionization, which are larger than the desolvation penalty favoring the neutral state. Increasing ε(prot) scales both terms, which for these residues leads to small changes in pK(a). The introduced residues have a larger desolvation penalty and negligible interactions with residues in the protein. For these residues, changing ε(prot) has a large influence on the calculated pK(a). An ε(prot) of 8-10 and a Lennard-Jones scaling of 0.25 is best here. The X-ray crystal structures of the mutated proteins are found to provide somewhat better results than calculations carried out on mutations made in silico. Initial relaxation of the in silico mutations by Gromacs and extensive side chain rotamer sampling within MCCE can significantly improve the match with experiment. Copyright © 2011 Wiley-Liss, Inc.

  18. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    Science.gov (United States)

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  19. Verification of the MOTIF code version 3.0

    International Nuclear Information System (INIS)

    Chan, T.; Guvanasen, V.; Nakka, B.W.; Reid, J.A.K.; Scheier, N.W.; Stanchell, F.W.

    1996-12-01

    As part of the Canadian Nuclear Fuel Waste Management Program (CNFWMP), AECL has developed a three-dimensional finite-element code, MOTIF (Model Of Transport In Fractured/ porous media), for detailed modelling of groundwater flow, heat transport and solute transport in a fractured rock mass. The code solves the transient and steady-state equations of groundwater flow, solute (including one-species radionuclide) transport, and heat transport in variably saturated fractured/porous media. The initial development was completed in 1985 (Guvanasen 1985) and version 3.0 was completed in 1986. This version is documented in detail in Guvanasen and Chan (in preparation). This report describes a series of fourteen verification cases which has been used to test the numerical solution techniques and coding of MOTIF, as well as demonstrate some of the MOTIF analysis capabilities. For each case the MOTIF solution has been compared with a corresponding analytical or independently developed alternate numerical solution. Several of the verification cases were included in Level 1 of the International Hydrologic Code Intercomparison Project (HYDROCOIN). The MOTIF results for these cases were also described in the HYDROCOIN Secretariat's compilation and comparison of results submitted by the various project teams (Swedish Nuclear Power Inspectorate 1988). It is evident from the graphical comparisons presented that the MOTIF solutions for the fourteen verification cases are generally in excellent agreement with known analytical or numerical solutions obtained from independent sources. This series of verification studies has established the ability of the MOTIF finite-element code to accurately model the groundwater flow and solute and heat transport phenomena for which it is intended. (author). 20 refs., 14 tabs., 32 figs

  20. Mechanisms of zero-lag synchronization in cortical motifs.

    Directory of Open Access Journals (Sweden)

    Leonardo L Gollo

    2014-04-01

    Full Text Available Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying"--a mechanism that relies on a specific network motif--has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair--a "resonance pair"--plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying from those that do not (such as the common driving triad. Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.

  1. Phyloproteomic Analysis of 11780 Six-Residue-Long Motifs Occurrences

    Directory of Open Access Journals (Sweden)

    O. V. Galzitskaya

    2015-01-01

    Full Text Available How is it possible to find good traits for phylogenetic reconstructions? Here, we present a new phyloproteomic criterion that is an occurrence of simple motifs which can be imprints of evolution history. We studied the occurrences of 11780 six-residue-long motifs consisting of two randomly located amino acids in 97 eukaryotic and 25 bacterial proteomes. For all eukaryotic proteomes, with the exception of the Amoebozoa, Stramenopiles, and Diplomonadida kingdoms, the number of proteins containing the motifs from the first group (one of the two amino acids occurs once at the terminal position made about 20%; in the case of motifs from the second (one of two amino acids occurs one time within the pattern and third (the two amino acids occur randomly groups, 30% and 50%, respectively. For bacterial proteomes, this relationship was 10%, 27%, and 63%, respectively. The matrices of correlation coefficients between numbers of proteins where a motif from the set of 11780 motifs appears at least once in 9 kingdoms and 5 phyla of bacteria were calculated. Among the correlation coefficients for eukaryotic proteomes, the correlation between the animal and fungi kingdoms (0.62 is higher than between fungi and plants (0.54. Our study provides support that animals and fungi are sibling kingdoms. Comparison of the frequencies of six-residue-long motifs in different proteomes allows obtaining phylogenetic relationships based on similarities between these frequencies: the Diplomonadida kingdoms are more close to Bacteria than to Eukaryota; Stramenopiles and Amoebozoa are more close to each other than to other kingdoms of Eukaryota.

  2. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    Science.gov (United States)

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  3. RegRNA: an integrated web server for identifying regulatory RNA motifs and elements

    OpenAIRE

    Huang, Hsi-Yuan; Chien, Chia-Hung; Jen, Kuan-Hua; Huang, Hsien-Da

    2006-01-01

    Numerous regulatory structural motifs have been identified as playing essential roles in transcriptional and post-transcriptional regulation of gene expression. RegRNA is an integrated web server for identifying the homologs of regulatory RNA motifs and elements against an input mRNA sequence. Both sequence homologs and structural homologs of regulatory RNA motifs can be recognized. The regulatory RNA motifs supported in RegRNA are categorized into several classes: (i) motifs in mRNA 5′-untra...

  4. Characterization of the residual structure in the unfolded state of the Delta 131 Delta fragment of staphylococcal nuclease

    DEFF Research Database (Denmark)

    Francis, C. J.; Lindorff-Larsen, Kresten; Best, R. B.

    2006-01-01

    dynamics simulations to characterise the residual structure of the 131 fragment of staphylococcal nuclease under physiological conditions. Our findings indicate that 131 under these conditions shows a tendency to form transiently hydrophobic clusters similar to those present in the native state of wild......The determination of the conformational preferences in unfolded states of proteins constitutes an important challenge in structural biology. We use inter-residue distances estimated from site-directed spin-labeling NMR experimental measurements as ensemble-averaged restraints in all-atom molecular...

  5. Recognition and repair of the CC-1065-(N3-Adenine)-DNA adduct by the UVRABC nuclease

    International Nuclear Information System (INIS)

    Tang, M.; Lee, C.S.; Doisy, R.; Ross, L.; Needham-VanDevanter, D.R.; Hurley, L.H.

    1988-01-01

    The recognition and repair of the helix-stabilizing and relatively nondistortive CC-1065-(N3-adenine)-DNA adduct by UVRABC nuclease has been investigated both in vivo with phi X174RFI DNA by a transfection assay and in vitro by a site-directed adduct in a 117 base pair fragment from M13mp1. CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis which binds within the minor groove of DNA through N3 of adenine. In contrast to the helix-destabilizing and distortive modifications of DNA caused by ultraviolet light or N-acetoxy-2-(acetylamino)fluorene, CC-1065 increases the melting point of DNA and decreases the S1 nuclease activity. Using a viral DNA-Escherichia coli transfection system, the authors have found that the uvrA, uvrB, and uvrC genes, which code for the major excision repair proteins for UV- and NAAAF-induced DNA damage, are also involved in the repair of CC-1065-DNA adducts. In contrast, the uvrD gene product, which has been found to be involved in the repair of UV damage, has no effect in repairing CC-1065-DNA adducts. Purified UVRA, UVRB, and UVRC proteins must work in concert to incise the drug-modified phi X174RFI DNA. Using a site-directed and multiple CC-1065 modified (MspI-BstNI) 117 base pair fragment from M13mp1, they have found that UVRABC nuclease incises at the eight phosphodiester bond on the 5' side of the CC-1065-DNA adduct on the drug-modified strand. The enzymes do not cut the noncovalently modified strand. The DNA sequence and/or helix-stabilizing effect of multiple adducts may determine the recognition and/or incision of the drug-DNA adduct by UVRABC nuclease. These results are discussed in relation to the structure of the CC-1065-DNA adduct and the effect of drug binding on local DNA structure

  6. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  7. Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation.

    Science.gov (United States)

    Michael, Sushama; Travé, Gilles; Ramu, Chenna; Chica, Claudia; Gibson, Toby J

    2008-02-15

    KEN-box-mediated target selection is one of the mechanisms used in the proteasomal destruction of mitotic cell cycle proteins via the APC/C complex. While annotating the Eukaryotic Linear Motif resource (ELM, http://elm.eu.org/), we found that KEN motifs were significantly enriched in human protein entries with cell cycle keywords in the UniProt/Swiss-Prot database-implying that KEN-boxes might be more common than reported. Matches to short linear motifs in protein database searches are not, per se, significant. KEN-box enrichment with cell cycle Gene Ontology terms suggests that collectively these motifs are functional but does not prove that any given instance is so. Candidates were surveyed for native disorder prediction using GlobPlot and IUPred and for motif conservation in homologues. Among >25 strong new candidates, the most notable are human HIPK2, CHFR, CDC27, Dab2, Upf2, kinesin Eg5, DNA Topoisomerase 1 and yeast Cdc5 and Swi5. A similar number of weaker candidates were present. These proteins have yet to be tested for APC/C targeted destruction, providing potential new avenues of research.

  8. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    Science.gov (United States)

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages

  9. ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms

    Directory of Open Access Journals (Sweden)

    Voytas Daniel F

    2011-01-01

    Full Text Available Abstract Background Zinc Finger Nucleases (ZFNs have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms. Description ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana, D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s. Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence. Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter "confidence" scores that estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the

  10. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  11. Genome Analysis of Conserved Dehydrin Motifs in Vascular Plants

    Directory of Open Access Journals (Sweden)

    Ahmad A. Malik

    2017-05-01

    Full Text Available Dehydrins, a large family of abiotic stress proteins, are defined by the presence of a mostly conserved motif known as the K-segment, and may also contain two other conserved motifs known as the Y-segment and S-segment. Using the dehydrin literature, we developed a sequence motif definition of the K-segment, which we used to create a large dataset of dehydrin sequences by searching the Pfam00257 dehydrin dataset and the Phytozome 10 sequences of vascular plants. A comprehensive analysis of these sequences reveals that lysine residues are highly conserved in the K-segment, while the amino acid type is often conserved at other positions. Despite the Y-segment name, the central tyrosine is somewhat conserved, but can be substituted with two other small aromatic amino acids (phenylalanine or histidine. The S-segment contains a series of serine residues, but in some proteins is also preceded by a conserved LHR sequence. In many dehydrins containing all three of these motifs the S-segment is linked to the K-segment by a GXGGRRKK motif (where X can be any amino acid, suggesting a functional linkage between these two motifs. An analysis of the sequences shows that the dehydrin architecture and several biochemical properties (isoelectric point, molecular mass, and hydrophobicity score are dependent on each other, and that some dehydrin architectures are overexpressed during certain abiotic stress, suggesting that they may be optimized for a specific abiotic stress while others are involved in all forms of dehydration stress (drought, cold, and salinity.

  12. BayesMD: flexible biological modeling for motif discovery

    DEFF Research Database (Denmark)

    Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole

    2008-01-01

    We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained on trans......We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained...

  13. Staphylococcal nuclease active-site amino acids: pH dependence of tyrosines and arginines by 13C NMR and correlation with kinetic studies

    International Nuclear Information System (INIS)

    Grissom, C.G.; Markley, J.L.

    1989-01-01

    The pH and temperature dependence of the kinetic parameters of staphylococcal nuclease have been examined with three p-nitrophenyl phosphate containing DNA analogues that vary as to 3'-substituent. With wild-type (Foggi variant) nuclease (nuclease wt) and the substrates thymidine 3'-phosphate 5'-(p-nitrophenyl phosphate) (PNPdTp), thymidine 3'-methylphosphonate 5'-(p-nitrophenyl phosphate) (PNPdTp Me), and thymidine 5'-(p-nitrophenyl phosphate) (PNPdT), k cat remains nearly constant at 13 min -1 . However, k cat /k m with nuclease wt varies considerably. The data suggests that the inflection k cat /K m with pK a at 9.67 arises from ionization of tyrosine-85, which hydrogen bonds to the divalent 3'-phosphomonester of substrates with this substituent. The enthalpy of ionization of both deprotonation steps in the k cat /K m versus pH profile is 5 kcal/mol. 13 C NMR has been used to determine the pK a values of the arginine and tyrosine residues. The results do not rule out arginine as a candidate for the acidic catalyst that protonates the 5'-ribose alkoxide prior to product release. The phenolic hydroxyl carbon of tyrosine-85 has been assigned by comparing the 13 C NMR spectrum of nuclease wt and nuclease Y85F. This correlation between pK a values along with the absence of other candidates indicates that the ionization of tyrosine-85 is the pK a seen in the k cat /K m vs pH profile for substrates with a divalent 3'-phosphomonester. This conclusion is consistent with the proposed role of tyrosine-85 as a hydrogen-bond donor to the 3'-phosphomonoester of substrates poised for exonucleolytic hydrolysis

  14. Structural and Catalytic Properties of S1 Nuclease from Aspergillus oryzae Responsible for Substrate Recognition, Cleavage, Non-Specificity, and Inhibition.

    Directory of Open Access Journals (Sweden)

    Tomáš Kovaľ

    Full Text Available The single-strand-specific S1 nuclease from Aspergillus oryzae is an archetypal enzyme of the S1-P1 family of nucleases with a widespread use for biochemical analyses of nucleic acids. We present the first X-ray structure of this nuclease along with a thorough analysis of the reaction and inhibition mechanisms and of its properties responsible for identification and binding of ligands. Seven structures of S1 nuclease, six of which are complexes with products and inhibitors, and characterization of catalytic properties of a wild type and mutants reveal unknown attributes of the S1-P1 family. The active site can bind phosphate, nucleosides, and nucleotides in several distinguished ways. The nucleoside binding site accepts bases in two binding modes-shallow and deep. It can also undergo remodeling and so adapt to different ligands. The amino acid residue Asp65 is critical for activity while Asn154 secures interaction with the sugar moiety, and Lys68 is involved in interactions with the phosphate and sugar moieties of ligands. An additional nucleobase binding site was identified on the surface, which explains the absence of the Tyr site known from P1 nuclease. For the first time ternary complexes with ligands enable modeling of ssDNA binding in the active site cleft. Interpretation of the results in the context of the whole S1-P1 nuclease family significantly broadens our knowledge regarding ligand interaction modes and the strategies of adjustment of the enzyme surface and binding sites to achieve particular specificity.

  15. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2

    Science.gov (United States)

    Tsabar, Michael; Eapen, Vinay V.; Mason, Jennifer M.; Memisoglu, Gonen; Waterman, David P.; Long, Marcus J.; Bishop, Douglas K.; Haber, James E.

    2015-01-01

    In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5′ to 3′ end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5′ to 3′ resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells. PMID:26019182

  16. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Craig B Wilen

    2011-04-01

    Full Text Available HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5 virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4 in place of or in addition to CCR5 (R5X4 remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.

  17. Functional Interplay of the Mre11 Nuclease and Ku in the Response to Replication-Associated DNA Damage ▿

    Science.gov (United States)

    Foster, Steven S.; Balestrini, Alessia; Petrini, John H. J.

    2011-01-01

    The Mre11 complex is a central component of the DNA damage response, with roles in damage sensing, molecular bridging, and end resection. We have previously shown that in Saccharomyces cerevisiae, Ku70 (yKu70) deficiency reduces the ionizing radiation sensitivity of mre11Δ mutants. In this study, we show that yKu70 deficiency suppressed the camptothecin (CPT) and methyl methanesulfonate (MMS) sensitivity of nuclease-deficient mre11-3 and sae2Δ mutants in an Exo1-dependent manner. CPT-induced G2/M arrest, γ-H2AX persistence, and chromosome breaks were elevated in mre11-3 mutants. These outcomes were reduced by yKu70 deficiency. Given that the genotoxic effects of CPT are manifest during DNA replication, these data suggest that Ku limits Exo1-dependent double-strand break (DSB) resection during DNA replication, inhibiting the initial processing steps required for homology-directed repair. We propose that Mre11 nuclease- and Sae2-dependent DNA end processing, which initiates DSB resection prevents Ku from engaging DSBs, thus promoting Exo1-dependent resection. In agreement with this idea, we show that Ku affinity for binding to short single-stranded overhangs is much lower than for blunt DNA ends. Collectively, the data define a nonhomologous end joining (NHEJ)-independent, S-phase-specific function of the Ku heterodimer. PMID:21876003

  18. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci.

    Science.gov (United States)

    Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H

    2017-04-01

    Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.

  19. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  20. SSTRAP: A computational model for genomic motif discovery ...

    African Journals Online (AJOL)

    Computational methods can potentially provide high-quality prediction of biological molecules such as DNA binding sites and Transcription factors and therefore reduce the time needed for experimental verification and challenges associated with experimental methods. These biological molecules or motifs have significant ...

  1. Identification of a Baeyer-Villiger monooxygenase sequence motif

    NARCIS (Netherlands)

    Fraaije, MW; Kamerbeek, NM; van Berkel, WJH; Janssen, DB; Kamerbeek, Nanne M.; Berkel, Willem J.H. van

    2002-01-01

    Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXRXXXW(P/D). Studies with

  2. Linear motif atlas for phosphorylation-dependent signaling

    DEFF Research Database (Denmark)

    Miller, Martin Lee; Jensen, LJ; Diella, F

    2008-01-01

    bind to them remains a challenge. NetPhorest is an atlas of consensus sequence motifs that covers 179 kinases and 104 phosphorylation-dependent binding domains [Src homology 2 (SH2), phosphotyrosine binding (PTB), BRCA1 C-terminal (BRCT), WW, and 14-3-3]. The atlas reveals new aspects of signaling...

  3. [Cover motifs of the Tidsskrift. A 14-year cavalcade].

    Science.gov (United States)

    Nylenna, M

    1998-12-10

    In 1985 the Journal of the Norwegian Medical Association changed its cover policy, moving the table of contents inside the Journal and introducing cover illustrations. This article provides an analysis of all cover illustrations published over this 14-year period, 420 covers in all. There is a great variation in cover motifs and designs and a development towards more general motifs. The initial emphasis on historical and medical aspects is now less pronounced, while the use of works of art and nature motifs has increased, and the cover now more often has a direct bearing on the specific contents of the issue. Professor of medical history Oivind Larsen has photographed two thirds of the covers and contributed 95% of the inside essay-style reflections on the cover motif. Over the years, he has expanded the role of the historian of medicine disseminating knowledge to include that of the raconteur with a personal tone of voice. The Journal's covers are now one of its most characteristic features, emblematic of the Journal's ambition of standing for quality and timelessness vis-à-vis the news media, and of its aim of bridging the gap between medicine and the humanities.

  4. Perspektif Psikologi Humanistik Abraham Maslow dalam Meninjau Motif Pelaku Pembunuhan

    OpenAIRE

    Nurwatie, Azrina; Fauzia, Rahmi; Akbar, Sukma Noor

    2014-01-01

    Fokus penelitian ini diarahkan pada motif pelaku pembunuhan dengan meninjaunya melalui perspektif psikologi humanistik Abraham Maslow. Subyek dalam penelitian ini berjumlah dua orang narapidana yang berada di Lapas Kelas IIA Anak Martapura dengan kasus pembunuhan. Metode penelitian yang digunakan dalam penelitian ini adalah metode penelitian kualitatif. Teknik pengumpulan data melalui wawancara, observasi, dokumentasi,dan pemeriksaan psikologis (tes grafis). Berdasarkan hasil analisis data da...

  5. Motifs in triadic random graphs based on Steiner triple systems

    Science.gov (United States)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  6. Genetic analysis of beta1 integrin "activation motifs" in mice

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Meyer, Hannelore; Legate, Kyle R

    2006-01-01

    -null phenotype in vivo. Surprisingly, neither the substitution of the tyrosines with phenylalanine nor the aspartic acid with alanine resulted in an obvious defect. These data suggest that the NPXY motifs of the beta1 integrin tail are essential for beta1 integrin function, whereas tyrosine phosphorylation...

  7. Insights into the motif preference of APOBEC3 enzymes.

    Directory of Open Access Journals (Sweden)

    Diako Ebrahimi

    Full Text Available We used a multivariate data analysis approach to identify motifs associated with HIV hypermutation by different APOBEC3 enzymes. The analysis showed that APOBEC3G targets G mainly within GG, TG, TGG, GGG, TGGG and also GGGT. The G nucleotides flanked by a C at the 3' end (in +1 and +2 positions were indicated as disfavoured targets by APOBEC3G. The G nucleotides within GGGG were found to be targeted at a frequency much less than what is expected. We found that the infrequent G-to-A mutation within GGGG is not limited to the inaccessibility, to APOBEC3, of poly Gs in the central and 3'polypurine tracts (PPTs which remain double stranded during the HIV reverse transcription. GGGG motifs outside the PPTs were also disfavoured. The motifs GGAG and GAGG were also found to be disfavoured targets for APOBEC3. The motif-dependent mutation of G within the HIV genome by members of the APOBEC3 family other than APOBEC3G was limited to GA→AA changes. The results did not show evidence of other types of context dependent G-to-A changes in the HIV genome.

  8. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  9. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    Science.gov (United States)

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Proteome-level assessment of origin, prevalence and function of Leucine-Aspartic Acid (LD) motifs

    KAUST Repository

    Alam, Tanvir; Alazmi, Meshari; Naser, Rayan Mohammad Mahmoud; Huser, Franceline; Momin, Afaque Ahmad Imtiyaz; Walkiewicz, Katarzyna Wiktoria; Canlas, Christian; Huser, Raphaë l; Ali, Amal J.; Merzaban, Jasmeen; Bajic, Vladimir B.; Gao, Xin; Arold, Stefan T.

    2018-01-01

    and migration, and revealed a new type of inverse LD motif consensus. Our evolutionary analysis suggested that LD motif signalling originated in the common unicellular ancestor of opisthokonts and amoebozoa by co-opting nuclear export sequences. Inter

  11. Modeling of 5 ' nuclease real-time responses for optimization of a high-throughput enrichment PCR procedure for Salmonella enterica

    DEFF Research Database (Denmark)

    Knutsson, R.; Löfström, Charlotta; Grage, H.

    2002-01-01

    The performance of a 5' nuclease real-time PCR assay was studied to optimize an automated method of detection of preenriched Salmonella enterica cells in buffered peptone water (BPW). The concentrations and interactions of the PCR reagents were evaluated on the basis of two detection responses, t...

  12. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi; Watson, Adam T.; Jo, Aera; Etheridge, Thomas J.; Yuan, Fenghua; Zhang, Yanbin; Kim, YoungChang; Carr, Anthony M.; Cho, Yunje

    2014-10-15

    Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domain playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.

  13. A tailored biocatalyst achieved by the rational anchoring of imidazole groups on a natural polymer: furnishing a potential artificial nuclease by sustainable materials engineering.

    Science.gov (United States)

    Ferreira, José G L; Grein-Iankovski, Aline; Oliveira, Marco A S; Simas-Tosin, Fernanda F; Riegel-Vidotti, Izabel C; Orth, Elisa S

    2015-04-11

    Foreseeing the development of artificial enzymes by sustainable materials engineering, we rationally anchored reactive imidazole groups on gum arabic, a natural biocompatible polymer. The tailored biocatalyst GAIMZ demonstrated catalytic activity (>10(5)-fold) in dephosphorylation reactions with recyclable features and was effective in cleaving plasmid DNA, comprising a potential artificial nuclease.

  14. Optomagnetic Detection of MicroRNA Based on Duplex-Specific Nuclease-Assisted Target Recycling and Multilayer Core-Satellite Magnetic Superstructures

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Qiu, Zhen

    2017-01-01

    -efficiency, and potential for bioresponsive multiplexing. Herein, we demonstrate a sensitive and rapid miRNA detection method based on optomagnetic read-out, duplex-specific nuclease (DSN)-assisted target recycling, and the use of multilayer core-satellite magnetic superstructures. Triggered by the presence of target mi...

  15. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system.

    Science.gov (United States)

    Sinkunas, Tomas; Gasiunas, Giedrius; Fremaux, Christophe; Barrangou, Rodolphe; Horvath, Philippe; Siksnys, Virginijus

    2011-04-06

    Clustered regularly interspaced short palindromic repeat (CRISPR) is a recently discovered adaptive prokaryotic immune system that provides acquired immunity against foreign nucleic acids by utilizing small guide crRNAs (CRISPR RNAs) to interfere with invading viruses and plasmids. In Escherichia coli, Cas3 is essential for crRNA-guided interference with virus proliferation. Cas3 contains N-terminal HD phosphohydrolase and C-terminal Superfamily 2 (SF2) helicase domains. Here, we provide the first report of the cloning, expression, purification and in vitro functional analysis of the Cas3 protein of the Streptococcus thermophilus CRISPR4 (Ecoli subtype) system. Cas3 possesses a single-stranded DNA (ssDNA)-stimulated ATPase activity, which is coupled to unwinding of DNA/DNA and RNA/DNA duplexes. Cas3 also shows ATP-independent nuclease activity located in the HD domain with a preference for ssDNA substrates. To dissect the contribution of individual domains, Cas3 separation-of-function mutants (ATPase(+)/nuclease(-) and ATPase(-)/nuclease(+)) were obtained by site-directed mutagenesis. We propose that the Cas3 ATPase/helicase domain acts as a motor protein, which assists delivery of the nuclease activity to Cascade-crRNA complex targeting foreign DNA.

  16. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    Science.gov (United States)

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  17. Creating Directed Double-strand Breaks with the Ref Protein: A Novel Rec A-Dependent Nuclease from Bacteriophage P1

    Energy Technology Data Exchange (ETDEWEB)

    Gruenig, Marielle C.; Lu, Duo; Won, Sang Joon; Dulberger, Charles L.; Manlick, Angela J.; Keck, James L.; Cox, Michael M. (UW)

    2012-03-16

    The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 {angstrom} resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded {beta}-hairpin that is sandwiched between several {alpha}-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.

  18. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  19. Functionalized bioengineered spider silk spheres improve nuclease resistance and activity of oligonucleotide therapeutics providing a strategy for cancer treatment.

    Science.gov (United States)

    Kozlowska, Anna Karolina; Florczak, Anna; Smialek, Maciej; Dondajewska, Ewelina; Mackiewicz, Andrzej; Kortylewski, Marcin; Dams-Kozlowska, Hanna

    2017-09-01

    Cell-selective delivery and sensitivity to serum nucleases remain major hurdles to the clinical application of RNA-based oligonucleotide therapeutics, such as siRNA. Spider silk shows great potential as a biomaterial due to its biocompatibility and biodegradability. Self-assembling properties of silk proteins allow for processing into several different morphologies such as fibers, scaffolds, films, hydrogels, capsules and spheres. Moreover, bioengineering of spider silk protein sequences can functionalize silk by adding peptide moieties with specific features including binding or cell recognition domains. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics, such as CpG-siRNA. The MS2 bioengineered silk was functionalized with poly-lysine domain (KN) to generate hybrid silk MS2KN. CpG-siRNA efficiently bound to MS2KN in contrary to control MS2. Both MS2KN complexes and spheres protected CpG-siRNA from degradation by serum nucleases. CpG-siRNA molecules encapsulated into MS2KN spheres were efficiently internalized and processed by TLR9-positive macrophages. Importantly, CpG-STAT3siRNA loaded in silk spheres showed delayed and extended target gene silencing compared to naked oligonucleotides. The prolonged Stat3 silencing resulted in the more pronounced downregulation of interleukin 6 (IL-6), a proinflammatory cytokine and upstream activator of STAT3, which limits the efficacy of TLR9 immunostimulation. Our results demonstrate the feasibility of using spider silk spheres as a carrier of therapeutic nucleic acids. Moreover, the modified kinetic and activity of the CpG-STAT3siRNA embedded into silk spheres is likely to improve immunotherapeutic effects in vivo. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel

  20. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    Science.gov (United States)

    Matvienko, Marta; Kozik, Alexander; Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  1. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    Directory of Open Access Journals (Sweden)

    Marta Matvienko

    Full Text Available Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC, which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  2. Functional characterization of a conserved archaeal viral operon revealing single-stranded DNA binding, annealing and nuclease activities

    DEFF Research Database (Denmark)

    Guo, Yang; Kragelund, Birthe Brandt; White, Malcolm F.

    2015-01-01

    encoding proteins of unknown function and forming an operon with ORF207 (gp19). SIRV2 gp17 was found to be a single-stranded DNA (ssDNA) binding protein different in structure from all previously characterized ssDNA binding proteins. Mutagenesis of a few conserved basic residues suggested a U......-shaped binding path for ssDNA. The recombinant gp18 showed an ssDNA annealing activity often associated with helicases and recombinases. To gain insight into the biological role of the entire operon, we characterized SIRV2 gp19 and showed it to possess a 5'→3' ssDNA exonuclease activity, in addition...... for rudiviruses and the close interaction among the ssDNA binding, annealing and nuclease proteins strongly point to a role of the gene operon in genome maturation and/or DNA recombination that may function in viral DNA replication/repair....

  3. Probing force-induced unfolding intermediates of a single staphylococcal nuclease molecule and the effect of ligand binding

    International Nuclear Information System (INIS)

    Ishii, Takaaki; Murayama, Yoshihiro; Katano, Atsuto; Maki, Kosuke; Kuwajima, Kunihiro; Sano, Masaki

    2008-01-01

    Single-molecule manipulation techniques have given experimental access to unfolding intermediates of proteins that are inaccessible in conventional experiments. A detailed characterization of the intermediates is a challenging problem that provides new possibilities for directly probing the energy landscape of proteins. We investigated single-molecule mechanical unfolding of a small globular protein, staphylococcal nuclease (SNase), using atomic force microscopy. The unfolding trajectories of the protein displayed sub-molecular and stochastic behavior with typical lengths corresponding to the size of the unfolded substructures. Our results support the view that the single protein unfolds along multiple pathways as suggested in recent theoretical studies. Moreover, we found the drastic change, caused by the ligand and inhibitor bindings, in the mechanical unfolding dynamics

  4. Mechanism of duplex DNA destabilization by RNA-guided Cas9 nuclease during target interrogation.

    Science.gov (United States)

    Mekler, Vladimir; Minakhin, Leonid; Severinov, Konstantin

    2017-05-23

    The prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) endonuclease cleaves double-stranded DNA sequences specified by guide RNA molecules and flanked by a protospacer adjacent motif (PAM) and is widely used for genome editing in various organisms. The RNA-programmed Cas9 locates the target site by scanning genomic DNA. We sought to elucidate the mechanism of initial DNA interrogation steps that precede the pairing of target DNA with guide RNA. Using fluorometric and biochemical assays, we studied Cas9/guide RNA complexes with model DNA substrates that mimicked early intermediates on the pathway to the final Cas9/guide RNA-DNA complex. The results show that Cas9/guide RNA binding to PAM favors separation of a few PAM-proximal protospacer base pairs allowing initial target interrogation by guide RNA. The duplex destabilization is mediated, in part, by Cas9/guide RNA affinity for unpaired segments of nontarget strand DNA close to PAM. Furthermore, our data indicate that the entry of double-stranded DNA beyond a short threshold distance from PAM into the Cas9/single-guide RNA (sgRNA) interior is hindered. We suggest that the interactions unfavorable for duplex DNA binding promote DNA bending in the PAM-proximal region during early steps of Cas9/guide RNA-DNA complex formation, thus additionally destabilizing the protospacer duplex. The mechanism that emerges from our analysis explains how the Cas9/sgRNA complex is able to locate the correct target sequence efficiently while interrogating numerous nontarget sequences associated with correct PAMs.

  5. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application.

    Science.gov (United States)

    Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei

    2016-04-05

    Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery.

  6. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-01

    LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  7. DMINDA: an integrated web server for DNA motif identification and analyses.

    Science.gov (United States)

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-07-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs

    LENUS (Irish Health Repository)

    Casey, Fergal

    2011-08-22

    Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.

  9. Gene regulatory and signaling networks exhibit distinct topological distributions of motifs

    Science.gov (United States)

    Ferreira, Gustavo Rodrigues; Nakaya, Helder Imoto; Costa, Luciano da Fontoura

    2018-04-01

    The biological processes of cellular decision making and differentiation involve a plethora of signaling pathways and gene regulatory circuits. These networks in turn exhibit a multitude of motifs playing crucial parts in regulating network activity. Here we compare the topological placement of motifs in gene regulatory and signaling networks and observe that it suggests different evolutionary strategies in motif distribution for distinct cellular subnetworks.

  10. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs.

    Science.gov (United States)

    Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude

    2011-06-20

    One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  11. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    Science.gov (United States)

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  12. Isolating DNA from sexual assault cases: a comparison of standard methods with a nuclease-based approach

    Science.gov (United States)

    2012-01-01

    Background Profiling sperm DNA present on vaginal swabs taken from rape victims often contributes to identifying and incarcerating rapists. Large amounts of the victim’s epithelial cells contaminate the sperm present on swabs, however, and complicate this process. The standard method for obtaining relatively pure sperm DNA from a vaginal swab is to digest the epithelial cells with Proteinase K in order to solubilize the victim’s DNA, and to then physically separate the soluble DNA from the intact sperm by pelleting the sperm, removing the victim’s fraction, and repeatedly washing the sperm pellet. An alternative approach that does not require washing steps is to digest with Proteinase K, pellet the sperm, remove the victim’s fraction, and then digest the residual victim’s DNA with a nuclease. Methods The nuclease approach has been commercialized in a product, the Erase Sperm Isolation Kit (PTC Labs, Columbia, MO, USA), and five crime laboratories have tested it on semen-spiked female buccal swabs in a direct comparison with their standard methods. Comparisons have also been performed on timed post-coital vaginal swabs and evidence collected from sexual assault cases. Results For the semen-spiked buccal swabs, Erase outperformed the standard methods in all five laboratories and in most cases was able to provide a clean male profile from buccal swabs spiked with only 1,500 sperm. The vaginal swabs taken after consensual sex and the evidence collected from rape victims showed a similar pattern of Erase providing superior profiles. Conclusions In all samples tested, STR profiles of the male DNA fractions obtained with Erase were as good as or better than those obtained using the standard methods. PMID:23211019

  13. WildSpan: mining structured motifs from protein sequences

    Directory of Open Access Journals (Sweden)

    Chen Chien-Yu

    2011-03-01

    Full Text Available Abstract Background Automatic extraction of motifs from biological sequences is an important research problem in study of molecular biology. For proteins, it is desired to discover sequence motifs containing a large number of wildcard symbols, as the residues associated with functional sites are usually largely separated in sequences. Discovering such patterns is time-consuming because abundant combinations exist when long gaps (a gap consists of one or more successive wildcards are considered. Mining algorithms often employ constraints to narrow down the search space in order to increase efficiency. However, improper constraint models might degrade the sensitivity and specificity of the motifs discovered by computational methods. We previously proposed a new constraint model to handle large wildcard regions for discovering functional motifs of proteins. The patterns that satisfy the proposed constraint model are called W-patterns. A W-pattern is a structured motif that groups motif symbols into pattern blocks interleaved with large irregular gaps. Considering large gaps reflects the fact that functional residues are not always from a single region of protein sequences, and restricting motif symbols into clusters corresponds to the observation that short motifs are frequently present within protein families. To efficiently discover W-patterns for large-scale sequence annotation and function prediction, this paper first formally introduces the problem to solve and proposes an algorithm named WildSpan (sequential pattern mining across large wildcard regions that incorporates several pruning strategies to largely reduce the mining cost. Results WildSpan is shown to efficiently find W-patterns containing conserved residues that are far separated in sequences. We conducted experiments with two mining strategies, protein-based and family-based mining, to evaluate the usefulness of W-patterns and performance of WildSpan. The protein-based mining mode

  14. Core signalling motif displaying multistability through multi-state enzymes

    DEFF Research Database (Denmark)

    Feng, Song; Saez Cornellana, Meritxell; Wiuf, Carsten Henrik

    2016-01-01

    Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology....... Here, we show that a key motif found predominantly in eukaryotic signalling systems, namely a futile signalling cycle, can display bistability when featuring a two-state kinase. We provide necessary and sufficient mathematical conditions on the kinetic parameters of this motif that guarantee...... the existence of multiple steady states. These conditions foster the intuition that bistability arises as a consequence of competition between the two states of the kinase. Extending from this result, we find that increasing the number of kinase states linearly translates into an increase in the number...

  15. Factoring local sequence composition in motif significance analysis.

    Science.gov (United States)

    Ng, Patrick; Keich, Uri

    2008-01-01

    We recently introduced a biologically realistic and reliable significance analysis of the output of a popular class of motif finders. In this paper we further improve our significance analysis by incorporating local base composition information. Relying on realistic biological data simulation, as well as on FDR analysis applied to real data, we show that our method is significantly better than the increasingly popular practice of using the normal approximation to estimate the significance of a finder's output. Finally we turn to leveraging our reliable significance analysis to improve the actual motif finding task. Specifically, endowing a variant of the Gibbs Sampler with our improved significance analysis we demonstrate that de novo finders can perform better than has been perceived. Significantly, our new variant outperforms all the finders reviewed in a recently published comprehensive analysis of the Harbison genome-wide binding location data. Interestingly, many of these finders incorporate additional information such as nucleosome positioning and the significance of binding data.

  16. Neoanalysis, Orality, and Intertextuality: An Examination of Homeric Motif Transference

    Directory of Open Access Journals (Sweden)

    Jonathan Burgess

    2006-03-01

    Full Text Available In Homeric studies scholars have speculated on the influence of (non-surviving preHomeric material on the Iliad. This article expands this line of argument from an oralist perspective, with reference to modern intertextual theory. It concludes that preHomeric and nonHomeric motifs from oral traditions were transferred into the epic poem, creating an intertextually allusive poetics that would have been recognizable to an early Greek audience informed of mythological traditions.

  17. Motif Subscriber Menonton Channel YouTube Raditya Dika

    OpenAIRE

    Mellyaningsih, Adinda

    2016-01-01

    Penelitian ini dilakukan untuk mengetahui motif para subscriber dalam menonton channelYouTube Raditya Dika. Raditya Dika merupakan YouTuber Indonesia dengan jumlah subscriber terbanyak dan merupakan orang pertama di Indonesia yang mendapatkan penghargaan Certifies Award oleh YouTube. Peneliti menggunakan teori Uses and Gratification dengan empat indikator, yaitu hiburan dan relaksasi, hubungan antar pribadi, mencari informasi, dan persahabatan. Metode dalam penelitian ini adalah online survei...

  18. Perception Enhancement using Visual Attributes in Sequence Motif Visualization

    OpenAIRE

    Oon, Yin; Lee, Nung; Kok, Wei

    2016-01-01

    Sequence logo is a well-accepted scientific method to visualize the conservation characteristics of biological sequence motifs. Previous studies found that using sequence logo graphical representation for scientific evidence reports or arguments could seriously cause biases and misinterpretation by users. This study investigates on the visual attributes performance of a sequence logo in helping users to perceive and interpret the information based on preattentive theories and Gestalt principl...

  19. Exon silencing by UAGG motifs in response to neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Ping An

    2007-02-01

    Full Text Available Alternative pre-mRNA splicing plays fundamental roles in neurons by generating functional diversity in proteins associated with the communication and connectivity of the synapse. The CI cassette of the NMDA R1 receptor is one of a variety of exons that show an increase in exon skipping in response to cell excitation, but the molecular nature of this splicing responsiveness is not yet understood. Here we investigate the molecular basis for the induced changes in splicing of the CI cassette exon in primary rat cortical cultures in response to KCl-induced depolarization using an expression assay with a tight neuron-specific readout. In this system, exon silencing in response to neuronal excitation was mediated by multiple UAGG-type silencing motifs, and transfer of the motifs to a constitutive exon conferred a similar responsiveness by gain of function. Biochemical analysis of protein binding to UAGG motifs in extracts prepared from treated and mock-treated cortical cultures showed an increase in nuclear hnRNP A1-RNA binding activity in parallel with excitation. Evidence for the role of the NMDA receptor and calcium signaling in the induced splicing response was shown by the use of specific antagonists, as well as cell-permeable inhibitors of signaling pathways. Finally, a wider role for exon-skipping responsiveness is shown to involve additional exons with UAGG-related silencing motifs, and transcripts involved in synaptic functions. These results suggest that, at the post-transcriptional level, excitable exons such as the CI cassette may be involved in strategies by which neurons mount adaptive responses to hyperstimulation.

  20. Multiple TPR motifs characterize the Fanconi anemia FANCG protein.

    Science.gov (United States)

    Blom, Eric; van de Vrugt, Henri J; de Vries, Yne; de Winter, Johan P; Arwert, Fré; Joenje, Hans

    2004-01-05

    The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.

  1. Efficient sequential and parallel algorithms for planted motif search.

    Science.gov (United States)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2014-01-31

    Motif searching is an important step in the detection of rare events occurring in a set of DNA or protein sequences. One formulation of the problem is known as (l,d)-motif search or Planted Motif Search (PMS). In PMS we are given two integers l and d and n biological sequences. We want to find all sequences of length l that appear in each of the input sequences with at most d mismatches. The PMS problem is NP-complete. PMS algorithms are typically evaluated on certain instances considered challenging. Despite ample research in the area, a considerable performance gap exists because many state of the art algorithms have large runtimes even for moderately challenging instances. This paper presents a fast exact parallel PMS algorithm called PMS8. PMS8 is the first algorithm to solve the challenging (l,d) instances (25,10) and (26,11). PMS8 is also efficient on instances with larger l and d such as (50,21). We include a comparison of PMS8 with several state of the art algorithms on multiple problem instances. This paper also presents necessary and sufficient conditions for 3 l-mers to have a common d-neighbor. The program is freely available at http://engr.uconn.edu/~man09004/PMS8/. We present PMS8, an efficient exact algorithm for Planted Motif Search. PMS8 introduces novel ideas for generating common neighborhoods. We have also implemented a parallel version for this algorithm. PMS8 can solve instances not solved by any previous algorithms.

  2. Aplikasi Ornamen Khas Maluku untuk Pengembangan Desain Motif Batik

    OpenAIRE

    Masiswo Masiswo; Vivin Atika

    2016-01-01

    ABSTRAKMaluku memiliki banyak ragam hias budaya warisan nilai leluhur berupa ornamen etnis yang merupakan kesenian dan keterampilan kerajinan. Hasil warisan tersebut sampai saat ini masih lestari hidup serta dapat dinikmati sebagai konsumsi rohani yang memuaskan manusia. Berkaitan dengan keberlangsungan nilai-nilai tradisi etnis yang berwujud pada ornamen-ornamen daerah Maluku, maka dikembangkan untuk kebutuhan manusia berupa motif batik pada kain. Pengembangan ornamen ini lebih menekankan pa...

  3. ROMANIAN TRADITIONAL MOTIF ELEMENT OF MODERNITY IN CLOTHING

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius Darius

    2017-05-01

    Full Text Available In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the T-shirt for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the University of Oradea and traditional motif was selected from a collection comprising a number of Romanian traditional motifs from different parts of the country and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. The embroidery was done using BERNINA Embroidery Software Designer Plus Software. This software allows you to export the model to any domestic or industrial embroidery machine regardless of brand. Finally we observed the resistance of the printed and embroided model to various: elasticity, resistance to abrasion and a sensory analysis on the preservation of color. After testing we noticed the imprint resistance applied to the fabric, resulting in a quality that makes possible to keep the Romanian traditional motif from generation to generation.

  4. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  5. Codon based co-occurrence network motifs in human mitochondria

    Directory of Open Access Journals (Sweden)

    Pramod Shinde

    2017-10-01

    Full Text Available The nucleotide polymorphism in human mitochondrial genome (mtDNA tolled by codon position bias plays an indispensable role in human population dispersion and expansion. Herein, we constructed genome-wide nucleotide co-occurrence networks using a massive data consisting of five different geographical regions and around 3000 samples for each region. We developed a powerful network model to describe complex mitochondrial evolutionary patterns between codon and non-codon positions. It was interesting to report a different evolution of Asian genomes than those of the rest which is divulged by network motifs. We found evidence that mtDNA undergoes substantial amounts of adaptive evolution, a finding which was supported by a number of previous studies. The dominance of higher order motifs indicated the importance of long-range nucleotide co-occurrence in genomic diversity. Most notably, codon motifs apparently underpinned the preferences among codon positions for co-evolution which is probably highly biased during the origin of the genetic code. Our analyses manifested that codon position co-evolution is very well conserved across human sub-populations and independently maintained within human sub-populations implying the selective role of evolutionary processes on codon position co-evolution. Ergo, this study provided a framework to investigate cooperative genomic interactions which are critical in underlying complex mitochondrial evolution.

  6. Organofluorine chemistry: synthesis and conformation of vicinal fluoromethylene motifs.

    Science.gov (United States)

    O'Hagan, David

    2012-04-20

    The C-F bond is the most polar bond in organic chemistry, and thus the bond has a relatively large dipole moment with a significant -ve charge density on the fluorine atom and correspondingly a +ve charge density on carbon. The electrostatic nature of the bond renders it the strongest one in organic chemistry. However, the fluorine atom itself is nonpolarizable, and thus, despite the charge localization on fluorine, it is a poor hydrogen-bonding acceptor. These properties of the C-F bond make it attractive in the design of nonviscous but polar organic compounds, with a polarity limited to influencing the intramolecular nature of the molecule and less so intermolecular interactions with the immediate environment. In this Perspective, the synthesis of aliphatic chains carrying multivicinal fluoromethylene motifs is described. It emerges that the dipoles of adjacent C-F bonds orientate relative to each other, and thus, individual diastereoisomers display different backbone carbon chain conformations. These conformational preferences recognize the influence of the well-known gauche effect associated with 1,2-difluoroethane but extend to considering 1,3-fluorine-fluorine dipolar repulsions. The synthesis of carbon chains carrying two, three, four, five, and six vicinal fluoromethylene motifs is described, with an emphasis on our own research contributions. These motifs obey almost predictable conformational behavior, and they emerge as candidates for inclusion in the design of performance organic molecules. © 2012 American Chemical Society

  7. iFORM: Incorporating Find Occurrence of Regulatory Motifs.

    Science.gov (United States)

    Ren, Chao; Chen, Hebing; Yang, Bite; Liu, Feng; Ouyang, Zhangyi; Bo, Xiaochen; Shu, Wenjie

    2016-01-01

    Accurately identifying the binding sites of transcription factors (TFs) is crucial to understanding the mechanisms of transcriptional regulation and human disease. We present incorporating Find Occurrence of Regulatory Motifs (iFORM), an easy-to-use and efficient tool for scanning DNA sequences with TF motifs described as position weight matrices (PWMs). Both performance assessment with a receiver operating characteristic (ROC) curve and a correlation-based approach demonstrated that iFORM achieves higher accuracy and sensitivity by integrating five classical motif discovery programs using Fisher's combined probability test. We have used iFORM to provide accurate results on a variety of data in the ENCODE Project and the NIH Roadmap Epigenomics Project, and the tool has demonstrated its utility in further elucidating individual roles of functional elements. Both the source and binary codes for iFORM can be freely accessed at https://github.com/wenjiegroup/iFORM. The identified TF binding sites across human cell and tissue types using iFORM have been deposited in the Gene Expression Omnibus under the accession ID GSE53962.

  8. THE MOTIF OF THE PRODIGAL SON IN IVAN TURGENEV'S NOVELS

    Directory of Open Access Journals (Sweden)

    Valentina Ivanovna Gabdullina

    2013-11-01

    Full Text Available The author questions the perception of Ivan Turgenev as a “non- Christian writer” and studies the problem of the prodigal son motif functioning in a series of his novels. In his novels, Turgenev pictured different phases of the archetypal story, originating from the Gospel parable of the prodigal son. In the novel Rudin he depicted the phase of spiritual wanderings of the hero who had lost touch with his native land — Russia. In his next novels (Home of the Gentry, Fathers and Sons and Smoke, after leading his hero in circles and sending him back to his paternal home, Turgenev reconstructs the model of human behavior, represented in the parable, thereby recognizing the immutability of the idea formalized in the Gospel. The motif of the return to Russian land gets its completion in Turgenev's last novel Virgin Soil, in which the author paradoxically connects the Westernist idea with the Gospel imperative. Solomin, the son of a deacon, sent by his wise father out to Europe “to get education”, studies in England, masters the European knowledge and returns back “to his native land” to establish his own business in inland Russia. Thus, a series of Turgenev's novels, in which he portrayed different phases of social life, are interlinked with the motif of the prodigal son, who is represented by novels' main characters.

  9. The city as a motif in Slovene youth literature

    Directory of Open Access Journals (Sweden)

    Milena Mileva Blažić

    2003-01-01

    Full Text Available The article presents the city as motif of Slovenian youth literature in four different periods, beginning in the first period of original Slovenian youth literature in the second half of the 19th century, second period in the first half of the 20th century, third period in the second half of the 20th century and after 1950, when significant books were produced in the field of short modern stories, emphasising on picture books and realistic narrative prose, and the fourth period after 1990. A discernable shift can be observed in the thirties of the 20th century, during the times of socialist realism. The most significant change occurred after 1960, when massive migration from rural to urban environments caused by industrialisation began. The motif of urban environment especially marked modern realistic narrative, coined problematic narrative after 1990, with its focus on issues of growing up in such environments. The city as motif or theme doesn’t appear only in realistic narrative, but since the early 20th century also in fantastic narrative, thus it dichotomically presents the image of real world in Slovenian youth realistic narrative.

  10. TOPDOM: database of conservatively located domains and motifs in proteins.

    Science.gov (United States)

    Varga, Julia; Dobson, László; Tusnády, Gábor E

    2016-09-01

    The TOPDOM database-originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins-has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. TOPDOM database is available at http://topdom.enzim.hu The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. tusnady.gabor@ttk.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  11. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L

    1998-01-01

    Many integral membrane proteins contain leucine-based motifs within their cytoplasmic domains that mediate internalization and intracellular sorting. Two types of leucine-based motifs have been identified. One type is dependent on phosphorylation, whereas the other type, which includes an acidic...... amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  12. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    Science.gov (United States)

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  13. Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Directory of Open Access Journals (Sweden)

    Launey Thomas

    2011-06-01

    Full Text Available Abstract Background The interactions between PDZ (PSD-95, Dlg, ZO-1 domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C- terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level. Results Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V or type-II (x-x-V-x-I/V PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode. We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif. Conclusions Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.

  14. Sequence-based classification using discriminatory motif feature selection.

    Directory of Open Access Journals (Sweden)

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  15. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    Energy Technology Data Exchange (ETDEWEB)

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by

  16. Indonesian Traditional Toys and the Development of Batik Motifs

    Directory of Open Access Journals (Sweden)

    Bagus Indrayana

    2016-06-01

    Full Text Available There is a wide array of traditional toys in Indonesia. In the past, traditional toys played an important role for skill and creativity development of children. Today, the position of traditional toys in the society is displaced by toys from large-scale manufacturers. Given the critical role of traditional toys for children’s motoric and social development, there is a need to develop media that can be used to promote these traditional products and strengthen their position in the public. We propose to use Batik as a way to effectively disseminate and promote traditional toys to the general public. Apart from this, using traditional toys to create new Batik motifs can have an economic value for the producers of Batik, promote Indonesian products and enrich the Indonesian Batik. This study aims to explore the variety of traditional toys, mainly from Klaten and Magelang, in the Central Java province of Indonesia, and use them as the basis for the development of Batik motif creation. This study used Trilogi Keseimbangan (or Harmony Trilogy aesthetic theory analytical approach that explains the creation of craft consists of the following phases: exploration, design, and materialization. The creation method in this study adopts Tiga Tahap Enam Langkah (Three Phases, Six Steps method offered in the theory. The finding in the field found that the traditional toys material used in Klaten and Magelang, mostly made from waste wood, plywood, and zinc. The manufacturing process is done manually by two or three craftsmen using a simple technology. The traditional toys are designed by the artisans mostly, although there may be designs from the clients. In addition, we also found that the traditional toys have never been used as a Batik motif. The traditional toys Batik motif presented in this work is researcher’s design. For the purposes of this study, we first research the variety of traditional toys available in the market today in Indonesia. We look

  17. Dimensionality of social networks using motifs and eigenvalues.

    Directory of Open Access Journals (Sweden)

    Anthony Bonato

    Full Text Available We consider the dimensionality of social networks, and develop experiments aimed at predicting that dimension. We find that a social network model with nodes and links sampled from an m-dimensional metric space with power-law distributed influence regions best fits samples from real-world networks when m scales logarithmically with the number of nodes of the network. This supports a logarithmic dimension hypothesis, and we provide evidence with two different social networks, Facebook and LinkedIn. Further, we employ two different methods for confirming the hypothesis: the first uses the distribution of motif counts, and the second exploits the eigenvalue distribution.

  18. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Fichorova, Raina N., E-mail: rfichorova@rics.bwh.harvard.edu [Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Mendonca, Kevin; Yamamoto, Hidemi S.; Murray, Ryan [Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States); Chandra, Neelima; Doncel, Gustavo F. [CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA (United States)

    2015-06-15

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were

  19. Proviral HIV-genome-wide and pol-gene specific zinc finger nucleases: usability for targeted HIV gene therapy.

    Science.gov (United States)

    Wayengera, Misaki

    2011-07-22

    Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases) AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively). However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX) at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i) to assemble and construct zinc finger arrays and nucleases (ZFN) with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii) to advance a model for pre-clinically testing lentiviral vectors (LV) that deliver and transduce either ZFN genotype. First, we computationally generated the consensus sequences of (a) 114 dsDNA-binding zinc finger (Zif) arrays (ZFAs or ZifHIV-pol) and (b) two zinc-finger nucleases (ZFNs) which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN). Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN). Second, a model for constructing lentiviral vectors (LVs) that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively) is proposed. Third, two preclinical models for controlled testing of the safety and efficacy of either of these

  20. A quantitative multiplex nuclease protection assay reveals immunotoxicity gene expression profiles in the rabbit model for vaginal drug safety evaluation

    International Nuclear Information System (INIS)

    Fichorova, Raina N.; Mendonca, Kevin; Yamamoto, Hidemi S.; Murray, Ryan; Chandra, Neelima; Doncel, Gustavo F.

    2015-01-01

    Any vaginal product that alters the mucosal environment and impairs the immune barrier increases the risk of sexually transmitted infections, especially HIV infection, which thrives on mucosal damage and inflammation. The FDA-recommended rabbit vaginal irritation (RVI) model serves as a first line selection tool for vaginal products; however, for decades it has been limited to histopathology scoring, insufficient to select safe anti-HIV microbicides. In this study we incorporate to the RVI model a novel quantitative nuclease protection assay (qNPA) to quantify mRNA levels of 25 genes representing leukocyte differentiation markers, toll-like receptors (TLR), cytokines, chemokines, epithelial repair, microbicidal and vascular markers, by designing two multiplex arrays. Tissue sections were obtained from 36 rabbits (6 per treatment arm) after 14 daily applications of a placebo gel, saline, 4% nonoxynol-9 (N-9), and three combinations of the anti-HIV microbicides tenofovir (TFV) and UC781 in escalating concentrations (highest: 10% TFV + 2.5%UC781). Results showed that increased expression levels of toll-like receptor (TLR)-4, interleukin (IL)-1β, CXCL8, epithelial membrane protein (EMP)-1 (P < 0.05), and decreased levels of TLR2 (P < 0.05), TLR3 and bactericidal permeability increasing protein (BPI) (P < 0.001) were associated with cervicovaginal mucosal alteration (histopathology). Seven markers showed a significant linear trend predicting epithelial damage (up with CD4, IL-1β, CXCL8, CCL2, CCL21, EMP1 and down with BPI). Despite the low tissue damage RVI scores, the high-dose microbicide combination gel caused activation of HIV host cells (SLC and CD4) while N-9 caused proinflammatory gene upregulation (IL-8 and TLR4) suggesting a potential for increasing risk of HIV via different mechanisms depending on the chemical nature of the test product. - Highlights: • A transcriptome nuclease protection assay assessed microbicides for vaginal safety. • Biomarkers were

  1. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections.

    Science.gov (United States)

    Castro-Mondragon, Jaime Abraham; Jaeger, Sébastien; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2017-07-27

    Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures

    Directory of Open Access Journals (Sweden)

    Hamed Bostan

    2012-01-01

    Full Text Available Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.

  3. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  4. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs

    DEFF Research Database (Denmark)

    Duda, Katarzyna; Lonowski, Lindsey A; Kofoed-Nielsen, Michael

    2014-01-01

    Targeted endonucleases including zinc finger nucleases (ZFNs) and clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas9 are increasingly being used for genome editing in higher species. We therefore devised a broadly applicable and versatile method for increasing editing...... higher genome editing rates. For ZFNs, this approach, combined with delivery of donors as single-stranded oligodeoxynucleotides and nucleases as messenger ribonucleic acid, enabled high knockin efficiencies in demanding applications, including biallelic codon conversion frequencies reaching 30......-70% at high transfection efficiencies and ∼2% at low transfection efficiencies, simultaneous homozygous knockin mutation of two genes with ∼1.5% efficiency as well as generation of cell pools with almost complete codon conversion via three consecutive targeting and FACS events. Observed off-target effects...

  5. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  6. Syntheses of prodrug-type phosphotriester oligonucleotides responsive to intracellular reducing environment for improvement of cell membrane permeability and nuclease resistance.

    Science.gov (United States)

    Hayashi, Junsuke; Samezawa, Yusuke; Ochi, Yosuke; Wada, Shun-Ichi; Urata, Hidehito

    2017-07-15

    We synthesized prodrug-type phosphotriester (PTE) oligonucleotides containing the six-membered cyclic disulfide moiety by using phosphoramidite chemistry. Prodrug-type oligonucleotides named "Reducing-Environment-Dependent Uncatalyzed Chemical Transforming (REDUCT) PTE oligonucleotides" were converted into natural oligonucleotides under cytosol-mimetic reductive condition. Furthermore, the REDUCT PTE oligonucleotides were robust to nuclease digestion and exhibited good cell membrane permeability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Romanian traditional motif - element of modernity in clothing

    Science.gov (United States)

    Doble, L.; Stan, O.; Suteu, M. D.; Albu, A.; Bohm, G.; Tsatsarou-Michalaki, A.; Gialinou, E.

    2017-10-01

    In this paper are presented the phases for improving from an aesthetic point of view a clothing item, the jacket respectively, with a straight cut for women using software design patterns, computerised graphics and textile different modern technologies including: industrial embroidery, digital printing, sublimation. In the first phase a documentation was prepared in the Ethnographic Museum of Transylvania from Cluj Napoca where more traditional motifs were selected specific to Transylvania etnographic region and were reintepreted and stylized whilst preserving the symbolism and color range specified to the area. For the styling phase was used CorelDraw vector graphics program that allows changing the shape, size and color of the drawings without affecting the identity of the pattern. In the patterns design phase Gemini CAD software was used and for the modeling and model development Optitex software was used. The part for garnishing the model was performed using Embrodery machine software reproducing the stylized motif identically. In order to obtain a significantly improved aesthetic look and an added artistic value the pattern chosen for the jacket was done using a combination of modern textile technologies. This has allowed the realization of a particular texture on the surface of the designed product, demonstrating that traditional patterns can be reintepreted in modern clothing

  8. THE MOTIF OF THE SECOND COMING IN RUSSIAN FANTASTIC FICTION

    Directory of Open Access Journals (Sweden)

    Tatyana I. Khoruzhenko

    2017-06-01

    Full Text Available The motif of the Second Coming of Christ takes a special place in Russian fantastic fiction at the turn of the millennium. In the recent decades allusions to the Gospel topic appears in increasing frequency in the genre of fantasy. The aim of the given article was to analyze the peculiarities of the depiction of the subject of Advent in Russian fantastic fiction. As the basis for the research the novels of Y. Voznesenskaya, N. Perumov, V. Khlumov, S. Lukyanenko and T. Ustimenko are of particular interest. The Advent motif appears in the story line of each of the novels in question. Though, the attitude of the authors to the image of the Savior and his second coming to the world fluctuates: from a respectful expectation (Y. Voznesenskaya, T. Ustimenko, S. Lukyanenko to the depiction of the Savior as a monster (N. Perumov. The possibility of an ambivalent interpretation of the Savior is the eloquent evidence of desacralization of this image. The profaning of the sacred is one of the tendencies of the modern popular culture. The genre of fantastic fiction, as a product of mass culture, has caught this trend quite precisely.

  9. Regulation of amyloid precursor protein processing by its KFERQ motif.

    Science.gov (United States)

    Park, Ji-Seon; Kim, Dong-Hou; Yoon, Seung-Yong

    2016-06-01

    Understanding of trafficking, processing, and degradation mechanisms of amyloid precursor protein (APP) is important because APP can be processed to produce β-amyloid (Aβ), a key pathogenic molecule in Alzheimer's disease (AD). Here, we found that APP contains KFERQ motif at its C-terminus, a consensus sequence for chaperone-mediated autophagy (CMA) or microautophagy which are another types of autophagy for degradation of pathogenic molecules in neurodegenerative diseases. Deletion of KFERQ in APP increased C-terminal fragments (CTFs) and secreted N-terminal fragments of APP and kept it away from lysosomes. KFERQ deletion did not abolish the interaction of APP or its cleaved products with heat shock cognate protein 70 (Hsc70), a protein necessary for CMA or microautophagy. These findings suggest that KFERQ motif is important for normal processing and degradation of APP to preclude the accumulation of APP-CTFs although it may not be important for CMA or microautophagy. [BMB Reports 2016; 49(6): 337-342].

  10. Network motif frequency vectors reveal evolving metabolic network organisation.

    Science.gov (United States)

    Pearcy, Nicole; Crofts, Jonathan J; Chuzhanova, Nadia

    2015-01-01

    At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this underlying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.

  11. Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis.

    Science.gov (United States)

    Weyman, Philip D; Beeri, Karen; Lefebvre, Stephane C; Rivera, Josefa; McCarthy, James K; Heuberger, Adam L; Peers, Graham; Allen, Andrew E; Dupont, Christopher L

    2015-05-01

    Diatoms are unicellular photosynthetic algae with promise for green production of fuels and other chemicals. Recent genome-editing techniques have greatly improved the potential of many eukaryotic genetic systems, including diatoms, to enable knowledge-based studies and bioengineering. Using a new technique, transcription activator-like effector nucleases (TALENs), the gene encoding the urease enzyme in the model diatom, Phaeodactylum tricornutum, was targeted for interruption. The knockout cassette was identified within the urease gene by PCR and Southern blot analyses of genomic DNA. The lack of urease protein was confirmed by Western blot analyses in mutant cell lines that were unable to grow on urea as the sole nitrogen source. Untargeted metabolomic analysis revealed a build-up of urea, arginine and ornithine in the urease knockout lines. All three intermediate metabolites are upstream of the urease reaction within the urea cycle, suggesting a disruption of the cycle despite urea production. Numerous high carbon metabolites were enriched in the mutant, implying a breakdown of cellular C and N repartitioning. The presented method improves the molecular toolkit for diatoms and clarifies the role of urease in the urea cycle. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Human lactoferrin efficiently targeted into caprine beta-lactoglobulin locus with transcription activator-like effector nucleases

    Directory of Open Access Journals (Sweden)

    Yu-Guo Yuan

    2017-08-01

    Full Text Available Objective To create genetically modified goat as a biopharming source of recombinant human lacotoferrin (hLF with transcription activator-like effector nucleases. Methods TALENs and targeting vector were transferred into cultured fibroblasts to insert hLF cDNA in the goat beta-lactoglobulin (BLG locus with homology-directed repair. The gene targeted efficiency was checked using sequencing and TE7I assay. The bi-allelic gene targeted colonies were isolated and confirmed with polymerase chain reaction, and used as donor cells for somatic cell nuclear transfer (SCNT. Results The targeted efficiency for BLG gene was approximately 10%. Among 12 Bi-allelic gene targeted colonies, five were used in first round SCNT and 4 recipients (23% were confirmed pregnant at 30 d. In second round SCNT, 7 (53%, 4 (31%, and 3 (23% recipients were confirmed to be pregnant by ultrasound on 30 d, 60 d, and 90 d. Conclusion This finding signifies the combined use of TALENs and SCNT can generate bi-allelic knock-in fibroblasts that can be cloned in a fetus. Therefore, it might lay the foundation for transgenic hLF goat generation and possible use of their mammary gland as a bioreactor for large-scale production of recombinant hLF.

  13. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka Anna; Mahfouz, Magdy M.

    2015-01-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  14. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2015-04-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  15. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein

    Directory of Open Access Journals (Sweden)

    April Pawluk

    2017-12-01

    Full Text Available CRISPR (clustered regularly interspaced short palindromic repeat-Cas adaptive immune systems are prevalent defense mechanisms in bacteria and archaea. They provide sequence-specific detection and neutralization of foreign nucleic acids such as bacteriophages and plasmids. One mechanism by which phages and other mobile genetic elements are able to overcome the CRISPR-Cas system is through the expression of anti-CRISPR proteins. Over 20 different families of anti-CRISPR proteins have been described, each of which inhibits a particular type of CRISPR-Cas system. In this work, we determined the structure of type I-E anti-CRISPR protein AcrE1 by X-ray crystallography. We show that AcrE1 binds to the CRISPR-associated helicase/nuclease Cas3 and that the C-terminal region of the anti-CRISPR protein is important for its inhibitory activity. We further show that AcrE1 can convert the endogenous type I-E CRISPR system into a programmable transcriptional repressor.

  16. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID using zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tomoji Mashimo

    Full Text Available BACKGROUND: Although the rat is extensively used as a laboratory model, the inability to utilize germ line-competent rat embryonic stem (ES cells has been a major drawback for studies that aim to elucidate gene functions. Recently, zinc-finger nucleases (ZFNs were successfully used to create genome-specific double-stranded breaks and thereby induce targeted gene mutations in a wide variety of organisms including plants, drosophila, zebrafish, etc. METHODOLOGY/PRINCIPAL FINDINGS: We report here on ZFN-induced gene targeting of the rat interleukin 2 receptor gamma (Il2rg locus, where orthologous human and mouse mutations cause X-linked severe combined immune deficiency (X-SCID. Co-injection of mRNAs encoding custom-designed ZFNs into the pronucleus of fertilized oocytes yielded genetically modified offspring at rates greater than 20%, which possessed a wide variety of deletion/insertion mutations. ZFN-modified founders faithfully transmitted their genetic changes to the next generation along with the severe combined immune deficiency phenotype. CONCLUSIONS AND SIGNIFICANCE: The efficient and rapid generation of gene knockout rats shows that using ZFN technology is a new strategy for creating gene-targeted rat models of human diseases. In addition, the X-SCID rats that were established in this study will be valuable in vivo tools for evaluating drug treatment or gene therapy as well as model systems for examining the treatment of xenotransplanted malignancies.

  17. Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells.

    Science.gov (United States)

    Qu, Xiying; Wang, Pengfei; Ding, Donglin; Wang, Xiaohui; Zhang, Gongmin; Zhou, Xin; Liu, Lin; Zhu, Xiaoli; Zeng, Hanxian; Zhu, Huanzhang

    2014-09-01

    A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.

  18. Substrate overlap and functional competition between human nucleotide excision repair and Escherichia coli photolyase and (A)BC excision nuclease

    International Nuclear Information System (INIS)

    Sibghat-Ullah; Sancar, Z.

    1990-01-01

    Human cell free extract prepared by the method of Manley et al. carries out repair synthesis on UV-irradiated DNA. Removal of pyrimidine dimers by photoreactivation with DNA photolyase reduces repair synthesis by about 50%. With excess enzyme in the reaction mixture photolyase reduced the repair signal by the same amount even in the absence of photoreactivating light, presumably by binding to pyrimidine dimers and interfering with the binding of human damage recognition protein. Similarly, the UvrB subunit of Escherichia coli (A)BC excinuclease when loaded onto UV-irradiated or psoralen-adducted DNA inhibited repair synthesis by cell-free extract by 75-80%. The opposite was true also as HeLa cell free extract specifically inhibited the photorepair of a thymine dimer by DNA photolyase and its removal by (A)BC excinuclease. Cell-free extracts from xeroderma pigmentosum (XP) complementation groups A and C were equally effective in blocking the E. coli repair proteins, while extracts from complementation groups D and E were ineffective in blocking the E. coli enzyme. These results suggest that XP-D and XP-E cells are defective in the damage recognition subunits(s) of human excision nuclease

  19. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    Science.gov (United States)

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  20. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  1. I-Ad-binding peptides derived from unrelated protein antigens share a common structural motif

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S

    1988-01-01

    on the I-Ad binding of the immunogenic peptide OVA 323-339. The results obtained demonstrated the very permissive nature of Ag-Ia interaction. We also showed that unrelated peptides that are good I-Ad binders share a common structural motif and speculated that recognition of such motifs could represent...... that I-Ad molecules recognize a large library of Ag by virtue of common structural motifs present in peptides derived from phylogenetically unrelated proteins....

  2. Lucky Motifs in Chinese Folk Art: Interpreting Paper-cut from Chinese Shaanxi

    OpenAIRE

    Xuxiao WANG

    2013-01-01

    Paper-cut is not simply a form of traditional Chinese folk art. Lucky motifs developed in paper-cut certainly acquired profound cultural connotations. As paper-cut is a time-honoured skill across the nation, interpreting those motifs requires cultural receptiveness and anthropological sensitivity. The author of this article analyzes examples of paper-cut from Northern Shaanxi, China, to identify the cohesive motifs and explore the auspiciousness of the specific concepts of Fu, Lu, Shou, Xi. T...

  3. Low-dimensional morphospace of topological motifs in human fMRI brain networks

    Directory of Open Access Journals (Sweden)

    Sarah E. Morgan

    2018-06-01

    Full Text Available We present a low-dimensional morphospace of fMRI brain networks, where axes are defined in a data-driven manner based on the network motifs. The morphospace allows us to identify the key variations in healthy fMRI networks in terms of their underlying motifs, and we observe that two principal components (PCs can account for 97% of the motif variability. The first PC of the motif distribution is correlated with efficiency and inversely correlated with transitivity. Hence this axis approximately conforms to the well-known economical small-world trade-off between integration and segregation in brain networks. Finally, we show that the economical clustering generative model proposed by Vértes et al. (2012 can approximately reproduce the motif morphospace of the real fMRI brain networks, in contrast to other generative models. Overall, the motif morphospace provides a powerful way to visualize the relationships between network properties and to investigate generative or constraining factors in the formation of complex human brain functional networks. Motifs have been described as the building blocks of complex networks. Meanwhile, a morphospace allows networks to be placed in a common space and can reveal the relationships between different network properties and elucidate the driving forces behind network topology. We combine the concepts of motifs and morphospaces to create the first motif morphospace of fMRI brain networks. Crucially, the morphospace axes are defined by the motifs, in a data-driven manner. We observe strong correlations between the networks’ positions in morphospace and their global topological properties, suggesting that motif morphospaces are a powerful way to capture the topology of networks in a low-dimensional space and to compare generative models of brain networks. Motif morphospaces could also be used to study other complex networks’ topologies.

  4. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    Science.gov (United States)

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance

  5. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2011-06-01

    Full Text Available Abstract Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet, which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i ubiquitous motifs, shared by several superfamilies and (ii superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  6. Hybrid DNA i-motif: Aminoethylprolyl-PNA (pC5) enhance the stability of DNA (dC5) i-motif structure.

    Science.gov (United States)

    Gade, Chandrasekhar Reddy; Sharma, Nagendra K

    2017-12-15

    This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC 5 ) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Christian J. Michel

    2017-12-01

    Full Text Available A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C 3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X , using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X , in the complete genome of the yeast Saccharomyces cerevisiae. Several properties of X motifs are identified by basic statistics (at the frequency level, and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R . We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae. We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae, but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions. This property is true for all cardinalities of X motifs (from 4 to 20 and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non- X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together

  8. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Michel, Christian J; Ngoune, Viviane Nguefack; Poch, Olivier; Ripp, Raymond; Thompson, Julie D

    2017-12-03

    A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading) frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X, using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X, in the complete genome of the yeast Saccharomyces cerevisiae . Several properties of X motifs are identified by basic statistics (at the frequency level), and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R. We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae . We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae , but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions). This property is true for all cardinalities of X motifs (from 4 to 20) and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non-X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together, represent the first

  9. Purification and functional motifs of the recombinant ATPase of orf virus.

    Science.gov (United States)

    Lin, Fong-Yuan; Chan, Kun-Wei; Wang, Chi-Young; Wong, Min-Liang; Hsu, Wei-Li

    2011-10-01

    Our previous study showed that the recombinant ATPase encoded by the A32L gene of orf virus displayed ATP hydrolysis activity as predicted from its amino acids sequence. This viral ATPase contains four known functional motifs (motifs I-IV) and a novel AYDG motif; they are essential for ATP hydrolysis reaction by binding ATP and magnesium ions. The motifs I and II correspond with the Walker A and B motifs of the typical ATPase, respectively. To examine the biochemical roles of these five conserved motifs, recombinant ATPases of five deletion mutants derived from the Taiping strain were expressed and purified. Their ATPase functions were assayed and compared with those of two wild type strains, Taiping and Nantou isolated in Taiwan. Our results showed that deletions at motifs I-III or IV exhibited lower activity than that of the wild type. Interestingly, deletion of AYDG motif decreased the ATPase activity more significantly than those of motifs I-IV deletions. Divalent ions such as magnesium and calcium were essential for ATPase activity. Moreover, our recombinant proteins of orf virus also demonstrated GTPase activity, though weaker than the original ATPase activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Systematic comparison of the response properties of protein and RNA mediated gene regulatory motifs.

    Science.gov (United States)

    Iyengar, Bharat Ravi; Pillai, Beena; Venkatesh, K V; Gadgil, Chetan J

    2017-05-30

    We present a framework enabling the dissection of the effects of motif structure (feedback or feedforward), the nature of the controller (RNA or protein), and the regulation mode (transcriptional, post-transcriptional or translational) on the response to a step change in the input. We have used a common model framework for gene expression where both motif structures have an activating input and repressing regulator, with the same set of parameters, to enable a comparison of the responses. We studied the global sensitivity of the system properties, such as steady-state gain, overshoot, peak time, and peak duration, to parameters. We find that, in all motifs, overshoot correlated negatively whereas peak duration varied concavely with peak time. Differences in the other system properties were found to be mainly dependent on the nature of the controller rather than the motif structure. Protein mediated motifs showed a higher degree of adaptation i.e. a tendency to return to baseline levels; in particular, feedforward motifs exhibited perfect adaptation. RNA mediated motifs had a mild regulatory effect; they also exhibited a lower peaking tendency and mean overshoot. Protein mediated feedforward motifs showed higher overshoot and lower peak time compared to the corresponding feedback motifs.

  11. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  12. Sequential dynamics in the motif of excitatory coupled elements

    Science.gov (United States)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  13. Study on online community user motif using web usage mining

    Science.gov (United States)

    Alphy, Meera; Sharma, Ajay

    2016-04-01

    The Web usage mining is the application of data mining, which is used to extract useful information from the online community. The World Wide Web contains at least 4.73 billion pages according to Indexed Web and it contains at least 228.52 million pages according Dutch Indexed web on 6th august 2015, Thursday. It’s difficult to get needed data from these billions of web pages in World Wide Web. Here is the importance of web usage mining. Personalizing the search engine helps the web user to identify the most used data in an easy way. It reduces the time consumption; automatic site search and automatic restore the useful sites. This study represents the old techniques to latest techniques used in pattern discovery and analysis in web usage mining from 1996 to 2015. Analyzing user motif helps in the improvement of business, e-commerce, personalisation and improvement of websites.

  14. μXRF analysis of decoration motifs on Majolica pottery

    International Nuclear Information System (INIS)

    Padilla Lavarez, Roman; Van Espen, Pierr M.; Janssens, K; Schalm, O.

    2001-01-01

    μXRF analysis of decoration motifs on Majolica pottery in fragments corresponding to several Majolica types was carried out using an spectrometer comprising a low power Mo X-ray tube and a elliptic-shape concentration lens with a 60 um spot. Both surface scanning and spot measurements were carried a out, allowing the qualitative identification of the inorganic pigments used for the surface painting decoration and the quantitative analysis of the main glaze composition. The absence of interference signal arising from the excitation on the underlying paste when analysing thin-lead glazing was evaluated, allowing ensuring the suitable of the analytical procedures. A distinction was found between different types of majolica by the composition of the lead tin glaze enamel and by the presence of other elements in the blue, black and orange decoration

  15. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin

    2015-01-01

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  16. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun

    2015-09-27

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  17. Structural fragment clustering reveals novel structural and functional motifs in α-helical transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Vassilev Boris

    2010-04-01

    Full Text Available Abstract Background A large proportion of an organism's genome encodes for membrane proteins. Membrane proteins are important for many cellular processes, and several diseases can be linked to mutations in them. With the tremendous growth of sequence data, there is an increasing need to reliably identify membrane proteins from sequence, to functionally annotate them, and to correctly predict their topology. Results We introduce a technique called structural fragment clustering, which learns sequential motifs from 3D structural fragments. From over 500,000 fragments, we obtain 213 statistically significant, non-redundant, and novel motifs that are highly specific to α-helical transmembrane proteins. From these 213 motifs, 58 of them were assigned to function and checked in the scientific literature for a biological assessment. Seventy percent of the motifs are found in co-factor, ligand, and ion binding sites, 30% at protein interaction interfaces, and 12% bind specific lipids such as glycerol or cardiolipins. The vast majority of motifs (94% appear across evolutionarily unrelated families, highlighting the modularity of functional design in membrane proteins. We describe three novel motifs in detail: (1 a dimer interface motif found in voltage-gated chloride channels, (2 a proton transfer motif found in heme-copper oxidases, and (3 a convergently evolved interface helix motif found in an aspartate symporter, a serine protease, and cytochrome b. Conclusions Our findings suggest that functional modules exist in membrane proteins, and that they occur in completely different evolutionary contexts and cover different binding sites. Structural fragment clustering allows us to link sequence motifs to function through clusters of structural fragments. The sequence motifs can be applied to identify and characterize membrane proteins in novel genomes.

  18. Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-07-01

    Full Text Available Abstract Background Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively. However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i to assemble and construct zinc finger arrays and nucleases (ZFN with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii to advance a model for pre-clinically testing lentiviral vectors (LV that deliver and transduce either ZFN genotype. Methods and Results First, we computationally generated the consensus sequences of (a 114 dsDNA-binding zinc finger (Zif arrays (ZFAs or ZifHIV-pol and (b two zinc-finger nucleases (ZFNs which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN. Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN. Second, a model for constructing lentiviral vectors (LVs that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively is proposed. Third, two preclinical models for controlled testing of

  19. NanoRNase from Aeropyrum pernix shows nuclease activity on ssDNA and ssRNA.

    Science.gov (United States)

    Deng, Yong-Jie; Feng, Lei; Zhou, Huan; Xiao, Xiang; Wang, Feng-Ping; Liu, Xi-Peng

    2018-05-01

    In cells, degrading DNA and RNA by various nucleases is very important. These processes are strictly controlled and regulated to maintain DNA integrity and to mature or recycle various RNAs. NanoRNase (Nrn) is a 3'-exonuclease that specifically degrades nanoRNAs shorter than 5 nucleotides. Several Nrns have been identified and characterized in bacteria, mainly in Firmicutes. Archaea often grow in extreme environments and might be subjected to more damage to DNA/RNA, so DNA repair and recycling of damaged RNA are very important in archaea. There is no report on the identification and characterization of Nrn in archaea. Aeropyrum pernix encodes three potential Nrns: NrnA (Ape1437), NrnB (Ape0124), and an Nrn-like protein Ape2190. Biochemical characterization showed that only Ape0124 could degrade ssDNA and ssRNA from the 3'-end in the presence of Mn 2+ . Interestingly, unlike bacterial Nrns, Ape0124 prefers ssDNA, including short nanoDNA, and degrades nanoRNA with lower efficiency. The 3'-DNA backbone was found to be required for efficiently hydrolyzing the phosphodiester bonds. In addition, Ape0124 also degrads the 3'-overhang of double-stranded DNA. Interestingly, Ape0124 could hydrolyze pAp into AMP, which is a feature of bacterial NrnA, not NrnB. Our results indicate that Ape0124 is a novel Nrn with a combined substrate profile of bacterial NrnA and NrnB. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.

    Science.gov (United States)

    Moscariello, Mario; Wieloch, Radi; Kurosawa, Aya; Li, Fanghua; Adachi, Noritaka; Mladenov, Emil; Iliakis, George

    2015-07-01

    Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis(-/-), DNA ligase 4(-/-) (LIG4(-/-)), and LIG4(-/-)/Artemis(-/-) double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Generation of SNCA Cell Models Using Zinc Finger Nuclease (ZFN) Technology for Efficient High-Throughput Drug Screening.

    Science.gov (United States)

    Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P

    2015-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA

  2. Targeted gene disruption by use of transcription activator-like effector nuclease (TALEN) in the water flea Daphnia pulex.

    Science.gov (United States)

    Hiruta, Chizue; Ogino, Yukiko; Sakuma, Tetsushi; Toyota, Kenji; Miyagawa, Shinichi; Yamamoto, Takashi; Iguchi, Taisen

    2014-11-18

    The cosmopolitan microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have its complete genome sequenced, an unprecedented ca. 36% of which has no known homologs with any other species. Moreover, D. pulex is ideally suited for experimental manipulation because of its short reproductive cycle, large numbers of offspring, synchronization of oocyte maturation, and other life history characteristics. However, existing gene manipulation techniques are insufficient to accurately define gene functions. Although our previous investigations developed an RNA interference (RNAi) system in D. pulex, the possible time period of functional analysis was limited because the effectiveness of RNAi is transient. Thus, in this study, we developed a genome editing system for D. pulex by first microinjecting transcription activator-like effector nuclease (TALEN) mRNAs into early embryos and then evaluating TALEN activity and mutation phenotypes. We assembled a TALEN construct specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for distal limb development in invertebrates and vertebrates, and evaluated its activity in vitro by single-strand annealing assay. Then, we injected TALEN mRNAs into eggs within 1 hour post-ovulation. Injected embryos presented with defects in the second antenna and altered appendage development, and indel mutations were detected in Dll loci, indicating that this technique successfully knocked out the target gene. We succeeded, for the first time in D. pulex, in targeted mutagenesis by use of Platinum TALENs. This genome editing technique makes it possible to conduct reverse genetic analysis in D. pulex, making this species an even more appropriate model organism for environmental, evolutionary, and developmental genomics.

  3. Establishment of pten knockout medaka with transcription activator-like effector nucleases (TALENs as a model of PTEN deficiency disease.

    Directory of Open Access Journals (Sweden)

    Yuriko Matsuzaki

    Full Text Available Phosphatase and tensin homolog (PTEN is a lipid and protein phosphatase that antagonizes signaling by the phosphatidylinositol 3-kinase (PI3K-AKT signaling pathway. The PTEN gene is a major tumor suppressor, with mutations of this gene occurring frequently in tumors of humans and mice. We have now developed mutant medaka deficient in PTEN with the use of transcription activator-like effector nuclease (TALEN technology. Medaka possesses two pten genes, ptena and ptenb, similar to zebrafish. We established 16 ptena mutant lines and two ptenb mutant lines. Homozygous single pten mutants were found to be viable and fertile. In contrast, pten double-knockout (dko embryos manifested severe abnormalities in vasculogenesis, eye size, and tail development at 72 hours post fertilization(hpf and died before hatching. Immunoblot analysis revealed that the ratio of phosphorylated to total forms of AKT (pAKT/AKT in pten dko embryos was four times that in wild-type embryos, indicative of up-regulation of signaling by the PI3K-AKT pathway. Treatment of pten dko embryos with the PI3K inhibitor LY294002 reduced the pAKT/AKT ratio by about one-half and partially rescued the defect in vasculogenesis. Additional inhibitors of the PI3K-AKT pathway, including rapamycin and N-α-tosyl-L-phenylalanyl chloromethyl ketone, also partially restored vasculogenesis in the dko embryos. Our model system thus allows pten dko embryos to be readily distinguished from wild-type embryos at an early stage of development and is suitable for the screening of drugs able to compensate for PTEN deficiency.

  4. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil.

    Science.gov (United States)

    Demorest, Zachary L; Coffman, Andrew; Baltes, Nicholas J; Stoddard, Thomas J; Clasen, Benjamin M; Luo, Song; Retterath, Adam; Yabandith, Ann; Gamo, Maria Elena; Bissen, Jeff; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2016-10-13

    The ability to modulate levels of individual fatty acids within soybean oil has potential to increase shelf-life and frying stability and to improve nutritional characteristics. Commodity soybean oil contains high levels of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability - a problem that has been addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid (18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were introduced into FAD3A by directly delivering TALENs into fad2-1a fad2-1b soybean plants. Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b fad3a soybean lines were identified. The methods presented here provide an efficient means for using sequence-specific nucleases to stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and linolenic acid levels below 3 %.

  5. Wayward Warriors: The Viking Motif in Swedish and English Children's Literature

    Science.gov (United States)

    Sundmark, Björn

    2014-01-01

    In this article the Viking motif in children's literature is explored--from its roots in (adult) nationalist and antiquarian discourse, over pedagogical and historical texts for children, to the eventual diversification (or dissolution) of the motif into different genres and forms. The focus is on Swedish Viking narratives, but points of…

  6. Physical-chemical property based sequence motifs and methods regarding same

    Science.gov (United States)

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  7. Gene Isolation Using Degenerate Primers Targeting Protein Motif: A Laboratory Exercise

    Science.gov (United States)

    Yeo, Brandon Pei Hui; Foong, Lian Chee; Tam, Sheh May; Lee, Vivian; Hwang, Siaw San

    2018-01-01

    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the…

  8. MOMFER: A Search Engine of Thompson's Motif-Index of Folk Literature

    NARCIS (Netherlands)

    Karsdorp, F.B.; van der Meulen, Marten; Meder, Theo; van den Bosch, Antal

    2015-01-01

    More than fifty years after the first edition of Thompson's seminal Motif-Indexof Folk Literature, we present an online search engine tailored to fully disclose the index digitally. This search engine, called MOMFER, greatly enhances the searchability of the Motif-Index and provides exciting new

  9. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Barabási Albert-László

    2004-01-01

    Full Text Available Abstract Background Transcriptional regulation of cellular functions is carried out through a complex network of interactions among transcription factors and the promoter regions of genes and operons regulated by them.To better understand the system-level function of such networks simplification of their architecture was previously achieved by identifying the motifs present in the network, which are small, overrepresented, topologically distinct regulatory interaction patterns (subgraphs. However, the interaction of such motifs with each other, and their form of integration into the full network has not been previously examined. Results By studying the transcriptional regulatory network of the bacterium, Escherichia coli, we demonstrate that the two previously identified motif types in the network (i.e., feed-forward loops and bi-fan motifs do not exist in isolation, but rather aggregate into homologous motif clusters that largely overlap with known biological functions. Moreover, these clusters further coalesce into a supercluster, thus establishing distinct topological hierarchies that show global statistical properties similar to the whole network. Targeted removal of motif links disintegrates the network into small, isolated clusters, while random disruptions of equal number of links do not cause such an effect. Conclusion Individual motifs aggregate into homologous motif clusters and a supercluster forming the backbone of the E. coli transcriptional regulatory network and play a central role in defining its global topological organization.

  10. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif

    NARCIS (Netherlands)

    Senchou, V.; Weide, R.L.; Carrasco, A.; Bouyssou, H.; Pont-Lezica, R.; Govers, F.; Canut, H.

    2004-01-01

    The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and

  11. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  12. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    Science.gov (United States)

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  13. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...

  14. Proteome-level assessment of origin, prevalence and function of Leucine-Aspartic Acid (LD) motifs

    KAUST Repository

    Alam, Tanvir

    2018-03-11

    Short Linear Motifs (SLiMs) contribute to almost every cellular function by connecting appropriate protein partners. Accurate prediction of SLiMs is difficult due to their shortness and sequence degeneracy. Leucine-aspartic acid (LD) motifs are SLiMs that link paxillin family proteins to factors controlling (cancer) cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. To enable a proteome-wide assessment of these motifs, we developed an active-learning based framework that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome identified a dozen proteins that contain LD motifs, all being involved in cell adhesion and migration, and revealed a new type of inverse LD motif consensus. Our evolutionary analysis suggested that LD motif signalling originated in the common unicellular ancestor of opisthokonts and amoebozoa by co-opting nuclear export sequences. Inter-species comparison revealed a conserved LD signalling core, and reveals the emergence of species-specific adaptive connections, while maintaining a strong functional focus of the LD motif interactome. Collectively, our data elucidate the mechanisms underlying the origin and adaptation of an ancestral SLiM.

  15. A proposed vestigial translation initiation motif in VP1 of hepatitis A virus.

    Science.gov (United States)

    Kang, Jeong-Ah; Funkhouser, Ann W

    2002-07-01

    The internal ribosome entry site (IRES) of picornaviruses has a 3' polypyrimidine tract (PPT) 16-24 bases upstream of an AUG triplet (PPT/AUG motif). This motif is critical in determining the efficiency of cap-independent translation. HAV has a conserved PPT/AUG motif consisting of a nine base sequence (AGGUUUUUC) 23 bases upstream of the preferred AUG start codon. This HAV-specific PPT/AUG motif is repeated and conserved in VP1 of HAV, but not of other picornaviruses. We proposed that the PPT/AUG motif in the open reading frame initiated translation and/or had an impact on the life cycle of the virus. In vitro translation of mutant bicistronic mRNAs and growth in cell culture of mutant viruses provided no evidence that the VP1 PPT/AUG motif had any impact on either translation or growth. HAV differs from other picornaviruses in its inefficient growth in cell culture. Since the HAV-specific PPT/AUG motif is found in only 1 in 300,000 reported viral sequences outside the hepatovirus genus, this motif may be a vestigial translation initiation element and may have played a role in determining the unusual phenotype of HAV.

  16. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  17. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  18. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  19. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  20. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed Ali; Pedersen, Erik B.; Khaireldin, Nahid Y.

    2016-01-01

    In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion of naphtha......In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion...... of naphthalimide (1H-benzo[de]isoquinoline-1,3(2H)-dione) as the intercalating nucleic acid. The stabilities of i-motif structures with inserted naphthalimide intercalating nucleotides were studied using UV melting temperatures (Tm) and circular dichroism spectra at different pH values and conditions (crowding...

  1. I-motif DNA structures are formed in the nuclei of human cells

    Science.gov (United States)

    Zeraati, Mahdi; Langley, David B.; Schofield, Peter; Moye, Aaron L.; Rouet, Romain; Hughes, William E.; Bryan, Tracy M.; Dinger, Marcel E.; Christ, Daniel

    2018-06-01

    Human genome function is underpinned by the primary storage of genetic information in canonical B-form DNA, with a second layer of DNA structure providing regulatory control. I-motif structures are thought to form in cytosine-rich regions of the genome and to have regulatory functions; however, in vivo evidence for the existence of such structures has so far remained elusive. Here we report the generation and characterization of an antibody fragment (iMab) that recognizes i-motif structures with high selectivity and affinity, enabling the detection of i-motifs in the nuclei of human cells. We demonstrate that the in vivo formation of such structures is cell-cycle and pH dependent. Furthermore, we provide evidence that i-motif structures are formed in regulatory regions of the human genome, including promoters and telomeric regions. Our results support the notion that i-motif structures provide key regulatory roles in the genome.

  2. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.

    Science.gov (United States)

    Ozaki, Haruka; Iwasaki, Wataru

    2016-08-01

    As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs.

    Directory of Open Access Journals (Sweden)

    Raman Sood

    Full Text Available Recently, it has been shown that targeted mutagenesis using zinc-finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs can be used to generate knockout zebrafish lines for analysis of their function and/or developing disease models. A number of different methods have been developed for the design and assembly of gene-specific ZFNs and TALENs, making them easily available to most zebrafish researchers. Regardless of the choice of targeting nuclease, the process of generating mutant fish is similar. It is a time-consuming and multi-step process that can benefit significantly from development of efficient high throughput methods. In this study, we used ZFNs assembled through either the CompoZr (Sigma-Aldrich or the CoDA (context-dependent assembly platforms to generate mutant zebrafish for nine genes. We report our improved high throughput methods for 1 evaluation of ZFNs activity by somatic lesion analysis using colony PCR, eliminating the need for plasmid DNA extractions from a large number of clones, and 2 a sensitive founder screening strategy using fluorescent PCR with PIG-tailed primers that eliminates the stutter bands and accurately identifies even single nucleotide insertions and deletions. Using these protocols, we have generated multiple mutant alleles for seven genes, five of which were targeted with CompoZr ZFNs and two with CoDA ZFNs. Our data also revealed that at least five-fold higher mRNA dose was required to achieve mutagenesis with CoDA ZFNs than with CompoZr ZFNs, and their somatic lesion frequency was lower (<5% when compared to CopmoZr ZFNs (9-98%. This work provides high throughput protocols for efficient generation of zebrafish mutants using ZFNs and TALENs.

  4. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    Science.gov (United States)

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    Science.gov (United States)

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  6. A Repeating Sulfated Galactan Motif Resuscitates Dormant Micrococcus luteus Bacteria.

    Science.gov (United States)

    Böttcher, Thomas; Szamosvári, Dávid; Clardy, Jon

    2018-07-01

    Only a small fraction of bacteria can autonomously initiate growth on agar plates. Nongrowing bacteria typically enter a metabolically inactive dormant state and require specific chemical trigger factors or signals to exit this state and to resume growth. Micrococcus luteus has become a model organism for this important yet poorly understood phenomenon. Only a few resuscitation signals have been described to date, and all of them are produced endogenously by bacterial species. We report the discovery of a novel type of resuscitation signal that allows M. luteus to grow on agar but not agarose plates. Fractionation of the agar polysaccharide complex and sulfation of agarose allowed us to identify the signal as highly sulfated saccharides found in agar or carrageenans. Purification of hydrolyzed κ-carrageenan ultimately led to the identification of the signal as a small fragment of a large linear polysaccharide, i.e., an oligosaccharide of five or more sugars with a repeating disaccharide motif containing d-galactose-4-sulfate (G4S) 1,4-linked to 3,6-anhydro-α-d-galactose (DA), G4S-(DA-G4S) n ≥2 IMPORTANCE Most environmental bacteria cannot initiate growth on agar plates, but they can flourish on the same plates once growth is initiated. While there are a number of names for and manifestations of this phenomenon, the underlying cause appears to be the requirement for a molecular signal indicating safe growing conditions. Micrococcus luteus has become a model organism for studying this growth initiation process, often called resuscitation, because of its apparent connection with the persistent or dormant form of Mycobacterium tuberculosis , an important human pathogen. In this report, we identify a highly sulfated saccharide from agar or carrageenans that robustly resuscitates dormant M. luteus on agarose plates. We identified and characterized the signal as a small repeating disaccharide motif. Our results indicate that signals inherent in or absent from the

  7. One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs.

    Science.gov (United States)

    Lock, Antonia; Forfar, Rachel; Weston, Cathryn; Bowsher, Leo; Upton, Graham J G; Reynolds, Christopher A; Ladds, Graham; Dixon, Ann M

    2014-12-01

    G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs. Copyright © 2014. Published by Elsevier B.V.

  8. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA

    Science.gov (United States)

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-01-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P Ia, as compared with normal littermates, at 8 months following vector administration (P Ia. PMID:26865405

  9. Investigation of centers sensitive to S1-nuclease in the genoma of the yeast S. cerevisiae after in-vivo exposure to gamma radiation

    International Nuclear Information System (INIS)

    Geigl, E.M.

    1987-09-01

    The structure, distribution and repair of basal damage in DNS after exposure to 60 Co gamma radiation were investigated in S. cerevisiae cells. Small DNS regions with mispaired or unpaired bases of rather high stability were found whose rate of incidence and linear dose dependence appear to be similar to those of double strand breaks. In contrast to double strand breaks, they showed no statistical' distribution pattern across the genoma. Liquid holding experiments showed that centers sensitive to S1-nuclease will be repaired in S. cerevisiae by a combined process of recombination and postreplication repair; the gene products of the genes RAD50 and RAD18 are involved. (orig./AJ) [de

  10. Distribution of nuclease attack sites and complexity of DNA in the products of post-irradiation degradiation of rat thymus chromatin

    International Nuclear Information System (INIS)

    Zvonareva, N.B.; Zhivotovsky, B.D.; Hanson, K.P.

    1983-01-01

    The distribution of nuclease attack sites in chromatin has been studied on the basis of the quantitative relationship of the single- and double-stranded fragments of various lengths in the products of post-irradiation degradation of chromatin (PDN). It has been shown that in irradiated thymocytes internucleosome degradation of chromatin occurs and the products of the enzymic digestion of chromatin derive from randomly distributed genome areas accumulate. Analysis of the reassociation curves has not shown any differences in the complexity of the PDN fractions and total DNA. (author)

  11. Perkembangan Motif Sineas Film Indie dalam Menghadapi Industri Film Mainstream

    Directory of Open Access Journals (Sweden)

    Yoppy Ardiyono

    2016-03-01

    Full Text Available The research aims to review to review determine the effect and its impact raised by motive - a motive the ada in the hearts period travel time history of film short against cinematographer-filmmaker as principal especially filmmakers left path (indie. The used platform theory research hearts singer adopts from theory commodification media vincent mosco. Singer helped shift theory understanding the motive filmmakers working hearts differences fundamental basis of political pressure economic happens under with demands regime. The method used is descriptive qualitative research methods. Data collection techniques through observation of the environment of an independent film live and in-depth interviews with speakers including mr. Yang prayer orangutan direct contact 'with realm of research. Coupled with study to review the literature references adding insight research. And that was concluded change appears motif among indie film cinematographer it is true the situation is closely linked to the mainstream industry, konstilasi politics, and the orientation of capitalism. Necessary their one thing is clear and systematic regulation from the government to the future movement of currents sidestream (indie more with good operates professionally arranged, the air so that the contribution of indie cinema film land for progress can feels good to yourself indie filmmakers as well as those of its main industries.

  12. Crammed signaling motifs in the T-cell receptor.

    Science.gov (United States)

    Borroto, Aldo; Abia, David; Alarcón, Balbino

    2014-09-01

    Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. DNA mutation motifs in the genes associated with inherited diseases.

    Directory of Open Access Journals (Sweden)

    Michal Růžička

    Full Text Available Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs rarely associated with mutations (coldspots and frequently associated with mutations (hotspots exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.

  14. ARCHETYPES AND MYTHOLOGICAL MOTIFS: JOHN UPDIKE’S LEGACY REVISITED

    Directory of Open Access Journals (Sweden)

    Loreta Ulvydienė

    2018-04-01

    Full Text Available John Updike is widely considered to be one of the greatest, one of the most popular and sometimes most controversial writers concerned with the American small town and middle-class materialism. A lot of literary critics and researchers observe that Updike’s finest work came from his exploration of ordinary America and from his use of elegant prose, rich with metaphor, to portray the public and private feelings of Americans, their daily rounds of life. In addition, discussing Updike’s individual works a lot of literary critics and researchers have observed the writer’s attempts to re-write myth in “the mythical age”1 of the twentieth century. Naturally enough, as the return to myth is assumed to be a certain feature of the Modernist movement, half a century later since Updike’s famous novel Centaur was penned, it is indispensable to re-examine the writer’s fictional intentions in the usage of myth. More importantly, it is needful to determine whether we can see the mythic elements and realistic details as a continuum or as the contrasted opposites in his so called “historical chronicles”. Updike’s novels and stories are filled with mythological motifs and character archetypes. Thus, the study aims at revisiting John Updike’s creation considering mythological elements and archetypal images of his heroes alongside with heroic masculinity, war, terrorism and American perfectionism.

  15. Dystroglycan versatility in cell adhesion: a tale of multiple motifs

    Directory of Open Access Journals (Sweden)

    Winder Steve J

    2010-02-01

    Full Text Available Abstract Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular α-subunit makes connections with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular matrix and the transmembrane β-subunit makes connections to the actin filament network via cytoskeletal linkers including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatio-temporal regulation.

  16. Influence of some exo nucleases in response to the induced genetic damage in Escherichia coli by alpha radiation

    International Nuclear Information System (INIS)

    Aguilar M, M.

    2005-01-01

    Within the strategies with those that E. coli counts to overcome to the genetic damage there is the SOS response, a group of genes that participate in repair and/or tolerance that it confers to the bacteria major opportunities of surviving. These genes are repressed and its only are expressed when it happens genetic damage. So that this system is activated it is necessary that DNA of a band exists and in this sense the double ruptures (RDB) its are not able to induce this response unless there is a previous processing. In stumps with defects in certain genes that have to do with repair of RDB (as recO, recJ and xonA) the activity of SOS is smaller than in a wild stump what suggests that these participate in the previous processes to the activation of the response. The ionizing radiation produce among other many lesions, RDB in greater or smaller proportion, depending on the ionization capacity. A parameter to evaluate this capacity is the lineal energy transfer (LET), defined as the average energy given by unit of distance travelled. In general the LET of the corpuscular radiations is a lot but high that of the electromagnetic one, for what produces bigger quantity of ionizations inside a restricted zone and it increases by this way the probability that RDB has been generated. This work has for object to infer the participation of xonA and recJ in this response and to evaluate the damage produced by ionizing radiation of different LET (alpha particles of different energies) in a stump with all the functional repair mechanisms. Its were considered two parameters: the survival and the activity of SOS evaluated by means of the chromo test. The results indicate that the activity of these exo nucleases is necessary for the repair of RDB as well as for the processing of lesions foresaw to the activation of SOS. As for the treatment with alphas of different energies is observed that so much the survival like the activity of SOS vary as the LET of the radiation changes

  17. Mislocalization of XPF-ERCC1 nuclease contributes to reduced DNA repair in XP-F patients.

    Directory of Open Access Journals (Sweden)

    Anwaar Ahmad

    2010-03-01

    Full Text Available Xeroderma pigmentosum (XP is caused by defects in the nucleotide excision repair (NER pathway. NER removes helix-distorting DNA lesions, such as UV-induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPF(R153P were compared to an XP-causing mutation (XPF(R799W in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPF(R153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPF(R153P-ERCC1 into the nucleus of XPF-deficient human cells restored nucleotide excision repair of UV-induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially

  18. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.

    Science.gov (United States)

    Vishnevsky, Oleg V; Bocharnikov, Andrey V; Kolchanov, Nikolay A

    2018-02-01

    The development of chromatin immunoprecipitation sequencing (ChIP-seq) technology has revolutionized the genetic analysis of the basic mechanisms underlying transcription regulation and led to accumulation of information about a huge amount of DNA sequences. There are a lot of web services which are currently available for de novo motif discovery in datasets containing information about DNA/protein binding. An enormous motif diversity makes their finding challenging. In order to avoid the difficulties, researchers use different stochastic approaches. Unfortunately, the efficiency of the motif discovery programs dramatically declines with the query set size increase. This leads to the fact that only a fraction of top "peak" ChIP-Seq segments can be analyzed or the area of analysis should be narrowed. Thus, the motif discovery in massive datasets remains a challenging issue. Argo_Compute Unified Device Architecture (CUDA) web service is designed to process the massive DNA data. It is a program for the detection of degenerate oligonucleotide motifs of fixed length written in 15-letter IUPAC code. Argo_CUDA is a full-exhaustive approach based on the high-performance GPU technologies. Compared with the existing motif discovery web services, Argo_CUDA shows good prediction quality on simulated sets. The analysis of ChIP-Seq sequences revealed the motifs which correspond to known transcription factor binding sites.

  19. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  20. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family

    Science.gov (United States)

    Soufari, Heddy

    2017-01-01

    Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans. In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets. PMID:28003515

  1. Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences

    Science.gov (United States)

    König, Sebastian L. B.; Huppert, Julian L.; Sigel, Roland K. O.; Evans, Amanda C.

    2013-01-01

    G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions. PMID:23771141

  2. MODA: an efficient algorithm for network motif discovery in biological networks.

    Science.gov (United States)

    Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

    2009-10-01

    In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

  3. Comparative analysis of evolutionarily conserved motifs of epidermal growth factor receptor 2 (HER2) predicts novel potential therapeutic epitopes

    DEFF Research Database (Denmark)

    Deng, Xiaohong; Zheng, Xuxu; Yang, Huanming

    2014-01-01

    druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our...

  4. Identification of a putative nuclear export signal motif in human NANOG homeobox domain

    International Nuclear Information System (INIS)

    Park, Sung-Won; Do, Hyun-Jin; Huh, Sun-Hyung; Sung, Boreum; Uhm, Sang-Jun; Song, Hyuk; Kim, Nam-Hyung; Kim, Jae-Hwan

    2012-01-01

    Highlights: ► We found the putative nuclear export signal motif within human NANOG homeodomain. ► Leucine-rich residues are important for human NANOG homeodomain nuclear export. ► CRM1-specific inhibitor LMB blocked the potent human NANOG NES-mediated nuclear export. -- Abstract: NANOG is a homeobox-containing transcription factor that plays an important role in pluripotent stem cells and tumorigenic cells. To understand how nuclear localization of human NANOG is regulated, the NANOG sequence was examined and a leucine-rich nuclear export signal (NES) motif ( 125 MQELSNILNL 134 ) was found in the homeodomain (HD). To functionally validate the putative NES motif, deletion and site-directed mutants were fused to an EGFP expression vector and transfected into COS-7 cells, and the localization of the proteins was examined. While hNANOG HD exclusively localized to the nucleus, a mutant with both NLSs deleted and only the putative NES motif contained (hNANOG HD-ΔNLSs) was predominantly cytoplasmic, as observed by nucleo/cytoplasmic fractionation and Western blot analysis as well as confocal microscopy. Furthermore, site-directed mutagenesis of the putative NES motif in a partial hNANOG HD only containing either one of the two NLS motifs led to localization in the nucleus, suggesting that the NES motif may play a functional role in nuclear export. Furthermore, CRM1-specific nuclear export inhibitor LMB blocked the hNANOG potent NES-mediated export, suggesting that the leucine-rich motif may function in CRM1-mediated nuclear export of hNANOG. Collectively, a NES motif is present in the hNANOG HD and may be functionally involved in CRM1-mediated nuclear export pathway.

  5. Salt-bridge Swapping in the EXXERFXYY Motif of Proton Coupled Oligopeptide Transporters

    DEFF Research Database (Denmark)

    Aduri, Nanda G; Prabhala, Bala K; Ernst, Heidi A

    2015-01-01

    to as E1XXE2R), located on Helix I, in interactions with the proton. In this study we investigated the intracellular substrate accumulation by motif variants with all possible combinations of glutamate residues changed to glutamine and arginine changed to a tyrosine; the latter being a natural variant......-motif salt bridge, i.e. R-E2 to R-E1, which is consistent with previous structural studies. Molecular dynamics simulations of the motif variants E1XXE2R and E1XXQ2R support this mechanism. The simulations showed that upon changing conformation, arginine pushes Helix V, through interactions with the highly...

  6. Stochastic Resonance in Neuronal Network Motifs with Ornstein-Uhlenbeck Colored Noise

    Directory of Open Access Journals (Sweden)

    Xuyang Lou

    2014-01-01

    Full Text Available We consider here the effect of the Ornstein-Uhlenbeck colored noise on the stochastic resonance of the feed-forward-loop (FFL network motif. The FFL motif is modeled through the FitzHugh-Nagumo neuron model as well as the chemical coupling. Our results show that the noise intensity and the correlation time of the noise process serve as the control parameters, which have great impacts on the stochastic dynamics of the FFL motif. We find that, with a proper choice of noise intensities and the correlation time of the noise process, the signal-to-noise ratio (SNR can display more than one peak.

  7. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly.

    Science.gov (United States)

    Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith

    2013-07-01

    Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput. © 2013 by John Wiley & Sons, Inc.

  8. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.

    Science.gov (United States)

    Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J

    2018-05-07

    Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Identification of putative regulatory motifs in the upstream regions of co-expressed functional groups of genes in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Joshi NV

    2009-01-01

    Full Text Available Abstract Background Regulation of gene expression in Plasmodium falciparum (Pf remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. Results The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs – the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs – were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS; this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. Conclusion The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.

  10. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles.

    Science.gov (United States)

    Heyward, Catherine A; Pettitt, Trevor R; Leney, Sophie E; Welsh, Gavin I; Tavaré, Jeremy M; Wakelam, Michael J O

    2008-05-20

    Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  11. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles

    Directory of Open Access Journals (Sweden)

    Welsh Gavin I

    2008-05-01

    Full Text Available Abstract Background Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Results Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. Conclusion The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  12. A Simple Decision Rule for Recognition of Poly(A) Tail Signal Motifs in Human Genome

    KAUST Repository

    AbouEisha, Hassan M.; Chikalov, Igor; Moshkov, Mikhail; Jankovic, Boris R.

    2015-01-01

    Background is the numerous attempts were made to predict motifs in genomic sequences that correspond to poly (A) tail signals. Vast portion of this effort has been directed to a plethora of nonlinear classification methods. Even when such approaches

  13. Lucky Motifs in Chinese Folk Art: Interpreting Paper-cut from Chinese Shaanxi

    Directory of Open Access Journals (Sweden)

    Xuxiao WANG

    2013-11-01

    Full Text Available Paper-cut is not simply a form of traditional Chinese folk art. Lucky motifs developed in paper-cut certainly acquired profound cultural connotations. As paper-cut is a time-honoured skill across the nation, interpreting those motifs requires cultural receptiveness and anthropological sensitivity. The author of this article analyzes examples of paper-cut from Northern Shaanxi, China, to identify the cohesive motifs and explore the auspiciousness of the specific concepts of Fu, Lu, Shou, Xi. The paper-cut of Northern Shaanxi is an ideal representative of the craft as a whole because of the relative stability of this region in history, in terms of both art and culture. Furthermore, its straightforward style provides a clear demonstration of motifs regarding folk understanding of expectations for life.

  14. Design of Fashion Accessories Using Akwa-Ocha Motifs and Symbols

    African Journals Online (AJOL)

    Nneka Umera-Okeke

    Nkpopu: holes. 16. Osikapa na ... accessories anchors in both social semiotics and archetypal theories. Social semiotics theory as ... the two earrings incorporate the Onwa (moon) motif in spherical shape and in black colour. They are held ...

  15. On the origin of distribution patterns of motifs in biological networks

    Directory of Open Access Journals (Sweden)

    Lesk Arthur M

    2008-08-01

    Full Text Available Abstract Background Inventories of small subgraphs in biological networks have identified commonly-recurring patterns, called motifs. The inference that these motifs have been selected for function rests on the idea that their occurrences are significantly more frequent than random. Results Our analysis of several large biological networks suggests, in contrast, that the frequencies of appearance of common subgraphs are similar in natural and corresponding random networks. Conclusion Indeed, certain topological features of biological networks give rise naturally to the common appearance of the motifs. We therefore question whether frequencies of occurrences are reasonable evidence that the structures of motifs have been selected for their functional contribution to the operation of networks.

  16. Exploiting publicly available biological and biochemical information for the discovery of novel short linear motifs.

    KAUST Repository

    Sayadi, Ahmed; Briganti, Leonardo; Tramontano, Anna; Via, Allegra

    2011-01-01

    The function of proteins is often mediated by short linear segments of their amino acid sequence, called Short Linear Motifs or SLiMs, the identification of which can provide important information about a protein function. However, the short length

  17. FTZ-Factor1 and Fushi tarazu interact via conserved nuclear receptor and coactivator motifs

    Science.gov (United States)

    Schwartz, Carol J.E.; Sampson, Heidi M.; Hlousek, Daniela; Percival-Smith, Anthony; Copeland, John W.R.; Simmonds, Andrew J.; Krause, Henry M.

    2001-01-01

    To activate transcription, most nuclear receptor proteins require coactivators that bind to their ligand-binding domains (LBDs). The Drosophila FTZ-Factor1 (FTZ-F1) protein is a conserved member of the nuclear receptor superfamily, but was previously thought to lack an AF2 motif, a motif that is required for ligand and coactivator binding. Here we show that FTZ-F1 does have an AF2 motif and that it is required to bind a coactivator, the homeodomain-containing protein Fushi tarazu (FTZ). We also show that FTZ contains an AF2-interacting nuclear receptor box, the first to be found in a homeodomain protein. Both interaction motifs are shown to be necessary for physical interactions in vitro and for functional interactions in developing embryos. These unexpected findings have important implications for the conserved homologs of the two proteins. PMID:11157757

  18. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  19. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    Science.gov (United States)

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  20. Discriminative Motif Discovery via Simulated Evolution and Random Under-Sampling

    OpenAIRE

    Song, Tao; Gu, Hong

    2014-01-01

    Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the sta...

  1. An Analysis of Multi-type Relational Interactions in FMA Using Graph Motifs with Disjointness Constraints

    Science.gov (United States)

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation. PMID:23304382

  2. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    Science.gov (United States)

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  3. A novel k-mer set memory (KSM) motif representation improves regulatory variant prediction.

    Science.gov (United States)

    Guo, Yuchun; Tian, Kevin; Zeng, Haoyang; Guo, Xiaoyun; Gifford, David Kenneth

    2018-04-13

    The representation and discovery of transcription factor (TF) sequence binding specificities is critical for understanding gene regulatory networks and interpreting the impact of disease-associated noncoding genetic variants. We present a novel TF binding motif representation, the k -mer set memory (KSM), which consists of a set of aligned k -mers that are overrepresented at TF binding sites, and a new method called KMAC for de novo discovery of KSMs. We find that KSMs more accurately predict in vivo binding sites than position weight matrix (PWM) models and other more complex motif models across a large set of ChIP-seq experiments. Furthermore, KSMs outperform PWMs and more complex motif models in predicting in vitro binding sites. KMAC also identifies correct motifs in more experiments than five state-of-the-art motif discovery methods. In addition, KSM-derived features outperform both PWM and deep learning model derived sequence features in predicting differential regulatory activities of expression quantitative trait loci (eQTL) alleles. Finally, we have applied KMAC to 1600 ENCODE TF ChIP-seq data sets and created a public resource of KSM and PWM motifs. We expect that the KSM representation and KMAC method will be valuable in characterizing TF binding specificities and in interpreting the effects of noncoding genetic variations. © 2018 Guo et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Pipeline for the Analysis of ChIP-seq Data and New Motif Ranking Procedure

    KAUST Repository

    Ashoor, Haitham

    2011-06-01

    This thesis presents a computational methodology for ab-initio identification of transcription factor binding sites based on ChIP-seq data. This method consists of three main steps, namely ChIP-seq data processing, motif discovery and models selection. A novel method for ranking the models of motifs identified in this process is proposed. This method combines multiple factors in order to rank the provided candidate motifs. It combines the model coverage of the ChIP-seq fragments that contain motifs from which that model is built, the suitable background data made up of shuffled ChIP-seq fragments, and the p-value that resulted from evaluating the model on actual and background data. Two ChIP-seq datasets retrieved from ENCODE project are used to evaluate and demonstrate the ability of the method to predict correct TFBSs with high precision. The first dataset relates to neuron-restrictive silencer factor, NRSF, while the second one corresponds to growth-associated binding protein, GABP. The pipeline system shows high precision prediction for both datasets, as in both cases the top ranked motif closely resembles the known motifs for the respective transcription factors.

  5. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    Science.gov (United States)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  6. Motif formation and industry specific topologies in the Japanese business firm network

    Science.gov (United States)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  7. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Science.gov (United States)

    Zandevakili, Pooya; Hu, Ming; Qin, Zhaohui

    2012-01-01

    Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS) that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU)-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  8. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Directory of Open Access Journals (Sweden)

    Pooya Zandevakili

    Full Text Available Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  9. Short Arginine Motifs Drive Protein Stickiness in the Escherichia coli Cytoplasm.

    Science.gov (United States)

    Kyne, Ciara; Crowley, Peter B

    2017-09-19

    Although essential to numerous biotech applications, knowledge of molecular recognition by arginine-rich motifs in live cells remains limited. 1 H, 15 N HSQC and 19 F NMR spectroscopies were used to investigate the effects of C-terminal -GR n (n = 1-5) motifs on GB1 interactions in Escherichia coli cells and cell extracts. While the "biologically inert" GB1 yields high-quality in-cell spectra, the -GR n fusions with n = 4 or 5 were undetectable. This result suggests that a tetra-arginine motif is sufficient to drive interactions between a test protein and macromolecules in the E. coli cytoplasm. The inclusion of a 12 residue flexible linker between GB1 and the -GR 5 motif did not improve detection of the "inert" domain. In contrast, all of the constructs were detectable in cell lysates and extracts, suggesting that the arginine-mediated complexes were weak. Together these data reveal the significance of weak interactions between short arginine-rich motifs and the E. coli cytoplasm and demonstrate the potential of such motifs to modify protein interactions in living cells. These interactions must be considered in the design of (in vivo) nanoscale assemblies that rely on arginine-rich sequences.

  10. Discriminative motif discovery via simulated evolution and random under-sampling.

    Directory of Open Access Journals (Sweden)

    Tao Song

    Full Text Available Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.

  11. Discriminative motif discovery via simulated evolution and random under-sampling.

    Science.gov (United States)

    Song, Tao; Gu, Hong

    2014-01-01

    Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs) training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.

  12. Improved i-motif thermal stability by insertion of anthraquinone monomers

    DEFF Research Database (Denmark)

    Gouda, Alaa S; Amine, Mahasen S.; Pedersen, Erik Bjerregaard

    2017-01-01

    In order to gain insight into how to improve thermal stability of i-motifs when used in the context of biomedical and nanotechnological applications, novel anthraquinone-modified i-motifs were synthesized by insertion of 1,8-, 1,4-, 1,5- and 2,6-disubstituted anthraquinone monomers into the TAA...... loops of a 22mer cytosine-rich human telomeric DNA sequence. The influence of the four anthraquinone linkers on the i-motif thermal stability was investigated at 295 nm and pH 5.5. Anthraquinone monomers modulate the i-motif stability in a position-depending manner and the modulation also depends...... unlocked nucleic acid monomers or twisted intercalating nucleic acid. The 2,6-disubstituted anthraquinone linker replacing T10 enabled a significant increase of i-motif thermal melting by 8.2 °C. A substantial increase of 5.0 °C in i-motif thermal melting was recorded when both A6 and T16 were modified...

  13. Fast social-like learning of complex behaviors based on motor motifs

    Science.gov (United States)

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  14. Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.

    Science.gov (United States)

    Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro

    2017-05-01

    Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.

  15. Structural and Functional Motifs in Influenza Virus RNAs

    Directory of Open Access Journals (Sweden)

    Damien Ferhadian

    2018-03-01

    have now been validated experimentally and their role in the viral life cycle demonstrated. This review aims to compile the structural motifs found in the different RNA classes (vRNA, cRNA, and vmRNA of influenza viruses and their function in the viral replication cycle.

  16. Coincident resection at both ends of random, γ-induced double-strand breaks requires MRX (MRN, Sae2 (Ctp1, and Mre11-nuclease.

    Directory of Open Access Journals (Sweden)

    James W Westmoreland

    2013-03-01

    Full Text Available Resection is an early step in homology-directed recombinational repair (HDRR of DNA double-strand breaks (DSBs. Resection enables strand invasion as well as reannealing following DNA synthesis across a DSB to assure efficient HDRR. While resection of only one end could result in genome instability, it has not been feasible to address events at both ends of a DSB, or to distinguish 1- versus 2-end resections at random, radiation-induced "dirty" DSBs or even enzyme-induced "clean" DSBs. Previously, we quantitatively addressed resection and the role of Mre11/Rad50/Xrs2 complex (MRX at random DSBs in circular chromosomes within budding yeast based on reduced pulsed-field gel electrophoretic mobility ("PFGE-shift". Here, we extend PFGE analysis to a second dimension and demonstrate unique patterns associated with 0-, 1-, and 2-end resections at DSBs, providing opportunities to examine coincidence of resection. In G2-arrested WT, Δrad51 and Δrad52 cells deficient in late stages of HDRR, resection occurs at both ends of γ-DSBs. However, for radiation-induced and I-SceI-induced DSBs, 1-end resections predominate in MRX (MRN null mutants with or without Ku70. Surprisingly, Sae2 (Ctp1/CtIP and Mre11 nuclease-deficient mutants have similar responses, although there is less impact on repair. Thus, we provide direct molecular characterization of coincident resection at random, radiation-induced DSBs and show that rapid and coincident initiation of resection at γ-DSBs requires MRX, Sae2 protein, and Mre11 nuclease. Structural features of MRX complex are consistent with coincident resection being due to an ability to interact with both DSB ends to directly coordinate resection. Interestingly, coincident resection at clean I-SceI-induced breaks is much less dependent on Mre11 nuclease or Sae2, contrary to a strong dependence on MRX complex, suggesting different roles for these functions at "dirty" and clean DSB ends. These approaches apply to resection at

  17. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease.

    Science.gov (United States)

    Wiemels, Richard E; Cech, Stephanie M; Meyer, Nikki M; Burke, Caleb A; Weiss, Andy; Parks, Anastacia R; Shaw, Lindsey N; Carroll, Ronan K

    2017-01-01

    Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus IMPORTANCE: Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently

  18. Memetic algorithms for de novo motif-finding in biomedical sequences.

    Science.gov (United States)

    Bi, Chengpeng

    2012-09-01

    The objectives of this study are to design and implement a new memetic algorithm for de novo motif discovery, which is then applied to detect important signals hidden in various biomedical molecular sequences. In this paper, memetic algorithms are developed and tested in de novo motif-finding problems. Several strategies in the algorithm design are employed that are to not only efficiently explore the multiple sequence local alignment space, but also effectively uncover the molecular signals. As a result, there are a number of key features in the implementation of the memetic motif-finding algorithm (MaMotif), including a chromosome replacement operator, a chromosome alteration-aware local search operator, a truncated local search strategy, and a stochastic operation of local search imposed on individual learning. To test the new algorithm, we compare MaMotif with a few of other similar algorithms using simulated and experimental data including genomic DNA, primary microRNA sequences (let-7 family), and transmembrane protein sequences. The new memetic motif-finding algorithm is successfully implemented in C++, and exhaustively tested with various simulated and real biological sequences. In the simulation, it shows that MaMotif is the most time-efficient algorithm compared with others, that is, it runs 2 times faster than the expectation maximization (EM) method and 16 times faster than the genetic algorithm-based EM hybrid. In both simulated and experimental testing, results show that the new algorithm is compared favorably or superior to other algorithms. Notably, MaMotif is able to successfully discover the transcription factors' binding sites in the chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) data, correctly uncover the RNA splicing signals in gene expression, and precisely find the highly conserved helix motif in the transmembrane protein sequences, as well as rightly detect the palindromic segments in the primary micro

  19. Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination.

    Science.gov (United States)

    Wiese, Claudia; Hinz, John M; Tebbs, Robert S; Nham, Peter B; Urbin, Salustra S; Collins, David W; Thompson, Larry H; Schild, David

    2006-01-01

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  20. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs

    KAUST Repository

    Alam, Tanvir

    2014-05-29

    LD motifs (leucine-aspartic acidmotifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs. © 2014 Biochemical Society.

  1. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  2. APOCALYPTIC MOTIFS IN THE CYCLE OF STORIES BY M.A. BULGAKOV «NOTES OF A YOUNG DOCTOR»

    Directory of Open Access Journals (Sweden)

    Evgeniy Igorevich Erokhov

    2015-10-01

    Full Text Available The motif analysis of a cycle of stories by M.A. Bulgakov «Notes of a Young Doctor» from the point of view of their apocalyptic problematics was first performed in this article. To identify apocalyptic motifs the method of motif analysis, developed by B.M. Gasparov, was used which will also help to prove the interpenetration of motifs in the cycle of stories. The result of the research work is the identification of apocalyptic motifs which are manifested in the experiences of the main character and the events taking place around him and passing through the prism of physician’s perception of the world. Our identified motifs show that the stories in the cycle are united not only thematically and with the help of the image of the main character, but with the help of the motifs which reflect interpenetration of apocalyptic motifs in the stories of one cycle. There are the following apocalyptic motifs in the cycle of stories by Bulgakov: diseases, darkness (as part of the landscape, resurrection from the dead and beast. They all belong to the biblical type which is allocated on the basis of the associative bond of these motifs with the biblical texts.

  3. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs

    KAUST Repository

    Alam, Tanvir; Alazmi, Meshari; Gao, Xin; Arold, Stefan T.

    2014-01-01

    LD motifs (leucine-aspartic acidmotifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs. © 2014 Biochemical Society.

  4. Overlapping ETS and CRE Motifs (G/CCGGAAGTGACGTCA) Preferentially Bound by GABPα and CREB Proteins

    Science.gov (United States)

    Chatterjee, Raghunath; Zhao, Jianfei; He, Ximiao; Shlyakhtenko, Andrey; Mann, Ishminder; Waterfall, Joshua J.; Meltzer, Paul; Sathyanarayana, B. K.; FitzGerald, Peter C.; Vinson, Charles

    2012-01-01

    Previously, we identified 8-bps long DNA sequences (8-mers) that localize in human proximal promoters and grouped them into known transcription factor binding sites (TFBS). We now examine split 8-mers consisting of two 4-mers separated by 1-bp to 30-bps (X4-N1-30-X4) to identify pairs of TFBS that localize in proximal promoters at a precise distance. These include two overlapping TFBS: the ETS⇔ETS motif (C/GCCGGAAGCGGAA) and the ETS⇔CRE motif (C/GCGGAAGTGACGTCAC). The nucleotides in bold are part of both TFBS. Molecular modeling shows that the ETS⇔CRE motif can be bound simultaneously by both the ETS and the B-ZIP domains without protein-protein clashes. The electrophoretic mobility shift assay (EMSA) shows that the ETS protein GABPα and the B-ZIP protein CREB preferentially bind to the ETS⇔CRE motif only when the two TFBS overlap precisely. In contrast, the ETS domain of ETV5 and CREB interfere with each other for binding the ETS⇔CRE. The 11-mer (CGGAAGTGACG), the conserved part of the ETS⇔CRE motif, occurs 226 times in the human genome and 83% are in known regulatory regions. In vivo GABPα and CREB ChIP-seq peaks identified the ETS⇔CRE as the most enriched motif occurring in promoters of genes involved in mRNA processing, cellular catabolic processes, and stress response, suggesting that a specific class of genes is regulated by this composite motif. PMID:23050235

  5. Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes

    Directory of Open Access Journals (Sweden)

    Kistler Corby

    2010-03-01

    Full Text Available Abstract Background Fusarium graminearum (Fg, a major fungal pathogen of cultivated cereals, is responsible for billions of dollars in agriculture losses. There is a growing interest in understanding the transcriptional regulation of this organism, especially the regulation of genes underlying its pathogenicity. The generation of whole genome sequence assemblies for Fg and three closely related Fusarium species provides a unique opportunity for such a study. Results Applying comparative genomics approaches, we developed a computational pipeline to systematically discover evolutionarily conserved regulatory motifs in the promoter, downstream and the intronic regions of Fg genes, based on the multiple alignments of sequenced Fusarium genomes. Using this method, we discovered 73 candidate regulatory motifs in the promoter regions. Nearly 30% of these motifs are highly enriched in promoter regions of Fg genes that are associated with a specific functional category. Through comparison to Saccharomyces cerevisiae (Sc and Schizosaccharomyces pombe (Sp, we observed conservation of transcription factors (TFs, their binding sites and the target genes regulated by these TFs related to pathways known to respond to stress conditions or phosphate metabolism. In addition, this study revealed 69 and 39 conserved motifs in the downstream regions and the intronic regions, respectively, of Fg genes. The top intronic motif is the splice donor site. For the downstream regions, we noticed an intriguing absence of the mammalian and Sc poly-adenylation signals among the list of conserved motifs. Conclusion This study provides the first comprehensive list of candidate regulatory motifs in Fg, and underscores the power of comparative genomics in revealing functional elements among related genomes. The conservation of regulatory pathways among the Fusarium genomes and the two yeast species reveals their functional significance, and provides new insights in their

  6. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria.

    Science.gov (United States)

    Sun, Eric I; Leyn, Semen A; Kazanov, Marat D; Saier, Milton H; Novichkov, Pavel S; Rodionov, Dmitry A

    2013-09-02

    In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels.An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. The obtained genome

  7. TT2014 meeting report on the 12th Transgenic Technology meeting in Edinburgh: new era of transgenic technologies with programmable nucleases in the foreground.

    Science.gov (United States)

    Beck, Inken M; Sedlacek, Radislav

    2015-02-01

    The 12th Transgenic Technology meeting was held in Edinburgh on 6th-8th October 2014 and interest to participate in the meeting overcame all expectations. The TT2014 was the largest meeting ever with more than 540 scientists, technicians, and students from all over the world. The meeting had an excellent scientific program that brought information on the latest ground-breaking technologies for gene targeting and genome editing using programmable nucleases into the foreground. These presentations were well balanced with several highlights over viewing topics in embryonic stem cell research, embryogenesis, disease models, and animals in agriculture. Ample space was reserved also for short talks presenting technical development and for highlighting posters contributions. A highlight of the meeting was the award of the 10th International Society of Transgenic Technologies Prize to Janet Rossant for her outstanding contributions in the field of mouse embryogenesis.

  8. Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs).

    Science.gov (United States)

    Sargent, R Geoffrey; Suzuki, Shingo; Gruenert, Dieter C

    2014-01-01

    Recent developments in methods to specifically modify genomic DNA using sequence-specific endonucleases and donor DNA have opened the door to a new therapeutic paradigm for cell and gene therapy of inherited diseases. Sequence-specific endonucleases, in particular transcription activator-like (TAL) effector nucleases (TALENs), have been coupled with polynucleotide small/short DNA fragments (SDFs) to correct the most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, a 3-base-pair deletion at codon 508 (delF508), in induced pluripotent stem (iPS) cells. The studies presented here describe the generation of candidate TALENs and their co-transfection with wild-type (wt) CFTR-SDFs into CF-iPS cells homozygous for the delF508 mutation. Using an allele-specific PCR (AS-PCR)-based cyclic enrichment protocol, clonal populations of corrected CF-iPS cells were isolated and expanded.

  9. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    Science.gov (United States)

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  10. Efficient sequential and parallel algorithms for finding edit distance based motifs.

    Science.gov (United States)

    Pal, Soumitra; Xiao, Peng; Rajasekaran, Sanguthevar

    2016-08-18

    Motif search is an important step in extracting meaningful patterns from biological data. The general problem of motif search is intractable and there is a pressing need to develop efficient, exact and approximation algorithms to solve this problem. In this paper, we present several novel, exact, sequential and parallel algorithms for solving the (l,d) Edit-distance-based Motif Search (EMS) problem: given two integers l,d and n biological strings, find all strings of length l that appear in each input string with atmost d errors of types substitution, insertion and deletion. One popular technique to solve the problem is to explore for each input string the set of all possible l-mers that belong to the d-neighborhood of any substring of the input string and output those which are common for all input strings. We introduce a novel and provably efficient neighborhood exploration technique. We show that it is enough to consider the candidates in neighborhood which are at a distance exactly d. We compactly represent these candidate motifs using wildcard characters and efficiently explore them with very few repetitions. Our sequential algorithm uses a trie based data structure to efficiently store and sort the candidate motifs. Our parallel algorithm in a multi-core shared memory setting uses arrays for storing and a novel modification of radix-sort for sorting the candidate motifs. The algorithms for EMS are customarily evaluated on several challenging instances such as (8,1), (12,2), (16,3), (20,4), and so on. The best previously known algorithm, EMS1, is sequential and in estimated 3 days solves up to instance (16,3). Our sequential algorithms are more than 20 times faster on (16,3). On other hard instances such as (9,2), (11,3), (13,4), our algorithms are much faster. Our parallel algorithm has more than 600 % scaling performance while using 16 threads. Our algorithms have pushed up the state-of-the-art of EMS solvers and we believe that the techniques introduced in

  11. Through the Portal: Viking Motifs Incorporated in the Romanesque Style in Telemark, Norway

    Directory of Open Access Journals (Sweden)

    Kristine Ødeby

    2013-09-01

    Full Text Available This paper presents the results of an analysis of motifs identified on six carved wooden Romanesque portal panels from the Norwegian county of Telemark. The findings suggest that animal motifs in the Late Viking style survived long into the Late Medieval period and were reused on these medieval portals. Stylistically, late expressions of Viking animal art do not differ a great deal from those of the subsequent Romanesque style. However, their symbolical differences are considered to be significant. The motifs themselves, and the issue of whether the Romanesque style adopted motifs from pre-Christian art, have attracted less attention. The motif portraying Sigurd slaying the dragon is considered in depth. It will be suggested that Sigurd, serving as a mediator between the old and the new beliefs when he appeared in late Viking contexts, was given a new role when portrayed in Christian art. Metaphor and liminality are a central part of this paper, and the theories of Alfred Gell and Margrete Andås suggest that the portal itself affects those who pass through it, and that the iconography is meaningful from a liminal perspective.

  12. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    Science.gov (United States)

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kim Man-Sun

    2012-05-01

    Full Text Available Abstract Background Network motifs provided a “conceptual tool” for understanding the functional principles of biological networks, but such motifs have primarily been used to consider static network structures. Static networks, however, cannot be used to reveal time- and region-specific traits of biological systems. To overcome this limitation, we proposed the concept of a “spatiotemporal network motif,” a spatiotemporal sequence of network motifs of sub-networks which are active only at specific time points and body parts. Results On the basis of this concept, we analyzed the developmental gene regulatory network of the Drosophila melanogaster embryo. We identified spatiotemporal network motifs and investigated their distribution pattern in time and space. As a result, we found how key developmental processes are temporally and spatially regulated by the gene network. In particular, we found that nested feedback loops appeared frequently throughout the entire developmental process. From mathematical simulations, we found that mutual inhibition in the nested feedback loops contributes to the formation of spatial expression patterns. Conclusions Taken together, the proposed concept and the simulations can be used to unravel the design principle of developmental gene regulatory networks.

  14. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.

    Science.gov (United States)

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.

  15. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.

    Science.gov (United States)

    Johnson, Rachel M; Rath, Arianna; Deber, Charles M

    2006-12-01

    Although the intrinsic low solubility of membrane proteins presents challenges to their high-resolution structure determination, insight into the amino acid sequence features and forces that stabilize their folds has been provided through study of sequence-dependent helix-helix interactions between single transmembrane (TM) helices. While the stability of helix-helix partnerships mediated by the Gly-xxx-Gly (GG4) motif is known to be generally modulated by distal interfacial residues, it has not been established whether the position of this motif, with respect to the ends of a given TM segment, affects dimer affinity. Here we examine the relationship between motif position and affinity in the homodimers of 2 single-spanning membrane protein TM sequences: glycophorin A (GpA) and bacteriophage M13 coat protein (MCP). Using the TOXCAT assay for dimer affinity on a series of GpA and MCP TM segments that have been modified with either 4 Leu residues at each end or with 8 Leu residues at the N-terminal end, we show that in each protein, centrally located GG4 motifs are capable of stronger helix-helix interactions than those proximal to TM helix ends, even when surrounding interfacial residues are maintained. The relative importance of GG4 motifs in stabilizing helix-helix interactions therefore must be considered not only in its specific residue context but also in terms of the location of the interactive surface relative to the N and C termini of alpha-helical TM segments.

  16. Identification of helix capping and {beta}-turn motifs from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2012-03-15

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and {sup 13}C{sup {beta}} chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of {beta}-turns: I, II, I Prime , II Prime and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and {beta}-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7-0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  17. EEVD motif of heat shock cognate protein 70 contributes to bacterial uptake by trophoblast giant cells

    Directory of Open Access Journals (Sweden)

    Kim Suk

    2009-12-01

    Full Text Available Abstract Background The uptake of abortion-inducing pathogens by trophoblast giant (TG cells is a key event in infectious abortion. However, little is known about phagocytic functions of TG cells against the pathogens. Here we show that heat shock cognate protein 70 (Hsc70 contributes to bacterial uptake by TG cells and the EEVD motif of Hsc70 plays an important role in this. Methods Brucella abortus and Listeria monocytogenes were used as the bacterial antigen in this study. Recombinant proteins containing tetratricopeptide repeat (TPR domains were constructed and confirmation of the binding capacity to Hsc70 was assessed by ELISA. The recombinant TPR proteins were used for investigation of the effect of TPR proteins on bacterial uptake by TG cells and on pregnancy in mice. Results The monoclonal antibody that inhibits bacterial uptake by TG cells reacted with the EEVD motif of Hsc70. Bacterial TPR proteins bound to the C-terminal of Hsc70 through its EEVD motif and this binding inhibited bacterial uptake by TG cells. Infectious abortion was also prevented by blocking the EEVD motif of Hsc70. Conclusions Our results demonstrate that surface located Hsc70 on TG cells mediates the uptake of pathogenic bacteria and proteins containing the TPR domain inhibit the function of Hsc70 by binding to its EEVD motif. These molecules may be useful in the development of methods for preventing infectious abortion.

  18. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    Science.gov (United States)

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation.

  19. Motif finding in DNA sequences based on skipping nonconserved positions in background Markov chains.

    Science.gov (United States)

    Zhao, Xiaoyan; Sze, Sing-Hoi

    2011-05-01

    One strategy to identify transcription factor binding sites is through motif finding in upstream DNA sequences of potentially co-regulated genes. Despite extensive efforts, none of the existing algorithms perform very well. We consider a string representation that allows arbitrary ignored positions within the nonconserved portion of single motifs, and use O(2(l)) Markov chains to model the background distributions of motifs of length l while skipping these positions within each Markov chain. By focusing initially on positions that have fixed nucleotides to define core occurrences, we develop an algorithm to identify motifs of moderate lengths. We compare the performance of our algorithm to other motif finding algorithms on a few benchmark data sets, and show that significant improvement in accuracy can be obtained when the sites are sufficiently conserved within a given sample, while comparable performance is obtained when the site conservation rate is low. A software program (PosMotif ) and detailed results are available online at http://faculty.cse.tamu.edu/shsze/posmotif.

  20. OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant.

    Science.gov (United States)

    Taylor, Clinton A; An, Sung-Wan; Kankanamalage, Sachith Gallolu; Stippec, Steve; Earnest, Svetlana; Trivedi, Ashesh T; Yang, Jonathan Zijiang; Mirzaei, Hamid; Huang, Chou-Long; Cobb, Melanie H

    2018-04-10

    The with-no-lysine (K) (WNK) signaling pathway to STE20/SPS1-related proline- and alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinase is an important mediator of cell volume and ion transport. SPAK and OSR1 associate with upstream kinases WNK 1-4, substrates, and other proteins through their C-terminal domains which interact with linear R-F-x-V/I sequence motifs. In this study we find that SPAK and OSR1 also interact with similar affinity with a motif variant, R-x-F-x-V/I. Eight of 16 human inward rectifier K + channels have an R-x-F-x-V motif. We demonstrate that two of these channels, Kir2.1 and Kir2.3, are activated by OSR1, while Kir4.1, which does not contain the motif, is not sensitive to changes in OSR1 or WNK activity. Mutation of the motif prevents activation of Kir2.3 by OSR1. Both siRNA knockdown of OSR1 and chemical inhibition of WNK activity disrupt NaCl-induced plasma membrane localization of Kir2.3. Our results suggest a mechanism by which WNK-OSR1 enhance Kir2.1 and Kir2.3 channel activity by increasing their plasma membrane localization. Regulation of members of the inward rectifier K + channel family adds functional and mechanistic insight into the physiological impact of the WNK pathway.

  1. DXD Motif-Dependent and -Independent Effects of the Chlamydia trachomatis Cytotoxin CT166

    Directory of Open Access Journals (Sweden)

    Miriam Bothe

    2015-02-01

    Full Text Available The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5 antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia.

  2. A Simple Decision Rule for Recognition of Poly(A) Tail Signal Motifs in Human Genome

    KAUST Repository

    AbouEisha, Hassan M.

    2015-05-12

    Background is the numerous attempts were made to predict motifs in genomic sequences that correspond to poly (A) tail signals. Vast portion of this effort has been directed to a plethora of nonlinear classification methods. Even when such approaches yield good discriminant results, identifying dominant features of regulatory mechanisms nevertheless remains a challenge. In this work, we look at decision rules that may help identifying such features. Findings are we present a simple decision rule for classification of candidate poly (A) tail signal motifs in human genomic sequence obtained by evaluating features during the construction of gradient boosted trees. We found that values of a single feature based on the frequency of adenine in the genomic sequence surrounding candidate signal and the number of consecutive adenine molecules in a well-defined region immediately following the motif displays good discriminative potential in classification of poly (A) tail motifs for samples covered by the rule. Conclusions is the resulting simple rule can be used as an efficient filter in construction of more complex poly(A) tail motifs classification algorithms.

  3. Dragon polya spotter: Predictor of poly(A) motifs within human genomic DNA sequences

    KAUST Repository

    Kalkatawi, Manal M.

    2011-11-15

    Motivation: Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms. In this work, we present one such poly(A) motif prediction method based on properties of human genomic DNA sequence surrounding a poly(A) motif. These properties include thermodynamic, physico-chemical and statistical characteristics. For predictions, we developed Artificial Neural Network and Random Forest models. These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity and specificity and furthermore provide a consistent level of accuracy for 12 poly(A) motif variants. The Author(s) 2011. Published by Oxford University Press. All rights reserved.

  4. Identification of helix capping and β-turn motifs from NMR chemical shifts

    International Nuclear Information System (INIS)

    Shen Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13 C β chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed those attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures.

  5. Molecular dynamics simulations of electrostatics and hydration distributions around RNA and DNA motifs

    Science.gov (United States)

    Marlowe, Ashley E.; Singh, Abhishek; Semichaevsky, Andrey V.; Yingling, Yaroslava G.

    2009-03-01

    Nucleic acid nanoparticles can self-assembly through the formation of complementary loop-loop interactions or stem-stem interactions. Presence and concentration of ions can significantly affect the self-assembly process and the stability of the nanostructure. In this presentation we use explicit molecular dynamics simulations to examine the variations in cationic distributions and hydration environment around DNA and RNA helices and loop-loop interactions. Our simulations show that the potassium and sodium ionic distributions are different around RNA and DNA motifs which could be indicative of ion mediated relative stability of loop-loop complexes. Moreover in RNA loop-loop motifs ions are consistently present and exchanged through a distinct electronegative channel. We will also show how we used the specific RNA loop-loop motif to design a RNA hexagonal nanoparticle.

  6. PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Maria Gato-Cañas

    2017-08-01

    Full Text Available PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity.

  7. Discovery of a Regulatory Motif for Human Satellite DNA Transcription in Response to BATF2 Overexpression.

    Science.gov (United States)

    Bai, Xuejia; Huang, Wenqiu; Zhang, Chenguang; Niu, Jing; Ding, Wei

    2016-03-01

    One of the basic leucine zipper transcription factors, BATF2, has been found to suppress cancer growth and migration. However, little is known about the genes downstream of BATF2. HeLa cells were stably transfected with BATF2, then chromatin immunoprecipitation-sequencing was employed to identify the DNA motifs responsive to BATF2. Comprehensive bioinformatics analyses indicated that the most significant motif discovered as TTCCATT[CT]GATTCCATTC[AG]AT was primarily distributed among the chromosome centromere regions and mostly within human type II satellite DNA. Such motifs were able to prime the transcription of type II satellite DNA in a directional and asymmetrical manner. Consistently, satellite II transcription was up-regulated in BATF2-overexpressing cells. The present study provides insight into understanding the role of BATF2 in tumours and the importance of satellite DNA in the maintenance of genomic stability. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. A Woman Voice in an Epic: Tracing Gendered Motifs in Anne Vabarna's Peko

    Directory of Open Access Journals (Sweden)

    Andreas Kalkun

    2008-12-01

    Full Text Available In the article the gendered motifs found in Anne Vabarna’s Seto epic Peko are analysed. Besides the narrative telling of the life of the male hero, the motives regarding eating, refusing to eat or offering food, and the aspect of the female body or its control deserve to be noticed. These scenes do not communicate the main plot, they are often related to minor characters of the epic and slow down the narrative, but at the same time they clearly carry artistic purpose and meaning. I consider these motifs, present in the liminal parts of the epic, to be the dominant symbols of the epic where the author’s feminine world is being exposed. Observing these motifs of Peko in the context of Seto religious worldview, the life of Anne Vabarna and the social position of Seto women, the symbols become eloquent and informative.

  9. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  10. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  11. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    Science.gov (United States)

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  12. A Conserved Metal Binding Motif in the Bacillus subtilis Competence Protein ComFA Enhances Transformation.

    Science.gov (United States)

    Chilton, Scott S; Falbel, Tanya G; Hromada, Susan; Burton, Briana M

    2017-08-01

    Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation. IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA. Copyright © 2017 American Society for Microbiology.

  13. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    Directory of Open Access Journals (Sweden)

    Roberts Richard J

    2008-05-01

    Full Text Available Abstract Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360, cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases.

  14. Memfasilitasi Penalaran Geometri Transformasi Siswa Melalui Eksplorasi Motif Melayu dengan Bantuan Grid

    Directory of Open Access Journals (Sweden)

    Febrian Febrian

    2017-10-01

    Full Text Available Geometri transformasi merupakan pengetahuan yang krusial dalam geometri yang dapat membangun banyak kemampuan lainnya seperti penalaran matematis. Oleh karena itu, geometri transformasi disarankan untuk diberikan pada pebelajar mulai dari usia dini. Penelitian terdahulu menunjukkan bahwa anak-anak memiliki sense untuk melihat karakteristik kedinamisan pada benda, oleh karena itu memfasilitasi pembelajaran yang dapat memanfaatkan sense ini menjadi sangat penting untuk membangun pemahaman geometri transformasi. Penelitian design research ini bertujuan untuk memfasilitasi siswa sekolah dasar untuk dapat mengembangkan pengetahuan awal mereka mengenai komposisi transformasi. Subjek penelitian adalah siswa kelas IV Sekolah Dasar Negeri 001 Toapaya, Kabupaten Bintan, Kepulauan Riau. Pendekatan pembelajaran yang digunakan adalah PMRI dengan konteks motif melayu itik pulang petang dengan bantuan grid. Hasil menunjukkan bahwa setting pembelajaran dapat memfasilitasi penalaran geometri transformasi melalui kegiatan eksplorasi motif dengan bantuan grid. Kata Kunci: komposisi transformasi, penalaran, motif melayu, grid, PMRI Transformation geometry is a crucial knowledge in geometry that can emerge many skills especially mathematical reasoning. Therefore, transformation geometry is suggested to be taught to children especially the young learners. Existing research implies that children have particular sense to see dynamic characteristic of an object or others. On the behalf of this statement, facilitating students in learning process that makes use of this students sense becomes important to undertake to help develop students reasoning of transformation geometry. The subtopic being highlighted is the composition of transformation. This design research aims to facilitate this situation. The subject of the research is fourth graders of the State Elementary School of 001 at Toapaya, Kabupaten Bintan, Kepulauan Riau. The learning approach used was PMRI by using

  15. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  16. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    Science.gov (United States)

    Zhu, Jie; Feng, Xiaolu; Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  17. Examples of the Motif of the Shrew in European Literature and Film

    OpenAIRE

    Vasvári, Louise O.

    2001-01-01

    In her article "Examples of the Motif of the Shrew in European Literature and Film" Louise O. Vasvári presents the shrew-taming story as a masterplot of both Eastern and Western folklore and literature concerned with establishing the appropriate power dynamic between a married couple. Vasvári firts reviews the comparative groundwork of the story she has documented in her earlier studies of the topic. In addition to tracing the bundle of motifs that make up the shrew story from medieval Arabic...

  18. The conjugal-bed motif in the Alcestis Barcinonensis: two notes

    Directory of Open Access Journals (Sweden)

    Rosario Moreno Soldevila

    2011-06-01

    Full Text Available This paper focuses on the centrality occupied by the conjugal-bed motif in the anonymous poem known as Alcestis Barcinonensis, in the light of which two new interpretations of lines 21-22 and 83-85 are provided. In the first passage, beato … toro should be read as a subtle allusion to marital love, one of the central themes of the poem; in the second, uestigia alludes to a well-known literary motif related to the bed of love, thus providing a more accurate interpretation of the post mortem fidelity which Alcestis demands from her husband.

  19. Motif trie: An efficient text index for pattern discovery with don't cares

    DEFF Research Database (Denmark)

    Grossi, Roberto; Menconi, Giulia; Pisanti, Nadia

    2017-01-01

    We introduce the motif trie data structure, which has applications in pattern matching and discovery in genomic analysis, plagiarism detection, data mining, intrusion detection, spam fighting and time series analysis, to name a few. Here the extraction of recurring patterns in sequential and text......We introduce the motif trie data structure, which has applications in pattern matching and discovery in genomic analysis, plagiarism detection, data mining, intrusion detection, spam fighting and time series analysis, to name a few. Here the extraction of recurring patterns in sequential...

  20. Poly(A) motif prediction using spectral latent features from human DNA sequences

    KAUST Repository

    Xie, Bo; Jankovic, Boris R.; Bajic, Vladimir B.; Song, Le; Gao, Xin

    2013-01-01

    Motivation: Polyadenylation is the addition of a poly(A) tail to an RNA molecule. Identifying DNA sequence motifs that signal the addition of poly(A) tails is essential to improved genome annotation and better understanding of the regulatory mechanisms and stability of mRNA.Existing poly(A) motif predictors demonstrate that information extracted from the surrounding nucleotide sequences of candidate poly(A) motifs can differentiate true motifs from the false ones to a great extent. A variety of sophisticated features has been explored, including sequential, structural, statistical, thermodynamic and evolutionary properties. However, most of these methods involve extensive manual feature engineering, which can be time-consuming and can require in-depth domain knowledge.Results: We propose a novel machine-learning method for poly(A) motif prediction by marrying generative learning (hidden Markov models) and discriminative learning (support vector machines). Generative learning provides a rich palette on which the uncertainty and diversity of sequence information can be handled, while discriminative learning allows the performance of the classification task to be directly optimized. Here, we used hidden Markov models for fitting the DNA sequence dynamics, and developed an efficient spectral algorithm for extracting latent variable information from these models. These spectral latent features were then fed into support vector machines to fine-tune the classification performance.We evaluated our proposed method on a comprehensive human poly(A) dataset that consists of 14 740 samples from 12 of the most abundant variants of human poly(A) motifs. Compared with one of the previous state-of-the-art methods in the literature (the random forest model with expert-crafted features), our method reduces the average error rate, false-negative rate and false-positive rate by 26, 15 and 35%, respectively. Meanwhile, our method makes ?30% fewer error predictions relative to the other

  1. Poly(A) motif prediction using spectral latent features from human DNA sequences

    KAUST Repository

    Xie, Bo

    2013-06-21

    Motivation: Polyadenylation is the addition of a poly(A) tail to an RNA molecule. Identifying DNA sequence motifs that signal the addition of poly(A) tails is essential to improved genome annotation and better understanding of the regulatory mechanisms and stability of mRNA.Existing poly(A) motif predictors demonstrate that information extracted from the surrounding nucleotide sequences of candidate poly(A) motifs can differentiate true motifs from the false ones to a great extent. A variety of sophisticated features has been explored, including sequential, structural, statistical, thermodynamic and evolutionary properties. However, most of these methods involve extensive manual feature engineering, which can be time-consuming and can require in-depth domain knowledge.Results: We propose a novel machine-learning method for poly(A) motif prediction by marrying generative learning (hidden Markov models) and discriminative learning (support vector machines). Generative learning provides a rich palette on which the uncertainty and diversity of sequence information can be handled, while discriminative learning allows the performance of the classification task to be directly optimized. Here, we used hidden Markov models for fitting the DNA sequence dynamics, and developed an efficient spectral algorithm for extracting latent variable information from these models. These spectral latent features were then fed into support vector machines to fine-tune the classification performance.We evaluated our proposed method on a comprehensive human poly(A) dataset that consists of 14 740 samples from 12 of the most abundant variants of human poly(A) motifs. Compared with one of the previous state-of-the-art methods in the literature (the random forest model with expert-crafted features), our method reduces the average error rate, false-negative rate and false-positive rate by 26, 15 and 35%, respectively. Meanwhile, our method makes ?30% fewer error predictions relative to the other

  2. Identification of a new family of putative PD-(D/EXK nucleases with unusual phylogenomic distribution and a new type of the active site

    Directory of Open Access Journals (Sweden)

    Bujnicki Janusz M

    2005-02-01

    Full Text Available Abstract Background Prediction of structure and function for uncharacterized protein families by identification of evolutionary links to characterized families and known structures is one of the cornerstones of genomics. Theoretical assignment of three-dimensional folds and prediction of protein function even at a very general level can facilitate the experimental determination of the molecular mechanism of action and the role that members of a given protein family fulfill in the cell. Here, we predict the three-dimensional fold and study the phylogenomic distribution of members of a large family of uncharacterized proteins classified in the Clusters of Orthologous Groups database as COG4636. Results Using protein fold-recognition we found that members of COG4636 are remotely related to Holliday junction resolvases and other nucleases from the PD-(D/EXK superfamily. Structure modeling and sequence analyses suggest that most members of COG4636 exhibit a new, unusual variant of the putative active site, in which the catalytic Lys residue migrated in the sequence, but retained similar spatial position with respect to other functionally important residues. Sequence analyses revealed that members of COG4636 and their homologs are found mainly in Cyanobacteria, but also in other bacterial phyla. They undergo horizontal transfer and extensive proliferation in the colonized genomes; for instance in Gloeobacter violaceus PCC 7421 they comprise over 2% of all protein-encoding genes. Thus, members of COG4636 appear to be a new type of selfish genetic elements, which may fulfill an important role in the genome dynamics of Cyanobacteria and other species they invaded. Our analyses provide a platform for experimental determination of the molecular and cellular function of members of this large protein family. Conclusion After submission of this manuscript, a crystal structure of one of the COG4636 members was released in the Protein Data Bank (code 1wdj

  3. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Ferino, Annalisa; Miglietta, Giulia

    2018-01-01

    KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. W...

  4. Specificity and affinity motifs for Grb2 SH2-ligand interactions

    NARCIS (Netherlands)

    Kessels, Helmut W. H. G.; Ward, Alister C.; Schumacher, Ton N. M.

    2002-01-01

    Protein-protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains.

  5. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.

    Science.gov (United States)

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong

    2016-12-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Finding the most significant common sequence and structure motifs in a set of RNA sequences

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Heyer, L.J.; Stormo, G.D.

    1997-01-01

    We present a computational scheme to locally align a collection of RNA sequences using sequence and structure constraints, In addition, the method searches for the resulting alignments with the most significant common motifs, among all possible collections, The first part utilizes a simplified...

  7. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  8. Mutational analysis of the RecJ exonuclease of Escherichia coli: identification of phosphoesterase motifs.

    Science.gov (United States)

    Sutera, V A; Han, E S; Rajman, L A; Lovett, S T

    1999-10-01

    The recJ gene, identified in Escherichia coli, encodes a Mg(+2)-dependent 5'-to-3' exonuclease with high specificity for single-strand DNA. Genetic and biochemical experiments implicate RecJ exonuclease in homologous recombination, base excision, and methyl-directed mismatch repair. Genes encoding proteins with strong similarities to RecJ have been found in every eubacterial genome sequenced to date, with the exception of Mycoplasma and Mycobacterium tuberculosis. Multiple genes encoding proteins similar to RecJ are found in some eubacteria, including Bacillus and Helicobacter, and in the archaea. Among this divergent set of sequences, seven conserved motifs emerge. We demonstrate here that amino acids within six of these motifs are essential for both the biochemical and genetic functions of E. coli RecJ. These motifs may define interactions with Mg(2+) ions or substrate DNA. A large family of proteins more distantly related to RecJ is present in archaea, eubacteria, and eukaryotes, including a hypothetical protein in the MgPa adhesin operon of Mycoplasma, a domain of putative polyA polymerases in Synechocystis and Aquifex, PRUNE of Drosophila, and an exopolyphosphatase (PPX1) of Saccharomyces cereviseae. Because these six RecJ motifs are shared between exonucleases and exopolyphosphatases, they may constitute an ancient phosphoesterase domain now found in all kingdoms of life.

  9. A cell-surface-anchored ratiometric i-motif sensor for extracellular pH detection.

    Science.gov (United States)

    Ying, Le; Xie, Nuli; Yang, Yanjing; Yang, Xiaohai; Zhou, Qifeng; Yin, Bincheng; Huang, Jin; Wang, Kemin

    2016-06-14

    A FRET-based sensor is anchored on the cell surface through streptavidin-biotin interactions. Due to the excellent properties of the pH-sensitive i-motif structure, the sensor can detect extracellular pH with high sensitivity and excellent reversibility.

  10. “The Birds of Clay”: An Apocryphal Motif in Folklore Legends

    Directory of Open Access Journals (Sweden)

    Olga V. Belova

    2015-08-01

    The fairly large group of folk legends with apocryphal motifs, occurring in different Slavic traditions from the 19th to the 21st centuries, thus testifies not only to the continued relevance of the biblical plots for oral culture, but also to the importance of the Apocrypha for the broadcasting and preservation of biblical stories in the folk tradition.

  11. STUDYING THE INFLUENCE OF THE PYRENE INTERCALATOR TINA ON THE STABILITY OF DNA i-MOTIFS

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed A.; Pedersen, Erik Bjerregaard; Khaireldin, Nahid A.

    2012-01-01

    Certain cytosine-rich (C-rich) DNA sequences can fold into secondary structures as four-stranded i-motifs with hemiprotonated base pairs. Here we synthesized C-rich TINA-intercalating oligonucleotides by inserting a nonnucleotide pyrene moiety between two C-rich regions. The stability of their i-...

  12. The NTP-binding motif in cowpea mosaic virus B polyprotein is essential for viral replication

    NARCIS (Netherlands)

    Peters, S A; Verver, J; Nollen, E A; van Lent, J W; Wellink, J; van Kammen, A

    1994-01-01

    We have assessed the functional importance of the NTP-binding motif (NTBM) in the cowpea mosaic virus (CPMV) B-RNA-encoded 58K domain by changing two conserved amino acids within the consensus A and B sites (GKSRTGK500S and MDD545, respectively). Both Lys-500 to Thr and Asp-545 to Pro substitutions

  13. Dipeptide frequency/bias analysis identifies conserved sites of nonrandomness shared by cysteine-rich motifs.

    Science.gov (United States)

    Campion, S R; Ameen, A S; Lai, L; King, J M; Munzenmaier, T N

    2001-08-15

    This report describes the application of a simple computational tool, AAPAIR.TAB, for the systematic analysis of the cysteine-rich EGF, Sushi, and Laminin motif/sequence families at the two-amino acid level. Automated dipeptide frequency/bias analysis detects preferences in the distribution of amino acids in established protein families, by determining which "ordered dipeptides" occur most frequently in comprehensive motif-specific sequence data sets. Graphic display of the dipeptide frequency/bias data revealed family-specific preferences for certain dipeptides, but more importantly detected a shared preference for employment of the ordered dipeptides Gly-Tyr (GY) and Gly-Phe (GF) in all three protein families. The dipeptide Asn-Gly (NG) also exhibited high-frequency and bias in the EGF and Sushi motif families, whereas Asn-Thr (NT) was distinguished in the Laminin family. Evaluation of the distribution of dipeptides identified by frequency/bias analysis subsequently revealed the highly restricted localization of the G(F/Y) and N(G/T) sequence elements at two separate sites of extreme conservation in the consensus sequence of all three sequence families. The similar employment of the high-frequency/bias dipeptides in three distinct protein sequence families was further correlated with the concurrence of these shared molecular determinants at similar positions within the distinctive scaffolds of three structurally divergent, but similarly employed, motif modules.

  14. Promoter motifs required for c-mpl gene expression induced by thrombopoietin in CMK cells.

    Science.gov (United States)

    Sunohara, Masataka; Sato, Iwao; Morikawa, Shigeru

    2017-11-30

    Thrombopoietin (TPO) and its receptor, c-Mpl, are the central regulators of megakaryocyte development and platelet production and are also crucial to regulate megakaryocytopoiesis. TPO remarkably elevated c-mpl promoter activity, while the protein kinase C (PKC) inhibitors, GF109203, H7 and Calphostin C, clearly reduced the steady level of its promoter activity.  In the present study, motifs crucial for c-mpl promoter activity induced by TPO treatment have been analyzed using a human megakaryoblastic cell line, CMK. Destruction of the -107Sp1 and the -57Sp1 sites in the c-mpl promoter enhancer region resulted in decrease of the promoter activity by 53.1% and 64.4%, respectively, and destruction of -69Ets and -28Ets elements dramatically decreased the promoter activity by 96.4% and 87.8%, respectively, while mutation of -77GATA moderately reduced the activity by 31.4%. The result was in agreement with our previous report that showed the crucial motifs in the c-mpl promoter for the promoter activity induced by PMA-treatment. This indicates that TPO-induced activation of the c-mpl promoter activity is fully modulated by transcription through a PKC-dependent pathway and the two Sp1 and two Ets motifs are crucial for the activation of the c-mpl promoter activity rather than a GATA motif in the c-mpl promoter of CMK cells.

  15. The WSXWS motif in cytokine receptors is a molecular switch involved in receptor activation

    DEFF Research Database (Denmark)

    Dagil, Robert; Knudsen, Maiken J.; Olsen, Johan Gotthardt

    2012-01-01

    The prolactin receptor (PRLR) is activated by binding of prolactin in a 2:1 complex, but the activation mechanism is poorly understood. PRLR has a conserved WSXWS motif generic to cytokine class I receptors. We have determined the nuclear magnetic resonance solution structure of the membrane...

  16. Monitoring lysin motif-ligand interactions via tryptophan analog fluorescence spectroscopy

    NARCIS (Netherlands)

    Petrovic, Dejan M.; Leenhouts, Kees; van Roosmalen, Maarten L.; KleinJan, Fenneke; Broos, Jaap

    2012-01-01

    The lysin motif (LysM) is a peptidoglycan binding protein domain found in a wide range of prokaryotes and eukaryotes. Various techniques have been used to study the LysM-ligand interaction, but a sensitive spectroscopic method to directly monitor this interaction has not been reported. Here a

  17. The nature of hydrogen bonding in R-2(2)(8) crystal motifs - a computational exploration

    Czech Academy of Sciences Publication Activity Database

    Deepa, Palanisamy; Solomon, R. V.; Vedha, S. A.; Kolandaivel, P.; Venuvanalingam, P.

    2014-01-01

    Roč. 112, č. 24 (2014), s. 3195-3205 ISSN 0026-8976 Institutional support: RVO:61388963 Keywords : NCI plot * hydrogen bonds * R-2(2)(8) motif * organic crystals * NBO * QTAIM analysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.720, year: 2014

  18. Dragon polya spotter: Predictor of poly(A) motifs within human genomic DNA sequences

    KAUST Repository

    Kalkatawi, Manal M.; Rangkuti, Farania; Schramm, Michael C.; Jankovic, Boris R.; Kamau, Allan; Chowdhary, Rajesh; Archer, John A.C.; Bajic, Vladimir B.

    2011-01-01

    . These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity

  19. The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia.

    Science.gov (United States)

    Yaffe, Yakey; Shepshelovitch, Jeanne; Nevo-Yassaf, Inbar; Yeheskel, Adva; Shmerling, Hedva; Kwiatek, Joanna M; Gaus, Katharina; Pasmanik-Chor, Metsada; Hirschberg, Koret

    2012-08-01

    Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60-269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.

  20. Modulation of i-motif thermodynamic stability by the introduction of UNA (unlocked nucleic acid) monomers

    DEFF Research Database (Denmark)

    Pasternak, Anna; Wengel, Jesper

    2011-01-01

    The influence of acyclic RNA derivatives, UNA (unlocked nucleic acid) monomers, on i-DNA thermodynamic stability has been investigated. The 22 nt human telomeric fragment was chosen as the model sequence for stability studies. UNA monomers modulate i-motif stability in a position-depending manner...

  1. Exploiting publicly available biological and biochemical information for the discovery of novel short linear motifs.

    KAUST Repository

    Sayadi, Ahmed

    2011-07-20

    The function of proteins is often mediated by short linear segments of their amino acid sequence, called Short Linear Motifs or SLiMs, the identification of which can provide important information about a protein function. However, the short length of the motifs and their variable degree of conservation makes their identification hard since it is difficult to correctly estimate the statistical significance of their occurrence. Consequently, only a small fraction of them have been discovered so far. We describe here an approach for the discovery of SLiMs based on their occurrence in evolutionarily unrelated proteins belonging to the same biological, signalling or metabolic pathway and give specific examples of its effectiveness in both rediscovering known motifs and in discovering novel ones. An automatic implementation of the procedure, available for download, allows significant motifs to be identified, automatically annotated with functional, evolutionary and structural information and organized in a database that can be inspected and queried. An instance of the database populated with pre-computed data on seven organisms is accessible through a publicly available server and we believe it constitutes by itself a useful resource for the life sciences (http://www.biocomputing.it/modipath).

  2. A single thiazole orange molecule forms an exciplex in a DNA i-motif.

    Science.gov (United States)

    Xu, Baochang; Wu, Xiangyang; Yeow, Edwin K L; Shao, Fangwei

    2014-06-18

    A fluorescent exciplex of thiazole orange (TO) is formed in a single-dye conjugated DNA i-motif. The exciplex fluorescence exhibits a large Stokes shift, high quantum yield, robust response to pH oscillation and little structural disturbance to the DNA quadruplex, which can be used to monitor the folding of high-order DNA structures.

  3. Temporal motifs reveal collaboration patterns in online task-oriented networks

    Science.gov (United States)

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  4. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    Science.gov (United States)

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  5. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    Science.gov (United States)

    Hernández-Sánchez, Itzell E.; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P.; Jiménez-Bremont, Juan F.

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. PMID:26442018

  6. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    Directory of Open Access Journals (Sweden)

    Itzell Euridice Hernández-Sánchez

    2015-09-01

    Full Text Available The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.

  7. Emergence of Nonlinear Optical Activity by Incorporation of a Linker Carrying the p-Nitroaniline Motif in MIL-53 Frameworks

    NARCIS (Netherlands)

    Markey, Karen; Krüger, Martin; Seidler, Tomasz; Reinsch, Helge; Verbiest, Thierry; De Vos, Dirk E.; Champagne, Benoît; Stock, Norbert; van der Veen, M.A.

    2017-01-01

    p-Nitroaniline presents the typical motif of a second-order nonlinear optically (NLO) active molecule. However, because of its crystallization in an antiparallel and hence centrosymmetric structure, the NLO activity is lost. In this contribution, the p-nitroaniline motif was built successfully

  8. Alanine substitutions in the GXXXG motif alter C99 cleavage by γ-secretase but not its dimerization.

    Science.gov (United States)

    Higashide, Hidekazu; Ishihara, Seiko; Nobuhara, Mika; Ihara, Yasuo; Funamoto, Satoru

    2017-03-01

    The amyloid β (Aβ) protein is a major component of senile plaques, one of the neuropathological hallmarks of Alzheimer's disease. Amyloidogenic processing of amyloid precursor protein (APP) by β- and γ-secretases leads to production of Aβ. APP contains tandem triple repeats of the GXXXG motif in its extracellular juxtamembrane and transmembrane regions. It is reported that the GXXXG motif is related to protein-protein interactions, but it remains controversial whether the GXXXG motif in APP is involved in substrate dimerization and whether dimerization affects γ-secretase-dependent cleavage. Therefore, the relationship between the GXXXG motifs, substrate dimerization, and γ-secretase-dependent cleavage sites remains unclear. Here, we applied blue native poly acrylamide gel electrophoresis to examine the effect of alanine substitutions within the GXXXG motifs of APP carboxyl terminal fragment (C99) on its dimerization and Aβ production. Surprisingly, alanine substitutions in the motif failed to alter C99 dimerization in detergent soluble state. Cell-based and solubilized γ-secretase assays demonstrated that increasing alanine substitutions in the motif tended to decrease long Aβ species such as Aβ42 and Aβ43 and to increase in short Aβ species concomitantly. Our data suggest that the GXXXG motif is crucial for Aβ production, but not for C99 dimerization. © 2016 International Society for Neurochemistry.

  9. SA-Mot: a web server for the identification of motifs of interest extracted from protein loops.

    Science.gov (United States)

    Regad, Leslie; Saladin, Adrien; Maupetit, Julien; Geneix, Colette; Camproux, Anne-Claude

    2011-07-01

    The detection of functional motifs is an important step for the determination of protein functions. We present here a new web server SA-Mot (Structural Alphabet Motif) for the extraction and location of structural motifs of interest from protein loops. Contrary to other methods, SA-Mot does not focus only on functional motifs, but it extracts recurrent and conserved structural motifs involved in structural redundancy of loops. SA-Mot uses the structural word notion to extract all structural motifs from uni-dimensional sequences corresponding to loop structures. Then, SA-Mot provides a description of these structural motifs using statistics computed in the loop data set and in SCOP superfamily, sequence and structural parameters. SA-Mot results correspond to an interactive table listing all structural motifs extracted from a target structure and their associated descriptors. Using this information, the users can easily locate loop regions that are important for the protein folding and function. The SA-Mot web server is available at http://sa-mot.mti.univ-paris-diderot.fr.

  10. Evidence for the additions of clustered interacting nodes during the evolution of protein interaction networks from network motifs

    Directory of Open Access Journals (Sweden)

    Guo Hao

    2011-05-01

    Full Text Available Abstract Background High-throughput screens have revealed large-scale protein interaction networks defining most cellular functions. How the proteins were added to the protein interaction network during its growth is a basic and important issue. Network motifs represent the simplest building blocks of cellular machines and are of biological significance. Results Here we study the evolution of protein interaction networks from the perspective of network motifs. We find that in current protein interaction networks, proteins of the same age class tend to form motifs and such co-origins of motif constituents are affected by their topologies and biological functions. Further, we find that the proteins within motifs whose constituents are of the same age class tend to be densely interconnected, co-evolve and share the same biological functions, and these motifs tend to be within protein complexes. Conclusions Our findings provide novel evidence for the hypothesis of the additions of clustered interacting nodes and point out network motifs, especially the motifs with the dense topology and specific function may play important roles during this process. Our results suggest functional constraints may be the underlying driving force for such additions of clustered interacting nodes.

  11. Identification of group specific motifs in Beta-lactamase family of proteins

    Directory of Open Access Journals (Sweden)

    Saxena Akansha

    2009-12-01

    Full Text Available Abstract Background Beta-lactamases are one of the most serious threats to public health. In order to combat this threat we need to study the molecular and functional diversity of these enzymes and identify signatures specific to these enzymes. These signatures will enable us to develop inhibitors and diagnostic probes specific to lactamases. The existing classification of beta-lactamases was developed nearly 30 years ago when few lactamases were available. DLact database contain more than 2000 beta-lactamase, which can be used to study the molecular diversity and to identify signatures specific to this family. Methods A set of 2020 beta-lactamase proteins available in the DLact database http://59.160.102.202/DLact were classified using graph-based clustering of Best Bi-Directional Hits. Non-redundant (> 90 percent identical protein sequences from each group were aligned using T-Coffee and annotated using information available in literature. Motifs specific to each group were predicted using PRATT program. Results The graph-based classification of beta-lactamase proteins resulted in the formation of six groups (Four major groups containing 191, 726, 774 and 73 proteins while two minor groups containing 50 and 8 proteins. Based on the information available in literature, we found that each of the four major groups correspond to the four classes proposed by Ambler. The two minor groups were novel and do not contain molecular signatures of beta-lactamase proteins reported in literature. The group-specific motifs showed high sensitivity (> 70% and very high specificity (> 90%. The motifs from three groups (corresponding to class A, C and D had a high level of conservation at DNA as well as protein level whereas the motifs from the fourth group (corresponding to class B showed conservation at only protein level. Conclusion The graph-based classification of beta-lactamase proteins corresponds with the classification proposed by Ambler, thus there is

  12. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms.

    Science.gov (United States)

    Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2014-02-17

    As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of

  13. Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs

    Directory of Open Access Journals (Sweden)

    Jockusch Rebecca A

    2006-11-01

    Full Text Available Abstract Background By screening a plasmid library for proteins that could cause silencing when targeted to the HMR locus in Saccharomyces cerevisiae, we previously reported the identification of Rtt107/Esc4 based on its ability to establish silent chromatin. In this study we aimed to determine the mechanism of Rtt107/Esc4 targeted silencing and also learn more about its biological functions. Results Targeted silencing by Rtt107/Esc4 was dependent on the SIR genes, which encode obligatory structural and enzymatic components of yeast silent chromatin. Based on its sequence, Rtt107/Esc4 was predicted to contain six BRCT motifs. This motif, originally identified in the human breast tumor suppressor gene BRCA1, is a protein interaction domain. The targeted silencing activity of Rtt107/Esc4 resided within the C-terminal two BRCT motifs, and this region of the protein bound to Sir3 in two-hybrid tests. Deletion of RTT107/ESC4 caused sensitivity to the DNA damaging agent MMS as well as to hydroxyurea. A two-hybrid screen showed that the N-terminal BRCT motifs of Rtt107/Esc4 bound to Slx4, a protein previously shown to be involved in DNA repair and required for viability in a strain lacking the DNA helicase Sgs1. Like SLX genes, RTT107ESC4 interacted genetically with SGS1; esc4Δ sgs1Δ mutants were viable, but exhibited a slow-growth phenotype and also a synergistic DNA repair defect. Conclusion Rtt107/Esc4 binds to the silencing protein Sir3 and the DNA repair protein Slx4 via different BRCT motifs, thus providing a bridge linking silent chromatin to DNA repair enzymes.

  14. Mitochondrial and Y chromosome haplotype motifs as diagnostic markers of Jewish ancestry: a reconsideration.

    Directory of Open Access Journals (Sweden)

    Sergio eTofanelli

    2014-11-01

    Full Text Available Several authors have proposed haplotype motifs based on site variants at the mitochondrial genome (mtDNA and the non-recombining portion of the Y chromosome (NRY to trace the genealogies of Jewish people. Here, we analyzed their main approaches and test the feasibility of adopting motifs as ancestry markers through construction of a large database of mtDNA and NRY haplotypes from public genetic genealogical repositories. We verified the reliability of Jewish ancestry prediction based on the Cohen and Levite Modal Haplotypes in their classical 6 STR marker format or in the extended 12 STR format, as well as four founder mtDNA lineages (HVS-I segments accounting for about 40% of the current population of Ashkenazi Jews. For this purpose we compared haplotype composition in individuals of self-reported Jewish ancestry with the rest of European, African or Middle Eastern samples, to test for non-random association of ethno-geographic groups and haplotypes. Overall, NRY and mtDNA based motifs, previously reported to differentiate between groups, were found to be more represented in Jewish compared to non-Jewish groups. However, this seems to stem from common ancestors of Jewish lineages being rather recent respect to ancestors of non-Jewish lineages with the same haplotype signatures. Moreover, the polyphyly of haplotypes which contain the proposed motifs and the misuse of constant mutation rates heavily affected previous attempts to correctly dating the origin of common ancestries. Accordingly, our results stress the limitations of using the above haplotype motifs as reliable Jewish ancestry predictors and show its inadequacy for forensic or genealogical purposes.

  15. An efficient identification strategy of clonal tea cultivars using long-core motif SSR markers.

    Science.gov (United States)

    Wang, Rang Jian; Gao, Xiang Feng; Kong, Xiang Rui; Yang, Jun

    2016-01-01

    Microsatellites, or simple sequence repeats (SSRs), especially those with long-core motifs (tri-, tetra-, penta-, and hexa-nucleotide) represent an excellent tool for DNA fingerprinting. SSRs with long-core motifs are preferred since neighbor alleles are more easily separated and identified from each other, which render the interpretation of electropherograms and the true alleles more reliable. In the present work, with the purpose of characterizing a set of core SSR markers with long-core motifs for well fingerprinting clonal cultivars of tea (Camellia sinensis), we analyzed 66 elite clonal tea cultivars in China with 33 initially-chosen long-core motif SSR markers covering all the 15 linkage groups of tea plant genome. A set of 6 SSR markers were conclusively selected as core SSR markers after further selection. The polymorphic information content (PIC) of the core SSR markers was >0.5, with ≤5 alleles in each marker containing 10 or fewer genotypes. Phylogenetic analysis revealed that the core SSR markers were not strongly correlated with the trait 'cultivar processing-property'. The combined probability of identity (PID) between two random cultivars for the whole set of 6 SSR markers was estimated to be 2.22 × 10(-5), which was quite low, confirmed the usefulness of the proposed SSR markers for fingerprinting analyses in Camellia sinensis. Moreover, for the sake of quickly discriminating the clonal tea cultivars, a cultivar identification diagram (CID) was subsequently established using these core markers, which fully reflected the identification process and provided the immediate information about which SSR markers were needed to identify a cultivar chosen among the tested ones. The results suggested that long-core motif SSR markers used in the investigation contributed to the accurate and efficient identification of the clonal tea cultivars and enabled the protection of intellectual property.

  16. qPMS7: a fast algorithm for finding (ℓ, d-motifs in DNA and protein sequences.

    Directory of Open Access Journals (Sweden)

    Hieu Dinh

    Full Text Available Detection of rare events happening in a set of DNA/protein sequences could lead to new biological discoveries. One kind of such rare events is the presence of patterns called motifs in DNA/protein sequences. Finding motifs is a challenging problem since the general version of motif search has been proven to be intractable. Motifs discovery is an important problem in biology. For example, it is useful in the detection of transcription factor binding sites and transcriptional regulatory elements that are very crucial in understanding gene function, human disease, drug design, etc. Many versions of the motif search problem have been proposed in the literature. One such is the (ℓ, d-motif search (or Planted Motif Search (PMS. A generalized version of the PMS problem, namely, Quorum Planted Motif Search (qPMS, is shown to accurately model motifs in real data. However, solving the qPMS problem is an extremely difficult task because a special case of it, the PMS Problem, is already NP-hard, which means that any algorithm solving it can be expected to take exponential time in the worse case scenario. In this paper, we propose a novel algorithm named qPMS7 that tackles the qPMS problem on real data as well as challenging instances. Experimental results show that our Algorithm qPMS7 is on an average 5 times faster than the state-of-art algorithm. The executable program of Algorithm qPMS7 is freely available on the web at http://pms.engr.uconn.edu/downloads/qPMS7.zip. Our online motif discovery tools that use Algorithm qPMS7 are freely available at http://pms.engr.uconn.edu or http://motifsearch.com.

  17. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest.

    Science.gov (United States)

    Wang, Xin; Lin, Peijie; Ho, Joshua W K

    2018-01-19

    It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs - a motif grammar - located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific.

  18. Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells*♦

    Science.gov (United States)

    Canver, Matthew C.; Bauer, Daniel E.; Dass, Abhishek; Yien, Yvette Y.; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H.; Orkin, Stuart H.

    2014-01-01

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. PMID:24907273

  19. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells.

    Science.gov (United States)

    Canver, Matthew C; Bauer, Daniel E; Dass, Abhishek; Yien, Yvette Y; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H; Orkin, Stuart H

    2014-08-01

    The clustered regularly interspaced short [corrected] palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA

    Science.gov (United States)

    Musiyenko, Alla; Majumdar, Tanmay; Andrews, Joel; Adams, Brian; Barik, Sailen

    2013-01-01

    Summary Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg2+-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca2+-dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined. PMID:22309152