WorldWideScience

Sample records for mrna global expression

  1. Evaluation of folate receptor 1 (FOLR1) mRNA expression, its specific promoter methylation and global DNA hypomethylation in type I and type II ovarian cancers

    International Nuclear Information System (INIS)

    Notaro, Sara; Reimer, Daniel; Fiegl, Heidi; Schmid, Gabriel; Wiedemair, Annamarie; Rössler, Julia; Marth, Christian; Zeimet, Alain Gustave

    2016-01-01

    In this retrospective study we evaluated the respective correlations and clinical relevance of FOLR1 mRNA expression, FOLR1 promoter specific methylation and global DNA hypomethylation in type I and type II ovarian cancer. Two hundred fifty four ovarian cancers, 13 borderline tumours and 60 samples of healthy fallopian epithelium and normal ovarian epithelium were retrospectively analysed for FOLR1 expression with RT-PCR. FOLR1 DNA promoter methylation and global DNA hypomethylation (measured by means of LINE1 DNA hypomethylation) were evaluated with MethyLight technique. No correlation between FOLR1 mRNA expression and its specific promoter DNA methylation was found neither in type I nor in type II cancers, however, high FOLR1 mRNA expression was found to be correlated with global DNA hypomethylation in type II cancers (p = 0.033). Strong FOLR1 mRNA expression was revealed for Grades 2-3, FIGO stages III-IV, residual disease > 0, and serous histotype. High FOLR1 expression was found to predict increased platinum sensitivity in type I cancers (odds ratio = 3.288; 1.256-10.75; p = 0.020). One-year survival analysis showed in type I cancers an independent better outcome for strong expression of FOLR1 in FIGO stage III and IV. For the entire follow up period no significant independent outcome for FOLR1 expression was revealed. In type I cancers LINE 1 DNA hypomethylation was found to exhibit a worse PFS and OS which were confirmed to be independent in multivariate COX regression model for both PFS (p = 0.026) and OS (p = 0.012). No correlations were found between FOLR1 expression and its specific promoter methylation, however, high FOLR1 mRNA expression was associated with DNA hypomethylation in type II cancers. FOLR1 mRNA expression did not prove to predict clinical outcome in type II cancers, although strong FOLR1 expression generally denotes ovarian cancers with highly aggressive phenotype. In type I cancers, however, strong FOLR1 expression has been found to be a

  2. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  3. Global mRNA expression analysis in myosin II deficient strains of Saccharomyces cerevisiae reveals an impairment of cell integrity functions

    Directory of Open Access Journals (Sweden)

    Rivera-Molina Félix E

    2008-01-01

    Full Text Available Abstract Background The Saccharomyces cerevisiae MYO1 gene encodes the myosin II heavy chain (Myo1p, a protein required for normal cytokinesis in budding yeast. Myo1p deficiency in yeast (myo1Δ causes a cell separation defect characterized by the formation of attached cells, yet it also causes abnormal budding patterns, formation of enlarged and elongated cells, increased osmotic sensitivity, delocalized chitin deposition, increased chitin synthesis, and hypersensitivity to the chitin synthase III inhibitor Nikkomycin Z. To determine how differential expression of genes is related to these diverse cell wall phenotypes, we analyzed the global mRNA expression profile of myo1Δ strains. Results Global mRNA expression profiles of myo1Δ strains and their corresponding wild type controls were obtained by hybridization to yeast oligonucleotide microarrays. Results for selected genes were confirmed by real time RT-PCR. A total of 547 differentially expressed genes (p ≤ 0.01 were identified with 263 up regulated and 284 down regulated genes in the myo1Δ strains. Gene set enrichment analysis revealed the significant over-representation of genes in the protein biosynthesis and stress response categories. The SLT2/MPK1 gene was up regulated in the microarray, and a myo1Δslt2Δ double mutant was non-viable. Overexpression of ribosomal protein genes RPL30 and RPS31 suppressed the hypersensitivity to Nikkomycin Z and increased the levels of phosphorylated Slt2p in myo1Δ strains. Increased levels of phosphorylated Slt2p were also observed in wild type strains under these conditions. Conclusion Following this analysis of global mRNA expression in yeast myo1Δ strains, we conclude that 547 genes were differentially regulated in myo1Δ strains and that the stress response and protein biosynthesis gene categories were coordinately regulated in this mutant. The SLT2/MPK1 gene was confirmed to be essential for myo1Δ strain viability, supporting that the up

  4. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  5. T-lymphocyte cytokine mRNA expression in cystic echinococcosis.

    Science.gov (United States)

    Fauser, S; Kern, P

    1997-04-01

    In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.

  6. Clinical significance of LUNX mRNA, CK19 mRNA, CEA mRNA expression in detecting micrometastasis from lung cancer

    International Nuclear Information System (INIS)

    Zhu Guangying; Liu Delin; Chen Jie

    2003-01-01

    Objective: To evaluate the sensitivity, specificity and clinical significance of CK19 mRNA, CEA mRNA and LUNX mRNA for detecting micrometastasis by sampling the peripheral blood and regional lymph nodes of lung cancer patients. Methods: Reverse transcriptase chain reaction (RT-PCR) was used to detect LUNX mRNA, CK19 mRNA, CEA mRNA for micrometastasis by sampling the peripheral blood of 48 lung cancer patients and 44 regional lymph nodes of such patients treated by curative resection. Peripheral blood of 30 patients with pulmonary benign lesions and 10 normal healthy volunteers and lymph nodes of 6 patients with benign pulmonary diseases served as control. Results: 1) LUNX mRNA, CK19 mRNA, CEA mRNA were expressed in all (35/35) lung cancer tissues. 2) In the peripheral blood from 48 lung cancer patients, 30 (62.5%) were positive for LUNX mRNA, 24 (50.0%) positive for CK19 mRNA and 32(66.7%) positive for CEA mRNA. The positive detection rates of micrometastasis in 44 lymph nodes from lung cancer patients were 36.4% (16 out of 44) for LUNX mRNA, 27.3% (12 out of 44) for CK19 mRNA and 40.9% (18 out of 44) for CEA mRNA. 3) In the 30 blood samples from patients with pulmonary benign diseases, 2 (6.7%) expressed CK19 mRNA, but none expressed LUNX mRNA or CEA mRNA. All the 3 molecular markers were negative in the 10 blood samples from healthy volunteers. In 11 lymph nodes from patients with pulmonary benign lesions, none was positive for any of the three markers. 4) In 44 regional lymph nodes from lung cancer patients, 6 (13.6%) were positive for metastasis by histopathological examination, with a positive rate significantly lower than that of the RT-PCR (P<0.05). 5) The micrometastatic positive rate in the peripheral blood of 40 non-small cell lung cancer (NSCLC) patients was significantly related to TNM stage (P=0.01). Conclusions: LUNX mRNA, CK19 MRNA, CEA mRNA are all appropriate target genes for the detection of micrometastasis from lung cancer. LUNX mRNA and CEA mRNA

  7. Cigarette smoking decreases global microRNA expression in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Joel W Graff

    Full Text Available Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs could control, in part, the unique messenger RNA (mRNA expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory and M2 (anti-inflammatory polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an "inverse" M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages.

  8. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells.

    Science.gov (United States)

    Awe, Jason P; Crespo, Agustin Vega; Li, You; Kiledjian, Megerditch; Byrne, James A

    2013-02-06

    The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics.

  9. Tissue-specific mRNA expression profiling in grape berry tissues

    Science.gov (United States)

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  10. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  11. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    Science.gov (United States)

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clinical impact on patients' stratification and outcome. Methods: Specimens were obtained from RMS patients and cell lines, and ALK expression was analysed by quantitative RT–PCR, western blotting, IHC, and copy number analysis. Results: High ALK mRNA expression was detected in the vast majority of PAX3/7-FOXO1-positive tumours, whereas PAX3/7-FOXO1-negative RMS displayed considerably lower amounts of both mRNA and protein. Notably, ALK mRNA distinguished unfavourable PAX3/7-FOXO1-positive tumours from PAX3/7-FOXO1-negative RMS (Ptumour size (PALK mRNA levels were of prognostic relevance by Cox univariate regression analysis and correlated with increased risk of relapse (P=0.001) and survival (P=0.01), whereas by multivariate analysis elevated ALK mRNA expression resulted a negative prognostic marker when clinical stage was not included. Conclusion: Quantitative assessment of ALK mRNA expression helps to improve risk stratification of RMS patients and identifies tumours with adverse biological characteristics and aggressive behaviour. PMID:24149177

  12. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  13. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    Science.gov (United States)

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  14. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle.

    Science.gov (United States)

    Shock, Jennifer L; Fischer, Kael F; DeRisi, Joseph L

    2007-01-01

    The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.

  15. Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons

    NARCIS (Netherlands)

    Mochida, Sumiko; Poulain, Bernard; Eisel, Ulrich; Binz, Thomas; Kurazono, Hisao; Niemann, Heiner; Tauc, Ladislav; Bullock, Theodore H.

    1990-01-01

    Injection of exogenous mRNA purified from various tissue preparations into cellular translation systems such as Xenopus oocytes has allowed expression of complex proteins (e.g., receptors for neurotransmitters). No evidence for expression of injected exogenous mRNA, however, has been reported in

  16. Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism.

    Directory of Open Access Journals (Sweden)

    David John Kennaway

    Full Text Available The close relationship between circadian rhythm disruption and poor metabolic status is becoming increasingly evident, but role of adipokines is poorly understood. Here we investigated adipocyte function and the metabolic status of mice with a global loss of the core clock gene Bmal1 fed either a normal or a high fat diet (22% by weight. Bmal1 null mice aged 2 months were killed across 24 hours and plasma adiponectin and leptin, and adipose tissue expression of Adipoq, Lep, Retn and Nampt mRNA measured. Glucose, insulin and pyruvate tolerance tests were conducted and the expression of liver glycolytic and gluconeogenic enzyme mRNA determined. Bmal1 null mice displayed a pattern of increased plasma adiponectin and plasma leptin concentrations on both control and high fat diets. Bmal1 null male and female mice displayed increased adiposity (1.8 fold and 2.3 fold respectively on the normal diet, but the high fat diet did not exaggerate these differences. Despite normal glucose and insulin tolerance, Bmal1 null mice had increased production of glucose from pyruvate, implying increased liver gluconeogenesis. The Bmal1 null mice had arrhythmic clock gene expression in epigonadal fat and liver, and loss of rhythmic transcription of a range of metabolic genes. Furthermore, the expression of epigonadal fat Adipoq, Retn, Nampt, AdipoR1 and AdipoR2 and liver Pfkfb3 mRNA were down-regulated. These results show for the first time that global loss of Bmal1, and the consequent arrhythmicity, results in compensatory changes in adipokines involved in the cellular control of glucose metabolism.

  17. DNA methylation regulates gabrb2 mRNA expression: developmental variations and disruptions in l-methionine-induced zebrafish with schizophrenia-like symptoms.

    Science.gov (United States)

    Wang, L; Jiang, W; Lin, Q; Zhang, Y; Zhao, C

    2016-11-01

    Single nucleotide polymorphisms (SNPs) in the human type A gamma-aminobutyric acid (GABA) receptor β 2 subunit gene (GABRB2) have been associated with schizophrenia and quantitatively correlated with mRNA expression in the postmortem brain tissue of patients with schizophrenia. l-Methionine (MET) administration has been reported to cause a recrudescence of psychotic symptoms in patients with schizophrenia, and similar symptoms have been generated in MET-induced mice. In this study, a zebrafish animal model was used to evaluate the relationship between the gabrb2 mRNA expression and its promoter DNA methylation in developmental and MET-induced schizophrenia-like zebrafish. The results indicated developmental increases in global DNA methylation and decreases in gabrb2 promoter methylation in zebrafish. A significant increase in gabrb2 mRNA levels was observed after GABA was synthesized. Additionally, the MET-triggered schizophrenia-like symptoms in adult zebrafish, involving social withdrawal and cognitive dysfunction analyzed with social interaction and T-maze behavioral tests, were accompanied by significantly increased DNA methylation levels in the global genome and the gabrb2 promoter. Furthermore, the significant correlation between gabrb2 mRNA expression and gabrb2 promoter methylation observed in the developmental stages became non-significant in MET-triggered adult zebrafish. These findings demonstrate that gabrb2 mRNA expression is associated with DNA methylation varies by developmental stage and show that these epigenetic association mechanisms are disrupted in MET-triggered adult zebrafish with schizophrenia-like symptoms. In conclusion, these results provide plausible epigenetic evidence of the GABA A receptor β 2 subunit involvement in the schizophrenia-like behaviors and demonstrate the potential use of zebrafish models in neuropsychiatric research. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility.

    Science.gov (United States)

    Yamamoto, Hikaru; Yamashita, Yoshiki; Saito, Natsuho; Hayashi, Atsushi; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2017-06-01

    The aim of this study was to investigate whether FOXO1 and FOXO3 mRNA expression in granulosa cells is the cause of unexplained infertility. Thirty-one patients aged infertility and 18 with male partner infertility as a control group) whose serum anti-Müllerian hormone level was >0.5 ng/μL were enrolled in the study. All patients underwent oocyte retrieval under a short protocol from June 2012 to October 2013. Real-time PCR was carried out using mRNA extracted from granulosa cells retrieved from mature follicles. We compared FOXO1 and FOXO3 mRNA expression ratios in granulosa cells between the unexplained infertility group and the male infertility group. The relation between FOXO1 and FOXO3 mRNA expression ratios in granulosa cells and assisted reproduction technology clinical outcome was also examined. FOXO3 mRNA expression ratio was significantly lower in the unexplained infertility group than in the male infertility group. Moreover, FOXO3 mRNA expression ratio showed a positive correlation with both the number of retrieved oocytes and serum anti-Müllerian hormone level. A positive correlation was also identified between FOXO1 mRNA expression and total dose of hMG. As well, the number of retrieved oocytes in the unexplained infertility group was statistically lower than that in the male infertility group. A lower FOXO3 mRNA expression in granulosa cells leads to poor oocyte development in patients with unexplained infertility undergoing controlled ovarian stimulation for in vitro fertilization-embryo transfer. © 2017 Japan Society of Obstetrics and Gynecology.

  19. The mRNA expression of XRCC repair genes in mice after γ-ray radiation

    International Nuclear Information System (INIS)

    Wang Qin; Yue Jingyin; Li Jin; Mu Chuanjie; Fan Feiyue

    2006-01-01

    Objective: To investigate the role of XRCC repair genes in radioresistance of IRM-2 inbred mice. Methods: Northern hybridization was used to measure mRNA expression of XRCC1 and XRCC5 genes in IRM-2 inbred mice. ICR/JCL and 615 after exposure to different doses of γ-ray radiation at different postirradiation time. Results: The levels of XRCC1 and XRCC5 mRNA expression in control IRM-2 mice were higher significantly than those in their control parental mice (P<0.01 and P<0.05). The mRNA expression of XRCC genes in ICR/JCL and 615 mice all increased to some extent after exposure 1, 2 and 4 Gy radiation. But the levels were significantly higher at 2h postirradiation (P<0.05) . The levels of XRCC mRNA expression in IRM-2 mice did not increase significnatly compared with the control mice after exposure 1 and 2 Gy radiation. But the levels of XRCC1 and XRCC5 mRNA expression increased markedly at 4Gy 1h postirradiation (P<0.05 and P<0.01). Conclusion: The basal levels of XRCC1 and XRCC5 mRNA expression in IRM-2 mice were high. The high level of XRCC5 mRNA expression was involved in the repair of DNA double strand breaks induced by higher dose radiation, which perhaps was one of radioresistance causes of IRM-2 mice. (authors)

  20. BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer

    Science.gov (United States)

    Link, Petra A.; Zhang, Wa; Odunsi, Kunle; Karpf, Adam R.

    2013-01-01

    Cancer germline (CG) genes are normally expressed in germ cells and aberrantly expressed in a variety of cancers; their immunogenicity has led to the widespread development of cancer vaccines targeting these antigens. BORIS/CTCFL is an autosomal CG antigen and promising cancer vaccine target. BORIS is the only known paralog of CTCF, a gene intimately involved in genomic imprinting, chromatin insulation, and nuclear regulation. We have previously shown that BORIS is expressed in epithelial ovarian cancer (EOC) and that its expression coincides with promoter and global DNA hypomethylation. Recently, 23 different BORIS mRNA variants have been described, and have been functionally grouped into six BORIS isoform families (sf1–sf6). In the present study, we have characterized the expression of BORIS isoform families in normal ovary (NO) and EOC, the latter of which were selected to include two groups with widely varying global DNA methylation status. We find selective expression of BORIS isoform families in NO, which becomes altered in EOC, primarily by the activation of BORIS sf1 in EOC. When comparing EOC samples based on methylation status, we find that BORIS sf1 and sf2 isoform families are selectively activated in globally hypomethylated tumors. In contrast, CTCF is downregulated in EOC, and the ratio of BORIS sf1, sf2, and sf6 isoform families as a function of CTCF is elevated in hypomethylated tumors. Finally, the expression of all BORIS isoform families was induced to varying extents by epigenetic modulatory drugs in EOC cell lines, particularly when DNMT and HDAC inhibitors were used in combination. PMID:23390377

  1. Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin.

    Directory of Open Access Journals (Sweden)

    Sayaka Aizawa

    Full Text Available The pars tuberalis (PT is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD, such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2 mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm.

  2. NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C

    2003-05-01

    Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.

  3. [Impacts of the formula of Suoquanwan(SQW) on expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency].

    Science.gov (United States)

    Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang

    2009-06-01

    To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.

  4. Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.

    Science.gov (United States)

    Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo

    2006-02-01

    The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.

  5. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  6. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  7. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Science.gov (United States)

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  8. Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma.

    Science.gov (United States)

    Lu, You-Wei; Li, Jin; Guo, Wei-Jian

    2010-11-08

    The Polycomb group (PcG) genes are a class of regulators responsible for maintaining homeotic gene expression throughout cell division. PcG expression is deregulated in some types of human cancer. Both Bmi-1 and Mel-18 are of the key PcG proteins. We investigate the expression and clinicopathological roles of Mel-18 and Bmi-1 mRNA in gastric cancer. The expression of Mel-18 and Bmi-1 in a series of 71 gastric cancer tissues and paired normal mucosal tissues distant from the tumorous lesion was assayed by quantitative real time RT-PCR. The correlation between Mel-18 and Bmi-1 mRNA expression, and between Mel-18 or Bmi-1 mRNA level and clinicopathological characteristics were analyzed. Expression of Mel-18 and Bmi-1 genes was variably detected, but overexpression of Bmi-1 mRNA and decreased expression of Mel-18 mRNA were the most frequent alteration. In addition, the expression of Bmi-1 and Mel-18 mRNA inversely correlates in gastric tumors. Moreover, a significant positive correlation between Bmi-1 overexpression and tumor size, depth of invasion, or lymph node metastasis, and a significant negative correlation between Mel-18 low-expression with lymph node metastasis or the clinical stage were observed. Our data suggest that Mel-18 and Bmi-1 may play crucial but opposite roles in gastric cancer. Decreased Mel-18 and increased Bmi-1 mRNA expression was associated with the carcinogenesis and progression of gastric cancer. It is possible to list Bmi-1 and Mel-18 as biomarkers for predicting the prognosis of gastric cancer.

  9. Responses of mRNA expression of PepT1 in small intestine to ...

    African Journals Online (AJOL)

    To study the effect of circulation small peptides concentration on mRNA expression in small intestine, graded amount of soybean small peptides (SSP) were infused into lactating goats through duodenal fistulas. Peptide-bound amino acid (PBAA) concentration in arterial plasma and the mRNA expression of PepT1 was ...

  10. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    Science.gov (United States)

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  11. 60Co γ-irradiation enhances expression of GAP-43 mRNA in rat brain

    International Nuclear Information System (INIS)

    Su Bingyin; Cai Wenqin; Zhang Chenggang

    2001-01-01

    Objective: To study the relationship between the expression of GAP-43 mRNA and nerve regeneration in rat brain after 60 Co γ-irradiation. Methods: Wistar rats were subjected to whole-body irradiation with 8 Gy 60 Co γ-rays. The expression of GAP-43 was detected by in situ hybridization histochemistry using Dig-cRNA probe. Results: It was found that the expression of GAP-43 mRNA increased in the cerebral cortex, caudate, putamen, globus pallidum, thalamus and hypothalamus one week after 8 Gy 60 Co γ-irradiation. The peak of GAP-43 mRNA expression was observed in the fourth week and then began to decrease but still remained at a higher than normal level. However, it decreased to a low level after 7 weeks. Conclusion: Enhanced expression of GAP-43 mRNA after 60 Co γ-irradiation in rat brain is associated with nerve regeneration and reconstruction of synapse

  12. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-05-01

    Full Text Available Angiopoietin-like protein 4 (ANGPTL4 is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT and Small Tailed Han (STH sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.

  13. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes.

    Directory of Open Access Journals (Sweden)

    Anna A Shvedova

    Full Text Available As the application of carbon nanotubes (CNT in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans.In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8, were compared with expression profiles of non-exposed (n = 7 workers (e.g., professional and/or technical staff from the same manufacturing facility.Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs.This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and miRNAs as prognostic markers

  14. Cyclic-AMP mediated regulation of ABCB mRNA expression in mussel haemocytes.

    Directory of Open Access Journals (Sweden)

    Silvia Franzellitti

    Full Text Available BACKGROUND: The multixenobiotic resistance system (MXR allows aquatic organisms to cope with their habitat despite high pollution levels by over-expressing membrane and intracellular transporters, including the P-glycoprotein (Pgp. In mammals transcription of the ABCB1 gene encoding Pgp is under cAMP/PKA-mediated regulation; whether this is true in mollusks is not fully clarified. METHODOLOGY/PRINCIPAL FINDINGS: cAMP/PKA regulation and ABCB mRNA expression were assessed in haemocytes from Mediterranean mussels (Mytilus galloprovincialis exposed in vivo for 1 week to 0.3 ng/L fluoxetine (FX alone or in combination with 0.3 ng/L propranolol (PROP. FX significantly decreased cAMP levels and PKA activity, and induced ABCB mRNA down-regulation. FX effects were abolished in the presence of PROP. In vitro experiments using haemocytes treated with physiological agonists (noradrenaline and serotonin and pharmacological modulators (PROP, forskolin, dbcAMP, and H89 of the cAMP/PKA system were performed to obtain clear evidence about the involvement of the signaling pathway in the transcriptional regulation of ABCB. Serotonin (5-HT decreased cAMP levels, PKA activity and ABCB mRNA expression but increased the mRNA levels for a putative 5-HT1 receptor. Interestingly, 5-HT1 was also over-expressed after in vivo exposures to FX. 5-HT effects were counteracted by PROP. Forskolin and dbcAMP increased PKA activity as well as ABCB mRNA expression; the latter effect was abolished in the presence of the PKA inhibitor H89. CONCLUSIONS: This study provides the first direct evidence for the cAMP/PKA-mediated regulation of ABCB transcription in mussels.

  15. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Science.gov (United States)

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  16. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    Science.gov (United States)

    Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-08-01

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  17. Correlation of mRNA Expression and Signal Variability in Chronic Intracortical Electrodes.

    Science.gov (United States)

    Falcone, Jessica D; Carroll, Sheridan L; Saxena, Tarun; Mandavia, Dev; Clark, Alexus; Yarabarla, Varun; Bellamkonda, Ravi V

    2018-01-01

    The goal for this research was to identify molecular mechanisms that explain animal-to-animal variability in chronic intracortical recordings. Microwire electrodes were implanted into Sprague Dawley rats at an acute (1 week) and a chronic (14 weeks) time point. Weekly recordings were conducted, and action potentials were evoked in the barrel cortex by deflecting the rat's whiskers. At 1 and 14 weeks, tissue was collected, and mRNA was extracted. mRNA expression was compared between 1 and 14 weeks using a high throughput multiplexed qRT-PCR. Pearson correlation coefficients were calculated between mRNA expression and signal-to-noise ratios at 14 weeks. At 14 weeks, a positive correlation between signal-to-noise ratio (SNR) and NeuN and GFAP mRNA expression was observed, indicating a relationship between recording strength and neuronal population, as well as reactive astrocyte activity. The inflammatory state around the electrode interface was evaluated using M1-like and M2-like markers. Expression for both M1-like and M2-like mRNA markers remained steady from 1 to 14 weeks. Anti-inflammatory markers, CD206 and CD163, however, demonstrated a significant positive correlation with SNR quality at 14 weeks. VE-cadherin, a marker for adherens junctions, and PDGFR-β, a marker for pericytes, both partial representatives of blood-brain barrier health, had a positive correlation with SNR at 14 weeks. Endothelial adhesion markers revealed a significant increase in expression at 14 weeks, while CD45, a pan-leukocyte marker, significantly decreased at 14 weeks. No significant correlation was found for either the endothelial adhesion or pan-leukocyte markers. A positive correlation between anti-inflammatory and blood-brain barrier health mRNA markers with electrophysiological efficacy of implanted intracortical electrodes has been demonstrated. These data reveal potential mechanisms for further evaluation to determine potential target mechanisms to improve

  18. Expression of galectin-9 mRNA in obese children with polymorphism of the lactase gene

    Directory of Open Access Journals (Sweden)

    A.E. Abaturov

    2018-02-01

    Full Text Available Background. The aim of the study is to investigate the association of expression of galectin-9 (Gal-9 mRNA and lactose malabsorption in obese children with polymorphism (SNP of the lactase gene (LCT and to study the efficacy of lactase deficiency therapy using exogenous lactase preparations. Materials and methods. Seventy obese children (BMI > 95th percentile and 16 children without obesity aged 6–18 years were examined. There was studied SNP LCT (material for investigation venous blood by real-time PCR, expression of Gal-9 mRNA (study material buccal epithelium by real-time PCR with reverse transcription, malabsorption of lactose by hydrogen breath test (HBT. Among obese children, 38 children with genotype C/C 13910 presented the first observation group, 32 children with phenotype identical genotypes C/T 13910 and T/T 13910, p > 0.05, presented the second group. Children from the first observation group also determined the level of expression of Gal-9 mRNA and lactose malabsorption after using exogenous lactase preparations. Results. The genotype C/C 13910 was determined in 38 (54.3 %, genotype C/T 13910 in 22 (31.4 % and genotype T/T in 10 (14.3 % patients. Malabsorption of lactose in children with genotype C/C 13910 averaged 32.7 ± 10.4 pmm, in children with genotypes C/T 13910 — 26.3 ± 4.9 pmm (p > 0.05 and with genotype T/T 13910 and was absent in children without obesity (p < 0.05. The average level of expression of Gal-9 mRNA in children with genotype C/C 13910 was 564.3 ± 32.8 RU DmRNA Gal-9/mRNA actin, in children with genotypes C/T and T/T 13910 — 61.04 ± 15.30 RU DmRNA Gal-9/mRNA actin, p < 0.01. It is of great importance that the children with genotype C/C 13910 and lactose malabsorption (n = 20 had the lowest average level of expression of Gal-9 mRNA (42.47 ± 13.30 RU DmRNA Gal-9/mRNA actin whereas the children with genotype C/C 13910 and without lactose malabsorption (n =18 had the largest level (1086

  19. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    Science.gov (United States)

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  20. Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites

    Science.gov (United States)

    Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You

    2013-01-01

    AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465

  1. Nonparametric testing for DNA copy number induced differential mRNA gene expression

    NARCIS (Netherlands)

    van Wieringen, W.N.; van de Wiel, M.A.

    2009-01-01

    The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer.

  2. Molecular evolution of adiponectin in Carnivora and its mRNA expression in relation to hepatic lipidosis.

    Science.gov (United States)

    Nieminen, Petteri; Rouvinen-Watt, Kirsti; Kapiainen, Suvi; Harris, Lora; Mustonen, Anne-Mari

    2010-09-15

    Adiponectin is a novel adipocyte-derived hormone with low circulating concentrations and/or mRNA expression in obesity and non-alcoholic fatty liver disease (NAFLD). The adiponectin mRNA of several Carnivora species was sequenced to enable further gene expression studies in this clade with potential experimental species to examine the connections of hypoadiponectinemia to hepatic lipidosis. In addition, adiponectin mRNA expression was studied in the retroperitoneal fat of the American mink (Neovison vison), as hepatic lipidosis with close similarities to NAFLD can be rapidly induced to the species by fasting. The mRNA expression was determined after overnight-7d of food deprivation and 28d of re-feeding and correlated to the liver fat %. The homologies between the determined carnivoran mRNA sequences and that of the domestic dog were 92.2-99.1%. As the mRNA expression was not affected by short-term fasting and did not correlate with the liver fat %, there seems to be no clear connection between adiponectin and the development of lipidosis in the American mink. In the future, the obtained sequences can be utilized in further studies of adiponectin expression in comparative endocrinology. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Applying the breaks on gene expression - mRNA deadenylation by Pop2p

    DEFF Research Database (Denmark)

    Andersen, Kasper Røjkjær; Jonstrup, Anette Thyssen; Van, Lan Bich

    When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems to be the ......When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems...... to be the shortening of the poly(A) tail (deadenylation), as this step is slower than the subsequent decapping and degradation of the mRNA body. The Mega-Dalton Ccr4-Not complex contains two exonucleases, Ccr4p and Pop2p, responsible for this process. It is not known at present why two conserved nucleases are needed...

  4. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse

    Directory of Open Access Journals (Sweden)

    Green Carla B

    2001-05-01

    Full Text Available Abstract Background Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse. Results cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver. Conclusion The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

  5. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2016-03-01

    Full Text Available Wilms tumor (WT is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT.

  6. Connecting protein and mRNA burst distributions for stochastic models of gene expression

    International Nuclear Information System (INIS)

    Elgart, Vlad; Jia, Tao; Fenley, Andrew T; Kulkarni, Rahul

    2011-01-01

    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

  7. Profiles of mRNA expression of genes related to sex differentiation of the gonads in the chicken embryo.

    Science.gov (United States)

    Yamamoto, I; Tsukada, A; Saito, N; Shimada, K

    2003-09-01

    Sex is determined genetically in birds. The homogametic sex is male (ZZ), whereas the heterogametic sex is female (ZW). According to the genetic sex, gonads develop into testes or ovary. In this study, we performed experiments to reveal mRNA expression patterns in the gonad between d 5.5 and 8.5 of incubation and examined a possible role of Dss-Ahc critical region on the X chromosome 1 (Dax1), Steroidogenic factor 1 (Sf1), P450aromatase (P450arom), Estrogen receptor alpha (ER alpha), doublesex and mab3 related transcription factor 1 (Dmrt1), Sry-related HMG box gene 9 (Sox9), Gata binding protein 4 (Gata4), and anti-müllerian hormone (Amh) in sex differentiation in chicken embryonic gonads using RNase protection assay. In embryonic chicken gonads, Dax1 mRNA was expressed in both sexes but was higher in females than in males at d 6.5 and 7.5 of incubation. The Sf1 mRNA was expressed in both sexes, but it was expressed more in males at d 5.5 than in females but more in females than in males at d 7.5 and 8.5 of incubation. The P450arom mRNA was expressed only in female gonads from d 5.5 of incubation. The ER alpha mRNA was expressed in both sexes, but it did not show a sex difference. On the other hand, the Dmrt1 mRNA was expressed in both sexes, but it showed a male-specific expression pattern. The male-specific expression pattern was observed in Sox9 mRNA, but it was not expressed in female gonads. The Gata4 mRNA was expressed in both sexes, and sex differences were not revealed throughout the observational period. Amh mRNA was expressed in both sexes, but it had male-specific mRNA expression pattern at d 6.5 to 8.5 of incubation. These results indicate that Dax1, Sf1, and P450arom have possible roles in ovary formation, whereas Dmrt1, Sox9, and Amh are related to testis formation in differentiating chicken gonads at d 5.5 to 8.5 of incubation.

  8. Nitric oxide signaling pathway regulates potassium chloride cotransporter-1 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, M; Lauf, P K; Adragna, N C

    2001-11-30

    Rat vascular smooth muscle cells (VSMCs) express at least two mRNAs for K-Cl cotransporters (KCC): KCC1 and KCC3. cGMP-dependent protein kinase I regulates KCC3 mRNA expression in these cells. Here, we show evidence implicating the nitric oxide (NO)/cGMP signaling pathway in the expression of KCC1 mRNA, considered to be the major cell volume regulator. VSMCs, expressing soluble guanylyl cyclase (sGC) and PKG-I isoforms showed a time- and concentration-dependent increase in KCC1 mRNA levels after treatment with sodium nitroprusside as demonstrated by semiquantitative RT-PCR. sGC-dependent regulation of KCC1 mRNA expression was confirmed using YC-1, a NO-independent sGC stimulator. The sGC inhibitor LY83583 blocked the effects of sodium nitroprusside and YC-1. Moreover, 8-Br-cGMP increased KCC1 mRNA expression in a concentration- and time-dependent fashion. The 8-Br-cGMP effect was partially blocked by KT5823 but not by actinomycin D. However, actinomycin D and cycloheximide increased basal KCC1 mRNA in an additive manner, suggesting different mechanisms of action for both drugs. These findings suggest that in VSMCs, the NO/cGMP-signaling pathway participates in KCC1 mRNA regulation at the post-transcriptional level.

  9. Local IGFBP-3 mRNA expression, apoptosis and risk of colorectal adenomas

    Directory of Open Access Journals (Sweden)

    Omofoye Oluwaseun

    2008-05-01

    Full Text Available Abstract Background IGF binding protein-3 (IGFBP-3 regulates the bioavailability of insulin-like growth factors I and II, and has both anti-proliferative and pro-apoptotic properties. Elevated plasma IGFBP-3 has been associated with reduced risk of colorectal cancer (CRC, but the role of tissue IGFBP-3 is not well defined. We evaluated the association between tissue or plasma IGFBP-3 and risk of colorectal adenomas or low apoptosis. Methods Subjects were consenting patients who underwent a clinically indicated colonoscopy at UNC Hospitals and provided information on diet and lifestyle. IGFBP-3 mRNA in normal colon was assessed by real time RT-PCR. Plasma IGFBP-3 was measured by ELISA and apoptosis was determined by morphology on H & E slides. Logistic regression was used to compute odds ratio (OR and 95% confidence intervals. Results We observed a modest correlation between plasma IGFBP-3 and tissue IGFBP-3 expression (p = 0.007. There was no significant association between plasma IGFBP-3 and adenomas or apoptosis. Tissue IGFBP-3 mRNA expression was significantly lower in cases than controls. Subjects in the lowest three quartiles of tissue IGFBP-3 gene expression were more likely to have adenomas. Consistent with previous reports, low apoptosis was significantly associated with increased risk of adenomas (p = 0.003. Surprisingly, local IGFBP-3 mRNA expression was inversely associated with apoptosis. Conclusion Low expression of IGFBP-3 mRNA in normal colonic mucosa predicts increased risk of adenomas. Our findings suggest that local IGFBP-3 in the colon may directly increase adenoma risk but IGFBP-3 may act through a pathway other than apoptosis to influence adenoma risk.

  10. Local IGFBP-3 mRNA expression, apoptosis and risk of colorectal adenomas

    International Nuclear Information System (INIS)

    Keku, Temitope O; Sandler, Robert S; Simmons, James G; Galanko, Joseph; Woosley, John T; Proffitt, Michelle; Omofoye, Oluwaseun; McDoom, Maya; Lund, Pauline K

    2008-01-01

    IGF binding protein-3 (IGFBP-3) regulates the bioavailability of insulin-like growth factors I and II, and has both anti-proliferative and pro-apoptotic properties. Elevated plasma IGFBP-3 has been associated with reduced risk of colorectal cancer (CRC), but the role of tissue IGFBP-3 is not well defined. We evaluated the association between tissue or plasma IGFBP-3 and risk of colorectal adenomas or low apoptosis. Subjects were consenting patients who underwent a clinically indicated colonoscopy at UNC Hospitals and provided information on diet and lifestyle. IGFBP-3 mRNA in normal colon was assessed by real time RT-PCR. Plasma IGFBP-3 was measured by ELISA and apoptosis was determined by morphology on H & E slides. Logistic regression was used to compute odds ratio (OR) and 95% confidence intervals. We observed a modest correlation between plasma IGFBP-3 and tissue IGFBP-3 expression (p = 0.007). There was no significant association between plasma IGFBP-3 and adenomas or apoptosis. Tissue IGFBP-3 mRNA expression was significantly lower in cases than controls. Subjects in the lowest three quartiles of tissue IGFBP-3 gene expression were more likely to have adenomas. Consistent with previous reports, low apoptosis was significantly associated with increased risk of adenomas (p = 0.003). Surprisingly, local IGFBP-3 mRNA expression was inversely associated with apoptosis. Low expression of IGFBP-3 mRNA in normal colonic mucosa predicts increased risk of adenomas. Our findings suggest that local IGFBP-3 in the colon may directly increase adenoma risk but IGFBP-3 may act through a pathway other than apoptosis to influence adenoma risk

  11. Global genetic response in a cancer cell: self-organized coherent expression dynamics.

    Directory of Open Access Journals (Sweden)

    Masa Tsuchiya

    Full Text Available Understanding the basic mechanism of the spatio-temporal self-control of genome-wide gene expression engaged with the complex epigenetic molecular assembly is one of major challenges in current biological science. In this study, the genome-wide dynamical profile of gene expression was analyzed for MCF-7 breast cancer cells induced by two distinct ErbB receptor ligands: epidermal growth factor (EGF and heregulin (HRG, which drive cell proliferation and differentiation, respectively. We focused our attention to elucidate how global genetic responses emerge and to decipher what is an underlying principle for dynamic self-control of genome-wide gene expression. The whole mRNA expression was classified into about a hundred groups according to the root mean square fluctuation (rmsf. These expression groups showed characteristic time-dependent correlations, indicating the existence of collective behaviors on the ensemble of genes with respect to mRNA expression and also to temporal changes in expression. All-or-none responses were observed for HRG and EGF (biphasic statistics at around 10-20 min. The emergence of time-dependent collective behaviors of expression occurred through bifurcation of a coherent expression state (CES. In the ensemble of mRNA expression, the self-organized CESs reveals distinct characteristic expression domains for biphasic statistics, which exhibits notably the presence of criticality in the expression profile as a route for genomic transition. In time-dependent changes in the expression domains, the dynamics of CES reveals that the temporal development of the characteristic domains is characterized as autonomous bistable switch, which exhibits dynamic criticality (the temporal development of criticality in the genome-wide coherent expression dynamics. It is expected that elucidation of the biophysical origin for such critical behavior sheds light on the underlying mechanism of the control of whole genome.

  12. Cloning and mRNA expression pattern analysis under low ...

    African Journals Online (AJOL)

    This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results indicated that the ...

  13. Downregulation of TIM-3 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X.Z. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang (China); Huang, W.Y.; Qiao, Y.; Chen, Y.; Du, S.Y.; Chen, D.; Yu, S. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Liu, N. [Department of Nephrology, First Affiliated Hospital, China Medical University, Shenyang (China); Dou, L.Y. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Jiang, Y. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang (China); Department of Dermatology, First Affiliated Hospital, China Medical University, Shenyang (China)

    2014-10-17

    The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (r{sub s}=0.283, P=0.049) and serum albumin (r{sub s}=0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; r{sub s}=-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE.

  14. Downregulation of TIM-3 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Cai, X.Z.; Huang, W.Y.; Qiao, Y.; Chen, Y.; Du, S.Y.; Chen, D.; Yu, S.; Liu, N.; Dou, L.Y.; Jiang, Y.

    2014-01-01

    The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (r s =0.283, P=0.049) and serum albumin (r s =0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; r s =-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE

  15. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren

    2006-01-01

    in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4......Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression.......5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied...

  16. Association of chemerin mRNA expression in human epicardial adipose tissue with coronary atherosclerosis

    Directory of Open Access Journals (Sweden)

    Wang Linjie

    2011-10-01

    Full Text Available Abstract Background Growing evidence suggests that epicardial adipose tissue (EAT may play a key role in the pathogenesis and development of coronary artery disease (CAD by producing several inflammatory adipokines. Chemerin, a novel adipokine, has been reported to be involved in regulating immune responses and glucolipid metabolism. Given these properties, chemerin may provide an interesting link between obesity, inflammation and atherosclerosis. In this study, we sought to determine the relationship of chemerin expression in EAT and the severity of coronary atherosclerosis in Han Chinese patients. Methods Serums and adipose tissue biopsies (epicardial and thoracic subcutaneous were obtained from CAD (n = 37 and NCAD (n = 16 patients undergoing elective cardiac surgery. Gensini score was used to assess the severity of CAD. Serum levels of chemerin, adiponectin and insulin were measured by ELISA. Chemerin protein expression in adipose tissue was detected by immunohistochemistry. The mRNA levels of chemerin, chemR23, adiponectin and TNF-alpha in adipose tissue were detected by RT-PCR. Results We found that EAT of CAD group showed significantly higher levels of chemerin and TNF-alpha mRNA, and significantly lower level of adiponectin mRNA than that of NCAD patients. In CAD group, significantly higher levels of chemerin mRNA and protein were observed in EAT than in paired subcutaneous adipose tissue (SAT, whereas such significant difference was not found in NCAD group. Chemerin mRNA expression in EAT was positively correlated with Gensini score (r = 0.365, P P P P P P P > 0.05. Conclusions The expressions of chemerin mRNA and protein are significantly higher in EAT from patients with CAD in Han Chinese patients. Furthermore, the severity of coronary atherosclerosis is positive correlated with the level of chemerin mRNA in EAT rather than its circulating level.

  17. Expression of Panton-Valentine leukocidin mRNA among Staphylococcus aureus isolates associates with specific clinical presentations.

    Directory of Open Access Journals (Sweden)

    Fangyou Yu

    Full Text Available Panton-Valentine leukocidin (PVL; gene designation lukF/S-PV is likely an important virulence factor for Staphylococcus aureus (S. aureus, as qualitative expression of the protein correlates with severity for specific clinical presentations, including skin and soft tissue infections (SSTIs. Development of genetic approaches for risk-assessment of patients with S. aureus infections may prove clinically useful, and whether lukF/S-PV gene expression correlates with specific clinical presentations for S. aureus has been largely unexplored. In the present study, we quantified lukS-PV mRNA among 96 S. aureus isolates to determine whether expression levels correlated with specific clinical presentations in adults and children. Expression level of lukS-PV mRNA among isolates from skin and soft tissue infections (SSTIs was significantly greater than among isolates from blood stream infection (BSIs, and expression level of lukS-PV mRNA among BSI isolates from children was significantly greater than for BSI isolates among adults. Moreover, expression level of lukS-PV mRNA among community-acquired (CA isolates was significantly greater than for hospital-acquired (HA isolates. These data justify additional studies to determine the potential clinical utility for lukS-PV mRNA quantification as a predictive tool for severity of S. aureus infection.

  18. Effects of exogenous ATM gene on mRNA expression of human telomerase reverse transcriptase in AT cells induced by irradiation

    International Nuclear Information System (INIS)

    Sheng Fangjun; Cao Jianping; Luo Jialin; Zhu Wei; Liu Fenju; Feng Shuang; Song Jianyuan; Li Chong

    2005-01-01

    The study is to observe effects of exogenous ATM gene on mRNA expression of hTERT (human telomerase reverse transcriptase) in fibroblast cells (AT5BIVA cells) from skin of Ataxia-telangiectasia (AT) patients and to study the regulation of ATM to hTERT. Using reverse transcription polymerase chain reaction (RT-PCR), mRNA expression of hTERT in AT, PEBS7-AT, ATM + -AT and GM cells irradiated with 0 and 3 Gy of 60 Co γ-rays were examined respectively. The difference of the mRNA expression of hTERT among AT, PEBS7-AT, ATM + -AT and GM cells were analyzed. Difference of the mRNA expression of hTERT between 0 Gy and 3 Gy groups was analyzed, too. The results showed that the mRNA expression of hTERT in GM cells was negative, but positive mRNA expression of hTERT in AT cells. The mRNA expression of hTERT in ATM + -AT cells decreased significantly (p 60 Co γ-rays, the mRNA expression of hTERT in GM cells was positive, and that in AT, PEBS7-AT, ATM + -AT cells was increased (p + -AT cells was lower than that in AT and PEBS7-AT cells respectively (p<0.05). It is postulated that exogenous ATM is able to downregulate the mRNA expression of hTERT in AT cells, ionizing radiation can induce the mRNA expression of hTERT in cells and telomerase anticipates the repair of damaged DNA. (authors)

  19. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...... and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  20. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    Science.gov (United States)

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  1. Sheep oocyte expresses leptin and functional leptin receptor mRNA

    Directory of Open Access Journals (Sweden)

    Seyyed Jalil Taheri

    2016-09-01

    Conclusions: The result of present study reveals that leptin and its functional receptor (Ob-Rb mRNA are expressed in sheep oocyte and further studies should investigate the role(s of leptin on sheep oocyte physiology and embryo development.

  2. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung

    International Nuclear Information System (INIS)

    Xie, Ling; Zhou, Jundong; Zhang, Shuyu; Chen, Qing; Lai, Rensheng; Ding, Weiqun; Song, ChuanJun; Meng, XingJun; Wu, Jinchang

    2014-01-01

    Exposure to radiation provokes cellular responses, which are likely regulated by gene expression networks. MicroRNAs are small non-coding RNAs, which regulate gene expression by promoting mRNA degradation or inhibiting protein translation. The expression patterns of both mRNA and miRNA during the radiation-induced lung injury (RILI) remain less characterized and the role of miRNAs in the regulation of this process has not been studied. The present study sought to evaluate miRNA and mRNA expression profiles in the rat lung after irradiation. Male Wistar rats were subjected to single dose irradiation with 20 Gy using 6 MV x-rays to the right lung. (A dose rate of 5 Gy/min was applied). Rats were sacrificed at 3, 12 and 26 weeks after irradiation, and morphological changes in the lung were examined by haematoxylin and eosin. The miRNA and mRNA expression profiles were evaluated by microarrays and followed by quantitative RT-PCR analysis. A cDNA microarray analysis found 2183 transcripts being up-regulated and 2917 transcripts down-regulated (P ≤ 0.05, ≥2.0 fold change) in the lung tissues after irradiation. Likewise, a miRNAs microarray analysis indicated 15 miRNA species being up-regulated and 8 down-regulated (P ≤ 0.05). Subsequent bioinformatics anal -yses of the differentially expressed mRNA and miRNAs revealed that alterations in mRNA expression following irradiation were negatively correlated with miRNAs expression. Our results provide evidence indicating that irradiation induces alterations of mRNA and miRNA expression in rat lung and that there is a negative correlation of mRNA and miRNA expression levels after irradiation. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of radiation-induced lung injury. In summary, RILI does not develop gradually in a linear process. In fact, different cell types interact via cytokines in a very complex network. Furthermore, this study suggests that

  3. Aberrant Expression of TNF-α and TGF-β1 mRNA in Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    Ji-fen HU; Hong-chu BAO; Feng-chuan ZHU; Cai-ling YOU

    2004-01-01

    Objective To investigate the aberrant expressions of TNF-α and TGF-β1 in peripheral blood mononuclear cells (PBMCs) and placental tissues in patients with early spontaneous abortionMethods Using the technique of semi-quantitative reverse transcript-polymerase chain reaction (RT-PCR), TNF-α mRNA and TGF-β1 mRNA in PBMCs were measured in spontaneous abortion group (30 cases), normal pregnancy group (25 cases) and nonpregnant group (25 cases). The expressive intension of TNF-α protein and TGF-β1 protein in placental tissues was also identified by immunohistochemistry.Results Both levels of TNF-α mRNA and TGF-β1 mRNA expressed in PBMCs were significantly different between the three groups respectively (P<0. 05). Levels of TNF-α in syncytiotrophoblastic and cytotrophoblastic cells of the two aborted groups were substantially higher than those of the non-pregnant group (P<0. 01), but the levels of TGF-β1 in syncytiotrophoblastic cells of the two aborted groups were markedly lower than those of the non-pregnant group (P<0. 01).Conclusion There is potential relation between TGF-β1 at the fetomaternal interface and spontaneous abortion. TGF-β1 may contribute to the maintenance of pregnancy,and low-level expression of TGF-β1 may be associated with pregnancy failure.

  4. Peripheral mononuclear cell resistin mRNA expression is increased in type 2 diabetic women.

    Science.gov (United States)

    Tsiotra, Panayoula C; Tsigos, Constantine; Anastasiou, Eleni; Yfanti, Eleni; Boutati, Eleni; Souvatzoglou, Emmanouil; Kyrou, Ioannis; Raptis, Sotirios A

    2008-01-01

    Resistin has been shown to cause insulin resistance and to impair glucose tolerance in rodents, but in humans its physiological role still remains elusive. The aim of this study was to examine whether resistin mRNA expression in human peripheral mononuclear cells (PBMCs) and its corresponding plasma levels are altered in type 2 diabetes. Resistin mRNA levels were easily detectable in human PBMC, and found to be higher in DM2 compared to healthy women (P = .05). Similarly, mononuclear mRNA levels of the proinflammatory cytokines IL-1beta, TNF-alpha, and IL-6 were all significantly higher in DM2 compared to control women (P DM2 women (P = .051), and overall, they correlated significantly with BMI (r = 0.406, P = .010) and waist circumference (r = 0.516, P = .003), but not with fasting insulin levels or HOMA-IR. Resistin mRNA expression is increased in PBMC from DM2 women, together with increased expression of the inflammatory cytokines IL-1beta, TNF-alpha, and IL-6, independent of obesity. These results suggest that resistin and cytokines might contribute to the low-grade inflammation and the increased atherogenic risk observed in these patients.

  5. Endometrial IL-1beta, IL-6 and TNF-alpha, mRNA expression in mares resistant or susceptible to post-breeding endometritis. Effects of estrous cycle, artificial insemination and immunomodulation.

    Science.gov (United States)

    Fumuso, Elida; Giguère, Steeve; Wade, José; Rogan, Dragan; Videla-Dorna, Ignacio; Bowden, Raúl A

    2003-11-15

    Endometrial mRNA expression of the pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) was assessed in mares resistant (RM) or susceptible (SM) to persistent post-breeding endometritis (PPBE). Eight RM and eight SM, were selected based on reproductive records and functional tests out of a herd of 2,000 light cross-type mares. Three experiments were done to study transcription patterns in (i) basal conditions; (ii) after artificial insemination (AI); and (iii) after administration of an immunomodulator at time of artificial insemination. Endometrial biopsies were taken during consecutive cycles: (i) at estrus, when follicles reached 35 mm and at diestrus (7 +/- 1 days after ovulation); (ii) at 24 h post-AI, with dead semen (estrus) and in diestrus; (iii) at 24 h after treatment with a Mycobacterium phlei cell-wall extract (MCWE) preparation and AI (with dead semen), and at diestrus. mRNA expression was quantitated by real time PCR. Under basal conditions, SM had significantly higher mRNA expression of all cytokines in estrus and of IL-1beta and TNF-alpha in diestrus, compared to RM. After AI, there were no differences between RM and SM in estrus; however, mRNA expression for all three pro-inflammatory cytokines was higher than under basal conditions. In diestrus, RM showed significantly lower IL-1beta and TNF-alpha mRNA expression than SM. When MCWE was administered at time of AI, no differences between cytokine induction from RM and SM were found. Globally, mRNA expression for all three cytokines correlated well among themselves when expression was high. The present study showed that (i) in basal conditions RM had lower mRNA expression of pro-inflammatory cytokines than SM with no effect of estrous cycle; (ii) AI upregulated mRNA expression for all three cytokines in both RM and SM, with persistance in diestrus in the latter; (iii) treatment with MCWE at time of AI down-regulated mRNA expression

  6. Expressions of interferon-inducible genes IFIT1 and IFIT4 mRNA in PBMCs of patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Liu Chunyan; Chen Xingguo; Wang Zizheng

    2009-01-01

    To investigate the expression levels of interferon-inducible genes (IFIT1, IFIT4) in the peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE), and the relations between these genes expression levels and disease activity, the expression levels of IFIT1 and IFIT4 mRNA in the 95 patients with SLE and 48 normal controls were detected by Sybr green dye based real-time quantitative PCR method, and these genes expression levels were compared with anti-double strand DNA antibody. The associations between the expression levels of IFIT1, IFIT4 mRNA, anti-double strand DNA antibody and SLEDAI scores in patients with SLE were analyzed. The results showed that the expression levels of IFIT1, IFIT4 mRNA in the SLE patients were significantly higher than those of the normal controls (P<0.01). The expression levels of IFIT1, IFIT4 mRNA in the active SLE patients were higher than those of the inactive SLE patients (P<0.05). The real time expression levels of IFIT1 and IFIT4 mRNA showed positive correlations with each other (P<0.05) in patients with SLE. There was positively correlation between the expression levels of IFIT1, IFIT4 mRNA and the anti-double strand DNA antibody (P<0.05). The expression levels of IFIT1, IFIT4 mRNA in patients with SLE were significantly higher than those of the normal controls, and positively associated with SLEDAI scores, so they were helpful in evaluating SLE disease activity and severity. To inhibit the expressions of IFIT1, IFIT4 mRNA may provide a novel target for SLE treatment. (authors)

  7. mRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas

    International Nuclear Information System (INIS)

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    Highlights: •Genes regulating lipid metabolism were studied in ringed seals. •We compared highly contaminated Baltic seals and less contaminated Svalbard seals. •mRNA expression of hepatic PPARγ was higher in the Baltic seals. •mRNA expression of adipose PPARγ target genes was higher in the Baltic seals. •Contaminant exposure may affect lipid metabolism in the Baltic ringed seals. -- Abstract: There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes

  8. mRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Martina Galatea [Norwegian Polar Institute, Fram Centre, 9296 Tromsø (Norway); University of Bergen, Department of Biology, 5020 Bergen (Norway); Rusten, Marte; Goksøyr, Anders [University of Bergen, Department of Biology, 5020 Bergen (Norway); Routti, Heli, E-mail: heli.routti@npolar.no [Norwegian Polar Institute, Fram Centre, 9296 Tromsø (Norway)

    2014-01-15

    Highlights: •Genes regulating lipid metabolism were studied in ringed seals. •We compared highly contaminated Baltic seals and less contaminated Svalbard seals. •mRNA expression of hepatic PPARγ was higher in the Baltic seals. •mRNA expression of adipose PPARγ target genes was higher in the Baltic seals. •Contaminant exposure may affect lipid metabolism in the Baltic ringed seals. -- Abstract: There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes

  9. Lipoprotein Lipase mRNA expression in different tissues of farm ...

    African Journals Online (AJOL)

    Lipoprotein lipase (LPL) controls triacylglycerol partitioning between adipose tissues and muscles, so it is important enzyme for fattening of animals .The present work was planned to clarify the use of polymerase chain reaction (PCR) for detection of LPL mRNA expression in different tissues representing internal organs of ...

  10. GABAergic Neurons in the Rat Medial Septal Complex Express Relaxin-3 Receptor (RXFP3 mRNA

    Directory of Open Access Journals (Sweden)

    Hector Albert-Gascó

    2018-01-01

    Full Text Available The medial septum (MS complex modulates hippocampal function and related behaviors. Septohippocampal projections promote and control different forms of hippocampal synchronization. Specifically, GABAergic and cholinergic projections targeting the hippocampal formation from the MS provide bursting discharges to promote theta rhythm, or tonic activity to promote gamma oscillations. In turn, the MS is targeted by ascending projections from the hypothalamus and brainstem. One of these projections arises from the nucleus incertus in the pontine tegmentum, which contains GABA neurons that co-express the neuropeptide relaxin-3 (Rln3. Both stimulation of the nucleus incertus and septal infusion of Rln3 receptor agonist peptides promotes hippocampal theta rhythm. The Gi/o-protein-coupled receptor, relaxin-family peptide receptor 3 (RXFP3, is the cognate receptor for Rln3 and identification of the transmitter phenotype of neurons expressing RXFP3 in the septohippocampal system can provide further insights into the role of Rln3 transmission in the promotion of septohippocampal theta rhythm. Therefore, we used RNAscope multiplex in situ hybridization to characterize the septal neurons expressing Rxfp3 mRNA in the rat. Our results demonstrate that Rxfp3 mRNA is abundantly expressed in vesicular GABA transporter (vGAT mRNA- and parvalbumin (PV mRNA-positive GABA neurons in MS, whereas ChAT mRNA-positive acetylcholine neurons lack Rxfp3 mRNA. Approximately 75% of Rxfp3 mRNA-positive neurons expressed vGAT mRNA (and 22% were PV mRNA-positive, while the remaining 25% expressed Rxfp3 mRNA only, consistent with a potential glutamatergic phenotype. Similar proportions were observed in the posterior septum. The occurrence of RXFP3 in PV-positive GABAergic neurons gives support to a role for the Rln3-RXFP3 system in septohippocampal theta rhythm.

  11. Differential expression of PARP1 mRNA in leucocytes of patients ...

    Indian Academy of Sciences (India)

    P. 2011 Differential expression of PARP1 mRNA in leucocytes of patients with Down's syndrome. J. Genet. ... of Alzheimer disease at an earlier age than subjects with- ... family and personal informed consent. .... In effect, they report that.

  12. Peripheral Mononuclear Cell Resistin mRNA Expression Is Increased in Type 2 Diabetic Women

    Directory of Open Access Journals (Sweden)

    Panayoula C. Tsiotra

    2008-01-01

    Full Text Available Resistin has been shown to cause insulin resistance and to impair glucose tolerance in rodents, but in humans its physiological role still remains elusive. The aim of this study was to examine whether resistin mRNA expression in human peripheral mononuclear cells (PBMCs and its corresponding plasma levels are altered in type 2 diabetes. Resistin mRNA levels were easily detectable in human PBMC, and found to be higher in DM2 compared to healthy women (P=.05. Similarly, mononuclear mRNA levels of the proinflammatory cytokines IL-1β, TNF-α, and IL-6 were all significantly higher in DM2 compared to control women (P<.001. The corresponding plasma resistin levels were slightly, but not significantly, increased in DM2 women (P=.051, and overall, they correlated significantly with BMI (r=0.406, P=.010 and waist circumference (r=0.516, P=.003, but not with fasting insulin levels or HOMA-IR. Resistin mRNA expression is increased in PBMC from DM2 women, together with increased expression of the inflammatory cytokines IL-1β, TNF-α, and IL-6, independent of obesity. These results suggest that resistin and cytokines might contribute to the low-grade inflammation and the increased atherogenic risk observed in these patients.

  13. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery

    DEFF Research Database (Denmark)

    Leick, Lotte; Plomgaard, Peter S.; Grønløkke, L.

    2010-01-01

    exercise. To test the hypothesis that mRNA expression of many oxidative enzymes is up-regulated late in recovery (10-24 h) after exercise, male subjects (n=8) performed a 90-min cycling exercise (70% VO(2-max)), with muscle biopsies obtained before exercise (pre), and after 10, 18 and 24 h of recovery....... The mRNA expression of carnitine-palmitoyltransferase (CPT)I, CD36, 3-hydroxyacyl-CoA-dehydrogenase (HAD), cytochrome (Cyt)c, aminolevulinate-delta-synthase (ALAS)1 and GLUT4 was 100-200% higher at 10-24 h of recovery from exercise than in a control trial. Exercise induced a 100-300% increase...... in peroxisome proliferator-activated receptor gamma co-activator (PGC)-1alpha, citrate synthase (CS), CPTI, CD36, HAD and ALAS1 mRNA contents at 10-24 h of recovery relative to before exercise. No protein changes were detected in Cytc, ALAS1 or GLUT4. This shows that mRNA expression of several training...

  14. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    OpenAIRE

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clin...

  15. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    Science.gov (United States)

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  16. Expression and clinicopathological significance of Mel-18 mRNA in colorectal cancer.

    Science.gov (United States)

    Tao, Ji; Liu, Yan-Long; Zhang, Gan; Ma, Yu-Yan; Cui, Bin-Bin; Yang, Yan-Mei

    2014-10-01

    Mel-18 is a member of the polycomb group (PcG) of proteins, which are chromatin regulatory factors that play an important role in oncogenesis. This study was designed to investigate the clinical and prognostic significance of Mel-18 in colorectal cancer (CRC) patients. For this purpose, expression of Mel-18 mRNA was evaluated in 82 primary CRC and paired noncancerous mucosa samples by qRT-PCR and Western blotting. We found that overall Mel-18 mRNA expression in the CRC tissue was significantly lower than in the noncancerous mucosal tissue (p = 0.007, Wilcoxon matched-pairs signed-ranks test). Mel-18 was conversely correlated with the pathological classifications (p = 0.003 for T, p Mel-18 showed prolonged disease-free survivals (DFS) (p Mel-18 expression may be a risk factor for the patients' 3-year DFS (HR = 1.895; 95 % CI 1.032, 3.477; p = 0.039). It was therefore concluded that the lower Mel-18 expression might contribute to the CRC development/progression.

  17. Protein phosphatase magnesium-dependent 1δ (PPM1D mRNA expression is a prognosis marker for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guang-Bing Li

    Full Text Available Protein phosphatase magnesium-dependent 1δ (PPM1D is an oncogene, overexpressed in many solid tumors, including ovarian cancer and breast cancer. The current study examined the expression and the prognostic value of PPM1D mRNA in human hepatocellular carcinoma (HCC.Total RNA was extracted from 86 HCC and paired non-cancerous liver tissues. PPM1D mRNA expression was determined by real-time quantitative reverse transcriptase-polymerase chain reaction (qPCR. Immunohistochemistry assay was used to verify the expression of ppm1d protein in the HCC and non-cancerous liver tissues. HCC patients were grouped according to PPM1D mRNA expression with the average PPM1D mRNA level in non-cancerous liver tissue samples as the cut-off. Correlations between clinicopathologic variables, overall survival and PPM1D mRNA expression were analyzed.PPM1D mRNA was significantly higher in HCC than in the paired non-cancerous tissue (p<0.01. This was confirmed by ppm1d staining. 56 patients were classified as high expression group and the other 30 patients were categorized as low expression group. There were significant differences between the two groups in term of alpha-fetoprotein (α-FP level (p<0.01, tumor size (p<0.01, TNM stage (p<0.01, recurrence incidence (p<0.01 and family history of liver cancer (p<0.01. The current study failed to find significant differences between the two groups in the following clinical characteristics: age, gender, portal vein invasion, lymphnode metastasis, hepatitis B virus (HBV infection and alcohol intake. Survival time of high expression group was significantly shorter than that of low expression group (median survival, 13 months and 32 months, respectively, p<0.01.Up-regulation of PPM1D mRNA was associated with progressive pathological feature and poor prognosis in HCC patients. PPM1D mRNA may serve as a prognostic marker in HCC.

  18. Altered PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics.

    Science.gov (United States)

    Giebler, Maria; Greither, Thomas; Müller, Lisa; Mösinger, Carina; Behre, Hermann M

    2018-01-01

    In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5 th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.

  19. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    International Nuclear Information System (INIS)

    Dalgaard, Louise T.

    2012-01-01

    Highlights: ► UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. ► UCP2 mRNA up-regulation by glucose is dependent on glucokinase. ► Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. ► This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/− islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2−/− and GK+/− islets compared with GK+/− islets and UCP2 deficiency improved glucose tolerance of GK+/− mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/− mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  20. IGF-1R mRNA expression is increased in obese children.

    Science.gov (United States)

    Ricco, Rafaela Cristina; Ricco, Rubens Garcia; Queluz, Mariangela Carletti; de Paula, Mariana Teresa Sarti; Atique, Patricia Volpon; Custódio, Rodrigo José; Tourinho Filho, Hugo; Del Roio Liberatori, Raphael; Martinelli, Carlos Eduardo

    2018-04-01

    Obese children are often taller than age-matched subjects. Reports on GH and IGF-I levels in obese individuals are controversial, with normal and reduced GH-IGF-I levels having been reported in this group of patients. Thus, the aim of this study was to analyse insulin-like growth factor type 1 receptor (IGF-IR) mRNA expression in obese children. Forty-seven pre-pubertal children were included in this study: 29 were obese and taller than their target height, and 18 were normal eutrophic controls. Fasting blood samples were collected for IGF-IR mRNA expression in isolated lymphocytes and serum IGF-I, ALS, IGFBP-3, and IGFBP-1 concentration analysis. Relative IGF-IR gene expression (2 -ΔΔCT ) was significantly (P=0.025) higher in obese children (median 1.87) than in controls (1.15). Fourteen of the 29 obese subjects showed 2 -ΔΔCT values greater than or equal to 2, while only 2 individuals in the control group showed values above 2 (P=0.01). Obese children showed significantly (P=0.01) higher IGF-I concentrations than the control group (237ng/ml and 144ng/ml, respectively). Among obese patients, 65.5% had IGF-I values above the 75 percentile of the control group (P=0.02). ALS concentration was significantly (P=0.04) higher in the obese group, while IGFBP-3 levels were similar in obese and control children. IGFBP-1 concentration was lower in obese children, while insulin levels and HOMA-IR index were higher than in controls. The higher IGF-IR mRNA expression observed in obese children, associated with the higher IGF-I and ALS and the lower IGFBP-1 levels, suggest that the higher stature observed in these children may be due to increased IGF-I bioactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    Science.gov (United States)

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    Science.gov (United States)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  3. Developmental changes in hypothalamic oxytocin and oxytocin receptor mRNA expression and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Matsuzaki, Toshiya; Iwasa, Takeshi; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kawami, Takako; Murakami, Masahiro; Yamasaki, Mikio; Yamamoto, Yuri; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Oxytocin (OT) affects the central nervous system and is involved in a variety of social and non-social behaviors. Recently, the role played by OT in energy metabolism and its organizational effects on estrogen receptor alpha (ER-α) during the neonatal period have gained attention. In this study, the developmental changes in the hypothalamic mRNA levels of OT, the OT receptor (OTR), and ER-α were evaluated in male and female rats. In addition, the fasting-induced changes in the hypothalamic mRNA levels of OT and the OTR were evaluated. Hypothalamic explants were taken from postnatal day (PND) 10, 20, and 30 rats, and the mRNA level of each molecule was measured. Hypothalamic OT mRNA expression increased throughout the developmental period in both sexes. The rats' hypothalamic OTR mRNA levels were highest on PND 10 and decreased throughout the developmental period. In the male rats, the hypothalamic mRNA levels of ER-α were higher on PND 30 than on PND 10. On the other hand, no significant differences in hypothalamic ER-α mRNA expression were detected among the examined time points in the female rats, although hypothalamic ER-α mRNA expression tended to be higher on PND 30 than on PND 10. Significant positive correlations were detected between hypothalamic OT and ER-α mRNA expression in both the male and female rats. Hypothalamic OT mRNA expression was not affected by fasting at any of the examined time points in either sex. These results indicate that hypothalamic OT expression is not sensitive to fasting during the developmental period. In addition, as a positive correlation was detected between hypothalamic OT and ER-α mRNA expression, these two molecules might interact with each other to induce appropriate neuronal development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Differential between Protein and mRNA Expression of CCR7 and SSTR5 Receptors in Crohn's Disease Patients

    Directory of Open Access Journals (Sweden)

    Nathalie Taquet

    2009-01-01

    Full Text Available Crohn's disease (CD is a multifactorial chronic inflammatory bowel disease of unknown cause. The aim of the present study was to explore if mRNA over-expression of SSTR5 and CCR7 found in CD patients could be correlated to respective protein expression. When compared to healthy donors, SSTR5 was over-expressed 417 ± 71 times in CD peripheral blood mononuclear cells (PBMCs. Flow cytometry experiments showed no correlation between mRNA and protein expression for SSTR5 in PBMCs. In an attempt to find a reason of such a high mRNA expression, SSTR5 present on CD PBMCs were tested and found as biologically active as on healthy cells. In biopsies of CD intestinal tissue, SSTR5 was not over-expressed but CCR7, unchanged in PBMCs, was over-expressed by 10 ± 3 times in the lamina propria. Confocal microscopy showed a good correlation of CCR7 mRNA and protein expression in CD intestinal biopsies. Our data emphasize flow and image cytometry as impossible to circumvent in complement to molecular biology so to avoid false interpretation on receptor expressions. Once confirmed by further large-scale studies, our preliminary results suggest a role for SSTR5 and CCR7 in CD pathogenesis.

  5. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D

    2009-09-15

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.

  6. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    Science.gov (United States)

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  7. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Impact of gastro-esophageal reflux on mucin mRNA expression in the esophageal mucosa.

    Science.gov (United States)

    van Roon, Aafke H C; Mayne, George C; Wijnhoven, Bas P L; Watson, David I; Leong, Mary P; Neijman, Gabriëlle E; Michael, Michael Z; McKay, Andrew R; Astill, David; Hussey, Damian J

    2008-08-01

    Changes in the expression of mucin genes in the esophageal mucosa associated with uncomplicated gastro-esophageal reflux disease have not been evaluated even though such changes could be associated with reflux-induced mucosal damage. We therefore sought to identify reflux-induced changes in mucin gene expression using a cell line and biopsies from the esophageal mucosa in patients with and without reflux. MUC-1, MUC-3, MUC-4, and MUC-5AC gene expressions were investigated in the HET-1A cell line following exposure to acid (pH 4) and/or bile (120 muM of a bile salt milieu), and in esophageal mucosal biopsies from controls, subjects with non-erosive gastro-esophageal reflux, and subjects with reflux associated with ulcerative esophagitis (erosive). The mucosal biopsies were also evaluated for IL-6 mRNA expression (inflammatory marker) and CK-14 mRNA expression (mucosal basal cell layer marker). Gene expression was determined using real-time reverse transcriptase-polymerase chain reaction analysis. In the cell line studies, there were differences in mRNA levels for all of the evaluated mucins following treatment with either acid or the acid and bile combination. In the studies which evaluated tissue specimens, IL-6 and CK-14 mRNA levels increased according to degree of reflux pathology. The expression of MUC-1 and MUC-4 in mucosa from patients with erosive reflux was lower than in subjects without reflux and in patients with non-erosive reflux, whereas the expression of MUC-3 and MUC-5AC was increased (although these differences did not reach significance at p reflux groups. The correlation between IL-6 and MUC-3 was significant within the control and erosive reflux groups, and the correlation between MUC-1 and MUC-5AC was significant within the erosive reflux group. The results of this study suggest that the profile of mucin expression in the esophageal mucosa is influenced by the pH and composition of the gastro-esophageal reflux. Further work should explore the

  9. Predictive value of BRCA1/2 mRNA expression for response to neoadjuvant chemotherapy in BRCA-negative breast cancers.

    Science.gov (United States)

    Xu, Ye; Ouyang, Tao; Li, Jinfeng; Wang, Tianfeng; Fan, Zhaoqing; Fan, Tie; Lin, Benyao; Xie, Yuntao

    2018-01-01

    It is well known that BRCA1 and BRCA2 play a central role in DNA repair, but the relationship between BRCA1 and BRCA2 mRNA expression and response to neoadjuvant chemotherapy in sporadic breast cancer patients has not been well established. Here, we investigate the association between BRCA1 or BRCA2 mRNA expression levels and pathological response in 674 BRCA1/2 mutation-negative breast cancer patients who received neoadjuvant chemotherapy. BRCA1 and BRCA2 mRNA expression were assessed using quantitative real-time polymerase chain reaction in core biopsy breast cancer tissue obtained prior to the initiation of neoadjuvant chemotherapy. A total 129 patients (19.1%) achieved pathological complete response (pCR) after neoadjuvant chemotherapy. Among patients treated with anthracycline-based chemotherapy (n = 531), BRCA1 mRNA low expression patients had a significantly higher pCR rate than intermediate or high BRCA1 mRNA expression groups (24.6% vs 16.8% or 14.0%, P = .031) and retained borderline significance (OR = 1.54, 95% CI = 0.93-2.56, P = .094) in multivariate analysis. Among the 129 patients who received a taxane-based regimen, pCR rate showed no differences in BRCA1 low, intermediate, and high mRNA level subgroups (19.6%, 26.8% and 21.4%, respectively; P = .71). BRCA2 mRNA level was not associated with pCR rate in the anthracyline-based treated subgroup (P = .60) or the taxane-based regimen subgroup (P = .82). Taken together, our findings suggested that BRCA1 mRNA expression could be used as a predictive marker in BRCA1/2 mutation-negative breast cancer patients who received neoadjuvant anthracycline-based treatment. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Arc/Arg3.1 mRNA global expression patterns elicited by memory recall in cerebral cortex differ for remote versus recent spatial memories

    Directory of Open Access Journals (Sweden)

    Pavel A Gusev

    2010-05-01

    Full Text Available The neocortex plays a critical role in the gradual formation and storage of remote declarative memories. Because the circuitry mechanisms of systems-level consolidation are not well understood, the precise cortical sites for memory storage and the nature of enduring memory correlates (mnemonic plasticity are largely unknown. Detailed maps of neuronal activity underlying recent and remote memory recall highlight brain regions that participate in systems consolidation and constitute putative storage sites, and thus may facilitate detection of mnemonic plasticity. To localize cortical regions involved in the recall of a spatial memory task, we trained rats in a water maze and then mapped mRNA expression patterns of a neuronal activity marker Arc/Arg3.1 (Arc upon recall of recent (24 hours after training or remote (one month after training memories and compared them with swimming and naive controls. Arc gene expression was significantly more robust 24 hours after training compared to one month after training. Arc expression diminished in the parietal, cingulate and visual areas, but select segments in the prefrontal, retrosplenial, somatosensory and motor cortical showed similar robust increases in the Arc expression. When Arc expression was compared across select segments of sensory, motor and associative regions within recent and remote memory groups, the overall magnitude and cortical laminar patterns of task-specific Arc expression were similar (stereotypical. Arc mRNA fractions expressed in the upper cortical layers (2/3, 4 increased after both recent and remote recall, while layer 6 fractions decreased only after the recent recall. The data suggest that robust recall of remote memory requires an overall smaller increase in neuronal activity within fewer cortical segments. This activity trend highlights the difficulty in detecting the storage sites and plasticity underlying remote memory. Application of the Arc maps may ameliorate this

  11. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    Science.gov (United States)

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon. Published by Elsevier Inc.

  12. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; Jusko, William J; DuBois, Debra C

    2015-06-01

    Glucocorticoids (GC) are steroid hormones, which regulate metabolism and immune function. Synthetic GCs, or corticosteroids (CS), have appreciable clinical utility via their ability to suppress inflammation in immune-mediated diseases like asthma and rheumatoid arthritis. Recent work has provided insight to novel GC-induced genes that mediate their anti-inflammatory effects, including glucocorticoid-induced leucine zipper (GILZ). Since GILZ comprises an important part of GC action, its regulation by both drug and hormone will influence CS therapy. In addition, GILZ expression is often employed as a biomarker of GC action, which requires judicious selection of sampling time. Understanding the in vivo regulation of GILZ mRNA expression over time will provide insight into both the physiological regulation of GILZ by endogenous GC and the dynamics of its enhancement by CS. A highly quantitative qRT-PCR assay was developed for measuring GILZ mRNA expression in tissues obtained from normal and CS-treated rats. This assay was applied to measure GILZ mRNA expression in eight tissues; to determine its endogenous regulation over time; and to characterize its dynamics in adipose tissue, muscle, and liver following treatment with CS. We demonstrate that GILZ mRNA is expressed in several tissues. GILZ mRNA expression in adipose tissue displayed a robust circadian rhythm that was entrained with the circadian oscillation of endogenous corticosterone; and is strongly enhanced by acute and chronic dosing. Single dosing also enhanced GILZ mRNA in muscle and liver, but the dynamics varied. In conclusion, GILZ is widely expressed in the rat and highly regulated by endogenous and exogenous GCs. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice.

    Science.gov (United States)

    Jourová, L; Anzenbacher, P; Lišková, B; Matušková, Z; Hermanová, P; Hudcovic, T; Kozáková, H; Hrnčířová, L; Anzenbacherová, E

    2017-11-01

    Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877 ; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.

  14. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cleasby, Mark E. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Millard, Susan; Leong, Gary M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cooney, Gregory J. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Muscat, George E.O., E-mail: g.muscat@imb.uq.edu.au [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia)

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  15. Multitarget Effects of Danqi Pill on Global Gene Expression Changes in Myocardial Ischemia

    Directory of Open Access Journals (Sweden)

    Qiyan Wang

    2018-01-01

    Full Text Available Danqi pill (DQP is a widely prescribed traditional Chinese medicine (TCM in the treatment of cardiovascular diseases. The objective of this study is to systematically characterize altered gene expression pattern induced by myocardial ischemia (MI in a rat model and to investigate the effects of DQP on global gene expression. Global mRNA expression was measured. Differentially expressed genes among the sham group, model group, and DQP group were analyzed. The gene ontology enrichment analysis and pathway analysis of differentially expressed genes were carried out. We quantified 10,813 genes. Compared with the sham group, expressions of 339 genes were upregulated and 177 genes were downregulated in the model group. The upregulated genes were enriched in extracellular matrix organization, response to wounding, and defense response pathways. Downregulated genes were enriched in fatty acid metabolism, pyruvate metabolism, PPAR signaling pathways, and so forth. This indicated that energy metabolic disorders occurred in rats with MI. In the DQP group, expressions of genes in the altered pathways were regulated back towards normal levels. DQP reversed expression of 313 of the 516 differentially expressed genes in the model group. This study provides insight into the multitarget mechanism of TCM in the treatment of complex diseases.

  16. The potential lipolysis function of musclin and its mRNA expression ...

    African Journals Online (AJOL)

    Musclin is a newly discovered factor and its functions remain to be defined. This study investigated the tissue expression pattern of musclin gene and its potential effect on lipid metabolism. Musclin mRNA levels in adipose, muscle tissues and primary adipocytes were examined by quantitative PCR. The musclin gene ...

  17. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Grunnet, Louise G; Nilsson, Emma; Ling, Charlotte

    2009-01-01

    Objective. Common variants in FTO (the fat-mass and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and non-genetic regulation of FTO mRNA in skeletal muscle...... and adipose tissue, and their influence on in vivo glucose and fat metabolism. Research Design and Methods. The FTO rs9939609 polymorphism was genotyped in two twin cohorts: 1) 298 elderly twins aged 62-83 years with glucose tolerance ranging from normal to type 2 diabetes and 2) 196 young (25-32 years......) and elderly (58-66 years) non-diabetic twins examined by a hyperinsulinemic euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n=226) and skeletal muscle biopsies (n=158). Results. Heritability of FTO expression in both tissues was low, and FTO...

  18. A pilot trial assessing urinary gene expression profiling with an mRNA array for diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Min Zheng

    Full Text Available BACKGROUND: The initiation and progression of diabetic nephropathy (DN is complex. Quantification of mRNA expression in urinary sediment has emerged as a novel strategy for studying renal diseases. Considering the numerous molecules involved in DN development, a high-throughput platform with parallel detection of multiple mRNAs is needed. In this study, we constructed a self-assembling mRNA array to analyze urinary mRNAs in DN patients with aims to reveal its potential in searching novel biomarkers. METHODS: mRNA array containing 88 genes were fabricated and its performance was evaluated. A pilot study with 9 subjects including 6 DN patients and 3 normal controls were studied with the array. DN patients were assigned into two groups according to their estimate glomerular rate (eGFR: DNI group (eGFR>60 ml/min/1.73 m(2, n = 3 and DNII group (eGFR<60 ml/min/1.73 m(2, n = 3. Urinary cell pellet was collected from each study participant. Relative abundance of these target mRNAs from urinary pellet was quantified with the array. RESULTS: The array we fabricated displayed high sensitivity and specificity. Moreover, the Cts of Positive PCR Controls in our experiments were 24±0.5 which indicated high repeatability of the array. A total of 29 mRNAs were significantly increased in DN patients compared with controls (p<0.05. Among these genes, α-actinin4, CDH2, ACE, FAT1, synaptopodin, COL4α, twist, NOTCH3 mRNA expression were 15-fold higher than those in normal controls. In contrast, urinary TIMP-1 mRNA was significantly decreased in DN patients (p<0.05. It was shown that CTGF, MCP-1, PAI-1, ACE, CDH1, CDH2 mRNA varied significantly among the 3 study groups, and their mRNA levels increased with DN progression (p<0.05. CONCLUSION: Our pilot study demonstrated that mRNA array might serve as a high-throughput and sensitive tool for detecting mRNA expression in urinary sediment. Thus, this primary study indicated that mRNA array probably could be a

  19. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng

    2018-01-01

    DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P correlation (R T4  > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.

  20. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Anesthesia for euthanasia influences mRNA expression in healthy mice and after traumatic brain injury.

    Science.gov (United States)

    Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin; Thal, Serge C

    2014-10-01

    Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10-11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real

  2. Effects of corticosteroid on the expressions of neuropeptide and cytokine mRNA and on tenocyte viability in lateral epicondylitis

    Directory of Open Access Journals (Sweden)

    Han Soo

    2012-10-01

    Full Text Available Abstract Background The purpose of this study was to determine the reaction mechanism of corticosteroid by analyzing the expression patterns of neuropeptides (substance P (SP, calcitonin gene related peptide (CGRP and of cytokines (interleukin (IL-1α, tumor growth factor (TGF-β after corticosteroid treatment in lateral epicondylitis. In addition, we also investigated whether corticosteroid influenced tenocyte viability. Methods The corticosteroid triamcinolone acetonide (TAA was applied to cultured tenocytes of lateral epicondylitis, and the changes in the mRNA expressions of neuropeptides and cytokines and tenocyte viabilities were analyzed at seven time points. Quantitative real-time polymerase chain reaction and an MTT assay were used. Results The expression of SP mRNA was maximally inhibited by TAA at 24 hours but recovered at 72 hours, and the expressions of CGRP mRNA and IL-1α mRNA were inhibited at 24 and 3 hours, respectively. The expression of TGF-β mRNA was not significant. Tenocyte viability was significantly reduced by TAA at 24 hours. Conclusions We postulate that the reaction mechanism predominantly responsible for symptomatic relief after a corticosteroid injection involves the inhibitions of neuropeptides and cytokines, such as, CGRP and IL-1α. However the tenocyte viability was compromised by a corticosteroid.

  3. Promoter Methylation and mRNA Expression of Response Gene to Complement 32 in Breast Carcinoma

    International Nuclear Information System (INIS)

    Nasab, E. E.; Nasab, E. E.; Hashemi, M.; Rafighdoost, F.

    2016-01-01

    Response gene to complement 32 (RGC32), induced by activation of complements, has been characterized as a cell cycle regulator; however, its role in carcinogenesis is still controversial. In the present study we compared RGC32 promoter methylation patterns and mRNA expression in breast cancerous tissues and adjacent normal tissues. Materials and Methods. Sixty-three breast cancer tissues and 63 adjacent non neoplastic tissues were included in our study. Design. Nested methylation-specific polymerase chain reaction (Nested-MSP) and quantitative PCR (qPCR) were used to determine RGC32 promoter methylation status and its mRNA expression levels, respectively. Results. RGC32 methylation pattern was not different between breast cancerous tissue and adjacent non neoplastic tissue (OR=2.30, 95% CI=0.95-5.54). However, qPCR analysis displayed higher levels of RGC32 mRNA in breast cancerous tissues than in noncancerous tissues (1.073 versus 0.959; P=0.001), irrespective of the promoter methylation status. The expression levels and promoter methylation of RGC32 were not correlated with any of patients’ clinical characteristics (P>0.05).

  4. Whole Blood mRNA Expression-Based Prognosis of Metastatic Renal Cell Carcinoma.

    Science.gov (United States)

    Giridhar, Karthik V; Sosa, Carlos P; Hillman, David W; Sanhueza, Cristobal; Dalpiaz, Candace L; Costello, Brian A; Quevedo, Fernando J; Pitot, Henry C; Dronca, Roxana S; Ertz, Donna; Cheville, John C; Donkena, Krishna Vanaja; Kohli, Manish

    2017-11-03

    The Memorial Sloan Kettering Cancer Center (MSKCC) prognostic score is based on clinical parameters. We analyzed whole blood mRNA expression in metastatic clear cell renal cell carcinoma (mCCRCC) patients and compared it to the MSKCC score for predicting overall survival. In a discovery set of 19 patients with mRCC, we performed whole transcriptome RNA sequencing and selected eighteen candidate genes for further evaluation based on associations with overall survival and statistical significance. In an independent validation of set of 47 patients with mCCRCC, transcript expression of the 18 candidate genes were quantified using a customized NanoString probeset. Cox regression multivariate analysis confirmed that two of the candidate genes were significantly associated with overall survival. Higher expression of BAG1 [hazard ratio (HR) of 0.14, p < 0.0001, 95% confidence interval (CI) 0.04-0.36] and NOP56 (HR 0.13, p < 0.0001, 95% CI 0.05-0.34) were associated with better prognosis. A prognostic model incorporating expression of BAG1 and NOP56 into the MSKCC score improved prognostication significantly over a model using the MSKCC prognostic score only ( p < 0.0001). Prognostic value of using whole blood mRNA gene profiling in mCCRCC is feasible and should be prospectively confirmed in larger studies.

  5. Sex differences in spatiotemporal expression of AR, ERα, and ERβ mRNA in the perinatal mouse brain.

    Science.gov (United States)

    Mogi, Kazutaka; Takanashi, Haruka; Nagasawa, Miho; Kikusui, Takefumi

    2015-01-01

    It has been shown that every masculinized function might be organized by a particular contribution of androgens vs. estrogens in a critical time window. Here, we aimed to investigate the sex differences in brain testosterone levels and in the spatiotemporal dynamics of steroid receptor mRNA expression in perinatal mice, by using enzyme immunoassay and real-time PCR, respectively. We found that testosterone levels in the forebrain transiently increased around birth in male mice. During the perinatal period, levels of androgen receptor mRNA in the hypothalamus (hypo) and prefrontal cortex (PFC) were higher in male mice than in female mice. Estrogen receptor α (ERα) mRNA levels in the hypo and hippocampus were higher in male mice than in female mice before birth. In contrast, ERβ mRNA expression in the PFC was higher in female mice immediately after birth. These spatiotemporal sex differences in steroid receptor expression might contribute to organizing sex differences of not only reproductive function, but also anxiety, stress responses, and cognition in mice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Mesenchymal stem cells cannot affect mRNA expression of toll-like receptors in different tissues during sepsis.

    Science.gov (United States)

    Pedrazza, Leonardo; Pereira, Talita Carneiro Brandão; Abujamra, Ana Lucia; Nunes, Fernanda Bordignon; Bogo, Maurício Reis; de Oliveira, Jarbas Rodrigues

    2017-07-01

    Experimental animal models and human clinical studies support a crucial role for TLRs in infectious diseases. The aim of this study was to test the ability of MSCs, which have immunomodulatory effects, of altering the mRNA expression of toll-like receptors during a experimental model of sepsis in different tissues. Three experimental groups (male C57BL/6 mice) were formed for the test: control group, untreated septic group and septic group treated with MSCs (1 × 10 6 cells/animal). Lungs, cortex, kidney, liver and colon tissue were dissected after 12 h of sepsis induction and TLR2/3/4/9 mRNA were evaluated by RT-qPCR. We observed a decrease of TLR2 and 9 mRNA expression in the liver of the sepsis group, while TLR3 was decreased in the lung and liver. No change was found between the sepsis group and the sepsis + MSC group. In this model of experimental sepsis the MSCs were unable to modify the mRNA expression of the different toll-like receptors evaluated.

  7. A higher-order generalized singular value decomposition for comparison of global mRNA expression from multiple organisms.

    Directory of Open Access Journals (Sweden)

    Sri Priya Ponnapalli

    Full Text Available The number of high-dimensional datasets recording multiple aspects of a single phenomenon is increasing in many areas of science, accompanied by a need for mathematical frameworks that can compare multiple large-scale matrices with different row dimensions. The only such framework to date, the generalized singular value decomposition (GSVD, is limited to two matrices. We mathematically define a higher-order GSVD (HO GSVD for N≥2 matrices D(i∈R(m(i × n, each with full column rank. Each matrix is exactly factored as D(i=U(iΣ(iV(T, where V, identical in all factorizations, is obtained from the eigensystem SV=VΛ of the arithmetic mean S of all pairwise quotients A(iA(j(-1 of the matrices A(i=D(i(TD(i, i≠j. We prove that this decomposition extends to higher orders almost all of the mathematical properties of the GSVD. The matrix S is nondefective with V and Λ real. Its eigenvalues satisfy λ(k≥1. Equality holds if and only if the corresponding eigenvector v(k is a right basis vector of equal significance in all matrices D(i and D(j, that is σ(i,k/σ(j,k=1 for all i and j, and the corresponding left basis vector u(i,k is orthogonal to all other vectors in U(i for all i. The eigenvalues λ(k=1, therefore, define the "common HO GSVD subspace." We illustrate the HO GSVD with a comparison of genome-scale cell-cycle mRNA expression from S. pombe, S. cerevisiae and human. Unlike existing algorithms, a mapping among the genes of these disparate organisms is not required. We find that the approximately common HO GSVD subspace represents the cell-cycle mRNA expression oscillations, which are similar among the datasets. Simultaneous reconstruction in the common subspace, therefore, removes the experimental artifacts, which are dissimilar, from the datasets. In the simultaneous sequence-independent classification of the genes of the three organisms in this common subspace, genes of highly conserved sequences but significantly different cell

  8. Fas ligand expression in human and mouse cancer cell lines; a caveat on over-reliance on mRNA data

    Directory of Open Access Journals (Sweden)

    Ryan Aideen E

    2006-02-01

    Full Text Available Abstract Background During carcinogenesis, tumors develop multiple mechanisms for evading the immune response, including upregulation of Fas ligand (FasL/CD95L expression. Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of anti-tumor immune effector cells. Recently this idea has been challenged by studies reporting that tumor cells of varying origin do not express FasL. In the present study, we aimed to comprehensively characterize FasL expression in tumors of both murine and human origin over a 72 hour time period. Methods RNA and protein was extracted from six human (SW620, HT29, SW480, KM12SM, HCT116, Jurkat and three mouse (CMT93, CT26, B16F10 cancer cell lines at regular time intervals over a 72 hour time period. FasL expression was detected at the mRNA level by RT-PCR, using intron spanning primers, and at the protein level by Western Blotting and immunofluorescence, using a polyclonal FasL- specific antibody. Results Expression of FasL mRNA and protein was observed in all cell lines analysed. However, expression of FasL mRNA varied dramatically over time, with cells negative for FasL mRNA at many time points. In contrast, 8 of the 9 cell lines constitutively expressed FasL protein. Thus, cells can abundantly express FasL protein at times when FasL mRNA is absent. Conclusion These findings demonstrate the importance of complete analysis of FasL expression by tumor cells in order to fully characterize its biological function and may help to resolve the discrepancies present in the literature regarding FasL expression and tumor immune privilege.

  9. Associations of ACE Gene Insertion/Deletion Polymorphism, ACE Activity, and ACE mRNA Expression with Hypertension in a Chinese Population

    Science.gov (United States)

    He, Qingfang; Fan, Chunhong; Yu, Min; Wallar, Gina; Zhang, Zuo-Feng; Wang, Lixin; Zhang, Xinwei; Hu, Ruying

    2013-01-01

    Background The present study was designed to explore the association of angiotensin converting enzyme (ACE) gene insertion/deletion (I/D, rs4646994) polymorphism, plasma ACE activity, and circulating ACE mRNA expression with essential hypertension (EH) in a Chinese population. In addition, a new detection method for circulating ACE mRNA expression was explored. Methods The research was approved by the ethics committee of Zhejiang Provincial Center for Disease Prevention and Control. Written informed consent was obtained prior to the investigation. 221 hypertensives (cases) and 221 normotensives (controls) were interviewed, subjected to a physical examination, and provided blood for biochemical and genetic tests. The ACE mRNA expression was analyzed by real time fluorescent quantitative Reverse Transcription PCR (FQ-RT-PCR). We performed logistic regression to assess associations of ACE I/D genotypes, ACE activity, and ACE mRNA expression levels with hypertension. Results The results of the multivariate logistic regression analysis showed that the additive model (ID, DD versus II) of the ACE genotype revealed an association with hypertension with adjusted OR of 1.43(95% CI: 1.04-1.97), and ACE ID genotype with adjusted OR of 1.72(95% CI: 1.01-2.92), DD genotype with adjusted OR of 1.94(95% CI: 1.01-3.73), respectively. In addition, our data also indicate that plasma ACE activity (adjusted OR was 1.13(95% CI: 1.08-1.18)) was significantly related to hypertension. However, the plasma ACE mRNA expressions were not different between the cases and controls. Conclusion ACE I/D polymorphism and ACE activity revealed significant influence on hypertension, while circulating ACE mRNA expression was not important factors associated with hypertension in this Chinese population. The detection of circulating ACE mRNA expression by FQ-RT-PCR might be a useful method for early screening and monitoring of EH. PMID:24098401

  10. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...... correlated (PIL10 was mostly affected by individuals with BMI ⩾40. Multiple linear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...

  11. [Expression of heat shock protein 70 and its mRNA in career exposure to manganese].

    Science.gov (United States)

    Chen, Wenwen; Shao, Hua; Chi, Mingfeng; Zhang, Zhihu; Shan, Yongle; Zou, Wei

    2015-10-01

    To analyze the expression levels of heat shock protein70 (HSPs70) and HSPs70 mRNA in different exposure to manganese, and research the neuroprotective effect on the career exposure to manganese. From 2008 to 2009, with cross-sectional study design, and in a locomotive and rolling stock works, by stratified random sampling method, the exposed sample consisted of 180 welders from different welding shops and 100 unexposed in the last three years, non-welder controls with age-matched workers of similar socioeconomic status from the same industry. The control workers had not been exposed to neurotoxic chemicals. The mRNA expressions of four different metabolic enzyme were detected by SYBR Green I quantitative real-time polymerase chain reaction. The expression levels of the two enzymes mRNA in different exposure to manganese were analyzed. The expressions of HSPs70 were detected by Western blot. The concentration of air manganese was determined by GFAAS. The average concentration of 8 h time (8h-TWA) was used to express the level of individual exposure to manganese, according to the air manganese workplace occupational exposure limit (8h-TWA=0.15 mg/m3), the exposed group is divided into high exposed group (>0.15 mg/m3) and low exposure group (<0.15 mg/m3). The individuals exposed to manganese dose of exposed group ((0.25±0.31) mg/m3) was higher than the control group ((0.06±0.02) mg/m3) (t=6.15, P=0.001); individuals exposed to manganese dose of high exposure group for (0.42±0.34) mg/m3, which was higher than low exposure group (0.09±0.07) mg/m3 (t=9.80, P=0.001). HSPs70 mRNA and protein of exposure group (5.65±0.21, 3.26±0.15) were higher than the reference group (0.41±0.03, 1.32±0.12) (t=18.91, t=8.68, P=0.001). HSP70 mRNA and protein of high exposure group (6.48±0.37, 3.67±0.26) were higher than the low exposure group (5.15±0.23, 3.02±0.19) (t=3.24, t=2.01, P=0.003, P=0.043). The expression of peripheral blood lymphocytes HSPs70 level and HSPs70 mRNA

  12. DDAH2 mRNA expression is inversely associated with some cardiovascular risk-related features in healthy young adults.

    Science.gov (United States)

    Puchau, Blanca; Hermsdorff, Helen Hermana M; Zulet, M Angeles; Martínez, J Alfredo

    2009-01-01

    The purpose of this study was to evaluate whether the mRNA expression profiles of three genes (PRMT1, DDAH2 and NOS3) are related to ADMA metabolism and signalling, and the potential relationships with anthropometrical, biochemical, lifestyle and inflammatory indicators in healthy young adults. An emphasis on the putative effect of different mRNA expression on cardiovascular risk-related features was paid. Anthropometrical measurements as well as lifestyle features were analyzed in 120 healthy young adults. Fasting blood samples were collected for the measurement of glucose and lipid profiles as well as the concentrations of selected inflammatory markers. Profiles of mRNA expression were assessed for PRMT1, DDAH2 and NOS3 genes from peripheral blood mononuclear cells. Regarding inflammatory biomarkers, DDAH2 was inversely associated with IL-6 and TNF-alpha. Moreover, subjects in the highest quintile of DDAH2 mRNA expression showed a reduced risk to have higher values of waist circumference, and to be more prone to show higher values of HDL-c. Interestingly, DDAH2 gene expression seemed to be related with some anthropometrical, biochemical, lifestyle and inflammatory indicators linked to cardiovascular risk in apparently healthy young adults, emerging as a potential disease marker.

  13. DDAH2 mRNA Expression Is Inversely Associated with Some Cardiovascular Risk-Related Features in Healthy Young Adults

    Directory of Open Access Journals (Sweden)

    Blanca Puchau

    2009-01-01

    Full Text Available The purpose of this study was to evaluate whether the mRNA expression profiles of three genes (PRMT1, DDAH2 and NOS3 are related to ADMA metabolism and signalling, and the potential relationships with anthropometrical, biochemical, lifestyle and inflammatory indicators in healthy young adults. An emphasis on the putative effect of different mRNA expression on cardiovascular risk-related features was paid. Anthropometrical measurements as well as lifestyle features were analyzed in 120 healthy young adults. Fasting blood samples were collected for the measurement of glucose and lipid profiles as well as the concentrations of selected inflammatory markers. Profiles of mRNA expression were assessed for PRMT1, DDAH2 and NOS3 genes from peripheral blood mononuclear cells. Regarding inflammatory biomarkers, DDAH2 was inversely associated with IL-6 and TNF-α. Moreover, subjects in the highest quintile of DDAH2 mRNA expression showed a reduced risk to have higher values of waist circumference, and to be more prone to show higher values of HDL-c. Interestingly, DDAH2 gene expression seemed to be related with some anthropometrical, biochemical, lifestyle and inflammatory indicators linked to cardiovascular risk in apparently healthy young adults, emerging as a potential disease marker.

  14. Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver.

    Science.gov (United States)

    Odbayar, Tseye-Oidov; Kimura, Toshinori; Tsushida, Tojiro; Ide, Takashi

    2009-05-01

    The impact of quercetin on the mRNA expression of hepatic enzymes involved in drug metabolism was evaluated with a DNA microarray and real-time PCR. Male Sprague-Dawley rats were fed an experimental diet containing either 0, 2.5, 5, 10, or 20 g/kg of quercetin for 15 days. The DNA microarray analysis of the gene expression profile in pooled RNA samples from rats fed diets containing 0, 5, and 20 g/kg of quercetin revealed genes of some isoenzymes of glutathione transferase (Gst) and aldo-keto reductase (Akr) to be activated by this flavonoid. Real-time PCR conducted with RNA samples from individual rats fed varying amounts of quercetin together with the microarray analysis showed that quercetin caused marked dose-dependent increases in the mRNA expression of Gsta3, Gstp1, and Gstt3. Some moderate increases were also noted in the mRNA expression of isoenzymes belonging to the Gstm class. Quercetin also dose-dependently increased the mRNA expression of Akr1b8 and Akr7a3. However, it did not affect the parameters of the other Gst and Akr isoenzymes. It is apparent that quercetin increases the mRNA expression of Gst and Akr involved in drug metabolism in an isoenzyme-specific manner. Inasmuch as Gst and Akr isoenzymes up-regulated in their gene expression are involved in the prevention and attenuation of cancer development, this consequence may account for the chemopreventive propensity of quercetin.

  15. [Expression and significance of P-gp/mdr1 mRNA, MRP and LRP in non-Hodgkin's lymphoma].

    Science.gov (United States)

    Li, Le; Su, Li-ping; Ma, Li; Zhao, Jin; Zhu, Lei; Zhou, Yong-an

    2009-03-01

    To explore the expression and clinical significance of P-glycoprotein (P-gp)/mdr1mRNA, multidrug resistance-associated protein (MRP) and lung resistance protein (LRP) in newly diagnosed non-Hodgkin's lymphoma. mdr1 mRNA of in 41 patients with non-Hodgkin's lymphoma was assayed by semi-quantitative RT-PCR. The expressions of P-gp, MRP and LRP proteins in lymph node viable blasts were identified by flow cytometry. The results were compared with those obtained from control cases, and the correlation of the changes with clinical outcomes was analyzed. (1) Among the 41 cases, the positive expression of P-gp protein was detected in 8 cases, MRP in 7 cases, LRP in 15 cases, and mdr 1 mRNA in 11 cases. (2) The P-gp and LRP levels in NHL were significantly higher than those in control group, but MRP wasn't. The P-gp over-expression was significantly associated with mdr1mRNA (r = 0.396, P = 0.01). No correlation was showed among the expressions of P-gp, MRP and LRP. (3) Patients with P-gp expression had a poorer outcome of chemotherapy than those with P-gp-negative (P = 0.005). P-gp expression was significantly associated with higher clinical stage (P = 0.046) and elevated serum lactate dehydrogenase level (P = 0.032), but not associated with malignant degree (P = 0.298). MRP had no impact on the outcome of chemotherapy (P = 0.212), and wasn't significantly associated with higher clinical stage (P = 0.369), elevated LDH (P = 0.762) and higher malignant degree (P = 0.451). Patients with LRP expression had a poorer outcome of chemotherapy than those LRP-negative (P = 0.012). LRP expression was significantly associated with higher clinical stage (P = 0.0019), elevated LDH (P = 0.02) and higher malignant degree (P = 0.01). The data of this study indicate that P-gp and LRP expressions but not MRP expression are important in the mechanism of drug resistance associated with a poor clinical outcome in previously untreated NHL.

  16. Whole Blood mRNA Expression-Based Prognosis of Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Karthik V. Giridhar

    2017-11-01

    Full Text Available The Memorial Sloan Kettering Cancer Center (MSKCC prognostic score is based on clinical parameters. We analyzed whole blood mRNA expression in metastatic clear cell renal cell carcinoma (mCCRCC patients and compared it to the MSKCC score for predicting overall survival. In a discovery set of 19 patients with mRCC, we performed whole transcriptome RNA sequencing and selected eighteen candidate genes for further evaluation based on associations with overall survival and statistical significance. In an independent validation of set of 47 patients with mCCRCC, transcript expression of the 18 candidate genes were quantified using a customized NanoString probeset. Cox regression multivariate analysis confirmed that two of the candidate genes were significantly associated with overall survival. Higher expression of BAG1 [hazard ratio (HR of 0.14, p < 0.0001, 95% confidence interval (CI 0.04–0.36] and NOP56 (HR 0.13, p < 0.0001, 95% CI 0.05–0.34 were associated with better prognosis. A prognostic model incorporating expression of BAG1 and NOP56 into the MSKCC score improved prognostication significantly over a model using the MSKCC prognostic score only (p < 0.0001. Prognostic value of using whole blood mRNA gene profiling in mCCRCC is feasible and should be prospectively confirmed in larger studies.

  17. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    unknown. Therefore we aim to examine the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of 141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear regression...... correlated (Plinear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...... analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...

  18. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  19. Apoptosis Triggers Specific, Rapid, and Global mRNA Decay with 3′ Uridylated Intermediates Degraded by DIS3L2

    Directory of Open Access Journals (Sweden)

    Marshall P. Thomas

    2015-05-01

    Full Text Available Apoptosis is a tightly coordinated cell death program that damages mitochondria, DNA, proteins, and membrane lipids. Little is known about the fate of RNA as cells die. Here, we show that mRNAs, but not noncoding RNAs, are rapidly and globally degraded during apoptosis. mRNA decay is triggered early in apoptosis, preceding membrane lipid scrambling, genomic DNA fragmentation, and apoptotic changes to translation initiation factors. mRNA decay depends on mitochondrial outer membrane permeabilization and is amplified by caspase activation. 3′ truncated mRNA decay intermediates with nontemplated uridylate-rich tails are generated during apoptosis. These tails are added by the terminal uridylyl transferases (TUTases ZCCHC6 and ZCCHC11, and the uridylated transcript intermediates are degraded by the 3′ to 5′ exonuclease DIS3L2. Knockdown of DIS3L2 or the TUTases inhibits apoptotic mRNA decay, translation arrest, and cell death, whereas DIS3L2 overexpression enhances cell death. Our results suggest that global mRNA decay is an overlooked hallmark of apoptosis.

  20. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    Science.gov (United States)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  1. Statins Activate Human PPAR Promoter and Increase PPAR mRNA Expression and Activation in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Makoto Seo

    2008-01-01

    Full Text Available Statins increase peroxisome proliferator-activated receptor (PPAR mRNA expression, but the mechanism of this increased PPAR production remains elusive. To examine the regulation of PPAR production, we examined the effect of 7 statins (atorvastatin, cerivastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin on human PPAR promoter activity, mRNA expression, nuclear protein levels, and transcriptional activity. The main results are as follows. (1 Majority of statins enhanced PPAR promoter activity in a dose-dependent manner in HepG2 cells transfected with the human PPAR promoter. This enhancement may be mediated by statin-induced HNF-4. (2 PPAR mRNA expression was increased by statin treatment. (3 The PPAR levels in nuclear fractions were increased by statin treatment. (4 Simvastatin, pravastatin, and cerivastatin markedly enhanced transcriptional activity in 293T cells cotransfected with acyl-coenzyme A oxidase promoter and PPAR/RXR expression vectors. In summary, these data demonstrate that PPAR production and activation are upregulated through the PPAR promoter activity by statin treatment.

  2. Relationship of calcitonin mRNA expression to the differentiation state of HL 60 cells.

    Science.gov (United States)

    Kiefer, P; Bacher, M; Pflüger, K H

    1994-05-01

    Raised plasma levels of immunoreactive human calcitonin (ihCT) can be found in patients with myeloid leukemia and seem to indicate a poor prognosis. High levels were found in acute undifferentiated and acute myeloblastic leukemia. To test whether CT expression could be a marker of myeloid differentiation, we used the promyelocytic leukemia cell line HL 60 which also expresses ihCT as a model system for myeloid differentiation. Exponentially growing HL 60 cells as well as differentiation induced HL 60 cells expressed a single 1.0 Kb CT transcript. The induction of HL 60 cell differentiation along the granulocytic lineage by DMSO or HMBA had no effect on the level of CT transcripts. Induction of monocytic/macrophagic differentiation by TPA resulted in a transient, about 10-fold elevated expression of CT steady state mRNA after 24 h. In contrast to TPA, induction of HL 60 cell differentiation along the monocytic pathway by Vit D3 had no detectable effect on the level of the CT in RNA expression at corresponding time points. These findings suggest that the transient induction of CT steady state mRNA expression by TPA is rather a direct effect of the phorbol ester than commitment along the monocytic line of differentiation.

  3. [mRNA expression of dopamine receptor D2 and dopamine transporter in peripheral blood lymphocytes before and after treatment in children with tic disorder].

    Science.gov (United States)

    Ji, Xiao-Yi; Wu, Min

    2016-04-01

    To investigate the mRNA expression of dopamine receptor D2 (DRD2) and dopamine transporter (DAT) in peripheral blood lymphocytes before and after treatment in children with tic disorder (TD). RT-PCR was used to measure the mRNA expression of DRD2 and DAT in peripheral blood lymphocytes before and after treatment in 60 children with TD. The correlations between mRNA expression of DRD2 and DAT and the severity of TD were analyzed. Sixty healthy children served as the control group. Before treatment, the children with TD had a significant increase in the mRNA expression of DRD2 and DAT compared with the control group (PTic Severity Scale (YGTSS) score (P<0.05). In the children with moderate TD, the mRNA expression of DAT was positively correlated with YGTSS score (P<0.05). In children with TD, the mRNA expression of DRD2 in peripheral blood lymphocytes can be used as one of the indicators for diagnosing TD, assessing the severity of TD, and evaluating clinical outcomes.

  4. Enrofloxacin and Probiotic Lactobacilli Influence PepT1 and LEAP-2 mRNA Expression in Poultry.

    Science.gov (United States)

    Pavlova, Ivelina; Milanova, Aneliya; Danova, Svetla; Fink-Gremmels, Johanna

    2016-12-01

    Expression of peptide transporter 1 (PepT1) and liver-expressed antimicrobial peptide 2 (LEAP-2) in chickens can be influenced by food deprivation, pathological conditions and drug administration. Effect of three putative probiotic Lactobacillus strains and enrofloxacin on the expression of PepT1 and LEAP-2 mRNA was investigated in Ross 308 chickens. One-day-old chicks (n = 24) were allocated to following groups: control (without treatment); group treated with probiotics via feed; group treated with a combination of probiotics and enrofloxacin; and a group given enrofloxacin only. The drug was administered at a dose of 10 mg kg -1 , via drinking water for 5 days. Samples from liver, duodenum and jejunum were collected 126 h after the start of the treatment. Expression levels of PepT1 and LEAP-2 were determined by real-time polymerase chain reaction and were statistically evaluated by Mann-Whitney test. Enrofloxacin administered alone or in combination with probiotics provoked a statistically significant up-regulation of PepT1 mRNA levels in the measured organ sites. These changes can be attributed to a tendency of improvement in utilization of dietary peptide and in body weight gain. LEAP-2 mRNA expression levels did not change significantly in enrofloxacin-treated chickens in comparison with control group.

  5. Increase of CTGF mRNA expression by respiratory syncytial virus infection is abrogated by caffeine in lung epithelial cells.

    Science.gov (United States)

    Kunzmann, Steffen; Krempl, Christine; Seidenspinner, Silvia; Glaser, Kirsten; Speer, Christian P; Fehrholz, Markus

    2018-04-16

    Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infection in early childhood. Underlying pathomechanisms of elevated pulmonary morbidity in later infancy are largely unknown. We found that RSV-infected H441 cells showed increased mRNA expression of connective tissue growth factor (CTGF), a key factor in airway remodeling. Additional dexamethasone treatment led to further elevated mRNA levels, indicating additive effects. Caffeine treatment prevented RSV-mediated increase of CTGF mRNA. RSV may be involved in airway remodeling processes by increasing CTGF mRNA expression. Caffeine might abrogate these negative effects and thereby help to restore lung homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Effects of active acromegaly on bone mRNA and microRNA expression patterns.

    Science.gov (United States)

    Belaya, Zhanna; Grebennikova, Tatiana; Melnichenko, Galina; Nikitin, Alexey; Solodovnikov, Alexander; Brovkina, Olga; Grigoriev, Andrey; Rozhinskaya, Liudmila; Lutsenko, Alexander; Dedov, Ivan

    2018-04-01

    To evaluate the response of bone to chronic long-term growth hormone (GH) and insulin-like growth factor-1 (IGF1) excess by measuring the expression of selected mRNA and microRNA (miR) in bone tissue samples of patients with active acromegaly. Case-control study. Bone tissue samples were obtained during transsphenoidal adenomectomy from the sphenoid bone (sella turcica) from 14 patients with clinically and biochemically confirmed acromegaly and 10 patients with clinically non-functioning pituitary adenoma (NFPA) matched by sex and age. Expression of genes involved in the regulation of bone remodeling was studied using quantitative polymerase chain reaction (qPCR). Of the genes involved in osteoblast and osteoclast activity, only alkaline phosphatase (ALP) mRNA was 50% downregulated in patients with acromegaly. GH excess caused increased expression of the Wnt signaling antagonists ( DKK1) and agonists ( WNT10B) and changes in the levels of miR involved in mesenchymal stem cell commitment to chondrocytes (miR-199a-5p) or adipocytes (miR-27-5p, miR-125b-5p, miR-34a-5p, miR-188-3p) P  Acromegaly had minimal effects on tested mRNAs specific to osteoblast or osteoclast function except for downregulated ALP expression. The expressions of miR known to be involved in mesenchymal stem cell commitment and downregulated TWIST1 expression suggest acromegaly has a negative effect on osteoblastogenesis. © 2018 European Society of Endocrinology.

  7. Expression of connexin 37, 40, and 43 mRNA and protein in renal preglomerular arterioles

    DEFF Research Database (Denmark)

    Arensbak, B; Mikkelsen, Hanne Birte; Gustafsson, F

    2001-01-01

    arterioles in frozen sections was evaluated. SMC were isolated from kidneys using an iron oxide sieve method and explant technique. Total RNA from these cultures was tested by RT-PCR analysis for the expression of the three connexins mRNA. Using immunofluorescence we examined whether the expression pattern...

  8. Effect of electroacupuncture on brain-derived neurotrophic factor mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Zhao, Jianxin; Xu, Huazhou; Tian, Yuanxiang; Hu, Manxiang; Xiao, Hongling

    2013-04-01

    This work aims to observe the effects of electroacupuncture on brain-derived neurotrophic factor (BDNF) mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury. The models of mouse cerebral ischemia-reperfusion injury were established. A total of 96 healthy mice were randomly assigned into 4 groups, namely, the sham surgery, model, model + electroacupuncture, and mode + hydergine groups. Mice in the model + electroacupuncture group were treated through electroacupuncture at the Shenshu (BL 23), Geshu (BL 17), and Baihui (GV 20) acupoints. Mice in the model+hydergine group were intragastrically administered with hydergine (0.77 mg/kg(-1) x day(-1)). The levels of BDNF mRNA expressions in the hippocampus were ana lyzed through a semi-quantitative reverse transcription-polymerase chain reaction assay on days 1 and 7 after the surgeries. BDNF mRNA expressions in the mouse hippocampus of the model group on days 1 and 7 after the surgery were higher than those of the sham surgery group (both P electroacupuncture treatment, BDNF mRNA expression in the mouse hippocampus of the model + electroacupuncture group was significantly elevated compared with the model group (both P 0.05). Electroacupuncture treatment enhances endogenous BDNF expression, which may improve the survival environment for intracerebral neurons and inhibit the apoptosis of hippocampal cells.

  9. The NO signaling pathway differentially regulates KCC3a and KCC3b mRNA expression.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Adragna, Norma C

    2003-11-01

    Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.

  10. Freund's adjuvant-induced inflammation: clinical findings and its effect on hepcidin mRNA expression in horses

    Directory of Open Access Journals (Sweden)

    José P. Oliveira-Filho

    2014-01-01

    Full Text Available Hypoferremia observed during systemic inflammatory disorders is regulated by hepcidin. Hepcidin up-regulation is particularly important during acute inflammation, as it restricts the availability of iron, which is necessary for pathogenic microorganism growth before adaptive immunity occurs. The aim of this study was to evaluate the clinical findings and hepatic hepcidin mRNA expression in horses using a Freund's complete adjuvant (FCA model of inflammation. The expression of hepcidin mRNA in the liver was determined in healthy horses following two intramuscular injections of FCA at 0 h and 12 h. Plasma iron and fibrinogen concentrations were measured at multiple time points between 0 h and 240 h post-FCA injection (PI. Hepcidin mRNA expression was determined by RT-qPCR using liver biopsy samples performed at 0 h (control, 6 h and 18 h PI. The mean plasma fibrinogen level was significantly different from the control values only between 120 and 216 h PI. The mean plasma iron level was significantly lower than the control between 16 and 72 h PI, reaching the lowest levels at 30 h PI (33 % of the initial value, and returned to the reference value from 96 h PI to the end of the experiment. Hepcidin mRNA expression increased at 6 h PI and remained high at 18 h PI. The iron plasma concentration was an earlier indicator of inflammatory processes in horses when compared with fibrinogen and might be useful for the early detection of inflammation in the horse. FCA administration caused the rapid onset of hypoferremia, and this effect was likely the result of up-regulated hepatic hepcidin gene expression. This study emphasizes the importance of hepcidin and iron metabolism during inflammation in horses.

  11. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    International Nuclear Information System (INIS)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  12. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  13. The effects of valproic acid on the mRNA expression of Natriuretic ...

    African Journals Online (AJOL)

    Mona Hajikazemi

    2017-04-28

    Apr 28, 2017 ... Real Time RT-PCR was used to quantify differential mRNA expression of NPR-A and KCNQ1 genes. Two-way ANOVA and bonferroni post-tests were used to analyze data statistically. Results: We showed that VPA treatment inhibits the growth of SW-480 cells more efficiently compared to. HT-29. NPR-A ...

  14. The Expression of mRNA LMP1 Epstein-Barr Virus from FFPE Tumour Biopsy: a Potential Biomarker of Nasopharyngeal Carcinoma Diagnosis

    Directory of Open Access Journals (Sweden)

    Daniel Joko Wahyono

    2017-07-01

    Full Text Available Nasopharyngeal carcinoma (NPC is a multifactorial disease that is endemic geographically in the world. Indonesian population has a highly incidence rate that is 6.2/100,000 people year. The pathogenesis of NPC is more directly reflected by carcinoma-specific viral transcriptional activity at the site of primary tumour. Epstein-Barr virus (EBV infection in NPC is reflected by the expression of EBV latent and lytic gene. In fact, mRNA Latent Membrane Protein 1 (LMP1 EBV expression was an important latent infection biomarker. The aim of this study was to determine a potential use of relative expression of mRNA LMP1 EBV from formalin-fixed paraffin embedded (FFPE tumour biopsy in NPC as a tumour biomarker. This reseach design was a cross sectional study. The samples were the archived specimens of FFPE tumour biopsy from NPC WHO-3 patient which were collected from untreated patients from 2014 in the Department of Pathology Anatomy, Prof. dr. Margono Soekarjo Hospital, Purwokerto. The expression of mRNA LMP1 EBV expression was determined by RT-PCR technique. The positivity of mRNA LMP1 EBV expression was 51.9%, indicating a moderate positivity. The result proved that the expression of mRNA LMP1 EBV from FFPE NPC WHO-3 tumour biopsy was a potential biomarker of NPC diagnosis. The molecular methods would improved the management of NPC, particularly in the histopathological diagnosis of NPC.

  15. Early-life stress induces persistent alterationsin 5-HT1Areceptor and serotonin transporter mRNA expression in the adultrat brain.

    Directory of Open Access Journals (Sweden)

    Javier A. Bravo

    2014-04-01

    Full Text Available Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT mRNA expression in brain areas involved in the control of emotions, memory and fear as well as in regions controlling the central serotonergic tone.To test this, Sprague-Dawley rats were subjected to MS for 3h daily during post-natal days 2-12. As control, age matched rats were not separated (NS from their dams. When animals reached adulthood (11-13 weeks brain was extracted and mRNA expression of 5-HT1A receptor in amygdala, hippocampus and dorsal raphé nucleus (DRN and SERT in the DRN was analyzed through in-situ hybridisation.Densitometric analysis revealed that MS increased 5-HT1A receptor mRNA expression in the amygdala, and reduced its expression in the DRN, but no changes were observed in the hippocampus in comparison to NS controls. Also, MS reduced SERT mRNA expression in the DRN when compared to NS rats.These results suggest that early-life stress induces persistent changes in 5-HT1A receptor and SERT mRNA expression in key brain regions involved in the development of stress-related psychiatric disorders. The reduction in SERT mRNA indicates an alteration that is in line with clinical findings such as polymorphic variants in individuals with higher risk of depression. These data may help to understand how early-life stress contributes to the development of mood disorders in adulthood.

  16. Effects of low dose radiation on expressions of ICAM-1 mRNA and protein in kidney of diabetic mice

    International Nuclear Information System (INIS)

    Zhang Chi; Li Xiaokun; Gong Shouliang; Liu Xiaoju; Zhao Xue; Liu Xiaoju; Zhao Xue; Shen Wenjie; Li Cai; Cai Lu

    2010-01-01

    Objective: To study the effects of low dose radiation (LDR) on the expressions of intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in kidney of diabetes mellitus (DM) mice and illuminate that anti-inflammation of LDR is a main mechanism for diabetic therapy. Methods: The healthy and right age C57BL/6J mice were divided into 4 groups including control, DM, LDR and DM/LDR. The mice in DM and DM/LDR groups were injected intraperitoneally with streptozocin (STZ) to set up DM models. The mice in DM/LDR and LDR groups were irradiated with 25 mGy every other day for 4 weeks. The expressions of ICAM-1 mRNA and protein in kidney were detected with RT-PCR and Western blotting 2, 4, 8, 12 and 16 weeks after irradiation. Results: The expressions of ICAM-1 mRNA and protein in kidney had no significant difference among 4 groups before LDR (P>0.05). The expressions of ICAM-1 mRNA and protein 2 weeks after irradiation with LDR were higher than those in the other 3 groups (P<0.05). The expressions of ICAM-1 mRNA and protein in the DM/LDR group 4 weeks after irradiation were also significantly higher than those in non-DM groups (P<0.05), but still significantly lower than those in DM group (P<0.05), and the significant differences were kept to 16 weeks after irradiation. But the expressions of ICAM-1 mRNA and protein in LDR group were significantly higher than those in control group (P<0.05). IHC assay showed that the glomerular and tubular in DM and DM/LDR groups were abnormal and the quantities of the positive staining cells were significantly increased compared with non-DM groups. However the damage of glomerular and tubular in DM/LDR was significantly supressed compared with DM group and the positive staining cells were also decreased. Conclusion: Under the circumstance of DM, LDR can significantly decrease the expressions of ICAM-1 mRNA and protein in mouse kidney to relief the inflammation reaction in kidney; but in normal condition, LDR can improve the immunity and

  17. The Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats.

    Science.gov (United States)

    Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali

    2018-01-01

    Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (PStAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.

  18. HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication.

    Science.gov (United States)

    Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B

    2017-10-01

    In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p HFE and HAMP expressions were elevated only at low 1 g/L treatment (p HFE (p HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.

  19. Analysis of mRNA expression of genes related to fatty acids synthesis in goose fatty liver

    Directory of Open Access Journals (Sweden)

    Shuxia Xiang

    2010-11-01

    Full Text Available The aim of our study was to evaluate the effect of overfeeding on mRNA expression levels of genes involved in lipogenesis, in order to understand the mechanism of hepatic stea - tosis in the goose. Using Landes geese (Anser anser and Sichuan White geese (Anser cygnoides as experimental animals, we quantified the mRNA expression of lipogenic genes, acetyl-CoA carboxylase-α (ACCα and fatty acid synthase (FAS, and of two transcription factors, sterol regulatory element-binding proteins- 1 (SREBP-1 and carbohydrate responsive element-binding protein (ChREBP by real-time polymerase chain reaction (RTPCR, and measured the lipid and triglyceride (TG content in the liver and the plasma level of glucose, insulin and TG. Our results indicated that compared to the control group, the overfeeding induced an increase of the lipid and TG content in the liver and also of the plasma insulin and TG concentration in both breeds. However, the plasma glucose level decreased after overfeeding in the Sichuan White goose, and there was no evident change in the Landes goose. Lastly, the mRNA expression of ACCα, FAS, SREBP-1 and ChREBP in the overfed group was lower than in the control group in both breeds. We concluded that the lipogenesis pathway plays a role in overfeeding- induced hepatic steatosis and that the decreased mRNA level of related genes may be the indicator of hepatic steatosis.

  20. The Impact of Ramadan Fasting on SIRT1 mRNA Expression in Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Mostafa Haji Molahoseini

    2016-11-01

    Full Text Available Background:The aim of this study was to evaluate the effect of Ramadan fasting on SIRT1 mRNA expression in healthy men.Islamic Ramadan fasting is a holy religious ceremony that has many spiritual benefits. Additionally, it can be considered as the equivalent of calorie restriction that may affect physical health. The results of previous studies revealed that calorie restriction increases the lifespan in laboratory rodents via increasing the expression of a histone deacetylase named SIRT1. Additionally, SIRT1 is known for its anti-inflammatory properties. Materials and Methods: Overall, 43 men volunteered for participating in this one-group before and after (self-controlled study. Two mL blood samples were taken prior to fasting and at the end of the 30th day of fasting. Routine biochemical tests and SIRT1 mRNA expression analysis were performed. Results: Cholesterol and low-density lipoproteins increase, however, high-density lipoproteins level decreased after Ramadan fasting. The analysis of real-time PCR results revealed that SIRT1 mRNA expression in human peripheral blood mononuclear cells increased 4.63 fold in fasting state in comparison with non-fasting state. Conclusion: Ramadan fasting has a significant effect on SIRT1 gene expression. Considering the immunosuppressive and anti-inflammatory properties of SIRT1, further studies are needed to evaluate the effects of SIRT1 up-regulation on the autoimmune and inflammatory diseases during Ramadan fasting.

  1. ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export.

    Science.gov (United States)

    Boehringer, Ashley; Garcia-Mansfield, Krystine; Singh, Gurkaran; Bakkar, Nadine; Pirrotte, Patrick; Bowser, Robert

    2017-11-06

    Mutations in Matrin 3 have recently been linked to ALS, though the mechanism that induces disease in these patients is unknown. To define the protein interactome of wild-type and ALS-linked MATR3 mutations, we performed immunoprecipitation followed by mass spectrometry using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.

  2. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Köster, Tino

    2017-04-13

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  3. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

    KAUST Repository

    Kö ster, Tino; Marondedze, Claudius; Meyer, Katja; Staiger, Dorothee

    2017-01-01

    RNA–protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture – where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes.

  4. Expression of a serine protease (motopsin PRSS12) mRNA in the mouse brain: in situ hybridization histochemical study.

    Science.gov (United States)

    Iijima, N; Tanaka, M; Mitsui, S; Yamamura, Y; Yamaguchi, N; Ibata, Y

    1999-03-20

    Serine proteases are considered to play several important roles in the brain. In an attempt to find novel brain-specific serine proteases (BSSPs), motopsin (PRSS-12) was cloned from a mouse brain cDNA library by polymerase chain reaction (PCR). Northern blot analysis demonstrated that the postnatal 10-day mouse brain contained the most amount of motopsin mRNA. At this developmental stage, in situ hybridization histochemistry showed that motopsin mRNA was specifically expressed in the following regions: cerebral cortical layers II/III, V and VIb, endopiriform cortex and the limbic system, particularly in the CA1 region of the hippocampal formation. In addition, in the brainstem, the oculomotor nucleus, trochlear nucleus, mecencephalic and motor nuclei of trigeminal nerve (N), abducens nucleus, facial nucleus, nucleus of the raphe pontis, dorsoral motor nucleus of vagal N, hypoglossal nucleus and ambiguus nucleus showed motopsin mRNA expression. Expression was also found in the anterior horn of the spinal cord. The above findings strongly suggest that neurons in almost all motor nuclei, particularly in the brainstem and spinal cord, express motopsin mRNA, and that motopsin seems to have a close relation to the functional role of efferent neurons. Copyright 1999 Elsevier Science B.V.

  5. Analysis of p130 protein and mRNA expression in ten patients with uterine papillary serous carcinoma

    Directory of Open Access Journals (Sweden)

    Shao-ting XU

    2011-11-01

    Full Text Available Objective To examine p130 protein and mRNA expression in uterine papillary serous carcinoma(UPSC and their clinical and pathologic significance.Methods A total of 10 UPSC patients(Stage I were included,with 10 cases of high-level endometrial carcinoma of the same stage taken as the control group and 10 cases of normal proliferative stage endometrium(EM taken as the disease control group.The level of p130 protein expression was determined by hematoxylin and eosin staining,microscopic observation,and immunohistochemistry,whereas the p130 mRNA levels were examined through real-time quantitative reverse transcriptase polymerase chain reaction.The clinicopathologic analysis was carried out in combination with clinical data.Results The p130 protein and p130 mRNA expression levels in the UPSC group(0.46±0.01 and 0.56±0.06,respectively were apparently less than that of the normal proliferative stage endometrium group(0.91±0.04 and 2.81±0.40,respectively;P < 0.01 and also less than those in high-level endometrial carcinoma(P < 0.05.Clinicopathologic analysis shows that all patients are post-menopausal women with symptoms of irregular vaginal bleeding and the average tumor size was 7.5cm(range: 1.2-14.8cm.The pathologic features are same as that of high-level ovarian papillary serous carcinoma.Conclusion Reduced p130 protein and p130 mRNA expression in UPSC might correlate with poor prognosis in UPSC patients.

  6. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.

  7. Low ERCC1 mRNA and protein expression are associated with worse survival in cervical cancer patients treated with radiation alone

    International Nuclear Information System (INIS)

    Doll, Corinne M.; Prystajecky, Michael; Eliasziw, Misha; Klimowicz, Alexander C.; Petrillo, Stephanie K.; Craighead, Peter S.; Hao, Desiree; Diaz, Roman; Lees-Miller, Susan P.; Magliocco, Anthony M.

    2010-01-01

    Purpose: To evaluate the association of excision repair cross-complementation group 1 (ERCC1) expression, using both mRNA and protein expression analysis, with clinical outcome in cervical cancer patients treated with radical radiation therapy (RT). Experimental design: Patients (n = 186) with locally advanced cervical cancer, treated with radical RT alone from a single institution were evaluated. Pre-treatment FFPE biopsy specimens were retrieved from 112 patients. ERCC1 mRNA level was determined by real-time PCR, and ERCC1 protein expression (FL297, 8F1) was measured using quantitative immunohistochemistry (AQUA (registered) ). The association of ERCC1 status with local response, 10-year disease-free (DFS) and overall survival (OS) was analyzed. Results: ERCC1 protein expression levels using both FL297 and 8F1 antibodies were determined for 112 patients; mRNA analysis was additionally performed in 32 patients. Clinical and outcome factors were comparable between the training and validation sets. Low ERCC1 mRNA expression status was associated with worse OS (17.9% vs 50.1%, p = 0.046). ERCC1 protein expression using the FL297 antibody, but not the 8F1 antibody, was significantly associated with both OS (p = 0.002) and DFS (p = 0.010). After adjusting for pre-treatment hemoglobin in a multivariate analysis, ERCC1 FL297 expression status remained statistically significant for OS [HR 1.9 (1.1-3.3), p = 0.031]. Conclusions: Pre-treatment tumoral ERCC1 mRNA and protein expression, using the FL297 antibody, are predictive factors for survival in cervical cancer patients treated with RT, with ERCC1 FL297 expression independently associated with survival. These results identify a subset of patients who may derive the greatest benefit from the addition of cisplatin chemotherapy.

  8. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  9. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Ling Feng

    Full Text Available Long non-coding RNA (lncRNA plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies.

  10. Significance of the BRAF mRNA Expression Level in Papillary Thyroid Carcinoma: An Analysis of The Cancer Genome Atlas Data.

    Directory of Open Access Journals (Sweden)

    Young Jun Chai

    Full Text Available BRAFV600E is the most common mutation in papillary thyroid carcinoma (PTC, and it is associated with high-risk prognostic factors. However, the significance of the BRAF mRNA level in PTC remains unknown. We evaluated the significance of BRAF mRNA expression level by analyzing PTC data from The Cancer Genome Atlas (TCGA database.Data from 499 patients were downloaded from the TCGA database. After excluding other PTC variants, we selected 353 cases of classic PTC, including 193 cases with BRAFV600E and 160 cases with the wild-type BRAF. mRNA abundances were measured using RNA-Seq with the Expectation Maximization algorithm.The mean BRAF mRNA level was significantly higher in BRAFV600E patients than in patients with wild-type BRAF (197.6 vs. 179.3, p = 0.031. In wild-type BRAF patients, the mean BRAF mRNA level was higher in cases with a tumor > 2 cm than those with a tumor ≤ 2.0 cm (189.4 vs. 163.8, p = 0.046, and was also higher in cases with lymph node metastasis than in those without lymph node metastasis (188.5 vs. 157.9, p = 0.040. Within BRAFV600E patients, higher BRAF mRNA expression was associated with extrathyroidal extension (186.4 vs. 216.4, p = 0.001 and higher T stage (188.1 vs. 210.2, p = 0.016.A higher BRAF mRNA expression level was associated with tumor aggressiveness in classic PTC regardless of BRAF mutational status. Evaluation of BRAF mRNA level may be helpful in prognostic risk stratification of PTC.

  11. Effects of fasting, temperature, and photoperiod on preproghrelin mRNA expression in Chinese perch.

    Science.gov (United States)

    Song, Yi; Zhao, Cheng; Liang, Xu-Fang; He, Shan; Tian, Changxu; Cheng, Xiaoyan; Yuan, Xiaochen; Lv, Liyuan; Guo, Wenjie; Xue, Min; Tao, Ya-Xiong

    2017-06-01

    Preproghrelin, a gut/brain peptide, plays an important role in the regulation of food intake and energy homeostasis in teleost and mammals. In the present study, we obtained the full-length preproghrelin cDNA in Chinese perch. The preproghrelin messenger RNA (mRNA) tissue expression showed that level was much higher in stomach and pituitary than in other tissues. The fasting study showed, after gastric emptying (3-6 h), short-term fasting (6-12 h) increased preproghrelin expression in the stomach. While in the pituitary, fasting reduced preproghrelin expression at 1, 3, 12, and 48 h, presenting state fluctuation of self-adjustment. The temperature study showed that the mRNA expression of preproghrelin was the highest in the brain at 26 °C and highest in the stomach at 32 °C, respectively, with different optimum temperature in these two tissues, reflecting spatiotemporal differences of regulation by central nervous system and peripheral organs. The photoperiod study showed that normal light (11 h of lightness and 13 h of darkness) led to highest preproghrelin expression, both in the brain and in the stomach, than continuous light or continuous dark, proving food intake is adapted to natural photoperiod or normal light in this study. These results all indicated that tissue-specific preproghrelin expression of Chinese perch could be significantly affected by environmental factors. Short-term fasting of 6 h after gastric emptying, 26 °C, and normal light led to higher preproghrelin expression, which indicated potential appetite increase in Chinese perch.

  12. Peroxisome proliferator-activated receptor α (PPARα mRNA expression in human hepatocellular carcinoma tissue and non-cancerous liver tissue

    Directory of Open Access Journals (Sweden)

    Kurokawa Tsuyoshi

    2011-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor α (PPARα regulates lipid metabolism in the liver. It is unclear, however, how this receptor changes in liver cancer tissue. On the other hand, mouse carcinogenicity studies showed that PPARα is necessary for the development of liver cancer induced by peroxisome proliferators, and the relationship between PPARα and the development of liver cancer have been the focus of considerable attention. There have been no reports, however, demonstrating that PPARα is involved in the development of human liver cancer. Methods The subjects were 10 patients who underwent hepatectomy for hepatocellular carcinoma. We assessed the expression of PPARα mRNA in human hepatocellular carcinoma tissue and non-cancerous tissue, as well as the expression of target genes of PPARα, carnitine palmitoyltransferase 1A and cyclin D1 mRNAs. We also evaluated glyceraldehyde 3-phosphate dehydrogenase, a key enzyme in the glycolytic system. Results The amounts of PPARα, carnitine palmitoyltransferase 1A and glyceraldehyde 3-phosphate dehydrogenase mRNA in cancerous sections were significantly increased compared to those in non-cancerous sections. The level of cyclin D1 mRNA tends to be higher in cancerous than non-cancerous sections. Although there was a significant correlation between the levels of PPARα mRNA and cyclin D1 mRNA in both sections, however the correlation was higher in cancerous sections. Conclusion The present investigation indicated increased expression of PPARα mRNA and mRNAs for PPARα target genes in human hepatocellular carcinoma. These results might be associated with its carcinogenesis and characteristic features of energy production.

  13. Effect of electroacupuncture on TRPM7 mRNA expression after cerebral ischemia/reperfusion in rats via TrkA pathway.

    Science.gov (United States)

    Zhao, Li; Shi, Jing; Sun, Ning; Tian, Shunlian; Meng, Xianfang; Liu, Xiaochun; Li, Lingli

    2005-01-01

    The effect of electroacupuncture (EA) on TRPM7 mRNA expression of focal cerebral ischemia in rats and further the role of EA in the relationship between TRPM7 and trkA pathway was investigated. Thirty SD rats were randomly divided into 5 groups : normal group, ischemia/reperfusion group, EA treated group (ischemic rats with EA treatment), TE infusion group (ischemic rats with EA treatment and TE buffer infusion), AS-ODN group (ischemic rats with EA treatment and antisense trkA oligonucleotide infusion). The stroke animal model was established by the modified method of middle cerebral artery occlusion. Antisense trkA oligonucleotide that blocked NGFs effects was injected into cerebroventricle before EA. The TRPM7 mRNA was detected by RT-PCR method. The results showed that there were low TRPM7 mRNA levels in cortex and hippocampus in normal group. Compared with normal group, TRPM7 mRNA expression was increased significantly in ischemia/reperfusion group (PPM7 mRNA was found in EA treated group in contrast to ischemia/reperfusion group (P<0.05). The expression of TRPM7 mRNA in AS-ODN group was remarkably increased compared with EA treated group and TE infusion group (P<0.05). The results indicated that TRPM7 channels in the ischemic cortex and hippocampus in rats might play a key role in ischemic brain injury. EA could reverse the overexpression of TRPM7 in cerebral ischemia/reperfusion rats. And the inhibitory effect of EA on TRPM7 channels might be through trkA pathway.

  14. The classification of mRNA expression levels by the phosphorylation state of RNAPII CTD based on a combined genome-wide approach

    Directory of Open Access Journals (Sweden)

    Tachibana Taro

    2011-10-01

    Full Text Available Abstract Background Cellular function is regulated by the balance of stringently regulated amounts of mRNA. Previous reports revealed that RNA polymerase II (RNAPII, which transcribes mRNA, can be classified into the pausing state and the active transcription state according to the phosphorylation state of RPB1, the catalytic subunit of RNAPII. However, genome-wide association between mRNA expression level and the phosphorylation state of RNAPII is unclear. While the functional importance of pausing genes is clear, such as in mouse Embryonic Stem cells for differentiation, understanding this association is critical for distinguishing pausing genes from active transcribing genes in expression profiling data, such as microarrays and RNAseq. Therefore, we examined the correlation between the phosphorylation of RNAPII and mRNA expression levels using a combined analysis by ChIPseq and RNAseq. Results We first performed a precise quantitative measurement of mRNA by performing an optimized calculation in RNAseq. We then visualized the recruitment of various phosphorylated RNAPIIs, such as Ser2P and Ser5P. A combined analysis using optimized RNAseq and ChIPseq for phosphorylated RNAPII revealed that mRNA levels correlate with the various phosphorylation states of RNAPII. Conclusions We demonstrated that the amount of mRNA is precisely reflected by the phased phosphorylation of Ser2 and Ser5. In particular, even the most "pausing" genes, for which only Ser5 is phosphorylated, were detectable at a certain level of mRNA. Our analysis indicated that the complexity of quantitative regulation of mRNA levels could be classified into three categories according to the phosphorylation state of RNAPII.

  15. Postmortem mRNA expression patterns in left ventricular myocardial tissues and their implications for forensic diagnosis of sudden cardiac death.

    Science.gov (United States)

    Son, Gi Hoon; Park, Seong Hwan; Kim, Yunmi; Kim, Ji Yeon; Kim, Jin Wook; Chung, Sooyoung; Kim, Yu-Hoon; Kim, Hyun; Hwang, Juck-Joon; Seo, Joong-Seok

    2014-03-01

    Sudden cardiac death (SCD), which is primarily caused by lethal heart disorders resulting in structural and arrhythmogenic abnormalities, is one of the prevalent modes of death in most developed countries. Myocardial ischemia, mainly due to coronary artery disease, is the most common type of heart disease leading to SCD. However, postmortem diagnosis of SCD is frequently complicated by obscure histological evidence. Here, we show that certain mRNA species, namely those encoding hemoglobin A1/2 and B (Hba1/2 and Hbb, respectively) as well as pyruvate dehydrogenase kinase 4 (Pdk4), exhibit distinct postmortem expression patterns in the left ventricular free wall of SCD subjects when compared with their expression patterns in the corresponding tissues from control subjects with non-cardiac causes of death. Hba1/2 and Hbb mRNA expression levels were higher in ischemic SCD cases with acute myocardial infarction or ischemic heart disease without recent infarction, and even in cardiac death subjects without apparent pathological signs of heart injuries, than control subjects. By contrast, Pdk4 mRNA was expressed at lower levels in SCD subjects. In conclusion, we found that altered myocardial Hba1/2, Hbb, and Pdk4 mRNA expression patterns can be employed as molecular signatures of fatal cardiac dysfunction to forensically implicate SCD as the primary cause of death.

  16. Hedgehog signaling pathway is active in GBM with GLI1 mRNA expression showing a single continuous distribution rather than discrete high/low clusters.

    Science.gov (United States)

    Chandra, Vikas; Das, Tapojyoti; Gulati, Puneet; Biswas, Nidhan K; Rote, Sarang; Chatterjee, Uttara; Ghosh, Samarendra N; Deb, Sumit; Saha, Suniti K; Chowdhury, Anup K; Ghosh, Subhashish; Rudin, Charles M; Mukherjee, Ankur; Basu, Analabha; Dhara, Surajit

    2015-01-01

    Hedgehog (Hh) signaling pathway is a valid therapeutic target in a wide range of malignancies. We focus here on glioblastoma multiforme (GBM), a lethal malignancy of the central nervous system (CNS). By analyzing RNA-sequencing based transcriptomics data on 149 clinical cases of TCGA-GBM database we show here a strong correlation (r = 0.7) between GLI1 and PTCH1 mRNA expression--as a hallmark of the canonical Hh-pathway activity in this malignancy. GLI1 mRNA expression varied in 3 orders of magnitude among the GBM patients of the same cohort showing a single continuous distribution-unlike the discrete high/low-GLI1 mRNA expressing clusters of medulloblastoma (MB). When compared with MB as a reference, the median GLI1 mRNA expression in GBM appeared 14.8 fold lower than that of the "high-Hh" cluster of MB but 5.6 fold higher than that of the "low-Hh" cluster of MB. Next, we demonstrated statistically significant up- and down-regulation of GLI1 mRNA expressions in GBM patient-derived low-passage neurospheres in vitro by sonic hedgehog ligand-enriched conditioned media (shh-CM) and by Hh-inhibitor drug vismodegib respectively. We also showed clinically achievable dose (50 μM) of vismodegib alone to be sufficient to induce apoptosis and cell cycle arrest in these low-passage GBM neurospheres in vitro. Vismodegib showed an effect on the neurospheres, both by down-regulating GLI1 mRNA expression and by inducing apoptosis/cell cycle arrest, irrespective of their relative endogenous levels of GLI1 mRNA expression. We conclude from our study that this single continuous distribution pattern of GLI1 mRNA expression technically puts almost all GBM patients in a single group rather than discrete high- or low-clusters in terms of Hh-pathway activity. That is suggestive of therapies with Hh-pathway inhibitor drugs in this malignancy without a need for further stratification of patients on the basis of relative levels of Hh-pathway activity among them.

  17. Small, synthetic, GC-rich mRNA stem-loop modules 5' proximal to the AUG start-codon predictably tune gene expression in yeast.

    Science.gov (United States)

    Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D

    2013-07-29

    A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited

  18. Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck

    DEFF Research Database (Denmark)

    Thurfjell, N.; Coates, P.J.; Uusitalo, T.

    2004-01-01

    on the role of p63 expression in human tumours, we used quantitative real-time RT-PCR to study individual p63 isoforms in squamous cell carcinomas of the head and neck (SCCHN). In keeping with previous reports, expression of the deltaN- and p63alpha-isoforms predominated and deltaNp63 mRNA was expressed...

  19. Changes in growth hormone (GH) messenger RNA (GH mRNA) expression in the rat anterior pituitary after single interferon (IFN) alpha administration

    International Nuclear Information System (INIS)

    Romanowski, W.; Braczkowski, R.; Nowakowska-Zajdel, E.; Muc-Wierzgon, M.; Zubelewicz-Szkodzinska, B.; Kosiewicz, J.; Korzonek, I.

    2006-01-01

    Introduction: Interferon a (IFN-a) is a cytokine with pleiotropic effects which, via different pathways, influences the secretion of certain cytokines and hormones. Growth hormone (GH) secreted from the pituitary has physiological effects on various target tissues. The question is how IFN-a administered in various types of disease influences GH secretion. This study investigated the acute effect of IFN-a on GH mRNA expression in the rat anterior pituitary. Objective: The aim of the study was to measure the cellular expression of GH mRNA by in situ hybridisation in the anterior pituitary after a single administration of IFN-a. Material and methods: Rats were administered an intraperitoneal injection of IFN-a or saline. The rat pituitaries were taken 2 and 4 hours after IFN/saline administration and kept frozen until in situ hybridisation histochemistry. A 31 - base 35S -labelled oligonucleotide probe complementary to part of the exonic mRNA sequence coding for GH mRNA was used. All control and experimental sections were hybridised in the same hybridisation reaction. Results: Acute administration of interferon a increased GH mRNA expression in the anterior pituitary in the 4-hour group in comparison with the control group, and there was no difference between the control group and the 2-hour rats. Conclusion: A single IFN-a administration was found to exert an influence on anterior pituitary GH mRNA expression. These observations may pave the way for presenting a possible new action of IFN-a. (author) GH mRNA, anterior pituitary, interferon

  20. Expression Profile of IL-35 mRNA in Gingiva of Chronic Periodontitis and Aggressive Periodontitis Patients: A Semiquantitative RT-PCR Study

    Directory of Open Access Journals (Sweden)

    Nagaraj B. Kalburgi

    2013-01-01

    Full Text Available Background. Proinflammatory and anti-inflammatory cytokines play a key role in the pathogenesis of periodontal diseases. Secretion of bioactive IL-35 has been described by T regulatory cells ( and is required for their maximal suppressive activity. are involved in the modulation of local immune response in chronic periodontitis patients. Objective. Hence, the present study was aimed to investigate the expression of IL-35 mRNA in chronic periodontitis and aggressive periodontitis patients. Materials and Methods. The present study was carried out in 60 subjects, which included 20 chronic periodontitis patients, 20 aggressive periodontitis patients, and 20 periodontally healthy controls. IL-35 mRNA expression in gingival tissue samples of all subjects was semiquantitatively analyzed using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR. Results. The present study demonstrated the expression of IL-35 mRNA in gingival tissues of all the three groups. IL-35 mRNA expression was highest in chronic periodontitis subjects ( as compared to the aggressive periodontitis group ( and least seen in healthy patients (. Conclusion. The increased expression of IL-35 in chronic and aggressive periodontitis suggests its possible role in pathogenesis of periodontitis. Future studies done on large samples with intervention will strengthen our result.

  1. Relationship between expression of leptin receptors mRNA in breast tissue, plasma leptin level in breast cancer patients with obesity and clinical pathologic data

    International Nuclear Information System (INIS)

    Li Chunrui; Liu Wenli; Sun Hanying; Zhou Jianfeng

    2007-01-01

    In order to investigate the expression of leptin receptors mRNA in breast tissue and plasma leptin levels in breast cancer patients with obesity and their relationship with clinical pathologic data, 124 subjects who were either obesity or had suffered from breast benign disease with obesity, or breast cancer with obesity were entered into this study. The levels of plasma leptin in all subjects were determined and leptin receptors mRNA expression levels were measured by RT-PCR in breast tissue of breast cancer patients with obesity and breast benign disease with obesity. The results showed that plasma leptin levels in breast cancer patients with obesity were significantly higher than those in breast benign disease with obesity and obesity patients alone (P<0.05). The expression of the leptin receptor long form [-Lep-R(L)-] mRNA and the leptin receptor short form [-Lep-R(S)-] mRNA in breast tissue of breast cancer patients with obesity were significantly higher than that in breast tissue of breast benign disease patients with obesity (P<0.05). The plasma leptin level had remarkable positive correlation with the expressions of the Lep-R(L) mRNA and the Lep-R(S) mRNA. The plasma leptin level and leptin receptors mRNA expression levels in patients were not correlated with the axillary node metastasis, menopause, the TNM stage or pathological type. Therefore, leptin may have a promoting effect on the carcinogenesis of breast cancer. (authors)

  2. Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells.

    Directory of Open Access Journals (Sweden)

    Laura A Genovesi

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in children and a leading cause of cancer-related mortality and morbidity. Several molecular sub-types of MB have been identified, suggesting they may arise from distinct cells of origin. Data from animal models indicate that some MB sub-types arise from multipotent cerebellar neural stem cells (NSCs. Hence, microRNA (miRNA expression profiles of primary MB samples were compared to CD133+ NSCs, aiming to identify deregulated miRNAs involved in MB pathogenesis. Expression profiling of 662 miRNAs in primary MB specimens, MB cell lines, and human CD133+ NSCs and CD133- neural progenitor cells was performed by qRT-PCR. Clustering analysis identified two distinct sub-types of MB primary specimens, reminiscent of sub-types obtained from their mRNA profiles. 21 significantly up-regulated and 12 significantly down-regulated miRNAs were identified in MB primary specimens relative to CD133+ NSCs (p<0.01. The majority of up-regulated miRNAs mapped to chromosomal regions 14q32 and 17q. Integration of the predicted targets of deregulated miRNAs with mRNA expression data from the same specimens revealed enrichment of pathways regulating neuronal migration, nervous system development and cell proliferation. Transient over-expression of a down-regulated miRNA, miR-935, resulted in significant down-regulation of three of the seven predicted miR-935 target genes at the mRNA level in a MB cell line, confirming the validity of this approach. This study represents the first integrated analysis of MB miRNA and mRNA expression profiles and is the first to compare MB miRNA expression profiles to those of CD133+ NSCs. We identified several differentially expressed miRNAs that potentially target networks of genes and signaling pathways that may be involved in the transformation of normal NSCs to brain tumor stem cells. Based on this integrative approach, our data provide an important platform for future

  3. Associations of ACE Gene Insertion/Deletion Polymorphism, ACE Activity, and ACE mRNA Expression with Hypertension in a Chinese Population

    OpenAIRE

    He, Qingfang; Fan, Chunhong; Yu, Min; Wallar, Gina; Zhang, Zuo-Feng; Wang, Lixin; Zhang, Xinwei; Hu, Ruying

    2013-01-01

    Background The present study was designed to explore the association of angiotensin converting enzyme (ACE) gene insertion/deletion (I/D, rs4646994) polymorphism, plasma ACE activity, and circulating ACE mRNA expression with essential hypertension (EH) in a Chinese population. In addition, a new detection method for circulating ACE mRNA expression was explored. Methods The research was approved by the ethics committee of Zhejiang Provincial Center for Disease Prevention and Control. Written i...

  4. Leptin Stimulates Prolactin mRNA Expression in the Goldfish Pituitary through a Combination of the PI3K/Akt/mTOR, MKK3/6/p38MAPK and MEK1/2/ERK1/2 Signalling Pathways.

    Science.gov (United States)

    Yan, Aifen; Chen, Yanfeng; Chen, Shuang; Li, Shuisheng; Zhang, Yong; Jia, Jirong; Yu, Hui; Liu, Lian; Liu, Fang; Hu, Chaoqun; Tang, Dongsheng; Chen, Ting

    2017-12-20

    Leptin actions at the pituitary level have been extensively investigated in mammalian species, but remain insufficiently characterized in lower vertebrates, especially in teleost fish. Prolactin (PRL) is a pituitary hormone of central importance to osmoregulation in fish. Using goldfish as a model, we examined the global and brain-pituitary distribution of a leptin receptor (lepR) and examined the relationship between expression of lepR and major pituitary hormones in different pituitary regions. The effects of recombinant goldfish leptin-AI and leptin-AII on PRL mRNA expression in the pituitary were further analysed, and the mechanisms underlying signal transduction for leptin-induced PRL expression were determined by pharmacological approaches. Our results showed that goldfish lepR is abundantly expressed in the brain-pituitary regions, with highly overlapping PRL transcripts within the pituitary. Recombinant goldfish leptin-AI and leptin-AII proteins could stimulate PRL mRNA expression in dose- and time-dependent manners in the goldfish pituitary, by both intraperitoneal injection and primary cell incubation approaches. Moreover, the PI3K/Akt/mTOR, MKK 3/6 /p 38 MAPK, and MEK 1/2 /ERK 1/2 -but not JAK2/STAT 1, 3 and 5 cascades-were involved in leptin-induced PRL mRNA expression in the goldfish pituitary.

  5. Sequence, 'subtle' alternative splicing and expression of the CYYR1 (cysteine/tyrosine-rich 1) mRNA in human neuroendocrine tumors

    International Nuclear Information System (INIS)

    Vitale, Lorenza; Coppola, Domenico; Strippoli, Pierluigi; Frabetti, Flavia; Huntsman, Shane A; Canaider, Silvia; Casadei, Raffaella; Lenzi, Luca; Facchin, Federica; Carinci, Paolo; Zannotti, Maria

    2007-01-01

    CYYR1 is a recently identified gene located on human chromosome 21 whose product has no similarity to any known protein and is of unknown function. Analysis of expressed sequence tags (ESTs) have revealed high human CYYR1 expression in cells belonging to the diffuse neuroendocrine system (DNES). These cells may be the origin of neuroendocrine (NE) tumors. The aim of this study was to conduct an initial analysis of sequence, splicing and expression of the CYYR1 mRNA in human NE tumors. The CYYR1 mRNA coding sequence (CDS) was studied in 32 NE tumors by RT-PCR and sequence analysis. A subtle alternative splicing was identified generating two isoforms of CYYR1 mRNA differing in terms of the absence (CAG - isoform, the first described mRNA for CYYR1 locus) or the presence (CAG + isoform) of a CAG codon. When present, this specific codon determines the presence of an alanine residue, at the exon 3/exon 4 junction of the CYYR1 mRNA. The two mRNA isoform amounts were determined by quantitative relative RT-PCR in 29 NE tumors, 2 non-neuroendocrine tumors and 10 normal tissues. A bioinformatic analysis was performed to search for the existence of the two CYYR1 isoforms in other species. The CYYR1 CDS did not show differences compared to the reference sequence in any of the samples, with the exception of an NE tumor arising in the neck region. Sequence analysis of this tumor identified a change in the CDS 333 position (T instead of C), leading to the amino acid mutation P111S. NE tumor samples showed no significant difference in either CYYR1 CAG - or CAG + isoform expression compared to control tissues. CYYR1 CAG - isoform was significantly more expressed than CAG + isoform in NE tumors as well as in control samples investigated. Bioinformatic analysis revealed that only the genomic sequence of Pan troglodytes CYYR1 is consistent with the possible existence of the two described mRNA isoforms. A new 'subtle' splicing isoform (CAG + ) of CYYR1 mRNA, the sequence and

  6. Study of formation of green eggshell color in ducks through global gene expression.

    Science.gov (United States)

    Xu, Fa Qiong; Li, Ang; Lan, Jing Jing; Wang, Yue Ming; Yan, Mei Jiao; Lian, Sen Yang; Wu, Xu

    2018-01-01

    The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC) transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC) supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated) with ABCG2 (up-regulated) and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  7. Study of formation of green eggshell color in ducks through global gene expression.

    Directory of Open Access Journals (Sweden)

    Fa Qiong Xu

    Full Text Available The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated with ABCG2 (up-regulated and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  8. Comparative mRNA and microRNA expression profiling of three genitourinary cancers reveals common hallmarks and cancer-specific molecular events.

    Directory of Open Access Journals (Sweden)

    Xianxin Li

    Full Text Available Genome-wide gene expression profile using deep sequencing technologies can drive the discovery of cancer biomarkers and therapeutic targets. Such efforts are often limited to profiling the expression signature of either mRNA or microRNA (miRNA in a single type of cancer.Here we provided an integrated analysis of the genome-wide mRNA and miRNA expression profiles of three different genitourinary cancers: carcinomas of the bladder, kidney and testis.Our results highlight the general or cancer-specific roles of several genes and miRNAs that may serve as candidate oncogenes or suppressors of tumor development. Further comparative analyses at the systems level revealed that significant aberrations of the cell adhesion process, p53 signaling, calcium signaling, the ECM-receptor and cell cycle pathways, the DNA repair and replication processes and the immune and inflammatory response processes were the common hallmarks of human cancers. Gene sets showing testicular cancer-specific deregulation patterns were mainly implicated in processes related to male reproductive function, and general disruptions of multiple metabolic pathways and processes related to cell migration were the characteristic molecular events for renal and bladder cancer, respectively. Furthermore, we also demonstrated that tumors with the same histological origins and genes with similar functions tended to group together in a clustering analysis. By assessing the correlation between the expression of each miRNA and its targets, we determined that deregulation of 'key' miRNAs may result in the global aberration of one or more pathways or processes as a whole.This systematic analysis deciphered the molecular phenotypes of three genitourinary cancers and investigated their variations at the miRNA level simultaneously. Our results provided a valuable source for future studies and highlighted some promising genes, miRNAs, pathways and processes that may be useful for diagnostic or

  9. Relationship between PPARα mRNA expression and mitochondrial respiratory function and ultrastructure of the skeletal muscle of patients with COPD.

    Science.gov (United States)

    Zhang, Jian-Qing; Long, Xiang-Yu; Xie, Yu; Zhao, Zhi-Huan; Fang, Li-Zhou; Liu, Ling; Fu, Wei-Ping; Shu, Jing-Kui; Wu, Jiang-Hai; Dai, Lu-Ming

    2017-11-02

    Peripheral muscle dysfunction is an important complication in patients with chronic obstructive pulmonary disease (COPD). The objective of this study was to explore the relationship between the levels of peroxisome proliferator-activated receptor α (PPARα) mRNA expression and the respiratory function and ultrastructure of mitochondria in the vastus lateralis of patients with COPD. Vastus lateralis biopsies were performed on 14 patients with COPD and 6 control subjects with normal lung function. PPARα mRNA levels in the muscle tissue were detected by real-time PCR. A Clark oxygen electrode was used to assess mitochondrial respiratory function. Mitochondrial number, fractional area in skeletal muscle cross-sections, and Z-line width were observed via transmission electron microscopy. The PPARα mRNA expression was significantly lower in COPD patients with low body mass index (BMIL) than in both COPD patients with normal body mass index (BMIN) and controls. Mitochondrial respiratory function (assessed by respiratory control ratio) was impaired in COPD patients, particularly in BMIL. Compared with that in the control group, mitochondrial number and fractional area were lower in the BMIL group, but were maintained in the BMIN group. Further, the Z-line became narrow in the BMIL group. PPARα mRNA expression was positively related to mitochondrial respiratory function and volume density. In COPD patients with BMIN, mitochondria volume density was maintained, while respiratory function decreased, whereas both volume density and respiratory function decreased in COPD patients with BMIL. PPARα mRNA expression levels are associated with decreased mitochondrial respiratory function and volume density, which may contribute to muscle dysfunction in COPD patients.

  10. IER5 gene's mRNA expression after irradiation

    International Nuclear Information System (INIS)

    Ding Kuke; Shen Jingjing; Xu Lili; Li Yanling; Zhou Ping; Ma Binrong; Zhao Zengqiang; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To explore the effect of irradiation on IER5 gene expression. Methods: Two kinds of cells (AHH-1 and HeLa) and the BALB/c-nu mice inoculated with tumor cells were exposed to 60 Co γ- rays and analyzed by real-time PCR. The above-mentioned irradiated objects were firstly divided into groups by different doses and post-radiation time, then mRNA were extracted and reverse-transcripted to DNA before real-time PCR test. Results: Under the same condition, AHH-1 was more sensitive to radiation than HeLa. The dose level corresponding to the expression peak of AHH-1 was less than that of HeLa. For AHH-1 cells, the response to 2 Gy irradiation was earlier than that to 10 Gy. But there was not remarkable difference for HeLa response between 2 and 10 Gy, and the top transcriptional levels for both cells nearly simultaneously appeared at 2 h after irradiation. In addition, the IER5 gene of human liver tumor was more sensitive than that of lung cancer and brain tumor. Conclusions: IER5 might be a candidate biomarker of radiation injury, and had the potential value in radiation-therapy for liver tumor. (authors)

  11. The effects of pilates exercise on lipid metabolism and inflammatory cytokines mRNA expression in female undergraduates.

    Science.gov (United States)

    Kim, Hyo-Jin; Kim, Jiyeon; Kim, Chang-Sun

    2014-09-01

    The purpose of the study was to verify the effects of Pilates exercise by observing the impact of 8 weeks of Pilates exercise on lipid metabolism and inflammatory cytokine mRNA expression in female undergraduates in their 20s who had no prior experience in Pilates exercise and had not exercised in the previous 6 months. There were 18 subjects with no prior experience in Pilates exercise. The subjects were separated into the Pilates exercise group (n = 9) and the non-exercise control group (n = 9). The former performed Pilates exercise for 60-70 minutes over 8 weeks with a gradual strength increase of 9-16 in the Rating of Perceived Exercise (RPE). The body composition, creatine kinase in the bloodstream and lipid metabolism (TC, LDL-C, HDL-C, TG) were measured before and after the experiment and Real-Time PCR was used to investigate the mRNA expression of the inflammatory cytokines IL-6 and TNF-⍺. The creatine kinase (CK) in the blood had significant differences between the groups. The test group showed significant increase compared to the control group after 8 weeks of Pilates exercise (p = 0.007). Lipid analysis showed that the level of high-density lipoprotein cholesterol (HDL-C) was significantly different in the two groups (p = 0.049), with the Pilates exercise group exhibiting significantly higher levels compared to the control group. No significant differences were observed in the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG). IL-6 mRNA expression did not show significant differences between the groups either. Timing and TNF-α mRNA expression showed significant effect in both the exercise and the control groups (p = 0.013) but no correlation. It was found from the study that Pilates exercise for 8 weeks affected CK expression (the muscle damage marker) and induced positive changes in the levels of high-density lipoprotein.

  12. PAI-1 mRNA expression and plasma level in rheumatoid arthritis: relationship with 4G/5G PAI-1 polymorphism.

    Science.gov (United States)

    Muñoz-Valle, José Francisco; Ruiz-Quezada, Sandra Luz; Oregón-Romero, Edith; Navarro-Hernández, Rosa Elena; Castañeda-Saucedo, Eduardo; De la Cruz-Mosso, Ulises; Illades-Aguiar, Berenice; Leyva-Vázquez, Marco Antonio; Castro-Alarcón, Natividad; Parra-Rojas, Isela

    2012-12-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting the synovial membrane, cartilage and bone. PAI-1 is a key regulator of the fibrinolytic system through which plasminogen is converted to plasmin. The plasmin activates the matrix metalloproteinase system, which is closely related with the joint damage and bone destruction in RA. The aim of this study was to investigate the relationship between 4G/5G PAI-1 polymorphism with mRNA expression and PAI-1 plasma protein levels in RA patients. 113 RA patients and 123 healthy subjects (HS) were included in the study. The 4G/5G PAI-1 polymorphism was determined by polymerase chain reaction-restriction fragment length polymorphism method; the PAI-1 mRNA expression was determined by real-time PCR; and the soluble PAI-1 (sPAI-1) levels were quantified using an ELISA kit. No significant differences in the genotype and allele frequencies of 4G/5G PAI-1 polymorphism were found between RA patients and HS. However, the 5G/5G genotype was the most frequent in both studied groups: RA (42%) and HS (44%). PAI-1 mRNA expression was slightly increased (0.67 fold) in RA patients with respect to HS (P = 0.0001). In addition, in RA patients, the 4G/4G genotype carriers showed increased PAI-1 mRNA expression (3.82 fold) versus 4G/5G and 5G/5G genotypes (P = 0.0001), whereas the sPAI-1 plasma levels did not show significant differences. Our results indicate that the 4G/5G PAI-1 polymorphism is not a marker of susceptibility in the Western Mexico. However, the 4G/4G genotype is associated with high PAI-1 mRNA expression but not with the sPAI-1 levels in RA patients.

  13. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression

    Directory of Open Access Journals (Sweden)

    Craig Ian W

    2006-02-01

    Full Text Available Abstract Background The COMT gene is located on chromosome 22q11, a region strongly implicated in the aetiology of several psychiatric disorders, in particular schizophrenia. Previous research has suggested that activity and expression of COMT is altered in schizophrenia, and is mediated by one or more polymorphisms within the gene, including the functional Val158Met polymorphism. Method In this study we examined the expression levels of COMT mRNA using quantitative RT-PCR in 60 post mortem cerebellum samples derived from individuals with schizophrenia, bipolar disorder, depression, and no history of psychopathology. Furthermore, we have examined the methylation status of two CpG sites in the promoter region of the gene. Results We found no evidence of altered COMT expression or methylation in any of the psychiatric diagnoses examined. We did, however, find evidence to suggest that genotype is related to COMT gene expression, replicating the findings of two previous studies. Specifically, val158met (rs165688; Val allele rs737865 (G allele and rs165599 (G allele all showed reduced expression (P COMT expression, with females exhibiting significantly greater levels of COMT mRNA. Conclusion The expression of COMT does not appear to be altered in the cerebellum of individuals suffering from schizophrenia, bipolar disorder or depression, but does appear to be influenced by single nucleotide polymorphisms within the gene.

  14. Collagen V-induced nasal tolerance downregulates pulmonary collagen mRNA gene and TGF-beta expression in experimental systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Parra Edwin R

    2010-01-01

    Full Text Available Abstract Background The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGF-beta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods Female New Zealand rabbits (N = 12 were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM. After 150 days, six immunized animals were tolerated by nasal administration of collagen V (25 μg/day (IM-TOL daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p Results IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 ± 0.118 vs. 0.874 ± 0.282, p p p = 0.026. The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 ± 0.07 vs. 1.0 ± 0.528, p = 0.002 and V (1.12 ± 0.42 vs. 4.74 ± 2.25, p = 0.009 collagen, in addition to decreased TGF-beta expression (p Conclusions Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.

  15. mRNA expression profile in DLD-1 and MOLT-4 cancer cell lines cultured under Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — DLD-1 and MOLT-4 cell lines were cultured in a Rotating cell culture system to simulate microgravity and mRNA expression profile was observed in comparison to Static...

  16. Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast

    Science.gov (United States)

    2013-01-01

    Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (

  17. Decreases in Casz1 mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice.

    Science.gov (United States)

    Ji, Su-Min; Shin, Young-Bin; Park, So-Yon; Lee, Hyeon-Ju; Oh, Bermseok

    2012-03-01

    Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is CASZ1 confirmed in both Europeans and Asians. CASZ1 is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of CASZ1 in blood pressure, we decreased Casz1 mRNA levels in mice by siRNA. Casz1 siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing Casz1 mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in Casz1 mRNA levels in the kidney on multiple siRNA injections daily. Even though Casz1 siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of in vivo siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.

  18. [Influence of FPS on the expression of LDL-R mRNA in the liver tissues of hyperlipidemic rats].

    Science.gov (United States)

    Wu, Qing-he; Xing, Yan-hong; Rong, Xiang-lu; Huang, Ping

    2007-08-01

    To explore the effect of FPS on low-density lipoprotein acceptor (LDL-R) mRNA in the liver tissues of hyperlipidemic rats. Sixty healthy male SD rats were randomly divided into six groups: normal control, model control, Gynostemma pentaphyllum, FPS low dosage, FPS moderate dosage, and FPS high dosage group. Excepting the rats in the normal control group, the ones in other groups were all made rats' hyperlipidemic model by irrigating hyperlipidemic emulsion into the stomach and observed the expression of LDL-R mRNA in the liver tissues of rats of each group. Relative content of LDL-RmRNA in low and moderate dosage groups was notably higher than that inmodel group. The contents's difference was not remarkable between FPS moderate dosage group and Gynostemma pentaphyllum group. FPS can appreciably increase the expression of LDL-R mRNA in the liver tissues of hyperlipidemic rats and promote the elimination ofLDL-C to reduce serum cholesterol notably.

  19. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission

    International Nuclear Information System (INIS)

    Gao Ying; Li Shuai; Xu Dan; Wang Junjun; Sun Yeqing

    2015-01-01

    Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation. (author)

  20. Effect of Heat Stress on the Expression of GABA Receptor mRNA in the HPG Axis of Wenchang Chickens

    Directory of Open Access Journals (Sweden)

    LJ Xie

    Full Text Available ABSTRACT We investigated the effect of heat stress (HS on the expression of the GABA receptor in the hypothalamic-pituitary-gonadal (HPG axis of Wenchang chickens. Real-time quantitative RT-PCR (qRT-PCR was used to quantify the GABA receptor mRNA levels along the HPG axis of chickens under HS (40±0.5 °C for 1-6 weeks. Our results showed that the expression of GABAA and GABAB receptor at the mRNAs levels in the tissues of HPG axis exhibited fluctuation and variability. After HS, the mRNA level of GABAA receptor was significantly reduced in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but significantly increased in the pituitary of 1-, 4-, and 5-week-old chickens. The GABAB receptor mRNA level significantly declined in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but was significantly upregulated in the pituitary and testis of 1- and 2-week-old chickens. At other time points, the expressions of GABAA receptor and GABAB receptor showed no significant differences compared with control group. These results indicated that the levels of GABAA receptor and GABAB receptor mRNAs varied in different tissues of the HPG axis in chickens of different ages, displaying temporal and spatial variations. GABA receptor behaved as a positively-regulated gene by HS, i.e., its mRNA was increased by HS; similarly, it was a negatively-regulated gene by HS, when its expression was reduced by HS.

  1. [Differential expression of IGF-I and its mRNA in mandibular condylar cartilage of rat--direct evidence for servosystem theory of facial growth].

    Science.gov (United States)

    Zhou, Z; Luo, S

    1998-05-01

    It was studied the expression of IGF-I and its mRNA in the condylar cartilage of 10 7-week-old SD male rats by using in situ hybridization and immunohisto-chemistry technique. The results showed both IGF-I and its gene expressed in growing rat condyle. IGF-I peptide was abundant in germinal zone, and positive reaction of its mRNA was strongest in transitional and maturational zones. These indicate that condylar cartilage has the capability of local production and secretion of IGF-I, mediating the command effect of STH, and differential expression of IGF-I and its mRNA might establish the local feedback loop, which supply a direct evidence for servosystem theory of facial growth.

  2. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease.

    Directory of Open Access Journals (Sweden)

    Marco Confalonieri

    Full Text Available The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14 expression during diffuse alveolar damage (DAD, but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein only in human lung samples with DAD or interstitial lung disease (ILD. In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.

  3. Effects of Thermal Stress on the mRNA Expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass ( Lateolabrax maculatus)

    Science.gov (United States)

    Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam

    2018-03-01

    The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.

  4. Genetic variation in ATP5O is associated with skeletal muscle ATP50 mRNA expression and glucose uptake in young twins.

    Directory of Open Access Journals (Sweden)

    Tina Rönn

    Full Text Available BACKGROUND: Impaired oxidative capacity of skeletal muscle mitochondria contribute to insulin resistance and type 2 diabetes (T2D. Furthermore, mRNA expression of genes involved in oxidative phosphorylation, including ATP5O, is reduced in skeletal muscle from T2D patients. Our aims were to investigate mechanisms regulating ATP5O expression in skeletal muscle and association with glucose metabolism, and the relationship between ATP5O single nucleotide polymorphisms (SNPs and risk of T2D. METHODOLOGY/PRINCIPAL FINDINGS: ATP5O mRNA expression was analyzed in skeletal muscle from young (n = 86 and elderly (n = 68 non-diabetic twins before and after a hyperinsulinemic euglycemic clamp. 11 SNPs from the ATP5O locus were genotyped in the twins and a T2D case-control cohort (n = 1466. DNA methylation of the ATP5O promoter was analyzed in twins (n = 22 using bisulfite sequencing. The mRNA level of ATP5O in skeletal muscle was reduced in elderly compared with young twins, both during basal and insulin-stimulated conditions (p<0.0005. The degree of DNA methylation around the transcription start of ATP5O was <1% in both young and elderly twins and not associated with mRNA expression (p = 0.32. The mRNA level of ATP5O in skeletal muscle was positively related to insulin-stimulated glucose uptake (regression coefficient = 6.6; p = 0.02. Furthermore, two SNPs were associated with both ATP5O mRNA expression (rs12482697: T/T versus T/G; p = 0.02 and rs11088262: A/A versus A/G; p = 0.004 and glucose uptake (rs11088262: A/A versus A/G; p = 0.002 and rs12482697: T/T versus T/G; p = 0.005 in the young twins. However, we could not detect any genetic association with T2D. CONCLUSIONS/SIGNIFICANCE: Genetic variation and age are associated with skeletal muscle ATP5O mRNA expression and glucose disposal rate, suggesting that combinations of genetic and non-genetic factors may cause the reduced expression of ATP5O in T2D muscle. These findings propose a role for ATP5O, in

  5. G-cimp status prediction of glioblastoma samples using mRNA expression data.

    Science.gov (United States)

    Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K; Stevenson, Holly; Meltzer, Paul; Fine, Howard A

    2012-01-01

    Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.

  6. Efficacy of Omega Fatty Acid Supplementation on mRNA Expression Level of Tumor Necrosis Factor Alpha in Patients with Gastric Adenocarcinoma.

    Science.gov (United States)

    Hosseinzadeh, Asghar; Ardebili, Seyed Mojtaba Mohaddes

    2016-09-01

    Tumor necrosis factor alpha (TNF-α), a multifunctional cytokine, is involved in apoptosis, cell proliferation, cell survival, and inflammation. It plays a dual role in cancer development and progression. It has been revealed that polyunsaturated fatty acids (PUFAs) modulate the production and activity of TNF family cytokines. The objective of the present study was to evaluate the effect of PUFAs on messenger RNA expression levels of TNF-α in patients with gastric adenocarcinoma. Thirty-four chemotherapy-naive patients diagnosed with gastric adenocarcinoma were randomly divided into two groups. The first group (17 individuals) received cisplatin without supplements and the second group (17 individuals) received cisplatin plus orally administered PUFA supplements for 3 weeks, based on treatment strategies. The gastric biopsy samples were obtained from all participants before and after treatment, and TNF-α mRNA expression levels were evaluated by quantitative real-time PCR procedure. Our findings revealed that TNF-α mRNA expression is downregulated in group II, after receiving cisplatin and omega fatty acid supplement for 3 weeks. However, this difference is not statistically significant (p > 0.05). TNF-α mRNA expression did not show significant alteration in group I, after receiving cisplatin alone. Taken together, we concluded that omega fatty acids reduce TNF-α expression at the mRNA level in patients with gastric adenocarcinoma. These data suggest that TNF-α may act as a potential target for the therapy of human gastric adenocarcinoma.

  7. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    Science.gov (United States)

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  8. Paraoxonase-2 and paraoxonase-3: comparison of mRNA expressions in the placentae of unexplained intrauterine growth restricted and noncomplicated pregnancies.

    Science.gov (United States)

    Dikbas, Levent; Yapca, Omer Erkan; Dikbas, Neslihan; Gundogdu, Cemal

    2017-05-01

    Recent evidence suggests that oxidative stress is involved in the pathophysiology of many human diseases. It has been demonstrated that oxidative stress is associated with intrauterine growth restriction (IUGR), and the depletion of placental antioxidant systems has been suggested as a key factor in this disease. Our aims were to explore the possible role of antioxidant paraoxonase-2 (PON2) and paraoxonase-3 (PON3) in the pathophysiology of unexplained IUGR. We have studied the expression of mRNA for PON2, PON3 in placental tissues by using RT-qPCR. Two groups, consisting of normal (n = 18) and unexplained IUGR pregnancies (n = 20) were compared. Our results demonstrated that there were no significant differences in the mRNA expressions of PON2, PON3 between the two groups (p = 0.28, p = 0.90, respectively). PON2 and PON3 were down-regulated in IUGR. Antenatal steroid therapy had no effect on the expression mRNA in placentae of unexplained IUGR pregnancies compared to non-treated group. These results suggest that PON2, PON3 mRNA levels were not changed significantly in placentae of IUGR when compared to normal pregnant women.

  9. [Correlation between the mRNA expression of tissue inhibitor of metalloproteinase-1 and apparent diffusion coefficient on diffusion-weighted imaging in rats' liver fibrosis].

    Science.gov (United States)

    Zhan, Yuefu; Liang, Xianwen; Han, Xiangjun; Chen, Jianqiang; Zhang, Shufang; Tan, Shun; Li, Qun; Wang, Xiong; Liu, Fan

    2017-02-28

    To explore the correlation between the apparent diffusion coefficient (ADC) and mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in different stages of liver fibrosis in rats.
 Methods: A model of liver fibrosis in rats was established by intraperitoneal injection of high-fat diet combined with porcine serum. After drug administration for 4 weeks, 48 rats served as a model group and 12 rats served as a control group, then they underwent diffusion weighted imaging (DWI) scanning. The value of ADC was calculated at b value=800 s/mm2. The rats were sacrificed and carried out pathologic examination after DWI scanning immediately. The mRNA expression of TIMP-1 was detected by real time-polymerase chain reaction (RT-PCR). The rats of hepatic fibrosis were also divided into a S0 group (n=4), a S1 group (n=11), a S2 group (n=12), a S3 group (n=10), and a S4 group (n=9) according to their pathological stage. The value of ADC and the expression of TIMP-1 mRNA among the different stage groups of liver fibrosis were compared, and the correlation between ADC and the TIMP-1 mRNA were analyzed.
 Results: The ADC value and the TIMP-1 mRNA expression were significantly different between the control group and the liver fibrosis group (F=46.54 and 53.87, P0.05). For the comparison of TIMP-1 mRNA, there was no significant difference between the S1 group and the S2 group, the S3 group and the S4 group (both P>0.05). There were significant differences among the rest of the groups (all Pcorrelation analysis showed that there was a negative correlation between the ADC value and the TIMP-1 mRNA expression (r=-0.76, Pcorrelation between them.

  10. Expression of mRNA for galanin, galanin-like peptide and galanin receptors 1-3 in the ovine hypothalamus and pituitary gland: effects of age and gender.

    Science.gov (United States)

    Whitelaw, Christine Margaret; Robinson, Jane Elizabeth; Chambers, George Ballantine; Hastie, Peter; Padmanabhan, Vasantha; Thompson, Robert Charles; Evans, Neil Price

    2009-01-01

    The neurotransmitters/neuromodulators galanin (GAL) and galanin-like peptide (GALP) are known to operate through three G protein-coupled receptors, GALR1, GALR2 and GALR3. The aim of this study was to investigate changes in expression of mRNA for galanin, GALP and GALR1-3 in the hypothalamus and pituitary gland, of male and female sheep, to determine how expression changed in association with growth and the attainment of reproductive competence. Tissue samples from the hypothalami and pituitary glands were analysed from late foetal and pre-pubertal lambs and adult sheep. Although mRNA for galanin and GALR1-3 was present in both tissues, at all ages and in both genders, quantification of GALP mRNA was not possible due to its low levels of expression. mRNA expression for both galanin and its receptors was seen to change significantly in both tissues as a function of age. Specifically, hypothalamic galanin mRNA expression increased with age in the male, but decreased with age in the female pituitary gland. mRNA expression for all receptors increased between foetal and pre-pubertal age groups and decreased significantly between pre-pubertal and adult animals. The results indicate that the expression of mRNA for galanin and its receptors changes dynamically with age and those significant differences exist with regard to tissue type and gender. These changes suggest that galaninergic neuroendocrine systems could be involved in the regulation of ovine growth and or the development of reproductive competence. The roles played by these systems in the sheep, however, may differ from other species, in particular the neuroendocrine link between nutrition and reproduction and GALR1's role in pituitary signalling.

  11. Studies on mRNA expression of the somatostatin receptor family in lung cancer

    International Nuclear Information System (INIS)

    Wang Jing; Deng Jinglan; Wu Shengxi; Qiao Hongqing

    2000-01-01

    Objective: To investigate the characteristics of expression and distribution of 5 subtypes of somatostatin receptors (SSTR1∼5) in lung cancer. Methods: With [α- 35 S]dATP labelled oligonucleotides of the 5 SSTR subtypes as probes, using in situ hybridization, patterns of mRNA expression were detected in lung cancer tissue sections of 21 cases which fell in varied pathologic types. Additionally, Leica Q-500 image analyzing device was employed to semi-quantitatively analyze density of the expression. Results: Patterns of SSTR1∼5 expression in lung cancer were as follows: SSTR2 expression was dominant in small cell lung cancer (SCLC) while in non-small cell lung cancer (NSCLC) such as adenous and squamous, SSTR1 expression was stronger than that of the other 4 subtypes, In density of SSTR1∼5 expression in lung cancer, NSCLC was higher than SCLC (P<0.01). Conclusions: even though patterns and density of expression of SSTR subtypes in the lung cancer showed heterogeneity in different histopathologic types, as in SCLC and in NSCLC. Therefore, it has positive prospects for somatostatin analog-oriented agents to be used in treatment of both types of the lung cancers

  12. Regulation of mRNA translation influences hypoxia tolerance

    International Nuclear Information System (INIS)

    Koritzinsky, M.; Wouters, B.G.; Koumenis, C.

    2003-01-01

    Hypoxia is a heterogenous but common characteristic of human tumours and poor oxygenation is associated with poor prognosis. We believe that the presence of viable hypoxic tumor cells reflects in part an adaptation and tolerance of these cells to oxygen deficiency. Since oxidative phosphorylation is compromized during hypoxia, adaptation may involve both the upregulation of glycolysis as well as downregulation of energy consumption. mRNA translation is one of the most energy costly cellular processes, and we and others have shown that global mRNA translation is rapidly inhibited during hypoxia. However, some mRNAs, including those coding for HIF-1 α and VEGF, remain efficiently translated during hypoxia. Clearly, the mechanisms responsible for the overall inhibition of translation during hypoxia does not compromize the translation of certain hypoxia-induced mRNA species. We therefore hypothesize that the inhibition of mRNA translation serves to promote hypoxia tolerance in two ways: i) through conservation of energy and ii) through differential gene expression involved in hypoxia adaptation. We have recently identified two pathways that are responsible for the global inhibition of translation during hypoxia. The phosphorylation of the eukaryotic initiation factor eIF2 α by the ER resident kinase PERK results in down-regulation of protein synthesis shortly after the onset of hypoxia. In addition, the initiation complex eIF4F is disrupted during long lasting hypoxic conditions. The identification of the molecular pathways responsible for the inhibition of overall translation during hypoxia has rendered it possible to investigate their importance for hypoxia tolerance. We have found that mouse embryo fibroblasts that are knockout for PERK and therefore not able to inhibit protein synthesis efficiently during oxygen deficiency are significantly less tolerant to hypoxia than their wildtype counterparts. We are currently also investigating the functional significance

  13. Expression of Flk-1 and Cyclin D2 mRNA in the Myocardium of Rats with Doxorubicin-Induced Cardiomyopathy and after Treatment with Betulonic Acid Amide.

    Science.gov (United States)

    Mzhelskaya, M M; Klinnikova, M G; Koldysheva, E V; Lushnikova, E L

    2017-10-01

    The expression of VEGFR2 (Flk-1, according to immunohistochemistry) and of cyclin D2 mRNA (according to real-time PCR) in the myocardium of rats is studied in doxorubicin-induced cardiomyopathy and in response to betulonic acid amide. Doxorubicin alone and in combination with betulonic acid amide causes after 3 days a manifest reduction of cyclin D2 mRNA expression (by 38 and 63%, respectively), while injection of betulonic acid amide alone causes a 23-fold increase of cyclin D2 mRNA expression. An increase of cyclin D2 mRNA expression has been detected in all experimental groups after 14 days of experiment, the most pronounced in response to betulonic acid amide (63 times). The expression of Flk-1 in cardiomyocytes increases significantly in response to both chemical agents starting from day 3 of experiment. These results indicate that doxorubicin and betulonic acid amide induce cytoprotective reactions in the myocardium, first at the intracellular, then at the cellular levels.

  14. Relationship between serum IGF-1 and skeletal muscle IGF-1 mRNA expression to phosphocreatine recovery after exercise in obese men with reduced GH.

    Science.gov (United States)

    Hamarneh, Sulaiman R; Murphy, Caitlin A; Shih, Cynthia W; Frontera, Walter; Torriani, Martin; Irazoqui, Javier E; Makimura, Hideo

    2015-02-01

    GH and IGF-1 are believed to be physiological regulators of skeletal muscle mitochondria. The objective of this study was to examine the relationship between GH/IGF-1 and skeletal muscle mitochondria in obese subjects with reduced GH secretion in more detail. Fifteen abdominally obese men with reduced GH secretion were treated for 12 weeks with recombinant human GH. Subjects underwent (31)P-magnetic resonance spectroscopy to assess phosphocreatine (PCr) recovery as an in vivo measure of skeletal muscle mitochondrial function and percutaneous muscle biopsies to assess mRNA expression of IGF-1 and mitochondrial-related genes at baseline and 12 weeks. At baseline, skeletal muscle IGF-1 mRNA expression was significantly associated with PCr recovery (r = 0.79; P = .01) and nuclear respiratory factor-1 (r = 0.87; P = .001), mitochondrial transcription factor A (r = 0.86; P = .001), peroxisome proliferator-activated receptor (PPAR)γ (r = 0.72; P = .02), and PPARα (r = 0.75; P = .01) mRNA expression, and trended to an association with PPARγ coactivator 1-α (r = 0.59; P = .07) mRNA expression. However, serum IGF-1 concentration was not associated with PCr recovery or any mitochondrial gene expression (all P > .10). Administration of recombinant human GH increased both serum IGF-1 (change, 218 ± 29 μg/L; P IGF-1 mRNA in muscle (fold change, 2.1 ± 0.3; P = .002). Increases in serum IGF-1 were associated with improvements in total body fat (r = -0.53; P = .04), trunk fat (r = -0.55; P = .03), and lean mass (r = 0.58; P = .02), but not with PCr recovery (P > .10). Conversely, increase in muscle IGF-1 mRNA was associated with improvements in PCr recovery (r = 0.74; P = .02), but not with body composition parameters (P > .10). These data demonstrate a novel association of skeletal muscle mitochondria with muscle IGF-1 mRNA expression, but independent of serum IGF-1 concentrations.

  15. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    Science.gov (United States)

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P stress. In contrast, serum malonaldehyde concentrations were decreased (P stress also reduced (P stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance and reduces oxidative stress in heat-stressed black-boned chickens by increasing serum growth hormone concentrations and modulating the expression of heat shock genes in organs of the immune system.

  16. Leptin receptor (Ob-R) mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Erkasap, N.; Ozkurt, M. [Department of Physiology, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Erkasap, S.; Yasar, F. [Department of General Surgery, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Uzuner, K. [Department of Physiology, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Ihtiyar, E. [Department of General Surgery, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Uslu, S.; Kara, M. [Department of Biochemistry, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey); Bolluk, O. [Department of Biostatistics, Osmangazi University Medical Faculty, Meselik, Eskisehir (Turkey)

    2013-03-19

    The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases) and metastatic colon (13 cases) cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA) and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR) for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis.

  17. Leptin receptor (Ob-R) mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer

    International Nuclear Information System (INIS)

    Erkasap, N.; Ozkurt, M.; Erkasap, S.; Yasar, F.; Uzuner, K.; Ihtiyar, E.; Uslu, S.; Kara, M.; Bolluk, O.

    2013-01-01

    The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases) and metastatic colon (13 cases) cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA) and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR) for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis

  18. Leptin receptor (Ob-R mRNA expression and serum leptin concentration in patients with colorectal and metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    N. Erkasap

    Full Text Available The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases and metastatic colon (13 cases cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis.

  19. G-cimp status prediction of glioblastoma samples using mRNA expression data.

    Directory of Open Access Journals (Sweden)

    Mehmet Baysan

    Full Text Available Glioblastoma Multiforme (GBM is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.

  20. Global analysis of differential expressed genes in ECV304 ...

    African Journals Online (AJOL)

    EB

    Methods: Changes in mRNA expression levels of human endothelial-like ... recognized as a risk factor for vascular diseases, like ..... and JUN kinase signaling pathways and transform ... protein accumulates at the G1-S phase boundary and.

  1. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    DEFF Research Database (Denmark)

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  2. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Geomela Panagiota-Aikaterini

    2012-10-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. Methods 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt method. Results DDC mRNA levels were lower in squamous cell carcinomas (SCCs of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. Conclusion This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases.

  3. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study

    International Nuclear Information System (INIS)

    Geomela, Panagiota-Aikaterini; Kontos, Christos K; Yiotakis, Ioannis; Fragoulis, Emmanuel G; Scorilas, Andreas

    2012-01-01

    Head and neck squamous cell carcinoma (HNSCC) represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2 -ddCt ) method. DDC mRNA levels were lower in squamous cell carcinomas (SCCs) of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases

  4. Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression

    International Nuclear Information System (INIS)

    Nguyen, Kim-Lien; Llano, Manuel; Akari, Hirofumi; Miyagi, Eri; Poeschla, Eric M.; Strebel, Klaus; Bour, Stephan

    2004-01-01

    Two HIV-1 accessory proteins, Vpu and Vif, are notoriously difficult to express autonomously in the absence of the viral Tat and Rev proteins. We examined whether the codon bias observed in the vpu and vif genes relative to highly expressed human genes contributes to the Rev dependence and low expression level outside the context of the viral genome. The entire vpu gene as well as the 5' half of the vif gene were codon optimized and the resulting open reading frames (ORFs) (vphu and hvif, respectively) were cloned in autonomous expression vectors under the transcriptional control of the CMV promoter. Codon optimization efficiently removed the expression block observed in the native genes and allowed high levels of Rev- and Tat-independent expression of Vpu and Vif. Most of the higher protein levels detected are accounted for by enhanced steady-state levels of the mRNA encoding the optimized species. Nuclear run-on experiments show for the first time that codon optimization has no effect on the rate of transcriptional initiation or elongation of the vphu mRNA. Instead, optimization of the vpu gene was found to stabilize the vphu mRNA in the nucleus and enhance its export to the cytoplasm. This was achieved by allowing the optimized mRNA to use a new CRM1-independent nuclear export pathway. This work provides a better understanding of the molecular mechanisms underlying the process of codon optimization and introduces novel tools to study the biological functions of the Vpu and Vif proteins independently of other viral proteins

  5. Effect of rat ovary irradiation or OVX on the expression of COLI and TGF-β1 mRNA in the rat bone

    International Nuclear Information System (INIS)

    Gao Yanhong; Gao Jianjun; Jin Weifang; Wang Hongfu

    2003-01-01

    To observe the effects of exposure of rat ovary to radiation or OVX on the expression of TGF-β 1 and COLI in the rat bone. The mRNA levels of TGF-β 1 and COLI in rat tibiae were measured with RT-PCR after the rat ovaries were irradiated by 50 Gy of 137 Cs γ-rays or OVX. For both the radiation group and the OVX group, the COLI mRNA level in the rat bone increased, whereas the TGF-β 1 decreased. Irradiation of ovary and OVX affect the expression of COLI and TGF-β 1 mRNA in bone probably in a similar way which is related to estrogen decrease

  6. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp

    2012-01-01

    Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism f...... down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients....

  7. RANKL/RANK/OPG cytokine receptor system: mRNA expression pattern in BPH, primary and metastatic prostate cancer disease.

    Science.gov (United States)

    Christoph, Frank; König, Frank; Lebentrau, Steffen; Jandrig, Burkhard; Krause, Hans; Strenziok, Romy; Schostak, Martin

    2018-02-01

    The cytokine system RANKL (receptor activator of NF-κB ligand), its receptor RANK and the antagonist OPG (osteoprotegerin) play a critical role in bone turnover. Our investigation was conducted to describe the gene expression at primary tumour site in prostate cancer patients and correlate the results with Gleason Score and PSA level. Seventy-one samples were obtained from prostate cancer patients at the time of radical prostatectomy and palliative prostate resection (n = 71). Patients with benign prostate hyperplasia served as controls (n = 60). We performed real-time RT-PCR after microdissection of the samples. The mRNA expression of RANK was highest in tumour tissue from patients with bone metastases (p BPH or locally confined tumours, also shown in clinical subgroups distinguished by Gleason Score (BPH tissue but did not exceed as much as in the tumour tissue. We demonstrated that RANK, RANKL and OPG are directly expressed by prostate cancer cells at the primary tumour site and showed a clear correlation with Gleason Score, serum PSA level and advanced disease. In BPH, mRNA expression is also detectable, but RANK expression does not exceed as much as compared to tumour tissue.

  8. [mRNA expression of notch ligand-delta-like-1 and jagged-1 in mesenchymal stem cells of MDS patients].

    Science.gov (United States)

    Fei, Cheng-Ming; Gu, Shu-Cheng; Zhao, You-Shan; Guo, Juan; Li, Xiao; Chang, Chun-Kang

    2014-12-01

    This study was aimed to investigated the mRNA expression levels of Notch ligands- Delta-like-1 and Jagged-1 in bone marrow mesenchymal stem cells of patients with myelodysplastic syndrome (MDS), and to explore their relation with onset of MDS. Bone marrow mesenchymal stem cells of 38 patients with MDS and 16 normal subjects as control were collected to detect mRNA expression of Delta-like-1 and Jagged-1 by using real-time quantitative polymerase chain reaction. The results showed that the expression levels of Delta-like-1 and Jagged-1 in mesenchymal stem cells of MDS patients were significantly higher than that in normal controls (P MDS patients (r = 0.502, P MDS patients with abnormal karyotypes were significantly higher than those in MDS patients with normal karyotypes (P 0.05). It is concluded that the changes of Delta-like-1 and Jagged-1 expression level in MSC may play a role in the pathogenesis of myelodysplastic syndrome.

  9. Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression

    DEFF Research Database (Denmark)

    Sullivan, B.E.; Carroll, C.C.; Jemiolo, B.

    2009-01-01

    Sullivan BE, Carroll CC, Jemiolo B, Trappe SW, Magnusson SP, Dossing S, Kjaer M, Trappe TA. Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression. J Appl Physiol 106: 468-475, 2009. First published November 20, 2008; doi: 10.1152/japplphysiol.......91341.2008.-Tendon is mainly composed of collagen and an aqueous matrix of proteoglycans that are regulated by enzymes called matrix metalloproteinases ( MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Although it is known that resistance exercise (RE) and sex influence tendon metabolism...... and mechanical properties, it is uncertain what structural and regulatory components contribute to these responses. We measured the mRNA expression of tendon's main fibrillar collagens (type I and type III) and the main proteoglycans (decorin, biglycan, fibromodulin, and versican) and the regulatory enzymes MMP...

  10. mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli

    International Nuclear Information System (INIS)

    Zhang Weici; Xiao Weihua; Wei Haiming; Zhang Jian; Tian Zhigang

    2006-01-01

    Codon usage and thermodynamic optimization of the 5'-end of mRNA have been applied to improve the efficiency of human protein production in Escherichia coli. However, high level expression of human protein in E. coli is still a challenge that virtually depends upon each individual target genes. Using human interleukin 10 (huIL-10) and interferon α (huIFN-α) coding sequences, we systematically analyzed the influence of several major factors on expression of human protein in E. coli. The results from huIL-10 and reinforced by huIFN-α showed that exposing AUG initiator codon from base-paired structure within mRNA itself significantly improved the translation of target protein, which resulted in a 10-fold higher protein expression than the wild-type genes. It was also noted that translation process was not affected by the retained short-range stem-loop structure at Shine-Dalgarno (SD) sequences. On the other hand, codon-optimized constructs of huIL-10 showed unimproved levels of protein expression, on the contrary, led to a remarkable RNA degradation. Our study demonstrates that exposure of AUG initiator codon from long-range intra-strand secondary structure at 5'-end of mRNA may be used as a general strategy for human protein production in E. coli

  11. Increased IL-17 and 22 mRNA expression in pediatric patients with otitis media with effusion.

    Science.gov (United States)

    Kwon, Oh Eun; Park, Sang Hyun; Kim, Sung Su; Shim, Haeng Seon; Kim, Min Gyeong; Kim, Young Il; Kim, Sang Hoon; Yeo, Seung Geun

    2016-11-01

    Middle ear effusion has been reported to be associated with immune responses in patients with otitis media with effusion (OME). Although various cytokines are involved in immunologic responses in patients with OME, no study to date has assessed the involvement of the pro-inflammatory cytokines interleukin (IL)-17 and IL-22. This study analyzed the levels of expression of IL-17 and IL-22 in the middle ear effusion of patients with OME. Patients aged Effusion fluid samples were obtained during surgery and levels of IL-17 and IL-22 mRNAs assessed by real-time PCR. IL-17 and IL-22 mRNA levels were compared in patients with effusion fluid positive and negative for bacteria; in patients with and without accompanying diseases, recurrent disease, and re-operation; and relative to fluid characteristics. The study cohort included 70 pediatric patients, 46 boys and 24 girls, of mean age 4.31 ± 2.11 years. The levels of IL-17 and IL-22 mRNA were higher in patients with than without sinusitis, but only IL-22 mRNA levels differed significantly (p < 0.05). The level of IL-17 mRNA was significantly higher in patients who did than did not undergo T&A (p < 0.05). The level of IL-22 expression was significantly higher in mucoid and purulent middle ear fluid samples than in serous fluid samples (p < 0.05). IL-17 and IL-22 mRNAs are involved in the pathophysiology of OME and are significantly higher in subjects with than without accompanying diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen; Rapin, Nicolas; Theilgaard-Mönch, Kim

    2013-01-01

    lead to full integrity of the data in the database. The HemaExplorer has comprehensive visualization interface that can make it useful as a daily tool for biologists and cancer researchers to assess the expression patterns of genes encountered in research or literature. HemaExplorer is relevant for all......The HemaExplorer (http://servers.binf.ku.dk/hemaexplorer) is a curated database of processed mRNA Gene expression profiles (GEPs) that provides an easy display of gene expression in haematopoietic cells. HemaExplorer contains GEPs derived from mouse/human haematopoietic stem and progenitor cells...... as well as from more differentiated cell types. Moreover, data from distinct subtypes of human acute myeloid leukemia is included in the database allowing researchers to directly compare gene expression of leukemic cells with those of their closest normal counterpart. Normalization and batch correction...

  13. Effect of low-dose irradiation on expression of mRNA and protein. Pt.1. Induction of thioredoxin as radioprotective protein in human lymphocytes

    International Nuclear Information System (INIS)

    Hoshi, Yuko; Tanooka, Hiroshi; Wakasugi, Hiro; Miyasaki, Kunihisa

    1997-01-01

    To elucidate the mechanism of hormetic effect by low-dose ionizing radiation, we studied the expression of the thioredoxin (TRX) gene in human lymphocytes after irradiation. TRX is a radioprotector and a key protein regulating cellular functions through redox reaction. The major results obtained were as follows; (1) The peaks of TRX mRNA expression and protein synthesis in human lymphocytes appeared 6-8 hr after irradiation with 25cGy. (2) At 6 hr after irradiation, the optimum dose for induction of TRX mRNA and TRX protein in human lymphocytes appeared to be 25-50cGy. (3) Induction of expression TRX mRNA had individual variations about twice. (4) Lymphocytes prepared from fresh venous blood showed the lowest TRX mRNA level in other cells such a Jurkat cells, lymphocytes stimulated for now with IL-2 and CD3 and the immortalized cell line 1G8. (5) The optimal dose and time course of induction of TRX by low-dose radiation suggest that TRX is related to the radio-adaptive response. (author)

  14. PAX5α and PAX5β mRNA expression in breast Cancer: Relation to ...

    African Journals Online (AJOL)

    Background: Many studies evaluated the role of paired box gene 5 (PAX5) in breast cancer. However, few investigated PAX5α and PAX5β isoforms individually. Objective: The aim of the present study is to evaluate mRNA expression of PAX5α and PAX5β in breast cancer and assessing their underlying pathological roles ...

  15. ESTRADIOL IN FEMALES MAY NEGATE SKELETAL MUSCLE MYOSTATIN MRNA EXPRESSION AND SERUM MYOSTATIN PROPEPTIDE LEVELS AFTER ECCENTRIC MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    Darryn S. Willoughby

    2006-12-01

    Full Text Available Eccentric contractions produce a significant degree of inflammation and muscle injury that may increase the expression of myostatin. Due to its anti- oxidant and anti-flammatory effects, circulating 17-β estradiol (E2 may attenuate myostatin expression. Eight males and eight females performed 7 sets of 10 reps of eccentric contractions of the knee extensors at 150% 1-RM. Each female performed the eccentric exercise bout on a day that fell within her mid-luteal phase (d 21-23 of her 28-d cycle. Blood and muscle samples were obtained before and 6 and 24 h after exercise, while additional blood samples were obtained at 48 and 72 h after exercise. Serum E2 and myostatin LAP/propeptide (LAP/pro levels were determined with ELISA, and myostatin mRNA expression determined using RT-PCR. Data were analyzed with two-way ANOVA and bivariate correlations (p 0.05. Compared to pre-exercise, males had significant increases (p < 0.05 in LAP/propetide and mRNA of 78% and 28%, respectively, at 24 h post-exercise, whereas females underwent respective decreases of 10% and 21%. E2 and LAP/propeptide were correlated at 6 h (r = -0.804, p = 0.016 and 24 h post- exercise (r = -0.841, p = 0.009 in males, whereas in females E2 levels were correlated to myostatin mRNA at 6 h (r =0.739, p = 0.036 and 24 h (r = 0.813, p = 0.014 post-exercise and LAP/propeptide at 6 h (r = 0.713, p = 0.047 and 24 h (r = 0.735, p = 0.038. In females, myostatin mRNA expression and serum LAP/propeptide levels do not appear to be significantly up-regulated following eccentric exercise, and may be due to higher levels of circulating E2

  16. The Impact of Ramadan Fasting on SIRT1 mRNA Expression in Peripheral Blood Mononuclear Cells

    OpenAIRE

    Mostafa Haji Molahoseini; kanaan Gorjipour; Farshid Yeganeh

    2016-01-01

    Background:The aim of this study was to evaluate the effect of Ramadan fasting on SIRT1 mRNA expression in healthy men.Islamic Ramadan fasting is a holy religious ceremony that has many spiritual benefits. Additionally, it can be considered as the equivalent of calorie restriction that may affect physical health. The results of previous studies revealed that calorie restriction increases the lifespan in laboratory rodents via increasing the expression of a histone deacetylase named SIRT1. Add...

  17. Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin

    Directory of Open Access Journals (Sweden)

    Cerda Alvaro

    2011-11-01

    Full Text Available Abstract Background Apolipoprotein E (apoE is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL and 181 hypercholesterolemic (HC subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141 were treated with atorvastatin (10 mg/day/4-weeks. APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.

  18. Altered expression of asparagine synthetase mRNA in human leukemic and carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.O.; Guzowski, D.E.; Millan, C.A. [North Shore Univ. Hospital/Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    Asparagine synthetase (AS) is the enzyme responsible for the ATP-dependant conversion of aspartic acid to asparagine. The AS gene is expressed constitutively in most mammalian cells, including cells of the lymphoid lineage, as a 2 kb mRNA. In some leukemic phenotypes, AS expression is abrogated, resulting in no detectable enzyme activity. These cells are rendered sensitive to killing by L-asparaginase, which destroys extracellular asparagine. Prolonged treatment of leukemic cells with this agent can lead to resistance and the reappearance of AS activity, suggesting derepression of the AS gene, which has been shown to be regulated by intracellular levels of asparagine. Modulation of AS expression by asparagine employs cis and trans-acting elements involved in transcriptional and translational regulation. We have cloned and sequenced the human AS gene and surrounding sequence elements as well as the full-length cDNA. Using probes specific to the third and fourth exons of AS, we have identified an additional higher molecular weight mRNA (2.7 kb) in Northern blots derived from a chronic myelogenous leukemia and a colon carcinoma but not in normal lymphocytic or other human cell lines. We speculate that elements present in the cancer-derived mRNAs may be involved in the derepression of AS activity. This hypothesis is being evaluated by RNase protection assays using RNA isolated from a variety of human cell lines to characterize and elucidate the nature of this additional AS encoded message.

  19. Quantitative mRNA expression analysis of selected genes in patients with early-stage hypothyroidism induced by treatment with iodine-131.

    Science.gov (United States)

    Guo, Kun; Gao, Rui; Yu, Yan; Zhang, Weixiao; Yang, Yuxuan; Yang, Aimin

    2015-11-01

    The present study aimed to investigate the molecular markers indicative of early-stage hypothyroidism induced by treatment with iodine-131, in order to assist in further investigations of radio iodine‑induced hypothyroidism. A total of 59 patients diagnosed with hyperthyroidism (male/female, 16/43; median age, 46.4 years) and 27 healthy subjects (male/female, 7/21; median age, 44.6 years) were included in the present study. All patients were treated with appropriate doses of iodine‑131 and, three months following treatment, the patients were subdivided into two groups: A group with early‑stage hypothyroidism symptoms, and a group with non‑early‑stage hypothyroidism, including euthyroid patients and patients remaining with hyperthyroidism. Tissue samples from the patients and healthy subjects were collected by fine needle biopsies, and the mRNA expression levels of B-cell lymphoma 2 (Bcl‑2), nuclear factor (NF)‑κB, Ku70, epidermal growth factor receptor (EGFR), early growth response 1 (Egr‑1), TP53 and ataxia telangiectasia mutated were analyzed using reverse transcription‑quantitative polymerase chain reaction prior to iodine‑131 treatment. The association of the variation of target genes with susceptibility to early‑stage hypothyroidism was analyzed. Compared with normal subjects, the mRNA expression levels of Ku70 (0.768, vs. 3.304, respectively; Ptreatment with iodine‑131, 30 of the 59 (50.8%) patients with hyperthyroidism were diagnosed with early‑stage hypothyroidism, and in the early‑stage hypothyroidism group, the mRNA expression levels of Bcl‑2 were significantly decreased (Phypothyroidism group. The association between the changes in the expression levles of Bcl‑2 and Egr‑1 and susceptibility to early‑stage hypothyroidism was supported by multivariate regression analysis. No significant changes in the expression levels of the other target genes were detected. The opposing changes in the mRNA expression levels of Bcl‑2

  20. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse

    Directory of Open Access Journals (Sweden)

    Vandewauw Ine

    2013-02-01

    Full Text Available Abstract Background Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG in the head and from a string of dorsal root ganglia (DRG located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied. Results Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies. Conclusions We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

  1. Correlation analyses revealed global microRNA-mRNA expression associations in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Wang, Lan; Zhu, Jiang; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Xiao-Wei; Xia, Wei; Xie, Fang-Fei; He, Pei; Bing, Peng-Fei; Qiu, Ying-Hua; Lin, Xiang; Lu, Xin; Zhang, Lei; Yi, Neng-Jun; Zhang, Yong-Hong; Lei, Shu-Feng

    2018-02-01

    MicroRNAs (miRNAs) can regulate gene expression through binding to complementary sites in the 3'-untranslated regions of target mRNAs, which will lead to existence of correlation in expression between miRNA and mRNA. However, the miRNA-mRNA correlation patterns are complex and remain largely unclear yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), multiple miRNA-mRNA correlation analyses and expression quantitative trait locus (eQTL) analysis were conducted in this study. We predicted and achieved 861 miRNA-mRNA pairs (65 miRNAs, 412 mRNAs) using multiple bioinformatics programs, and found global negative miRNA-mRNA correlations in PBMC from all 46 study subjects. Among the 861 pairs of correlations, 19.5% were significant (P correlation network was complex and highlighted key miRNAs/genes in PBMC. Some miRNAs, such as hsa-miR-29a, hsa-miR-148a, regulate a cluster of target genes. Some genes, e.g., TNRC6A, are regulated by multiple miRNAs. The identified genes tend to be enriched in molecular functions of DNA and RNA binding, and biological processes such as protein transport, regulation of translation and chromatin modification. The results provided a global view of the miRNA-mRNA expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/mRNAs and better understanding of the pathogenesis underlying PBMC-related diseases.

  2. Chemical Constituents with Proprotein Convertase Subtilisin/Kexin Type 9 mRNA Expression Inhibitory Activity from Dried Immature Morus alba Fruits.

    Science.gov (United States)

    Pel, Pisey; Chae, Hee-Sung; Nhoek, Piseth; Kim, Young-Mi; Chin, Young-Won

    2017-07-05

    Phytochemical investigation for a chloroform-soluble extract of dried Morus alba fruits, selected by proprotein convertase subtilisin-kexin type 9 (PCSK9) mRNA expression monitoring assay in HepG2 cells, led to the isolation of a new benzofuran, isomoracin D (1), and a naturally occurring compound, N-(N-benzoyl-l-phenylalanyl)-l-phenylalanol (2), along with 13 known compounds (3-15). All of the structures were established by NMR spectroscopic data as well as MS analysis. Of the isolates, moracin C (7) was found to inhibit PCSK9 mRNA expression with an IC 50 value of 16.8 μM in the HepG2 cells.

  3. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals.

    KAUST Repository

    Baumgarten, Sebastian

    2013-10-12

    Animal and plant genomes produce numerous small RNAs (smRNAs) that regulate gene expression post-transcriptionally affecting metabolism, development, and epigenetic inheritance. In order to characterize the repertoire of endogenous smRNAs and potential gene targets in dinoflagellates, we conducted smRNA and mRNA expression profiling over 9 experimental treatments of cultures from Symbiodinium microadriaticum, a photosynthetic symbiont of scleractinian corals.

  4. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals.

    KAUST Repository

    Baumgarten, Sebastian; Bayer, Till; Aranda, Manuel; Liew, Yi Jin; Carr, Adrian; Micklem, Gos; Voolstra, Christian R.

    2013-01-01

    Animal and plant genomes produce numerous small RNAs (smRNAs) that regulate gene expression post-transcriptionally affecting metabolism, development, and epigenetic inheritance. In order to characterize the repertoire of endogenous smRNAs and potential gene targets in dinoflagellates, we conducted smRNA and mRNA expression profiling over 9 experimental treatments of cultures from Symbiodinium microadriaticum, a photosynthetic symbiont of scleractinian corals.

  5. The effect of leptin receptor deficiency and fasting on cannabinoid receptor 1 mRNA expression in the rat hypothalamus, brainstem and nodose ganglion.

    Science.gov (United States)

    Jelsing, Jacob; Larsen, Philip Just; Vrang, Niels

    2009-10-02

    Despite ample evidence for the involvement of the endocannabinoid system in the control of appetite, food intake and energy balance, relatively little is known about the regulation of cannabinoid receptor 1 (CB(1)R) expression in respect to leptin signalling and fasting. In the present study, we examined CB(1)R mRNA levels in lean (Fa/?) and obese (fa/fa) male Zucker rats under basal and food-restricted conditions. Using stereological sampling principles coupled with semi-quantitative radioactive in situ hybridization we provide semi-quantitative estimates of CB(1)R mRNA expression in key appetite regulatory hypothalamic and brainstem areas, as well as in the nodose ganglia. Whereas no effect of fasting were determined on CB(1)R mRNA levels in the paraventricular (PVN) and ventromedial hypothalamic (VMH) nucleus, in the brainstem dorsal vagal complex or nodose ganglion of lean Zucker rats, CB(1)R mRNA levels were consistently elevated in obese Zucker rats pointing to a direct influence of disrupted leptin signalling on CB(1)R mRNA regulation.

  6. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen.

    Science.gov (United States)

    Deng, Dawei; Li, Yang; Xue, Jianpeng; Wang, Jie; Ai, Guanhua; Li, Xin; Gu, Yueqing

    2015-01-01

    Messenger RNA (mRNA), a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP) beacon containing a bare gold nanoparticle (AuNP) as fluorescence quencher and thiol-terminated fluorescently labeled stem-loop-stem oligonucleotide sequences attached by Au-S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b) mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.

  7. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    Science.gov (United States)

    Williams, C M; Coleman, J W

    1995-10-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.

  8. Bovine oocytes and early embryos express mRNA encoding glycerol kinase but addition of glycerol to the culture media interferes with oocyte maturation.

    Science.gov (United States)

    Okawara, Sumika; Hamano, Seizo; Tetsuka, Masafumi

    2009-04-01

    Glycerol plays multi-functional roles in cellular physiology. Other than forming the backbone molecule for glycerophospholipid and triglyceride (TG), glycerol acts as an energy substrate for glycolysis. Spermatozoa are known to utilize glycerol for energy production, but there are no reports of this in oocytes. In this study, the value of glycerol as an energy substrate for bovine oocyte maturation (Exp. 1) and the gene expression of glycerol kinase (GK), an enzyme crucial for cellular glycerol utilization, in bovine oocytes and early embryos (Exp. 2) were examined. In Exp. 1, in vitro maturation (IVM) was conducted using synthetic oviduct fluid supplemented with/without glucose (1.5 mM) and/or glycerol (1.0 mM), and maturation rate, degree of cumulus expansion, glucose consumption and lactate production by cumulus-oocyte complexes (COC) were examined. In Exp. 2, to examine the developmental expression of GK mRNA, cumulus cells, oocytes and embryos at the 2-, 8- and 16-cell, morula, expanded blastocyst and hatched blastocyst stages were obtained in separate experiments, and the expression of GK mRNA was quantified using a real-time PCR. Glycerol did not support oocyte maturation or cumulus expansion. Addition of glycerol to glucose-supplemented media significantly decreased the maturation rate. Expression of GK mRNA was very low in cumulus cells, whereas an appreciable level of the transcript was observed in the oocytes. GK mRNA was detected in embryos at all the stages examined, and its expression significantly increased at the morula stage. These results indicate that glycerol, at least at the present concentration, is not beneficial as a constituent of the medium for bovine oocyte maturation. However, the appreciable levels of GK mRNA found in the oocyte and embryo imply a physiological role for glycerol in bovine oocyte maturation and embryo development.

  9. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers

    International Nuclear Information System (INIS)

    Malgoyre, A.; Banzet, S.; Mouret, C.; Bigard, A.X.; Peinnequin, A.

    2007-01-01

    Real-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

  10. Study on the plasma leptin level and leptin mRNA expression in cancerous breast tissue in patients with breast carcinoma complicated with obesity

    International Nuclear Information System (INIS)

    Li Chunrui; Liu Wenli; Sun Hanying; Zhou Jianfeng

    2006-01-01

    Objective: To study the plasma leptin level and leptin mRNA expression in cancerous breast tissue in patients with breast cancer complicated with obesity. Methods: Plasma leptin levels were measured with RIA in 48 breast cancer patients with obesity, 36 patients with various benign breast disorders and obesity and 40 controls (with simple obesity only). The leptin mRNA expression in the surgical specimens from the 84 patients with breast disease was also examined with RT-PCR, Results: The plasma leptin levels in the breast cancer patients (12.02 ± 1.23 μg/L) were significantly higher than those in patients with benign breast disorders (9.84 ± 0.98 μg/L) and controls (9.79 ± 1.16 μg/L) (both P<0.05). The expression levels of leptin mRNA in specimens from malignant breast disease (0.71 ± 0.32), were significantly higher than those in specimens from benign breast diseases (0.41 ± 0.26) (P<0.05), The plasma leptin levels and the tissue leptin mRNA expression levels were mutually positively correlated (r=0.4220 ,P 0.0180). These levels were not correlated with the presence of axillary metastasis, TMN stage, menstrual status, pathological classification and other parameters. Conclusion: Leptin might be a promotive factor in the development of breast cancer. (authors)

  11. Reduced mRNA expression of PTGDS in peripheral blood mononuclear cells of rapid-cycling bipolar disorder patients compared with healthy control subjects

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Peijs, Lone; Kessing, Lars Vedel

    2015-01-01

    was measured in 37 rapid-cycling bipolar disorder patients and 40 age- and gender-matched healthy control subjects using reverse transcription quantitative real-time polymerase chain reaction. Repeated measurements of PTGDS and AKR1C3 mRNA expression were obtained in various affective states during 6-12 months...... and compared with repeated measurements in healthy control subjects. RESULTS: Adjusted for age and gender, PTGDS mRNA expression was down-regulated in rapid-cycling bipolar disorder patients in a euthymic, depressive, and manic/hypomanic state compared with healthy control subjects. No difference in PTGDS m...

  12. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression.

    Science.gov (United States)

    Lamana, Amalia; López-Santalla, Mercedes; Castillo-González, Raquel; Ortiz, Ana María; Martín, Javier; García-Vicuña, Rosario; González-Álvaro, Isidoro

    2015-01-01

    The T allele of rs7574865 in STAT4 confers risk of developing autoimmune disorders. However, its functional significance remains unclear. Here we analyze how rs7574865 affects the transcription of STAT4 and its protein expression. We studied 201 patients (80% female; median age, 54 years; median disease duration, 5.4 months) from PEARL study. Demographic, clinical, laboratory and therapeutic data were collected at each visit. IL-6 serum levels were measured by enzyme immune assay. The rs7574865 was genotyped using TaqMan probes. The expression levels of STAT4 mRNA were determined at 182 visits from 69 patients using quantitative real-time polymerase chain reaction. STAT4 protein was assessed by western blot in 62 samples from 34 patients. To determine the effect of different variables on the expression of STAT4 mRNA and protein, we performed multivariate longitudinal analyses using generalized linear models. After adjustment for age, disease activity and glucocorticoid dose as confounders, the presence of at least one copy of the T allele of rs7574865 was significantly associated with higher levels of STAT4 mRNA. Similarly, TT patients showed significantly higher levels of STAT4 protein than GG patients. IL-6 induced STAT4 and STAT5 phosphorylation in peripheral blood lymphocytes. Patients carrying at least one T allele of rs7574865 displayed lower levels of serum IL-6 compared to GG homozygous; by contrast the production of C-reactive protein was similar in both populations. Our data suggest that the presence of the rs7574865 T allele enhances STAT4 mRNA transcription and protein expression. It may enhance the signaling of molecules depending on the STAT4 pathway.

  13. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression.

    Directory of Open Access Journals (Sweden)

    Amalia Lamana

    Full Text Available The T allele of rs7574865 in STAT4 confers risk of developing autoimmune disorders. However, its functional significance remains unclear. Here we analyze how rs7574865 affects the transcription of STAT4 and its protein expression.We studied 201 patients (80% female; median age, 54 years; median disease duration, 5.4 months from PEARL study. Demographic, clinical, laboratory and therapeutic data were collected at each visit. IL-6 serum levels were measured by enzyme immune assay. The rs7574865 was genotyped using TaqMan probes. The expression levels of STAT4 mRNA were determined at 182 visits from 69 patients using quantitative real-time polymerase chain reaction. STAT4 protein was assessed by western blot in 62 samples from 34 patients. To determine the effect of different variables on the expression of STAT4 mRNA and protein, we performed multivariate longitudinal analyses using generalized linear models.After adjustment for age, disease activity and glucocorticoid dose as confounders, the presence of at least one copy of the T allele of rs7574865 was significantly associated with higher levels of STAT4 mRNA. Similarly, TT patients showed significantly higher levels of STAT4 protein than GG patients. IL-6 induced STAT4 and STAT5 phosphorylation in peripheral blood lymphocytes. Patients carrying at least one T allele of rs7574865 displayed lower levels of serum IL-6 compared to GG homozygous; by contrast the production of C-reactive protein was similar in both populations.Our data suggest that the presence of the rs7574865 T allele enhances STAT4 mRNA transcription and protein expression. It may enhance the signaling of molecules depending on the STAT4 pathway.

  14. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    Science.gov (United States)

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  15. Connecting rules from paired miRNA and mRNA expression data sets of HCV patients to detect both inverse and positive regulatory relationships

    OpenAIRE

    Song, Renhua; Liu, Qian; Liu, Tao; Li, Jinyan

    2015-01-01

    Background Intensive research based on the inverse expression relationship has been undertaken to discover the miRNA-mRNA regulatory modules involved in the infection of Hepatitis C virus (HCV), the leading cause of chronic liver diseases. However, biological studies in other fields have found that inverse expression relationship is not the only regulatory relationship between miRNAs and their targets, and some miRNAs can positively regulate a mRNA by binding at the 5' UTR of the mRNA. Result...

  16. Lymphotoxin β receptor activation promotes mRNA expression of RelA and pro-inflammatory cytokines TNFα and IL-1β in bladder cancer cells.

    Science.gov (United States)

    Shen, Mo; Zhou, Lianlian; Zhou, Ping; Zhou, Wu; Lin, Xiangyang

    2017-07-01

    The role of inflammation in tumorigenesis and development is currently well established. Lymphotoxin β receptor (LTβR) activation induces canonical and noncanonical nuclear factor (NF)‑κB signaling pathways, which are linked to inflammation‑induced carcinogenesis. In the present study, 5,637 bladder cancer cells were cultured and the activation of LTβR was induced by functional ligand, lymphotoxin (LT) α1β2, and silencing with shRNA. Reverse transcription‑quantitative polymerase chain reaction was utilized to detect the mRNA expression levels of NF‑κB family members RelA and RelB, cytokines including LTα, LTβ, tumor necrosis factor (TNF)α, TNF superfamily member 14, interleukin (IL)‑6 and IL‑1β, and proliferation‑related genes including CyclinD1 and Survivin. The expression of phospho‑p65 was determined by western blotting. Activation of LTβR on bladder cancer 5,637 cells was demonstrated to upregulate the mRNA expression levels of the RELA proto‑oncogene, RelA, by 2.5‑fold compared with unstimulated cells, while no significant change was observed in the RELB proto‑oncogene NF‑κB member mRNA levels. Expression of pro‑inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)‑1β mRNA levels were significantly increased nearly 5‑fold and 1.5‑fold, respectively, following LTβR activation compared with unstimulated cells. The LTβR‑induced upregulation of RelA, TNFα and IL‑1β was decreased by ~33, 27, and 26% respectively when LTβR was silenced via short hairpin RNA. Activation of LTβR had no effect on 5,637 cell growth, despite CyclinD1 and Survivin mRNA levels increasing by ~2.7 and 1.3‑fold, respectively, compared with unstimulated cells. In conclusion, activation of LTβR induced the expression of RelA mRNA levels. LTβR activation might be an important mediator in promoting an inflammatory microenvironment in bladder cancer, via the upregulation of TNFα and IL‑1β mRNA levels. LTβR may

  17. PAX5О± and PAX5ОІ mRNA expression in breast Cancer: Relation ...

    African Journals Online (AJOL)

    Manal Basyouni Ahmed

    mRNA expression of PAX5a and PAX5b in breast cancer and assessing their underlying pathological roles through ... the molecular alterations that contribute to disease initiation and ... ring growth and survival of cancer cells [3]. PAX5 is ..... and CA15-3 are prognostic parameters for different molecular subtypes of · breast ...

  18. Hydrogen sulfide upregulated mRNA expressions of sodium bicarbonate cotransporter1, trefoil factor1 and trefoil factor2 in gastric mucosa in rats.

    Science.gov (United States)

    Cheraghi, Parisa; Mard, Seyyed Ali; Nagi, Tahereh

    2016-01-01

    Hydrogen sulfide (H 2 S) has been shown to protect the gastric mucosa through several protective mechanisms but till now its effect on mRNA expression of sodium bicarbonate cotransporter 1 (NBC1), trefoil factor1 (TFF1) and trefoil factor2 (TFF2) was not investigated. This study was aimed to evaluate the effect of H 2 S on mRNA expression of NBC1, TFF1 and TFF2 in rat gastric mucosa in response to gastric distention. Thirty two rats were randomly assigned into four equal groups. They were control (C), distention (D), propargylglycine (PAG)-, and NaHS-treated groups. To evaluate the effect of exogenous and endogenous H 2 S on gene expression of NBC1, TFF1 and TFF2, two groups of rats were received H 2 S donor, intra-peritoneal NaHS (80 µg Kg -1 ), and PAG (50 mg kg -1 ), accompanied to stimulate the gastric acid secretion, respectively. Under general anesthesia and laparotomy, a catheter was inserted into the stomach through duodenum for instillation of isotonic saline for gastric distention. Ninety min after beginning the experiment, animals were sacrificed and the gastric mucosa was collected to determine total acid content of gastric effluents and to quantify the mRNA expression of studied genes by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that A) gastric distention increased the level of mRNA expressions of NBC1, TFF1 and TFF2; B) these levels in NaHS-treated rats were significantly higher than those in Distention group; and C) PAG decreased the expression levels of NBC1 and TFF1. The Findings showed H 2 S upregulated gene expression of NBC1, TFF1 and TFF2 in gastric mucosa.

  19. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-10-01

    Full Text Available This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP gene and their association with intramuscular fat (IMF content in the breast and leg muscles of Baicheng oil chicken (BOC. A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC, 240 silky Baicheng oil chicken (SBOC, and 240 white Baicheng oil chicken (WBOC were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176 and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145. The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035 was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time.

  20. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  1. [Analysis of the mRNA expression of the S100β protein in adipocytes of patients with diabetes mellitus, type 2].

    Science.gov (United States)

    Hamasaki, Mike Yoshio; Hirata, Mario Hiroyuki; Hirata, Rosario Dominguez Crespo; Himelfarb, Silvia Tchernin; Campos, Leila Maria Guissoni; Nogueira, Maria Inês

    2012-10-01

    This study aims to explore the possible relationship between the expression level of S100β protein mRNA with diabetes mellitus type 2 in adipocytes from patients with this disease in comparison with normoglycemic individuals. Samples of adipose tissue of eight patients from the coronary section of the Institute Dante Pazzanese of Cardiology (IDPC), four in Group Diabetes and four of Normoglycemic group, were evaluated by RT-PCR real time. An increase around 15 times values, between the threshold cycle (ΔCt), of mRNA expression of S100β protein in adipocytes of the diabetes group was observed in comparison to the control group (p = 0.015). Our results indicate, for the first time, that there is coexistence of increased expression of the S100β and the type 2 diabetes mellitus gene.

  2. Region-specific expression and hormonal regulation of the first exon variants of rat prolactin receptor mRNA in rat brain and anterior pituitary gland.

    Science.gov (United States)

    Nogami, H; Hoshino, R; Ogasawara, K; Miyamoto, S; Hisano, S

    2007-08-01

    Recent studies have revealed the occurrence of five first exon variants of the rat prolactin receptor mRNA, suggesting that multiple promoters direct prolactin receptor transcription in response to different regulatory factors. In the present study, regional expression of these first exon variants, as well as two prolactin receptor subtypes generated by alternative splicing, was examined in the brains and anterior pituitary glands of female rats. Expression of the long-form was detected in the choroid plexus, hypothalamus, hippocampus, cerebral cortex and anterior pituitary gland, whereas the short form was detected only in the choroid plexus. E1-3 mRNA, a first exon variant, was detected in the choroid plexus, hypothalamus, and anterior pituitary gland, whereas E1-4 was detected only in the choroid plexus. Other variants were not detectable by the polymerase chain reaction protocol employed in this study. Ovariectomy increased the short form in the choroid plexus and the E1-3 expression in the choroid plexus and pituitary gland, but changes in the long-form and E1-4 expression were minimal. Replacement of oestrogens and prolactin suggest that oestrogens down-regulate E1-3 expression in the choroid plexus and pituitary gland, and that the negative effect of oestrogen is mediated by prolactin in the pituitary gland. The present results revealed the region-specific promoter usage in prolactin receptor mRNA transcription, as well as the involvement of oestrogens in the regulation of E1-3 mRNA expression in the brain and pituitary gland.

  3. Interleukin-21 mRNA expression during virus infections

    DEFF Research Database (Denmark)

    Holm, Christian; Nyvold, Charlotte Guldborg; Paludan, Søren Riis

    2006-01-01

    and activational effects of IL-21 on different leukocytes come into play in vivo in an immune response has so far not been fully investigated. We show here for the first time in vivo, that IL-21 mRNA is produced in the spleen when mice are challenged with herpes simplex virus type 2 (HSV-2) or lymphocytic...... choriomeningitis virus (LCMV). We show in HSV-2 challenged mice that this production takes place in CD4+ T cell fractions and is absent in CD4+ T cell-depleted fractions. We also show that the peak of IL-21 mRNA production in both the HSV-2 and LCMV-challenged mice coincides with the onset of the adaptive immune...

  4. Epigenetic mechanisms involved in differential MDR1 mRNA expression between gastric and colon cancer cell lines and rationales for clinical chemotherapy

    Directory of Open Access Journals (Sweden)

    Kim Kyung-Jong

    2008-08-01

    Full Text Available Abstract Background The membrane transporters such as P-glycoprotein (Pgp, the MDR1 gene product, are one of causes of treatment failure in cancer patients. In this study, the epigenetic mechanisms involved in differential MDR1 mRNA expression were compared between 10 gastric and 9 colon cancer cell lines. Methods The MDR1 mRNA levels were determined using PCR and real-time PCR assays after reverse transcription. Cytotoxicity was performed using the MTT assay. Methylation status was explored by quantification PCR-based methylation and bisulfite DNA sequencing analyses. Results The MDR1 mRNA levels obtained by 35 cycles of RT-PCR in gastric cancer cells were just comparable to those obtained by 22 cycles of RT-PCR in colon cancer cells. Real-time RT-PCR analysis revealed that MDR1 mRNA was not detected in the 10 gastric cancer cell lines but variable MDR1 mRNA levels in 7 of 9 colon cancer cell lines except the SNU-C5 and HT-29 cells. MTT assay showed that Pgp inhibitors such as cyclosporine A, verapamil and PSC833 sensitized Colo320HSR (colon, highest MDR1 expression but not SNU-668 (gastric, highest and SNU-C5 (gastric, no expression to paclitaxel. Quantification PCR-based methylation analysis revealed that 90% of gastric cancer cells, and 33% of colon cancer cells were methylated, which were completely matched with the results obtained by bisulfite DNA sequencing analysis. 5-aza-2'-deoxcytidine (5AC, a DNA methyltransferase inhibitor increased the MDR1 mRNA levels in 60% of gastric cells, and in 11% of colon cancer cells. Trichostatin A (TSA, histone deacetylase inhibitor increased the MDR1 mRNA levels in 70% of gastric cancer cells and 55% of colon cancer cells. The combined treatment of 5AC with TSA increased the MDR1 mRNA levels additively in 20% of gastric cancer cells, but synergistically in 40% of gastric and 11% of colon cancer cells. Conclusion These results indicate that the MDR1 mRNA levels in gastric cancer cells are significantly

  5. Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression.

    Science.gov (United States)

    Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel

    2012-06-01

    We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.

  6. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen

    Directory of Open Access Journals (Sweden)

    Deng D

    2015-04-01

    Full Text Available Dawei Deng,* Yang Li,* Jianpeng Xue, Jie Wang, Guanhua Ai, Xin Li, Yueqing GuDepartment of Biomedical Engineering, China Pharmaceutical University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: Messenger RNA (mRNA, a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP beacon containing a bare gold nanoparticle (AuNP as fluorescence quencher and thiol-terminated fluorescently labeled stem–loop–stem oligonucleotide sequences attached by Au–S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.Keywords: molecular beacon, bioinformatics, gold nanoparticle, STAT5b mRNA, visual detection

  7. The expression of apoB mRNA editing factors is not the sole determinant for the induction of editing in differentiating Caco-2 cells

    International Nuclear Information System (INIS)

    Galloway, Chad A.; Smith, Harold C.

    2010-01-01

    Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is ∼80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation. This induction of apoB mRNA editing has been ascribed to the expression of APOBEC-1. In agreement our data demonstrated differentiation-dependent induction of expression of the editing enzyme APOBEC-1 and in addition we show alternative splicing of the essential auxiliary factor ACF. However, transfection of these editing factors in undifferentiated proliferating Caco-2 cells was not sufficient to induce robust apoB mRNA editing activity. Only differentiation of Caco-2 cells could induce more physiological like levels of apoB mRNA editing. The data suggested that additional regulatory mechanism(s) were induced by differentiation that controlled the functional activity of editing factors.

  8. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; Andersen, Jesper L.

    2004-01-01

    growth factor (VEGF), a known target gene for hypoxia inducible factor 1 (HIF-1). We hypothesised that prolonged exposure to high altitude increases muscle capillary density and that this can be explained by an enhanced HIF-1alpha expression inducing an increase in VEGF expression. We measured mRNA...... or VEGF mRNA was not changed with prolonged hypoxic exposure in SLR, and both genes were similarly expressed in SLR and HAN. In SLR, whole body mass, mean muscle fibre area and capillary to muscle fibre ratio remained unchanged during acclimatization. The capillary to fibre ratio was lower in HAN than...... in SLR (2.4+/-0.1 vs 3.6+/-0.2; PRNA expression and capillary density are not significantly increased by 8 weeks of exposure to high altitude and are not increased in Aymara high-altitude natives compared with sea level residents....

  9. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Masayuki Onishi

    2016-12-01

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins.

  10. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Justina McEvoy

    Full Text Available Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191 was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma.

  11. A practical platform for blood biomarker study by using global gene expression profiling of peripheral whole blood.

    Directory of Open Access Journals (Sweden)

    Ze Tian

    Full Text Available Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study.We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal.We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study.

  12. Effects of irradiation on TGF-β1 mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line

    International Nuclear Information System (INIS)

    Song, Ju Seop; Kim, Kyoung A; Koh, Kwang Joon

    2008-01-01

    To investigate the effects of irradiation on transforming growth factor β1 (TGF-β 1 ) mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line. Cells were cultured in alpha-minimum essential medium (α-MEM) supplemented with 10% fetal bovine serum and antibiotics. When the cells reached the level of 70-80% confluence, culture media were changed with α-MEM supplemented with 10% FBS, 5 mM β-glycerol phosphate, and 50 μg/mL ascorbic acid. Thereafter the cells were irradiated with a single dose of 2, 4, 6, 8 Gy at a dose rate of 1.5 Gy/min. The expression pattern of TGF-β 1 mRNA, calcium content and calcific nodule formation were examined on day 3, 7, 14, 21, 28, respectively, after the irradiation. The amount of TGF-β 1 mRNA expression decreased significantly on day 7 after irradiation of 4, 6, 8 Gy. It also decreased on day 14 after irradiation of 6, 8 Gy, and decreased on day 21 after irradiation of 8 Gy. The amount of calcium deposition decreased significantly on day 7 after irradiation of 4, 8 Gy (P 1 mRNA expression that was associated with proliferation and the production of extracellular matrix in MC3T3-E1 osteoblastic cell line

  13. Global survey of mRNA levels and decay rates of Chlamydia trachomatis trachoma and lymphogranuloma venereum biovars.

    Science.gov (United States)

    Ferreira, Rita; Borges, Vítor; Borrego, Maria José; Gomes, João Paulo

    2017-07-01

    Interpreting the intricate bacterial transcriptomics implies understanding the dynamic relationship established between de novo transcription and the degradation of transcripts. Here, we performed a comparative overview of gene expression levels and mRNA decay rates for different-biovar (trachoma and lymphogranuloma venereum) strains of the obligate intracellular bacterium Chlamydia trachomatis . By using RNA-sequencing to measure gene expression levels at mid developmental stage and mRNA decay rates upon rifampicin-based transcription blockage, we observed that: i ) 60-70% of the top-50 expressed genes encode proteins with unknown function and proteins involved in "Translation, ribosomal structure and biogenesis" for all strains; ii ) the expression ranking by genes' functional categories was in general concordant among different-biovar strains; iii ) the median of the half-life time (t 1/2 ) values of transcripts were 15-17 min, indicating that the degree of transcripts' stability seems to correlate with the bacterial intracellular life-style, as these values are considerably higher than the ones observed in other studies for facultative intracellular and free-living bacteria; iv ) transcript decay rates were highly heterogeneous within each C. trachomatis strain and did not correlate with steady-state expression levels; v ) only at very few instances (essentially at gene functional category level) was possible to unveil dissimilarities potentially underlying phenotypic differences between biovars. In summary, the unveiled transcriptomic scenario, marked by a general lack of correlation between transcript production and degradation and a huge inter-transcript heterogeneity in decay rates, likely reflects the challenges underlying the unique biphasic developmental cycle of C. trachomatis and its intricate interactions with the human host, which probably exacerbate the complexity of the bacterial transcription regulation.

  14. Global analysis of glycoproteins identifies markers of endotoxin tolerant monocytes and GPR84 as a modulator of TNFα expression.

    Science.gov (United States)

    Müller, Mario M; Lehmann, Roland; Klassert, Tilman E; Reifenstein, Stella; Conrad, Theresia; Moore, Christoph; Kuhn, Anna; Behnert, Andrea; Guthke, Reinhard; Driesch, Dominik; Slevogt, Hortense

    2017-04-12

    Exposure of human monocytes to lipopolysaccharide (LPS) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance. In this study, we investigated the LPS-induced global glycoprotein expression changes of tolerant human monocytes and THP-1 cells to identify markers and glycoprotein targets capable to modulate the immunosuppressive state. Using hydrazide chemistry and LC-MS/MS analysis, we analyzed glycoprotein expression changes during a 48 h LPS time course. The cellular snapshots at different time points identified 1491 glycoproteins expressed by monocytes and THP-1 cells. Label-free quantitative analysis revealed transient or long-lasting LPS-induced expression changes of secreted or membrane-anchored glycoproteins derived from intracellular membrane coated organelles or from the plasma membrane. Monocytes and THP-1 cells demonstrated marked differences in glycoproteins differentially expressed in the tolerant state. Among the shared differentially expressed glycoproteins G protein-coupled receptor 84 (GPR84) was identified as being capable of modulating pro-inflammatory TNFα mRNA expression in the tolerant cell state when activated with its ligand Decanoic acid.

  15. Analysis of thyroid hormone receptor βA mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    International Nuclear Information System (INIS)

    Opitz, Robert; Lutz, Ilka; Nguyen, Ngoc-Ha; Scanlan, Thomas S.; Kloas, Werner

    2006-01-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors α (TRα) and βA (TRβA) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TRα gene expression whereas a marked up-regulation of TRβA mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TRβA mRNA in head and tail tissue within 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TRβA mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TRβA gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TRβA expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TRβA mRNA up-regulation. Results of this study suggest that TRβA mRNA expression analysis could serve as a sensitive molecular testing approach to study effects of environmental compounds on the thyroid system in

  16. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Directory of Open Access Journals (Sweden)

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  17. Different effect of doxycycline and enrofloxacin on ca¬thelicidin-3 mRNA expression in chickens with or without probiotics supplementati

    Directory of Open Access Journals (Sweden)

    I. Pavlova

    2017-12-01

    Full Text Available The function of immune system of poultry has a significant impact on poultry husbandry sustainabi¬lity. Therefore the aim of this study was to investigate the effect of lactic acid bacteria administered with enrofloxacin or doxycycline on expression levels of antimicrobial peptide cathelicidin-3 (CATH3 at mRNA level in the duodenum, jejunum and liver of broilers. A day-old Ross (n=24 and Duc (n=24 chickens were included in experiments with enrofloxacin and doxycycline, respectively. They were divided into four groups (n=6 for each experiment: control, supplemented with probiotics (15 days via feed, 5 days after hatching, treated with either enrofloxacin or doxycycline (10 mg.kg-1 for 5 days, via drinking water and treated with antibiotic and probiotics. Expression levels of CATH3 mRNA in liver, duodenum and jejunum were determined by RT-PCR and were statistically evaluated by Mann-Whitney test.Administration of probiotics led to insignificant down-regulation of CATH3 mRNA in the investigated tissues. The combination of doxycycline with probiotics led to statistically significant down-regulation of CATH3 mRNA in the duodenum (P<0.01. Statistically significant up-regulation of mRNA of the studied gene was found in the jejunum of enrofloxacin treated Ross chickens. The data suggest the existence of an interaction between antibiotics and innate immunity. Further evaluation in infected poultry would shed more light on the pharmacodynamics of antibacterials.

  18. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    International Nuclear Information System (INIS)

    Leissner, Philippe; Verjat, Thibault; Bachelot, Thomas; Paye, Malick; Krause, Alexander; Puisieux, Alain; Mougin, Bruno

    2006-01-01

    One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA) and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1). In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS) and Breast Cancer specific Survival (BCS) were significantly shorter in patients expressing high levels of PAI-1 mRNA (p < 0.0001; p < 0.0001; respectively). In Cox multivariate analysis, the level of PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR) = 10.12; p = 0.0002) and for BCS (HR = 13.17; p = 0.0003). Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41) nor with BCS (p = 0.19). In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer

  19. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Krause Alexander

    2006-08-01

    Full Text Available Abstract Background One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1. In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. Methods The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. Results uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS and Breast Cancer specific Survival (BCS were significantly shorter in patients expressing high levels of PAI-1 mRNA (p PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR = 10.12; p = 0.0002 and for BCS (HR = 13.17; p = 0.0003. Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41 nor with BCS (p = 0.19. In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. Conclusion These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer patients.

  20. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  1. Cytokine and acute phase protein mRNA expression in liver tissue from pigs with severe sepsis caused by intravenous inoculation of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Nielsen, Ole Lerberg; Olsen, Helle Gerda; Iburg, Tine

    2010-01-01

    elevated at 36 and 48 h. Microabscesses were found in the livers from pigs killed at 12 h only. The livers from pigs killed at 48 h also showed light, diffuse fibrin exudation (vascular leakage). Real-time PCR showed a decreased hepatic expression of mRNA coding for albumin and increased hepatic expression...... of IL-6, IL-8, IL-1β, and CRP. N o increase could be detected in the IL-1α or TNFα liver-mRNA levels. IL-6, IL-8 and IL-1β expression peaked at 24 hours (2-5 fold compared to the control group). In conclusion, the increased liver cytokine mRNA levels indicate a local hepatic, non-infectious inflammatory...

  2. Correlation of Cyfra 21-1 levels in saliva and serum with CK19 mRNA expression in oral squamous cell carcinoma.

    Science.gov (United States)

    Malhotra, Rewa; Urs, Aadithya B; Chakravarti, Anita; Kumar, Suman; Gupta, V K; Mahajan, Bhawna

    2016-07-01

    Oral squamous cell carcinoma (OSCC) accounts for 90 % of malignant lesions of oral cavity. The study assessed the potential of Cyfra 21-1 as a tumor marker in OSCC. The study included 50 patients of OSCC to evaluate levels of Cyfra 21-1 in serum and saliva by electrochemiluminescent immunoassay (ECLIA) and CK19 messenger RNA (mRNA) expression in tissue by florescent quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) along with healthy individuals as control. The salivary and serum Cyfra 21-1 levels in patients of OSCC were significantly higher compared to controls (p value < 0.01). There was a 2.75-fold increase in CK19 mRNA expression in OSCC cases compared to controls. A significant positive correlation was found between serum and salivary Cyfra 21-1, serum Cyfra 21-1, and CK19 mRNA expression and between salivary Cyfra 21-1 and CK19 mRNA expression. Among these, correlation between serum and salivary Cyfra 21-1 was highly significant. Salivary and serum Cyfra 21-1 showed significantly elevated levels in grade II OSCC compared to grade I histopathologically. Elevated levels of salivary Cyfra 21-1 were associated with recurrence in OSCC patients. Reverse operating curve constructed using 3 ng/ml as a cutoff for serum Cyfra 21-1 revealed the sensitivity and specificity to be 88 and 78.2 %, respectively. Using a cutoff value of 8.5 ng/ml for salivary Cyfra 21-1, the sensitivity was found to be 93.8 % and specificity 84.3 %. We advocate salivary Cyfra 21-1 as a better diagnostic marker over serum Cyfra 21-1 as well as a potential marker in the prognosis of OSCC.

  3. Inferring microRNA regulation of mRNA with partially ordered samples of paired expression data and exogenous prediction algorithms.

    Directory of Open Access Journals (Sweden)

    Brian Godsey

    Full Text Available MicroRNAs (miRs are known to play an important role in mRNA regulation, often by binding to complementary sequences in "target" mRNAs. Recently, several methods have been developed by which existing sequence-based target predictions can be combined with miR and mRNA expression data to infer true miR-mRNA targeting relationships. It has been shown that the combination of these two approaches gives more reliable results than either by itself. While a few such algorithms give excellent results, none fully addresses expression data sets with a natural ordering of the samples. If the samples in an experiment can be ordered or partially ordered by their expected similarity to one another, such as for time-series or studies of development processes, stages, or types, (e.g. cell type, disease, growth, aging, there are unique opportunities to infer miR-mRNA interactions that may be specific to the underlying processes, and existing methods do not exploit this. We propose an algorithm which specifically addresses [partially] ordered expression data and takes advantage of sample similarities based on the ordering structure. This is done within a Bayesian framework which specifies posterior distributions and therefore statistical significance for each model parameter and latent variable. We apply our model to a previously published expression data set of paired miR and mRNA arrays in five partially ordered conditions, with biological replicates, related to multiple myeloma, and we show how considering potential orderings can improve the inference of miR-mRNA interactions, as measured by existing knowledge about the involved transcripts.

  4. IL-2 induction of IL-1 beta mRNA expression in monocytes. Regulation by agents that block second messenger pathways

    DEFF Research Database (Denmark)

    Kovacs, E J; Brock, B; Varesio, L

    1989-01-01

    We have previously shown that in mixed cultures of PBL incubation with human rIL-2 induces the rapid expression of IL-1 alpha and IL-1 beta mRNA. Because studies have demonstrated that IL-2R can be expressed on the surface of human peripheral blood monocytes, we chose to investigate whether IL-1 ...

  5. Clinical values of AFP, GPC3 mRNA in peripheral blood for prediction of hepatocellular carcinoma recurrence following OLT: AFP, GPC3 mRNA for prediction of HCC.

    Science.gov (United States)

    Wang, Yuliang; Shen, Zhongyang; Zhu, Zhijun; Han, Ruifa; Huai, Mingsheng

    2011-03-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Annually, about 200,000 patients died of HCC in China. Liver transplantation (LT) holds great theoretical appeal in treating HCC. However, the high recurrence rate after transplantation is the most important limiting factor for long-term survival. To assess the value of alpha-fetoprotein (AFP) messenger RNA (mRNA), Glypican-3 (GPC3) mRNA-expressing cells in the peripheral blood (PB) for prediction of HCC recurrence following orthotopic liver transplantation (OLT). 29 patients with HCC who underwent OLT with a minimum clinical follow-up of 12 months were included in this retrospective study. We detected AFP mRNA, GPC3 mRNA-expressing cells in the PB by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR), pre-, intra- and post-operatively. The early recurrence of patients was evaluated. 8 (28%), 15 (52%), and 9 (31%) patients had AFP mRNA detected pre-, intra-, and post-operatively, respectively. With 12 months of follow-up, HCC recurred in 7 (24%) patients. Univariate analysis revealed that positive pre- and post-operative AFP mRNA, TNM stage as well as vascular invasion were significant predictors for the HCC recurrence. Multivariate analysis revealed that being positive for AFP mRNA pre-operatively remained a significant risk factor for HCC recurrence after OLT. GPC3 mRNA was expressed in all PB samples. There was no significant difference in the expression levels of GPC3 mRNA between the HCC and control groups. There were no significant differences in GPC3 mRNA expression values between those patients with and without tumor recurrence. The pre-operative detection of circulating AFP mRNA-expressing cells could be a useful predictor for HCC recurrence following OLT. GPC3 mRNA-expressing cells in PB seem to have no diagnostic value.

  6. Photobiomodulation on Bax and Bcl-2 Proteins and SIRT1/PGC-1α Axis mRNA Expression Levels of Aging Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fang-Hui Li

    2014-01-01

    Full Text Available Objective. This study aimed to analyze the effects of low level laser irradiation (LLLI on Bax and IGF-1 and Bcl-2 protein contents and SIRT1/PGC-1α axis mRNA expression levels to prevent sarcopenia in aged rats. Material and Methods. Twenty female Sprague Dawley rats (18 months old were randomly divided into two groups (n=10 per group: control (CON and LLLI groups. The gallium-aluminum-arsenium (GaAlAs laser irradiation at 810 nm was used in the single point contact mode (3.75 J/cm2; 0.4 cm2; 125 mW/cm2; 30 s. Bax, Bcl-2, and IGF-1 proteins and SIRT1/PGC-1α axis mRNA expression were assessed 24 h after LLLI on gastrocnemius in aged rat. Results. Gastrocnemius muscle weights, gastrocnemius mass/body mass, Bcl-2/BAX ratio, Bcl-2 protein, IGF-1 protein, and the mRNA contents in SIRT1, PGC-1α, NRF1, TMF, and SOD2 were significantly (P<0.05 increased by LLLI compared to CON group without LLLI. However, levels of BAX protein and caspase 3 mRNA were significantly attenuated by LLLI compared to CON group (P<0.05. Conclusion. LLLI at 810 nm inhibits sarcopenia associated with upregulation of Bcl-2/BAX ratio and IGF-1 and SIRT1/PGC-1α axis mRNA expression in aged rats. This indicates that LLLI has potential to decrease progression of myocyte apoptosis in sarcopenic muscles.

  7. Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC, BDNF, and TrkB mRNA expression in the rat tongue

    Directory of Open Access Journals (Sweden)

    Stähler Frauke

    2009-03-01

    Full Text Available Abstract Background In rodents, dietary Na+ deprivation reduces gustatory responses of primary taste fibers and central taste neurons to lingual Na+ stimulation. However, in the rat taste bud cells Na+ deprivation increases the number of amiloride sensitive epithelial Na+ channels (ENaC, which are considered as the "receptor" of the Na+ component of salt taste. To explore the mechanisms, the expression of the three ENaC subunits (α, β and γ in taste buds were observed from rats fed with diets containing either 0.03% (Na+ deprivation or 1% (control NaCl for 15 days, by using in situ hybridization and real-time quantitative RT-PCR (qRT-PCR. Since BDNF/TrkB signaling is involved in the neural innervation of taste buds, the effects of Na+ deprivation on BDNF and its receptor TrkB expression in the rat taste buds were also examined. Results In situ hybridization analysis showed that all three ENaC subunit mRNAs were found in the rat fungiform taste buds and lingual epithelia, but in the vallate and foliate taste buds, only α ENaC mRNA was easily detected, while β and γ ENaC mRNAs were much less than those in the fungiform taste buds. Between control and low Na+ fed animals, the numbers of taste bud cells expressing α, β and γ ENaC subunits were not significantly different in the fungiform, vallate and foliate taste buds, respectively. Similarly, qRT-PCR also indicated that Na+ deprivation had no effect on any ENaC subunit expression in the three types of taste buds. However, Na+ deprivation reduced BDNF mRNA expression by 50% in the fungiform taste buds, but not in the vallate and foliate taste buds. The expression of TrkB was not different between control and Na+ deprived rats, irrespective of the taste papillae type. Conclusion The findings demonstrate that dietary Na+ deprivation does not change ENaC mRNA expression in rat taste buds, but reduces BDNF mRNA expression in the fungiform taste buds. Given the roles of BDNF in survival of

  8. Myogenic, matrix and growth factor mRNA expression in human skeletal muscle: effect of contraction intensity and feeding

    DEFF Research Database (Denmark)

    Agergaard, Jakob; Reitelseder, Søren; Pedersen, T.G.

    2013-01-01

    . RESULTS: Relative muscle activity differed between HL and LL resistance exercise, whereas median power frequency was even, suggesting an equal muscle-fiber-type recruitment distribution. mRNA expression of Myf6, myogenin, and p21 was mostly increased, and myostatin was mostly depressed by HL resistance...

  9. Pattern-Recognition Receptor Signaling Regulator mRNA Expression in Humans and Mice, and in Transient Inflammation or Progressive Fibrosis

    Science.gov (United States)

    Günthner, Roman; Kumar, Vankayala Ramaiah Santhosh; Lorenz, Georg; Anders, Hans-Joachim; Lech, Maciej

    2013-01-01

    The cell type-, organ-, and species-specific expression of the pattern-recognition receptors (PRRs) are well described but little is known about the respective expression profiles of their negative regulators. We therefore determined the mRNA expression levels of A20, CYLD, DUBA, ST2, CD180, SIGIRR, TANK, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, SHP1, SHP2, TOLLIP, IRF4, SIKE, NLRX1, ERBIN, CENTB1, and Clec4a2 in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. Additionally, we characterized their expression profiles in mononuclear blood cells upon bacterial endotoxin, which showed a consistent induction of A20, SOCS3, IRAK-M, and Clec4a2 in human and murine cells. Furthermore, we studied the expression pattern in transient kidney ischemia-reperfusion injury versus post-ischemic atrophy and fibrosis in mice. A20, CD180, ST2, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, IRF4, CENTB1, and Clec4a2 were all induced, albeit at different times of injury and repair. Progressive fibrosis was associated with a persistent induction of these factors. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to PRR-mediated innate immunity, which seems to be involved in tissue injury, tissue regeneration and in progressive tissue scarring. PMID:24009023

  10. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus.

    Science.gov (United States)

    Järvelä, Juha T; Lopez-Picon, Francisco R; Plysjuk, Anna; Ruohonen, Saku; Holopainen, Irma E

    2011-04-08

    Status epilepticus (SE) is proposed to lead to an age-dependent acute activation of a repertoire of inflammatory processes, which may contribute to neuronal damage in the hippocampus. The extent and temporal profiles of activation of these processes are well known in the adult brain, but less so in the developing brain. We have now further elucidated to what extent inflammation is activated by SE by investigating the acute expression of several cytokines and subacute glial reactivity in the postnatal rat hippocampus. SE was induced by an intraperitoneal (i.p.) injection of kainic acid (KA) in 9- and 21-day-old (P9 and P21) rats. The mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), matrix metalloproteinase-9 (MMP-9), glial-derived neurotrophic factor (GDNF), interferon gamma (IFN-γ), and transforming growth factor-beta 1 (TGF-β1) were measured from 4 h up to 3 days after KA injection with real-time quantitative PCR (qPCR). IL-1β protein expression was studied with ELISA, GFAP expression with western blotting, and microglial and astrocyte morphology with immunohistochemistry 3 days after SE. SE increased mRNA expression of IL-1β, TNF-α and IL-10 mRNA in hippocampus of both P9 and P21 rats, their induction being more rapid and pronounced in P21 than in P9 rats. MMP-9 expression was augmented similarly in both age groups and GDNF expression augmented only in P21 rats, whereas neither IFN-γ nor TGF-β1 expression was induced in either age group. Microglia and astrocytes exhibited activated morphology in the hippocampus of P21 rats, but not in P9 rats 3 d after SE. Microglial activation was most pronounced in the CA1 region and also detected in the basomedial amygdala. Our results suggest that SE provokes an age-specific cytokine expression in the acute phase, and age-specific glial cell activation in the subacute phase as verified now in the postnatal rat hippocampus. In the juvenile hippocampus

  12. Molecular Cloning, mRNA Expression, and Localization of the G-protein Subunit Galphaq in Sheep Testis and Epididymis

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2016-12-01

    Full Text Available The reproductive function of G-protein subunit Galphaq (GNAQ, a member of the G protein alpha subunit family, has been extensively studied in humans and rats. However, no data is available on its status in ruminants. The objectives of this study were to evaluate the expression pattern of the GNAQ in the testis and epididymis of sheep by polymerase chain reaction (PCR. The mRNA expression levels were detected by real-time fluorescent quantitative PCR, and cellular localization of GNAQ in the testis and epididymis was examined by immunohistochemistry. Additionally, GNAQ protein was qualitatively evaluated via western blot, with the results indicating that similarities between GNAQ mRNA levels from sheep was highly conserved with those observed in Bos taurus and Sus scrofa. Our results also indicated that GNAQ exists in the caput and cauda epididymis of sheep, while GNAQ in the testis and epididymis was localized to Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells, spermatid, principal cells, and epididymis interstitial cells. The concentrations of GNAQ mRNA and protein in the caput and cauda epididymis were significantly greater than those observed in the corpus epididymis (p<0.01 and testis (p<0.05. Our results indicated that GNAQ exists at high concentrations in the caput and cauda epididymis of sheep, suggesting that GNAQ may play an important role in gonad development and sperm maturation.

  13. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    Science.gov (United States)

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  14. Increased mRNA expression of cytochrome oxidase in dorsal raphe nucleus of depressive suicide victims

    Directory of Open Access Journals (Sweden)

    A Sanchez-Bahillo

    2008-04-01

    Full Text Available A Sanchez-Bahillo1, V Bautista-Hernandez1, Carlos Barcia Gonzalez1, R Bañon2, A Luna2, EC Hirsch3, Maria-Trinidad Herrero11Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED; 2Department of Legal Medicine, Department of Human Anatomy, School of Medicine, University of Murcia, Campus de Espinardo, Murcia 30100, Spain; 3INSERM U679 Hôpital de la Salpêtrière, Boulevard de l’Hôpital, Paris, FranceAbstract: Suicidal behavior is a problem with important social repercussions. Some groups of the population show a higher risk of suicide; for example, depression, alcoholism, psychosis or drug abuse frequently precedes suicidal behavior. However, the relationship between metabolic alterations in the brain and premorbid clinical symptoms of suicide remains uncertain. The serotonergic and noradrenergic systems have frequently been, implicated in suicidal behavior and the amount of serotonin in the brain and CSF of suicide victims has been found to be low compared with normal subjects. However, there are contradictory results regarding the role of noradrenergic neurons in the mediation of suicide attempts, possibly reflecting the heterogeneity of conditions that lead to a common outcome. In the present work we focus on the subgroup of suicide victims that share a common diagnosis of major depression. Based on post-mortem studies analyzing mRNA expression by in situ hybridization, serotonergic neurons from the dorsal raphe nucleus (DRN from depressive suicide victims are seen to over-express cytochrome oxidase mRNA. However, no corresponding changes were found in the expression of tyrosine hydroxylase (TH mRNA in the noradrenergic neurons of the Locus Coeruleus (LC. These results suggest that, despite of the low levels of serotonin described in suicide victims, the activity of DRN neurons could increase in the suicidally depressed, probably due to the over activation of

  15. Definition of the complete Schistosoma mansoni hemoglobinase mRNA sequence and gene expression in developing parasites.

    Science.gov (United States)

    el Meanawy, M A; Aji, T; Phillips, N F; Davis, R E; Salata, R A; Malhotra, I; McClain, D; Aikawa, M; Davis, A H

    1990-07-01

    Schistosoma mansoni uses a variety of proteases termed hemoglobinases to obtain nutrition from host globin. Previous reports have characterized cDNAs encoding 1 of these enzymes. However, these sequences did not define the primary structures of the mRNA and protein. The complete sequence of the 1390 base mRNA has now been determined. It encodes a 50 kDa primary translation product. In vitro translations coupled with immunoprecipitations and Western blots of parasite lysates allowed visualization of the 50 kDa form. Production of the 31 kDa mature hemoglobinase from the 50 kDa species involves removal of both NH2 and COOH terminal residues from the primary translation product. Expression of hemoglobinase mRNA and protein was examined during larval parasite development. Low levels were observed in young schistosomula. After 6-9 days in culture, high hemoglobinase levels were seen which correlated with the onset of red blood cell feeding. Immunoelectron microscopy was employed to examine hemoglobinase location and function. In adult worms the enzyme was associated with the gut lumen and gut epithelium. In cercariae, the protease was observed in the head gland, suggesting new roles for the protease.

  16. Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase.

    Science.gov (United States)

    Uehara, Maiko; Tabata, Eri; Ishii, Kazuhiro; Sawa, Akira; Ohno, Misa; Sakaguchi, Masayoshi; Matoska, Vaclav; Bauer, Peter O; Oyama, Fumitaka

    2018-05-09

    Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey ( Macaca fascicularis ) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey⁻mouse⁻human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.

  17. Global survey of mRNA levels and decay rates of Chlamydia trachomatis trachoma and lymphogranuloma venereum biovars

    Directory of Open Access Journals (Sweden)

    Rita Ferreira

    2017-07-01

    Full Text Available Interpreting the intricate bacterial transcriptomics implies understanding the dynamic relationship established between de novo transcription and the degradation of transcripts. Here, we performed a comparative overview of gene expression levels and mRNA decay rates for different-biovar (trachoma and lymphogranuloma venereum strains of the obligate intracellular bacterium Chlamydia trachomatis. By using RNA-sequencing to measure gene expression levels at mid developmental stage and mRNA decay rates upon rifampicin-based transcription blockage, we observed that: i 60–70% of the top-50 expressed genes encode proteins with unknown function and proteins involved in “Translation, ribosomal structure and biogenesis” for all strains; ii the expression ranking by genes' functional categories was in general concordant among different-biovar strains; iii the median of the half-life time (t1/2 values of transcripts were 15–17 min, indicating that the degree of transcripts’ stability seems to correlate with the bacterial intracellular life-style, as these values are considerably higher than the ones observed in other studies for facultative intracellular and free-living bacteria; iv transcript decay rates were highly heterogeneous within each C. trachomatis strain and did not correlate with steady-state expression levels; v only at very few instances (essentially at gene functional category level was possible to unveil dissimilarities potentially underlying phenotypic differences between biovars. In summary, the unveiled transcriptomic scenario, marked by a general lack of correlation between transcript production and degradation and a huge inter-transcript heterogeneity in decay rates, likely reflects the challenges underlying the unique biphasic developmental cycle of C. trachomatis and its intricate interactions with the human host, which probably exacerbate the complexity of the bacterial transcription regulation.

  18. Muscarinic receptor subtype mRNA expression in the human prostate: association with age, pathological diagnosis, prostate size, or potentially interfering medications?

    NARCIS (Netherlands)

    Witte, Lambertus P. W.; Teitsma, Christine A.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2014-01-01

    As the prostate abundantly expresses muscarinic receptors and antagonists for such receptors are increasingly used in the treatment of men with voiding function and large prostates, we have explored an association of the mRNA expression of human M1, M2, M3, M4, and M5 receptors in human prostate

  19. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  20. Serotonin 2A and 2C receptor biosynthesis in the rodent striatum during postnatal development: mRNA expression and functional linkage to neuropeptide gene regulation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-11-01

    The present study was designed to determine if there are region-specific differences in serotonin (5-HT) neurotransmission and 5-HT receptor expression that may limit the stimulatory effects of the 5-HT releaser p-chloroamphetamine (pCA) on striatal neuropeptide gene expression to the posterior striatum (P-STR) during postnatal maturation. Sprague-Dawley rat brains from postnatal days (PND) 1-35 were processed for 5-HT(2A) and 5-HT(2C) receptor mRNA expression by in situ hybridization and monoamine analysis by HPLC. Within the P-STR, 5-HT(2A) receptor mRNA expression reached young adult (PND 35) levels by PND 3, while levels in the A-STR were significantly less (range: 1.43 +/- 0.219-6. 36 +/- 0.478) than P-STR (5.36 +/- 0.854-12.11 +/- 1.08) at each respective age throughout the time course. 5-HT(2C) receptor mRNA expression reached young adult levels at PND 7 in the A-STR and by PND 3 in the P-STR. At each PND age 5-HT(2C) receptor mRNA levels within the P-STR were significantly less (6.23 +/- 1.02-12.32 +/- 0.427) than the A-STR (7.31 +/- 1.65-26.84 +/- 2.24). 5-HT content increased across the developmental time course within the P-STR (5.01 +/- 0.327-15.7 +/- 1.03 ng/mg protein) and A-STR (2.97 +/- 0. 223-11.2 +/- 0.701 ng/mg protein). Four hours following injection (i. p.) of pCA (10 mg/kg), preprotachykinin (PPT) mRNA levels increased 89% in the P-STR but not the anterior (A-STR) striatum of the 3-week-old rat, which were prevented by preinjection (30 min, i.p.) of the 5-HT(2) receptor antagonist ritanserin (1 mg/kg). Together, these data suggest that faster maturity of 5-HT(2A) receptor expression in the P-STR may be sufficient to convey the region-specific acute stimulatory effects of pCA on PPT mRNA transcription in the developing rodent striatum. These results provide further evidence that the influence of 5-HT on neuropeptide gene expression is far stronger in caudal vs. rostral striatal regions during postnatal development. Copyright 2000 Wiley

  1. Distribution and mRNA Expression of BAMBI in Non-small-cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Shen MIAO

    2009-03-01

    Full Text Available Background and objective BAMBI structure is similar with that of the receptor Ⅰof TGF-β, it broadly participates in the control of TGF-β signaling. The aim of this study is to investigate the expression and its significance of BAMBI in non-small cell lung cancer (NSCLC and explore the relation between BAMBI and clinical and pathological factors of NSCLC. Methods Sixty-three cases with NSCLC and adjacent normal tissue specimens were used for immunohistochemical assay. Thirty-one fresh lung cancer tissue specimens and surrounding normal lung tissue specimens was preserved for RT-PCR in -70 ℃ after quick-frozen in liquid nitrogen immediately. Results The level of BAMBI mRNA in cancer tissues was higher than that in the corresponding adjacent tissues (0.358±0.135 vs 0.249±0.129, with the difference being statistically significant (P =0.003. BAMBI protein expressed mainly in the membrane and the cytoplasm close to the membrane, its expression in the cancer tissue was higher than that in the adjacent tissues, the difference was significant (P <0.01. Expression of BAMBI in the cancer tissue was higher than that in the adjacent tissues, and the expression of BAMBI in adenocarcinoma of lung is higher than that in squamous carcinoma. Conclusion The expressions of BAMBI significantly increase in NSCLC. It might be a common affair in carcinogenesis of NSCLC.

  2. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    Directory of Open Access Journals (Sweden)

    Deutsch Eric W

    2008-05-01

    Full Text Available Abstract Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63. Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50 but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers.

  3. Prognostic impact of clinical course-specific mRNA expression profiles in the serum of perioperative patients with esophageal cancer in the ICU: a case control study

    Directory of Open Access Journals (Sweden)

    Oshima Yoshiaki

    2010-10-01

    Full Text Available Abstract Background We previously reported that measuring circulating serum mRNAs using quantitative one-step real-time RT-PCR was clinically useful for detecting malignancies and determining prognosis. The aim of our study was to find crucial serum mRNA biomarkers in esophageal cancer that would provide prognostic information for post-esophagectomy patients in the critical care setting. Methods We measured serum mRNA levels of 11 inflammatory-related genes in 27 post-esophagectomy patients admitted to the intensive care unit (ICU. We tracked these levels chronologically, perioperatively and postoperatively, until the two-week mark, investigating their clinical and prognostic significance as compared with clinical parameters. Furthermore, we investigated whether gene expression can accurately predict clinical outcome and prognosis. Results Circulating mRNAs in postoperative esophagectomy patients had gene-specific expression profiles that varied with the clinical phase of their treatment. Multivariate regression analysis showed that upregulation of IL-6, VWF and TGF-β1 mRNA in the intraoperative phase (p = 0.016, 0.0021 and 0.009 and NAMPT and MUC1 mRNA on postoperative day 3 (p ®, Ono Pharmaceutical Co., Ltd. significantly correlated with MUC1 and NAMPT mRNA expression (p = 0.048 and 0.045. IL-6 mRNA correlated with hypercytokinemia and recovery from hypercytokinemia (sensitivity 80.9% and was a significant biomarker in predicting the onset of severe inflammatory diseases. Conclusion Chronological tracking of postoperative mRNA levels of inflammatory-related genes in esophageal cancer patients may facilitate early institution of pharamacologic therapy, prediction of treatment response, and prognostication during ICU management in the perioperative period.

  4. LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression.

    Directory of Open Access Journals (Sweden)

    Donald B Bloch

    Full Text Available The mRNA processing body (P-body is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1 is a murine oocyte RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. In this study, autoantibodies were used to identify Limkain B (LMKB, the human orthologue of MARF1, as a P-body component. Indirect immunofluorescence demonstrated that Ge-1 (a central component of the mammalian core-decapping complex co-localized with LMKB in P-bodies. Two-hybrid and co-immunoprecipitation assays were used to demonstrate interaction between Ge-1 and LMKB. The C-terminal 120 amino acids of LMKB mediated interaction with Ge-1 and the N-terminal 1094 amino acids of Ge-1 were required for interaction with LMKB. LMKB is the first protein identified to date that interacts with this portion of Ge-1. LMKB was expressed in human B and T lymphocyte cell lines; depletion of LMKB increased expression of IFI44L, a gene that has been implicated in the cellular response to Type I interferons. The interaction between LMKB/MARF1, a protein that contains RNA-binding domains, and Ge-1, which interacts with core-decapping proteins, suggests that LMKB has a role in the regulation of mRNA stability. LMKB appears to have different functions in different cell types: maintenance of genomic stability in developing oocytes and possible dampening of the inflammatory response in B and T cells.

  5. Visfatin, TNF-alpha and IL-6 mRNA expression is increased in mononuclear cells from type 2 diabetic women.

    Science.gov (United States)

    Tsiotra, P C; Tsigos, C; Yfanti, E; Anastasiou, E; Vikentiou, M; Psarra, K; Papasteriades, C; Raptis, S A

    2007-10-01

    Visfatin, is a new adipokine, highly expressed in the visceral fat of both mice and humans. To examine whether visfatin is expressed in human peripheral monocyte-enriched mononuclear cells and whether its expression is altered in type 2 diabetes (DM2), we compared 24 DM2 women [17 overweight (BMI >25) and 7 lean (BMIwomen (14 overweight and 12 lean), all premenopausal. Relative visfatin mRNA levels were significantly higher (approximately 3-fold) in DM2 compared to healthy control women (pDM2 compared to control women (p=0.001 and p=0.004, respectively), an increase observed in both lean and overweight DM2 women. By contrast, circulating visfatin, TNF-alpha, and IL-6 levels showed no difference between DM2 and control women, while adiponectin plasma levels were significantly decreased in the DM2 women (pDM2 and control women, while IL-6 plasma levels were significantly higher in both overweight subgroups compared to their lean counterparts. In conclusion, visfatin, TNF-alpha, and IL-6 mRNA expressions are increased in peripheral mononuclear-monocytic cells from women with type 2 diabetes, independent of their BMI, which may enhance the effects of their adipose-derived levels and may contribute to the increased insulin resistance and atherogenic risk of these patients.

  6. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    International Nuclear Information System (INIS)

    Nakamori, Taizo; Fujimori, Akira; Kinoshita, Keiji; Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi

    2010-01-01

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by γ-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  7. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, Taizo, E-mail: taizo@ynu.ac.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Fujimori, Akira [Heavy-Ion Radiobiology Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kinoshita, Keiji [Nagoya University Avian Bioscience Research Centre, Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-05-15

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by gamma-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  8. Intragraft interleukin 2 mRNA expression during acute cellular rejection and left ventricular total wall thickness after heart transplantation

    NARCIS (Netherlands)

    de Groot-Kruseman, H A; Baan, C C; Hagman, E M; Mol, W M; Niesters, H G; Maat, A P; Zondervan, P E; Weimar, W; Balk, A H

    OBJECTIVE: To assess whether diastolic graft function is influenced by intragraft interleukin 2 (IL-2) messenger RNA (mRNA) expression in rejecting cardiac allografts. DESIGN: 16 recipients of cardiac allografts were monitored during the first three months after transplantation. The presence of IL-2

  9. Occupational Toluene Exposure Induces Cytochrome P450 2E1 mRNA Expression in Peripheral Lymphocytes

    Science.gov (United States)

    Mendoza-Cantú, Ania; Castorena-Torres, Fabiola; de León, Mario Bermúdez; Cisneros, Bulmaro; López-Carrillo, Lizbeth; Rojas-García, Aurora E.; Aguilar-Salinas, Alberto; Manno, Maurizio; Albores, Arnulfo

    2006-01-01

    Print workers are exposed to organic solvents, of which the systemic toxicant toluene is a main component. Toluene induces expression of cytochrome P450 2E1 (CYP2E1), an enzyme involved in its own metabolism and that of other protoxicants, including some procarcinogens. Therefore, we investigated the association between toluene exposure and the CYP2E1 response, as assessed by mRNA content in peripheral lymphocytes or the 6-hydroxychlorzoxazone (6OH-CHZ)/chlorzoxazone (CHZ) quotient (known as CHZ metabolic ratio) in plasma, and the role of genotype (5′-flanking region RsaI/PstI polymorphic sites) in 97 male print workers. The geometric mean (GM) of toluene concentration in the air was 52.80 ppm (10–760 ppm); 54% of the study participants were exposed to toluene concentrations that exceeded the maximum permissible exposure level (MPEL). The GM of urinary hippuric acid at the end of a work shift (0.041 g/g creatinine) was elevated relative to that before the shift (0.027 g/g creatinine; p < 0.05). The GM of the CHZ metabolic ratio was 0.33 (0–9.3), with 40% of the subjects having ratios below the GM. However, the average CYP2E1 mRNA level in peripheral lymphocytes was 1.07 (0.30–3.08), and CYP2E1 mRNA levels within subjects correlated with the toluene exposure ratio (environmental toluene concentration:urinary hippuric acid concentration) (p = 0.014). Genotype did not alter the association between the toluene exposure ratio and mRNA content. In summary, with further validation, CYP2E1 mRNA content in peripheral lymphocytes could be a sensitive and noninvasive biomarker for the continuous monitoring of toluene effects in exposed persons. PMID:16581535

  10. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    Science.gov (United States)

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid

  11. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  12. Selection of the in vitro culture media influences mRNA expression of Hedgehog genes, Il-6, and important genes regarding reactive oxygen species in single murine preimplantation embryos.

    Science.gov (United States)

    Pfeifer, N; Baston-Büst, D M; Hirchenhain, J; Friebe-Hoffmann, U; Rein, D T; Krüssel, J S; Hess, A P

    2012-01-01

    The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.

  13. Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    Science.gov (United States)

    Pfeifer, N.; Baston-Büst, D. M.; Hirchenhain, J.; Friebe-Hoffmann, U.; Rein, D. T.; Krüssel, J. S.; Hess, A. P.

    2012-01-01

    Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies. PMID:22919324

  14. Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    N. Pfeifer

    2012-01-01

    Full Text Available Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK’s Cleavage medium or Vitrolife’s G-1 PLUS medium or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.

  15. mRNA transfection of mouse and human neural stem cell cultures.

    Directory of Open Access Journals (Sweden)

    Samuel McLenachan

    Full Text Available The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  16. mRNA Transfection of Mouse and Human Neural Stem Cell Cultures

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J.; Chen, Fred K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages. PMID:24386231

  17. mRNA transfection of mouse and human neural stem cell cultures.

    Science.gov (United States)

    McLenachan, Samuel; Zhang, Dan; Palomo, Ana Belén Alvarez; Edel, Michael J; Chen, Fred K

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported. Here we sought to establish an efficient method for delivering mRNA to primary neurosphere cultures. Neurospheres derived from the subventricular zone of adult mice or from human embryonic stem cells were transfected with EGFP mRNA by lipofection and electroporation. Transfection efficiency and expression levels were monitored by flow cytometry. Cell survival following transfection was examined using live cell counting and the MTT assay. Both lipofection and electroporation provided high efficiency transfection of neurospheres. In comparison with lipofection, electroporation resulted in increased transfection efficiencies, but lower expression per cell and shorter durations of expression. Additional rounds of lipofection renewed EGFP expression in neurospheres, suggesting this method may be suitable for reprogramming applications. In summary, we have developed a protocol for achieving high efficiency transfection rates in mouse and human neurosphere cell culture that can be applied for future studies of gene function studies in neural stem cells, such as defining efficient differentiation protocols for glial and neuronal linages.

  18. Association of suboptimal health status with psychosocial stress, plasma cortisol and mRNA expression of glucocorticoid receptor α/β in lymphocyte.

    Science.gov (United States)

    Yan, Yu-Xiang; Dong, Jing; Liu, You-Qin; Zhang, Jie; Song, Man-Shu; He, Yan; Wang, Wei

    2015-01-01

    Suboptimal health status (SHS) has become a new public health challenge in China. This study investigated whether high SHS is associated with psychosocial stress, changes in cortisol level and/or glucocorticoid receptor (GR) isoform expression. Three-hundred eighty-six workers employed in three companies in Beijing were recruited. The SHS score was derived from data collection in the SHS questionnaire (SHSQ-25). The short standard version of the Copenhagen Psychosocial Questionnaire (COPSOQ) was used to assess job-related psychosocial stress. The mean value of the five scales of COPSOQ and distribution of plasma cortisol and mRNA expression of GRα/GRβ between the high level of SHS group and the low level of SHS group were compared using a general linear model procedure. Multiple linear regression analysis was used to analyze the effect of psychosocial stress on SHS. We identified three factors that were predictive of SHS, including "demands at work", "interpersonal relations and leadership" and "insecurity at work". Significantly higher levels of plasma cortisol and GRβ/GRα mRNA ratio were observed among the high SHS group. High level of SHS is associated with decreased mRNA expression of GRα. This study confirmed the association between chronic psychosocial stress and SHS, indicating that improving the psychosocial work environment may reduce SHS and then prevent chronic diseases effectively.

  19. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation.

    Directory of Open Access Journals (Sweden)

    Clément Chevalier

    2010-03-01

    Full Text Available Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.

  20. Differential Expression of Sox11 and Bdnf mRNA Isoforms in the Injured and Regenerating Nervous Systems

    Directory of Open Access Journals (Sweden)

    Felix L. Struebing

    2017-11-01

    Full Text Available In both the central nervous system (CNS and the peripheral nervous system (PNS, axonal injury induces changes in neuronal gene expression. In the PNS, a relatively well-characterized alteration in transcriptional activation is known to promote axonal regeneration. This transcriptional cascade includes the neurotrophin Bdnf and the transcription factor Sox11. Although both molecules act to facilitate successful axon regeneration in the PNS, this process does not occur in the CNS. The present study examines the differential expression of Sox11 and Bdnf mRNA isoforms in the PNS and CNS using three experimental paradigms at different time points: (i the acutely injured CNS (retina after optic nerve crush and PNS (dorsal root ganglion after sciatic nerve crush, (ii a CNS regeneration model (retina after optic nerve crush and induced regeneration; and (iii the retina during a chronic form of central neurodegeneration (the DBA/2J glaucoma model. We find an initial increase of Sox11 in both PNS and CNS after injury; however, the expression of Bdnf isoforms is higher in the PNS relative to the CNS. Sustained upregulation of Sox11 is seen in the injured retina following regeneration treatment, while the expression of two Bdnf mRNA isoforms is suppressed. Furthermore, two isoforms of Sox11 with different 3′UTR lengths are present in the retina, and the long isoform is specifically upregulated in later stages of glaucoma. These results provide insight into the molecular cascades active during axonal injury and regeneration in mammalian neurons.

  1. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor β mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor β 1 and β 3 . Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor βmRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs

  2. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenda [College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 (China); Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); He, Kaiyu [Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States); Zhou, Hui-Ren [Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Berthiller, Franz [Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, University of Natural Resources and Life Sciences, Tulln (Austria); Adam, Gerhard [Dept. of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (Austria); Sugita-Konishi, Yoshiko [Food and Life Sciences, Azabu University, 1-17-71 Fuchinobe Chuo-ku, Sagamihara, Kanagawa Pref., 252-5201 (Japan); Watanabe, Maiko [Division of Microbiology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501 (Japan); Krantis, Anthony [Dept. of Cellular and Molecular Medicine, University of Ottawa (Canada); Durst, Tony [Dept. of Chemistry, University of Ottawa (Canada); Zhang, Haibin [College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 (China); Pestka, James J., E-mail: pestka@msu.edu [Dept. of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Dept. of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2014-07-15

    The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6 h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), the plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1β, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1β mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528's effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity. - Highlights: • We compared effects of DON congeners on biomarker proinflammatory genes in mice. • Oral DON induced splenic IL-1β, IL-6, TNF-α,CXCL-2, CCL-2 and CCL-7 mRNAs. • 8-Ketotrichothecene ranking

  3. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse

    International Nuclear Information System (INIS)

    Wu, Wenda; He, Kaiyu; Zhou, Hui-Ren; Berthiller, Franz; Adam, Gerhard; Sugita-Konishi, Yoshiko; Watanabe, Maiko; Krantis, Anthony; Durst, Tony; Zhang, Haibin; Pestka, James J.

    2014-01-01

    The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6 h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), the plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1β, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1β mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528's effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity. - Highlights: • We compared effects of DON congeners on biomarker proinflammatory genes in mice. • Oral DON induced splenic IL-1β, IL-6, TNF-α,CXCL-2, CCL-2 and CCL-7 mRNAs. • 8-Ketotrichothecene ranking

  4. Differential regulation of proopiomelanocortin (POMC mRNA expression in hypothalamus and anterior pituitary following repeated cyanamide with ethanol administration

    Directory of Open Access Journals (Sweden)

    Kinoshita Hiroshi

    2005-01-01

    Full Text Available Background/Aim. We have investigated proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of the hypothalamus (ARC and the anterior lobe of the pituitary (AL following repeated cyanamide-ethanol reaction (CER. Methods. Adult male Sprague -Dawley rats (250 −290 gr were housed in a temperature and humidity controlled environment with free access to food and water. Four experimental groups were used as follows: saline (as control, cyanamide alone, ethanol alone and ethanol with cyanamide. The animals received daily intraperitoneal injections (i.p. of cyanamide (10mg/kg, 60 min before ethanol dosing with or without ethanol (1g/kg for 5 consecutive days, and were sacrificed 60 min after the last dosing of ethanol. The results were presented as the mean ± SEM for each group. All groups within each data set were compared by one-way ANOVA followed by Fisher PLSD test for multiple comparisons. A value of p<0.05 was considered significant. Results. The POMC mRNA levels in ARC were significantly decreased with cyanamide compared to the control and ethanol alone (p<0.05 and p<0.05 respectively, but increased in AL following repeated CER. Conclusion. We speculate that this differential regulation of POMC mRNA expression may be partially involved in the preventive effects on alcohol intake in response to CER.

  5. Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems.

    Directory of Open Access Journals (Sweden)

    Abdimajid Osman

    Full Text Available Platelet concentrates (PCs are prepared at blood banks for transfusion to patients in certain clinical conditions associated with a low platelet count. To prevent transfusion-transmitted infections via PCs, different pathogen reduction (PR systems have been developed that inactivate the nucleic acids of contaminating pathogens by chemical cross-linking, a mechanism that may also affect platelets' nucleic acids. We previously reported that treatment of stored platelets with the PR system Intercept significantly reduced the level of half of the microRNAs that were monitored, induced platelet activation and compromised the platelet response to physiological agonists. Using genome-wide differential expression (DE RNA sequencing (RNA-Seq, we now report that Intercept markedly perturbs the mRNA transcriptome of human platelets and alters the expression level of >800 mRNAs (P<0.05 compared to other PR systems and control platelets. Of these, 400 genes were deregulated with DE corresponding to fold changes (FC ≥ 2. At the p-value < 0.001, as many as 147 genes were deregulated by ≥ 2-fold in Intercept-treated platelets, compared to none in the other groups. Finally, integrated analysis combining expression data for microRNA (miRNA and mRNA, and involving prediction of miRNA-mRNA interactions, disclosed several positive and inverse correlations between miRNAs and mRNAs in stored platelets. In conclusion, this study demonstrates that Intercept markedly deregulates the platelet mRNA transcriptome, concomitant with reduced levels of mRNA-regulatory miRNAs. These findings should enlighten authorities worldwide when considering the implementation of PR systems, that target nucleic acids and are not specific to pathogens, for the management of blood products.

  6. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F; Hylenius, Sine; Rørbye, Christina

    2003-01-01

    between mother and fetus in several ways. Finally, the expression of membrane-bound HLA-G and soluble HLA-G has been proposed to influence the outcome of pregnancy, and an aberrant HLA-G expression in pre-eclamptic placentas and spontaneous abortions has been reported. Here, an association between certain...... HLA-G polymorphisms and the mRNA levels of the different alternatively spliced HLA-G isoforms in first trimester trophoblast cell populations is reported. Several alternatively spliced HLA-G mRNA isoforms, including a 14-bp polymorphism in the 3'UTR end (exon 8) of the HLA-G gene, are expressed...

  7. Macrophage Migration Inhibitory Factor Promoter Polymorphisms (−794 CATT5–8 and −173 G>C: Relationship with mRNA Expression and Soluble MIF Levels in Young Obese Subjects

    Directory of Open Access Journals (Sweden)

    Inés Matia-García

    2015-01-01

    Full Text Available We analyzed the relationship of −794 CATT5–8 and −173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of −794 CATT5–8 and −173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold, while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the −794 CATT5–8 and −173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects.

  8. ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel

    Directory of Open Access Journals (Sweden)

    Wang Tingting

    2008-04-01

    Full Text Available Abstract Background One of the major challenges in currently chemotherapeutic theme is lacking effective biomarkers for drug response and sensitivity. Our current study focus on two promising biomarkers, ERCC1 (excision repair cross-complementing group 1 and BRCA1 (breast cancer susceptibility gene 1. To investigate their potential role in serving as biomarkers for drug sensitivity in cancer patients with metastases, we statistically measure the mRNA expression level of ERCC1 and BRCA1 in tumor cells isolated from malignant effusions and correlate them with cisplatin and/or docetaxel chemosensitivity. Methods Real-time quantitative PCR is used to analysis related genes expression in forty-six malignant effusions prospectively collected from non-small cell lung cancer (NSCLC, gastric and gynecology cancer patients. Viable tumor cells obtained from malignant effusions are tested for their sensitivity to cisplatin and docetaxel using ATP-TCA assay. Results ERCC1 expression level is negatively correlated with the sensitivity to cisplatin in NSCLC patients (P = 0.001. In NSCLC and gastric group, BRCA1 expression level is negatively correlated with the sensitivity to cisplatin (NSCLC: P = 0.014; gastric: P = 0.002 while positively correlated with sensitivity to docetaxel (NSCLC: P = 0.008; gastric: P = 0.032. A significant interaction is found between ERCC1 and BRCA1 mRNA expressions on sensitivity to cisplatin (P = 0.010, n = 45. Conclusion Our results demonstrate that ERCC1 and BRCA1 mRNA expression levels are correlated with in vitro chemosensitivity to cisplatin and/or docetaxel in malignant effusions of NSCLC and gastric cancer patients. And combination of ERCC1 and BRCA1 may have a better role on predicting the sensitivity to cisplatin than the single one is considered.

  9. Maternal nutrient restriction in mid-to-late gestation influences fetal mRNA expression in muscle tissues in beef cattle.

    Science.gov (United States)

    Paradis, Francois; Wood, Katie M; Swanson, Kendall C; Miller, Stephen P; McBride, Brian W; Fitzsimmons, Carolyn

    2017-08-18

    Manipulating maternal nutrition during specific periods of gestation can result in re-programming of fetal and post-natal development. In this experiment we investigated how a feed restriction of 85% compared with 140% of total metabolizable energy requirements, fed to cows during mid-to-late gestation, influences phenotypic development of fetuses and mRNA expression of growth (Insulin-Like Growth Factor family and Insulin Receptor (INSR)), myogenic (Myogenic Differentiation 1 (MYOD1), Myogenin (MYOG), Myocyte Enhancer Factor 2A (MEF2A), Serum Response Factor (SRF)) and adipogenic (Peroxisome Proliferator Activated Receptor Gamma (PPARG)) genes in fetal longissimus dorsi (LD) and semitendinosus (ST) muscle. DNA methylation of imprinted genes, Insulin Like Growth Factor 2 (IGF2) and Insulin Like Growth Factor 2 Receptor (IGF2R), and micro RNA (miRNA) expression, were also examined as potential consequences of poor maternal nutrition, but also potential regulators of altered gene expression patterns. While the nutrient restriction impacted dam body weight, no differences were observed in phenotypic fetal measurements (weight, crown-rump length, or thorax circumference). Interestingly, LD and ST muscles responded differently to the differential pre-natal nutrient levels. While LD muscle of restricted fetal calves had greater mRNA abundances for Insulin Like Growth Factor 1 and its receptor (IGF1 and IGF1R), IGF2R, INSR, MYOD1, MYOG, and PPARG, no significant differences were observed for gene expression in ST muscle. Similarly, feed restriction had a greater impact on the methylation level of IGF2 Differentially Methylated Region 2 (DMR2) in LD muscle as compared to ST muscle between treatment groups. A negative correlation existed between IGF2 mRNA expression and IGF2 DMR2 methylation level in both LD and ST muscles. Differential expression of miRNAs 1 and 133a were also detected in LD muscle. Our data suggests that a nutrient restriction of 85% as compared to 140

  10. SIRT1 and FOXO1 mRNA expression in PBMC correlates to physical activity in COPD patients

    Directory of Open Access Journals (Sweden)

    Taka C

    2017-11-01

    Full Text Available Chihiro Taka, Ryuji Hayashi, Kazuki Shimokawa, Kotaro Tokui, Seisuke Okazawa, Kenta Kambara, Minehiko Inomata, Toru Yamada, Shoko Matsui, Kazuyuki Tobe First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Toyama, Japan Background: Physical activity (PA is considered as one of the most important prognostic predictors in chronic obstructive pulmonary disease (COPD patients. Longevity gene, SIRT1, is reported to be involved in the pathogenesis of COPD by regulating the signaling pathways of oxidative stress, inflammation, and aging. We hypothesize that SIRT1 and related genes are also associated with the benefits of PA in COPD patients.Methods: Eighteen COPD outpatients were enrolled in this study, and their PA level was assessed with an accelerometer. We assessed the SIRT1 and related genes mRNA expression levels in the peripheral blood mononuclear cells (PBMCs of the subjects. We carried out respiratory function testing, blood gas analysis, the 6-minute walk test, and measurement of the cross-sectional area of the erector spinae muscles (ESMCSA by chest computed tomography. We analyzed the association of PA with the results of each of the examinations.Results: The mean age was 72±9 years, and the mean forced expiratory volume in 1 second was 1.4±0.56 L (52%±19% predicted. Our findings revealed a correlation between the daily PA and ESMCSA. The SIRT1 and Forkhead box O (FOXO1 mRNA expression levels in PBMCs were positively correlated with moderate-PA time (r=0.60, p=0.008 for SIRT1 and r=0.59, p=0.01 for FOXO1. Keywords: COPD, accelerometer, mRNA, walking, sedentary, moderate

  11. Decreased BECN1 mRNA Expression in Human Breast Cancer is Associated With Estrogen Receptor-Negative Subtypes and Poor Prognosis

    Directory of Open Access Journals (Sweden)

    Hao Tang

    2015-03-01

    Full Text Available Both BRCA1 and Beclin 1 (BECN1 are tumor suppressor genes, which are in close proximity on the human chromosome 17q21 breast cancer tumor susceptibility locus and are often concurrently deleted. However, their importance in sporadic human breast cancer is not known. To interrogate the effects of BECN1 and BRCA1 in breast cancer, we studied their mRNA expression patterns in breast cancer patients from two large datasets: The Cancer Genome Atlas (TCGA (n = 1067 and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC (n = 1992. In both datasets, low expression of BECN1 was more common in HER2-enriched and basal-like (mostly triple-negative breast cancers compared to luminal A/B intrinsic tumor subtypes, and was also strongly associated with TP53 mutations and advanced tumor grade. In contrast, there was no significant association between low BRCA1 expression and HER2-enriched or basal-like subtypes, TP53 mutations or tumor grade. In addition, low expression of BECN1 (but not low BRCA1 was associated with poor prognosis, and BECN1 (but not BRCA1 expression was an independent predictor of survival. These findings suggest that decreased mRNA expression of the autophagy gene BECN1 may contribute to the pathogenesis and progression of HER2-enriched, basal-like, and TP53 mutant breast cancers.

  12. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers

    International Nuclear Information System (INIS)

    Hanova, Monika; Stetina, Rudolf; Vodickova, Ludmila; Vaclavikova, Radka; Hlavac, Pavel; Smerhovsky, Zdenek; Naccarati, Alessio; Polakova, Veronika; Soucek, Pavel; Kuricova, Miroslava; Manini, Paola; Kumar, Rajiv; Hemminki, Kari; Vodicka, Pavel

    2010-01-01

    Decreased levels of single-strand breaks in DNA (SSBs), reflecting DNA damage, have previously been observed with increased styrene exposure in contrast to a dose-dependent increase in the base-excision repair capacity. To clarify further the above aspects, we have investigated the associations between SSBs, micronuclei, DNA repair capacity and mRNA expression in XRCC1, hOGG1 and XPC genes on 71 styrene-exposed and 51 control individuals. Styrene concentrations at workplace and in blood characterized occupational exposure. The workers were divided into low (below 50 mg/m 3 ) and high (above 50 mg/m 3 ) styrene exposure groups. DNA damage and DNA repair capacity were analyzed in peripheral blood lymphocytes by Comet assay. The mRNA expression levels were determined by qPCR. A significant negative correlation was observed between SSBs and styrene concentration at workplace (R = - 0.38, p = 0.001); SSBs were also significantly higher in men (p = 0.001). The capacity to repair irradiation-induced DNA damage was the highest in the low exposure group (1.34 ± 1.00 SSB/10 9 Da), followed by high exposure group (0.72 ± 0.81 SSB/10 9 Da) and controls (0.65 ± 0.82 SSB/10 9 Da). The mRNA expression levels of XRCC1, hOGG1 and XPC negatively correlated with styrene concentrations in blood and at workplace (p < 0.001) and positively with SSBs (p < 0.001). Micronuclei were not affected by styrene exposure, but were higher in older persons and in women (p < 0.001). In this study, we did not confirm previous findings on an increased DNA repair response to styrene-induced genotoxicity. However, negative correlations of SSBs and mRNA expression levels of XRCC1, hOGG1 and XPC with styrene exposure warrant further highly-targeted study.

  13. PTP1B deficiency improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under high-fat diet conditions.

    Science.gov (United States)

    Sugiyama, Mariko; Banno, Ryoichi; Mizoguchi, Akira; Tominaga, Takashi; Tsunekawa, Taku; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Morishita, Yoshiaki; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Arima, Hiroshi

    2017-06-17

    Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor β (IRβ) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRβ and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    Science.gov (United States)

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  15. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells.

    Directory of Open Access Journals (Sweden)

    Soraya Rumbo-Feal

    Full Text Available Acinetobacterbaumannii has emerged as a dangerous opportunistic pathogen, with many strains able to form biofilms and thus cause persistent infections. The aim of the present study was to use high-throughput sequencing techniques to establish complete transcriptome profiles of planktonic (free-living and sessile (biofilm forms of A. baumannii ATCC 17978 and thereby identify differences in their gene expression patterns. Collections of mRNA from planktonic (both exponential and stationary phase cultures and sessile (biofilm cells were sequenced. Six mRNA libraries were prepared following the mRNA-Seq protocols from Illumina. Reads were obtained in a HiScanSQ platform and mapped against the complete genome to describe the complete mRNA transcriptomes of planktonic and sessile cells. The results showed that the gene expression pattern of A. baumannii biofilm cells was distinct from that of planktonic cells, including 1621 genes over-expressed in biofilms relative to stationary phase cells and 55 genes expressed only in biofilms. These differences suggested important changes in amino acid and fatty acid metabolism, motility, active transport, DNA-methylation, iron acquisition, transcriptional regulation, and quorum sensing, among other processes. Disruption or deletion of five of these genes caused a significant decrease in biofilm formation ability in the corresponding mutant strains. Among the genes over-expressed in biofilm cells were those in an operon involved in quorum sensing. One of them, encoding an acyl carrier protein, was shown to be involved in biofilm formation as demonstrated by the significant decrease in biofilm formation by the corresponding knockout strain. The present work serves as a basis for future studies examining the complex network systems that regulate bacterial biofilm formation and maintenance.

  16. mRNA expression of the DNA replication-initiation proteins in epithelial dysplasia and squamous cell carcinoma of the tongue

    International Nuclear Information System (INIS)

    Li, Jian-na; Feng, Chong-jin; Lu, Yong-jun; Li, Hui-jun; Tu, Zheng; Liao, Gui-qing; Liang, Chun

    2008-01-01

    The tongue squamous cell carcinomas (SCCs) are characterized by high mitotic activity, and early detection is desirable. Overexpression of the DNA replication-initiation proteins has been associated with dysplasia and malignancy. Our aim was to determine whether these proteins are useful biomarkers for assessing the development of tongue SCC. We analyzed the mRNA expression of CDC6, CDT1, MCM2 and CDC45 in formalin-fixed, paraffin-embedded benign and malignant tongue tissues using quantitative real-time PCR followed by statistical analysis. We found that the expression levels are significantly higher in malignant SCC than mild precancerous epithelial dysplasia, and the expression levels in general increase with increasing grade of precancerous lesions from mild, moderate to severe epithelial dysplasia. CDC6 and CDC45 expression is dependent of the dysplasia grade and lymph node status. CDT1 expression is higher in severe dysplasia than in mild and moderate dysplasia. MCM2 expression is dependent of the dysplasia grade, lymph node status and clinical stage. The expression of the four genes is independent of tumor size or histological grade. A simple linear regression analysis revealed a linear increase in the mRNA levels of the four genes from the mild to severe dysplasia and SCC. A strong association was established between CDC6 and CDT1, and between MCM2 and CDC45 expression. The nonparametric receiver operating characteristic analysis suggested that MCM2 and CDC45 had a higher accuracy than CDC6 and CDT1 for distinguishing dysplasia from tongue SCC. These proteins can be used as biomarkers to distinguish precancerous dysplasia from SCC and are useful for early detection and diagnosis of SCC as an adjunct to clinicopathological parameters

  17. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    Science.gov (United States)

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point

  18. Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Malcolm Eaton

    2018-04-01

    Full Text Available Background: Exercise promotes numerous phenotypic adaptations in skeletal muscle that contribute to improved function and metabolic capacity. An emerging body of evidence suggests that skeletal muscle also releases a myriad of factors during exercise, termed “myokines”. The purpose of this study was to examine the effects of high-intensity interval training (HIIT on the acute regulation of the mRNA expression of several myokines, including the prototypical myokine interleukin-6 (IL-6, and recently identified myokines fibronectin type III domain-containing protein 5 (FNDC5 (irisin and meteorin-like protein (METRNL. Methods: Both before and after a 20-day period of twice-daily high-volume HIIT, 9 healthy males (20.5 ± 1.5 years performed a standardized bout of high-intensity interval exercise (HIIE; 5 × 4 min at ~80% pretraining peak power output with skeletal muscle biopsy samples (vastus lateralis obtained at rest, immediately following exercise, and at 3 h recovery. Results: Before training, a single bout of HIIE increased IL-6 (p < 0.05 and METRNL (p < 0.05 mRNA expression measured at 3 h recovery when compared to rest. Following 20 days of HIIT, IL-6 and FNDC5 mRNA were increased at 3 h recovery from the standardized HIIE bout when compared to rest (both p < 0.05. Resting METRNL and FNDC5 mRNA expression were higher following training (p < 0.05, and there was an overall increase in FNDC5 mRNA post-training (main effect of training, p < 0.05. Conclusion: In human skeletal muscle (1 an acute bout of HIIE can induce upregulation of skeletal muscle IL-6 mRNA both before and after a period of intensified HIIT; (2 Resting and overall FNDC5 mRNA expression is increased by 20 days of HIIT; and (3 METRNL mRNA expression is responsive to both acute HIIE and short-term intense HIIT. Future studies are needed to confirm these findings at the protein and secretion level in humans. Keywords: Brown adipose tissue

  19. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte

    2006-01-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle....... Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  20. Increased Expression Of Toll-Like Receptor 2 Mrna Following Permanent Middle Cerebral Artery Occlusion In Rat: Role Of TRPV1 Receptors

    Directory of Open Access Journals (Sweden)

    Amir Moghadam Ahmadi

    2017-02-01

    Full Text Available Background: Stroke is a major cause of mortality and long term disability in adults. TRPV1 has a pivotal role in neuroinflammation. Among TLRs, TLR2 significantly participate in induction of inflammation in brain. In this study, the effect of TRPV1 receptor agonist and antagonist on outcome and gene expression of TLR2 in a rat model of permanent middle cerebral artery occlusion (MCAO was investigated. Methods: Forty male rats were assigned to the following groups: sham, vehicle stroke, AMG9810 (selective TRPV1 antagonist, 0.5 mg/kg; 3 h after stroke, and capsaicin (1 mg/kg; 3 h after stroke. Stroke was induced by permanent middle cerebral artery occlusion and behavioral functions were assessed 1, 3, and 7 days after stroke. Infarct volume, brain edema and mRNA expression of TLR2 were also evaluated at the end of the study. Results: While stroke animals showed infarctions and behavioral functions, we did not observe any cerebral infarction and behavioral functions in sham-operated animals. AMG9810 decreased neurological deficits 7 days after cerebral ischemia (P<0.01. In the ledged beam-walking test, the slip ratio was increased following ischemia (*P < 0.05. AMG9810 improved this index in animals undergone stroke. However, capsaicin enhanced the slip ratio 3 and 7 days after cerebral ischemia (#P<0.05. TLR2 P<0.05(mRNA expression was elevated in ischemic rats.   Conclusion: Our data indicate that pharmacological blockade of TRPV1 by AMG9810 attenuates behavioral function and mRNA expression of TLR2. Therefore, it might be useful as a potential target for the treatment of ischemic stroke.

  1. Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Ljungdahl, A; Höjeberg, B

    1995-01-01

    in cryosections of spinal cords using in situ hybridization technique with synthetic oligonucleotide probes. Three stages of cytokine mRNA expression could be distinguished: (i) interleukin (IL)-12, tumor necrosis factor (TNF)-beta (= lymphotoxin-alpha) and cytolysin appeared early and before onset of clinical...... signs of EAE; (ii) TNF-alpha peaked at height of clinical signs of EAE; (iii) IL-10 appeared increasingly at and after clinical recovery. The early expression of IL-12 prior to the expression of interferon-gamma (IFN-gamma) mRNA shown previously is consistent with a role of IL-12 in promoting...... proliferation and activation of T helper 1 (Th1) type cells producing IFN-gamma. The TNF-beta mRNA expression prior to onset of clinical signs favours a role for this cytokine in disease initiation. A pathogenic effector role of TNF-alpha was suggested from these observations that TNF-alpha mRNA expression...

  2. Artesunate Reduces Serum Lipopolysaccharide in Cecal Ligation/Puncture Mice via Enhanced LPS Internalization by Macrophages through Increased mRNA Expression of Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs; SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.

  3. Fibroblast growth factor-21 and omentin-1 hepatic mRNA expression and serum levels in morbidly obese women with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Waluga, M; Kukla, M; Zorniak, M; Kajor, M; Liszka, L; Dyaczynski, M; Kowalski, G; Zadlo, D; Waluga, E; Olczyk, P; Buldak, R J; Berdowska, A; Hartleb, M

    2017-06-01

    Fibroblast growth factor-21 (FGF21) and omentin-1 have been recognized as potent antidiabetic agents with potential hepatoprotective activity. The aim of this study was to evaluate hepatic FGF21 and omentin-1 mRNA expression as well as their serum levels as predictive markers of liver injury and insulin resistance in morbidly obese women with non-alcoholic fatty liver disease (NAFLD). This study included 56 severely obese women who underwent intraoperative wedge liver biopsy during the bariatric surgery. Hepatic FGF21 and omentin-1 mRNA were assessed by quantitative real-time PCR, while their serum concentrations were measured with commercially available enzyme-linked immunosorbent assays. The FGF21 serum level was significantly higher in patients with a greater extent of steatosis (grade 2 and 3) compared to those without or with mild steatosis (grade 0 and 1) (P = 0.049). Receiver Operating Characteristic analysis, however, showed poor discriminant power for the FGF21 serum levels in differentiating between more and less extensive steatosis with an AUC = 0.666. There was a tendency towards higher levels of hepatic FGF21 mRNA in patients with lobular inflammation and fibrosis and towards lower levels in the case of hepatocyte ballooning and steatosis. There was a positive mutual correlation between hepatic FGF21 and omentin-1 mRNA levels (r = 0.78; P hepatic omentin-1 mRNA levels showed a tendency to be lower in patients with advanced steatosis and hepatocyte ballooning. In conclusion, our study, which focused on hepatic FGF21 and omentin-1 mRNA expression, confirmed marked expression of both molecules in the liver of morbidly obese patients with NAFLD. More extensive steatosis was associated with evident changes in the serum FGF21 concentration in morbidly obese women with NAFLD, but the difference did not reach statistical significance. The vast amount of fat, both visceral and subcutaneous, in severely obese patients may be the additional source and influence

  4. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  5. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: Mario.rebecchi@SBUmed.org [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  6. Expression of annexin-A1 and galectin-1 anti-inflammatory proteins and mRNA in chronic gastritis and gastric cancer.

    Science.gov (United States)

    Jorge, Yvana Cristina; Mataruco, Mayra Mioto; Araújo, Leandro Pires; Rossi, Ana Flávia Teixeira; de Oliveira, Juliana Garcia; Valsechi, Marina Curado; Caetano, Alaor; Miyazaki, Kenji; Fazzio, Célia Sebastiana de Jesus; Thomé, Jorge Alberto; Rahal, Paula; Oliani, Sonia Maria; Silva, Ana Elizabete

    2013-01-01

    The anti-inflammatory proteins annexin-A1 and galectin-1 have been associated with tumor progression. This scenario prompted us to investigate the relationship between the gene and protein expression of annexin-A1 (ANXA1/AnxA1) and galectin-1 (LGALS1/Gal-1) in an inflammatory gastric lesion as chronic gastritis (CG) and gastric adenocarcinoma (GA) and its association with H. pylori infection. We analyzed 40 samples of CG, 20 of GA, and 10 of normal mucosa (C) by the quantitative real-time PCR (qPCR) technique and the immunohistochemistry assay. High ANXA1 mRNA expression levels were observed in 90% (36/40) of CG cases (mean relative quantification RQ = 4.26  ±  2.03) and in 80% (16/20) of GA cases (mean RQ = 4.38  ±  4.77). However, LGALS1 mRNA levels were high (mean RQ = 2.44  ±  3.26) in 60% (12/20) of the GA cases, while low expression was found in CG (mean RQ = 0.43 ± 3.13; P gastritis and gastric cancer, suggesting a strong association of these proteins with chronic gastric inflammation and carcinogenesis.

  7. Adenosine A1 receptor mRNA expression and the effects of systemic theophylline administration on respiratory function 4 months after C2 hemisection.

    Science.gov (United States)

    Nantwi, Kwaku D; Basura, Gregory J; Goshgarian, Harry G

    2003-01-01

    Previous studies from our laboratory have demonstrated that in an animal model of acute cervical spinal cord injury (SCI), respiratory function can be restored by theophylline. We also have shown that respiratory recovery occurs spontaneously after prolonged postinjury survival periods when a hemidiaphragm is paralyzed by an ipsilateral upper cervical (C2) spinal cord hemisection. Theophylline mediates functional recovery by central nervous system adenosine A1 receptor antagonism; however, it is unclear whether adenosine receptors are altered after prolonged postinjury periods and whether theophylline can further enhance restored respiratory function that occurs spontaneously. To assess putative effects of systemic theophylline administration on further enhancing spontaneous respiratory muscle recovery 4 months after C2 hemisection in rats and to determine whether adenosine A1 receptor mRNA expression is altered in these animals. Electrophysiologic assessment of respiratory activity in the phrenic nerves was conducted in C2 hemisected rats 4 months after hemisection under standardized conditions. Immediately thereafter, rats were killed and the cervical spinal cords were prepared for adenosine A1 receptor mRNA expression by in situ hybridization. Spontaneous recovery of respiratory activity in the ipsilateral phrenic nerve was detected in a majority (15/20) of C2 hemisected animals and amounted to 44.06% +/- 2.38% when expressed as a percentage of activity in the homolateral phrenic nerve in noninjured animals. At the optimal dosage used in the acute studies, theophylline (15 mg/kg) did not enhance, but rather unexpectedly blocked, recovered respiratory activity in 4 out of 5 animals tested. At dosages of 5 mg/kg and 2.5 mg/kg, the drug blocked recovered respiratory activity in 3 out of 4 and 3 out of 5 animals tested, respectively. Quantitative analysis of adenosine A1 receptor mRNA expression did not reveal a significant difference between experimental animals

  8. Myostatin mRNA expression and its association with body weight and carcass traits in Yunnan Wuding chicken.

    Science.gov (United States)

    Liu, L X; Dou, T F; Li, Q H; Rong, H; Tong, H Q; Xu, Z Q; Huang, Y; Gu, D H; Chen, X B; Ge, C R; Jia, J J

    2016-12-02

    Myostatin (MSTN) is expressed in the myotome and developing skeletal muscles, and acts to regulate the number of muscle fibers. Wuding chicken large body, developed muscle, high disease resistance, and tender, delicious meat, and are not selected for fast growth. Broiler chickens (Avian broiler) are selected for fast growth and have a large body size and high muscle mass. Here, 240 one-day-old chickens (120 Wuding chickens and 120 broilers) were examined. Twenty chickens from each breed were sacrificed at days 1, 30, 60, 90, 120, and 150. Breast and leg muscle samples were collected within 20 min of sacrifice to investigate the effects of MSTN gene expression on growth performance and carcass traits. Body weight, carcass traits, and skeletal muscle mass in Wuding chickens were significantly (P chickens at all time points. Breast muscle MSTN mRNA was lower in Wuding chickens than in broilers before day 30 (P chicken than in broilers (P chicken than in broilers at all ages except for day 60 (P chickens than in the fast growing broilers. In contract, leg muscle MSTN mRNA level has a greater effect in broilers than in Wuding chickens. MSTN regulates growth performance and carcass traits in chickens.

  9. Expression profiles of mRNA after exposure yeast and rice to heavy-ion radiation

    International Nuclear Information System (INIS)

    Iwahashi, Hitoshi; Mizukami, Satomi; Nojima, Kumie

    2005-01-01

    We have studied expression profiles of mRNA after exposure yeast cells to heavy-ion radiation. Yeast cells was exposed by heavy-ion radiation with the levels of 6, 12, 25, 50, and 100 Gy. We could confirm the reproducibility of physiological state of yeast cells under the experimental conditions by DNA microarray. We could also confirm the reproducibility of viability of yeast cells after exposure to heavy-ion radiation. We thus applied yeast cells exposed with 25 Gy was applied to DNA microarray analysis. The strongly induced genes were HUG1 RAR4 RNR2 for DNA repairing genes and GLC3 GSY1 for energy metabolism genes. (author)

  10. Serotonin receptor, SERT mRNA and correlations with symptoms in males with alcohol dependence and suicide.

    Science.gov (United States)

    Thompson, P M; Cruz, D A; Olukotun, D Y; Delgado, P L

    2012-09-01

    This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels. © 2011 John Wiley & Sons A/S.

  11. Enhancement of Bovine oocyte maturation by leptin is accompanied by an upregulation in mRNA expression of leptin receptor isoforms in cumulus cells

    NARCIS (Netherlands)

    van Tol, Helena T A; van Eerdenburg, Frank J C M; Colenbrander, Ben; Roelen, Bernard A J

    In this study, the mechanisms of supposed leptin action on oocyte maturation were examined. Expression of leptin mRNA, as determined with RT-PCR, was present in oocytes but not in cumulus cells. The long isoform of the leptin receptor (ObR-L) was expressed exclusively in cumulus cells after 7 and 23

  12. UV-laser microdissection and mRNA expression analysis of individual neurons from postmortem Parkinson's disease brains.

    Science.gov (United States)

    Gründemann, Jan; Schlaudraff, Falk; Liss, Birgit

    2011-01-01

    Cell specificity of gene expression analysis is essential to avoid tissue sample related artifacts, in particular when the relative number of target cells present in the compared tissues varies dramatically, e.g., when comparing dopamine neurons in midbrain tissues from control subjects with those from Parkinson's disease (PD) cases. Here, we describe a detailed protocol that combines contact-free UV-laser microdissection and quantitative PCR of reverse-transcribed RNA of individual neurons from postmortem human midbrain tissue from PD patients and unaffected controls. Among expression changes in a variety of dopamine neuron marker, maintenance, and cell-metabolism genes, we found that α-synuclein mRNA levels were significantly elevated in individual neuromelanin-positive dopamine midbrain neurons from PD brains when compared to those from matched controls.

  13. Salinity Regulates Claudin mRNA and Protein Expression in the Teleost Gill

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Baltzegar, David A; Ozden, Ozkan

    2008-01-01

    The teleost gill carries out NaCl uptake in fresh water (FW) and NaCl excretion in seawater (SW). This transformation with salinity requires close regulation of ion transporter capacity and epithelial permeability. This study investigates the regulation of tight junctional claudins during salinity...... was localized deep in the FW gill filament, whereas staining was found apically in SW gill. Claudin 4-like proteins are localized predominantly in the filament outer epithelial layer and staining appears more intense in gill of FW versus SW fish. Additionally, tilapia claudin 28a and 30 genes were characterized......, and mRNA expression was found to increase during FW acclimation. These studies are the first to detect putative claudin proteins in teleosts and show their localization and regulation with salinity in gill epithelium. The data indicate that claudins may be important in permeability changes associated...

  14. The mRNA expression of pro- and anti-inflammatory cytokines in T regulatory cells in children with type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Maria Górska

    2010-06-01

    Full Text Available Type 1 diabetes mellitus (T1DM is caused by the autoimmune-mediated destruction of insulin-producing beta cells in the pancreas. T regulatory cells (Tregs represent an active mechanism of suppressing autoreactive T cells that escape central tolerance. The aim of our study was to test the hypothesis that T regulatory cells express pro- and anti-inflammatory cytokines, elements of cytotoxicity and OX40/4-1BB molecules. The examined group consisted of 50 children with T1DM. Fifty two healthy individuals (control group were enrolled into the study. A flow cytometric analysis of T-cell subpopulations was performed using the following markers: anti-CD3, anti-CD4, anti-CD25, anti-CD127, anti-CD134 and anti-CD137. Concurrently with the flow cytometric assessment of Tregs we separated CD4+CD25+CD127dim/- cells for further mRNA analysis. mRNA levels for transcription factor FoxP3, pro- and anti-inflammatory cytokines (interferon gamma, interleukin-2, interleukin-4, interleukin-10, transforming growth factor beta1 and tumor necrosis factor alpha, activatory molecules (OX40, 4-1BB and elements of cytotoxicity (granzyme B, perforin 1 were determined by real-time PCR technique. We found no alterations in the frequency of CD4+CD25highCD127low cells between diabetic and control children. Treg cells expressed mRNA for pro- and anti-inflammatory cytokines. Lower OX40 and higher 4-1BB mRNA but not protein levels in Treg cells in diabetic patients compared to the healthy children were noted. Our observations confirm the presence of mRNA for pro- and anti-inflammatory cytokines in CD4+CD25+CD127dim/- cells in the peripheral blood of children with T1DM. Further studies with the goal of developing new strategies to potentiate Treg function in autoimmune diseases are warranted.

  15. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval.

    Science.gov (United States)

    Vanelzakker, Michael B; Zoladz, Phillip R; Thompson, Vanessa M; Park, Collin R; Halonen, Joshua D; Spencer, Robert L; Diamond, David M

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

  16. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala and Striatum Following Long-Term Spatial Memory Retrieval

    Directory of Open Access Journals (Sweden)

    Michael B VanElzakker

    2011-06-01

    Full Text Available We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 hr later. Rat brains were extracted 30 min after the 24 hr memory test trial for analysis of c-fos mRNA. Four groups were tested: 1 Rats given standard training (Standard; 2 Rats given cat exposure (Predator Stress 30 min prior to training (Pre-Training Stress; 3 Rats given water exposure only (Water Yoked; and 4 Rats given no water exposure (Home Cage. The Standard trained group exhibited excellent 24 hr memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA. The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

  17. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval

    Science.gov (United States)

    VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501

  18. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress.

    Science.gov (United States)

    Li, Yinsheng; Zhao, Chun; Lu, Xiaoxu; Ai, Xiaojie; Qiu, Jiangping

    2018-04-15

    Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg -1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of hypoxic preconditioning on the changes of expression of neuroglobin mRNA and labeled positive cells following cerebral ischemia in gerbils

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Yanqun Chang; Zhenfang Liu; Qingxi Fu; Xiao Zhang

    2006-01-01

    expression of NGB mRNA was detected with RT-PCR, and the number of NGF positive cells was counted with immunohistochemical staining. The NGB mRNA expression and number of NGB positive cells at different time points after ischemia were compared between the gerbils treated with and without hypoxic preconditioning.MAIN OUTCOME MEASURES: NGB mRNA expression and number of NGB positive cells at 1, 5, 10, 30 and 60 minutes after cerebral ischemia.RESULTS: All the 66 Mongolian gerbils were involved in the analysis of results. ① Results of NGB mRNA: In the cerebral ischemia group, the NGB mRNA expression began to increase at 1 minute after cerebral ischemia, but had no obvious difference as compared with that in the sham-operated group (P > 0.05), that at 5 minutes was obviously higher than that in the sham-operated group (0.951±0.034, 0.597±0.008, P < 0.05), it decreased gradually 10, 30 and 60 minutes after cerebral ischemia, but had no obvious difference as compared with that in the sham-operated group (P> 0.05). In the hypoxic preconditioning group, the NGB mRNA expression increased rapidly 1 minute after cerebral ischemia, which was obviously higher than that in the cerebral ischemia group (0.641 ±0.010, 0.618±0.015, P < 0.05), and the expressions at 5, 10 and 30 minutes were still obviously higher than those in the cerebral ischemia group (0.995±0.020 vs. 0.951 ±0.034; 0.941 ±0.010 vs. 0.615±0.018; 0.642±0.010 vs. 0.608±0.010, P < 0.05-0.01 ), whereas the expression at 60 minutes were not obviously different from that in the cerebral ischemia group (P> 0.05). ② Number of NGB positive cells: The numbers of NGB positive cells at 1, 10 and 30 minutes after cerebral ishcemia in the hypoxic preconditioning group [(50.2±3.3), (67.2±3.3), (35.0±4.3) cells] were obviously more than those in the cerebral ischemia group [(33.0±2.1 ), (60.5± 1.9), (23.3±3.1) cells, P< 0.05-0.01], whereas those at 5 and 60 minutes had no obvious differences between the two

  20. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Mraz, M; Lacinova, Z; Drapalova, J; Haluzikova, D; Horinek, A; Matoulek, M; Trachta, P; Kavalkova, P; Svacina, S; Haluzik, M

    2011-04-01

    Low-grade inflammation links obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. To explore the expression profile of genes involved in inflammatory pathways in adipose tissue and peripheral monocytes (PM) of obese patients with and without T2DM at baseline and after dietary intervention. Two-week intervention study with very-low-calorie diet (VLCD). University hospital. Twelve obese females with T2DM, 8 obese nondiabetic females (OB) and 15 healthy age-matched females. Two weeks of VLCD (2500 kJ/d). Metabolic parameters, circulating cytokines, hormones, and mRNA expression of 39 genes in sc adipose tissue (SCAT) and PM. Both T2DM and OB group had significantly increased serum concentrations of circulating proinflammatory factors (C-reactive protein, TNFα, IL-6, IL-8), mRNA expression of macrophage antigen CD68 and proinflammatory chemokines (CCL-2, -3, -7, -8, -17, -22) in SCAT and complementary chemokine receptors (CCR-1, -2, -3, -5) and other proinflammatory receptors (toll-like receptor 2 and 4, TNF receptor superfamily 1A and 1B, IL-6R) in PM, with OB group showing less pronounced chemoattracting and proinflammatory profile compared to T2DM group. In T2DM patients VLCD decreased body weight, improved metabolic profile, and decreased mRNA expression of up-regulated CCRs in PM and chemokines [CCL 8, chemokine (C-X-C motif) ligand 10] in SCAT. VLCD markedly increased mRNA expression of T-lymphocyte attracting chemokine CCL-17 in SCAT. Obese patients with and without T2DM have increased mRNA expression of chemotactic and proinflammatory factors in SCAT and expression of corresponding receptors in PM. Two weeks of VLCD significantly improved this profile in T2DM patients.

  1. A Systematic Analysis on mRNA and MicroRNA Expression in Runting and Stunting Chickens

    Science.gov (United States)

    Xu, Haiping; Xu, Zhenqiang; Ma, Jinge; Li, Bixiao; Lin, Shudai; Nie, Qinghua; Luo, Qingbin; Zhang, Xiquan

    2015-01-01

    Runting and stunting syndrome (RSS), which is characterized by lower body weight, widely occurs in broilers. Some RSS chickens simply exhibit slow growth without pathological changes. An increasing number of studies indicate that broiler strains differ in susceptibility to infectious diseases, most likely due to their genetic differences. The objective of this study was to detect the differentially expressed miRNAs and mRNAs in RSS and normal chickens. By integrating miRNA with mRNA expression profiling, potential molecular mechanisms involved in RSS could be further explored. Twenty-two known miRNAs and 1,159 genes were differentially expressed in RSS chickens compared with normal chickens (P chicken liver albeit with reduced abundance. Dual-luciferase reporter assay indicated that gga-miR-30b/c directly target CARS through binding to its 3′UTR. The miR-30b/c: CARS regulation mainly occurred in liver. In thigh muscle and the hypothalamus, miR-30b/c are expressed at higher levels in RSS chickens compared with normal chickens from 2 to 6 w of age, and notably significant differences are observed at 4 w of age. PMID:26010155

  2. IMP3 RNP Safe Houses Prevent miRNA-Directed HMGA2 mRNA Decay in Cancer and Development

    Directory of Open Access Journals (Sweden)

    Lars Jønson

    2014-04-01

    Full Text Available The IMP3 RNA-binding protein is associated with metastasis and poor outcome in human cancer. Using solid cancer transcriptome data, we found that IMP3 correlates with HMGA2 mRNA expression. Cytoplasmic IMP3 granules contain HMGA2, and IMP3 dose-dependently increases HMGA2 mRNA. HMGA2 is regulated by let-7, and let-7 antagomiRs make HMGA2 refractory to IMP3. Removal of let-7 target sites eliminates IMP3-dependent stabilization, and IMP3-containing bodies are depleted of Ago1-4 and miRNAs. The relationship between Hmga2 mRNA and IMPs also exists in the developing limb bud, where IMP1-deficient embryos show dose-dependent Hmga2 mRNA downregulation. Finally, IMP3 ribonucleoproteins (RNPs contain other let-7 target mRNAs, including LIN28B, and a global gene set enrichment analysis demonstrates that miRNA-regulated transcripts in general are upregulated following IMP3 induction. We conclude that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression.

  3. Serum concentrations and subcutaneous adipose tissue mRNA expression of omentin in morbid obesity and type 2 diabetes mellitus: the effect of very-low-calorie diet, physical activity and laparoscopic sleeve gastrectomy.

    Science.gov (United States)

    Urbanová, M; Dostálová, I; Trachta, P; Drápalová, J; Kaválková, P; Haluzíková, D; Matoulek, M; Lacinová, Z; Mráz, M; Kasalický, M; Haluzík, M

    2014-01-01

    Omentin is a novel adipokine with insulin-sensitizing effects expressed predominantly in visceral fat. We investigated serum omentin levels and its mRNA expression in subcutaneous adipose tissue (SCAT) of 11 women with type 2 diabetes mellitus (T2DM), 37 obese non-diabetic women (OB) and 26 healthy lean women (C) before and after various weight loss interventions: 2-week very-low-calorie diet (VLCD), 3-month regular exercise and laparoscopic sleeve gastrectomy (LSG). At baseline, both T2DM and OB groups had decreased serum omentin concentrations compared with C group while omentin mRNA expression in SCAT did not significantly differ among the groups. Neither VLCD nor exercise significantly affected serum omentin concentrations and its mRNA expression in SCAT of OB or T2DM group. LSG significantly increased serum omentin levels in OB group. In contrast, omentin mRNA expression in SCAT was significantly reduced after LSG. Baseline fasting serum omentin levels in a combined group of the studied subjects (C, OB, T2DM) negatively correlated with BMI, CRP, insulin, LDL-cholesterol, triglycerides and leptin and were positively related to HDL-cholesterol. Reduced circulating omentin levels could play a role in the etiopathogenesis of obesity and T2DM. The increase in circulating omentin levels and the decrease in omentin mRNA expression in SCAT of obese women after LSG might contribute to surgery-induced metabolic improvements and sustained reduction of body weight.

  4. Contraction-induced changes in skeletal muscle Na(+), K(+) pump mRNA expression - importance of exercise intensity and Ca(2+)-mediated signalling

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Kusuhara, K; Hellsten, Ylva

    2010-01-01

    Abstract Aim: To investigate if exercise intensity and Ca(2+) signalling regulate Na(+), K(+) pump mRNA expression in skeletal muscle. Methods: The importance of exercise intensity was evaluated by having trained and untrained humans perform intense intermittent and prolonged exercise. The import...

  5. Urinary exosomes: a novel means to non-invasively assess changes in renal gene and protein expression.

    Directory of Open Access Journals (Sweden)

    Silvia Spanu

    Full Text Available BACKGROUND: In clinical practice, there is a lack of markers for the non-invasive diagnosis and follow-up of kidney disease. Exosomes are membrane vesicles, which are secreted from their cells of origin into surrounding body fluids and contain proteins and mRNA which are protected from digestive enzymes by a cell membrane. METHODS: Toxic podocyte damage was induced by puromycin aminonucleoside in rats (PAN. Urinary exosomes were isolated by ultracentrifugation at different time points during the disease. Exosomal mRNA was isolated, amplified, and the mRNA species were globally assessed by gene array analysis. Tissue-specific gene and protein expression was assessed by RT-qPCR analysis and immunohistochemistry. RESULTS: Gene array analysis of mRNA isolated from urinary exosomes revealed cystatin C mRNA as one of the most highly regulated genes. Its gene expression increased 7.5-fold by day 5 and remained high with a 1.9-fold increase until day 10. This was paralleled by a 2-fold increase in cystatin C mRNA expression in the renal cortex. Protein expression in the kidneys also dramatically increased with de novo expression of cystatin C in glomerular podocytes in parts of the proximal tubule and the renal medulla. Urinary excretion of cystatin C increased approximately 2-fold. CONCLUSION: In this proof-of-concept study, we could demonstrate that changes in urinary exosomal cystatin C mRNA expression are representative of changes in renal mRNA and protein expression. Because cells lining the urinary tract produce urinary exosomal cystatin C mRNA, it might be a more specific marker of renal damage than glomerular-filtered free cystatin C.

  6. Enhanced expressions of mRNA for neuropeptide Y and interleukin 1 beta in hypothalamic arcuate nuclei during adjuvant arthritis-induced anorexia in Lewis rats.

    Science.gov (United States)

    Stofkova, Andrea; Haluzik, Martin; Zelezna, Blanka; Kiss, Alexander; Skurlova, Martina; Lacinova, Zdenka; Jurcovicova, Jana

    2009-01-01

    Food intake is activated by hypothalamic orexigenic neuropeptide Y (NPY), which is mainly under the dual control of leptin and ghrelin. Rat adjuvant arthritis (AA), similarly as human rheumatoid arthritis, is associated with cachexia caused by yet unknown mechanisms. The aim of our study was to evaluate NPY expression in hypothalamic arcuate nuclei (nARC) under the conditions of AA-induced changes in leptin, ghrelin and adiponectin. Since IL-1beta is involved in the central induction of anorexia, we studied its expression in the nARC as well. AA was induced to Lewis rats using complete Freund's adjuvant. On days 12, 15 and 18 after complete Freund's adjuvant injection, the levels of leptin, adiponectin, ghrelin and IL-1beta were determined by RIA or ELISA. The mRNA expressions for NPY, leptin receptor (OB-R), ghrelin receptor (Ghsr) and IL-1beta were determined by TaqMan RT-PCR from isolated nARC. In AA rats, decreased appetite, body mass and epididymal fat stores positively correlated with reduced circulating and epididymal fat leptin and adiponectin. Ghrelin plasma levels were increased. In nARC, mRNA for OB-R, Ghsr and NPY were overexpressed in AA rats. AA rats showed overexpression of mRNA for IL-1beta in nARC while circulating, and spleen IL-1beta was unaltered. During AA, overexpression of orexigenic NPY mRNA in nARC along with enhanced plasma ghrelin and lowered leptin levels occur. Decreased food intake indicates a predominant effect of the anorexigenic pathway. Activated expression of IL-1beta in nARC suggests its role in keeping AA-induced anorexia in progress. The reduction in adiponectin may also contribute to AA-induced anorexia. Copyright 2009 S. Karger AG, Basel.

  7. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    International Nuclear Information System (INIS)

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-01-01

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E 2 ), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E 2 , showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E 2 treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer

  8. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, Kyren A. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122 (Australia); Zhao, Zhe; Knower, Kevin C. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); To, Sarah Q. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia); Chand, Ashwini L. [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Clyne, Colin D., E-mail: Colin.clyne@princehenrys.org [Cancer Drug Discovery Laboratory, Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168 (Australia); Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168 (Australia)

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  9. [Comparative study of expression of homeobox gene Msx-1, Msx-2 mRNA during the hard tissue formation of mouse tooth development].

    Science.gov (United States)

    Wang, Y; Wang, J; Gao, Y

    2001-07-01

    To observe and compare the expression pattern of Msx-1, Msx-2 mRNA during the different stages of hard tissue formation in the first mandibular molar of mouse and investigate the relationship between the two genes. First mandibular molar germs from 1, 3, 7 and 14-days old mouse were separated and reverse transcription-polymerase chain reaction was performed on the total RNA of them using Msx-1, Msx-2 specific primers separately. Expression of both genes were detected during the different stages of hard tissue formation in the mouse first mandibular molars, but there was some interesting differences in the quantitiy between the two genes. Msx-1 transcripts appeared at the 1 day postnatally, and increase through 3 day, 7 day, then maximally expressed at 14 days postnatally; while Msx-2 mRNA was seen and expressed maximally at the 3 days postnatally, then there was a gradual reduction at 7 days, and 14 days postnatally. The homeobox gene Msx-1, Msx-2 may play a role in the events of the hard tissue formation. The complementary expression pattern of them during the specific stage of hard tissue formation indicates that there may be some functional redundancy between them during the biomineralization.

  10. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    Energy Technology Data Exchange (ETDEWEB)

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryotic nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?

  11. Influence of clonidine and ketamine on m-RNA expression in a model of opioid-induced hyperalgesia in mice.

    Directory of Open Access Journals (Sweden)

    Henning Ohnesorge

    Full Text Available We investigated the influence of morphine and ketamine or clonidine in mice on the expression of genes that may mediate pronociceptive opioid effects.C57BL/6 mice received morphine injections thrice daily using increasing doses (5-20 mg∙kg(-1 for 3 days (sub-acute, n=6 or 14 days (chronic, n=6 and additionally either s-ketamine (5 mg∙kg(-1, n=6 or clonidine (0.1 mg∙kg(-1, n=6. Tail flick test and the assessment of the mechanical withdrawal threshold of the hindpaw was performed during and 4 days after cessation of opioid treatment. Upon completion of the behavioural testing the mRNA-concentration of the NMDA receptor (NMDAR1 and β-arrestin 2 (Arrb2 were measured by PCR.Chronic opioid treatment resulted in a delay of the tail flick latency with a rapid on- and offset. Simultaneously the mice developed a static mechanical hyperalgesia with a delayed onset that that outlasted the morphine treatment. Sub-acute morphine administration resulted in a decrease of NMDAR1 and Arrb2 whereas during longer opioid treatment the expression NMDAR1 and Arrb2 mRNA increased again to baseline values. Coadministration of s-ketamine or clonidine resulted in a reversal of the mechanical hyperalgesia and inhibited the normalization of NMDAR1 mRNA expression but had no effect on the expression of Arrb2 mRNA.In the model of chronic morphine therapy the antinociceptive effects of morphine are represented by the thermal analgesia while the proniceptive effects are represented by the mechanical hyperalgesia. The results indicate that the regulation of the expression of NMDAR1 and Arrb2 may be associated to the development of OIH in mice.The results indicate that co-administration of clonidine or ketamine may influence the underlying mechanisms of OIH.

  12. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    Science.gov (United States)

    Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim

    2013-01-01

    The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655

  13. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Organ-Specific and Age-Dependent Expression of Insulin-like Growth Factor-I (IGF-I) mRNA Variants: IGF-IA and IB mRNAs in the Mouse

    OpenAIRE

    Ohtsuki, Takashi; Otsuki, Mariko; Murakami, Yousuke; Maekawa, Tetsuya; Yamamoto, Takashi; Akasaka, Koji; Takeuchi, Sakae; Takahashi, Sumio

    2005-01-01

    Insulin-like growth factor-I (IGF-I) gene generates several IGF-I mRNA variants by alternative splicing. Two promoters are present in mouse IGF-I gene. Each promoter encodes two IGF-I mRNA variants (IGF-IA and IGF-IB mRNAs). Variants differ by the presence (IGF-IB) or absence (IGF-IA) of a 52-bp insert in the E domain-coding region. Functional differences among IGF-I mRNAs, and regulatory mechanisms for alternative splicing of IGF-I mRNA are not yet known. We analyzed the expression of mouse ...

  15. Toll-like receptor mRNA expression is selectively increased in the colonic mucosa of two animal models relevant to irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Declan P McKernan

    2009-12-01

    Full Text Available Irritable bowel syndrome (IBS is largely viewed as a stress-related disorder caused by aberrant brain-gut-immune communication and altered gastrointestinal (GI homeostasis. Accumulating evidence demonstrates that stress modulates innate immune responses; however, very little is known on the immunological effects of stress on the GI tract. Toll-like receptors (TLRs are critical pattern recognition molecules of the innate immune system. Activation of TLRs by bacterial and viral molecules leads to activation of NF-kB and an increase in inflammatory cytokine expression. It was our hypothesis that innate immune receptor expression may be changed in the gastrointestinal tract of animals with stress-induced IBS-like symptoms.In this study, our objective was to evaluate the TLR expression profile in the colonic mucosa of two rat strains that display colonic visceral hypersensitivity; the stress-sensitive Wistar-Kyoto (WKY rat and the maternally separated (MS rat. Quantitative PCR of TLR2-10 mRNA in both the proximal and distal colonic mucosae was carried out in adulthood. Significant increases are seen in the mRNA levels of TLR3, 4 & 5 in both the distal and proximal colonic mucosa of MS rats compared with controls. No significant differences were noted for TLR 2, 7, 9 & 10 while TLR 6 could not be detected in any samples in both rat strains. The WKY strain have increased levels of mRNA expression of TLR3, 4, 5, 7, 8, 9 & 10 in both the distal and proximal colonic mucosa compared to the control Sprague-Dawley strain. No significant differences in expression were found for TLR2 while as before TLR6 could not be detected in all samples in both strains.These data suggest that both early life stress (MS and a genetic predisposition (WKY to stress affect the expression of key sentinels of the innate immune system which may have direct relevance for the molecular pathophysiology of IBS.

  16. The hypoxic proteome is influenced by gene-specific changes in mRNA translation

    International Nuclear Information System (INIS)

    Koritzinsky, Marianne; Seigneuric, Renaud; Magagnin, Michael G.; Beucken, Twan van den; Lambin, Philippe; Wouters, Bradly G.

    2005-01-01

    Background and purpose: Hypoxia causes a rapid reduction in mRNA translation efficiency. This inhibition does not affect all mRNA species to the same extent and can therefore contribute significantly to hypoxia-induced differential protein expression. Our aim in this study was to characterize changes in gene expression during acute hypoxia and evaluate the contribution of regulation via mRNA translation on these changes. For each gene, the contribution of changes in mRNA abundance versus mRNA translation was determined. Materials and methods: DU145 prostate carcinoma cells were exposed to 4 h of hypoxia ( 2 ). Efficiently translated mRNAs were isolated by sedimentation through a sucrose gradient. Affymetrix microarray technology was used to evaluate both the transcriptional and translational contribution to gene expression. Results were validated by quantitative PCR. Results: One hundred and twenty genes were more than 4-fold upregulated by hypoxia in the efficiently translated fraction of mRNA, in comparison to only 76 genes at the level of transcription. Of the 50 genes demonstrating the largest changes in translation, 11 were found to be more than 2-fold over represented in the translated fraction in comparison to their overall transcriptional level. The gene with the highest translational contribution to its induction was CITED-2, which is a negative regulator of HIF-1 transcriptional activity. Conclusions: Gene-specific regulation of mRNA translation contributes significantly to differential gene expression during hypoxia

  17. Effect of conjugated linoleic acids on the activity and mRNA expression of 5- and 15-lipoxygenases in human macrophages.

    Science.gov (United States)

    Stachowska, Ewa; Dziedziejko, Violetta; Safranow, Krzysztof; Jakubowska, Katarzyna; Olszewska, Maria; Machaliñski, Bogusław; Chlubek, Dariusz

    2007-06-27

    Lipoxygenases are a family of non-heme enzyme dioxygenases. The role of lipoxygenases is synthesis of hydroperoxides of fatty acids, which perform signaling functions in the body. Studies on conjugated linoleic acids (CLAs) as fatty acids with a potential anti-atherosclerotic function have recently been initiated. The aim of the study was to test the effect of CLAs and linoleic acid on 5- and 15-lipoxygenase (5-LO, 15-LO-1) enzyme activity, their mRNA expression, and concentration in the cells. It was also desired to determine whether the CLAs are substrates for the enzymes. For the experiments monocytic cell line (THP-1) and monocytes obtained from human venous blood were used. Monocytes were differentiated to macrophages: THP-1 (CD14+) by PMA administration (100 nM for 24 h) and monocytes from blood (CD14+) by 7-day cultivation with the autologous serum (10%). After differentiation, macrophages were cultured with 30 microM CLAs or linoleic acid for 48 h. The 15- and 5-lipoxygenase products were measured by HPLC method. mRNA expression and protein content were analyzed by real-time PCR and Western blot analysis. The in vitro studies proved that both CLA isomers are not substrates for 15-LO-1; in ex vivo studies hydroxydecadienoic acid (HODE) concentration was significantly reduced (p = 0.019). The trans-10,cis-12 CLA isomer reduced HODE concentration by 28% (p = 0.046) and the cis-9,trans-11 CLA isomer by 35% (p = 0.028). In macrophages obtained from THP-1 fatty acids did not change significantly mRNA expression of the majority of the investigated genes. CLAs did not change the content of 5-LO and 15-LO-1 proteins in macrophages obtained from peripheral blood. Linoleic acid induced 15-LO-1 expression (2.6 times, p < 0.05). CLAs may perform the function of an inhibitor of lipoxygenase 15-LO-1 activity in macrophages.

  18. Effects of temperature and melatonin on day-night expression patterns of arginine vasotocin and isotocin mRNA in the diencephalon of a temperate wrasse Halichoeres tenuispinis.

    Science.gov (United States)

    Bouchekioua, Selma; Hur, Sung-Pyo; Takeuchi, Yuki; Lee, Young-Don; Takemura, Akihiro

    2018-06-01

    Most wrasses are protogynous species that swim to feed, reproduce during the daytime, and bury themselves under the sandy bottom at night. In temperate and subtropical wrasses, low temperature influences emergence from the sandy bottom in the morning, and induces a hibernation-like state in winter. We cloned and characterized the prohormone complementary DNAs (cDNAs) of arginine vasotocin (AVT) and isotocin (IT) in a temperate wrasse (Halichoeres tenuispinis) and examined the effects of day/night and temperature on their expression in the diencephalon, because these neurohypophysial peptides are related to the sex behavior of wrasses. The full-length cDNAs of pro-AVT and pro-IT were 938 base pairs (154 amino acids) and 759 base pairs (156 amino acids) in length, respectively. Both pro-peptides contained a signal sequence followed by the respective hormones and neurophysin connected by a Gly-Lys-Arg bridge. Reverse-transcription polymerase chain reaction (RT-PCR) revealed that pro-AVT mRNA expression was specifically observed in the diencephalon, whereas pro-IT mRNA expression was seen in the whole brain. Quantitative RT-PCR revealed that the mRNA abundance of pro-AVT and pro-IT was higher at midday (zeitgeber time 6; ZT6) than at midnight (ZT18) under 12 h light and 12 h darkness (LD 12:12) conditions, but not under constant light. Intraperitoneal injection of melatonin decreased the mRNA abundance of pro-AVT, but not of pro-IT. When fish were reared under LD 12:12 conditions at 25, 20, and 15 °C, day high and night low mRNA expressions of pro-AVT and pro-IT were maintained. A field survey revealed seasonal variation in the number of swimming fish at observatory sites; many fish emerged from the sandy bottom in summer, but not in winter, suggesting a hibernation-like state under the sandy bottom under low temperature conditions. We conclude that the day-night fluctuation of pro-AVT and pro-IT mRNA abundance in the brain is not affected by temperature and

  19. The flinders sensitive line rats, a genetic model of depression, show abnormal serotonin receptor mRNA expression in the brain that is reversed by 17beta-estradiol.

    Science.gov (United States)

    Osterlund, M K; Overstreet, D H; Hurd, Y L

    1999-12-10

    The possible link between estrogen and serotonin (5-HT) in depression was investigated using a genetic animal model of depression, the Flinders Sensitive Line (FSL) rats, in comparison to control Flinders Resistant Line rats. The mRNA levels of the estrogen receptor (ER) alpha and beta subtypes and the 5-HT(1A) and 5-HT(2A) receptors were analyzed in several limbic-related areas of ovariectomized FSL and FRL rats treated with 17beta-estradiol (0.15 microg/g) or vehicle. The FSL animals were shown to express significantly lower levels of the 5-HT(2A) receptor transcripts in the perirhinal cortex, piriform cortex, and medial anterodorsal amygdala and higher levels in the CA 2-3 region of the hippocampus. The only significant difference between the rat lines in ER mRNA expression was found in the medial posterodorsal amygdala, where the FSL rats showed lower ERalpha expression levels. Overall, estradiol treatment increased 5-HT(2A) and decreased 5-HT(1A) receptor mRNA levels in several of the examined regions of both lines. Thus, in many areas, estradiol was found to regulate the 5-HT receptor mRNA expression in the opposite direction to the alterations found in the FSL rats. These findings further support the implication of 5-HT receptors, in particular the 5-HT(2A) subtype, in the etiology of affective disorders. Moreover, the ability of estradiol to regulate the expression of the 5-HT(1A) and 5-HT(2A) receptor genes might account for the reported influence of gonadal hormones in mood and depression.

  20. Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain and intestine of the swamp eel, Monopterus albus, exposed to freshwater, terrestrial conditions, environmental ammonia or salinity stress

    Directory of Open Access Journals (Sweden)

    C Y Toh

    2011-12-01

    Full Text Available The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can survive long period of emersion, has high environmental and tissue ammonia tolerance, and acclimate from fresh to brackish water. This study was undertaken to clone and sequence gdh expressed in the liver, intestine and brain of M. albus, to verify whether more than one form of gdh were expressed, and to examine the gdh mRNA expressions in these three organs in fish exposed to various adverse conditions using quantitative real-time PCR. Only one gdh gene sequence, consisted of a 133 bp 5’ UTR, a CDS region spanning 1629 bp and a 3’ UTR of approximately 717 bp, was obtained from the liver, intestine and brain of M. albus. The translated Gdh amino acid sequence from the liver of M. albus had 542 residues and was confirmed to be Gdh1a. It had sequence identity of >90% with Oncorhynchus mykiss Gdh1a, Salmo salar Gdh1a1, Bostrychus sinensis Gdh1a and Tribolodon hakonensis Gdh1a, and formed a monophyletic clade with B. sinensis Gdh1a, Tetraodon nigroviridis Gdh1a, Chaenocephalus aceratus Gdh1a, Salmo salar Gdh1a1 and Gdh1a2 and O. mykiss Gdh1a. An increase in mRNA expression of gdh1a could be essential for increased glutamate production in support of increases in glutamine synthesis under certain environmental condition. Indeed, exposure of M. albus to 1 day of terrestrial conditions or 75 mmol l-1 NH4Cl, but not brackish water, resulted in a significant increase in gdh1a mRNA expression in the liver. However, exposure to brackish water, but not terrestrial conditions or 75 mmol l-1 NH4Cl, lead to a significant increase in the intestinal mRNA expression of gdh1a. By contrast, all the three experimental conditions had no significant effects on the mRNA expression of gdh1a in the brain of M. albus. Our results indicate for the first time that gdh mRNA expression was differentially up-regulated in the liver and intestine of M. albus, in responses to ammonia toxicity and

  1. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue

  2. Arc mRNA induction in striatal efferent neurons associated with response learning.

    Science.gov (United States)

    Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A

    2007-07-01

    The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.

  3. Effect of folic acid and vitamin B12 on the expression of PPAR?, caspase-3 and caspase-8 mRNA in the abdominal aortas of rats with hyperlipidemia

    OpenAIRE

    LV, FENG-HUA; GAO, JIAN-ZHI; TENG, QING-LEI; ZHANG, JIN-YING

    2013-01-01

    Hyperlipidemia may lead to endothelial injury, due to its effects on homocysteine and vascular endothelial growth factor in the serum, and the mRNA expression levels of peroxisome proliferator-activated receptor-? (PPAR?), and caspase-3 and -8 in the vascular wall. In order to prevent and mitigate the high-fat state that results from endothelial injury, this study examined the effect of folic acid (FA) and vitamin B12 (VB12) on the expression of PPAR? and caspase-3 and -8 mRNA in the abdomina...

  4. Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: Preventive role of arginine

    International Nuclear Information System (INIS)

    Wang, Biao; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Liu, Yang

    2015-01-01

    Highlights: • Cu exposure induced oxidative stress via disruption of antioxidant system. • Cu exposure disrupted TJ mRNA expression through regulation of cytokines in fish. • Cu induced gill apoptosis partly via intrinsic pathway but not extrinsic pathway. • Cu exposure can regulate Nrf2, NF-κB and TOR signaling molecules in fish. • Arginine can effectively prevent Cu-induced fish gill damage. - Abstract: This study explored the possible preventive effects of dietary arginine on copper (Cu)-induced tight junction mRNA expression changes, apoptosis and antioxidant responses in the gills of young grass carp (Ctenopharyngodon idella). The results indicated that exposure to 0.7 mg/L (11.01 μmol/L) Cu for 96 h induced the production of reactive oxygen species (ROS), thereby increasing protein oxidation, lipid peroxidation and DNA damage in the gills of fish. However, these oxidative effects were prevented by arginine supplementation. Arginine also prevented the toxic effects of Cu on the activities of copper/zinc superoxide dismutase (SOD1), glutathione-S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and the glutathione (GSH) content (P < 0.05). However, Cu induced an adaptive increase in the activity of catalase (CAT), and arginine supplementation further increased CAT activity (P < 0.05). Moreover, Cu induced increases in the relative mRNA expressions of SOD1, CAT, GPx, GST, caspase-3, caspase-9, NF-E2-related factor 2 (Nrf2), Kelch-like-ECH-associated protein 1a (Keap1a), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-8 (IL-8), transforming growth factor-β (TGF-β) and nuclear transcription factor-κB p65 (NF-κB p65) in the gills of grass carp (P < 0.05). In contrast, the relative mRNA expression levels of occludin, zonula occludens-1 (ZO-1), claudin b, claudin 3, claudin 12, target of rapamycin (TOR) and inhibitor factor κBα (IκBα) in the gills were decreased by Cu (P < 0.05). However, pre

  5. Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: Preventive role of arginine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Feng, Lin; Jiang, Wei-Dan [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Wu, Pei [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Kuang, Sheng-Yao [Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, Sichuan (China); Jiang, Jun [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Tang, Ling; Tang, Wu-Neng [Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, Sichuan (China); Zhang, Yong-An [Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Liu, Yang, E-mail: kyckgk@hotmail.com [Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan (China); and others

    2015-01-15

    Highlights: • Cu exposure induced oxidative stress via disruption of antioxidant system. • Cu exposure disrupted TJ mRNA expression through regulation of cytokines in fish. • Cu induced gill apoptosis partly via intrinsic pathway but not extrinsic pathway. • Cu exposure can regulate Nrf2, NF-κB and TOR signaling molecules in fish. • Arginine can effectively prevent Cu-induced fish gill damage. - Abstract: This study explored the possible preventive effects of dietary arginine on copper (Cu)-induced tight junction mRNA expression changes, apoptosis and antioxidant responses in the gills of young grass carp (Ctenopharyngodon idella). The results indicated that exposure to 0.7 mg/L (11.01 μmol/L) Cu for 96 h induced the production of reactive oxygen species (ROS), thereby increasing protein oxidation, lipid peroxidation and DNA damage in the gills of fish. However, these oxidative effects were prevented by arginine supplementation. Arginine also prevented the toxic effects of Cu on the activities of copper/zinc superoxide dismutase (SOD1), glutathione-S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) and the glutathione (GSH) content (P < 0.05). However, Cu induced an adaptive increase in the activity of catalase (CAT), and arginine supplementation further increased CAT activity (P < 0.05). Moreover, Cu induced increases in the relative mRNA expressions of SOD1, CAT, GPx, GST, caspase-3, caspase-9, NF-E2-related factor 2 (Nrf2), Kelch-like-ECH-associated protein 1a (Keap1a), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-8 (IL-8), transforming growth factor-β (TGF-β) and nuclear transcription factor-κB p65 (NF-κB p65) in the gills of grass carp (P < 0.05). In contrast, the relative mRNA expression levels of occludin, zonula occludens-1 (ZO-1), claudin b, claudin 3, claudin 12, target of rapamycin (TOR) and inhibitor factor κBα (IκBα) in the gills were decreased by Cu (P < 0.05). However, pre

  6. Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells.

    Science.gov (United States)

    Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M

    2004-10-27

    Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.

  7. mRNA transfection of mouse and human neural stem cell cultures

    OpenAIRE

    McLenachan, Samuel; Zhang, D.; Palomo, A.B.; Edel, Michael John; Chen, F.K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has ...

  8. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Hsien-Sung Huang

    2007-08-01

    Full Text Available Dysfunction of prefrontal cortex in schizophrenia includes changes in GABAergic mRNAs, including decreased expression of GAD1, encoding the 67 kDa glutamate decarboxylase (GAD67 GABA synthesis enzyme. The underlying molecular mechanisms remain unclear. Alterations in DNA methylation as an epigenetic regulator of gene expression are thought to play a role but this hypothesis is difficult to test because no techniques are available to extract DNA from GAD1 expressing neurons efficiently from human postmortem brain. Here, we present an alternative approach that is based on immunoprecipitation of mononucleosomes with anti-methyl-histone antibodies differentiating between sites of potential gene expression as opposed to repressive or silenced chromatin. Methylation patterns of CpG dinucleotides at the GAD1 proximal promoter and intron 2 were determined for each of the two chromatin fractions separately, using a case-control design for 14 schizophrenia subjects affected by a decrease in prefrontal GAD1 mRNA levels. In controls, the methylation frequencies at CpG dinucleotides, while overall higher in repressive as compared to open chromatin, did not exceed 5% at the proximal GAD1 promoter and 30% within intron 2. Subjects with schizophrenia showed a significant, on average 8-fold deficit in repressive chromatin-associated DNA methylation at the promoter. These results suggest that chromatin remodeling mechanisms are involved in dysregulated GABAergic gene expression in schizophrenia.

  9. The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    匡洪宇; 邹伟; 刘丹; 史榕荇; 程丽华; 殷慧清; 刘晓民

    2003-01-01

    Objective To evaluate the potential role of insulin-like growth factor-1 receptor mRNA(IGF-IR mRNA) in the onset and development of retinopathy in diabetic rats.Methods A diabetic model was duplicated in Wistar rats. The early changes in the retina were examined using light and transmission electron microscopy. Expression of IGF-IR mRNA was analyzed using in situ hybridization.Results Weak expression of IGF-IR mRNA(5%) was found in retinas of normal rats, but was significantly increased (15% and 18%) in the retinas of diabetic rats after 3 and 6 months of diabetes (P<0.01). In situ hybridization and morphological study demonstrated that there was a positive correlation between IGF-IR mRNA expression and retinal changes at various stages.Conclusion Increased IGF-IR mRNA might play an important role in the onset and development of diabetic retinopathy.

  10. The effects of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in osteopenia women.

    Science.gov (United States)

    Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin

    2014-03-01

    The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. As a result, serum P showed significant interaction effect between group and time (ppilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (ppilates group significantly increased at immediately after exercise and during recovery after exercise (ppilates group (ppilates group (NS). These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption.

  11. P2X7 mRNA expression in non-small cell lung cancer: MicroRNA regulation and prognostic value

    OpenAIRE

    BOLDRINI, LAURA; GIORDANO, MIRELLA; ALÌ, GRETA; MELFI, FRANCA; ROMANO, GAETANO; LUCCHI, MARCO; FONTANINI, GABRIELLA

    2014-01-01

    The human P2X7 receptor is significant and exhibits several functions in neoplasia. At present, little is known with regard to its regulation. P2X7 expression may be regulated post-transcriptionally and putative microRNA (miRNA) binding sites are considered to be involved. The aim of this study was to determine whether miRNAs (miR-21, let-7 g and miR-205) regulate P2X7 mRNA stability. In addition, the impact of P2X7 expression in patients with non-small cell lung cancer (NSCLC) was investigat...

  12. Evaluation of mRNA expression levels and electrophysiological function of neuron-like cells derived from canine bone marrow stromal cells.

    Science.gov (United States)

    Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro

    2013-10-01

    To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.

  13. Nerve growth factor mRNA in brain: localization by in situ hybridization

    International Nuclear Information System (INIS)

    Rennert, P.D.; Heinrich, G.

    1986-01-01

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons

  14. Phosphorylation of eIF2α is required for mRNA translation inhibition and survival during moderate hypoxia

    International Nuclear Information System (INIS)

    Koritzinsky, Marianne; Rouschop, Kasper M.A.; Beucken, Twan van den; Magagnin, Michael G.; Savelkouls, Kim; Lambin, Philippe; Wouters, Bradly G.

    2007-01-01

    Abstracts: Background and purpose: Human tumors are characterized by temporal fluctuations in oxygen tension. The biological pathways that respond to the dynamic tumor microenvironment represent potential molecular targets for cancer therapy. Anoxic conditions result in eIF2α dependent inhibition of overall mRNA translation, differential gene expression, hypoxia tolerance and tumor growth. The signaling pathway which governs eIF2α phosphorylation has therefore emerged as a potential molecular target. In this study, we investigated the role of eIF2α in regulating mRNA translation and hypoxia tolerance during moderate hypoxia. Since other molecular pathways that regulate protein synthesis are frequently mutated in cancer, we also assessed mRNA translation in a panel of cell lines from different origins. Materials and methods: Immortalized human fibroblast, transformed mouse embryo fibroblasts (MEFs) and cells from six cancer cell lines were exposed to 0.2% or 0.0% oxygen. We assayed global mRNA translation efficiency by polysome analysis, as well as proliferation and clonogenic survival. The role of eIF2α was assessed in MEFs harboring a homozygous inactivating mutation (S51A) as well as in U373-MG cells overexpressing GADD34 (C-term) under a tetracycline-dependent promoter. The involvement of eIF4E regulation was investigated in HeLa cells stably expressing a short hairpin RNA (shRNA) targeting 4E-BP1. Results: All cells investigated inhibited mRNA translation severely in response to anoxia and modestly in response to hypoxia. Two independent genetic cell models demonstrated that inhibition of mRNA translation in response to moderate hypoxia was dependent on eIF2α phosphorylation. Disruption of eIF2α phosphorylation caused sensitivity to hypoxia and anoxia. Conclusions: Disruption of eIF2α phosphorylation is a potential target for hypoxia-directed molecular cancer therapy

  15. Semi-Nested Real-Time Reverse Transcription Polymerase Chain Reaction Methods for the Successful Quantitation of Cytokeratin mRNA Expression Levels for the Subtyping of Non-Small-Cell Lung Carcinoma Using Paraffin-Embedded and Microdissected Lung Biopsy Specimens

    International Nuclear Information System (INIS)

    Nakanishi, Yoko; Shimizu, Tetsuo; Tsujino, Ichiro; Obana, Yukari; Seki, Toshimi; Fuchinoue, Fumi; Ohni, Sumie; Oinuma, Toshinori; Kusumi, Yoshiaki; Yamada, Tsutomu; Takahashi, Noriaki; Hashimoto, Shu; Nemoto, Norimichi

    2013-01-01

    In patients with inoperable advanced non-small cell lung carcinomas (NSCLCs), histological subtyping using small-mount biopsy specimens was often required to decide the indications for drug treatment. The aim of this study was to assess the utility of highly sensitive mRNA quantitation for the subtyping of advanced NSCLC using small formalin fixing and paraffin embedding (FFPE) biopsy samples. Cytokeratin (CK) 6, CK7, CK14, CK18, and thyroid transcription factor (TTF)-1 mRNA expression levels were measured using semi-nested real-time quantitative (snq) reverse-transcribed polymerase chain reaction (RT-PCR) in microdissected tumor cells collected from 52 lung biopsies. Our results using the present snqRT-PCR method showed an improvement in mRNA quantitation from small FFPE samples, and the mRNA expression level using snqRT-PCR was correlated with the immunohistochemical protein expression level. CK7, CK18, and TTF-1 mRNA were expressed at significantly higher levels (P<0.05) in adenocarcinoma (AD) than in squamous cell carcinoma (SQ), while CK6 and CK14 mRNA expression was significantly higher (P<0.05) in SQ than in AD. Each histology-specific CK, particularly CK18 in AD and CK6 in SQ, were shown to be correlated with a poor prognosis (P=0.02, 0.02, respectively). Our results demonstrated that a quantitative CK subtype mRNA analysis from lung biopsy samples can be useful for predicting the histology subtype and prognosis of advanced NSCLC

  16. Sodium bicarbonate ingestion augments the increase in PGC-1α mRNA expression during recovery from intense interval exercise in human skeletal muscle.

    Science.gov (United States)

    Percival, Michael E; Martin, Brian J; Gillen, Jenna B; Skelly, Lauren E; MacInnis, Martin J; Green, Alex E; Tarnopolsky, Mark A; Gibala, Martin J

    2015-12-01

    We tested the hypothesis that ingestion of sodium bicarbonate (NaHCO3) prior to an acute session of high-intensity interval training (HIIT) would augment signaling cascades and gene expression linked to mitochondrial biogenesis in human skeletal muscle. On two occasions separated by ∼1 wk, nine men (mean ± SD: age 22 ± 2 yr, weight 78 ± 13 kg, V̇O(2 peak) 48 ± 8 ml·kg(-1)·min(-1)) performed 10 × 60-s cycling efforts at an intensity eliciting ∼90% of maximal heart rate (263 ± 40 W), interspersed with 60 s of recovery. In a double-blind, crossover manner, subjects ingested a total of 0.4 g/kg body weight NaHCO3 before exercise (BICARB) or an equimolar amount of a placebo, sodium chloride (PLAC). Venous blood bicarbonate and pH were elevated at all time points after ingestion (P 0.05). However, the increase in PGC-1α mRNA expression after 3 h of recovery was higher in BICARB vs. PLAC (approximately sevenfold vs. fivefold compared with rest, P < 0.05). We conclude that NaHCO3 before HIIT alters the mRNA expression of this key regulatory protein associated with mitochondrial biogenesis. The elevated PGC-1α mRNA response provides a putative mechanism to explain the enhanced mitochondrial adaptation observed after chronic HIIT supplemented with NaHCO3 in rats. Copyright © 2015 the American Physiological Society.

  17. Neuropeptide B in Nile tilapia Oreochromis niloticus: molecular cloning and its effects on the regulation of food intake and mRNA expression of growth hormone and prolactin.

    Science.gov (United States)

    Yang, Lu; Sun, Caiyun; Li, Wensheng

    2014-05-01

    Neuropeptide B (NPB) regulates food intake, energy homeostasis and hormone secretion in mammals via two G-protein coupled receptors, termed as GPR 7 and GPR 8. However, there is no study that reports the function of NPB in teleosts. In this study, the full-length cDNA of prepro-NPB with the size of 663bp was cloned from the hypothalamus of Nile tilapia. The CDS of the prepro-NPB is 387bp which encodes a precursor protein with the size of 128a.a. This precursor contains a mature peptide with the size of 29a.a, and it was named as NPB29. Tissue distribution study showed that this gene was mainly expressed in different parts of brain, especially in the diencephalon as well as hypothalamus, and the spinal cord in Nile tilapia. Fasting significantly stimulated the mRNA expression of NPB in the brain area without hypothalamus, and refeeding after fasting for 3 and 14days also showed similar effects on NPB expression. While, only short-term fasting (3days) and refeeding after fasting for 7 and 14days induced mRNA expression of NPB in the hypothalamus. Intraperitoneal (i.p.) injection of NPB remarkably elevated the mRNA expression of hypothalamic neuropeptide Y (NPY), cholecystokinin 1 (CCK1) and pituitary prolactin (PRL), whereas significantly inhibited growth hormone (GH) expression in pituitary. These observations in the present study suggested that NPB may participate in the regulation of feeding and gene expression of pituitary GH and PRL in Nile tilapia. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The studies of DNA double-strand break (DSB) rejoining and mRNA expression of repair gene XRCCs in malignant transformed cell lines of human bronchial epithelial cells generated by α-particles

    International Nuclear Information System (INIS)

    Sun Jingfen; Sui Jianli; Geng Yu; Zhou Pingkun; Wu Dechang

    2002-01-01

    Objective: To investigate the efficiency of γ-ray-induced DNA DSB rejoining and the mRNA expression of DNA repair genes in malignantly transformed cell lines of human bronchial epithelial cells generated by exposure to a-particles. Methods: Pulsed field gel electrophoresis (PFGE) was used to detect DNA. DSBs mRNA expression was analyzed by RT-PCR. Results: The residual DNA DSB damage level after 4hrs repair following 0-150 Gy of γ-irradiation in the malignantly transformed cell lines BERP35T-1 and BERP35T-4 was significantly higher than that in their parental BEP2D cells. The analysis of mRNA level revealed a 2.5-to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 (XRCC-5) in BERP35T-1 and BERP35T-4 cells as compared with the parental BEP2D cells. In contrast, the expression of DNA-PKcs(XRCC7) was 2.4-fold up-regulated in the transformed cell line BERP35T-4, in which there was a significantly higher proportion of polyploid cells. Conclusion: This study results show that the deficiency of DNA DSB rejoining and depressed mRNA expression of DNA repair genes could be involved in the malignant transformation process of BEP2D cells induced by exposure to α-particles

  19. mRNA expression of genes involved in inflammation and haemostasis in equine fibroblast-like synoviocytes following exposure to lipopolysaccharide, fibrinogen and thrombin

    DEFF Research Database (Denmark)

    Andreassen, Stine Mandrup; Berg, Lise Charlotte; Nielsen, Søren Saxmose

    2015-01-01

    Background: Studies in humans have shown that haemostatic and inflammatory pathways both play important roles in the pathogenesis of joint disease. The aim of this study was to assess mRNA expression of haemostatic and inflammatory factors in cultured equine fibroblast-like synoviocytes exposed t...

  20. Effect of Qingguang'an II on expression of PAX6, Ngn1 and Ngn2 mRNA of rats with chronic high intraocular pressure

    Directory of Open Access Journals (Sweden)

    Ya-Sha Zhou

    2017-09-01

    Full Text Available AIM: To remark the effect of Qingguang'an II on expression of PAX6, Ngn1, and Ngn2 mRNA of rats with chronic high intraocular pressure. METHODS: Totally 40 male SD rats were randomly divided into 6 groups, that was: A: blank group, B: model group, C: Qingguang'an II low dose group, D: Qingguang'an II moderate dose group, E: Qingguang'an II high dose group, F: Yimaikang disket group. B, C, D, E, F groups of experimental rats were established the model of chronic high intraocular pressure(IOPby cauterizing of superficial scleral vein. Animal model was established successfully by using monitoring IOP consistently keep above 25mmHg for 8wk as cut-off criterion. Tissues of Eyes were obtained after intragastric administration for 2wk and 4wk. The expressions of PAX6, Ngn1, and Ngn2 mRNA were investigated by Real-time PCR. RESULTS: At the time-point of 2wk, PAX6, Ngn1, and Ngn2 mRNA in group B were statistically expressed in lower level comparing with other groups(PPPP>0.05. CONCLUSION: In summar, Qingguang'an II and Yimaikang disket can remarkably increase the expressions of PAX6, Ngn1, and Ngn2, which suggest protecting the optic nerve of rats caused by chronic high IOP. What's more, this study indicated that, in the protection of optic nerve of rats with chronic high IOP, the high dose of Qingguang'an II at the time-point of 4wk was the better choice.

  1. Dopamine transporter polymorphism modulates oculomotor function and DAT1 mRNA expression in schizophrenia.

    Science.gov (United States)

    Wonodi, Ikwunga; Hong, L Elliot; Stine, O Colin; Mitchell, Braxton D; Elliott, Amie; Roberts, Rosalinda C; Conley, Robert R; McMahon, Robert P; Thaker, Gunvant K

    2009-03-05

    Smooth pursuit eye movement (SPEM) deficit is an established schizophrenia endophenotype with a similar neurocognitive construct to working memory. Frontal eye field (FEF) neurons controlling SPEM maintain firing when visual sensory information is removed, and their firing rates directly correlate with SPEM velocity. We previously demonstrated a paradoxical association between a functional polymorphism of dopamine signaling (COMT gene) and SPEM. Recent evidence implicates the dopamine transporter gene (DAT1) in modulating cortical dopamine and associated neurocognitive functions. We hypothesized that DAT1 10/10 genotype, which reduces dopamine transporter expression and increases extracellular dopamine, would affect SPEM. We examined the effects of DAT1 genotype on: Clinical diagnosis in the study sample (n = 418; 190 with schizophrenia), SPEM measures in a subgroup with completed oculomotor measures (n = 200; 87 schizophrenia), and DAT1 gene expression in FEF tissue obtained from postmortem brain samples (n = 32; 16 schizophrenia). DAT1 genotype was not associated with schizophrenia. DAT1 10/10 genotype was associated with better SPEM in healthy controls, intermediate SPEM in unaffected first-degree relatives of schizophrenia subjects, and worse SPEM in schizophrenia subjects. In the gene expression study, DAT1 10/10 genotype was associated with significantly reduced DAT1 mRNA transcript in FEF tissue from healthy control donors (P < 0.05), but higher expression in schizophrenia donors. Findings suggest regulatory effects of another gene(s) or etiological factor in schizophrenia, which modulate DAT1 gene function. 2008 Wiley-Liss, Inc.

  2. Regulation of mRNA translation during mitosis.

    Science.gov (United States)

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-08-25

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.

  3. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    Science.gov (United States)

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  4. Altered organization of GABAA receptor mRNA expression in the depressed suicide brain

    Directory of Open Access Journals (Sweden)

    Michael O Poulter

    2010-03-01

    Full Text Available Inter-relationships ordinarily exist between mRNA expression of GABA-A subunits in the frontopolar cortex (FPC of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABA-A receptor expression patterns (of controls and depressed individuals that died by suicide in the orbital frontal cortex (OFC, hippocampus, amygdala. locus coeruleus (LC,and paraventricular nucleus (PVN, all of which have been implicated in either depression, anxiety or stress responsivity. Results Using QPCR analysis, we found that in controls the inter-relations between GABA-A subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABA-A subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. Conclusions It seems that altered brain region-specific inhibitory signaling, stemming from altered GABA-A subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABA-A subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the co-ordinate expression of this transcriptome does vary depending on brain region and is plastic.

  5. MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells.

    Science.gov (United States)

    Lin, Xian-Zi; Luo, Jun; Zhang, Li-Ping; Wang, Wei; Shi, Heng-Bo; Zhu, Jiang-Jiang

    2013-05-25

    MicroRNAs (miRNAs), a well-defined group of small RNAs containing about 22 nucleotides, participate in various biological metabolic processes. miR-27a is a miRNA that is known to regulate fat synthesis and differentiation in preadipocyte cells. However, little is known regarding the role that miR-27a plays in regulating goat milk fat synthesis. In this study, we determined the miR-27a expression profile in goat mammary gland and found that miR-27a expression was correlated with the lactation cycle. Additionally, prolactin promoted miR-27a expression in goat mammary gland epithelial cells. Further functional analysis showed that over-expression of miR-27a down-regulated triglyceride accumulation and decreased the ratio of unsaturated/saturated fatty acid in mammary gland epithelial cells. miR-27a also significantly affected mRNA expression related to milk fat metabolism. Specifically, over-expression of miR-27a reduced gene mRNA expression associated with triglyceride synthesis by suppressing PPARγ protein levels. This study provides the first experimental evidence that miR-27a regulates triglyceride synthesis in goat mammary gland epithelial cells and improves our understanding about the importance of miRNAs in milk fat synthesis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. [Effect of eicosapentaenoic acid on mRNA expression of tight junction protein ZO-1 in intestinal epithelial cells after Escherichia coli LF82 infection].

    Science.gov (United States)

    Hao, Li-Jun; Lin, Yan; Zhang, Wei; Tian, Jiao; Wang, Ya; Chen, Peng-De; Hu, Chong-Kang; Zeng, Ling-Chao; Yang, Jie; Wang, Bao-Xi; Jiang, Xun

    2017-06-01

    To investigate the change in the expression of tight junction protein ZO-1 in intestinal epithelial cells (Caco-2 cells) and the protective effect of eicosapentaenoic acid (EPA) after adherent-invasive Escherichia coli (E.coli) LF82 infection. The Caco-2 cell line was used to establish an in vitro model of tight junction of intestinal epithelial cells. Caco-2 cells were divided into EPA treatment groups (0, 25, 50, 100, and 200 μmol/L EPA) and EPA (0, 25, 50, 100, and 200 μmol/L EPA)+E.coli LF82 treatment (0, 6, and 12 hours) groups. A microscope was used to observe the morphological characteristics of the cells. MTT assay was used to determine the cell growth curve. The activity of alkaline phosphatase (ALP) at both sides of the cell membrane was compared to evaluate the Caco-2 cell model. MTT assay and flow cytometry were used to investigate the effects of different concentrations of EPA on the survival rate and apoptosis rate of Caco-2 cells. RT-qPCR was used to measure the mRNA expression of ZO-1 in Caco-2 cells after EPA and/or E.coli LF82 treatment. ELISA was used to measure the change in the level of tumor necrosis factor-α (TNF-α) in culture supernatant. After EPA treatment (25 and 50 μmol/L), the proliferation of Caco-2 cells was induced in a dose-dependent manner. The survival rates of the cells were significantly higher than those in the control group (PE.coli LF82 treatment groups had decreasing mRNA expression of ZO-1 in Caco-2 cells over the time of treatment and had significantly lower mRNA expression of ZO-1 than the untreated group (PE.coli LF82 and 25 or 50 μmol/L EPA for 6 or 12 hours showed an increase in the mRNA expression of ZO-1 with the increasing concentration of EPA, as well as significantly higher mRNA expression of ZO-1 than the Caco-2 cells treated with E.coli LF82 alone (PE.coli LF82 alone for 6 or 12 hours had increasing secretion of TNF-α over the time of treatment and had significantly higher secretion than the untreated

  7. Changes of Tc-99m sestamibi uptake in P-glycoprotein expressing leukaemia cells treated in vivo with antisense oligodeoxynucleotide complementary to mdr1 mRNA

    International Nuclear Information System (INIS)

    Kinuya, S.; Yokoyama, K; Fukuoka, M.; Michigishi, T.; Tonami, N.; Shiba, K.; Mori, H.; Watanabe, N.; Shuke, N.

    2006-01-01

    We examined the feasibility of Tc-99m sestamibi to monitor changes of mRNA expression of MDRl/P-glycoprotein (Pgp) following antisense oligodeoxynucleotide (AS-ODN) treatment in vivo. Three days after the intraperitoneal inoculation of murine leukaemia P388/R cells expressing MDR1/P-gp in CDFI mice, 15-mer phosphorothioate ASODN to the initiation codon of mouse mdr1 mRNA was administered intraperitoneally at 10 mg/kg daily for 3 or 4 days. Cells collected from ascites were suspended in medium for Tc-99m sestamibi uptake studies. To know the duration of antisense effects, cells were harvested 2 days later after the 3-day treatment. AS-ODN treatment increased Tc-99m sestamibi uptake. Effects of 3-day treatment and 4-day treatment were the same. Treatment effects were not detected when uptake was observed 2 days after 3-day treatment. Based on the results it was concluded that in vivo treatment with AS-ODN specific to the coding portion of mdr1 mRNA increased Tc-99m sestamibi uptake in leukaemia cells possessing MDR function. (author)

  8. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth.

    Science.gov (United States)

    Zhang, Xiaoqian; Li, Kecheng; Xing, Ronge; Liu, Song; Chen, Xiaolin; Yang, Haoyue; Li, Pengcheng

    2018-04-18

    Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.

  9. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  11. 9-cis-retinoic acid increases apolipoprotein AI secretion and mRNA expression in HepG2 cells.

    Science.gov (United States)

    Haghpassand, M; Moberly, J B

    1995-10-01

    HepG2 cells were studied as a model for regulation of hepatic apolipoprotein AI (apo AI) secretion and gene expression by 9-cis-retinoic acid. HepG2 cells cultured on plastic dishes were exposed to 9-cis-retinoic acid (9-cis-RA) for 48 h with a complete media change at 24 h. Apo AI mass in cultured media was determined by ELISA, by quantitative immunoblotting and by steady-state 35S-methionine labeling. Messenger RNA levels were determined by RNase protection using probes for apo AI and the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (G3PDH). 9-cis-RA increased secretion of apo AI by 52% at doses of 10 and 1 microM (6.3 +/- 0.6 vs. 4.2 +/- 0.3; P G3PDH mRNA was slightly decreased (14%, P < 0.05). Thus, 9-cis-RA stimulates apo AI expression in HepG2 cells, suggesting a role for retinoids in activating endogenous apo AI gene expression.

  12. Motor Skills Training Improves Sensorimotor Dysfunction and Increases Microtubule-Associated Protein 2 mRNA Expression in Rats with Intracerebral Hemorrhage.

    Science.gov (United States)

    Tamakoshi, Keigo; Kawanaka, Kentaro; Onishi, Hideaki; Takamatsu, Yasuyuki; Ishida, Kazuto

    2016-08-01

    In this study, we examined the effects of motor skills training on the sensorimotor function and the expression of genes associated with synaptic plasticity after intracerebral hemorrhage (ICH) in rats. Male Wistar rats were subjected to ICH or sham operation. ICH was caused by the injection of collagenase into the left striatum. Rats were randomly assigned to no training, acrobatic training, and sham groups. The acrobatic group performed 5 types of acrobatic tasks from 4 to 28 days after surgery. The forelimb sensorimotor function was evaluated over time using forepaw grasping, forelimb placing, and postural instability tests. At 14 and 29 days after the lesion, we analyzed the mRNA expression levels of microtubule-associated protein 2 (MAP2), brain-derived neurotrophic factor, and growth-associated protein 43 in the bilateral sensorimotor cortex (forelimb area) by real-time reverse transcription-polymerase chain reaction. Motor skills training in ICH rats improved the sensorimotor dysfunction significantly from the early phase. The mRNA expression level of MAP2 was upregulated in the ipsilesional sensorimotor cortex by motor skills training at 29 days after the lesion. Our results suggest that sensorimotor functional recovery following motor skills training after ICH is promoted by dendritic growth in the ipsilesional sensorimotor cortex. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Expression of insulin-like growth factor I, insulin-like growth factor binding proteins, and collagen mRNA in mechanically loaded plantaris tendon

    DEFF Research Database (Denmark)

    Olesen, Jens L; Heinemeier, Katja M; Haddad, Fadia

    2006-01-01

    Insulin-like growth factor I (IGF-I) is known to exert an anabolic effect on tendon fibroblast production of collagen. IGF-I's regulation is complex and involves six different IGF binding proteins (IGFBPs). Of these, IGFBP-4 and -5 could potentially influence the effect of IGF-I in the tendon...... because they both are produced in fibroblast; however, the response of IGFBP-4 and -5 to mechanical loading and their role in IGF-I regulation in tendinous tissue are unknown. A splice variant of IGF-I, mechano-growth factor (MGF) is upregulated and known to be important for adaptation in loaded muscle....... However, it is not known whether MGF is expressed and upregulated in mechanically loaded tendon. This study examined the effect of mechanical load on tendon collagen mRNA in relation to changes in the IGF-I systems mRNA expression. Data were collected at 2, 4, 8 and 16 days after surgical removal...

  14. Effects of growth hormone treatment on the pituitary expression of GHRH receptor mRNA in uremic rats.

    Science.gov (United States)

    Ferrando, Susana; Rodríguez, Julián; Santos, Fernando; Weruaga, Ana; Fernández, Marta; Carbajo, Eduardo; García, Enrique

    2002-09-01

    A decreased ability of pituitary cells to secrete growth hormone (GH) in response to growth hormone releasing hormone (GHRH) stimulation has been shown in young uremic rats. The aim of the current study was to examine the effect of uremia and GH treatment on pituitary GHRH receptor expression. Pituitary GHRH receptor mRNA levels were analyzed by RNase protection assay in young female rats made uremic by subtotal nephrectomy, either untreated (UREM) or treated with 10 IU/kg/day of GH (UREM-GH), and normal renal function animals fed ad libitum (SAL) or pair-fed with the UREM group (SPF). Rats were sacrificed 14 days after the second stage nephrectomy. Renal failure was confirmed by concentrations (X +/- SEM) of serum urea nitrogen (mmol/L) and creatinine (micromol/L) in UREM (20 +/- 1 and 89.4 +/- 4.5) and UREM-GH (16 +/- 1 and 91.4 +/- 6.9) that were much higher (P growth retarded as shown by a daily longitudinal tibia growth rate below (P growth rate acceleration (213 +/- 6 microm/day). GHRH receptor mRNA levels were no different among the SAL (0.43 +/- 0.03), SPF (0.43 +/- 0.08) and UREM (0.44 +/- 0.04) groups, whereas UREM-GH rats had significantly higher values (0.72 +/- 0.07). The status of pituitary GHRH receptor is not modified by nutritional deficit or by severe uremia causing growth retardation. By contrast, the growth promoting effect of GH administration is associated with stimulated GHRH receptor gene expression.

  15. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion.

    Science.gov (United States)

    Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao

    2005-08-01

    To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  16. mRNA expression profile of prostaglandin D2 receptors in rat trigeminovascular system, and effect of prostaglandins in rat migraine models

    DEFF Research Database (Denmark)

    Sekeroglu, A.; Jansen-Olesen, I.; Gupta, S.

    2015-01-01

    not changed in the trigeminal nucleus caudalis. Conclusions: PGD2 induced vasodilation of MMA is mainly mediated by activation of DP1 receptors. Furthermore, high expression of DP1 mRNA in TG and DRG suggest that PGD2 might play a role in migraine pathophysiology. However, infusion of PG mix in awake rats did...

  17. Plasma cytokines do not reflect expression of pro- and anti-inflammatory cytokine mRNA at organ level after cardiopulmonary bypass in neonatal pigs

    DEFF Research Database (Denmark)

    Brix-Christensen, V.; Vestergaard, C.; Chew, M.

    2003-01-01

    Background: Plasma concentrations of inflammatory markers are increased in response to the trauma of cardiac surgery and cardiopulmonary bypass (CPB). It is, however, unknown whether the plasma cytokine levels and cytokine mRNA expression at organ level reflect each other. Methods: Twenty...

  18. The effect of steroid hormones on the mRNA expression of oct4 and sox2 in uterine tissue of the ovariectomized mice model of menopause

    Directory of Open Access Journals (Sweden)

    Marzieh Davoudi

    2016-07-01

    Full Text Available Background: The uterus is a dynamic tissue responding to hormonal changes during reproductive cycles. As such, uterine stem cells have been studied in recent years. Transcription factors oct4 and sox2 are critical for effective maintenance of pluripotent cell identity. Objective: The present research evaluated the mRNA expression of oct4 and sox2 in the uterine tissues of ovariectomized mice treated with steroid hormones. Materials and Methods: In this experimental study, adult virgin female mice were ovariectomized and treated with estradiol 17β (E2, progesterone (P4, and a combination of E2 and P4 (E2 & P4 for 5 days. Uterine tissues were removed, and immunofluorescent (IF staining and quantitative real-time PCR of oct4 and sox2 markers were performed. Results: IF showed oct4 and sox2 expression in the uterine endometrium and myometrium among all groups. The mRNA expression of oct4 (p=0.022 and sox2 (p=0.042 in the E2-treated group significantly were decreased compared to that in the control group. By contrast, the mRNA expression of oct4 and sox2 in the P4 (p=0.641 and 0.489 respectively and E2 & P4-treated groups (p=0.267 and 0.264 respectively did not show significant differences compared to the control group. Conclusion: The results indicate ovarian steroid hormones change the expression of oct4 and sox2 in the mice uterine tissues, which suggest the involvement of steroid hormonal regulation in uterine stem cells.

  19. Selenium Deficiency Influences the mRNA Expression of Selenoproteins and Cytokines in Chicken Erythrocytes.

    Science.gov (United States)

    Luan, Yilin; Zhao, Jinxin; Yao, Haidong; Zhao, Xia; Fan, Ruifeng; Zhao, Wenchao; Zhang, Ziwei; Xu, Shiwen

    2016-06-01

    Selenium (Se) deficiency induces hemolysis in chickens, but the molecular mechanism for this effect remains unclear. Se primarily elicits its function through the activity of selenoproteins, which contain the unique amino acid selenocysteine (Sec). In this study, we aimed to investigate the effect of Se deficiency on the expression of 24 selenoproteins and 10 cytokines. One hundred eighty chickens were randomly divided into 2 groups (90 chickens per group). During the entire experimental period, chickens were allowed ad libitum consumption of feed and water. The chickens were fed either a Se-deficient diet (0.008 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a Se-supplemented diet (as sodium selenite) at 0.2 mg/kg for 35 days. At the 35th day, the messenger RNA (mRNA) levels of 24 selenoproteins and 10 cytokines were examined in erythrocytes of 5 chickens per group, and the correlation was analyzed. The results showed that the expression of 24 selenoproteins and 7 cytokines (IL-2, IL-4, IL-8, IL-10, IL-12β, TGF-β4, and IFN-γ) decreased (P chicken erythrocytes (P chickens was damaged by the Se deficiency. Correlation analysis suggested that although the expression of 24 selenoproteins and 7 cytokines decreased and that of 3 cytokines increased, there was a close correlation between their expression levels and a Se diet. These results suggested that Se deficiency influenced the expressions of 24 selenoproteins and 10 cytokines in chicken erythrocytes, revealing a relationship between Se and the chicken immune system. This study offers information regarding the mechanism of Se deficiency-induced hemolysis.

  20. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping

    Science.gov (United States)

    Labib, Mahmoud; Mohamadi, Reza M.; Poudineh, Mahla; Ahmed, Sharif U.; Ivanov, Ivaylo; Huang, Ching-Lung; Moosavi, Maral; Sargent, Edward H.; Kelley, Shana O.

    2018-05-01

    Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enablescirculating tumour cells to be distinguished from normal haematopoietic cells. No polymerase chain reaction amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically important sequences in prostate cancer specimens.

  1. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application.

    Science.gov (United States)

    Riya, Shohei; Takeuchi, Yuki; Zhou, Sheng; Terada, Akihiko; Hosomi, Masaaki

    2017-06-01

    A pulse of nitrous oxide (N 2 O) emission has been observed following the disappearance of floodwater by drainage. However, its mechanism is not well understood. We conducted a column study to clarify the mechanism for N 2 O production during floodwater disappearance by using a microsensor and determining the bacterial gene expression. An increase in N 2 O flux was observed following floodwater disappearance after the addition of NH 4 + , with a corresponding increase in the concentrations of NO 3 - and dissolved N 2 O in the oxic and anoxic soil layers, respectively. The transcription level of the bacterial amoA mRNA did not change, while that of nirK mRNA increased sharply after an hour of floodwater disappearance. An additional anoxic soil slurry experiment demonstrated that the addition of NO 3 - induced the expression of nirK gene and caused a concomitant increase in N 2 O production. These findings suggest that NO 3 - production in the oxic layers is important as it provides a substrate and induces the synthesis of denitrification enzymes in the anoxic layer during N 2 O production.

  2. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance.

    Science.gov (United States)

    Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing

    2018-01-01

    Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill under stress of NaCl and/or ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Hesham F. Alharby

    2016-11-01

    Full Text Available Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L−1 and ZnO-NPs (0, 15 and 30 mg L−1. Treatments with NaCl at both 3 and 6 g L−1 suppressed the mRNA levels of superoxide dismutase (SOD and glutathione peroxidase (GPX genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS–PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa. Keywords: Tomato, Salt stress, Nanoparticles, Gene expression, Real-time PCR, Polymorphism

  4. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal.

    Science.gov (United States)

    Martinez, Bridget; Soñanez-Organis, José G; Vázquez-Medina, José Pablo; Viscarra, Jose A; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2013-12-15

    Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.

  5. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Sorting live stem cells based on Sox2 mRNA expression.

    Directory of Open Access Journals (Sweden)

    Hans M Larsson

    Full Text Available While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES and neural stem cells (NSC. One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+SSEA1(+ cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+ cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(- cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner.

  7. mRNA localization mechanisms in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Lysangela R Alves

    Full Text Available Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.

  8. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Directory of Open Access Journals (Sweden)

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  9. Effects of total glucosides of peony on AQP-5 and its mRNA expression in submandibular glands of NOD mice with Sjogren's syndrome.

    Science.gov (United States)

    Wu, G-L; Pu, X-H; Yu, G-Y; Li, T-Y

    2015-01-01

    The aim of this study was to observe the effects of total glucosides of peony (TGP) on pathological change, Aquaporin-5 (AQP-5) and its mRNA expression in submandibular glands of non-obese diabetic (NOD) mice with Sjogren's Syndrome, to investigate its regulation on secretion of salivary glands. 40 NOD mice were randomly divided into model group, TGP group, hydroxychloroquine group, combination group (n = 10). For TGP group, the mice were intragastrically administrated with 0.4 ml TGP dilution per day in accordance with 300 g/kg dose; for hydroxychloroquine group, the mice were intragastrically administrated with 0.4 ml hydroxychloroquine per day in accordance with 60 mg/kg dose; for the combination group, the mice were intragastrically administrated with 0.4 ml TGP dilution and 0.4 ml hydroxychloroquine. 8 weeks later, the mice were sacrificed, and submandibular glands were collected by anatomy. Pathological changes of submandibular gland were observed under a light microscope; AQP-5 protein in submandibular glands was detected by immunohistochemical staining; and AQP-5 mRNA expression in submandibular glands was detected by RT-PCR. The lymphocytic infiltration score of model mice was significantly higher than that of other groups. The pathological morphology and score of NOD mice were significantly improved after administration, and the combination group was superior to the hydroxychloroquine group and TGP group (p TGP group and the combination group were higher than the hydroxychloroquine group (p TGP may improve pathological damage of submandibular glands of NOD mouse with Sjogren's syndrome by upregulating AQP-5 and its mRNA expression in submandibular glands.

  10. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.

    Science.gov (United States)

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance.

  11. Adipose tissue interleukin-18 mRNA and plasma interleukin-18: effect of obesity and exercise

    DEFF Research Database (Denmark)

    Leick, Lotte; Lindegaard, Birgitte; Stensvold, Dorthe

    2007-01-01

    resistance was tested. Furthermore, we speculated that acute exercise and exercise training would regulate AT IL-18 mRNA expression. RESEARCH METHODS AND PROCEDURES: Non-obese subjects with BMI women: n = 18; men; n = 11) and obese subjects with BMI >30 kg/m(2) (women: n = 6; men: n = 7...... of regular physical activity with improved insulin sensitivity.......OBJECTIVES: Obesity and a physically inactive lifestyle are associated with increased risk of developing insulin resistance. The hypothesis that obesity is associated with increased adipose tissue (AT) interleukin (IL)-18 mRNA expression and that AT IL-18 mRNA expression is related to insulin...

  12. A glimpse at mRNA dynamics reveals cellular domains and rapid trafficking through granules

    NARCIS (Netherlands)

    Gemert, Alice Myriam Christi van

    2011-01-01

    mRNA transport and targeting are essential to gene expression regulation. Specific mRNA sequences can bind several proteins and together form RiboNucleoProtein particles (RNP). The various proteins within the RNP determine mRNA fate: translation, transport or decay. RNP composition varies with

  13. Both short intense and prolonged moderate in vitro stimulation reduce the mRNA expression of calcium-regulatory proteins in rat skeletal muscle

    DEFF Research Database (Denmark)

    Mänttäri, Satu; Ørtenblad, N; Madsen, Klavs

    2013-01-01

    RNA expression of components involved in Ca(2+) regulation in oxidative and glycolytic skeletal muscle. The mRNA level of Ca(2+)-ATPase (SERCA1, 2), calsequestrin (CASQ1, 2), ryanodine receptor (RyR1), and dihydropyridine receptor (Cacna1) was assessed in rat extensor digitorum longus (EDL) and soleus (SOL...

  14. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna)

    Energy Technology Data Exchange (ETDEWEB)

    Hannas, Bethany R.; Wang, Ying H.; Thomson, Susanne; Kwon, Gwijun; Hong, Li [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633 (United States); LeBlanc, Gerald A., E-mail: Gerald_LeBlanc@ncsu.edu [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633 (United States)

    2011-01-25

    The induction of vitellogenin in oviparous vertebrates has become the gold standard biomarker of exposure to estrogenic chemicals in the environment. This biomarker of estrogen exposure also has been used in arthropods, however, little is known of the factors that regulate the expression of vitellogenin in these organisms. We investigated changes in accumulation of mRNA products of the vitellogenin gene Vtg2 in daphnids (Daphnia magna) exposed to a diverse array of chemicals. We further evaluated the involvement of hormonal factors in the regulation of vitellogenin expression that may be targets of xenobiotic chemicals. Expression of the Vtg2 gene was highly responsive to exposure to various chemicals with an expression range spanning approximately four orders of magnitude. Chemicals causing the greatest induction were piperonyl butoxide, chlordane, 4-nonylphenol, cadmium, and chloroform. Among these, only 4-nonylphenol is recognized to be estrogenic. Exposure to several chemicals also suppressed Vtg2 mRNA levels, as much as 100-fold. Suppressive chemicals included cyproterone acetate, acetone, triclosan, and atrazine. Exposure to the estrogens diethylstilbestrol and bisphenol A had little effect on vitellogenin mRNA levels further substantiating that these genes are not induced by estrogen exposure. Exposure to the potent ecdysteroids 20-hydroxyecdysone and ponasterone A revealed that Vtg2 was subject to strong suppressive control by these hormones. Vtg2 mRNA levels were not significantly affected from exposure to several juvenoid hormones. Results indicate that ecdysteroids are suppressors of vitellogenin gene expression and that vitellogenin mRNA levels can be elevated or suppressed in daphnids by xenobiotics that elicit antiecdysteroidal or ecdysteroidal activity, respectively. Importantly, daphnid Vtg2 is not elevated in response to estrogenic activity.

  15. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna)

    International Nuclear Information System (INIS)

    Hannas, Bethany R.; Wang, Ying H.; Thomson, Susanne; Kwon, Gwijun; Li Hong; LeBlanc, Gerald A.

    2011-01-01

    The induction of vitellogenin in oviparous vertebrates has become the gold standard biomarker of exposure to estrogenic chemicals in the environment. This biomarker of estrogen exposure also has been used in arthropods, however, little is known of the factors that regulate the expression of vitellogenin in these organisms. We investigated changes in accumulation of mRNA products of the vitellogenin gene Vtg2 in daphnids (Daphnia magna) exposed to a diverse array of chemicals. We further evaluated the involvement of hormonal factors in the regulation of vitellogenin expression that may be targets of xenobiotic chemicals. Expression of the Vtg2 gene was highly responsive to exposure to various chemicals with an expression range spanning approximately four orders of magnitude. Chemicals causing the greatest induction were piperonyl butoxide, chlordane, 4-nonylphenol, cadmium, and chloroform. Among these, only 4-nonylphenol is recognized to be estrogenic. Exposure to several chemicals also suppressed Vtg2 mRNA levels, as much as 100-fold. Suppressive chemicals included cyproterone acetate, acetone, triclosan, and atrazine. Exposure to the estrogens diethylstilbestrol and bisphenol A had little effect on vitellogenin mRNA levels further substantiating that these genes are not induced by estrogen exposure. Exposure to the potent ecdysteroids 20-hydroxyecdysone and ponasterone A revealed that Vtg2 was subject to strong suppressive control by these hormones. Vtg2 mRNA levels were not significantly affected from exposure to several juvenoid hormones. Results indicate that ecdysteroids are suppressors of vitellogenin gene expression and that vitellogenin mRNA levels can be elevated or suppressed in daphnids by xenobiotics that elicit antiecdysteroidal or ecdysteroidal activity, respectively. Importantly, daphnid Vtg2 is not elevated in response to estrogenic activity.

  16. Assessing the Effect of High Performance Inulin Supplementation via KLF5 mRNA Expression in Adults with Type 2 Diabetes: A Randomized Placebo Controlled Clinical Trail.

    Science.gov (United States)

    Ghavami, Abed; Roshanravan, Neda; Alipour, Shahriar; Barati, Meisam; Mansoori, Behzad; Ghalichi, Faezeh; Nattagh-Eshtivan, Elyas; Ostadrahimi, Alireza

    2018-03-01

    Purpose: The worldwide prevalence of metabolic disorders such as diabetes is increasing rapidly. Currently, the complications of diabetes are the major health concern. The aim of this study was to investigate the effect of high performance (HP) inulin supplementation on glucose homeostasis via KLF5 mRNA expression in adults with type 2 diabetes. Methods: In the present clinical trial conducted for a duration of 6 weeks, 46 volunteers diabetic patients referring to diabetes clinic in Tabriz, Iran, were randomly assigned into intervention (n= 23, consuming 10 gr/d HP inulin) and control groups (n= 23, consuming 10 gr/ d starch). We assessed glycemic and anthropometric indices, blood lipids and plasmatic level of miR-375 as well as KLF5 mRNA expression before and after the intervention. Results: Findings indicated that inulin supplementation significantly decreased fasting plasma glucose (FPG) in comparison to the placebo group (Pinulin supplementation resulted in significant decrease in KLF5 mRNA expression in peripheral blood mononuclear cells (PBMCs) (Fold change: 0.61± 0.11; P-value= 0.001) and significant increase in plasmatic level of miR-375 (Fold change: 3.75± 0.70; P-value=0.004). Conclusion: Considering the improvements of FPG level in diabetic patients, it seems that HP inulin supplementation may be beneficial in controlling diabetes via the expression of some genes. However, further studies are needed to achieve concise conclusions.

  17. Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS. Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg(-1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA showed significantly decreased androgens (i.e., androstenedione and testosterone with significantly increased estrogens (i.e., estrone, estradiol and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive

  18. Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats.

    Science.gov (United States)

    Sun, Jie; Jin, Chunlan; Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg(-1) of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and

  19. Effects of Electro-Acupuncture on Ovarian P450arom, P450c17α and mRNA Expression Induced by Letrozole in PCOS Rats

    Science.gov (United States)

    Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and

  20. Plasma concentrations and subcutaneous adipose tissue mRNA expression of clusterin in obesity and type 2 diabetes mellitus: the effect of short-term hyperinsulinemia, very-low-calorie diet and bariatric surgery.

    Science.gov (United States)

    Kloučková, J; Lacinová, Z; Kaválková, P; Trachta, P; Kasalický, M; Haluzíková, D; Mráz, M; Haluzík, M

    2016-07-18

    Clusterin is a heterodimeric glycoprotein with wide range of functions. To further explore its possible regulatory role in energy homeostasis and in adipose tissue, we measured plasma clusterin and its mRNA expression in subcutaneous adipose tissue (SCAT) of 15 healthy lean women, 15 obese women (OB) and 15 obese women with type 2 diabetes mellitus (T2DM) who underwent a 2-week very low-calorie diet (VLCD), 10 obese women without T2DM who underwent laparoscopic sleeve gastrectomy (LSG) and 8 patients with T2DM, 8 patients with impaired glucose tolerance (IGT) and 8 normoglycemic patients who underwent hyperinsulinemic euglycemic clamp (HEC). VLCD decreased plasma clusterin in OB but not in T2DM patients while LSG and HEC had no effect. Clusterin mRNA expression in SCAT at baseline was increased in OB and T2DM patients compared with controls. Clusterin mRNA expression decreased 6 months after LSG and remained decreased 12 months after LSG. mRNA expression of clusterin was elevated at the end of HEC compared with baseline only in normoglycemic but not in IGT or T2DM patients. In summary, our data suggest a possible local regulatory role for clusterin in the adipose tissue rather than its systemic involvement in the regulation of energy homeostasis.

  1. A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism

    Directory of Open Access Journals (Sweden)

    Llopis Ana

    2010-03-01

    Full Text Available Abstract Background Gene expression is achieved by the coordinated action of multiple factors to ensure a perfect synchrony from chromatin epigenetic regulation through to mRNA export. Sus1 is a conserved mRNA export/transcription factor and is a key player in coupling transcription initiation, elongation and mRNA export. In the nucleus, Sus1 is associated to the transcriptional co-activator SAGA and to the NPC associated complex termed TREX2/THSC. Through these associations, Sus1 mediates the nuclear dynamics of different gene loci and facilitate the export of the new transcripts. Results In this study, we have investigated whether the yeast Sus1 protein is linked to factors involved in mRNA degradation pathways. We provide evidence for genetic interactions between SUS1 and genes coding for components of P-bodies such as PAT1, LSM1, LSM6 and DHH1. We demonstrate that SUS1 deletion is synthetic lethal with 5'→3' decay machinery components LSM1 and PAT1 and has a strong genetic interaction with LSM6 and DHH1. Interestingly, Sus1 overexpression led to an accumulation of Sus1 in cytoplasmic granules, which can co-localise with components of P-bodies and stress granules. In addition, we have identified novel physical interactions between Sus1 and factors associated to P-bodies/stress granules. Finally, absence of LSM1 and PAT1 slightly promotes the Sus1-TREX2 association. Conclusions In this study, we found genetic and biochemical association between Sus1 and components responsible for cytoplasmic mRNA metabolism. Moreover, Sus1 accumulates in discrete cytoplasmic granules, which partially co-localise with P-bodies and stress granules under specific conditions. These interactions suggest a role for Sus1 in gene expression during cytoplasmic mRNA metabolism in addition to its nuclear function.

  2. The impact of endurance exercise on global and AMPK gene-specific DNA methylation

    Energy Technology Data Exchange (ETDEWEB)

    King-Himmelreich, Tanya S.; Schramm, Stefanie; Wolters, Miriam C.; Schmetzer, Julia; Möser, Christine V.; Knothe, Claudia [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Resch, Eduard [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Peil, Johannes [Sports Clinic, Bad Nauheim, MCI GmbH, In der Aue 30-32, 61231, Bad Nauheim (Germany); Geisslinger, Gerd [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany)

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. -- Highlights: •AMPK gene methylation increases after moderate endurance exercise in humans and mice. •AMPKα mRNA and protein decrease after moderate endurance exercise in mice. •Global DNA methylation is not affected under the same conditions.

  3. The impact of endurance exercise on global and AMPK gene-specific DNA methylation

    International Nuclear Information System (INIS)

    King-Himmelreich, Tanya S.; Schramm, Stefanie; Wolters, Miriam C.; Schmetzer, Julia; Möser, Christine V.; Knothe, Claudia; Resch, Eduard; Peil, Johannes; Geisslinger, Gerd; Niederberger, Ellen

    2016-01-01

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. -- Highlights: •AMPK gene methylation increases after moderate endurance exercise in humans and mice. •AMPKα mRNA and protein decrease after moderate endurance exercise in mice. •Global DNA methylation is not affected under the same conditions.

  4. Systematic analysis of gene expression patterns associated with postmortem interval in human tissues.

    Science.gov (United States)

    Zhu, Yizhang; Wang, Likun; Yin, Yuxin; Yang, Ence

    2017-07-14

    Postmortem mRNA degradation is considered to be the major concern in gene expression research utilizing human postmortem tissues. A key factor in this process is the postmortem interval (PMI), which is defined as the interval between death and sample collection. However, global patterns of postmortem mRNA degradation at individual gene levels across diverse human tissues remain largely unknown. In this study, we performed a systematic analysis of alteration of gene expression associated with PMI in human tissues. From the Genotype-Tissue Expression (GTEx) database, we evaluated gene expression levels of 2,016 high-quality postmortem samples from 316 donors of European descent, with PMI ranging from 1 to 27 hours. We found that PMI-related mRNA degradation is tissue-specific, gene-specific, and even genotype-dependent, thus drawing a more comprehensive picture of PMI-associated gene expression across diverse human tissues. Additionally, we also identified 266 differentially variable (DV) genes, such as DEFB4B and IFNG, whose expression is significantly dispersed between short PMI (S-PMI) and long PMI (L-PMI) groups. In summary, our analyses provide a comprehensive profile of PMI-associated gene expression, which will help interpret gene expression patterns in the evaluation of postmortem tissues.

  5. Differential gene expression in liver and small intestine from lactating rats compared to age-matched virgin controls detects increased mRNA of cholesterol biosynthetic genes

    Directory of Open Access Journals (Sweden)

    Jungsuwadee Paiboon

    2011-02-01

    Full Text Available Abstract Background Lactation increases energy demands four- to five-fold, leading to a two- to three-fold increase in food consumption, requiring a proportional adjustment in the ability of the lactating dam to absorb nutrients and to synthesize critical biomolecules, such as cholesterol, to meet the dietary needs of both the offspring and the dam. The size and hydrophobicity of the bile acid pool increases during lactation, implying an increased absorption and disposition of lipids, sterols, nutrients, and xenobiotics. In order to investigate changes at the transcriptomics level, we utilized an exon array and calculated expression levels to investigate changes in gene expression in the liver, duodenum, jejunum, and ileum of lactating dams when compared against age-matched virgin controls. Results A two-way mixed models ANOVA was applied to detect differentially expressed genes. Significance calls were defined as a p Cyp7a1, which catalyzes the rate limiting step in the bile acid biosynthetic pathway, was also significantly increased in liver. In addition, decreased levels of mRNA associated with T-cell signaling were found in the jejunum and ileum. Several members of the Solute Carrier (SLC and Adenosine Triphosphate Binding Cassette (ABC superfamilies of membrane transporters were found to be differentially expressed; these genes may play a role in differences in nutrient and xenobiotic absorption and disposition. mRNA expression of SLC39a4_predicted, a zinc transporter, was increased in all tissues, suggesting that it is involved in increased zinc uptake during lactation. Microarray data are available through GEO under GSE19175. Conclusions We detected differential expression of mRNA from several pathways in lactating dams, including upregulation of the cholesterol biosynthetic pathway in liver and intestine, consistent with Srebp activation. Differential T-Cell signaling in the two most distal regions of the small intestine (ileum and

  6. Uncoupling protein-2 mRNA expression in mice subjected to intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Vieira

    2015-04-01

    Full Text Available Objective: To investigate the effect of intermittent hypoxia-a model of obstructive sleep apnea (OSA-on pancreatic expression of uncoupling protein-2 (UCP2, as well as on glycemic and lipid profiles, in C57BL mice. Methods: For 8 h/day over a 35-day period, male C57BL mice were exposed to intermittent hypoxia (hypoxia group or to a sham procedure (normoxia group. The intermittent hypoxia condition involved exposing mice to an atmosphere of 92% N and 8% CO2 for 30 s, progressively reducing the fraction of inspired oxygen to 8 ± 1%, after which they were exposed to room air for 30 s and the cycle was repeated (480 cycles over the 8-h experimental period. Pancreases were dissected to isolate the islets. Real-time PCR was performed with TaqMan assays. Results: Expression of UCP2 mRNA in pancreatic islets was 20% higher in the normoxia group than in the hypoxia group (p = 0.11. Fasting serum insulin was higher in the hypoxia group than in the normoxia group (p = 0.01. The homeostasis model assessment of insulin resistance indicated that, in comparison with the control mice, the mice exposed to intermittent hypoxia showed 15% lower insulin resistance (p = 0.09 and 21% higher pancreatic β-cell function (p = 0.01. Immunohistochemical staining of the islets showed no significant differences between the two groups in terms of the area or intensity of α- and β-cell staining for insulin and glucagon. Conclusions: To our knowledge, this is the first report of the effect of intermittent hypoxia on UCP2 expression. Our findings suggest that UCP2 regulates insulin production in OSA. Further study of the role that UCP2 plays in the glycemic control of OSA patients is warranted.

  7. Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues

    International Nuclear Information System (INIS)

    Takahashi, J.A.; Mori, Hirotaka; Fukumoto, Manabu; Oda, Yoshifumi; Kikuchi, Haruhiko; Hatanaka, Masakazu; Igarashi, Koichi; Jaye, M.

    1990-01-01

    The growth autonomy of human tumor cells is considered due to the endogenous production of growth factors. Transcriptional expression of candidates for autocrine stimulatory factors such as basic fibroblast growth factor (FGF), acidic FGF, and transforming growth factor type β were determined in human brain tumors. Basic FGF was expressed abundantly in 17 of 18 gliomas, 20 of 22 meningiomas, and 0 of 5 metastatic brain tumors. The level of mRNA expression of acidic FGF in gliomas was significant. In contrast, transforming growth factor type β1 was expressed in all the samples investigated. The mRNA for basic FGF and its peptide were localized in tumor cells in vivo by in situ hybridization and immunohistochemistry, showing that basic FGF is actually produced in tumor cells. The results suggest that tumor-derived basic FGF is involved in the progression of gliomas and meningiomas in vivo, whereas acidic FGF is expressed in a tumor origin-specific manner, suggesting that acidic FGF works in tandem with basic FGF in glioma tumorigenesis

  8. The Pekin duck programmed death-ligand 1: cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis.

    Science.gov (United States)

    Yao, Q; Fischer, K P; Tyrrell, D L; Gutfreund, K S

    2015-04-01

    Programmed death ligand-1 (PD-L1) plays an important role in the attenuation of adaptive immune responses in higher vertebrates. Here, we describe the identification of the Pekin duck PD-L1 orthologue (duPD-L1) and its gene structure. The duPD-L1 cDNA encodes a 311-amino acid protein that has an amino acid identity of 78% and 42% with chicken and human PD-L1, respectively. Mapping of the duPD-L1 cDNA with duck genomic sequences revealed an exonic structure of its coding sequence similar to those of other vertebrates but lacked a noncoding exon 1. Homology modelling of the duPD-L1 extracellular domain was compatible with the tandem IgV-like and IgC-like IgSF domain structure of human PD-L1 (PDB ID: 3BIS). Residues known to be important for receptor binding of human PD-L1 were mostly conserved in duPD-L1 within the N-terminus and the G sheet, and partially conserved within the F sheet but not within sheets C and C'. DuPD-L1 mRNA was constitutively expressed in all tissues examined with highest expression levels in lung and spleen and very low levels of expression in muscle, kidney and brain. Mitogen stimulation of duck peripheral blood mononuclear cells transiently increased duPD-L1 mRNA expression. Our observations demonstrate evolutionary conservation of the exonic structure of its coding sequence, the extracellular domain structure and residues implicated in receptor binding, but the role of the longer cytoplasmic tail in avian PD-L1 proteins remains to be determined. © 2014 John Wiley & Sons Ltd.

  9. Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2017-10-01

    mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.

  10. In utero and lactational exposure to low-dose genistein-vinclozolin mixture affects the development and growth factor mRNA expression of the submandibular salivary gland in immature female rats.

    Science.gov (United States)

    Kouidhi, Wided; Desmetz, Catherine; Nahdi, Afef; Bergès, Raymond; Cravedi, Jean-Pierre; Auger, Jacques; El May, Michèle; Canivenc-Lavier, Marie Chantal

    2012-06-01

    It has been suggested that hormonally controlled submandibular salivary gland (SSG) development and secretions may be affected by endocrine disruptor compounds. We investigated the effects of oral gestation-lactation exposure to 1 mg/kg body weight daily dose of the estrogenic soy-isoflavone genistein and/or the anti-androgenic food contaminant vinclozolin in female rats. The SSGs of female offspring were collected at postnatal day 35 to study gland morphogenesis and mRNA expression of sex-hormone receptors and endocrine growth factors as sex-dependent biomarkers. Because of high expression in neonatal SSG, mRNA expression of transforming growth factor α was also studied. Exposure to genistein, vinclozolin, or a genistein+vinclozolin mixture resulted in significantly lower numbers of striated ducts linked to an increase in their area and lower acinar proliferation (Ki-67-positive nuclei). Exposure to the mixture had the highest significant effects, which were particularly associated with repression of epidermal growth factor, nerve growth factor, and transforming growth factor α expression. In conclusion, early exposure to low doses of genistein and vinclozolin can affect glandular structure and endocrine gene mRNA expression in prepubertal SSG in female rats, and the effects are potentialized by the genistein+vinclozolin mixture. Our study provides the first evidence that SSG are targeted by both estrogenic and anti-androgenic disrupting compounds and are more sensitive to mixtures.

  11. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, Martin; Sorensen, P; Khademi, M

    2008-01-01

    BACKGROUND: Interferon (IFN)-beta therapy in multiple sclerosis (MS) has been suggested to promote a deviation from T lymphocyte production of pathogenic Th1 cytokines to less detrimental Th2 cytokines, but this is still controversial. We studied patterns of in vivo blood mononuclear cell (MNC...... of any Th1 or Th2 cytokines. The largest changes in cytokine mRNA levels occurred early (~9-12 h) after an IFN-beta injection. CONCLUSION: We found no evidence of a Th1- or Th2-mRNA-promoting effect of IFN-beta therapy. The therapeutic effect of IFN-beta is more likely attributable to the induction...

  12. Evaluation of cytokine mRNA expression in vaccinated guinea pigs with foot-and-mouth disease type O inactivated vaccine

    Directory of Open Access Journals (Sweden)

    Pasandideh, R.

    2016-03-01

    Full Text Available Foot-and-mouth disease (FMD is a severely contagious viral disease that mainly affects cloven-hoofed livestock and wildlife. This study quantifies the cytokines mRNA expression of vaccinated guinea pigs with FMD type O inactivated vaccine. Blood samples were collected from eight guinea pigs at 7 and 28 days after the first vaccination. Extracted mRNAs were reverse-transcribed into cDNA and analyzed for quantification of IFN-γ, TNF-α and IL-10 expression using relative real-time PCR assay. Our results showed that all of the genes were upregulated. The expression of TNF-α and IL-10 genes significantly increased (P<0.05 in day 28th in comparison to the day 7th post the first vaccination. It can be concluded that the vaccine induced immune responses by increasing expression of the cytokines. Therefore, effects of DNA vaccines on immune system also may be evaluated using these genes.

  13. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  14. The porcine skin associated T-cell homing chemokine CCL27: molecular cloning and mRNA expression in piglets infected experimentally with Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Johnsen, C. K.; Jensen, Annette Nygaard; Ahrens, P.

    2003-01-01

    CCL27 (also named CTACK, ALP, ILC and ESkine) is a CC chemokine primarily expressed by keratinocytes of the skin. The cognate receptor of CCL27 named CCR10 (GPR-2), is also expressed in skin-derived cells, and in addition by a subset of peripheral blood T-cells and in a variety of other tissues....... In this paper, we report the cloning of porcine CCL27 cDNA and investigation of CCL27 mRNA expression in Staphylococcus hyicus infected piglets. At the protein level, 77 and 74% homology was found to human and mouse CCL27 sequences, respectively. The results of the expression analyses show that CCL27 m...

  15. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory.

    Science.gov (United States)

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-07-27

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R(2) of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.

  16. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.

    Science.gov (United States)

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-11-10

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA comprising codon-optimized firefly luciferase into stable LNPs. Mice were injected with 0.005-0.250mg/kg doses of mRNA-LNPs by 6 different routes and high levels of protein translation could be measured using in vivo imaging. Subcutaneous, intramuscular and intradermal injection of the LNP-encapsulated mRNA translated locally at the site of injection for up to 10days. For several days, high levels of protein production could be achieved in the lung from the intratracheal administration of mRNA. Intravenous and intraperitoneal and to a lesser extent intramuscular and intratracheal deliveries led to trafficking of mRNA-LNPs systemically resulting in active translation of the mRNA in the liver for 1-4 days. Our results demonstrate that LNPs are appropriate carriers for mRNA in vivo and have the potential to become valuable tools for delivering mRNA encoding therapeutic proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Quantitative PCR--new diagnostic tool for quantifying specific mRNA and DNA molecules

    DEFF Research Database (Denmark)

    Schlemmer, B O; Sorensen, B S; Overgaard, J

    2004-01-01

    of a subset of ligands from the EGF system is increased in bladder cancer. Furthermore, measurement of the mRNA concentration gives important information such as the expression of these ligands correlated to the survival of the patients. In addition to the alterations at the mRNA level, changes also can occur...... at the DNA level in the EGF system. Thus, it has been demonstrated that the number of genes coding for the human epidermal growth factor receptor 2 (HER2) is increased in a number of breast tumors. It is now possible to treat breast cancer patients with a humanized antibody reacting with HER2...... of mRNA or DNA in biological samples. In this study quantitative PCR was used to investigate the role of the EGF (epidermal growth factor) system in cancer both for measurements of mRNA concentrations and for measurements of the number of copies of specific genes. It is shown that the mRNA expression...

  18. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Directory of Open Access Journals (Sweden)

    Zavolan Mihaela

    2010-10-01

    Full Text Available Abstract Background In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. Results In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs. Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. Conclusions Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels.

  19. Variable EBV DNA Load Distributions and Heterogeneous EBV mRNA Expression Patterns in the Circulation of Solid Organ versus Stem Cell Transplant Recipients

    Directory of Open Access Journals (Sweden)

    A. E. Greijer

    2012-01-01

    Full Text Available Epstein-Barr virus (EBV driven post-transplant lymphoproliferative disease (PTLD is a heterogeneous and potentially life-threatening condition. Early identification of aberrant EBV activity may prevent progression to B-cell lymphoma. We measured EBV DNA load and RNA profiles in plasma and cellular blood compartments of stem cell transplant (SCT; n=5, solid organ transplant recipients (SOT; n=15, and SOT having chronic elevated EBV-DNA load (n=12. In SCT, EBV DNA was heterogeneously distributed, either in plasma or leukocytes or both. In SOT, EBV DNA load was always cell associated, predominantly in B cells, but occasionally in T cells (CD4 and CD8 or monocytes. All SCT with cell-associated EBV DNA showed BARTs and EBNA1 expression, while LMP1 and LMP2 mRNA was found in 1 and 3 cases, respectively. In SOT, expression of BARTs was detected in all leukocyte samples. LMP2 and EBNA1 mRNA was found in 5/15 and 2/15, respectively, but LMP1 mRNA in only 1, coinciding with severe PTLD and high EBV DNA. Conclusion: EBV DNA is differently distributed between white cells and plasma in SOT versus SCT. EBV RNA profiling in blood is feasible and may have added value for understanding pathogenic virus activity in patients with elevated EBV-DNA.

  20. Decreased A20 mRNA and protein expression in peripheral blood mononuclear cells in patients with type 2 diabetes and latent autoimmune diabetes in adults.

    Science.gov (United States)

    Cheng, Liqing; Zhang, Dongmei; Jiang, Youzhao; Deng, Wuquan; Wu, Qi'nan; Jiang, Xiaoyan; Chen, Bing

    2014-12-01

    A20 is a negative regulator of nuclear factor kappa B activation and the central gatekeeper in inflammation and immunity. While its role in type 1 diabetes has been widely studied, its expression level in immune cells from type 2 diabetes (T2D) and latent autoimmune diabetes in adult (LADA) patients remains unclear. This study aimed to clarify whether the expression of A20 is altered in patients with T2D or LADA. Quantitative real-time polymerase chain reaction and western blotting were utilized to determine the expression of A20 mRNA and protein respectively in peripheral blood mononuclear cells (PBMCs) from patients with T2D (n=36) or LADA (n=17) and sex- and age-matched healthy controls (n=34). The mRNA and protein expression of A20 in PBMCs from T2D and LADA patients was significantly decreased compared with healthy controls (P1 year since diagnosis) (P<0.05). Our results suggest that decreased expression of A20 in PBMCs may be involved in the pathogenesis of diabetes, and targeting A20 may offer a potential therapeutic tool in the treatment of diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression.

    Directory of Open Access Journals (Sweden)

    Rafael Rosell

    Full Text Available BACKGROUND: Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. METHODOLOGY/PRINCIPAL FINDINGS: We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1

  2. POMC and NPY mRNA expression during development is increased in rat offspring brain from mothers fed with a high fat diet.

    Science.gov (United States)

    Klein, Marianne Orlandini; MacKay, Harry; Edwards, Alexander; Park, Su-Bin; Kiss, Ana Carolina Inhasz; Felicio, Luciano Freitas; Abizaid, Alfonso

    2018-02-01

    Developmental programing is influenced by perinatal nutrition and it has long-lasting impacts on adult metabolism in the offspring. In particular, maternal high fat diet has been associated with increased risk of obesity and metabolic disorders during adulthood in the descendants. These effects may be due to the effects of the high fat diet on the development of the systems that regulate food intake and energy balance in the offspring hypothalamus. The arcuate nucleus (ARC) may be a particularly sensitive region to it as this nucleus contains the POMC and AgRP/NPY neurons that integrate the melanocortin system. Thus, the aim of this study was to investigate the effects of maternal high fat diet during pregnancy on the transcription factors that regulate hypothalamic development in the offspring as a potential mechanism that may result in altered neuronal expression of POMC, NPY and/or AgRP. To this end, pregnant females exposed to high fat diet (60% fat diet since day 0 of pregnancy) or standard rat chow were sacrificed on days 12, 14, 16 and 18 of gestation to obtain brains from their developing fetuses and examine the mRNA expression of transcription factors associated with the development of cells in the ARC. Results show that, while no changes in transcription factor expression between groups were observed, POMC and NPY mRNA expression were higher on embryonic day 18 in the high fat group. These results suggest that POMC and NPY expression are altered by in utero exposure to a high fat diet, but these changes in gene expression are not associated with changes in the expression of transcription factors known to determine the fate of ARC cells. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  3. Exercise induced regulation of muscular Na+,K+ pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status, intensity, and muscle type

    DEFF Research Database (Denmark)

    Rasmussen, Martin Krøyer; Juel, Carsten; Nordsborg, Nikolai Baastrup

    2011-01-01

    It is investigated if exercise induced mRNA changes cause similar protein expression changes of Na(+), K(+) pump isoforms (a1, a2, ß1, ß2), FXYD1 and NHE1 in rat skeletal muscle. Expression was evaluated (n=8 per group) in Soleus and EDL after 1 day, 3 days and 3 weeks (5 sessions per week...

  4. Effects of branched-chain volatile fatty acids on lactation performance and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows.

    Science.gov (United States)

    Liu, Q; Wang, C; Guo, G; Huo, W J; Zhang, S L; Pei, C X; Zhang, Y L; Wang, H

    2018-02-12

    Branched-chain volatile fatty acids (BCVFA) supplements could promote lactation performance and milk quality by improving ruminal fermentation and milk fatty acid synthesis. This study was conducted to evaluate the effects of BCVFA supplementation on milk performance, ruminal fermentation, nutrient digestibility and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows. A total of 36 multiparous Chinese Holstein cows averaging 606±4.7 kg of BW, 65±5.2 day in milk (DIM) with daily milk production of 30.6±0.72 kg were assigned to one of four groups blocked by lactation number, milk yield and DIM. The treatments were control, low-BCVFA (LBCVFA), medium-BCVFA (MBCVFA) and high-BCVFA (HBCVFA) with 0, 30, 60 and 90 g BCVFA per cow per day, respectively. Experimental periods were 105 days with 15 days of adaptation and 90 days of data collection. Dry matter (DM) intake tended to increase, but BW changes were similar among treatments. Yields of actual milk, 4% fat corrected milk, milk fat and true protein linearly increased, but feed conversion ratio (FCR) linearly decreased with increasing BCVFA supplementation. Milk fat content linearly increased, but true protein content tended to increase. Contents of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0 and C15:0 fatty acids in milk fat linearly increased, whereas other fatty acids were not affected with increasing BCVFA supplementation. Ruminal pH, ammonia N concentration and propionate molar proportion linearly decreased, but total VFA production and molar proportions of acetate and butyrate linearly increased with increasing BCVFA supplementation. Consequently, acetate to propionate ratios linearly increased. Digestibilities of DM, organic matter, CP, NDF and ADF also linearly increased. In addition, mRNA expressions of peroxisome proliferator-activated receptor γ, sterol regulatory element-binding factor 1 and fatty acid-binding protein 3 linearly increased, mRNA expressions of acetyl

  5. v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins.

    Science.gov (United States)

    Sobue, S; Murakami, M; Banno, Y; Ito, H; Kimura, A; Gao, S; Furuhata, A; Takagi, A; Kojima, T; Suzuki, M; Nozawa, Y; Murate, T

    2008-10-09

    Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.

  6. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation.

    Science.gov (United States)

    Tao, Wenjing; Sun, Lina; Shi, Hongjuan; Cheng, Yunying; Jiang, Dongneng; Fu, Beide; Conte, Matthew A; Gammerdinger, William J; Kocher, Thomas D; Wang, Deshou

    2016-05-04

    MicroRNAs (miRNAs) represent a second regulatory network that has important effects on gene expression and protein translation during biological process. However, the possible role of miRNAs in the early stages of fish sex differentiation is not well understood. In this study, we carried an integrated analysis of miRNA and mRNA expression profiles to explore their possibly regulatory patterns at the critical stage of sex differentiation in tilapia. We identified 279 pre-miRNA genes in tilapia genome, which were highly conserved in other fish species. Based on small RNA library sequencing, we identified 635 mature miRNAs in tilapia gonads, in which 62 and 49 miRNAs showed higher expression in XX and XY gonads, respectively. The predicted targets of these sex-biased miRNAs (e.g., miR-9, miR-21, miR-30a, miR-96, miR-200b, miR-212 and miR-7977) included genes encoding key enzymes in steroidogenic pathways (Cyp11a1, Hsd3b, Cyp19a1a, Hsd11b) and key molecules involved in vertebrate sex differentiation (Foxl2, Amh, Star1, Sf1, Dmrt1, and Gsdf). These genes also showed sex-biased expression in tilapia gonads at 5 dah. Some miRNAs (e.g., miR-96 and miR-737) targeted multiple genes involved in steroid synthesis, suggesting a complex miRNA regulatory network during early sex differentiation in this fish. The sequence and expression patterns of most miRNAs in tilapia are conserved in fishes, indicating the basic functions of vertebrate miRNAs might share a common evolutionary origin. This comprehensive analysis of miRNA and mRNA at the early stage of molecular sex differentiation in tilapia XX and XY gonads lead to the discovery of differentially expressed miRNAs and their putative targets, which will facilitate studies of the regulatory network of molecular sex determination and differentiation in fishes.

  7. PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2.

    Science.gov (United States)

    Llorens, Franc; Ansoleaga, Belén; Garcia-Esparcia, Paula; Zafar, Saima; Grau-Rivera, Oriol; López-González, Irene; Blanco, Rosi; Carmona, Margarita; Yagüe, Jordi; Nos, Carlos; Del Río, José Antonio; Gelpí, Ellen; Zerr, Inga; Ferrer, Isidre

    2013-01-01

    Creutzfeldt-Jakob disease (CJD) is a heterogenic neurodegenerative disorder associated with abnormal post-translational processing of cellular prion protein (PrP(c)). CJD displays distinctive clinical and pathological features which correlate with the genotype at the codon 129 (methionine or valine: M or V respectively) in the prion protein gene and with size of the protease-resistant core of the abnormal prion protein PrP(sc) (type 1: 20/21 kDa and type 2: 19 kDa). MM1 and VV2 are the most common sporadic CJD (sCJD) subtypes. PrP mRNA expression levels in the frontal cortex and cerebellum are reduced in sCJD in a form subtype-dependent. Total PrP protein levels and PrP(sc) levels in the frontal cortex and cerebellum accumulate differentially in sCJD MM1 and sCJD VV2 with no relation between PrP(sc) deposition and spongiform degeneration and neuron loss, but with microgliosis, and IL6 and TNF-α response. In the CSF, reduced PrP(c), the only form present in this compartment, occurs in sCJD MM1 and VV2. PrP mRNA expression is also reduced in the frontal cortex in advanced stages of Alzheimer disease, Lewy body disease, progressive supranuclear palsy, and frontotemporal lobe degeneration, but PrP(c) levels in brain varies from one disease to another. Reduced PrP(c) levels in CSF correlate with PrP mRNA expression in brain, which in turn reflects severity of degeneration in sCJD.

  8. Detection and Quantization of the Expression of Two mu-Opioid Receptor Splice Variants mRNA (hMOR-1A and hMOR-1O in Peripheral Blood Lymphocytes of Long-Term Abstinent Former Opioid Addicts

    Directory of Open Access Journals (Sweden)

    N Vousooghi, Pharm

    2012-05-01

    Full Text Available

    Background and Objectives

    The mu-Opioid receptor (MOR exerts a critical role on effects of opiodis. The objective of this study is to find a peripheral bio-marker in addiction studies through quantization of the expression of two MOR splice variants mRNA (hMOR-1A and hMOR-1O in peripheral blood lymphocytes (PBLs of long-term abstinent former opioids addicts.

    Methods

    In this case-control study, case and control people were male and divided in two groups: people who gave up addiction to opioids (case and healthy individuals without history of addiction (control. The mRNA expression in PBLs of participants was detected and measured by real-time Polymerase Chain Reaction (PCR using SYBR Green Dye.

    Results

    The hMOR-1A mRNA expression in PBLs of abstinent group was significantly reduced and reached to 0.33 of the control group (p<0.001. Similar results were obtained for the other splice variant with the mRNA expression of hMOR-1O in PBLs of abstinent group reaching to 0.38 of that of the control group (p < 0.001.

    Conclusion

    mRNA expression deficiency of two mu-opioid receptor splice variants, hMOR-1A and nMOR-1O, seams to be a risk factor making individuals vulnerable to drug addiction. Based on this analysis measuring the amount of mRNA expression of these two splice variants in PBLs can serve as a peripheral bio-marker for detecting people at risk.

  9. The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism.

    Science.gov (United States)

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P; Pino, Karla; Tischler, Nicole D; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2012-02-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism.

  10. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes

    OpenAIRE

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-01-01

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA c...

  11. VDR mRNA overexpression is associated with worse prognostic factors in papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    June Young Choi

    2017-03-01

    Full Text Available The purpose of this study was to assess the relationship between vitamin D receptor gene (VDR expression and prognostic factors in papillary thyroid cancer (PTC. mRNA sequencing and somatic mutation data from The Cancer Genome Atlas (TCGA were analyzed. VDR mRNA expression was compared to clinicopathologic variables by linear regression. Tree-based classification was applied to find cutoff and patients were split into low and high VDR group. Logistic regression, Kaplan–Meier analysis, differentially expressed gene (DEG test and pathway analysis were performed to assess the differences between two VDR groups. VDR mRNA expression was elevated in PTC than that in normal thyroid tissue. VDR expressions were high in classic and tall-cell variant PTC and lateral neck node metastasis was present. High VDR group was also associated with classic and tall cell subtype, AJCC stage IV and lower recurrence-free survival. DEG test reveals that 545 genes were upregulated in high VDR group. Thyroid cancer-related pathways were enriched in high VDR group in pathway analyses. VDR mRNA overexpression was correlated with worse prognostic factors such as subtypes of papillary thyroid carcinoma that are known to be worse prognosis, lateral neck node metastasis, advanced stage and recurrence-free survival.

  12. Distribution of serotonin 2A and 2C receptor mRNA expression in the cervical ventral horn and phrenic motoneurons following spinal cord hemisection.

    Science.gov (United States)

    Basura, G J; Zhou, S Y; Walker, P D; Goshgarian, H G

    2001-06-01

    Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states. Copyright 2001 Academic Press.

  13. Assessing mRNA nuclear export in mammalian cells by microinjection.

    Science.gov (United States)

    Lee, Eliza S; Palazzo, Alexander F

    2017-08-15

    The nuclear export of mRNAs is an important yet little understood part of eukaryotic gene expression. One of the easiest methods for monitoring mRNA export in mammalian tissue culture cells is through the microinjection of DNA plasmids into the nucleus and monitoring the distribution of the transcribed product over time. Here we describe how to setup a microscope equipped with a micromanipulator used in cell microinjections, and we explain how to perform a nuclear mRNA export assay and obtain the nuclear export rate for any given mRNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of strychnine hydrochloride on liver cytochrome P450 mRNA expression and monooxygenase activities in rat

    Directory of Open Access Journals (Sweden)

    Qian Gao

    2011-08-01

    Full Text Available Strychnos nux-vomica L. has been frequently used in traditional Chinese medicine but has high acute toxicity. It is commonly taken with Glycyrrhizae radix to decrease its toxicity but the mechanism of this interaction is unknown. In this work, the mRNA expression and the activity of four cytochrome P450 (CYP enzymes representative of four subfamilies (CYP1A, CYP3A, CYP2C and CYP2E were determined ex vivo in rat livers from groups of Wistar rats orally administered strychnine hydrochloride (SH at three doses (0.1, 0.3 and 0.9 mg/kg/day alone and, at the highest dose, in combination with glycyrrhetinic acid (GA, 25 mg/kg/day or liquiritin (LQ, 20 mg/kg/day once a day for 7 consecutive days. Compared to control, the mRNA expressions of CYP3A1, 1A2 and 2E1 were higher in rats receiving the highest dose of SH but lower for CYP3A1 and CYP2E1 in rats receiving the SH+GA and SH+LQ combinations. CYP2E1 activity was higher and CYP2C, CYP3A and CYP1A2 activities were lower in rats receiving the highest dose of SH. In contrast CYP1A2 and CYP2C activities were higher and CYP2E1 and CYP3A activities lower in rats receiving the SH+GA combination. CYP2E1 and CYP3A activities were also lower in rats receiving the SH+LQ combination. The results show that treatment with SH for 7 days affects the expression and the activity of CYP enzymes and that coadministration of GA and LQ modulates these effects. This modulation may explain the role of Glycyrrhizae radix in reducing the acute toxicity of Strychnos nux-vomica L.CYPs enzymes.

  15. Sequential Analysis of Global Gene Expression Profiles in Immature and In vitro Matured Bovine Oocytes: Potential Molecular Markers of Oocyte Maturation

    LENUS (Irish Health Repository)

    Mamo, Solomon

    2011-03-16

    Abstract Background Without intensive selection, the majority of bovine oocytes submitted to in vitro embryo production (IVP) fail to develop to the blastocyst stage. This is attributed partly to their maturation status and competences. Using the Affymetrix GeneChip Bovine Genome Array, global mRNA expression analysis of immature (GV) and in vitro matured (IVM) bovine oocytes was carried out to characterize the transcriptome of bovine oocytes and then use a variety of approaches to determine whether the observed transcriptional changes during IVM was real or an artifact of the techniques used during analysis. Results 8489 transcripts were detected across the two oocyte groups, of which ~25.0% (2117 transcripts) were differentially expressed (p < 0.001); corresponding to 589 over-expressed and 1528 under-expressed transcripts in the IVM oocytes compared to their immature counterparts. Over expression of transcripts by IVM oocytes is particularly interesting, therefore, a variety of approaches were employed to determine whether the observed transcriptional changes during IVM were real or an artifact of the techniques used during analysis, including the analysis of transcript abundance in oocytes in vitro matured in the presence of α-amanitin. Subsets of the differentially expressed genes were also validated by quantitative real-time PCR (qPCR) and the gene expression data was classified according to gene ontology and pathway enrichment. Numerous cell cycle linked (CDC2, CDK5, CDK8, HSPA2, MAPK14, TXNL4B), molecular transport (STX5, STX17, SEC22A, SEC22B), and differentiation (NACA) related genes were found to be among the several over-expressed transcripts in GV oocytes compared to the matured counterparts, while ANXA1, PLAU, STC1and LUM were among the over-expressed genes after oocyte maturation. Conclusion Using sequential experiments, we have shown and confirmed transcriptional changes during oocyte maturation. This dataset provides a unique reference resource

  16. Effects of Immune Stress on Performance Parameters, Intestinal Enzyme Activity and mRNA Expression of Intestinal Transporters in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2012-05-01

    Full Text Available Immune stress is the loss of immune homeostasis caused by external forces. The purpose of this experiment was to investigate the effects of immune stress on the growth performance, small intestinal enzymes and peristalsis rate, and mRNA expression of nutrient transporters in broiler chickens. Four hundred and thirty-two 1-d-old broilers (Cobb500 were randomly assigned to four groups for treatment; each group included nine cages with 12 birds per cage. Group 1 = no vaccine (NV; Group 2 = conventional vaccine (CV; group 3 = lipopolysaccharide (LPS+conventional vaccine (LPS; group 4 = cyclophosphamide (CYP+conventional vaccine (CYP. The results demonstrated that immune stress by LPS and CYP reduced body weight gain (BWG, feed intake (FI, small intestine peristalsis rate and sIgA content in small intestinal digesta (p<0.05. However, the feed conversion ratio (FCR remained unchanged during the feeding period. LPS and CYP increased intestinal enzyme activity, relative expression of SGLT-1, CaBP-D28k and L-FABP mRNAs (p<0.05. LPS and CYP injection had a negative effect on the growth performance of healthy broiler chickens. The present study demonstrated that NV and CV could improve growth performance while enzyme activity in small intestine and relative expression of nutrient transporter mRNA of NV and CV were decreased in the conditions of a controlled rational feeding environment. It is generally recommended that broilers only need to be vaccinated for the diseases to which they might be exposed.

  17. Expression of Annexin-A1 and Galectin-1 Anti-Inflammatory Proteins and mRNA in Chronic Gastritis and Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Yvana Cristina Jorge

    2013-01-01

    Full Text Available Objective. The anti-inflammatory proteins annexin-A1 and galectin-1 have been associated with tumor progression. This scenario prompted us to investigate the relationship between the gene and protein expression of annexin-A1 (ANXA1/AnxA1 and galectin-1 (LGALS1/Gal-1 in an inflammatory gastric lesion as chronic gastritis (CG and gastric adenocarcinoma (GA and its association with H. pylori infection. Methods. We analyzed 40 samples of CG, 20 of GA, and 10 of normal mucosa (C by the quantitative real-time PCR (qPCR technique and the immunohistochemistry assay. Results. High ANXA1 mRNA expression levels were observed in 90% (36/40 of CG cases (mean relative quantification RQ = 4.26 ± 2.03 and in 80% (16/20 of GA cases (mean RQ = 4.38 ± 4.77. However, LGALS1 mRNA levels were high (mean RQ = 2.44 ± 3.26 in 60% (12/20 of the GA cases, while low expression was found in CG (mean RQ = 0.43±3.13; P<0.01. Normal mucosa showed modest immunoreactivity in stroma but not in epithelium, while stroma and epithelium displayed an intense immunostaining in CG and GA for both proteins. Conclusion. These results have provided evidence that galectin-1 and mainly annexin-A1 are overexpressed in both gastritis and gastric cancer, suggesting a strong association of these proteins with chronic gastric inflammation and carcinogenesis.

  18. Chronic electroconvulsive stimulation but not chronic restraint stress modulates mRNA expression of voltage-dependent potassium channels Kv7.2 and Kv11.1 in the rat piriform cortex

    DEFF Research Database (Denmark)

    Hjæresen, Marie-Louise; Hageman, Ida; Wörtwein, Gitta

    2008-01-01

    The mechanisms by which stress and electroconvulsive therapy exert opposite effects on the course of major depression are not known. Potential candidates might include the voltage-dependent potassium channels. Potassium channels play an important role in maintaining the resting membrane potential...... and controlling neuronal excitability. To explore this hypothesis, we examined the effects of one or several electroconvulsive stimulations and chronic restraint stress (6 h/day for 21 days) on the expression of voltage-dependent potassium channel Kv7.2, Kv11.1, and Kv11.3 mRNA in the rat brain using in situ...... hybridization. Repeated, but not acute, electroconvulsive stimulation increased Kv7.2 and Kv11.1 mRNA levels in the piriform cortex. In contrast, restraint stress had no significant effect on mRNA expression of Kv7.2, Kv11.1, or Kv11.3 in any of the brain regions examined. Thus, it appears that the investigated...

  19. Interleukin-6 modifies mRNA expression in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Hassing, Helle Adser; Wojtaszewski, Jørgen; Jakobsen, Anne Hviid

    2011-01-01

    Aim: The aim of the present study was to test the hypothesis that interleukin-6 plays a role in exercise-induced PGC-1a and TNFa mRNA responses in skeletal muscle and to examine the potential IL-6 mediated AMPK regulation in these responses. Methods: Whole body IL-6 knockout and wildtype (WT) mal...

  20. DNA micro array analysis of yeast global genome expression in response to ELF-MF exposure

    International Nuclear Information System (INIS)

    Shimizu, K.; Yamamoto, T.; Ishibashi, T.; Kyoh, B.

    2002-01-01

    There is wide spread public concern over the possible health risk of ELF-MF. Electromagnetic fields may produce a variety of effects in several biological systems, including the elevation of cancer risk and reduction of cell growth. Epidemiological studies have shown weak correlations between the exposure to ELF and the incidence of several cancers, but negative studies have also been reported. Moreover, there are some reports that basic biological events such as the cell cycle and DNA replication were affected by exposure to MF. However, to date the molecular mechanism of the MF effect on living organism is not clear. In this study, we used yeast DNA micro array to examine the transcriptional profile of all genes in response to ELF-MF. A few years ago it was difficult to carry out a global gene expression study to identify important genes regarding ELF-MF, however, today DNA micro arrays allow gene regulation in response to high density ELF-MF exposure. Thus we used micro array to analyze changes in mRNA abundance during ELF-MF exposure

  1. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia

    Science.gov (United States)

    Axelrod, Felicia B.; Liebes, Leonard; Gold-von Simson, Gabrielle; Mendoza, Sandra; Mull, James; Leyne, Maire; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Slaugenhaupt, Susan A.

    2011-01-01

    Familial dysautonomia (FD) is caused by an intronic splice mutation in the IKBKAP gene that leads to partial skipping of exon 20 and tissue-specific reduction in I-κ-B kinase complex associated protein/ elongation protein 1 (IKAP/ELP-1) expression. Kinetin (6-furfurylaminopurine) has been shown to improve splicing and increase wild-type IKBKAP mRNA and IKAP protein expression in FD cell lines and carriers. To determine if oral kinetin treatment could alter mRNA splicing in FD subjects and was tolerable, we administered kinetin to eight FD individuals homozygous for the splice mutation. Subjects received 23.5 mg/Kg/day for 28 days. An increase in wild-type IKBKAP mRNA expression in leukocytes was noted after eight days in six of eight individuals; after 28 days the mean increase as compared to baseline was significant (p=0.002). We have demonstrated that kinetin is tolerable in this medically fragile population. Not only did kinetin produce the desired effect on splicing in FD patients, but also that effect appears to improve with time despite lack of dose change. This is the first report of a drug that produces in vivo mRNA splicing changes in individuals with FD and supports future long-term trials to determine if kinetin will prove therapeutic in FD patients. PMID:21775922

  2. Photodynamic antisense regulation of mRNA having a point mutation with psoralen-conjugated oligonucleotide.

    Science.gov (United States)

    Higuchi, Maiko; Yamayoshi, Asako; Kobori, Akio; Murakami, Akira

    2008-01-01

    Nucleic acid-based drugs, such as antisense oligonucleotide, ribozyme, and small interfering RNA, are specific compounds that inhibit gene expression at the post-transcriptional level. To develop more effective nucleic acid-based drugs, we focused on photo-reactive antisense oligonucleotides. We have optimized the structure of psoralen-conjugated oligonucleotide to improve their sequence selectivity and photo-crosslinking efficiency. Previously, we reported that photo reactive oligonucleotides containing 2'-O-psoralenyl-methoxyethyl adenosine (2'-Ps-eom) showed drastic photo-reactivity with a strictly sequence specific manner in vitro. In this report, we evaluated the binding ability toward intracellular target mRNA. The 2'-Ps-eom selectively photo-cross-linked to the target mRNA extracted from cells. The 2'-Ps-eom also cross-linked to target mRNA in cells. Furthermore, 2'-Ps-eom did not cross-link to mRNA having a mismatch base. These results suggest that 2'-Ps-eom is a powerful antisense molecule to inhibit the expression of mRNA having a point mutation.

  3. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD.

    Science.gov (United States)

    Martínez, Luary C; Yakhnin, Helen; Camacho, Martha I; Georgellis, Dimitris; Babitzke, Paul; Puente, José L; Bustamante, Víctor H

    2011-06-01

    Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events. © 2011 Blackwell Publishing Ltd.

  4. Global analysis of Chlorella variabilis NC64A mRNA profiles during the early phase of Paramecium bursaria chlorella virus-1 infection.

    Directory of Open Access Journals (Sweden)

    Janet M Rowe

    Full Text Available The PBCV-1/Chlorella variabilis NC64A system is a model for studies on interactions between viruses and algae. Here we present the first global analyses of algal host transcripts during the early stages of infection, prior to virus replication. During the course of the experiment stretching over 1 hour, about a third of the host genes displayed significant changes in normalized mRNA abundance that either increased or decreased compared to uninfected levels. The population of genes with significant transcriptional changes gradually increased until stabilizing at 40 minutes post infection. Functional categories including cytoplasmic ribosomal proteins, jasmonic acid biosynthesis and anaphase promoting complex/cyclosomes had a significant excess in upregulated genes, whereas spliceosomal snRNP complexes and the shikimate pathway had significantly more down-regulated genes, suggesting that these pathways were activated or shut-down in response to the virus infection. Lastly, we examined the expression of C. varibilis RNA polymerase subunits, as PBCV-1 transcription depends on host RNA polymerases. Two subunits were up-regulated, RPB10 and RPC34, suggesting that they may function to support virus transcription. These results highlight genes and pathways, as well as overall trends, for further refinement of our understanding of the changes that take place during the early stages of viral infection.

  5. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  6. Clinicopathologic Significance of CXCL12 and CXCR4 Expressions in Patients with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Naomi Yoshuantari

    2018-01-01

    Full Text Available Background. Colorectal cancer (CRC is both a global and national burden, being the third most common malignancy in men and the second in women, worldwide. The prognosis of CRC is affected by various factors like the histological grade, angiolymphatic invasion, and distant metastases. Metastasis is an intricate process; one of the possible mechanisms is through the interaction of the chemokines CXCL12 and CXCR4. This study aims to reveal the expression patterns of CXCL12 and CXCR4 in CRC. Methods. The quantitative expressions of CXCL12 and CXCR4 messenger RNA (mRNA were evaluated in 32 patients with adenocarcinoma-type CRC. Real-time polymerase chain reaction (qRT-PCR was performed on formalin-fixed tissues. CXCL12 and CXCR4’s expressions, clinicopathologic features, and the treatment response to the CRC were analysed. Results. All tumour tissues showed higher levels of both chemokines compared to normal colonic tissue. The expression of CXCL12 mRNA was higher in rectal location (p=0.04 with a tendency to be higher in later stages (p=0.15, while the expression of CXCR4 was lower in tumours with a lymphatic invasion (p=0.02, compared to their counterparts. There was no difference in the expression of CXCL12 and CXCR4 according to the patients’ ages, gender, tumour differentiation, or response to chemotherapy. Conclusion. Our study demonstrated that the mRNA expression of CXCL12 was significantly correlated with rectal location. CXCR4 mRNA expression was inversely correlated in tumours with a lymphatic invasion.

  7. Molecular characterization of branchial aquaporin 1aa and effects of seawater acclimation, emersion or ammonia exposure on its mRNA expression in the gills, gut, kidney and skin of the freshwater climbing perch, Anabas testudineus.

    Directory of Open Access Journals (Sweden)

    Yuen K Ip

    Full Text Available We obtained a full cDNA coding sequence of aquaporin 1aa (aqp1aa from the gills of the freshwater climbing perch, Anabas testudineus, which had the highest expression in the gills and skin, suggesting an important role of Aqp1aa in these organs. Since seawater acclimation had no significant effects on the branchial and intestinal aqp1aa mRNA expression, and since the mRNA expression of aqp1aa in the gut was extremely low, it can be deduced that Aqp1aa, despite being a water channel, did not play a significant osmoregulatory role in A. testudineus. However, terrestrial exposure led to significant increases in the mRNA expression of aqp1aa in the gills and skin of A. testudineus. Since terrestrial exposure would lead to evaporative water loss, these results further support the proposition that Aqp1aa did not function predominantly for the permeation of water through the gills and skin. Rather, increased aqp1aa mRNA expression might be necessary to facilitate increased ammonia excretion during emersion, because A. testudineus is known to utilize amino acids as energy sources for locomotor activity with increased ammonia production on land. Furthermore, ammonia exposure resulted in significant decreases in mRNA expression of aqp1aa in the gills and skin of A. testudineus, presumably to reduce ammonia influx during ammonia loading. This corroborates previous reports on AQP1 being able to facilitate ammonia permeation. However, a molecular characterization of Aqp1aa from A. testudineus revealed that its intrinsic aquapore might not facilitate NH3 transport. Hence, ammonia probably permeated the central fifth pore of the Aqp1aa tetramer as suggested previously. Taken together, our results indicate that Aqp1aa might have a greater physiological role in ammonia excretion than in osmoregulation in A. testudineus.

  8. Novel G Protein-Coupled Oestrogen Receptor GPR30 Shows Changes in mRNA Expression in the Rat Brain over the Oestrous Cycle

    Directory of Open Access Journals (Sweden)

    Emma J. Spary

    2012-02-01

    Full Text Available Oestrogen influences autonomic function via actions at classical nuclear oestrogen receptors α and β in the brain, and recent evidence suggests the orphan G protein-coupled receptor GPR30 may also function as a cytoplasmic oestrogen receptor. We investigated the expression of GPR30 in female rat brains throughout the oestrous cycle and after ovariectomy to determine whether GPR30 expression in central autonomic nuclei is correlated with circulating oestrogen levels. In the nucleus of the solitary tract (NTS, ventrolateral medulla (VLM and periaqueductal gray (PAG GPR30 mRNA, quantified by real-time PCR, was increased in proestrus and oestrus. In ovariectomised (OVX rats, expression in NTS and VLM appeared increased compared to metoestrus, but in the hypothalamic paraventricular nucleus and PAG lower mRNA levels were seen in OVX. GPR30-like immunoreactivity (GPR30-LI colocalised with Golgi in neurones in many brain areas associated with autonomic pathways, and analysis of numbers of immunoreactive neurones showed differences consistent with the PCR data. GPR30-LI was found in a variety of transmitter phenotypes, including cholinergic, serotonergic, catecholaminergic and nitrergic neurones in different neuronal groups. These observations support the view that GPR30 could act as a rapid transducer responding to oestrogen levels and thus modulate the activity of central autonomic pathways.

  9. [Expression of proteasome subunits PSMB5 and PSMB9 mRNA in hippocampal neurons in experimental diabetes mellitus: link with apoptosis and necrosis].

    Science.gov (United States)

    Lebid', Iu V; Dosenko, V Ie; Skybo, H H

    2010-01-01

    There is a huge body of evidence showing that long-termed diabetes mellitus is followed with hippocampal dysfunction. The goal of this work was to investigate the expression of proteasome subunits PSMB5 and PSMB9 mRNA in CA1, CA2 and CA3 areas of hippocampus in parallel with processes of cell death (apoptosis and necrosis) in development dynamics of streptozotocine-induced diabetes. We have studied hippocampal neurons using chromatine dye Hoechst-33342 and immunohistochemical detection of apoptotic cell death marker caspase-3. At day 3 and 7 after injection of streptozotocine we have performed visualization of caspase-3-immunopositive neurons showing signs of neurodegeneration in hippocampal sections using confocal microscope Olympus FV1000. The rate of proteasome subunits PSMB5 and PSMB9 mRNA expression was determined with RT-PCR. The results indicated elevation of PSMB9 mRNA content (from 4807 +/- 0.392 arbU up to 20,023 +/- 4949 arbU on day 3 and up to 20,253 +/- 5141 arbU on day 7). A maximal number of cells with signs of chromatin condensation was observed at day 3 and day 7 in CA2 and CA3 area (11.51% and 12.49% respectively). That indicates an intensification of proapoptotic processes. Summarizing the results presented above we can conclude that during the first week of diabetes mellitus development, hippocampal cells undergo the process of impairment and degeneration.

  10. Over-expression of the miRNA cluster at chromosome 14q32 in the alcoholic brain correlates with suppression of predicted target mRNA required for oligodendrocyte proliferation.

    Science.gov (United States)

    Manzardo, A M; Gunewardena, S; Butler, M G

    2013-09-10

    We examined miRNA expression from RNA isolated from the frontal cortex (Broadman area 9) of 9 alcoholics (6 males, 3 females, mean age 48 years) and 9 matched controls using both the Affymetrix GeneChip miRNA 2.0 and Human Exon 1.0 ST Arrays to further characterize genetic influences in alcoholism and the effects of alcohol consumption on predicted target mRNA expression. A total of 12 human miRNAs were significantly up-regulated in alcohol dependent subjects (fold change≥1.5, false discovery rate (FDR)≤0.3; p<0.05) compared with controls including a cluster of 4 miRNAs (e.g., miR-377, miR-379) from the maternally expressed 14q32 chromosome region. The status of the up-regulated miRNAs was supported using the high-throughput method of exon microarrays showing decreased predicted mRNA gene target expression as anticipated from the same RNA aliquot. Predicted mRNA targets were involved in cellular adhesion (e.g., THBS2), tissue differentiation (e.g., CHN2), neuronal migration (e.g., NDE1), myelination (e.g., UGT8, CNP) and oligodendrocyte proliferation (e.g., ENPP2, SEMA4D1). Our data support an association of alcoholism with up-regulation of a cluster of miRNAs located in the genomic imprinted domain on chromosome 14q32 with their predicted gene targets involved with oligodendrocyte growth, differentiation and signaling. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Examining The Expression Of Globalization And Commodification Of Islam In Indonesia

    Directory of Open Access Journals (Sweden)

    Dr. Fachrurazi

    2017-12-01

    Full Text Available After the collapse of New Order regime one side Indonesian Islam showed an interesting discourse another one. This situation gave opportunity to manage of Islamic expressions in public sphere. At the same time Indonesian faced the globalization and commodification that affected the social relation and religious life as well. The encounter of Islam globalization and commodification have been creating Islamization symbols in any forms such as sharia business labels Islamic self-help industries even effected the shifting of religious authority. This article examined the expression of Indonesian society after the reformation era. This research method used the critical cultural studies of the Frankfurt School. I argued that the expression of Islamic society after the reformation era was not only to understand in terms of increase of personal piety. But the influencing of globalization and commodification elements were more dominant factors. In doing so both the globalization and commodification of Islam have been leading of Indonesia Muslim society to moderate side but they have scraped the Islamic values and spirituality itself.

  12. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors

    Directory of Open Access Journals (Sweden)

    Evren Eraslan

    2015-01-01

    Full Text Available Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON, acute noise exposure (ANE, and chronic noise exposure (CNE. The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR. The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  13. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors.

    Science.gov (United States)

    Eraslan, Evren; Akyazi, Ibrahim; Erg L-Ekiz, Elif; Matur, Erdal

    2015-01-01

    Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  14. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  15. Survivin mRNA antagonists using locked nucleic acid, potential for molecular cancer therapy

    DEFF Research Database (Denmark)

    Fisker, Niels; Westergaard, Majken; Hansen, Henrik Frydenlund

    2007-01-01

    We have investigated the effects of different locked nucleic acid modified antisense mRNA antagonists against Survivin in a prostate cancer model. These mRNA antagonists were found to be potent inhibitors of Survivin expression at low nanomolar concentrations. Additionally there was a pronounced ...

  16. Analysis of mRNA expression of CNN3, DCN, FBN2, POSTN, SPARC and YWHAQ genes in porcine foetal and adult skeletal muscles

    Czech Academy of Sciences Publication Activity Database

    Bílek, K.; Knoll, Aleš; Stratil, Antonín; Svobodová, K.; Horák, Pavel; Bechyňová, Renata; Van Poucke, M.; Peelman, L. J.

    2008-01-01

    Roč. 53, č. 5 (2008), s. 181-186 ISSN 1212-1819 R&D Projects: GA ČR GD523/03/H076; GA ČR(CZ) GA523/06/1302 Institutional research plan: CEZ:AV0Z50450515 Keywords : mRNA * fetus * gene expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.735, year: 2008

  17. Enhanced upregulation of CRH mRNA expression in the nucleus accumbens of male rats after a second injection of methamphetamine given thirty days later.

    Directory of Open Access Journals (Sweden)

    Jean Lud Cadet

    Full Text Available Methamphetamine (METH is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg on transcriptional effects of a second METH (2.5 mg/kg injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS or METH-challenged (SM; and METH-pretreated followed by saline-challenged (MS or METH-challenged (MM. Microarray analyses revealed that METH (2.5 mg/kg produced acute changes (1.8-fold; P<0.01 in the expression of 412 (352 upregulated, 60 down-regulated transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh, oxytocin (Oxt, and vasopressin (Avp that were upregulated. Injection of METH (10 mg/kg altered the expression of 503 (338 upregulated, 165 down-regulated transcripts measured one month later (MS group. These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug.

  18. [Nuclear factor-kappaB mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and effect of jianwei yuyang granule on its expression].

    Science.gov (United States)

    Ling, Jiang-Hong; Li, Jia-Bang; Shen, Ding-Zhu; Zhou, Bing

    2006-03-01

    To observe the inflammatory reaction, nuclear factor-kappaB (NF-kappaB) mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and the effect of Jianwei Yuyang granule (JYG) on them. Gastric ulcer and its recurrent lesion were successively induced by acetic acid and interliukin1-beta (IL-1beta), and the model rats were divided into the sham operation group, the model group, the omeprazole (correction of omepraxole) group and the JYG group to observe the state of chronic inflammatory cell, neutrophil count, NF-kappaBmRNA and protein expression in stomach tissue. On the 16th and 92th day after administration, the increase of chronic inflammatory cell, neutrophil, NF-kappaBmRNA and protein expression in the model group was more significant than those in the sham operated group (P ulcer induced by acetic acid. JYG may suppress inflammatory reaction by inhibiting the activation and expression of NF-kappaB in stomach tissue, which may be one of the mechanisms of JYG in preventing the recurrence of gastric ulcer.

  19. Co-dominant expression of the HLA-G gene and various forms of alternatively spliced HLA-G mRNA in human first trimester trophoblast

    DEFF Research Database (Denmark)

    Hviid, T V; Møller, C; Sørensen, S

    1998-01-01

    imprinting of the HLA-G locus could have implications for the interaction in the feto-maternal relationship. Restriction Fragment Length Polymorphism (RFLP), allele-specific amplification and Single Strand Conformation Polymorphism (SSCP) analysis followed by DNA sequencing were performed on Reverse...... Transcription (RT) Polymerase Chain Reaction (PCR) products of HLA-G mRNA to examine the expression of maternal and paternal alleles. Our results demonstrate that HLA-G is co-dominantly expressed in first trimester trophoblast cells. A "new" non-synonymous base substitution in exon 4 was detected. We also...

  20. Impact of exogenous lipase supplementation on growth, intestinal function, mucosal immune and physical barrier, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Liu, Sen; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zeng, Yun-Yun; Xu, Shu-De; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-08-01

    This study investigated the effects of exogenous lipase supplementation on the growth performance, intestinal growth and function, immune response and physical barrier function, and related signaling molecules mRNA expression of young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (255.02 ± 0.34 g) were fed five diets for 60 days. There were 5 dietary treatments that included a normal protein and lipid diet containing 30% crude protein (CP) with 5% ether extract (EE), and the low-protein and high-lipid diets (28% CP, 6% EE) supplemented with graded levels of exogenous lipase supplementation activity at 0, 1193, 2560 and 3730 U/kg diet. The results indicated that compared with a normal protein and lipid diet (30% CP, 5% EE), a low-protein and high-lipid diet (28% CP, 6% EE) (un-supplemented lipase) improved lysozyme activities and complement component 3 contents in the distal intestine (DI), interleukin 10 mRNA expression in the proximal intestine (PI), and glutathione S-transferases activity and glutathione content in the intestine of young grass carp. In addition, in low-protein and high-lipid diets, optimal exogenous lipase supplementation significantly increased acid phosphatase (ACP) activities and complement component 3 (C3) contents (P exogenous lipase supplementation significantly decreased reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents (P exogenous lipase supplementation significantly elevated the mRNA levels of tight junction proteins (Occludin, zonula occludens 1, Claudin b, Claudin c and Claudin 3) (P exogenous lipase supplementation improved growth, intestinal growth and function, intestinal immunity, physical barrier, and regulated the mRNA expression of related signal molecules of fish. The optimal level of exogenous lipase supplementation in young grass carp (255-771 g) was estimated to be 1193 U kg(-1) diet. Copyright © 2016. Published by Elsevier Ltd.

  1. Global sensitivity analysis of a dynamic model for gene expression in Drosophila embryos

    Science.gov (United States)

    McCarthy, Gregory D.; Drewell, Robert A.

    2015-01-01

    It is well known that gene regulation is a tightly controlled process in early organismal development. However, the roles of key processes involved in this regulation, such as transcription and translation, are less well understood, and mathematical modeling approaches in this field are still in their infancy. In recent studies, biologists have taken precise measurements of protein and mRNA abundance to determine the relative contributions of key factors involved in regulating protein levels in mammalian cells. We now approach this question from a mathematical modeling perspective. In this study, we use a simple dynamic mathematical model that incorporates terms representing transcription, translation, mRNA and protein decay, and diffusion in an early Drosophila embryo. We perform global sensitivity analyses on this model using various different initial conditions and spatial and temporal outputs. Our results indicate that transcription and translation are often the key parameters to determine protein abundance. This observation is in close agreement with the experimental results from mammalian cells for various initial conditions at particular time points, suggesting that a simple dynamic model can capture the qualitative behavior of a gene. Additionally, we find that parameter sensitivites are temporally dynamic, illustrating the importance of conducting a thorough global sensitivity analysis across multiple time points when analyzing mathematical models of gene regulation. PMID:26157608

  2. Up-regulated EMMPRIN/CD147 protein expression might play a role in colorectal carcinogenesis and its subsequent progression without an alteration of its glycosylation and mRNA level.

    Science.gov (United States)

    Zheng, Hua-chuan; Wang, Wei; Xu, Xiao-yan; Xia, Pu; Yu, Miao; Sugiyama, Toshiro; Takano, Yasuo

    2011-04-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) was reported to involve in the invasion and metastasis of malignancies by regulating the expression of vascular endothelial growth factor (VEGF) in stromal and cancer cells. The study aimed to clarify the role of EMMPRIN expression in tumorigenesis and progression of colorectal carcinomas (CRC). EMMPRIN expression was examined on tissue microarray containing colorectal carcinomas, adenoma and non-neoplastic mucosa (NNM) by immunohistochemistry and in situ hybridization (ISH). Colorectal carcinoma cell lines (DLD-1, HCT-15, SW480 and WiDr) and tissues were studied for EMMPRIN expression by Western blot or RT-PCR, followed by sequencing. All carcinoma cell lines showed EMMPRIN expression at both mRNA and protein levels. Two synonymous mutations were found in carcinoma cell lines at codon109 (GCT → GCC: Ala) or 179 (GAT → GAC: Asp). Frozen CRC tissues displayed higher EMMPRIN expression than paired NNM (P EMMPRIN expression was immunohistochemically stronger in colorectal high-grade adenoma, adenocarcinoma and metastatic carcinoma than non-neoplastic superficial epithelium and low-grade adenoma (P 0.05). Immunohistochemically, EMMPRIN expression was positively correlated with tumor size, depth of invasion, vascular or lymphatic invasion, grade of infiltration (INF), ki-67 and VEGF expression of CRCs (P EMMPRIN expression in CRCs (P EMMPRIN protein expression might contribute to colorectal carcinogenesis without the alteration of its glycosylation and mRNA level. Aberrant EMMPRIN protein expression might promote growth or invasion of CRCs possibly through increased ki-67 expression and inducible angiogenesis via up-regulating VEGF expression.

  3. Effects of cadmium on anaerobic energy metabolism and mRNA expression during air exposure and recovery of an intertidal mollusk Crassostrea virginica

    International Nuclear Information System (INIS)

    Ivanina, Anna V.; Sokolov, Eugene P.; Sokolova, Inna M.

    2010-01-01

    Marine organisms are exposed to periodical oxygen deficiency and pollution stress in estuarine and coastal zones which may strongly affect their performance and survival. We studied the combined effects of exposure to a common pollutant, cadmium (Cd), and intermittent anoxia on anaerobic metabolism, energy status and mRNA expression of 13 genes involved in and/or controlled by the hypoxia inducible factor-1 (HIF-1) pathway in hepatopancreas of an intertidal bivalve, the eastern oyster Crassostrea virginica. In control oysters, prolonged anoxia resulted in a selective suppression of nitric oxide synthase (NOS) and upregulation of cytochrome c oxidase subunit IV (COX4) while the levels of other transcripts remained unchanged. During post-anoxic recovery, mRNA expression of hypoxia inducible factor-1α (HIF-1α) was elevated, phosphoenolpyruvate carboxykinase (PEPCK), NOS and LON protease suppressed, and mRNA expression of other studied genes not changed. Notably, most of the key glycolytic genes that are stimulated by HIF-1 in mammals, either remained unchanged or were downregulated in anoxic oysters suggesting a different mechanism of molecular response to oxygen deficiency. Patterns of transcriptional response during anoxia and reoxygenation were significantly altered by Cd exposure in a gene-specific manner. Anaerobic metabolism (indicated by accumulation of L-alanine, succinate and acetate during anoxia) was also suppressed in Cd-exposed oysters. In control oysters, ATP turnover rate (M ATP ) during anoxia was mostly sustained by anaerobic glycolysis with negligible contributions from ATP and PLA breakdown. In contrast, in Cd-exposed oysters ATP breakdown contributed significantly to anaerobic M ATP . Thus, while control oysters could efficiently defend the ATP levels and tissue energy status during prolonged anoxia, Cd-exposed oysters experienced a disturbance in tissue energy balance indicated by the depletion of ATP, a rapid decline in adenylate energy charge

  4. Effects of cadmium on anaerobic energy metabolism and mRNA expression during air exposure and recovery of an intertidal mollusk Crassostrea virginica

    Energy Technology Data Exchange (ETDEWEB)

    Ivanina, Anna V. [Biology Department, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Sokolov, Eugene P. [Department of General Surgery, Carolina' s Medical Center, 1000 Blythe Blvd., Charlotte, NC 28203-5871 (United States); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Biology Department, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States)

    2010-09-01

    Marine organisms are exposed to periodical oxygen deficiency and pollution stress in estuarine and coastal zones which may strongly affect their performance and survival. We studied the combined effects of exposure to a common pollutant, cadmium (Cd), and intermittent anoxia on anaerobic metabolism, energy status and mRNA expression of 13 genes involved in and/or controlled by the hypoxia inducible factor-1 (HIF-1) pathway in hepatopancreas of an intertidal bivalve, the eastern oyster Crassostrea virginica. In control oysters, prolonged anoxia resulted in a selective suppression of nitric oxide synthase (NOS) and upregulation of cytochrome c oxidase subunit IV (COX4) while the levels of other transcripts remained unchanged. During post-anoxic recovery, mRNA expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}) was elevated, phosphoenolpyruvate carboxykinase (PEPCK), NOS and LON protease suppressed, and mRNA expression of other studied genes not changed. Notably, most of the key glycolytic genes that are stimulated by HIF-1 in mammals, either remained unchanged or were downregulated in anoxic oysters suggesting a different mechanism of molecular response to oxygen deficiency. Patterns of transcriptional response during anoxia and reoxygenation were significantly altered by Cd exposure in a gene-specific manner. Anaerobic metabolism (indicated by accumulation of L-alanine, succinate and acetate during anoxia) was also suppressed in Cd-exposed oysters. In control oysters, ATP turnover rate (M{sub ATP}) during anoxia was mostly sustained by anaerobic glycolysis with negligible contributions from ATP and PLA breakdown. In contrast, in Cd-exposed oysters ATP breakdown contributed significantly to anaerobic M{sub ATP}. Thus, while control oysters could efficiently defend the ATP levels and tissue energy status during prolonged anoxia, Cd-exposed oysters experienced a disturbance in tissue energy balance indicated by the depletion of ATP, a rapid decline in

  5. Investigation of mRNA expression for secreted frizzled-related protein 2 (sFRP2) in chick embryos.

    Science.gov (United States)

    Lin, Chung-Tien; Lin, Yu-Ting; Kuo, Tzong-Fu

    2007-08-01

    The roles of secreted frizzled-related protein 2 (sFRP2) in organ development of vertebrate animals are not well understood. We investigated expression of sFRP2 during embryogenesis of Arbor Acre broiler chicken eggs. Expression of sFRP2 was detected in the folds and lateral layer of developing brains. The sFRP2 signals in the developing eye were marked as a circle along the orbit. In younger embryos on days 3-6, the sFRP2 signals were consistent with growth of the sclerotome, suggesting that sFRP2 may be associated with somite development. Furthermore, with the exception of bones, sFRP2 mRNA was detectable in the interdigital tissue of embryos older than eight days as the limbs matured. This revealed that sFRP2 might play a role in myogenesis. In situ hybridization was also used to analyze the expression of sFRP2 in day 3-10 chick embryos. Signals were expressed in the gray matter of the developing brain coelom, including the optic lobe, metencephalon, myelencephalon, mesencephalon and diencephalon. The developing eyes contained an intercellular distribution of sFRP2 in the pigmented layer of the retina and photoreceptors. Furthermore, sFRP2 was expressed in the mantle layer of the neural tube and notochord. Based on these findings, it seems reasonable to suggest that sFRP2 may play an active role in embryogenesis, especially in development of the neural system, eyes, muscles and limbs.

  6. Expression of mRNA for proglucagon and glucagon-like peptide-2 (GLP-2) receptor in the ruminant gastrointestinal tract and the influence of energy intake

    DEFF Research Database (Denmark)

    Taylor-Edwards, C C; Burrin, D G; Matthews, J C

    2010-01-01

    Glucagon-like peptide-2 (GLP-2) is a potent trophic gut hormone, yet its function in ruminants is relatively unknown. Experiment 1 was conducted as a pilot study to establish the presence of GLP-2 in ruminants and to ascertain whether it was responsive to increased nutrition, as in non-ruminants....... Concentrations of intact GLP-2 in the blood and gut epithelial mRNA expression of proglucagon (GCG) and the GLP-2 receptor (GLP2R) were measured in 4 ruminally, duodenally, and ileally cannulated steers. Steers were fed to meet 0.75 x NE(M) for 21 d, and then increased to 1.75 x NE(M) requirement for another 29...... d. Blood samples and ruminal, duodenal, and ileal epithelium biopsies were collected at low intake (Days -6 and -3), acute high intake (Days 1 and 3), and chronic high intake (Days 7 and 29) periods. Experiment 2 investigated the mRNA expression pattern of GCG and GLP2R in epithelial tissue obtained...

  7. Influence of light intensity and spectral composition of artificial light at night on melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus.

    Science.gov (United States)

    Brüning, Anika; Hölker, Franz; Franke, Steffen; Kleiner, Wibke; Kloas, Werner

    2018-02-01

    In this study we investigated the influence of artificial light at night (ALAN) of different intensities (0, 1, 10, 100 lx) and different colours (blue, green, red) on the daily melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus, a ubiquitous cyprinid, which occur in standing and moderately flowing freshwater habitats of central Europe. Melatonin concentrations were significantly lowered under nocturnal white light already at 1 lx. Low intensity blue, green and red ALAN lowered the melatonin levels significantly in comparison to a dark control. We conclude that ALAN can disturb melatonin rhythms in roach at very low intensities and at different wavelengths and thus light pollution in urban waters has the potential to impact biological rhythms in fish. However, mRNA expression of gonadotropins was not affected by ALAN during the period of the experiments. Thus, suspected implications of ALAN on reproduction of roach could not be substantiated.

  8. Concerted elevation of acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin.

    Science.gov (United States)

    Meegalla, Rupalie L; Billheimer, Jeffrey T; Cheng, Dong

    2002-11-01

    Glucose and insulin are anabolic signals which upregulate the transcriptions of a series of lipogenic enzymes to convert excess carbohydrate into triglycerides for efficient energy storage. These enzymes include ATP-citrate lyase (ACL), acetyl-coenzyme A carboxylase (ACC), fatty acid synthase (FAS), and glycerol-3-phosphate acyltransferase (G3PA). Acyl-coenzyme A:diacylglycerol acyltransferase (DGAT) is important to synthesize fatty acids into triglycerides. Two DGATs from different gene families have recently been identified. In the current study, we report that glucose preferentially enhances DGAT1 mRNA expression, whereas insulin specifically increases the level of DGAT2 mRNA. Treatment of adipocytes with glucose and insulin together results in higher DGAT activity in the membrane than cells treated with either of the agents alone, indicating that glucose and insulin have additive effect on DGAT activation. In mice treated with fast/refeeding protocol, DGAT2 mRNA decreased upon fasting and was replenished upon refeeding in adipose tissue and liver. This pattern of change was not observed for DGAT1. Inasmuch as DGAT1 mRNA is less abundant in liver, we suggest that DGAT1 is more involved in fat absorption in the intestine and in basal level triglyceride synthesis in adipose tissue where it is more highly expressed. In contrast, DGAT2 is more likely to play important roles in assembly of de novo synthesized fatty acids into VLDL particles in the liver.

  9. The development of clinical activity in relapsing-remitting MS is associated with a decrease of FasL mRNA and an increase of Fas mRNA in peripheral blood

    NARCIS (Netherlands)

    Lopatinskaya, L.; Boxel van-Dezaire, A.H.H.; Barkhof, F.; Polman, C.H.; Lucas, C.J.; Nagelkerken, L.

    2003-01-01

    In this longitudinal study, we examined the expression of Fas, FasL, CCR3, CCR5 and CXCR3 mRNA in peripheral blood mononuclear cells (PBMCs) of secondary progressive (SP) and relapsing-remitting (RR) multiple sclerosis (MS) patients. In RR patients, FasL, CCR3 and CCR5 mRNA levels were increased

  10. Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata).

    Science.gov (United States)

    Benedito-Palos, Laura; Calduch-Giner, Josep A; Ballester-Lozano, Gabriel F; Pérez-Sánchez, Jaume

    2013-04-14

    The effect of ration size on muscle fatty acid (FA) composition and mRNA expression levels of key regulatory enzymes of lipid and lipoprotein metabolism have been addressed in juveniles of gilthead sea bream fed a practical diet over the course of an 11-week trial. The experimental setup included three feeding levels: (i) full ration until visual satiety, (ii) 70 % of satiation and (iii) 70 % of satiation with the last 2 weeks at the maintenance ration. Feed restriction reduced lipid content of whole body by 30 % and that of fillet by 50 %. In this scenario, the FA composition of fillet TAG was not altered by ration size, whereas that of phospholipids was largely modified with a higher retention of arachidonic acid and DHA. The mRNA transcript levels of lysophosphatidylcholine acyltransferases, phosphatidylethanolamine N-methyltransferase and FA desaturase 2 were not regulated by ration size in the present experimental model. In contrast, mRNA levels of stearoyl-CoA desaturases were markedly down-regulated by feed restriction. An opposite trend was found for a muscle-specific lipoprotein lipase, which is exclusive of fish lineage. Several upstream regulatory transcriptions were also assessed, although nutritionally mediated changes in mRNA transcripts were almost reduced to PPARα and β, which might act in a counter-regulatory way on lipolysis and lipogenic pathways. This gene expression pattern contributes to the construction of a panel of biomarkers to direct marine fish production towards muscle lean phenotypes with increased retentions of long-chain PUFA.

  11. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    International Nuclear Information System (INIS)

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-01-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  12. Effects of trichostatin a on the expression of sodium/iodide symporter mRNA and the uptake of iodide in human thyroid cancer cell lines

    International Nuclear Information System (INIS)

    Bao Jiandong; Lin Xiufeng; Yu Huixin; Tan Cheng; Zhang Li

    2010-01-01

    Objective: To investigate the sodium/iodide symporter (NIS) expression and iodide uptake in thyroid cancer cells induced by the histone deacetyltransferase inhibitors (HDACi), Trichostatin A (TSA). Methods: Both the thyroid cancer cell lines, follicular thyroid carcinoma cell line FTC-133 and papillary thyroid carcinoma cell line K1, were firstly induced with TSA for 48 h. Then, the expression of NIS mRNA was analysed with reverse transcription-polymerase chain reaction (RT-PCR), the densitometric ratio of NIS/glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was calculated, and the iodide uptake in the thyroid cancer cells was also measured. Independent-sample t-test and one-way analysis of variance (ANOVA) were used to analyze the data. Results: For FTC-133 cells, increased NIS mRNA expression was detected after 48 h of TSA treatment, and the changes were dose-dependent (F=32.56, P 0.05). Furthermore, FTC-133 cells showed the ability of accumulating radioiodide with 50 and 75 nmol/L TSA induction for 48 h: (15.42 ± 0.42) x 10 3 counts · min -1 · 10 -5 cells vs (8.46 ± 0.84) x 10 3 counts · min -1 · 10 -5 cells, t=3.018, P 3 counts · min -1 · 10 -5 cells vs (8.46 ± 0.84) x 10 3 counts · min -1 · 10 -5 cells, t=3.557, P 3 counts · min -1 · 10 -5 cells, (6.97 ± 0.65) x 10 3 counts · min -1 · 10 -5 cells vs (5.37 ± 0.88) x 10 3 counts · min -1 · 10 -5 cells, t=0.185, P> 0.05 and t = 0.332, P > 0.05, respectively. Conclusion: TSA induced upregulated NIS mRNA expression in follicular thyroid cancer cells and augmented radioiodide uptake in thyroid cancer cells, while TSA had no remarkable effect on papillary thyroid carcinoma cell. (authors)

  13. MiR-200a is involved in rat epididymal development by targeting β-catenin mRNA

    Institute of Scientific and Technical Information of China (English)

    Xiaojiang Wu; Botao Zhao; Wei Li; Yue Chen; Ruqiang Liang; Lin Li; Youxin Jin; Kangcheng Ruan

    2012-01-01

    The expression of 350 microRNAs (miRNAs) in epididymis of rat from postnatal development to adult (from postnatal days 7-70) was profiled with home-made miRNA microarray.Among them,48 miRNAs changed significantly, in which the expression of miR-200a increased obviously with time,in a good agreement with that obtained from northern blot analysis.The real-time quantitative-polymerase chain reaction result indicated that temporal expression of rat β-catenin was exactly inversed to that of miR-200a during rat epididymal development,implying that miR-200a might also target β-catenin mRNA in rat epididymis as reported by Saydam et al.in humans.The bioinformatic analysis indicated that 3' untranslated region of rat β-catenin mRNA did contain a putative binding site for miR-200a.Meanwhile,it was found that the sequence of this binding site was different from that of human β-catenin mRNA with a deletion of two adjacent nucleotides (U and C).But the results of luciferase targeting assay in HEK 293T cells and the overexpression of miR-200a in rat NRK cells demonstrated that miR-200a did target rat β-catenin mRNA and cause the suppression of its expression.All these results show that miR-200a should be involved in rat epididymal development by targeting β-catenin mRNA of rat and suppressing its expression.

  14. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    Science.gov (United States)

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  15. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  16. Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis.

    Science.gov (United States)

    Zhao, Luyang; Gu, Chenglei; Ye, Mingxia; Zhang, Zhe; Li, Li'an; Fan, Wensheng; Meng, Yuanguang

    2018-01-22

    The etiology and pathophysiology of endometriosis remain unclear. Accumulating evidence suggests that aberrant microRNA (miRNA) and transcription factor (TF) expression may be involved in the pathogenesis and development of endometriosis. This study therefore aims to survey the key miRNAs, TFs and genes and further understand the mechanism of endometriosis. Paired expression profiling of miRNA and mRNA in ectopic endometria compared with eutopic endometria were determined by high-throughput sequencing techniques in eight patients with ovarian endometriosis. Binary interactions and circuits among the miRNAs, TFs, and corresponding genes were identified by the Pearson correlation coefficients. miRNA-TF-gene regulatory networks were constructed using bioinformatic methods. Eleven selected miRNAs and TFs were validated by quantitative reverse transcription-polymerase chain reaction in 22 patients. Overall, 107 differentially expressed miRNAs and 6112 differentially expressed mRNAs were identified by comparing the sequencing of the ectopic endometrium group and the eutopic endometrium group. The miRNA-TF-gene regulatory network consists of 22 miRNAs, 12 TFs and 430 corresponding genes. Specifically, some key regulators from the miR-449 and miR-34b/c cluster, miR-200 family, miR-106a-363 cluster, miR-182/183, FOX family, GATA family, and E2F family as well as CEBPA, SOX9 and HNF4A were suggested to play vital regulatory roles in the pathogenesis of endometriosis. Integration analysis of the miRNA and mRNA expression profiles presents a unique insight into the regulatory network of this enigmatic disorder and possibly provides clues regarding replacement therapy for endometriosis.

  17. Temporal regulation of HTLV-2 expression in infected cell lines and patients: evidence for distinct expression kinetics with nuclear accumulation of APH-2 mRNA

    Directory of Open Access Journals (Sweden)

    Bender Cecilia

    2012-09-01

    Full Text Available Abstract Background Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2 are delta retroviruses with similar genetic organization. Although both viruses immortalize T-cells in vitro, they exhibit distinct pathogenic potential in vivo. To search for possible differences in its expression strategy with respect to HTLV-1, we investigated the pattern of HTLV-2 expression in infected cell lines and peripheral blood mononuclear cells (PBMCs from infected patients using splice site-specific quantitative RT-PCR. Findings A novel alternative splice acceptor site for exon 2 was identified; its usage in env transcripts was found to be subtype-specific. Time-course analysis revealed a two-phase expression kinetics in an infected cell line and in PBMCs of two of the three patients examined; this pattern was reminiscent of HTLV-1. In addition, the minus-strand APH2 transcript was mainly detected in the nucleus, a feature that was similar to its HTLV-1 orthologue HBZ. In contrast to HTLV-1, expression of the mRNA encoding the main regulatory proteins Tax and Rex and that of the mRNAs encoding the p28 and truncated Rex inhibitors is skewed towards p28/truncated Rex inhibitors in HTLV-2. Conclusion Our data suggest a general converging pattern of expression of HTLV-2 and HTLV-1 and highlight peculiar differences in the expression of regulatory proteins that might influence the pathobiology of these viruses.

  18. Guanylin and uroguanylin mRNA expression is increased following Roux-en-Y gastric bypass, but guanylins do not play a significant role in body weight regulation and glycemic control

    DEFF Research Database (Denmark)

    Fernandez-Cachon, María L; Pedersen, Søren L; Rigbolt, Kristoffer T

    2018-01-01

    AIM: To determine whether intestinal expression of guanylate cyclase activator 2A (GUCA2A) and guanylate cyclase activator 2B (GUCA2B) genes is regulated in obese humans following Roux-en-Y gastric bypass (RYGB), and to evaluate the corresponding guanylin (GN) and uroguanylin (UGN) peptides...... for potentially contributing to the beneficial metabolic effects of RYGB. METHODS: Enteroendocrine cells were harvested peri- and post-RYGB, and GUCA2A/GUCA2B mRNA expression was compared. GN, UGN and their prohormones (proGN, proUGN) were administered subcutaneously in normal-weight mice to evaluate effects...... on food intake. GN and UGN, as well as their prohormones, were evaluated for effects on glucose-stimulated insulin secretion (GSIS) in rat pancreatic islets and perfused rat pancreas. RESULTS: GUCA2A and GUCA2B mRNA expression was significantly upregulated in enteroendocrine cells after RYGB. Peripheral...

  19. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    International Nuclear Information System (INIS)

    Bowyer, John F.; Latendresse, John R.; Delongchamp, Robert R.; Warbritton, Alan R.; Thomas, Monzy; Divine, Becky; Doerge, Daniel R.

    2009-01-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were ≤ 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  20. Cloning of zebrafish activin type IIB receptor (ActRIIB) cDNA and mRNA expression of ActRIIB in embryos and adult tissues.

    Science.gov (United States)

    Garg, R R; Bally-Cuif, L; Lee, S E; Gong, Z; Ni, X; Hew, C L; Peng, C

    1999-07-20

    A full-length cDNA encoding for activin type IIB receptor (ActRIIB) was cloned from zebrafish embryos. It encodes a protein with 509 amino acids consisting of a signal peptide, an extracellular ligand binding domain, a single transmembrane region, and an intracellular kinase domain with predicted serine/threonine specificity. The extracellular domain shows 74-91% sequence identity to human, bovine, mouse, rat, chicken, Xenopus and goldfish activin type IIB receptors, while the transmembrane region and the kinase domain show 67-78% and 82-88% identity to these known activin IIB receptors, respectively. In adult zebrafish, ActRIIB mRNA was detected by RT-PCR in the gonads, as well as in non-reproductive tissues, including the brain, heart and muscle. In situ hybridization on ovarian sections further localized ActRIIB mRNA to cytoplasm of oocytes at different stages of development. Using whole-mount in situ hybridization, ActRIIB mRNA was found to be expressed at all stages of embryogenesis examined, including the sphere, shield, tail bud, and 6-7 somite. These results provide the first evidence that ActRIIB mRNA is widely distributed in fish embryonic and adult tissues. Cloning of zebrafish ActRIIB demonstrates that this receptor is highly conserved during vertebrate evolution and provides a basis for further studies on the role of activin in reproduction and development in lower vertebrates.