WorldWideScience

Sample records for mrna decreases cellular

  1. DNA damage and decrease of cellular oxidase activity in piglet ...

    DNA damage and decrease of cellular oxidase activity in piglet sertoli cells exposed to gossypol. Ming Zhang, Hui Yuan, Zuping He, Liyun Yuan, Jine Yi, Sijun Deng, Li Zhu, Chengzhi Guo, Yin Lu, Jing Wu, Lixin Wen, Qiang Wei, Liqun Xue ...

  2. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-01-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for α-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with 32 P cDNA probes for α-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D α-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized α-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and α-actin mRNAs are decreased. Insulin treatment reverses these changes

  3. Cellular localization of transforming growth factor-alpha mRNA in rat forebrain.

    Seroogy, K B; Lundgren, K H; Lee, D C; Guthrie, K M; Gall, C M

    1993-05-01

    The cellular localization of transforming growth factor-alpha (TGF alpha) mRNA in juvenile and adult rat forebrain was examined using in situ hybridization with a 35S-labeled cRNA probe. TGF alpha cRNA-labeled neuronal perikarya were distributed across many forebrain regions including the olfactory bulb, caudate-putamen, nucleus accumbens, olfactory tubercle, ventral pallidum, amygdala, hippocampal stratum granulosum and CA3 stratum pyramidale, and piriform, entorhinal, and retrosplenial cortices. TGF alpha cRNA-hybridizing cells were also localized to several thalamic nuclei and to the suprachiasmatic, dorsomedial, and ventromedial nuclei of the hypothalamus. In addition, labeled cells were present in regions of white matter including the corpus callosum, anterior commissure, internal and external capsules, optic tract, and lateral olfactory tract. Thus, both neurons and glia appear to synthesize TGF alpha in normal brain. Hybridization densities were greater in neuronal fields at 2 weeks of age compared with the adult, suggesting a role for TGF alpha in the development of several forebrain systems. Our results demonstrating the prominent and wide-spread expression of TGF alpha mRNA in forebrain, combined with the extremely low abundance of epidermal growth factor mRNA in brain, support the argument that TGF alpha is the principal endogenous ligand for the epidermal growth factor receptor in normal brain.

  4. Changes in rRNA levels during stress invalidates results from mRNA blotting: Fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels

    Hansen, M.C.; Nielsen, A.K.; Molin, Søren

    2001-01-01

    obtained by these techniques are compared between experiments in which differences in growth rates, strains, or stress treatments occur, the normalization procedure may have a significant impact on the results. In this report we present a solution to the normalization problem in RNA slot blotting...... the relative level of rRNA per cell, and slot blotting to rRNA probes, which estimates the level of rRNA per extracted total RNA, the amount of RNA per cell was calculated in a series of heat shock experiments with the gram-positive bacterium Lactococcus lactis. It was found that the level of rRNA per cell...... decreased to 30% in the course of the heat shock. This lowered ribosome level led to a decrease in the total RNA content, resulting in a gradually increasing overestimation of the mRNA levels throughout the experiment. Using renormalized cellular mRNA levels, the HrcA-mediated regulation of the genes...

  5. CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts

    Christiansen, Mette; Kveiborg, M.; Kassem, M.

    2000-01-01

    In order to understand the reasons for age-related impairment of the function of bone forming osteoblasts, we have examined the steady-state mRNA levels of the transcription factor CBFA1 and topoisomerase I during cellular aging of normal human trabecular osteoblasts, by the use of semiquantitati...

  6. A glimpse at mRNA dynamics reveals cellular domains and rapid trafficking through granules

    Gemert, Alice Myriam Christi van

    2011-01-01

    mRNA transport and targeting are essential to gene expression regulation. Specific mRNA sequences can bind several proteins and together form RiboNucleoProtein particles (RNP). The various proteins within the RNP determine mRNA fate: translation, transport or decay. RNP composition varies with

  7. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    Boheler, K.; Popovich, B.; Dillmann, W.H.

    1987-01-01

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific 32 P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH

  8. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana.

    Branco-Price, Cristina; Kaiser, Kayla A; Jang, Charles J H; Larive, Cynthia K; Bailey-Serres, Julia

    2008-12-01

    Cellular oxygen deprivation (hypoxia/anoxia) requires an acclimation response that enables survival during an energy crisis. To gain new insights into the processes that facilitate the endurance of transient oxygen deprivation, the dynamics of the mRNA translation state and metabolites were quantitatively monitored in Arabidopsis thaliana seedlings exposed to a short (2 h) or prolonged (9 h) period of oxygen and carbon dioxide deprivation and following 1 h of re-aeration. Hypoxia stress and reoxygenation promoted adjustments in the levels of polyribosomes (polysomes) that were highly coordinated with cellular ATP content. A quantitative comparison of steady-state and polysomal mRNA populations revealed that over half of the cellular mRNAs were restricted from polysome complexes during the stress, with little or no change in abundance. This selective repression of translation was rapidly reversed upon reoxygenation. Comparison of the adjustment in gene transcripts and metabolites demonstrated that profiling of polysomal mRNAs strongly augments the prediction of cellular processes that are altered during cellular oxygen deprivation. The selective translation of a subset of mRNAs promotes the conservation of ATP and facilitates the transition to anaerobic metabolism during low-oxygen stress.

  9. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    Han, Mingyuan; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan

    2017-01-01

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of 126 -LQxxLxxxGL- 135 . In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine arteritis virus.

  10. Nuclear imprisonment of host cellular mRNA by nsp1β protein of porcine reproductive and respiratory syndrome virus

    Han, Mingyuan, E-mail: hanming@umich.edu; Ke, Hanzhong; Zhang, Qingzhan; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2017-05-15

    Positive-strand RNA genomes function as mRNA for viral protein synthesis which is fully reliant on host cell translation machinery. Competing with cellular protein translation apparatus needs to ensure the production of viral proteins, but this also stifles host innate defense. In the present study, we showed that porcine reproductive and respiratory syndrome virus (PRRSV), whose replication takes place in the cytoplasm, imprisoned host cell mRNA in the nucleus, which suggests a novel mechanism to enhance translation of PRRSV genome. PRRSV nonstructural protein (nsp) 1β was identified as the nuclear protein playing the role for host mRNA nuclear retention and subversion of host protein synthesis. A SAP (SAF-A/B, Acinus, and PIAS) motif was identified in nsp1β with the consensus sequence of {sub 126}-LQxxLxxxGL-{sub 135}. In situ hybridization unveiled that SAP mutants were unable to cause nuclear retention of host cell mRNAs and did not suppress host protein synthesis. In addition, these SAP mutants reverted PRRSV-nsp1β-mediated suppression of interferon (IFN) production, IFN signaling, and TNF-α production pathway. Using reverse genetics, a series of SAP mutant PRRS viruses, vK124A, vL126A, vG134A, and vL135A were generated. No mRNA nuclear retention was observed during vL126A and vL135A infections. Importantly, vL126A and vL135A did not suppress IFN production. For other arteriviruses, mRNA nuclear accumulation was also observed for LDV-nsp1β and SHFV-nsp1β. EAV-nsp1 was exceptional and did not block the host mRNA nuclear export. - Highlights: •PRRS virus blocks host mRNA nuclear export to the cytoplasm. •PRRSV nsp1β is the viral protein responsible for host mRNA nuclear retention. •SAP domain in nsp1β is essential for host mRNA nuclear retention and type I interferon suppression. •Mutation in the SAP domain of nsp1β causes the loss of function. •Host mRNA nuclear retention by nsp1β is common in the family Arteriviridae, except equine

  11. Decreased alternative splicing of estrogen receptor-α mRNA in the Alzheimer's disease brain

    Ishunina, Tatjana A.; Swaab, Dick F.

    2012-01-01

    In this study we identified 62 estrogen receptor alpha (ERα) mRNA splice variants in different human brain areas of Alzheimer's disease (AD) and control cases and classified them into 12 groups. Forty-eight of these splice forms were identified for the first time. The distribution of alternatively

  12. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment.

    Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon

    2012-11-14

    Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.

  13. Cellular mRNA decay factors involved in the hepatitis C virus life cycle

    Mina Ibarra, Leonardo Bruno

    2010-01-01

    The group of positive strand RNA ((+)RNA) viruses includes numerous plant, animal and human pathogens such as the hepatitis C virus (HCV). Their viral genomes mimic cellular mRNAs, however, besides acting as messengers for translation of viral proteins, they also act as templates for viral replication. Since these two functions are mutually exclusive, a key step in the replication of all (+) RNA viruses is the regulated exit of the genomic RNAs from the cellular translation machinery to the v...

  14. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  15. Introduction of enteral food increases plasma GLP-2 and decreases GLP-2 receptor mRNA abundance during pig development

    Petersen, Y. M.; Hartmann, B.; Holst, Jens Juul

    2003-01-01

    increased before birth, peaked in suckling 1-d-old pigs (87 +/- 14 pmol/L, P anorexia (34 +/- 5 pmol/L, P ... in these pigs. We conclude that the introduction of enteral feeding transiently increases plasma GLP-2 concentrations and decreases small intestinal GLP-2R mRNA levels during pig development. GLP-2 may play a role in the growth of the small intestine around birth and weaning via a response to enteral nutrition....

  16. Overexpression of Nitrate Reductase in Tobacco Delays Drought-Induced Decreases in Nitrate Reductase Activity and mRNA1

    Ferrario-Méry, Sylvie; Valadier, Marie-Hélène; Foyer, Christine H.

    1998-01-01

    Transformed (cauliflower mosaic virus 35S promoter [35S]) tobacco (Nicotiana plumbaginifolia L.) plants constitutively expressing nitrate reductase (NR) and untransformed controls were subjected to drought for 5 d. Drought-induced changes in biomass accumulation and photosynthesis were comparable in both lines of plants. After 4 d of water deprivation, a large increase in the ratio of shoot dry weight to fresh weight was observed, together with a decrease in the rate of photosynthetic CO2 assimilation. Foliar sucrose increased in both lines during water stress, but hexoses increased only in leaves from untransformed controls. Foliar NO3− decreased rapidly in both lines and was halved within 2 d of the onset of water deprivation. Total foliar amino acids decreased in leaves of both lines following water deprivation. After 4 d of water deprivation no NR activity could be detected in leaves of untransformed plants, whereas about 50% of the original activity remained in the leaves of the 35S-NR transformants. NR mRNA was much more stable than NR activity. NR mRNA abundance increased in the leaves of the 35S-NR plants and remained constant in controls for the first 3 d of drought. On the 4th d, however, NR mRNA suddenly decreased in both lines. Rehydration at d 3 caused rapid recovery (within 24 h) of 35S-NR transcripts, but no recovery was observed in the controls. The phosphorylation state of the protein was unchanged by long-term drought. There was a strong correlation between maximal extractable NR activity and ambient photosynthesis in both lines. We conclude that drought first causes increased NR protein turnover and then accelerates NR mRNA turnover. Constitutive NR expression temporarily delayed drought-induced losses in NR activity. 35S-NR expression may therefore allow more rapid recovery of N assimilation following short-term water deficit. PMID:9576799

  17. Decreases in Casz1 mRNA by an siRNA Complex Do not Alter Blood Pressure in Mice.

    Ji, Su-Min; Shin, Young-Bin; Park, So-Yon; Lee, Hyeon-Ju; Oh, Bermseok

    2012-03-01

    Recent genomewide association studies of large samples have identified genes that are associated with blood pressure. The Global Blood Pressure Genetics (Global BPgen) and Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) consortiums identified 14 loci that govern blood pressure on a genomewide significance level, one of which is CASZ1 confirmed in both Europeans and Asians. CASZ1 is a zinc finger transcription factor that controls apoptosis and cell fate and suppresses neuroblastoma tumor growth by reprogramming gene expression, like a tumor suppressor. To validate the function of CASZ1 in blood pressure, we decreased Casz1 mRNA levels in mice by siRNA. Casz1 siRNA reduced mRNA levels by 59% in a mouse cell line. A polyethylenimine-mixed siRNA complex was injected into mouse tail veins, reducing Casz1 mRNA expression to 45% in the kidney. However, blood pressure in the treated mice was unaffected, despite a 55% reduction in Casz1 mRNA levels in the kidney on multiple siRNA injections daily. Even though Casz1 siRNA-treated mice did not experience any significant change in blood pressure, our study demonstrates the value of in vivo siRNA injection in analyzing the function of candidate genes identified by genomewide association studies.

  18. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans.

    Josephson, Anna; Trifunovski, Alexandra; Widmer, Hans Ruedi; Widenfalk, Johan; Olson, Lars; Spenger, Christian

    2002-11-18

    Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. Nogo is a transmembraneous protein; the extracellular domain is termed Nogo-66, and a Nogo-66-receptor (Nogo-R) has been identified. We performed in situ hybridization in human and mouse nervous tissues to map the cellular distribution of Nogo-R gene activity patterns in fetal and adult human spinal cord and sensory ganglia, adult human brain, and the nervous systems of developing and adult mice. In the human fetus Nogo-R was transcribed in the ventral horn of the spinal cord and in dorsal root ganglia. In adult human tissues Nogo-R gene activity was found in neocortex, hippocampus, amygdala, and a subset of large and medium-sized neurons of the dorsal root ganglia. Nogo-R mRNA was not expressed in the adult human spinal cord at detectable levels. In the fetal mouse, Nogo-R was diffusely expressed in brain, brainstem, trigeminal ganglion, spinal cord, and dorsal root ganglia at all stages. In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain. Copyright 2002 Wiley-Liss, Inc.

  19. Decreased Rhes mRNA levels in the brain of patients with Parkinson's disease and MPTP-treated macaques.

    Francesco Napolitano

    Full Text Available In rodent and human brains, the small GTP-binding protein Rhes is highly expressed in virtually all dopaminoceptive striatal GABAergic medium spiny neurons, as well as in large aspiny cholinergic interneurons, where it is thought to modulate dopamine-dependent signaling. Consistent with this knowledge, and considering that dopaminergic neurotransmission is altered in neurological and psychiatric disorders, here we sought to investigate whether Rhes mRNA expression is altered in brain regions of patients with Parkinson's disease (PD, Schizophrenia (SCZ, and Bipolar Disorder (BD, when compared to healthy controls (about 200 post-mortem samples. Moreover, we performed the same analysis in the putamen of non-human primate Macaca Mulatta, lesioned with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Overall, our data indicated comparable Rhes mRNA levels in the brain of patients with SCZ and BD, and their respective healthy controls. In sharp contrast, the putamen of patients suffering from PD showed a significant 35% reduction of this transcript, compared to healthy subjects. Interestingly, in line with observations obtained in humans, we found 27% decrease in Rhes mRNA levels in the putamen of MPTP-treated primates. Based on the established inhibitory influence of Rhes on dopamine-related responses, we hypothesize that its striatal downregulation in PD patients and animal models of PD might represent an adaptive event of the dopaminergic system to functionally counteract the reduced nigrostriatal innervation.

  20. Hepatitis A virus cellular receptor 2 (HAVCR2) is decreased with viral infection and regulates pro-labour mediators OA.

    Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-07-01

    Intrauterine infection caused by viral infection has been implicated to contribute to preterm birth. Hepatitis A virus cellular receptor 2 (HAVCR2) regulates inflammation in non-gestational tissues in response to viral infection. The aims of this study were to determine the effect of: (i) viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on HAVCR2 expression; and (ii) HAVCR2 silencing by siRNA (siHAVCR2) in primary amnion and myometrial cells on poly(I:C)-induced inflammation. In human foetal membranes and myometrium, HAVCR2 mRNA and protein expression was decreased when exposed to poly(I:C). Treatment of primary amnion and myometrial cells with poly(I:C) significantly increased the expression and release of pro-inflammatory cytokines TNF, IL1A, IL1B and IL6; the expression of chemokines CXCL8 and CCL2; the expression and secretion of adhesion molecules ICAM1 and VCAM1; and PTGS2 and PTGFR mRNA expression and the release of prostaglandin PGF 2α . This increase was significantly augmented in cells transfected with siHAVCR2. Furthermore, mRNA expression of anti-inflammatory cytokines IL4 and IL10 was significantly decreased. Collectively, our data suggest that HAVCR2 regulates cytokines, chemokines, prostaglandins and cell adhesion molecules in the presence of viral infection. This suggests a potential for HAVCR2 activators as therapeutics for the management of preterm birth associated with viral infections. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  2. Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts

    Satoru Noguchi

    2014-01-01

    Full Text Available Ullrich congenital muscular dystrophy (UCMD is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.

  3. Intestinal cellular localization of PCNA protein and CYP1A mRNA in Atlantic salmon Salmo salar L. exposed to a model toxicant

    Olsvik Pål A

    2009-03-01

    Full Text Available Abstract Background The aim of the study was to examine the intestinal cellular localization of proliferating cell nuclear antigen (PCNA and cytochrome P450 A1 (CYP1A expression in Atlantic salmon Salmo salar L. exposed to a model toxicant. The stress response was induced by intraperitoneal injection of four salmon with a single dose (50 mg/kg of the CYP1A inducer β-naphthoflavone (BNF and intestinal tissue (mid and distal intestine; MI and DI was sampled seven days later. Samples for histology and gene transcription analysis were collected from four exposed fish and four control fish. PCNA was assessed by immunohistochemistry, CYP1A mRNA was studied by in situ hybridization (ISH and finally the transcription of five genes was quantified by real-time quantitative RT-PCR (real-time RT-PCR; two detoxifying genes (CYP1A and glutathione S-transferase; GST, a stress marker gene (heat shock protein 70; HSP70, PCNA and a gene marker of apoptosis (caspase 6A. Results PCNA protein and CYP1A mRNA were successfully localized in the intestinal cells (MI of both experimental groups. At the cellular level, BNF significantly lowered intestinal cell proliferation and increased the CYP1A mRNA levels compared to the control group. The real-time RT-PCR data, which showed an increased mRNA expression both in the MI and DI of 139- and 62-fold, respectively, confirmed the increased cellular CYP1A mRNA levels detected using ISH. HSP70 expression was also up-regulated in the exposed fish. The other examined genes did not show any differential regulation in the experimental fish group. Conclusion This study showed that CYP1A mRNA had a specific intestinal cellular transcription pattern in Atlantic salmon exposed to BNF. At the cellular level CYP1A mRNA expression was always observed at or around the cell nucleus close to the basolateral cell membrane and at the tissue level CYP1A mRNA expression was most frequently observed in the basal and apex area of the intestinal

  4. Glucocorticoids selectively inhibit the transcription of the interleukin 1β gene and decrease the stability of interleukin 1β mRNA

    Lee, S.W.; Tsou, A.P.; Chan, H.; Thomas, J.; Petrie, K.; Eugui, E.M.; Allison, A.C.

    1988-01-01

    Transcription of the interleukin 1β (IL-1β) gene was studied by mRNA hybridization with a cDNA probe in the human promonocytic cell line U-937. Phorbol ester and lipopolysaccharide increased the steady-state level of Il-1β mRNA. Glucocorticoids markedly decreased IL-1β mRNA levels by two mechanisms. Transcription of the IL-1 gene was inhibited, as shown by in vitro transcription assays with nuclei isolated from glucocorticoid-treated cells. Moreover, kinetic analyses and pulse-labeling of mRNAs showed that glucocorticoids selectively decrease the stability of IL-1β mRNA, without affecting the stability of β-actin and FOS mRNAs. Inhibition of the formation and effects IL-1 is a mechanism by which glucocorticoids can exert antiinflammatory and immunosuppressive effects

  5. [Detection and clinical value of epithelial cellular adhesion molecule (EpCAM) mRNA positive circulating tumor cells in metastatic breast cancer].

    Yan, Ying; Cheng, Jian-ping; Di, Li-jun; Song, Guo-hong; Ren, Jun

    2012-04-18

    To test for circulating tumor cells (CTCs) relying on epithelial cellular adhesion molecule (EpCAM) expression in metastatic breast cancer by quantitative real-time reverse transcription-PCR. In the study,47 metastatic breast cancer patients were evaluated by quantitative real-time PCR for detecting EpCAM mRNA. In addition, analyses were carried out for their correlation with patients' clinicopathologic features, response, and the time to progression (TTP). The sensitivity of EpCAM mRNA in the metastatic breast cancer patients was about 40%. However, the specificity of EpCAM mRNA for 20 healthy controls was 100%. TTP was calculated, and compared with that between EpCAM mRNA-positive and EpCAM mRNA-negative groups. For the retrospective study, the median TTP was 7.1 months and 11.1 months (P=0.013) for patients with EpCAM mRNA-positive and EpCAM mRNA-negative, respectively, after the first cycle chemotherapy. Moreover, a statistically significant correlation was demonstrated between EpCAM mRNA and TTP in patients who underwent the first or the second-line chemotherapy (P=0.018), but there was no significance in the patients pretreated with two or more previous chemotherapy lines (P=0.471). This study provides evidence of the presence of EpCAM mRNA in approximately 40% of patients with metastatic breast cancer. There is a strong correlation between EpCAM mRNA results after the first cycle therapy and TTP in metastatic breast cancer patients, and EpCAM mRNA positive after chemotherapy may predict shorter TTP.

  6. Aged blood factors decrease cellular responses associated with delayed gingival wound repair.

    María Paz Saldías

    Full Text Available Aging is a gradual biological process characterized by a decrease in cell and organism functions. Gingival wound healing is one of the impaired processes found in old rats. Here, we studied the in vivo wound healing process using a gingival repair rat model and an in vitro model using human gingival fibroblast for cellular responses associated to wound healing. To do that, we evaluated cell proliferation of both epithelial and connective tissue cells in gingival wounds and found decreased of Ki67 nuclear staining in old rats when compared to their young counterparts. We next evaluated cellular responses of primary gingival fibroblast obtained from young subjects in the presence human blood serum of individuals of different ages. Eighteen to sixty five years old masculine donors were classified into 3 groups: "young" from 18 to 22 years old, "middle-aged" from 30 to 48 years old and "aged" over 50 years old. Cell proliferation, measured through immunofluorescence for Ki67 and flow cytometry for DNA content, was decreased when middle-aged and aged serum was added to gingival fibroblast compared to young serum. Myofibroblastic differentiation, measured through alpha-smooth muscle actin (α-SMA, was stimulated with young but not middle-aged or aged serum both the protein levels and incorporation of α-SMA into actin stress fibers. High levels of PDGF, VEGF, IL-6R were detected in blood serum from young subjects when compared to middle-aged and aged donors. In addition, the pro-inflammatory cytokines MCP-1 and TNF were increased in the serum of aged donors. In old rat wound there is an increased of staining for TNF compared to young wound. Moreover, healthy gingiva (non injury shows less staining compared to a wound site, suggesting a role in wound healing. Moreover, serum from middle-aged and aged donors was able to stimulate cellular senescence in young cells as determined by the expression of senescence associated beta-galactosidase and histone H2

  7. Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells.

    Vaidyanathan, Sriram; Kaushik, Milan; Dougherty, Casey; Rattan, Rahul; Goonewardena, Sascha N; Banaszak Holl, Mark M; Monano, Janet; DiMaggio, Stassi

    2016-09-12

    Neutral generation 3 poly(amidoamine) dendrimers were labeled with Oregon Green 488 (G3-OG n ) to obtain materials with controlled fluorophore:dendrimer ratios (n = 1-2), a mixture containing mostly 3 dyes per dendrimer, a mixture containing primarily 4 or more dyes per dendrimer ( n = 4+), and a stochastic mixture ( n = 4 avg ). The UV absorbance of the dye conjugates increased linearly as n increased and the fluorescence emission decreased linearly as n increased. Cellular uptake was studied in RAW cells and HEK 293A cells as a function of the fluorophore:dendrimer ratio (n). The cellular uptake of G3-OG n ( n = 3, 4+, 4 avg ) into RAW cells was significantly lower than G3-OG n ( n = 1, 2). The uptake of G3-OG n ( n = 3, 4+, 4 avg ) into HEK 293A cells was not significantly different from G3-OG 1 . Thus, the fluorophore:dendrimer ratio was observed to change the extent of uptake in the macrophage uptake mechanism but not in the HEK 293A cell. This difference in endocytosis indicates the presence of a pathway in the macrophage that is sensitive to hydrophobicity of the particle.

  8. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris.

    Shen, Yu-Feng; Liu, Lei; Gong, Yu-Xin; Zhu, Bin; Liu, Guang-Lu; Wang, Gao-Xue

    2014-05-01

    This study investigated the effects of trifloxystrobin that one strobilurin used widely in the world as an effective fungicidal agent to control Asian soybean rust on aquatic unicellular algae Chlorella vulgaris. We determined the potential toxic effect of trifloxystrobin on C. vulgaris, and found median inhibition concentration (IC(50)) value 255.58 (95% confidence interval, 207.81-330.29)μgL(-1). In addition, the algal cells were obviously depressed or shrunk at different concentrations by electron microscopy. In the study, a real-time polymerase chain reaction (PCR) assay showed changes in transcript abundances of three photosynthetic genes, psaB, psbC, and rbcL, and one energy gene, ATPs. The results showed that trifloxystrobin reduced the transcript abundances of the three genes and enhanced expression of ATPs after 48 and 96 h. The lowest abundances of psaB, psbC and rbcL transcripts in response to trifloxystrobin exposure were 58%, 79% and 60% of those of the control, respectively. For the potential toxic influences, trifloxystrobin could decrease the soluble protein and total antioxidant contents (T-AOC), and increase superoxide dismutase (SOD) and peroxidase (POD) activity with a gradual concentration-response relationship. Overall, the present study demonstrated that trifloxystrobin could affect the activities of antioxidant enzymes, disrupts photosynthesis in C. vulgaris, and damage cellular structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Intragraft interleukin 2 mRNA expression during acute cellular rejection and left ventricular total wall thickness after heart transplantation

    de Groot-Kruseman, H A; Baan, C C; Hagman, E M; Mol, W M; Niesters, H G; Maat, A P; Zondervan, P E; Weimar, W; Balk, A H

    OBJECTIVE: To assess whether diastolic graft function is influenced by intragraft interleukin 2 (IL-2) messenger RNA (mRNA) expression in rejecting cardiac allografts. DESIGN: 16 recipients of cardiac allografts were monitored during the first three months after transplantation. The presence of IL-2

  10. Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats

    Roussel Anne M

    2007-01-01

    Full Text Available Abstract Background Tristetraprolin (TTP/ZFP36 family proteins have anti-inflammatory activity by binding to and destabilizing pro-inflammatory mRNAs such as Tnf mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has anti-inflammatory properties but the molecular mechanisms have not been completely elucidated. We hypothesized that TTP and/or its homologues might contribute to the beneficial effects of tea as an anti-inflammatory product. Methods Quantitative real-time PCR was used to investigate the effects of green tea (0, 1, and 2 g solid extract/kg diet on the expression of Ttp family genes (Ttp/Tis11/Zfp36, Zfp36l1/Tis11b, Zfp36l2/Tis11d, Zfp36l3, pro-inflammatory genes (Tnf, Csf2/Gm-csf, Ptgs2/Cox2, and Elavl1/Hua/Hur and Vegf genes in liver and muscle of rats fed a high-fructose diet known to induce insulin resistance, oxidative stress, inflammation, and TNF-alpha levels. Results Ttp and Zfp36l1 mRNAs were the major forms in both liver and skeletal muscle. Ttp, Zfp36l1, and Zfp36l2 mRNA levels were more abundant in the liver than those in the muscle. Csf2/Gm-csf and Zfp36l3 mRNAs were undetectable in both tissues. Tea (1 g solid extract/kg diet increased Ttp mRNA levels by 50–140% but Tnf mRNA levels decreased by 30% in both tissues, and Ptgs2/Cox2 mRNA levels decreased by 40% in the muscle. Tea (2 g solid extract/kg diet increased Elavl1/Hua/Hur mRNA levels by 40% in the liver but did not affect any of the other mRNA levels in liver or muscle. Conclusion These results show that tea can modulate Ttp mRNA levels in animals and suggest that a post-transcriptional mechanism through TTP could partially account for tea's anti-inflammatory properties. The results also suggest that drinking adequate amounts of green tea may play a role in the prevention of inflammation-related diseases.

  11. Metallothionein mRNA induction is correlated with the decrease of DNA strand breaks in cadmium exposed zebra mussels.

    Vincent-Hubert, Françoise; Châtel, Amélie; Gourlay-Francé, Catherine

    2014-05-15

    We have previously shown that cadmium (Cd) and benzo[a]pyrene (BaP) induced early DNA damages in zebra mussels, and that the level of DNA strand breaks (SB) returned to a basal level after 3 days of exposure to Cd. The aim of the present study was to go further in the mechanisms of Cd and BaP detoxification. For that purpose, expression of genes encoding for metallothionein (MT), aryl hydrocarbon receptor (AHR), P-gp, catalase, glutathione S-transferase and heat shock protein 70 (HSP70) proteins have been measured using RT-qPCR. Data reported here show that Cd is a strong inducer of MT and HSP70 genes, and that BaP is a strong inducer of P-gp and AHR genes. Exposure to Cd and BaP resulted in moderate changes in antioxidant enzymes mRNA. Since the increase of MT mRNA occurred when the DNA SB level returned to its basal level, we can suggest that MT is implicated in cadmium detoxification. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Protein kinase A-alpha directly phosphorylates FoxO1 in vascular endothelial cells to regulate expression of vascular cellular adhesion molecule-1 mRNA.

    Lee, Ji-Won; Chen, Hui; Pullikotil, Philomena; Quon, Michael J

    2011-02-25

    FoxO1, a forkhead box O class transcription factor, is abundant in insulin-responsive tissues. Akt, downstream from phosphatidylinositol 3-kinase in insulin signaling, phosphorylates FoxO1 at Thr(24), Ser(256), and Ser(319), negatively regulating its function. We previously reported that dehydroepiandrosterone-stimulated phosphorylation of FoxO1 in endothelial cells requires cAMP-dependent protein kinase α (PKA-α). Therefore, we hypothesized that FoxO1 is a novel direct substrate for PKA-α. Using an immune complex kinase assay with [γ-(32)P]ATP, purified PKA-α directly phosphorylated wild-type FoxO1 but not FoxO1-AAA (mutant with alanine substitutions at known Akt phosphorylation sites). Phosphorylation of wild-type FoxO1 (but not FoxO1-AAA) was detectable using phospho-specific antibodies. Similar results were obtained using purified GST-FoxO1 protein as the substrate. Thus, FoxO1 is a direct substrate for PKA-α in vitro. In bovine aortic endothelial cells, interaction between endogenous PKA-α and endogenous FoxO1 was detected by co-immunoprecipitation. In human aortic endothelial cells (HAEC), pretreatment with H89 (PKA inhibitor) or siRNA knockdown of PKA-α decreased forskolin- or prostaglandin E(2)-stimulated phosphorylation of FoxO1. In HAEC transfected with a FoxO-promoter luciferase reporter, co-expression of the catalytic domain of PKA-α, catalytically inactive mutant PKA-α, or siRNA against PKA-α caused corresponding increases or decreases in transactivation of the FoxO promoter. Expression of vascular cellular adhesion molecule-1 mRNA, up-regulated by FoxO1 in endothelial cells, was enhanced by siRNA knockdown of PKA-α or treatment of HAEC with the PKA inhibitor H89. Adhesion of monocytes to endothelial cells was enhanced by H89 treatment or overexpression of FoxO1-AAA, similar to effects of TNF-α treatment. We conclude that FoxO1 is a novel physiological substrate for PKA-α in vascular endothelial cells.

  13. Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells.

    Alshehri, Abdullah; Grabowska, Anna; Stolnik, Snow

    2018-02-28

    Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement - a stage between initial cellular internalization and final gene silencing of siRNA delivery systems.

  14. Metavanadate causes cellular accumulation of copper and decreased lysyl oxidase activity

    Cui, Changtai T.; Uriu-Adams, Janet Y.; Tchaparian, Eskouhie H.; Keen, Carl L.; Rucker, Robert B.

    2004-01-01

    Selected indices of copper metabolism in weanling rats and fibroblast cultures were progressively altered in response to increased levels of sodium metavanadate. In diets, vanadium was added in amounts ranging from 0 to 80 μg V/g of diet, that is, 0-1.6 μmol V/g of diet. In fibroblast cultures, vanadium ranged from 0 to 400 nmol V/ml. The inhibition of P-ATPase-7A activity by metavanadate, important to copper egress from cells, was a primary focus. In skin, and tendon, the copper concentration was increased in response to increased dietary levels of metavanadate, whereas lysyl oxidase activity, a secreted cuproprotein, was reduced. The reduction in lysyl oxidase activity was also accompanied by reduced redox cycling potential of isolated fractions of lysyl oxidase, presumably due to reduced lysyltyrosyl quinone (LTQ) formation at the active site of lysyl oxidase. In contrast, liver copper concentrations and plasma ceruloplasmin activity were not affected by metavanadate exposure. However, semicarbazide-sensitive benzylamine oxidase (SCBO) activity, which was taken as an indirect measure of vascular adhesive protein-1 (VAP-1), was increased. In cultured fibroblasts, cellular copper was also increased and lysyl oxidase decreased in response to metavanadate. Moreover, the steady-state levels of atp7a and lysyl oxidase mRNAs were not affected by addition of metavanadate to culture medium up to 200 nmol/ml. Taken together, these data suggest that pathways involving copper egress and lysyl oxidase activation are particularly sensitive to metavanadate exposure through processes that are predominately posttranslational

  15. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  16. Pubertal Escape From Estradiol Negative Feedback in Ewe Lambs Is Not Accounted for by Decreased ESR1 mRNA or Protein in Kisspeptin Neurons.

    Bedenbaugh, Michelle N; D'Oliveira, Marcella; Cardoso, Rodolfo C; Hileman, Stanley M; Williams, Gary L; Amstalden, Marcel

    2018-01-01

    In this study, we investigated whether decreased sensitivity to estradiol negative feedback is associated with reduced estrogen receptor α (ESR1) expression in kisspeptin neurons as ewe lambs approach puberty. Lambs were ovariectomized and received no implant (OVX) or an implant containing estradiol (OVX+E). In the middle arcuate nucleus (mARC), ESR1 messenger RNA (mRNA) was greater in OVX than OVX+E lambs but did not differ elsewhere. Post hoc analysis of luteinizing hormone (LH) secretion from OVX+E lambs revealed three patterns of LH pulsatility: low [1 to 2 pulses per 12 hours; low frequency (LF), n = 3], moderate [6 to 7 pulses per 12 hours; moderate frequency (MF), n = 6], and high [>10 pulses per 12 hours; high frequency (HF), n = 5]. The percentage of kisspeptin neurons containing ESR1 mRNA in the preoptic area did not differ among HF, MF, or LF groups. However, the percentage of kisspeptin neurons containing ESR1 mRNA in the mARC was greater in HF (57%) than in MF (36%) or LF (27%) lambs and did not differ from OVX (50%) lambs. A higher percentage of kisspeptin neurons contained ESR1 protein in all regions of the arcuate nucleus (ARC) in OVX compared with OVX+E lambs. There were no differences in ESR1 protein among the HF, MF, or LF groups in the preoptic area or ARC. Contrary to our hypothesis, increases in LH pulsatility were associated with enhanced ESR1 mRNA abundance in kisspeptin neurons in the ARC, and absence of estradiol increased the percentage of kisspeptin neurons containing ESR1 protein in the ARC. Therefore, changes in the expression of ESR1, particularly in kisspeptin neurons in the ARC, do not explain the pubertal escape from estradiol negative feedback in ewe lambs. Copyright © 2018 Endocrine Society.

  17. Decreased A20 mRNA and protein expression in peripheral blood mononuclear cells in patients with type 2 diabetes and latent autoimmune diabetes in adults.

    Cheng, Liqing; Zhang, Dongmei; Jiang, Youzhao; Deng, Wuquan; Wu, Qi'nan; Jiang, Xiaoyan; Chen, Bing

    2014-12-01

    A20 is a negative regulator of nuclear factor kappa B activation and the central gatekeeper in inflammation and immunity. While its role in type 1 diabetes has been widely studied, its expression level in immune cells from type 2 diabetes (T2D) and latent autoimmune diabetes in adult (LADA) patients remains unclear. This study aimed to clarify whether the expression of A20 is altered in patients with T2D or LADA. Quantitative real-time polymerase chain reaction and western blotting were utilized to determine the expression of A20 mRNA and protein respectively in peripheral blood mononuclear cells (PBMCs) from patients with T2D (n=36) or LADA (n=17) and sex- and age-matched healthy controls (n=34). The mRNA and protein expression of A20 in PBMCs from T2D and LADA patients was significantly decreased compared with healthy controls (P1 year since diagnosis) (P<0.05). Our results suggest that decreased expression of A20 in PBMCs may be involved in the pathogenesis of diabetes, and targeting A20 may offer a potential therapeutic tool in the treatment of diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Collagenase mRNA Overexpression and Decreased Extracellular Matrix Components Are Early Events in the Pathogenesis of Emphysema.

    Fabíola S Z Robertoni

    Full Text Available To describe the progression of parenchymal remodeling and metalloproteinases gene expression in earlier stages of emphysema, mice received porcine pancreatic elastase (PPE instillation and Control groups received saline solution. After PPE instillation (1, 3, 6 hours, 3 and 21 days we measured the mean linear intercept, the volume proportion of types I and III collagen, elastin, fibrillin and the MMP-1, -8, -12 and -13 gene expression. We observed an initial decrease in type I (at the 3rd day and type III collagen (from the 6th hour until the 3rd day, in posterior time points in which we detected increased gene expression for MMP-8 and -13 in PPE groups. After 21 days, the type III collagen fibers increased and the type I collagen values returned to similar values compared to control groups. The MMP-12 gene expression was increased in earlier times (3 and 6 hours to which we detected a reduced proportion of elastin (3 days in PPE groups, reinforcing the already established importance of MMP-12 in the breakdown of ECM. Such findings will be useful to better elucidate the alterations in ECM components and the importance of not only metalloelastase but also collagenases in earlier emphysema stages, providing new clues to novel therapeutic targets.

  19. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines

    Okunieff, Paul; Xu Jianhua; Hu Dongping; Liu Weimin; Zhang Lurong; Morrow, Gary; Pentland, Alice; Ryan, Julie L.; Ding, Ivan M.D.

    2006-01-01

    Purpose: To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-α, and lymphotoxin-β) or fibrogenic cytokines (transforming growth factor [TGF]-β) during the same acute and chronic phases. Methods and Materials: Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to the hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Results: Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-α, and lymphotoxin-β) and the fibrogenic cytokine, TGF-β, in cutaneous tissues at 21 days postradiation. Conclusion: Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy

  20. Decreased BECN1 mRNA Expression in Human Breast Cancer is Associated With Estrogen Receptor-Negative Subtypes and Poor Prognosis

    Hao Tang

    2015-03-01

    Full Text Available Both BRCA1 and Beclin 1 (BECN1 are tumor suppressor genes, which are in close proximity on the human chromosome 17q21 breast cancer tumor susceptibility locus and are often concurrently deleted. However, their importance in sporadic human breast cancer is not known. To interrogate the effects of BECN1 and BRCA1 in breast cancer, we studied their mRNA expression patterns in breast cancer patients from two large datasets: The Cancer Genome Atlas (TCGA (n = 1067 and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC (n = 1992. In both datasets, low expression of BECN1 was more common in HER2-enriched and basal-like (mostly triple-negative breast cancers compared to luminal A/B intrinsic tumor subtypes, and was also strongly associated with TP53 mutations and advanced tumor grade. In contrast, there was no significant association between low BRCA1 expression and HER2-enriched or basal-like subtypes, TP53 mutations or tumor grade. In addition, low expression of BECN1 (but not low BRCA1 was associated with poor prognosis, and BECN1 (but not BRCA1 expression was an independent predictor of survival. These findings suggest that decreased mRNA expression of the autophagy gene BECN1 may contribute to the pathogenesis and progression of HER2-enriched, basal-like, and TP53 mutant breast cancers.

  1. The development of clinical activity in relapsing-remitting MS is associated with a decrease of FasL mRNA and an increase of Fas mRNA in peripheral blood

    Lopatinskaya, L.; Boxel van-Dezaire, A.H.H.; Barkhof, F.; Polman, C.H.; Lucas, C.J.; Nagelkerken, L.

    2003-01-01

    In this longitudinal study, we examined the expression of Fas, FasL, CCR3, CCR5 and CXCR3 mRNA in peripheral blood mononuclear cells (PBMCs) of secondary progressive (SP) and relapsing-remitting (RR) multiple sclerosis (MS) patients. In RR patients, FasL, CCR3 and CCR5 mRNA levels were increased

  2. Fish oil supplementation associated with decreased cellular degeneration and increased cellular proliferation 6 weeks after middle cerebral artery occlusion in the rat

    Pascoe MC

    2015-01-01

    Full Text Available Michaela C Pascoe,1 David W Howells, 2David P Crewther,1 Leeanne M Carey,2,3 Sheila G Crewther4 1Brain Sciences Institute, Swinburne University, ²Florey Institute of Neuroscience and Mental Health, University of Melbourne, 3Department of Occupational Therapy, School of Allied Health La Trobe University, 4School of Psychological Science, La Trobe University, Melbourne, VIC, Australia Abstract: Anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (n-3-LC-PUFAs are both neuroprotective and have antidepressive effects. However the influence of dietary supplemented n-3-LC-PUFAs on inflammation-related cell death and proliferation after middle cerebral artery occlusion (MCAo-induced stroke is unknown. We have previously demonstrated that anxiety-like and hyperactive locomotor behaviors are reduced in n-3-LC-PUFA-fed MCAo animals. Thus in the present study, male hooded Wistar rats were exposed to MCAo or sham surgeries and examined behaviorally 6 weeks later, prior to euthanasia and examination of lesion size, cell death and proliferation in the dentate gyrus, cornu ammonis region of the hippocampus of the ipsilesional hemispheres, and the thalamus of the ipsilesional and contralesional hemispheres. Markers of cell genesis and cell degeneration in the hippocampus or thalamus of the ipsilesional hemisphere did not differ between surgery and diet groups 6 weeks post MCAo. Dietary supplementation with n-3-LC-PUFA decreased cell degeneration and increased cell proliferation in the thalamic region of the contralesional hemisphere. MCAo–associated cell degeneration in the hippocampus and thalamus positively correlated with anxiety-like and hyperactive locomotor behaviors previously reported in these animals. These results suggest that anti-inflammatory n-3-LC-PUFA supplementation appears to have cellular protective effects after MCAo in the rat, which may affect behavioral outcomes. Keywords: apoptosis, polyunsaturated fatty acids

  3. Maternal exposure to titanium dioxide nanoparticles during pregnancy and lactation alters offspring hippocampal mRNA BAX and Bcl-2 levels, induces apoptosis and decreases neurogenesis.

    Ebrahimzadeh Bideskan, Alireza; Mohammadipour, Abbas; Fazel, Alireza; Haghir, Hossein; Rafatpanah, Houshang; Hosseini, Mahmoud; Rajabzadeh, Aliakbar

    2017-07-05

    The usage of Titanium dioxide nanoparticles (TiO 2 -NPs) covers a vast area in different fields ranging from cosmetics and food to the production of drugs. Maternal exposure to TiO 2 -NPs during developmental period has been associated with hippocampal injury and with a decrease in learning and memory status of the offspring. However, little is known about its injury mechanism. This paper describes the in vivo neurotoxic effects of TiO 2 -NPs on rat offspring hippocampus during developmental period. Pregnant and lactating Wistar rats received intragastric TiO 2 -NPs (100mg/kg body weight) daily from gestational day (GD) 2 to (GD) 21 and postnatal day (PD) 2 to (PD) 21 respectively. Animals in the control groups received an equal volume of distilled water via gavage. At the end of the treatment process, offspring were deeply anesthetized and sacrificed. Then brains of each group were collected and sections of the rat offspring's brains were stained using TUNEL staining (for detection of apoptotic cells) and immunostaining (for neurogenesis). Moreover, the right hippocampus (n=6 per each group) were removed from the right hemisphere for evaluating the expression of Bax and Bcl-2 level. Results of histopatological examination by TUNEL staining showed that maternal exposure to TiO 2 -NPs during pregnancy and lactation periods increased apoptotic cells significantly (P<0.01) in the offspring hippocampus. The immunolabeling of double cortin (DCX) protein as neurogenesis marker also showed that TiO 2 -NPs reduced neurogenesis in the hippocampus of the offspring (P<0.05). Moreover, in comparison with the control group, the mRNA levels of Bax and Bcl-2 in the TiO 2 -NPs group significantly increased and decreased, respectively (P<0.01). These findings provide strong evidence that maternal exposure to TiO 2 -NPs significantly impact hippocampal neurogenesis and apoptosis in the offspring. The potential impact of nanoparticle exposure for millions of pregnant mothers and

  4. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium

    Zhongyan Lu

    2018-03-01

    Full Text Available Background/Aims: In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. Methods: RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive. In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. Results: The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. Conclusions: These results indicated that the

  5. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular

  6. A nonsense mutation causing decreased levels of insulin receptor mRNA: Detection by a simplified technique for direct sequencing of genomic DNA amplified by the polymerase chain reaction

    Kadowaki, T.; Kadowaki, H.; Taylor, S.I.

    1990-01-01

    Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA

  7. The cellular uptake of antisense oligonucleotid of E6 mRNA into cervical cancer cells by DOPE-modified hydroxyapatite nanoparticles

    Negin Saffarzadeh; Seyed Mehdi Kalantar; Ali Jebali; Seyed Hossein Hekmatimoghaddam; Mohammad Hassan Sheikhha; Ehsan Farashahi

    2014-01-01

    Objective(s): Although several chemical and physical methods for gene delivery have been introduced, their cytotoxicity, non-specific immune responses and the lack of biodegradability remain the main issues. In this study, hydroxyapatite nanoparticles (NPs) and 1,2-dioleoyl-sn-glycero-3-phosphoethanol​amine (DOPE)-modified hydroxyapatite NPs was coated with antisense oligonucleotide of E6 mRNA, and their uptakes into the cervical cancer cell line were evaluated. Materials and Methods: Calcium...

  8. Changes in Cellular mRNA Stability, Splicing, and Polyadenylation through HuR Protein Sequestration by a Cytoplasmic RNA Virus

    Michael D. Barnhart

    2013-11-01

    Full Text Available The impact of RNA viruses on the posttranscriptional regulation of cellular gene expression is unclear. Sindbis virus causes a dramatic relocalization of the cellular HuR protein from the nucleus to the cytoplasm in infected cells. This is to the result of the expression of large amounts of viral RNAs that contain high-affinity HuR binding sites in their 3′ UTRs effectively serving as a sponge for the HuR protein. Sequestration of HuR by Sindbis virus is associated with destabilization of cellular mRNAs that normally bind HuR and rely on it to regulate their expression. Furthermore, significant changes can be observed in nuclear alternative polyadenylation and splicing events on cellular pre-mRNAs as a result of sequestration of HuR protein by the 3′ UTR of transcripts of this cytoplasmic RNA virus. These studies suggest a molecular mechanism of virus-host interaction that probably has a significant impact on virus replication, cytopathology, and pathogenesis.

  9. Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues

    Takahashi, J.A.; Mori, Hirotaka; Fukumoto, Manabu; Oda, Yoshifumi; Kikuchi, Haruhiko; Hatanaka, Masakazu; Igarashi, Koichi; Jaye, M.

    1990-01-01

    The growth autonomy of human tumor cells is considered due to the endogenous production of growth factors. Transcriptional expression of candidates for autocrine stimulatory factors such as basic fibroblast growth factor (FGF), acidic FGF, and transforming growth factor type β were determined in human brain tumors. Basic FGF was expressed abundantly in 17 of 18 gliomas, 20 of 22 meningiomas, and 0 of 5 metastatic brain tumors. The level of mRNA expression of acidic FGF in gliomas was significant. In contrast, transforming growth factor type β1 was expressed in all the samples investigated. The mRNA for basic FGF and its peptide were localized in tumor cells in vivo by in situ hybridization and immunohistochemistry, showing that basic FGF is actually produced in tumor cells. The results suggest that tumor-derived basic FGF is involved in the progression of gliomas and meningiomas in vivo, whereas acidic FGF is expressed in a tumor origin-specific manner, suggesting that acidic FGF works in tandem with basic FGF in glioma tumorigenesis

  10. The cellular uptake of antisense oligonucleotid of E6 mRNA into cervical cancer cells by DOPE-modified hydroxyapatite nanoparticles

    Negin Saffarzadeh

    2014-10-01

    Full Text Available Objective(s: Although several chemical and physical methods for gene delivery have been introduced, their cytotoxicity, non-specific immune responses and the lack of biodegradability remain the main issues. In this study, hydroxyapatite nanoparticles (NPs and 1,2-dioleoyl-sn-glycero-3-phosphoethanol​amine (DOPE-modified hydroxyapatite NPs was coated with antisense oligonucleotide of E6 mRNA, and their uptakes into the cervical cancer cell line were evaluated. Materials and Methods: Calcium nitrate and diammonium phosphate were used for the synthesis of the hydroxyapatite nanoparticle. Thus, they were coated with polyethylene glycol (PEG, DOPE and antisense oligonucleotide of E6 mRNA using a cross-linker. Then, hydroxyapatite NPs and DOPE-modified hydroxyapatite NPs were incubated 48 hours with cervical cancer cells and their uptakes were evaluated by fluorescent microscopy. Results: The hydroxyapatite NPs had different shapes and some agglomeration with average size of 100 nm. The results showed DOPE-modified hydroxyapatite NPs had higher uptake than hydroxyapatite NPs (P

  11. The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation.

    Rönnau, Cindy; Liebermann, Herbert E H; Helbig, Franz; Staudt, Alexander; Felix, Stephan B; Ewert, Ralf; Landsberger, Martin

    2009-02-28

    The bio-complex "reaction pattern in vertebrate cells" (RiV) is mainly represented by characteristic exosome-like particles--probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5+/-10.3%) and VCAM-1 (71.1+/-12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0+/-5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7+/-4.1%) and p65 (85.0+/-1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

  12. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer

    Kalmár, Alexandra; Péterfia, Bálint; Hollósi, Péter; Galamb, Orsolya; Spisák, Sándor; Wichmann, Barnabás; Bodor, András; Tóth, Kinga; Patai, Árpád V.; Valcz, Gábor; Nagy, Zsófia Brigitta; Kubák, Vivien; Tulassay, Zsolt; Kovalszky, Ilona; Molnár, Béla

    2015-01-01

    Colorectal cancer (CRC) development is accompanied by changes in expression for several genes; but the details of the underlying regulatory procesess remain unknown. Our aims were to assess the role of epigenetic processes in tumour formation and to identify characteristic DNA methylation and miRNA alterations in the colorectal adenoma-carcinoma sequence. Whole genome expression profiling was performed on colonic biopsy samples (49 healthy normal, 49 colorectal adenoma (AD), 49 CRC); on laser capture microdissected (LCM) epithelial and stromal cells from 6 CRC-normal adjacent tissue (NAT) samples pairs, and on demethylated human CRC cell lines using HGU133 Plus 2.0 microarrays (Affymetrix). Methylation status of genes with gradually altering expression along the AD-CRC sequence was further analysed on 10–10 macrodissected and 5–5 LCM samples from healthy colon, from adenoma and from CRC biopsy samples using bisulfite-sequencing PCR (BS-PCR) followed by pyrosequencing. In silico miRNA prediction for the selected genes was performed with miRWALK algorithm, miRNA expression was analysed on 3 CRC-NAT sample pairs and 3 adenoma tissue samples using the Human Panel I + II (Exiqon). SFRP1 immunohistochemistry experiments were performed. A set of transcripts (18 genes including MAL, SFRP1, SULT1A1, PRIMA1, PTGDR) showed decreasing expression (p < 0.01) in the biopsy samples along the adenoma-carcinoma sequence. Three of those (COL1A2, SFRP2, SOCS3) showed hypermethylation and THBS2 showed hypomethylation both in AD and in CRC samples compared to NAT, while BCL2, PRIMA1 and PTGDR showed hypermethylation only in the CRC group. miR-21 was found to be significantly (p < 0.01) upregulated in adenoma and tumour samples compared to the healthy colonic tissue controls and could explain the altered expression of genes for which DNA methylation changes do not appear to play role (e.g. BCL2, MAL, PTGS2). Demethylation treatment could upregulate gene expression of genes that were

  13. A chimera embryo assay reveals a decrease in embryonic cellular proliferation induced by sperm from X-irradiated male mice

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Raabe, O.; Overstreet, J.W.

    1989-01-01

    Male mice were divided into three experimental groups and a control group. Mice in the experimental groups received one of three doses of acute X irradiation (1.73, 0.29, and 0.05 Gy) and together with the control unirradiated mice were then mated weekly to unirradiated female mice for a 9-week experimental period. Embryos were recovered from the weekly matings at the four-cell stage and examined by the chimera assay for proliferative disadvantage. Aggregation chimeras were constructed of embryos from female mice mated to irradiated males (experimental embryos) and embryos from females mated to unexposed males (control embryos) and contained either one experimental embryo and one control embryo (heterologous chimera) or two control embryos (control chimera). The control embryo in heterologous chimeras and either embryo in control chimeras were prelabeled with the vital dye fluorescein isothiocyanate (FITC), and the chimeras were cultured for 40 h and viewed under phase-contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution from the FITC-labeled embryo. Experimental and control embryos that were cultured singly were also examined for embryo cell number at the end of the 40-h culture period. In control chimeras, the mean ratio of the unlabeled cells:total chimera cell number (henceforth referred to as ''mean ratio'') was 0.50 with little or no weekly variation over the 9-week experimental period. During Weeks 4-7, the mean ratios of heterologous chimeras differed significantly from the mean ratio of control chimeras with the greatest differences occurring during Week 7 (0.41 for chimeras of 0.05 Gy dose group, 0.40 for chimeras of the 0.29 Gy dose group, and 0.17 for chimeras of the 1.73 Gy dose group)

  14. Exercise decreases lipogenic gene expression in adipose tissue and alters adipocyte cellularity during weight regain after weight loss.

    Erin Danielle Giles

    2016-02-01

    Full Text Available Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX. Rats were weight maintained for 6 weeks, followed by relapse on: a ad libitum low fat diet (LFD, b ad libitum LFD plus EX, or c a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP and subcutaneous (SC adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 & LPL, de novo lipogenesis (FAS, ACC1, and triacylglycerol synthesis (MGAT & DGAT in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  15. TOX3 (TNRC9) overexpression in bladder cancer cells decreases cellular proliferation and triggers an interferon-like response

    Birkenkamp-Demtröder, Karin; Mansilla, Francisco; Andersen, Lars Dyrskjøt

    2013-01-01

    Background Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+-dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells overexpressing TOX3 followed by Pathway analysis showed that TOX3 overexpression mainly affected the Interferon Signaling Pathway. TOX3 upregulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 overexpressing...

  16. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars

    2013-01-01

    Background: Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+ dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...... urothelium. Microarray expression profiling of human bladder cancer cells over expressing TOX3 followed by Pathway analysis showed that TOX3 Overexpression mainly affected the Interferon Signaling Pathway. TOX3 up regulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 over...

  17. Positive correlation between decreased cellular uptake, NADPH-glutathione reductase activity and adriamycin resistance in Ehrlich ascites tumor lines.

    Scheulen, M E; Hoensch, H; Kappus, H; Seeber, S; Schmidt, C G

    1987-01-01

    From a wild type strain of Ehrlich ascites tumor (EATWT) sublines resistant to daunorubicin (EATDNM), etoposide (EATETO), and cisplatinum (EATCIS) have been developed in vivo. Increase in survival and cure rate caused by adriamycin (doxorubicin) have been determined in female NMRI mice which were inoculated i.p. with EAT cells. Adriamycin concentrations causing 50% inhibition of 3H-thymidine (ICT) and 3H-uridine incorporation (ICU) and intracellular adriamycin steady-state concentrations (SSC) were measured in vitro. Adriamycin resistance increased and SSC decreased in the following sequence: EATWT - EATCIS - EATDNM - EATETO. When ICT and ICU were corrected for intracellular adriamycin concentrations in consideration of the different SSC (ICTc, ICUc), ICTc and ICUc still varied up to the 3.2 fold in EATCIS, EATDNM and EATETO in comparison to EATWT. Thus, in addition to different SSC other factors must be responsible for adriamycin resistance. Therefore, enzymes which may play a role in the cytotoxicity related to adriamycin metabolism (NADPH-cytochrome P-450 reductase, NADPH-glutathione reductase, NADP-glucose-6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase) were measured. In contrast to the other parameters determined, NADPH-glutathione reductase was significantly (p less than 0.01) increased up to the 3.2 fold parallel to adriamycin resistance as determined by increase in life span, cure rate, ICTc, and ICUc, respectively. It is concluded that high activities of NADPH-glutathione reductase may contribute to an increase in adriamycin resistance of malignant tumors.

  18. Interferon gamma, interleukin 4 and transforming growth factor beta in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells

    Issazadeh-Navikas, Shohreh; Mustafa, M; Ljungdahl, A

    1995-01-01

    , the target organ in EAE, cells expressing mRNA for IFN-gamma, first appeared at the onset of clinical signs, i.e., day 10 postimmunization (p.i.), peaked at the height of disease (day 13 p.i.) and then gradually decreased concomitant with recovery. Very few IL-4 mRNA-expressing cells appeared in the spinal...... to limit central nervous system (CNS) inflammation. In lymphoid organs, primed MBP 63-88 reactive T cells showed an interesting time-dependent evolution of their cytokine production in vitro. Thus, early after immunization there was a conspicuous MBP 63-88-induced production of both IFN-gamma and IL-4...... cord with no clear relation to clinical signs or histopathology. In contrast, expression of mRNA for TGF-beta did not increase until day 13 p.i., at height of the disease, shortly preceding recovery. These data are consistent with a disease upregulating role of IFN-gamma, while TGF-beta may act...

  19. Fasting decreases apolipoprotein B mRNA editing and the secretion of small molecular weight apoB by rat hepatocytes: Evidence that the total amount of apoB secreted is regulated post-transcriptionally

    Leighton, J.K.; Joyner, J.; Zamarripa, J.; Deines, M.; Davis, R.A.

    1990-01-01

    Two different molecular weight forms of apoB are produced from a common initial transcript via editing of a Gln codon (CAA) to a stop codon (UAA), leading to a truncated translation product (apo BS) that consists of the amino terminal half of the larger form (apoBL). Previous studies have shown that fasting coordinately decreases lipogenesis and the secretion of very low density lipoprotein (VLDL) lipids and apoBS. Secretion of the apoBL is unaffected by fasting. We studied whether editing of apoB RNA is repressed by fasting, thus accounting for the selective decreased secretion of apoBS. Column chromatography of [35S]methionine-labeled lipoproteins secreted by hepatocytes from fed rats showed that essentially all of apoBL is secreted in the VLDL fraction, whereas a significant amount (15%) of apoBS is secreted associated as lipoproteins eluting in the HDL fractions. Fasting decreased the relative amount of apoBS that eluted in the VLDL fractions and increased the amount secreted in the HDL fractions. Consistent with previous results, hepatocytes from fasted rats show a selective twofold decrease in apoBS secretion. Fasting did not affect the relative abundance of apoB RNA, determined by slot blot hybridization assays using two different 32P-labeled cDNA probes coding either for both molecular weight forms or for only the large molecular weight form. However, quantitative of the editing of apoB RNA showed that fasting caused a 60% decrease in the amount of apoB RNA possessing the stop codon. These data show that the editing of apoB RNA is sensitive to metabolic state (i.e., fasting) resulting in a selective decrease in the secretion of apoBS. However, since the total secretion of apoB was decreased by fasting, while apoB mRNA levels remained constant, additional (post-transcriptional) mechanisms play a role in regulating apoB secretion

  20. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  1. Depletion of cellular brassinolide decreases embryo production and disrupts the architecture of the apical meristems in Brassica napus microspore-derived embryos.

    Belmonte, Mark; Elhiti, Mohamed; Waldner, Blaine; Stasolla, Claudio

    2010-06-01

    Exogenous applications of brassinolide (BL) increased the number and quality of microspore-derived embryos (MDEs) whereas treatments with brassinazole (BrZ), a BL biosynthetic inhibitor, had the opposite effect. At the optimal concentration (4x10(-6) M) BrZ decreased both embryo yield and conversion to less than half the value of control embryos. Metabolic studies revealed that BL levels had profound effects on glutathione and ascorbate metabolism by altering the amounts of their reduced forms (ASC and GSH) and oxidized forms [dehydroascorbate (DHA), ascorbate free radicals (AFRs), and GSSG]. Applications of BL switched the glutathione and ascorbate pools towards the oxidized forms, thereby lowering the ASC/ASC+DHA+AFR and GSH/GSH+GSSG ratios. These changes were ascribed to the ability of BL to increase the activity of ascorbate peroxidase (APX) and decrease that of glutathione reductase (GR). This trend was reversed in a BL-depleted environment, effected by BrZ applications. These metabolic alterations were associated with changes in embryo structure and performance. BL-treated MDEs developed zygotic-like shoot apical meristems (SAMs) whereas embryos treated with BrZ developed abnormal meristems. In the presence of BrZ, embryos either lacked a visible SAM, or formed SAMs in which the meristematic cells showed signs of differentiation, such as vacuolation and storage product accumulation. These abnormalities were accompanied by the lack or misexpression of three meristem marker genes isolated from Brassica napus (denoted as BnSTM, BnCLV1, and BnZLL-1) homologous to the Arabidopsis SHOOTMERISTEMLESS (STM), CLAVATA 1 (CLV1), and ZWILLE (ZLL). The expression of BnSTM and BnCLV1 increased after a few days in cultures in embryos treated with BL whereas an opposite tendency was observed with applications of BrZ. Compared with control embryos where these two genes exhibited abnormal localization patterns, BnSTM and BnCLV1 always localized throughout the subapical domains

  2. Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity.

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald; Huebbe, Patricia

    2015-02-01

    Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.

  3. Meatal Swabs Contain Less Cellular Material and Are Associated with a Decrease in Gram Stain Smear Quality Compared to Urethral Swabs in Men.

    Jordan, Stephen J; Schwebke, Jane R; Aaron, Kristal J; Van Der Pol, Barbara; Hook, Edward W

    2017-07-01

    Urethral swabs are the samples of choice for point-of-care Gram stain testing to diagnose Neisseria gonorrhoeae infection and nongonococcal urethritis (NGU) in men. As an alternative to urethral swabs, meatal swabs have been recommended for the collection of urethral discharge to diagnose N. gonorrhoeae and Chlamydia trachomatis infection in certain populations by nucleic acid amplification testing (NAAT), as they involve a less invasive collection method. However, as meatal swabs could be sampling a reduced surface area and result in fewer collected epithelial cells compared to urethral swabs, the adequacy of meatal swab specimens to collect sufficient cellular material for Gram stain testing remains unknown. We enrolled 66 men who underwent either urethral or meatal swabbing and compared the cellular content and Gram stain failure rate. We measured the difference in swab cellular content using the Cepheid Xpert CT/NG sample adequacy control crossing threshold (SAC CT ) and determined the failure rate of Gram stain smears (GSS) due to insufficient cellular material. In the absence of discharge, meatal smears were associated with a significant reduction in cellular content ( P = 0.0118), which corresponded with a GSS failure rate significantly higher than that for urethral swabs (45% versus 3%, respectively; P < 0.0001). When discharge was present, there was no difference among results from urethral and meatal swabs. Therefore, if GSS testing is being considered for point-of-care diagnosis of N. gonorrhoeae infection or NGU in men, meatal swabs should be avoided in the absence of a visible discharge. Copyright © 2017 American Society for Microbiology.

  4. Decreased Fc receptor expression on innate immune cells is associated with impaired antibody-mediated cellular phagocytic activity in chronically HIV-1 infected individuals.

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T; Ackerman, Margaret E; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-07-05

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Decreased Fc-Receptor expression on innate immune cells is associated with impaired antibody mediated cellular phagocytic activity in chronically HIV-1 infected individuals

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T.; Ackerman, Margaret E.; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-01-01

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular-phagocytosis (ADCP), antibody dependent cellular-cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection. PMID:21565376

  6. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle.

    Shock, Jennifer L; Fischer, Kael F; DeRisi, Joseph L

    2007-01-01

    The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.

  7. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

    Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin

    2013-01-01

    The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. All-trans retinoic acid inhibits the recruitment of ARNT to DNA, resulting in the decrease of CYP1A1 mRNA expression in HepG2 cells

    Ohno, Marumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2012-01-01

    Highlights: ► AHR and ARNT transcriptionally regulate genes related to metabolisms such as CYP1A1. ► We investigated the effect of retinoic acid (RA) on the function of AHR/ARNT. ► RA inhibited the recruitment of ARNT, not AHR, to the regulatory region of CYP1A1. ► It resulted in a reduction of constitutive expression of CYP1A1 to less than half. -- Abstract: Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) are well-conserved transcription factors among species. However, there are a very limited number of reports on the physiological function of AHR, particularly on the regulation of AHR by endogenous compounds. We hence investigated the effects of all-trans retinoic acid (atRA) on cytochrome P450 (CYP) 1A1 gene transcription as a model of AHR-regulated transcription mechanisms in HepG2 cells, a human hepatoma cell line. Treatment with atRA significantly reduced transactivation and expression of CYP1A1 mRNA to less than half of its control value, and this inhibitory effect was mediated by RARα. The result of chromatin immunoprecipitation assay indicated that treatment with atRA at 1–100 nM drastically inhibited the recruitment of ARNT to DNA regions containing xenobiotic responsive elements. In conclusion, atRA at physiological concentrations could reduce AHR-mediated gene transcription via the inhibition of recruitment of ARNT to relevant DNA regions.

  9. All-trans retinoic acid inhibits the recruitment of ARNT to DNA, resulting in the decrease of CYP1A1 mRNA expression in HepG2 cells

    Ohno, Marumi; Ikenaka, Yoshinori [Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818 (Japan); Ishizuka, Mayumi, E-mail: ishizum@vetmed.hokudai.ac.jp [Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer AHR and ARNT transcriptionally regulate genes related to metabolisms such as CYP1A1. Black-Right-Pointing-Pointer We investigated the effect of retinoic acid (RA) on the function of AHR/ARNT. Black-Right-Pointing-Pointer RA inhibited the recruitment of ARNT, not AHR, to the regulatory region of CYP1A1. Black-Right-Pointing-Pointer It resulted in a reduction of constitutive expression of CYP1A1 to less than half. -- Abstract: Aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT) are well-conserved transcription factors among species. However, there are a very limited number of reports on the physiological function of AHR, particularly on the regulation of AHR by endogenous compounds. We hence investigated the effects of all-trans retinoic acid (atRA) on cytochrome P450 (CYP) 1A1 gene transcription as a model of AHR-regulated transcription mechanisms in HepG2 cells, a human hepatoma cell line. Treatment with atRA significantly reduced transactivation and expression of CYP1A1 mRNA to less than half of its control value, and this inhibitory effect was mediated by RAR{alpha}. The result of chromatin immunoprecipitation assay indicated that treatment with atRA at 1-100 nM drastically inhibited the recruitment of ARNT to DNA regions containing xenobiotic responsive elements. In conclusion, atRA at physiological concentrations could reduce AHR-mediated gene transcription via the inhibition of recruitment of ARNT to relevant DNA regions.

  10. Principles of mRNA transport in yeast.

    Heym, Roland Gerhard; Niessing, Dierk

    2012-06-01

    mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.

  11. Self-amplifying mRNA vaccines.

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. El aumento de la expresión del ARNm de la enzima convertidora de angiotensina I homóloga (ECA-2 inducido por atorvastatina se asocia a menor fibrosis e hipertrofia ventricular izquierda en un modelo de cardiomiopatía diabética Atorvastatin induced increase in homologous angiotensin i converting enzyme (ACE2 mRNA is associated to decreased fibrosis and decreased left ventricular hypertrophy in a rat model of diabetic cardiomyopathy

    Cristian Aguilar

    2011-06-01

    content assay and genetic expressions of ACE and ACE2 mRNA. Results. Myocardial hypertrophy index and collagen deposition were increased in diabetic rats, but not in the treated-diabetic rats, without producing changes in cholesterol levels. Myocardial ACE mRNA levels were increased while ACE2 mRNA levels were decreased in diabetic rats. Atorvastatin administration attenuated overexpression of ACE mRNA and overexpression of ACE-2 mRNA in diabetic rats. Conclusions. Our results indicate that atorvastatin, independently of its cholesterol-lowering capacity, lowers the ACE/ACE2 ratio to normal values and attenuates the development of adverse remodeling in the diabetic heart.

  13. Decreased EGFR mRNA expression in response to antipsoriatic ...

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... pathogenesis of psoriasis, the objective of this study was to investigate the transcriptional effect of dithranol .... N.E. Fusenig, German Cancer Research Centre, Heidelberg, ... RT-PCR analysis of EGFR expression in HaCaT cells treated with ... reliability. ... relationship to cancer risk and therapy response.

  14. Decreased EGFR mRNA expression in response to antipsoriatic ...

    Dithranol is enormously effective in the treatment of psoriasis; however its molecular mode of action should be further elucidated. Since epidermal growth factor receptor (EGFR) is involved in the pathogenesis of psoriasis, the objective of this study was to investigate the transcriptional effect of dithranol on EGFR gene ...

  15. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli.

    Minji Sim

    Full Text Available While identifying genes regulated by ribonuclease III (RNase III in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stress, indicating the presence of cis-acting elements controlled by RNase III in betT mRNA. Primer extension analyses of betT mRNA revealed two tandem RNase III cleavage sites in its stem-loop region, which were biochemically confirmed via in vitro cleavage assays. Analyses of cleavage sites suggested the stochastic selection of cleavage sites by RNase III, and mutational analyses indicated that RNase III cleavage at either site individually is insufficient for efficient betT mRNA degradation. In addition, both the half-life and abundance of betT mRNA were significantly increased in association with decreased RNase III activity under hyper-osmotic stress conditions. Our findings demonstrate that betT mRNA stability is controlled by RNase III at the post-transcriptional level under conditions of osmotic stress.

  16. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  17. ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export.

    Boehringer, Ashley; Garcia-Mansfield, Krystine; Singh, Gurkaran; Bakkar, Nadine; Pirrotte, Patrick; Bowser, Robert

    2017-11-06

    Mutations in Matrin 3 have recently been linked to ALS, though the mechanism that induces disease in these patients is unknown. To define the protein interactome of wild-type and ALS-linked MATR3 mutations, we performed immunoprecipitation followed by mass spectrometry using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.

  18. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes.

    Wanjun Gu

    2010-02-01

    Full Text Available Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.

  19. Histone gene expression remains coupled to DNA synthesis during in vitro cellular senescence

    Zambetti, G.; Stein, G.; Stein, J.; Dell'Orco, R.

    1987-01-01

    Despite a decrease in the extent to which confluent monolayers of late compared to early passage CF3 human diploid fibroblasts can be stimulated to proliferate, the time course of DNA synthesis onset is similar regardless of the in vitro age of the cells. A parallel and stoichiometric relationship is maintained between the rate of DNA synthesis and the cellular levels of histone mRNA independent of the age of the cell cultures. Furthermore, DNA synthesis and cellular histone mRNA levels decline in a coordinate manner after inhibition of DNA replication by hydroxyurea treatment. These results indicate that while the proliferative activity of human diploid fibroblasts decreases with passage in culture, those cells that retain the ability to proliferate continue to exhibit a tight coupling of DNA replication and histone gene expression

  20. Tumor necrosis factor-alpha regulates the Hypocretin system via mRNA degradation and ubiquitination.

    Zhan, Shuqin; Cai, Guo-Qiang; Zheng, Anni; Wang, Yuping; Jia, Jianping; Fang, Haotian; Yang, Youfeng; Hu, Meng; Ding, Qiang

    2011-04-01

    Recent studies recognize that Hypocretin system (also known as Orexin) plays a critical role in sleep/wake disorders and feeding behaviors. However, little is known about the regulation of the Hypocretin system. It is also known that tumor necrosis factor alpha (TNF-α) is involved in the regulation of sleep/wake cycle. Here, we test our hypothesis that the Hypocretin system is regulated by TNF-α. Prepro-Hypocretin and Hypocretin receptor 2 (HcrtR2) can be detected at a very low level in rat B35 neuroblastoma cells. In response to TNF-α, Prepro-Hypocretin mRNA and protein levels are down-regulated, and also HcrtR2 protein level is down-regulated in B35 cells. To investigate the mechanism, exogenous rat Prepro-Hypocretin and rat HcrtR2 were overexpressed in B35 cells. In response to TNF-α, protein and mRNA of Prepro-Hypocretin are significantly decreased (by 93% and 94%, respectively), and the half-life of Prepro-Hypocretin mRNA is decreased in a time- and dose-dependent manner. The level of HcrtR2 mRNA level is not affected by TNF-α treatment; however, HcrtR2 protein level is significantly decreased (by 86%) through ubiquitination in B35 cells treated with TNF-α. Downregulation of cellular inhibitor of apoptosis protein-1 and -2 (cIAP-1 and -2) abrogates the HcrtR2 ubiquitination induced by TNF-α. The control green fluorescent protein (GFP) expression is not affected by TNF-α treatment. These studies demonstrate that TNF-α can impair the function of the Hypocretin system by reducing the levels of both Prepro-Hypocretin and HcrtR2. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  2. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  3. Cellular gravity

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  4. Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons

    Mochida, Sumiko; Poulain, Bernard; Eisel, Ulrich; Binz, Thomas; Kurazono, Hisao; Niemann, Heiner; Tauc, Ladislav; Bullock, Theodore H.

    1990-01-01

    Injection of exogenous mRNA purified from various tissue preparations into cellular translation systems such as Xenopus oocytes has allowed expression of complex proteins (e.g., receptors for neurotransmitters). No evidence for expression of injected exogenous mRNA, however, has been reported in

  5. Cellular dosimetry

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  6. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses.

    Li, Man; Li, You; Peng, Ke; Wang, Ying; Gong, Tao; Zhang, Zhirong; He, Qin; Sun, Xun

    2017-12-01

    Intranasal mRNA vaccination provides immediate immune protection against pandemic diseases. Recent studies have shown that diverse forms of polyethyleneimine (PEI) have potent mucosal adjuvant activity, which could significantly facilitate the delivery of intranasal mRNA vaccines. Nevertheless, optimizing the chemical structure of PEI to maximize its adjuvanticity and decrease its toxicity remains a challenge. Here we show that the chemical structure of PEI strongly influences how well nanocomplexes of PEI and mRNA migrate to the lymph nodes and elicit immune responses. Conjugating cyclodextrin (CD) with PEI600 or PEI2k yielded CP (CD-PEI) polymers with different CD/PEI ratios. We analyzed the delivery efficacy of CP600, CP2k, and PEI25k as intranasal mRNA vaccine carriers by evaluating the lymph nodes migration and immune responses. Among these polymers, CP2k/mRNA showed significantly higher in vitro transfection efficiency, stronger abilities to migrate to lymph nodes and stimulate dendritic cells maturation in vivo, which further led to potent humoral and cellular immune responses, and showed lower local and systemic toxicity than PEI25k/mRNA. These results demonstrate the potential of CD-PEI2k/mRNA nanocomplex as a self-adjuvanting vaccine delivery vehicle that traffics to lymph nodes with high efficiency. As we face outbreaks of pandemic diseases such as Zika virus, intranasal mRNA vaccination provides instant massive protection against highly variant viruses. Various polymer-based delivery systems have been successfully applied in intranasal vaccine delivery. However, the influence of molecular structure of the polymeric carriers on the lymph node trafficking and dendritic cell maturation is seldom studied for intranasal vaccination. Therefore, engineering polymer-based vaccine delivery system and elucidating the relationship between molecular structure and the intranasal delivery efficiency are essential for maximizing the immune responses. We hereby

  7. Role of nitric oxide in cellular iron metabolism.

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  8. Cellular metabolism

    Hildebrand, C.E.; Walters, R.A.

    1977-01-01

    Progress is reported on the following research projects: chromatin structure; the use of circular synthetic polydeoxynucleotides as substrates for the study of DNA repair enzymes; human cellular kinetic response following exposure to DNA-interactive compounds; histone phosphorylation and chromatin structure in cell proliferation; photoaddition products induced in chromatin by uv light; pollutants and genetic information transfer; altered RNA metabolism as a function of cadmium accumulation and intracellular distribution in cultured cells; and thymidylate chromophore destruction by water free radicals

  9. Appetite - decreased

    Loss of appetite; Decreased appetite; Anorexia ... Any illness can reduce appetite. If the illness is treatable, the appetite should return when the condition is cured. Loss of appetite can cause weight ...

  10. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein.

    Lyabin, D N; Ovchinnikov, L P

    2016-03-02

    The Y-box binding protein 1 (YB-1) is a key regulator of gene expression at the level of both translation and transcription. The mode of its action on cellular events depends on its subcellular distribution and the amount in the cell. So far, the regulatory mechanisms of YB-1 synthesis have not been adequately studied. Our previous finding was that selective inhibition of YB-1 mRNA translation was caused by suppression of activity of the mTOR signaling pathway. It was suggested that this event may be mediated by phosphorylation of the 4E-binding protein (4E-BP). Here, we report that 4E-BP alone can only slightly inhibit YB-1 synthesis both in the cell and in vitro, although it essentially decreases binding of the 4F-group translation initiation factors to mRNA. With inhibited mTOR kinase, the level of mRNA binding to the eIF4F-group factors was decreased, while that to 4E-BP1 was increased, as was observed for both mTOR kinase-sensitive mRNAs and those showing low sensitivity. This suggests that selective inhibition of translation of YB-1 mRNA, and probably some other mRNAs as well, by mTOR kinase inhibitors is not mediated by the action of the 4E-binding protein upon functions of the 4F-group translation initiation factors.

  11. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  12. Decrease in TSH Receptor Autoantibodies during Antithyroid Treatment

    Christensen, Niels Juel; Habekost, Gurli; Bratholm, Palle

    2011-01-01

    that TRAb decrease significantly during treatment with antithyroid drugs. This decrease during treatment cannot be explained by Heg RNA, which remains unchanged. Cdk1 mRNA decreased significantly during treatment to values below values obtained in normal subjects. Thus both Heg RNA and Cdk1 mRNA may...

  13. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  14. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  15. Bovine oocytes and early embryos express mRNA encoding glycerol kinase but addition of glycerol to the culture media interferes with oocyte maturation.

    Okawara, Sumika; Hamano, Seizo; Tetsuka, Masafumi

    2009-04-01

    Glycerol plays multi-functional roles in cellular physiology. Other than forming the backbone molecule for glycerophospholipid and triglyceride (TG), glycerol acts as an energy substrate for glycolysis. Spermatozoa are known to utilize glycerol for energy production, but there are no reports of this in oocytes. In this study, the value of glycerol as an energy substrate for bovine oocyte maturation (Exp. 1) and the gene expression of glycerol kinase (GK), an enzyme crucial for cellular glycerol utilization, in bovine oocytes and early embryos (Exp. 2) were examined. In Exp. 1, in vitro maturation (IVM) was conducted using synthetic oviduct fluid supplemented with/without glucose (1.5 mM) and/or glycerol (1.0 mM), and maturation rate, degree of cumulus expansion, glucose consumption and lactate production by cumulus-oocyte complexes (COC) were examined. In Exp. 2, to examine the developmental expression of GK mRNA, cumulus cells, oocytes and embryos at the 2-, 8- and 16-cell, morula, expanded blastocyst and hatched blastocyst stages were obtained in separate experiments, and the expression of GK mRNA was quantified using a real-time PCR. Glycerol did not support oocyte maturation or cumulus expansion. Addition of glycerol to glucose-supplemented media significantly decreased the maturation rate. Expression of GK mRNA was very low in cumulus cells, whereas an appreciable level of the transcript was observed in the oocytes. GK mRNA was detected in embryos at all the stages examined, and its expression significantly increased at the morula stage. These results indicate that glycerol, at least at the present concentration, is not beneficial as a constituent of the medium for bovine oocyte maturation. However, the appreciable levels of GK mRNA found in the oocyte and embryo imply a physiological role for glycerol in bovine oocyte maturation and embryo development.

  16. TNF-α inhibits trophoblast integration into endothelial cellular networks.

    Xu, B; Nakhla, S; Makris, A; Hennessy, A

    2011-03-01

    Preeclampsia has been linked to shallow trophoblast invasion and failure of uterine spiral artery transformation. Interaction between trophoblast cells and maternal uterine endothelium is critically important for this remodelling. The aim of our study was to investigate the effect of TNF-α on the interactions of trophoblast-derived JEG-3 cells into capillary-like cellular networks. We have employed an in vitro trophoblast-endothelial cell co-culture model to quantify trophoblast integration into endothelial cellular networks and to investigate the effects of TNF-α. Controlled co-cultures were also treated with anti-TNF-α antibody (5 μg/ml) to specifically block the effect of TNF-α. The invasion was evaluated by performing quantitative PCR (Q-PCR) to analyse gene expression of matrix metalloproteinases-2 (MMP-2), MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP)-1, integrins (α(1)β(1) and α(6)β(4)), plasminogen activator inhibitor (PAI)-1, E-cadherin and VE-cadherin. JEG-3 cell integration into endothelial networks was significantly inhibited by exogenous TNF-α. The inhibition was observed in the range of 0.2-5 ng/ml, to a maximum 56% inhibition at the highest concentration. This inhibition was reversed by anti-TNF-α antibody. Q-PCR analysis showed that mRNA expression of integrins α(1)β(1) and MMP-2 was significantly decreased. VE-cadherin mRNA expression was significantly up-regulated (32-80%, p integration into maternal endothelial cellular networks, and this process involves the inhibition of MMP-2 and a failure of integrins switch from α(6)β(4) to α(1)β(1.) These molecular correlations reflect the changes identified in human preeclampsia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Cellular antioxidant effects of atorvastatin in vitro and in vivo.

    Wassmann, Sven; Laufs, Ulrich; Müller, Kirsten; Konkol, Christian; Ahlbory, Katja; Bäumer, Anselm T; Linz, Wolfgang; Böhm, Michael; Nickenig, Georg

    2002-02-01

    3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) may exert direct effects on vascular cells and beneficially influence endothelial dysfunction. Because reactive oxygen species (ROS) may lead to vascular damage and dysfunction, we investigated the effect of atorvastatin on ROS production and the underlying mechanisms in vitro and in vivo. Cultured rat aortic vascular smooth muscle cells were incubated with 10 micromol/L atorvastatin. Angiotensin II-induced and epidermal growth factor-induced ROS production were significantly reduced by atorvastatin (dichlorofluorescein fluorescence laser microscopy). Atorvastatin downregulated mRNA expression of the NAD(P)H oxidase subunit nox1, whereas p22phox mRNA expression was not significantly altered (reverse transcription-polymerase chain reaction, Northern analysis). Membrane translocation of rac1 GTPase, which is required for the activation of NAD(P)H oxidase, was inhibited by atorvastatin (Western blot). mRNA expression of superoxide dismutase isoforms and glutathione peroxidase was not modified by atorvastatin, whereas catalase expression was upregulated at mRNA and protein levels, resulting in an increased enzymatic activity. Effects of atorvastatin on ROS production and nox1, rac1, and catalase expression were inhibited by L-mevalonate but not by 25-hydroxycholesterol. In addition, spontaneously hypertensive rats were treated with atorvastatin for 30 days. ROS production in aortic segments was significantly reduced in statin-treated rats (lucigenin chemiluminescence). Treatment with atorvastatin reduced vascular mRNA expression of p22phox and nox1 and increased aortic catalase expression. mRNA expression of superoxide dismutases, glutathione peroxidase, and NAD(P)H oxidase subunits gp91phox, p40phox, p47phox, and p67phox remained unchanged. Translocation of rac1 from the cytosol to the cell membrane was also reduced in vivo. Thus, atorvastatin exerts cellular antioxidant effects in cultured rat

  18. Expression Profiles of Cellular Retinol-binding Protein, Type II (CRBP II in Erlang Mountainous Chickens

    H. D. Yin

    2014-03-01

    Full Text Available Cellular retinol-binding protein II (CRBP II belongs to the family of cellular retinol-binding proteins and plays a major role in absorption, transport, and metabolism of vitamin A. In addition, because vitamin A is correlated with reproductive performance, we measured CRBP II mRNA abundance in erlang mountainous chickens by real-time PCR using the relative quantification method. The expression of CRBP II showed a tissue-specific pattern and egg production rate-dependent changes. The expression was very high (p<0.05 in jejunum and liver, intermediate in kidney, ovary, and oviduct, and lowest (p<0.05 in heart, hypothalamus, and pituitary. In the hypothalamus, oviduct, ovary, and pituitary, CRBP II mRNA abundance were correlated to egg production rate, which increased from 12 wk to 32 wk, peaked at 32 wk relative to the other time points, and then decreased from 32 wk to 45 wk. In contrast, the expression of CRBP II mRNA in heart, jejunum, kidney, and liver was not different at any of the ages evaluated in this study. These data may help to understand the genetic basis of vitamin A metabolism, and suggest that CRBP II may be a candidate gene to affect egg production traits in chickens.

  19. mRNA decay proteins are targeted to poly(A+ RNA and dsRNA-containing cytoplasmic foci that resemble P-bodies in Entamoeba histolytica.

    Itzel López-Rosas

    Full Text Available In higher eukaryotes, mRNA degradation and RNA-based gene silencing occur in cytoplasmic foci referred to as processing bodies (P-bodies. In protozoan parasites, the presence of P-bodies and their putative role in mRNA decay have yet to be comprehensively addressed. Identification of P-bodies might provide information on how mRNA degradation machineries evolved in lower eukaryotes. Here, we used immunofluorescence and confocal microscopy assays to investigate the cellular localization of mRNA degradation proteins in the human intestinal parasite Entamoeba histolytica and found evidence of the existence of P-bodies. Two mRNA decay factors, namely the EhXRN2 exoribonuclease and the EhDCP2 decapping enzyme, were localized in cytoplasmic foci in a pattern resembling P-body organization. Given that amoebic foci appear to be smaller and less rounded than those described in higher eukaryotes, we have named them "P-body-like structures". These foci contain additional mRNA degradation factors, including the EhCAF1 deadenylase and the EhAGO2-2 protein involved in RNA interference. Biochemical analysis revealed that EhCAF1 co-immunoprecipitated with EhXRN2 but not with EhDCP2 or EhAGO2-2, thus linking deadenylation to 5'-to-3' mRNA decay. The number of EhCAF1-containing foci significantly decreased after inhibition of transcription and translation with actinomycin D and cycloheximide, respectively. Furthermore, results of RNA-FISH assays showed that (i EhCAF1 colocalized with poly(A(+ RNA and (ii during silencing of the Ehpc4 gene by RNA interference, EhAGO2-2 colocalized with small interfering RNAs in cytoplasmic foci. Our observation of decapping, deadenylation and RNA interference proteins within P-body-like foci suggests that these structures have been conserved after originating in the early evolution of eukaryotic lineages. To the best of our knowledge, this is the first study to report on the localization of mRNA decay proteins within P

  20. Primary induction of vitellogenin mRNA in the rooster by 17beta-estradiol.

    Burns, A T; Deeley, R G; Gordon, J I; Udell, D S; Mullinix, K P; Goldberger, R F

    1978-01-01

    We have studied the kinetics of vitellogenin mRNA accumulation in rooster liver after a primary injection of 17beta-estradiol. The levels of vitellogenin mRNA have been determined both by hybridization of total cellular RNA to vitellogenin cDNA and by translation of vitellogenin mRNA in a wheat germ cell-free system. The results obtained by both methods of analysis are in good agreement and indicate that vitellogenin mRNA is present in the liver of normal roosters at a level of 0-5 molecules per liver cell and increases in amount during the 3 days following injection of estrogen, reaching a level of almost 6000 molecules per cell at the peak of the response. The level of vitellogenin mRNA declined exponentially during the next 14 days with a half-life of 29 hr, reaching a level of less than 10 molecules per cell at 17 days after injection of the hormone. The levels of vitellogenin mRNA after stimulation with estrogen have been correlated with the in vivo rate of synthesis of the vitellogenin polypeptide. The results indicate that the rate of vitellogenin synthesis is closely correlated with the level of vitellogenin mRNA. On the basis of these findings, we conclude that vitellogenin mRNA does not exist in the liver in an untranslated form after withdrawal from estrogen. PMID:273910

  1. Cellular oncogene expression following exposure of mice to γ-rays

    Anderson, A.; Woloschak, G.E.

    1991-01-01

    We examined the effects of total body exposure of BCF1 mice to γ-rays (300 cGy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min. following whole body exposure of BCF1 mice to γ-rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. c-fos RNA was slightly decreased in accumulation in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. c-myc mRNA accumulation was unaffected in all tissues examined. These experiments document that modulation of cellular oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced carcinogenesis

  2. Matrin 3 binds and stabilizes mRNA.

    Maayan Salton

    Full Text Available Matrin 3 (MATR3 is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM, whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq identified several small noncoding RNA species. Using microarray analysis to explore MATR3's role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.

  3. Correlation of mRNA Profiles, miRNA Profiles, and Functional Immune Response in Rainbow Trout (Oncorrhynkus Mykiss) Infected With Viral Hemorrhagic Septicemia Virus (VHSV) and in Fish Vaccinated With a DNA Vaccine Against VHSV

    Bela-Ong, Dennis; Schyth, Brian Dall; Jørgensen, Hanne

    2011-01-01

    and are incorporated into the RNA-Induced Silencing Complex (RISC), which target specific mRNA sequences, causing either mRNA degradation or translation repression. This results in altered mRNA and protein profiles characteristic of a particular cellular phenotype or physiological state. By targeting immune relevant m...

  4. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal.

    Martinez, Bridget; Soñanez-Organis, José G; Vázquez-Medina, José Pablo; Viscarra, Jose A; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2013-12-15

    Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.

  5. Nerve growth factor mRNA in brain: localization by in situ hybridization

    Rennert, P.D.; Heinrich, G.

    1986-01-01

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons

  6. Regulation of mRNA translation influences hypoxia tolerance

    Koritzinsky, M.; Wouters, B.G.; Koumenis, C.

    2003-01-01

    Hypoxia is a heterogenous but common characteristic of human tumours and poor oxygenation is associated with poor prognosis. We believe that the presence of viable hypoxic tumor cells reflects in part an adaptation and tolerance of these cells to oxygen deficiency. Since oxidative phosphorylation is compromized during hypoxia, adaptation may involve both the upregulation of glycolysis as well as downregulation of energy consumption. mRNA translation is one of the most energy costly cellular processes, and we and others have shown that global mRNA translation is rapidly inhibited during hypoxia. However, some mRNAs, including those coding for HIF-1 α and VEGF, remain efficiently translated during hypoxia. Clearly, the mechanisms responsible for the overall inhibition of translation during hypoxia does not compromize the translation of certain hypoxia-induced mRNA species. We therefore hypothesize that the inhibition of mRNA translation serves to promote hypoxia tolerance in two ways: i) through conservation of energy and ii) through differential gene expression involved in hypoxia adaptation. We have recently identified two pathways that are responsible for the global inhibition of translation during hypoxia. The phosphorylation of the eukaryotic initiation factor eIF2 α by the ER resident kinase PERK results in down-regulation of protein synthesis shortly after the onset of hypoxia. In addition, the initiation complex eIF4F is disrupted during long lasting hypoxic conditions. The identification of the molecular pathways responsible for the inhibition of overall translation during hypoxia has rendered it possible to investigate their importance for hypoxia tolerance. We have found that mouse embryo fibroblasts that are knockout for PERK and therefore not able to inhibit protein synthesis efficiently during oxygen deficiency are significantly less tolerant to hypoxia than their wildtype counterparts. We are currently also investigating the functional significance

  7. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.

    Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C

    2003-05-01

    Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.

  9. [Impacts of the formula of Suoquanwan(SQW) on expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency].

    Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang

    2009-06-01

    To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.

  10. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis.

    Kim, Sangwon; Ponka, Prem

    2002-01-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  11. Identification of stress responsive genes by studying specific relationships between mRNA and protein abundance.

    Morimoto, Shimpei; Yahara, Koji

    2018-03-01

    Protein expression is regulated by the production and degradation of mRNAs and proteins but the specifics of their relationship are controversial. Although technological advances have enabled genome-wide and time-series surveys of mRNA and protein abundance, recent studies have shown paradoxical results, with most statistical analyses being limited to linear correlation, or analysis of variance applied separately to mRNA and protein datasets. Here, using recently analyzed genome-wide time-series data, we have developed a statistical analysis framework for identifying which types of genes or biological gene groups have significant correlation between mRNA and protein abundance after accounting for potential time delays. Our framework stratifies all genes in terms of the extent of time delay, conducts gene clustering in each stratum, and performs a non-parametric statistical test of the correlation between mRNA and protein abundance in a gene cluster. Consequently, we revealed stronger correlations than previously reported between mRNA and protein abundance in two metabolic pathways. Moreover, we identified a pair of stress responsive genes ( ADC17 and KIN1 ) that showed a highly similar time series of mRNA and protein abundance. Furthermore, we confirmed robustness of the analysis framework by applying it to another genome-wide time-series data and identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic spindle positioning) that shows similar correlation. The significant correlation and highly similar changes of mRNA and protein abundance suggests a concerted role of these genes in cellular stress response, which we consider provides an answer to the question of the specific relationships between mRNA and protein in a cell. In addition, our framework for studying the relationship between mRNAs and proteins in a cell will provide a basis for studying specific relationships between mRNA and protein abundance after accounting for potential

  12. Outer-totalistic cellular automata on graphs

    Marr, Carsten; Huett, Marc-Thorsten

    2009-01-01

    We present an intuitive formalism for implementing cellular automata on arbitrary topologies. By that means, we identify a symmetry operation in the class of elementary cellular automata. Moreover, we determine the subset of topologically sensitive elementary cellular automata and find that the overall number of complex patterns decreases under increasing neighborhood size in regular graphs. As exemplary applications, we apply the formalism to complex networks and compare the potential of scale-free graphs and metabolic networks to generate complex dynamics

  13. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  14. 60Co γ-irradiation enhances expression of GAP-43 mRNA in rat brain

    Su Bingyin; Cai Wenqin; Zhang Chenggang

    2001-01-01

    Objective: To study the relationship between the expression of GAP-43 mRNA and nerve regeneration in rat brain after 60 Co γ-irradiation. Methods: Wistar rats were subjected to whole-body irradiation with 8 Gy 60 Co γ-rays. The expression of GAP-43 was detected by in situ hybridization histochemistry using Dig-cRNA probe. Results: It was found that the expression of GAP-43 mRNA increased in the cerebral cortex, caudate, putamen, globus pallidum, thalamus and hypothalamus one week after 8 Gy 60 Co γ-irradiation. The peak of GAP-43 mRNA expression was observed in the fourth week and then began to decrease but still remained at a higher than normal level. However, it decreased to a low level after 7 weeks. Conclusion: Enhanced expression of GAP-43 mRNA after 60 Co γ-irradiation in rat brain is associated with nerve regeneration and reconstruction of synapse

  15. ZnO nanofluids for the improved cytotoxicity and cellular uptake of doxorubicin

    Safoura Soleymani

    2018-01-01

    Full Text Available Objective(s: Combination anticancer therapy holds promise for improving the therapeutic efficacy of chemotherapy drugs such as doxorubicin (DOX as well as decreasing their dose-limiting side effects. Overcoming the side effects of doxorubicin (DOX is a major challenge to the effective treatment of cancer. Zinc oxide nanoparticles (ZnO NPs are emerging as potent tools for a wide variety of biomedical applications. The aim of this study was to develop a combinatorial approach for enhancing the anticancer efficacy and cellular uptake of DOX. Materials and Methods: ZnO NPs were synthesized by the solvothermal method and were characterized by X-ray diffraction (XRD, dynamic light scattering (DLS and transmission electron microscopy (TEM. ZnO NPs were dispersed in 10% bovine serum albumin (BSA and the cytotoxic effect of the resulting ZnO nanofluids was evaluated alone and in combination with DOX on DU145 cells. The influence of ZnO nanofluids on the cellular uptake of DOX and DOX-induced catalase mRNA expression were investigated by fluorescence microscopy and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR, respectively. Results: The MTT results revealed that ZnO nanofluids decreased the cell viability of DU145 cells in a timeand dose-dependent manner. Simultaneous combination treatment of DOX and ZnO nanofluid showed a significant increase in anticancer activity and the cellular uptake of DOX compared to DOX alone. Also, a time-dependent reduction of catalase mRNA expression was observed in the cells treated with ZnO nanofluids and DOX, alone and in combination with each other. Conclusion: These results indicate the role of ZnO nanofluid as a growth-inhibitory agent and a drug delivery system for DOX in DU145 cells. Thus, ZnO nanofluid could be a candidate for combination chemotherapy.

  16. Regulation of mRNA Translation Is a Novel Mechanism for Phthalate Toxicity.

    Jun Ling

    Full Text Available Phthalates are a group of plasticizers that are widely used in many consumer products and medical devices, thus generating a huge burden to human health. Phthalates have been known to cause a number of developmental and reproductive disorders functioning as endocrine modulators. They are also involved in carcinogenesis with mechanisms less understood. To further understand the molecular mechanisms of phthalate toxicity, in this study we reported a new effect of phthalates on mRNA translation/protein synthesis, a key regulatory step of gene expression. Butyl benzyl phthalate (BBP was found to directly inhibit mRNA translation in vitro but showed a complicated pattern of affecting mRNA translation in cells. In human kidney embryonic cell (HEK-293T, BBP increased cap-dependent mRNA translation at lower concentrations but showed inhibitory effect at higher concentrations. Cap-independent translation was not affected. On the other hand, mono (2-ethylhexyl phthalate (MEHP as a major metabolite of another important phthalate di (2-ethylhexyl phthalate (DEHP inhibited both can-dependent and -independent mRNA translation in vivo. In contrast, BBP and MEHP exhibited an overall promoting effect on mRNA translation in cancer cells. Mechanistic studies identified that the level and phosphorylation of eIF4E-BP (eIF4E binding protein and the amount of eIF4GI in eIF4F complex were altered in accordance with the effect of BBP on translation. BBP was also identified to directly bind to eIF4E, providing a further mechanism underlying the regulation of mRNA by phthalate. At the cellular level BBP inhibited normal cell growth but slightly promoted cancer cells (HT29 growth. Overall, this study provides the first evidence that phthalates can directly regulate mRNA translation as a novel mechanism to mediate their biological toxicities.

  17. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  18. Clinical significance of LUNX mRNA, CK19 mRNA, CEA mRNA expression in detecting micrometastasis from lung cancer

    Zhu Guangying; Liu Delin; Chen Jie

    2003-01-01

    Objective: To evaluate the sensitivity, specificity and clinical significance of CK19 mRNA, CEA mRNA and LUNX mRNA for detecting micrometastasis by sampling the peripheral blood and regional lymph nodes of lung cancer patients. Methods: Reverse transcriptase chain reaction (RT-PCR) was used to detect LUNX mRNA, CK19 mRNA, CEA mRNA for micrometastasis by sampling the peripheral blood of 48 lung cancer patients and 44 regional lymph nodes of such patients treated by curative resection. Peripheral blood of 30 patients with pulmonary benign lesions and 10 normal healthy volunteers and lymph nodes of 6 patients with benign pulmonary diseases served as control. Results: 1) LUNX mRNA, CK19 mRNA, CEA mRNA were expressed in all (35/35) lung cancer tissues. 2) In the peripheral blood from 48 lung cancer patients, 30 (62.5%) were positive for LUNX mRNA, 24 (50.0%) positive for CK19 mRNA and 32(66.7%) positive for CEA mRNA. The positive detection rates of micrometastasis in 44 lymph nodes from lung cancer patients were 36.4% (16 out of 44) for LUNX mRNA, 27.3% (12 out of 44) for CK19 mRNA and 40.9% (18 out of 44) for CEA mRNA. 3) In the 30 blood samples from patients with pulmonary benign diseases, 2 (6.7%) expressed CK19 mRNA, but none expressed LUNX mRNA or CEA mRNA. All the 3 molecular markers were negative in the 10 blood samples from healthy volunteers. In 11 lymph nodes from patients with pulmonary benign lesions, none was positive for any of the three markers. 4) In 44 regional lymph nodes from lung cancer patients, 6 (13.6%) were positive for metastasis by histopathological examination, with a positive rate significantly lower than that of the RT-PCR (P<0.05). 5) The micrometastatic positive rate in the peripheral blood of 40 non-small cell lung cancer (NSCLC) patients was significantly related to TNM stage (P=0.01). Conclusions: LUNX mRNA, CK19 MRNA, CEA mRNA are all appropriate target genes for the detection of micrometastasis from lung cancer. LUNX mRNA and CEA mRNA

  19. Interleukin-6 promotes the migration and cellular senescence and inhibits apoptosis of human intrahepatic biliary epithelial cells.

    Li, Ran; Dong, Juan; Bu, Xiu-Qin; Huang, Yong; Yang, Jing-Yu; Dong, Xuan; Liu, Jie

    2018-02-01

    Biliary epithelial cells (BEC) are closely related to some immune regulatory bile duct diseases. However, the complexity and polymorphism of the morphology and function of bile duct cells have hindered further investigation. Therefore, the aim of this study is to investigate how interleukin-6 (IL-6) affects the migration, cellular senescence, and apoptosis of human intrahepatic biliary epithelial cells (HIBECs). The HIBECs were stimulated by different concentrations of IL-6 (0, 5, 10, 15, and 20 ng/mL, respectively). Transwell assay was performed in order to measure the migration abilities, positive β-Galactosidase staining for the cellular senescence of HIBECs, MTT assay for changes of proliferation after IL-6 treatment and flow cytometry for cell cycle and apoptosis. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were conducted in order to detect the mRNA and protein expressions of epithelial-mesenchymal transition (EMT) markers in HIBECs. In comparison to the 0 ng/mL group, in the 5, 10, 15, and 20 ng/mL groups, a significant increase in the number of migratory HIBECs, proliferation, along with mRNA and protein expressions of EMT markers was observed. While the mRNA and protein expressions of epithelial markers, the number of β-galactosidase positive staining cells, as well as apoptosis rate of HIBECs dramatic decreased. Further, the aforementioned changes were significantly more evident in the 15 and 20 ng/mL groups in comparison to the 5 and 10 ng/mL groups. IL-6 may stimulate EMT, enhance the migration and proliferation, and inhibit apoptosis of HIBECs, thus delaying cellular senescence. © 2017 Wiley Periodicals, Inc.

  20. Influenza A Virus NS1 Protein Promotes Efficient Nuclear Export of Unspliced Viral M1 mRNA.

    Pereira, Carina F; Read, Eliot K C; Wise, Helen M; Amorim, Maria J; Digard, Paul

    2017-08-01

    Influenza A virus mRNAs are transcribed by the viral RNA-dependent RNA polymerase in the cell nucleus before being exported to the cytoplasm for translation. Segment 7 produces two major transcripts: an unspliced mRNA that encodes the M1 matrix protein and a spliced transcript that encodes the M2 ion channel. Export of both mRNAs is dependent on the cellular NXF1/TAP pathway, but it is unclear how they are recruited to the export machinery or how the intron-containing but unspliced M1 mRNA bypasses the normal quality-control checkpoints. Using fluorescent in situ hybridization to monitor segment 7 mRNA localization, we found that cytoplasmic accumulation of unspliced M1 mRNA was inefficient in the absence of NS1, both in the context of segment 7 RNPs reconstituted by plasmid transfection and in mutant virus-infected cells. This effect was independent of any major effect on steady-state levels of segment 7 mRNA or splicing but corresponded to a ∼5-fold reduction in the accumulation of M1. A similar defect in intronless hemagglutinin (HA) mRNA nuclear export was seen with an NS1 mutant virus. Efficient export of M1 mRNA required both an intact NS1 RNA-binding domain and effector domain. Furthermore, while wild-type NS1 interacted with cellular NXF1 and also increased the interaction of segment 7 mRNA with NXF1, mutant NS1 polypeptides unable to promote mRNA export did neither. Thus, we propose that NS1 facilitates late viral gene expression by acting as an adaptor between viral mRNAs and the cellular nuclear export machinery to promote their nuclear export. IMPORTANCE Influenza A virus is a major pathogen of a wide variety of mammalian and avian species that threatens public health and food security. A fuller understanding of the virus life cycle is important to aid control strategies. The virus has a small genome that encodes relatively few proteins that are often multifunctional. Here, we characterize a new function for the NS1 protein, showing that, as well as

  1. Selective translation of the measles virus nucleocapsid mRNA by La protein

    Yoshihisa eInoue

    2011-08-01

    Full Text Available Measles, caused by measles virus (MeV infection, is the leading cause of death in children because of secondary infections attributable to MeV-induced immune suppression. Recently, we have shown that wild-type MeVs induce the suppression of protein synthesis in host cells (referred to as "shutoff" and that viral mRNAs are preferentially translated under shutoff conditions in infected cells. To determine the mechanism behind the preferential translation of viral mRNA, we focused on the 5 untranslated region (UTR of nucleocapsid (N mRNA. The La/SSB autoantigen (La was found to specifically bind to an N-5UTR probe. Recombinant La enhanced the translation of luciferase mRNA containing the N-5UTR (N-fLuc, and RNA interference of La suppressed N-fLuc translation. Furthermore, recombinant MeV lacking the La-binding motif in the N-5UTR displayed delayed viral protein synthesis and growth kinetics at an early phase of infection. These results suggest that La induced predominant translation of N mRNA via binding to its 5UTR under shutoff conditions. This is the first report on a cellular factor that specifically regulates paramyxovirus mRNA translation.

  2. Differential effects of histone deacetylase inhibitors on cellular drug transporters and their implications for using epigenetic modifiers in combination chemotherapy.

    Valdez, Benigno C; Li, Yang; Murray, David; Brammer, Jonathan E; Liu, Yan; Hosing, Chitra; Nieto, Yago; Champlin, Richard E; Andersson, Borje S

    2016-09-27

    HDAC inhibitors, DNA alkylators and nucleoside analogs are effective components of combination chemotherapy. To determine a possible mechanism of their synergism, we analyzed the effects of HDAC inhibitors on the expression of drug transporters which export DNA alkylators. Exposure of PEER lymphoma T-cells to 15 nM romidepsin (Rom) resulted in 40%-50% reduction in mRNA for the drug transporter MRP1 and up to ~500-fold increase in the MDR1 mRNA within 32-48 hrs. MRP1 protein levels concomitantly decreased while MDR1 increased. Other HDAC inhibitors - panobinostat, belinostat and suberoylanilide hydroxamic acid (SAHA) - had similar effects on these transporters. The protein level of MRP1 correlated with cellular resistance to busulfan and chlorambucil, and Rom exposure sensitized cells to these DNA alkylators. The decrease in MRP1 correlated with decreased cellular drug export activity, and increased level of MDR1 correlated with increased export of daunorubicin. A similar decrease in the level of MRP1 protein, and increase in MDR1, were observed when mononuclear cells derived from patients with T-cell malignancies were exposed to Rom. Decreased MRP1 and increased MDR1 expressions were also observed in blood mononuclear cells from lymphoma patients who received SAHA-containing chemotherapy in a clinical trial. This inhibitory effect of HDAC inhibitors on the expression of MRP1 suggests that their synergism with DNA alkylating agents is partly due to decreased efflux of these alkylators. Our results further imply the possibility of antagonistic effects when HDAC inhibitors are combined with anthracyclines and other MDR1 drug ligands in chemotherapy.

  3. The cellular memory disc of reprogrammed cells.

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  4. Wireless Cellular Mobile Communications

    Zalud, V.

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  5. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells

    Lamparter, Christina L. [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5 mM VPA over 24 h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. - Highlights: • VPA exposure in vitro downregulates Cbp/p300 mRNA and induces protein degradation. • Cbp/p300 histone acetyltransferase activity is similarly reduced with VPA exposure. • Inhibition of Cbp/p300 acetyltransferase activity

  6. Biomechanics of cellular solids.

    Gibson, Lorna J

    2005-03-01

    Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.

  7. Neuronal zinc-α2-glycoprotein is decreased in temporal lobe epilepsy in patients and rats.

    Liu, Ying; Wang, Teng; Liu, Xi; Wei, Xin; Xu, Tao; Yin, Maojia; Ding, Xueying; Mo, Lijuan; Chen, Lifen

    2017-08-15

    Zinc-α2-glycoprotein (ZAG) is a 42-kDa protein encoded by the AZGP1 gene that is known as a lipid mobilizing factor and is highly homologous to major histocompatibility complex class I family molecules. Recently, transcriptomic research has shown that AZGP1 expression is reduced in the brain tissue of epilepsy patients. However, the cellular distribution and biological role of ZAG in the brain and epilepsy are unclear. Patients with refractory temporal lobe epilepsy (TLE) and brain trauma were included in this study, and pentylenetetrazole (PTZ)-kindled rats were also used. The existence and level of ZAG in the brain were identified using immunohistochemistry, double-labeled immunofluorescence and western blot, and the expression level of AZGP1 mRNA was determined with quantitative real-time polymerase chain reaction (qrt-PCR). To explore the potential biological role of ZAG in the brain, co-immunoprecipitation (Co-IP) of phosphorylated ERK (p-ERK), TGF-β1 and ZAG was also performed. ZAG was found in the cytoplasm of neurons in brain tissue from both patients and rats. The levels of AZGP1 mRNA and ZAG were lower in refractory TLE patients and PTZ-kindled rats than in controls. In addition, the ZAG level decreased as PTZ kindling continued. Co-IP identified direct binding between p-ERK, TGF-β1 and ZAG. ZAG was found to be synthesized in neurons, and both the AZGP1 mRNA and ZAG protein levels were decreased in epilepsy patients and rat models. The reduction in ZAG may participate in the pathogenesis and pathophysiology of epilepsy by interacting with p-ERK and TGF-β1, promoting inflammation, regulating the metabolism of ketone bodies, or affecting other epilepsy-related molecules. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Influenza polymerase encoding mRNAs utilize atypical mRNA nuclear export.

    Larsen, Sean; Bui, Steven; Perez, Veronica; Mohammad, Adeba; Medina-Ramirez, Hilario; Newcomb, Laura L

    2014-08-28

    Influenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1. Here we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA. Inhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export. These results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we

  9. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain

    Raha-Chowdhury, R.; Raha, A.A.; Forostyak, Serhiy; Zhao, J.W.; Stott, S.R.W.; Bomford, A.

    2015-01-01

    Roč. 16, APR 21 (2015), s. 24 ISSN 1471-2202 Institutional support: RVO:68378041 Keywords : hepcidin * ferroportin * defensin * inflammatory cytokines * brain iron homeostasis * blood brain barrier * pericytes * sub-ventricular zone * neurogenesis Subject RIV: FH - Neurology Impact factor: 2.304, year: 2015

  10. Effect of verapamil on cellular uptake of Tc-99m MIBI and tetrofosmin on several cancer cells

    Kim, Dae Hyun; Yoo, Jung Ah; Bae, Jin Ho; Jeong, Shin Young; Suh, Myung Rang; Ahn, Byeong Cheol; Lee, Kyu Bo; Lee, Jae Tae

    2004-01-01

    Cellular uptake of 99 mTc-sestamibi (MIBI) and 99 mTc-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Cellular uptakes of Tc-99m MIBI and TF were measured in erythroleukemia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto 200 μM at 1*10 6 cells/ m l at 37.deg.C. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of 100 μM and the maximal increase at 50 μM was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7m SK-OV3 cells were decreased with verapamil treatment at a concentration over 1 μM. With a concentration of 200 μM verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with 10μM, but were also decreased with verapamil higher than 10μM, resulting 40% and 5% of baseline at 50 μM. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at 200 μM. Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased

  11. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  12. Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells

    Naranjo, J.R.; Mocchetti, I.; Schwartz, J.P.; Costa, E.

    1986-01-01

    In cultured bovine chromaffin cells, changes in the dynamic state of enkephalin stores elicited experimentally were studied by measuring cellular proenkephalin mRNA, as well as enkephalin precursors and authentic enkephalin content of cells and culture media. In parallel, tyrosine hydroxylase mRNA and catecholamine cell content were also determined. Low concentrations (0.5-100 pM) of dexamethasone increased the cell contents of proenkephalin mRNA and enkephalin-containing peptides. High concentrations of the hormone(1 μM) were required to increase the cell contents of tyrosine hydroxylase mRNA and catecholamines. Depolarization of the cells with 10 μM veratridine resulted in a depletion of enkephalin and catecholamine stores after 24 hr. The enkephalin, but not the catecholamine, content was restored by 48 hr. An increase in proenkephalin mRNA content might account for the recovery; this increase was curtailed by tetrodotoxin and enhanced by 10 pM dexamethasone. Tyrosine hydroxylase mRNA content was not significantly modified by depolarization, even in the presence of 1 μM dexamethasone. Aldosterone, progesterone, testosterone, or estradiol (1 μM) failed to change proenkephalin mRNA. Hence, dexamethasone appears to exert a specific permissive action on the stimulation of the proenkephalin gene elicited by depolarization. Though the catecholamines and enkephalins are localized in the same chromaffin granules and are coreleased by depolarization, the genes coding for the processes that are rate limiting in the production of these neuromodulators can be differentially regulated

  13. Linearizable cellular automata

    Nobe, Atsushi; Yura, Fumitaka

    2007-01-01

    The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given

  14. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  15. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  16. The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation.

    Tessier, Shannon N; Audas, Timothy E; Wu, Cheng-Wei; Lee, Stephen; Storey, Kenneth B

    2014-11-01

    Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions.

  17. Identification of stress responsive genes by studying specific relationships between mRNA and protein abundance

    Shimpei Morimoto

    2018-03-01

    Full Text Available Protein expression is regulated by the production and degradation of mRNAs and proteins but the specifics of their relationship are controversial. Although technological advances have enabled genome-wide and time-series surveys of mRNA and protein abundance, recent studies have shown paradoxical results, with most statistical analyses being limited to linear correlation, or analysis of variance applied separately to mRNA and protein datasets. Here, using recently analyzed genome-wide time-series data, we have developed a statistical analysis framework for identifying which types of genes or biological gene groups have significant correlation between mRNA and protein abundance after accounting for potential time delays. Our framework stratifies all genes in terms of the extent of time delay, conducts gene clustering in each stratum, and performs a non-parametric statistical test of the correlation between mRNA and protein abundance in a gene cluster. Consequently, we revealed stronger correlations than previously reported between mRNA and protein abundance in two metabolic pathways. Moreover, we identified a pair of stress responsive genes (ADC17 and KIN1 that showed a highly similar time series of mRNA and protein abundance. Furthermore, we confirmed robustness of the analysis framework by applying it to another genome-wide time-series data and identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic spindle positioning that shows similar correlation. The significant correlation and highly similar changes of mRNA and protein abundance suggests a concerted role of these genes in cellular stress response, which we consider provides an answer to the question of the specific relationships between mRNA and protein in a cell. In addition, our framework for studying the relationship between mRNAs and proteins in a cell will provide a basis for studying specific relationships between mRNA and protein abundance after

  18. Heterogeneous cellular networks

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  19. Cellular decomposition in vikalloys

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  20. Cellular Reflectarray Antenna

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  1. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    Dalgaard, Louise T.

    2012-01-01

    Highlights: ► UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. ► UCP2 mRNA up-regulation by glucose is dependent on glucokinase. ► Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. ► This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/− islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2−/− and GK+/− islets compared with GK+/− islets and UCP2 deficiency improved glucose tolerance of GK+/− mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/− mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  2. Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma.

    Lu, You-Wei; Li, Jin; Guo, Wei-Jian

    2010-11-08

    The Polycomb group (PcG) genes are a class of regulators responsible for maintaining homeotic gene expression throughout cell division. PcG expression is deregulated in some types of human cancer. Both Bmi-1 and Mel-18 are of the key PcG proteins. We investigate the expression and clinicopathological roles of Mel-18 and Bmi-1 mRNA in gastric cancer. The expression of Mel-18 and Bmi-1 in a series of 71 gastric cancer tissues and paired normal mucosal tissues distant from the tumorous lesion was assayed by quantitative real time RT-PCR. The correlation between Mel-18 and Bmi-1 mRNA expression, and between Mel-18 or Bmi-1 mRNA level and clinicopathological characteristics were analyzed. Expression of Mel-18 and Bmi-1 genes was variably detected, but overexpression of Bmi-1 mRNA and decreased expression of Mel-18 mRNA were the most frequent alteration. In addition, the expression of Bmi-1 and Mel-18 mRNA inversely correlates in gastric tumors. Moreover, a significant positive correlation between Bmi-1 overexpression and tumor size, depth of invasion, or lymph node metastasis, and a significant negative correlation between Mel-18 low-expression with lymph node metastasis or the clinical stage were observed. Our data suggest that Mel-18 and Bmi-1 may play crucial but opposite roles in gastric cancer. Decreased Mel-18 and increased Bmi-1 mRNA expression was associated with the carcinogenesis and progression of gastric cancer. It is possible to list Bmi-1 and Mel-18 as biomarkers for predicting the prognosis of gastric cancer.

  3. Consequences of metaphase II oocyte cryopreservation on mRNA content.

    Chamayou, S; Bonaventura, G; Alecci, C; Tibullo, D; Di Raimondo, F; Guglielmino, A; Barcellona, M L

    2011-04-01

    We studied the consequences of freezing/thawing processes on mRNA contents in MII oocytes after slow-freezing/rapid thawing (SF/RT) and vitrification/warming (V/W) protocols, and compared the results to fresh MII oocytes. We quantified the nuclear transcript mRNA responsible for the translation of proteins belonging either to trans-regulatory protein family or to functional structural proteins such as proteins involved in DNA structural organization (NAP1L1, TOP1, H1F0H1), chromosomal structure maintenance (SMC, SCC3, RAD21, SMC1A, SMC1B, STAG3, REC8), mitochondrial energetic pathways (ATP5GJ, SDHC), cell cycle regulation and processes (CLTA, MAPK6, CKS2) and staminal cell potency-development competence stage (DPPA3, OCT4, FOXJ2). Surplus MII oocytes were donated from patients in IVF cycles and divided in three groups of 15 oocytes. Group 1 was comprised of non-cryopreserved oocytes and Groups 2 and 3 underwent SF/RT and V/W procedures, respectively. There was an overall decrease of mRNA extracted from cryopreserved oocytes compared to control group. Only 39.4% of mRNA content were preserved after SF/RT while 63.3% of mRNA content were maintained after V/W. Oocyte cryopreservation is associated with molecular injury associated with the decrease of stored mRNA. However the V/W protocol is more conservative than SF/RT resulting in a level of mRNA sufficient to maintain biologic functions in the subsequent fertilized oocyte. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Knockdown of the fat mass and obesity gene disrupts cellular energy balance in a cell-type specific manner.

    Ryan T Pitman

    Full Text Available Recent studies suggest that FTO variants strongly correlate with obesity and mainly influence energy intake with little effect on the basal metabolic rate. We suggest that FTO influences eating behavior by modulating intracellular energy levels and downstream signaling mechanisms which control energy intake and metabolism. Since FTO plays a particularly important role in adipocytes and in hypothalamic neurons, SH-SY5Y neuronal cells and 3T3-L1 adipocytes were used to understand how siRNA mediated knockdown of FTO expression alters cellular energy homeostasis. Cellular energy status was evaluated by measuring ATP levels using a luminescence assay and uptake of fluorescent glucose. FTO siRNA in SH-SY5Y cells mediated mRNA knockdown (-82%, increased ATP concentrations by up to 46% (P = 0.013 compared to controls, and decreased phosphorylation of AMPk and Akt in SH-SY5Y by -52% and -46% respectively as seen by immunoblotting. In contrast, FTO siRNA in 3T3-L1 cells decreased ATP concentration by -93% (p<0.0005, and increased AMPk and Akt phosphorylation by 204% and 70%, respectively suggesting that FTO mediates control of energy levels in a cell-type specific manner. Furthermore, glucose uptake was decreased in both SH-SY5Y (-51% p = 0.015 and 3T3-L1 cells (-30%, p = 0.0002. We also show that FTO knockdown decreases NPY mRNA expression in SH-SY5Y cells (-21% through upregulation of pSTAT3 (118%. These results provide important evidence that FTO-variant linked obesity may be associated with altered metabolic functions through activation of downstream metabolic mediators including AMPk.

  5. mRNA processing in yeast

    Stevens, A.

    1982-01-01

    Investigations in this laboratory center on basic enzymatic reactions of RNA. Still undefined are reactions involved in the conversion of precursors of mRA (pre-mRNA) to mRNA in eukaryotes. The pre-mRNA is called heterogeneous nuclear RNA and is 2 to 6 times larger than mRNA. The conversion, called splicing, involves a removal of internal sequences called introns by endoribonuclease action followed by a rejoining of the 3'- and 5'-end fragments, called exons, by ligating activity. It has not been possible yet to study the enzymes involved in vitro. Also undefined are reactions involved in the turnover or discarding of certain of the pre-mRNA molecules. Yeast is a simple eukaryote and may be expected to have the same, but perhaps simpler, processing reactions as the higher eukaryotes. Two enzymes involved in the processing of pre-mRNA and mRNA in yeast are under investigation. Both enzymes have been partially purified from ribonucleoprotein particles of yeast. The first is a unique decapping enzyme which cleaves [ 3 H]m 7 Gppp [ 14 C]RNA-poly (A) of yeast, yielding [ 3 H]m 7 GDP and is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed. The second enzyme is an endoribonuclease which converts both the [ 3 H] and [ 14 C] labels of [ 3 H]m 7 Gppp[ 14 C]RNA-poly(A) from an oligo(dT)-cellulose bound form to an unbound, acid-insoluble form. Results show that the stimulation involves an interaction of the labeled RNA with the small nuclear RNA. The inhibition of the enzyme by ethidium bromide and its stimulation by small nuclear RNA suggest that it may be a processing ribonuclease, requiring specific double-stranded features in its substrate. The characterization of the unique decapping enzyme and endoribonuclease may help to understand reactions involved in the processing of pre-mRNA and mRNA in eukaryotes

  6. Magnetohydrodynamics cellular automata

    Hatori, Tadatsugu.

    1990-02-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  7. Epigenetics and Cellular Metabolism

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  8. Modeling cellular systems

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  9. Magnetohydrodynamic cellular automata

    Hatori, Tadatsugu [National Inst. for Fusion Science, Nagoya (Japan)

    1990-03-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author).

  10. Magnetohydrodynamic cellular automata

    Hatori, Tadatsugu

    1990-01-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  11. Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA.

    Rehage, Nina; Davydova, Elena; Conrad, Christine; Behrens, Gesine; Maiser, Andreas; Stehklein, Jenny E; Brenner, Sven; Klein, Juliane; Jeridi, Aicha; Hoffmann, Anne; Lee, Eunhae; Dianzani, Umberto; Willemsen, Rob; Feederle, Regina; Reiche, Kristin; Hackermüller, Jörg; Leonhardt, Heinrich; Sharma, Sonia; Niessing, Dierk; Heissmeyer, Vigo

    2018-01-19

    The ubiquitously expressed RNA-binding proteins Roquin-1 and Roquin-2 are essential for appropriate immune cell function and postnatal survival of mice. Roquin proteins repress target mRNAs by recognizing secondary structures in their 3'-UTRs and by inducing mRNA decay. However, it is unknown if other cellular proteins contribute to target control. To identify cofactors of Roquin, we used RNA interference to screen ~1500 genes involved in RNA-binding or mRNA degradation, and identified NUFIP2 as a cofactor of Roquin-induced mRNA decay. NUFIP2 binds directly and with high affinity to Roquin, which stabilizes NUFIP2 in cells. Post-transcriptional repression of human ICOS by endogenous Roquin proteins requires two neighboring non-canonical stem-loops in the ICOS 3'-UTR. This unconventional cis-element as well as another tandem loop known to confer Roquin-mediated regulation of the Ox40 3'-UTR, are bound cooperatively by Roquin and NUFIP2. NUFIP2 therefore emerges as a cofactor that contributes to mRNA target recognition by Roquin.

  12. Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus

    Hannah Burgess

    2018-03-01

    Full Text Available Through the action of two virus-encoded decapping enzymes (D9 and D10 that remove protective caps from mRNA 5′-termini, Vaccinia virus (VACV accelerates mRNA decay and limits activation of host defenses. D9- or D10-deficient VACV are markedly attenuated in mice and fail to counter cellular double-stranded RNA-responsive innate immune effectors, including PKR. Here, we capitalize upon this phenotype and demonstrate that VACV deficient in either decapping enzyme are effective oncolytic viruses. Significantly, D9- or D10-deficient VACV displayed anti-tumor activity against syngeneic mouse tumors of different genetic backgrounds and human hepatocellular carcinoma xenografts. Furthermore, D9- and D10-deficient VACV hyperactivated the host anti-viral enzyme PKR in non-tumorigenic cells compared to wild-type virus. This establishes a new genetic platform for oncolytic VACV development that is deficient for a major pathogenesis determinant while retaining viral genes that support robust productive replication like those required for nucleotide metabolism. It further demonstrates how VACV mutants unable to execute a fundamental step in virus-induced mRNA decay can be unexpectedly translated into a powerful anti-tumor therapy. Keywords: oncolytic virus, mRNA decay, decapping

  13. Cellular MR Imaging

    Michel Modo

    2005-07-01

    Full Text Available Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall superparamagnetic iron oxide [(USPIO] particles or (polymeric paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, and (USPIO-based cellular imaging has been focused on imaging of macrophage activity. Several of these magneto-pharmaceuticals have been FDA-approved or are in late-phase clinical trials. As for prelabeling of cells in vitro, a challenge has been to induce a sufficient uptake of contrast agents into nonphagocytic cells, without affecting normal cellular function. It appears that this issue has now largely been resolved, leading to an active research on monitoring the cellular biodistribution in vivo following transplantation or transfusion of these cells, including cell migration and trafficking. New applications of cellular MR imaging will be directed, for instance, towards our understanding of hematopoietic (immune cell trafficking and of novel guided (stem cell-based therapies aimed to be translated to the clinic in the future.

  14. Is central dogma a global property of cellular information flow?

    Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar

    2012-01-01

    The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.

  15. Is central dogma a global property of cellular information flow?

    Vincent ePiras

    2012-11-01

    Full Text Available The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcript to protein show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.

  16. Cellular and molecular responses of E. fetida coelomocytes exposed to TiO{sub 2} nanoparticles

    Bigorgne, Emilie, E-mail: emilie.bigorgne@univ-lorraine.fr; Foucaud, Laurent [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France); Caillet, Celine [Universite de Lorraine-Laboratoire Environnement et Mineralurgie (LEM) CNRS UMR7569 (France); Giamberini, Laure; Nahmani, Johanne [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France); Thomas, Fabien [Universite de Lorraine-Laboratoire Environnement et Mineralurgie (LEM) CNRS UMR7569 (France); Rodius, Francois [Universite de Lorraine-Laboratoire des Interactions Ecotoxicologique Biodiversite Ecosystemes (LIEBE) (France)

    2012-07-15

    An in vitro approach using coelomocytes of Eisenia fetida was investigated to evaluate toxicity of TiO{sub 2} nanoparticles. Coelomocytes were exposed to well-dispersed suspension of small aggregates (130 nm) of TiO{sub 2} nanoparticles (1-25 {mu}g/ml) during 4, 12 and 24 h. Intracellular localisation suggested that the main route of uptake was endocytosis. Cellular responses showed that TiO{sub 2} nanoparticles were not cytotoxic and had no effect on phagocytosis at any of the four concentrations for each time tested. Concerning molecular responses, an increase of fetidin and metallothionein mRNA expression was observed starting from 4 h of exposure. In contrast, expression of coelomic cytolytic factor mRNA decreased for 10 and 25 {mu}g/ml after 4 h. Superoxide dismutase, catalase and glutathione-S-transferase expression were not modified suggesting that oxidative stress was not induced by TiO{sub 2} in our experimental conditions. This in vitro approach showed that TiO{sub 2} nanoparticles were taken up by coelomocytes and they could modify the molecular response of immune and detoxification system.

  17. An investigation of nutrient-dependent mRNA translation in Drosophila larvae

    Sabarish Nagarajan

    2014-10-01

    Full Text Available The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes decreased larval mRNA translation, with a maximal decrease at 6–18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors – 4EBP and S6K – could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.

  18. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-01-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  19. Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA.

    Wahba, Amy; Ryan, Michael C; Shankavaram, Uma T; Camphausen, Kevin; Tofilon, Philip J

    2018-01-02

    Alternative splicing is a critical event in the posttranscriptional regulation of gene expression. To investigate whether this process influences radiation-induced gene expression we defined the effects of ionizing radiation on the generation of alternative transcripts in total cellular mRNA (the transcriptome) and polysome-bound mRNA (the translatome) of the human glioblastoma stem-like cell line NSC11. For these studies, RNA-Seq profiles from control and irradiated cells were compared using the program SpliceSeq to identify transcripts and splice variations induced by radiation. As compared to the transcriptome (total RNA) of untreated cells, the radiation-induced transcriptome contained 92 splice events suggesting that radiation induced alternative splicing. As compared to the translatome (polysome-bound RNA) of untreated cells, the radiation-induced translatome contained 280 splice events of which only 24 were overlapping with the radiation-induced transcriptome. These results suggest that radiation not only modifies alternative splicing of precursor mRNA, but also results in the selective association of existing mRNA isoforms with polysomes. Comparison of radiation-induced alternative transcripts to radiation-induced gene expression in total RNA revealed little overlap (about 3%). In contrast, in the radiation-induced translatome, about 38% of the induced alternative transcripts corresponded to genes whose expression level was affected in the translatome. This study suggests that whereas radiation induces alternate splicing, the alternative transcripts present at the time of irradiation may play a role in the radiation-induced translational control of gene expression and thus cellular radioresponse.

  20. Cellularized Cellular Solids via Freeze-Casting.

    Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M

    2016-02-01

    The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development.

    Kropp, Jenna; Khatib, Hasan

    2015-01-01

    In vitro production (IVP) systems have been used to bypass problems of fertilization and early embryonic development. However, embryos produced by IVP are commonly selected for implantation based on morphological assessment, which is not a strong indicator of establishment and maintenance of pregnancy. Thus, there is a need to identify additional indicators of embryonic developmental potential. Previous studies have identified microRNA expression in in vitro culture media to be indicative of embryo quality in both bovine and human embryos. Like microRNAs, mRNAs have been shown to be secreted from cells into the extracellular environment, but it is unknown whether or not these RNAs are secreted by embryos. Thus, the objective of the present study was to determine whether mRNAs are secreted into in vitro culture media and if their expression in the media is indicative of embryo quality. In vitro culture medium was generated and collected from both blastocyst and degenerate (those which fail to develop from the morula to blastocyst stage) embryos. Small-RNA sequencing revealed that many mRNA fragments were present in the culture media. A total of 17 mRNA fragments were differentially expressed between blastocyst and degenerate conditioned media. Differential expression was confirmed by quantitative real-time PCR for fragments of mRNA POSTN and VSNL-1, in four additional biological replicates of media. To better understand the mechanisms of mRNA secretion into the media, the expression of a predicted RNA binding protein of POSTN, PUM2, was knocked down using an antisense oligonucleotide gapmer. Supplementation of a PUM2 gapmer significantly reduced blastocyst development and decreased secretion of POSTN mRNA into the media. Overall, differential mRNA expression in the media was repeatable and sets the framework for future study of mRNA biomarkers in in vitro culture media to improve predictability of reproductive performance.

  2. Course of c-myc mRNA expression in the regenerating mouse testis determined by competitive reverse transcriptase polymerase chain reaction.

    Amendola, R

    1994-11-01

    The c-myc proto-oncogene is a reliable marker of the "G0-early G1" transition, and its down-regulation is believed to be necessary to obtain cellular differentiation. In murine spermatogenesis, the level of c-myc transcripts does not correlate with the rate of cellular division. Proliferation of supposed staminal spermatogonia to reproduce themselves is induced with a local 5 Gy X-ray dose in 90-day-old C57Bl/6 mice. c-myc quantification by a newly developed competitive reverse transcriptase polymerase chain reaction (RT-PCR) was carried out to follow the expression course of this proto-oncogene. Damage and restoration of spermatogenesis were analyzed at days 3, 6, 9, 10, 13, 30, and 60 after injury by relative testes/body weight determination and histological examination. Proliferative status was determined by histone H3 Northern blot analysis. c-myc mRNA level was 10 times higher after 3 days in the irradiated animals compared to the controls. An increasing number of copies were noted up to 10 days, but promptly decreased to the base level found for irradiated mice from 13 to 60 days. Interestingly, the expression of histone H3 detected S phase only in testes at 60 days from damage.

  3. Epigenetics and Cellular Metabolism

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  4. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans.

    Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hua; Li, Hau; Florens, Laurence; Mak, Ho Yi

    2012-04-15

    The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans.

  5. Wireless Cellular Mobile Communications

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  6. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  7. Radiolabelled cellular blood elements

    Sinzinger, H.

    1990-01-01

    This book reports on radiolabelled cellular blood elements, covering new advances made during the past several years, in particular the use of Tc-99 as a tracer for blood elements. Coverage extends to several radiolabelled monoclonal antibodies that are specific for blood components and may label blood elements in vivo

  8. Building synthetic cellular organization

    Polka, Jessica K.; Silver, Pamela A.

    2013-01-01

    The elaborate spatial organization of cells enhances, restricts, and regulates protein–protein interactions. However, the biological significance of this organization has been difficult to study without ways of directly perturbing it. We highlight synthetic biology tools for engineering novel cellular organization, describing how they have been, and can be, used to advance cell biology.

  9. The New Cellular Immunology

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  10. Electromagnetic cellular interactions.

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Genetic Dominance & Cellular Processes

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  12. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B. [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada); Bag, Jnanankur, E-mail: jbag@uoguelph.ca [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada)

    2011-05-13

    Highlights: {yields} Depletion of cellular PABP level arrests mRNA translation in HeLa cells. {yields} PABP knock down leads to apoptotic cell death. {yields} PABP depletion does not affect transcription. {yields} PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  13. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-01-01

    Highlights: → Depletion of cellular PABP level arrests mRNA translation in HeLa cells. → PABP knock down leads to apoptotic cell death. → PABP depletion does not affect transcription. → PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  14. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  15. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus.

    Risbud, Rashmi M; Lee, Carolyn; Porter, Brenda E

    2011-11-18

    Status epilepticus induces a cascade of protein expression changes contributing to the subsequent development of epilepsy. By identifying the cascade of molecular changes that contribute to the development of epilepsy we hope to be able to design therapeutics for preventing epilepsy. MicroRNAs influence gene expression by altering mRNA stability and/or translation and have been implicated in the pathology of multiple diseases. MiR21 and its co-transcript miR21, microRNAs produced from either the 5' or 3' ends of the same precursor RNA strand, are increased in the hippocampus following status epilepticus. We have identified a miR21 binding site, in the 3' UTR of neurotrophin-3 that inhibits translation. Neurotrophin-3 mRNA levels decrease in the hippocampus following SE concurrent with the increase in miR21. MiR21 levels in cultured hippocampal neurons inversely correlate with neurotrophin-3 mRNA levels. Treatment of hippocampal neuronal cultures with excess K(+)Cl(-), a depolarizing agent mimicking the episode of status epilepticus, also results in an increase in miR21 and a decrease in neurotrophin-3 mRNA. MiR21 is a candidate for regulating neurotrophin-3 signaling in the hippocampus following status epilepticus. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. An Interaction between KSHV ORF57 and UIF Provides mRNA-Adaptor Redundancy in Herpesvirus Intronless mRNA Export

    Jackson, Brian R.; Boyne, James R.; Noerenberg, Marko; Taylor, Adam; Hautbergue, Guillaume M.; Walsh, Matthew J.; Wheat, Rachel; Blackbourn, David J.; Wilson, Stuart A.; Whitehouse, Adrian

    2011-01-01

    The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway. Similarly however, depletion of Aly only leads to a modest reduction in the nuclear export of KSHV intronless mRNAs. Herein, we identify a novel interaction between ORF57 and the cellular protein, UIF. We provide the first evidence that the ORF57-UIF interaction enables the recruitment of hTREX and TAP to KSHV intronless mRNAs in Aly-depleted cells. Strikingly, depletion of both Aly and UIF inhibits the formation of an ORF57-mediated nuclear export competent ribonucleoprotein particle and consequently prevents ORF57-mediated mRNA nuclear export and KSHV protein production. Importantly, these findings highlight that redundancy exists in the eukaryotic system for certain hTREX components involved in the mRNA nuclear export of intronless KSHV mRNAs. PMID:21814512

  17. mRNA Cancer Vaccines-Messages that Prevail.

    Grunwitz, Christian; Kranz, Lena M

    2017-01-01

    During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.

  18. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    Herr, Michael J. [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Longhurst, Celia M.; Baker, Benjamin [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Homayouni, Ramin [Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States); Speich, Henry E.; Kotha, Jayaprakash [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Jennings, Lisa K., E-mail: ljennings@uthsc.edu [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States)

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.

  19. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  20. Mechanical Stimulation and IGF-1 Enhance mRNA Translation Rate in Osteoblasts via Activation of the AKT-mTOR Pathway.

    Bakker, A.D.; Gakes, T.; Hogervorst, J.M.; de Wit, G.M.J.; Klein-Nulend, J.; Jaspers, R.T.

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether

  1. Mechanical stimulation and IGF-1 enhance mRNA translation rate in osteoblasts via activation of the AKT-mTOR pathway

    Bakker, A.D.; Gakes, T.; Hogervorst, J.M.A.; de Wit, G.M.J.; Klein-Nulend, J.; Jaspers, R.T.

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is anabolic for muscle by enhancing the rate of mRNA translation via activation of AKT and subsequent activation of the mammalian target of rapamycin complex 1 (mTOR), thereby increasing cellular protein production. IGF-1 is also anabolic for bone, but whether

  2. Molecular and Cellular Signaling

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  3. Nested cellular automata

    Quasthoff, U.

    1985-07-01

    Cellular automata by definition consist of a finite or infinite number of cells, say of unit length, with each cell having the same transition function. These cells are usually considered as the smallest elements and so the space filled with these cells becomes discrete. Nevertheless, large pictures created by such cellular automata look very fractal. So we try to replace each cell by a couple of smaller cells, which have the same transition functions as the large ones. There are automata where this replacement does not destroy the macroscopic structure. In these cases this nesting process can be iterated. The paper contains large classes of automata with the above properties. In the case of one dimensional automata with two states and next neighbour interaction and a nesting function of the same type a complete classification is given. (author)

  4. Recruitment of Staufen2 Enhances Dendritic Localization of an Intron-Containing CaMKIIα mRNA

    Raúl Ortiz

    2017-07-01

    Full Text Available Regulation of mRNA localization is a conserved cellular process observed in many types of cells and organisms. Asymmetrical mRNA distribution plays a particularly important role in the nervous system, where local translation of localized mRNA represents a key mechanism in synaptic plasticity. CaMKIIα is a very abundant mRNA detected in neurites, consistent with its crucial role at glutamatergic synapses. Here, we report the presence of CaMKIIα mRNA isoforms that contain intron i16 in dendrites, RNA granules, and synaptoneurosomes from primary neurons and brain. This subpopulation of unspliced mRNA preferentially localizes to distal dendrites in a synaptic-activity-dependent manner. Staufen2, a well-established marker of RNA transport in dendrites, interacts with intron i16 sequences and enhances its distal dendritic localization, pointing to the existence of intron-mediated mechanisms in the molecular pathways that modulate dendritic transport and localization of synaptic mRNAs.

  5. Acute Inflammation Increases Pituitary and Hypothalamic Glycoprotein Hormone Subunit B5 mRNA Expression in Association with Decreased Thyrotrophin Receptor mRNA Expression in Mice

    van Zeijl, C. J. J.; Surovtseva, O. V.; Wiersinga, W. M.; Fliers, E.; Boelen, A.

    2011-01-01

    The biological function of thyrostimulin, consisting of the GPA2 and GPB5 subunit, is currently poorly understood. The recent observation that pro-inflammatory cytokines up-regulate the transcription of GPB5 in vitro suggested a role for thyrostimulin in the nonthyroidal illness syndrome, a state of

  6. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Predictability in cellular automata.

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.

  8. Probabilistic cellular automata.

    Agapie, Alexandru; Andreica, Anca; Giuclea, Marius

    2014-09-01

    Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.

  9. Wavefront cellular learning automata.

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  10. Algorithm for cellular reprogramming.

    Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika

    2017-11-07

    The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.

  11. Wavefront cellular learning automata

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  12. HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication.

    Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B

    2017-10-01

    In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p HFE and HAMP expressions were elevated only at low 1 g/L treatment (p HFE (p HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.

  13. The silence of MUC2 mRNA induced by promoter hypermethylation associated with HBV in Hepatocellular Carcinoma

    Ling Yang

    2013-01-01

    Full Text Available Abstract Background To evaluate the promoter methylation status of MUC2 gene and mRNA expression in patients with hepatocellular carcinoma. Methods We analyzed MUC2 methylation by MSP, and MUC2 mRNA by real-time PCR in 74 HCC. Results MUC2 mRNA were lower in HCC tissues (Mean -ΔCt = −4.70 than that in Non-HCC tissues (Mean -ΔCt = −2.98. Expression of MUC2 was elevated in only 23 (31.08% of the 74 HCC patients. MUC2 promoter was hypermethylated in 62.2% (46/74 of HCCs, and in only 18.9% (14/74 of non-tumor samples. MUC2 mRNA were lower in HCC patients with hypermethylation (Mean -ΔΔCt = −2.25 than those with demethylation (Mean -ΔΔCt = −0.22, and there is a decreased tendency for MUC2 mRNA in HCC patients with promoter hypermethylation (p = 0.011. There was a significantly correlation found between MUC2 mRNA and HBV and AFP in HCC. The loss of MUC2 mRNA and hypermethylation could be poor prognostic factors. After treated by 5-Aza-CdR and TSA, we found that MUC2 mRNA induced significantly in 7721, Huh7 and HepG2 cells. Conclusion The results suggested that MUC2 mRNA silenced by promoter hypermethylation is associated with high levels HBV in HCC.

  14. Environment Aware Cellular Networks

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  15. Presence of albumin mRNA precursors in nuclei of analbuminemic rat liver lacking cytoplasmic albumin mRNA.

    Esumi, H; Takahashi, Y; Sekiya, T; Sato, S; Nagase, S; Sugimura, T

    1982-01-01

    Analbuminemic rats, which lack serum albumin, were previously found to have no albumin mRNA in the cytoplasm of the liver. In the present study, the existence of nuclear albumin mRNA precursors in the liver of analbuminemic rats was examined by RNA X cDNA hybridization kinetics. Albumin mRNA precursors were present in the nuclei of analbuminemic rat liver at almost normal levels, despite the absence of albumin mRNA from the cytoplasm. Nuclear RNA of analbuminemic rat liver was subjected to el...

  16. Decreasing Relative Risk Premium

    Hansen, Frank

    relative risk premium in the small implies decreasing relative risk premium in the large, and decreasing relative risk premium everywhere implies risk aversion. We finally show that preferences with decreasing relative risk premium may be equivalently expressed in terms of certain preferences on risky......We consider the risk premium demanded by a decision maker with wealth x in order to be indifferent between obtaining a new level of wealth y1 with certainty, or to participate in a lottery which either results in unchanged present wealth or a level of wealth y2 > y1. We define the relative risk...... premium as the quotient between the risk premium and the increase in wealth y1–x which the decision maker puts on the line by choosing the lottery in place of receiving y1 with certainty. We study preferences such that the relative risk premium is a decreasing function of present wealth, and we determine...

  17. Decreasing Serial Cost Sharing

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...... of the increasing serial rule was provided by Moulin and Shenker [Journal of Economic Theory 64 (1994) 178]. This paper gives an axiomatic characterization of the decreasing serial rule...

  18. Decreasing serial cost sharing

    Hougaard, Jens Leth; Østerdal, Lars Peter Raahave

    2009-01-01

    The increasing serial cost sharing rule of Moulin and Shenker (Econometrica 60:1009-1037, 1992) and the decreasing serial rule of de Frutos (J Econ Theory 79:245-275, 1998) are known by their intuitive appeal and striking incentive properties. An axiomatic characterization of the increasing serial...... rule was provided by Moulin and Shenker (J Econ Theory 64:178-201, 1994). This paper gives an axiomatic characterization of the decreasing serial rule....

  19. Involvement of the 5'-leader sequence in coupling the stability of a human H3 histone mRNA with DNA replication

    Morris, T.; Marashi, F.; Weber, L.; Hickey, E.; Greenspan, D.; Bonner, J.; Stein, J.; Stein, G.

    1986-01-01

    Two lines of evidence derived from fusion gene constructs indicate that sequences residing in the 5'-nontranslated region of a cell cycle-dependent human H3 histone mRNA are involved in the selective destabilization that occurs when DNA synthesis is terminated. The experimental approach was to construct chimeric genes in which fragments of the mRNA coding regions of the H3 histone gene were fused with fragments of genes not expressed in a cell cycle-dependent manner. After transfection in HeLa S3 cells with the recombinant plasmids, levels of fusion mRNAs were determined by S1 nuclease analysis prior to and following DNA synthesis inhibition. When the first 20 nucleotides of an H3 histone mRNA leader were replaced with 89 nucleotides of the leader from a Drosophila heat-shock (hsp70) mRNA, the fusion transcript remained stable during inhibition of DNA synthesis, in contrast to the rapid destabilization of the endogenous histone mRNA in these cells. In a reciprocal experiment, a histone-globin fusion gene was constructed that produced a transcript with the initial 20 nucleotides of the H3 histone mRNA substituted for the human β-globin mRNA leader. In HeLa cells treated with inhibitors of DNA synthesis and/or protein synthesis, cellular levels of this histone-globin fusion mRNA appeared to be regulated in a manner similar to endogenous histone mRNA levels. These results suggest that the first 20 nucleotides of the leader are sufficient to couple histone mRNA stability with DNA replication

  20. Cyclic-AMP mediated regulation of ABCB mRNA expression in mussel haemocytes.

    Silvia Franzellitti

    Full Text Available BACKGROUND: The multixenobiotic resistance system (MXR allows aquatic organisms to cope with their habitat despite high pollution levels by over-expressing membrane and intracellular transporters, including the P-glycoprotein (Pgp. In mammals transcription of the ABCB1 gene encoding Pgp is under cAMP/PKA-mediated regulation; whether this is true in mollusks is not fully clarified. METHODOLOGY/PRINCIPAL FINDINGS: cAMP/PKA regulation and ABCB mRNA expression were assessed in haemocytes from Mediterranean mussels (Mytilus galloprovincialis exposed in vivo for 1 week to 0.3 ng/L fluoxetine (FX alone or in combination with 0.3 ng/L propranolol (PROP. FX significantly decreased cAMP levels and PKA activity, and induced ABCB mRNA down-regulation. FX effects were abolished in the presence of PROP. In vitro experiments using haemocytes treated with physiological agonists (noradrenaline and serotonin and pharmacological modulators (PROP, forskolin, dbcAMP, and H89 of the cAMP/PKA system were performed to obtain clear evidence about the involvement of the signaling pathway in the transcriptional regulation of ABCB. Serotonin (5-HT decreased cAMP levels, PKA activity and ABCB mRNA expression but increased the mRNA levels for a putative 5-HT1 receptor. Interestingly, 5-HT1 was also over-expressed after in vivo exposures to FX. 5-HT effects were counteracted by PROP. Forskolin and dbcAMP increased PKA activity as well as ABCB mRNA expression; the latter effect was abolished in the presence of the PKA inhibitor H89. CONCLUSIONS: This study provides the first direct evidence for the cAMP/PKA-mediated regulation of ABCB transcription in mussels.

  1. Cosserat modeling of cellular solids

    Onck, P.R.

    Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat

  2. Evaluation of Structural Cellular Glass

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  3. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis

    Krakauer, Martin; Sorensen, P; Khademi, M

    2008-01-01

    BACKGROUND: Interferon (IFN)-beta therapy in multiple sclerosis (MS) has been suggested to promote a deviation from T lymphocyte production of pathogenic Th1 cytokines to less detrimental Th2 cytokines, but this is still controversial. We studied patterns of in vivo blood mononuclear cell (MNC...... of any Th1 or Th2 cytokines. The largest changes in cytokine mRNA levels occurred early (~9-12 h) after an IFN-beta injection. CONCLUSION: We found no evidence of a Th1- or Th2-mRNA-promoting effect of IFN-beta therapy. The therapeutic effect of IFN-beta is more likely attributable to the induction...

  4. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells.

    Awe, Jason P; Crespo, Agustin Vega; Li, You; Kiledjian, Megerditch; Byrne, James A

    2013-02-06

    The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics.

  5. Conceptual modeling in systems biology fosters empirical findings: the mRNA lifecycle.

    Dov Dori

    Full Text Available One of the main obstacles to understanding complex biological systems is the extent and rapid evolution of information, way beyond the capacity individuals to manage and comprehend. Current modeling approaches and tools lack adequate capacity to model concurrently structure and behavior of biological systems. Here we propose Object-Process Methodology (OPM, a holistic conceptual modeling paradigm, as a means to model both diagrammatically and textually biological systems formally and intuitively at any desired number of levels of detail. OPM combines objects, e.g., proteins, and processes, e.g., transcription, in a way that is simple and easily comprehensible to researchers and scholars. As a case in point, we modeled the yeast mRNA lifecycle. The mRNA lifecycle involves mRNA synthesis in the nucleus, mRNA transport to the cytoplasm, and its subsequent translation and degradation therein. Recent studies have identified specific cytoplasmic foci, termed processing bodies that contain large complexes of mRNAs and decay factors. Our OPM model of this cellular subsystem, presented here, led to the discovery of a new constituent of these complexes, the translation termination factor eRF3. Association of eRF3 with processing bodies is observed after a long-term starvation period. We suggest that OPM can eventually serve as a comprehensive evolvable model of the entire living cell system. The model would serve as a research and communication platform, highlighting unknown and uncertain aspects that can be addressed empirically and updated consequently while maintaining consistency.

  6. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    Dalgaard, Louise Torp

    2012-01-01

    Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism f...... down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients....

  7. Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein Augments mRNA Translation.

    Jeeva, Subbiah; Cheng, Erdong; Ganaie, Safder S; Mir, Mohammad A

    2017-08-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne Nairovirus of the Bunyaviridae family, causing severe illness with high mortality rates in humans. Here, we demonstrate that CCHFV nucleocapsid protein (CCHFV-NP) augments mRNA translation. CCHFV-NP binds to the viral mRNA 5' untranslated region (UTR) with high affinity. It facilitates the translation of reporter mRNA both in vivo and in vitro with the assistance of the viral mRNA 5' UTR. CCHFV-NP equally favors the translation of both capped and uncapped mRNAs, demonstrating the independence of this translation strategy on the 5' cap. Unlike the canonical host translation machinery, inhibition of eIF4F complex, an amalgam of three initiation factors, eIF4A, eIF4G, and eIF4E, by the chemical inhibitor 4E1RCat did not impact the CCHFV-NP-mediated translation mechanism. However, the proteolytic degradation of eIF4G alone by the human rhinovirus 2A protease abrogated this translation strategy. Our results demonstrate that eIF4F complex formation is not required but eIF4G plays a critical role in this translation mechanism. Our results suggest that CCHFV has adopted a unique translation mechanism to facilitate the translation of viral mRNAs in the host cell cytoplasm where cellular transcripts are competing for the same translation apparatus. IMPORTANCE Crimean-Congo hemorrhagic fever, a highly contagious viral disease endemic to more than 30 countries, has limited treatment options. Our results demonstrate that NP favors the translation of a reporter mRNA harboring the viral mRNA 5' UTR. It is highly likely that CCHFV uses an NP-mediated translation strategy for the rapid synthesis of viral proteins during the course of infection. Shutdown of this translation mechanism might selectively impact viral protein synthesis, suggesting that an NP-mediated translation strategy is a target for therapeutic intervention against this viral disease. Copyright © 2017 American Society for Microbiology.

  8. Increase in cellular concrete resistance to brittle fracture

    Chernyshov, E.M.; Krokhin, A.M.

    1979-01-01

    Considered are theoretical premises of decrease in cellular concrete resistance to brittle fracture at the expense of dispersed reinforcement. It is stated experimentally that the introduction of 3% asbestos fibers permits to increase the ultimate extensibility and strength during cellular concrete tension by 15-30% and to increase in unit rupture work 1.4-1.6 time more and therefore to decrease its brittleness

  9. The upstream open reading frame of cyclin-dependent kinase inhibitor 1A mRNA negatively regulates translation of the downstream main open reading frame

    Kim, Kyoung Mi; Cho, Hana [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Yoon Ki, E-mail: yk-kim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CDKN1A mRNA is a bona fide NMD substrate. Black-Right-Pointing-Pointer The uORF of CDKN1A mRNA is efficiently translated. Black-Right-Pointing-Pointer Translation of downstream main ORF is negatively regulated by translation of uORF in CDKN1A mRNA. -- Abstract: The first round of translation occurs on mRNAs bound by nuclear cap-binding complex (CBC), which is composed of nuclear cap-binding protein 80 and 20 (CBP80/20). During this round of translation, aberrant mRNAs are recognized and downregulated in abundance by nonsense-mediated mRNA decay (NMD), which is one of the mRNA quality control mechanisms. Here, our microarray analysis reveals that the level of cyclin-dependent kinase inhibitor 1A (CDKN1A; also known as Waf1/p21) mRNAs increases in cells depleted of cellular NMD factors. Intriguingly, CDKN1A mRNA contains an upstream open reading frame (uORF), which is a NMD-inducing feature. Using chimeric reporter constructs, we find that the uORF of CDKN1A mRNA negatively modulates translation of the main downstream ORF. These findings provide biological insights into the possible role of NMD in diverse biological pathways mediated by CDKN1A.

  10. Cellular communication through light.

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  11. Engineering Cellular Metabolism

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  12. Cellular mechanics and motility

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  13. Integrated microRNA and mRNA signatures associated with survival in triple negative breast cancer.

    Cascione, Luciano; Gasparini, Pierluigi; Lovat, Francesca; Carasi, Stefania; Pulvirenti, Alfredo; Ferro, Alfredo; Alder, Hansjuerg; He, Gang; Vecchione, Andrea; Croce, Carlo M; Shapiro, Charles L; Huebner, Kay

    2013-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease at the molecular, pathologic and clinical levels. To stratify TNBCs, we determined microRNA (miRNA) expression profiles, as well as expression profiles of a cancer-focused mRNA panel, in tumor, adjacent non-tumor (normal) and lymph node metastatic lesion (mets) tissues, from 173 women with TNBCs; we linked specific miRNA signatures to patient survival and used miRNA/mRNA anti-correlations to identify clinically and genetically different TNBC subclasses. We also assessed miRNA signatures as potential regulators of TNBC subclass-specific gene expression networks defined by expression of canonical signal pathways.Tissue specific miRNAs and mRNAs were identified for normal vs tumor vs mets comparisons. miRNA signatures correlated with prognosis were identified and predicted anti-correlated targets within the mRNA profile were defined. Two miRNA signatures (miR-16, 155, 125b, 374a and miR-16, 125b, 374a, 374b, 421, 655, 497) predictive of overall survival (P = 0.05) and distant-disease free survival (P = 0.009), respectively, were identified for patients 50 yrs of age or younger. By multivariate analysis the risk signatures were independent predictors for overall survival and distant-disease free survival. mRNA expression profiling, using the cancer-focused mRNA panel, resulted in clustering of TNBCs into 4 molecular subclasses with different expression signatures anti-correlated with the prognostic miRNAs. Our findings suggest that miRNAs play a key role in triple negative breast cancer through their ability to regulate fundamental pathways such as: cellular growth and proliferation, cellular movement and migration, Extra Cellular Matrix degradation. The results define miRNA expression signatures that characterize and contribute to the phenotypic diversity of TNBC and its metastasis.

  14. Differential regulation of renal cyclooxygenase mRNA by dietary salt intake

    Jensen, B L; Kurtz, A

    1997-01-01

    RNA correlated directly with salt intake. We conclude that dietary salt intake influences renal cyclooxygenase mRNAs zone-specifically with opposite responses between cortex and medulla. Cortical COX II-mediated prostaglandin formation is probably important in low salt states whereas medullary COX I......Experiments were done to investigate the influence of dietary salt intake on renal cyclooxygenase (COX) I and II mRNA levels. To this end rats were fed either a low NaCl diet (LS; 0.02% NaCl wt/wt) or a high NaCl diet (HS diet; 4% NaCl wt/wt) for 5, 10 and 20 days. After 10 days Na excretion...... differed 760-fold, plasma renin activity and renin mRNA were increased eight- and threefold in LS compared to HS animals. Total renal COX I mRNA decreased 50% following the LS diet and did not change after the HS diet. Conversely, COX II mRNA declined after HS intake and transiently increased after salt...

  15. Effects of intracellular chelatable iron and oxidative stress on transcription of classical cellular glutathione peroxidase gene in murine erythroleukemia cells

    Fuchs, O.

    1997-01-01

    The effect of intracellular chelatable iron levels and of oxidative stress on nuclear classical cellular glutathione peroxidase (GSHPx-1) RNA nascent chain elongation (run-on transcription) and on the stability of cytoplasmic GSHPx-1 mRNA was investigated in murine erythroleukemia (MEL) cells. The amount in the intracellular low molecular mass iron pool was changed by incubation of MEL cells transformed by Friend virus with iron donors or iron chelators. Transcription in vitro in isolated nuclei from treated cells showed that the treatment with chelators (desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone) decrease the rate of nuclear GSHPx-1 RNA nascent chain elongation in both un-induced and with 5 mmol hexamethylenebisacetamide to erythroid differentiation induced MEL cells. Iron donors (diferric transferrin,, Fe-PIH or their combination) and t-butyl hydroperoxide (t-BuOOH) had the opposite effect on GSHPx-1 gene transcription in run-on experiments. On the other hand, 50 μmol DFO or 2.5 μmol t-BuOOH did not change the stability of cytoplasmic GSHPx-1 mRNA in both un-induced and induced MEL cells treated with 5 μmol actinomycin D and with or without these agents for 9 h. These findings indicate that iron and oxidative stress play their role at the transcriptional level of GSHPx-1 gene expression. (author)

  16. Cellular and molecular responses of E. fetida cœlomocytes exposed to TiO2 nanoparticles

    Bigorgne, Emilie; Foucaud, Laurent; Caillet, Céline; Giambérini, Laure; Nahmani, Johanne; Thomas, Fabien; Rodius, François

    2012-07-01

    An in vitro approach using cœlomocytes of Eisenia fetida was investigated to evaluate toxicity of TiO2 nanoparticles. Cœlomocytes were exposed to well-dispersed suspension of small aggregates (130 nm) of TiO2 nanoparticles (1-25 μg/ml) during 4, 12 and 24 h. Intracellular localisation suggested that the main route of uptake was endocytosis. Cellular responses showed that TiO2 nanoparticles were not cytotoxic and had no effect on phagocytosis at any of the four concentrations for each time tested. Concerning molecular responses, an increase of fetidin and metallothionein mRNA expression was observed starting from 4 h of exposure. In contrast, expression of coelomic cytolytic factor mRNA decreased for 10 and 25 μg/ml after 4 h. Superoxide dismutase, catalase and glutathione-S-transferase expression were not modified suggesting that oxidative stress was not induced by TiO2 in our experimental conditions. This in vitro approach showed that TiO2 nanoparticles were taken up by cœlomocytes and they could modify the molecular response of immune and detoxification system.

  17. Decreasing relative risk premium

    Hansen, Frank

    2007-01-01

    such that the corresponding relative risk premium is a decreasing function of present wealth, and we determine the set of associated utility functions. We find a new characterization of risk vulnerability and determine a large set of utility functions, closed under summation and composition, which are both risk vulnerable...

  18. Decreasing asthma morbidity

    1994-12-12

    Dec 12, 1994 ... Apart from the optimal use of drugs, various supplementary methods have been tested to decrease asthma morbidity, usually in patients from reiatively affluent socio-economic backgrounds. A study of additional measures taken in a group of moderate to severe adult asthmatics from very poor socio- ...

  19. Serotonin receptor, SERT mRNA and correlations with symptoms in males with alcohol dependence and suicide.

    Thompson, P M; Cruz, D A; Olukotun, D Y; Delgado, P L

    2012-09-01

    This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels. © 2011 John Wiley & Sons A/S.

  20. Expression of galectin-9 mRNA in obese children with polymorphism of the lactase gene

    A.E. Abaturov

    2018-02-01

    .73 ± 52.60 RU DmRNA Gal-9/mRNA actin, which exceeded the expression level of Gal-9 mRNA in children without obesity and lactose malabsorption (313.34 ± 19.70 RU DmRNA Gal-9 / mRNA actin, p < 0.01. After the use of exogenous lactase preparations in children with genotype C/C 13910 and lactose malabsorption for a month, the level of expression of Gal-9 mRNA approximated to the level of 246.21 ± 15.70 RU DmRNA Gal-9/mRNA actin, whereas when used only the low-lactose diet the level increased insignificantly to 58.72 ± 21.10 VD DmRNA Gal-9/mRNA actin, p < 0.01. It is also interesting that in children with genotype C/C 13910 without lactose malabsorption against the background of a low-lactose diet, the level of expression of Gal-9 mRNA decreased to 388.38 ± 20.40 RU DmRNA Gal-9/mRNA actin, approaching the level of healthy children without obesity. Conclusions. In children with genotype C/C 13910 the level of expression of Gal-9 mRNA depends on the lactose malabsorption, which requires replacement therapy that combines a low-lactose diet and the use of exogenous lactase preparations. In the absence of lactose malabsorption, using only the low-lactose diet in children with genotype C/C 13910 approximates the level of expression of Gal-9 mRNA to the level of healthy children without obesity.

  1. Downregulation of TIM-3 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus

    Cai, X.Z. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang (China); Huang, W.Y.; Qiao, Y.; Chen, Y.; Du, S.Y.; Chen, D.; Yu, S. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Liu, N. [Department of Nephrology, First Affiliated Hospital, China Medical University, Shenyang (China); Dou, L.Y. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Jiang, Y. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang (China); Department of Dermatology, First Affiliated Hospital, China Medical University, Shenyang (China)

    2014-10-17

    The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (r{sub s}=0.283, P=0.049) and serum albumin (r{sub s}=0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; r{sub s}=-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE.

  2. Downregulation of TIM-3 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus

    Cai, X.Z.; Huang, W.Y.; Qiao, Y.; Chen, Y.; Du, S.Y.; Chen, D.; Yu, S.; Liu, N.; Dou, L.Y.; Jiang, Y.

    2014-01-01

    The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (r s =0.283, P=0.049) and serum albumin (r s =0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; r s =-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE

  3. Cellular image classification

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  4. Modeling and cellular studies

    Anon.

    1982-01-01

    Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage

  5. The classification of mRNA expression levels by the phosphorylation state of RNAPII CTD based on a combined genome-wide approach

    Tachibana Taro

    2011-10-01

    Full Text Available Abstract Background Cellular function is regulated by the balance of stringently regulated amounts of mRNA. Previous reports revealed that RNA polymerase II (RNAPII, which transcribes mRNA, can be classified into the pausing state and the active transcription state according to the phosphorylation state of RPB1, the catalytic subunit of RNAPII. However, genome-wide association between mRNA expression level and the phosphorylation state of RNAPII is unclear. While the functional importance of pausing genes is clear, such as in mouse Embryonic Stem cells for differentiation, understanding this association is critical for distinguishing pausing genes from active transcribing genes in expression profiling data, such as microarrays and RNAseq. Therefore, we examined the correlation between the phosphorylation of RNAPII and mRNA expression levels using a combined analysis by ChIPseq and RNAseq. Results We first performed a precise quantitative measurement of mRNA by performing an optimized calculation in RNAseq. We then visualized the recruitment of various phosphorylated RNAPIIs, such as Ser2P and Ser5P. A combined analysis using optimized RNAseq and ChIPseq for phosphorylated RNAPII revealed that mRNA levels correlate with the various phosphorylation states of RNAPII. Conclusions We demonstrated that the amount of mRNA is precisely reflected by the phased phosphorylation of Ser2 and Ser5. In particular, even the most "pausing" genes, for which only Ser5 is phosphorylated, were detectable at a certain level of mRNA. Our analysis indicated that the complexity of quantitative regulation of mRNA levels could be classified into three categories according to the phosphorylation state of RNAPII.

  6. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  7. The oxygen effect and cellular adaptation

    Meshcherikova, V.V.; Vajnson, A.A.; Yarmonenko, S.P.

    1979-01-01

    The radiomodifying effect of oxygen was shown to depend on the level of cellular oxygenation prior to irradiation. Acute hypoxia created at the time of irradiation protects previously normally oxygenated cells with DMF approximately 1.4 times larger than that of cells cultured for 24 hours under conditions of mild hypoxia. It is suggested that a decrease in the radioprotective effect of acute hypoxia on chronically hypoxic cells is correlated with an appreciable decrease in the rate of oxygen consumption by these cells, due to which the oxygen concentration near the intracellular targets in chronically hypoxic cells may be higher than in normal cells under conditions of poor oxygenation

  8. Low-level lasers alter mRNA levels from traditional reference genes used in breast cancer cells

    Teixeira, A. F.; Canuto, K. S.; Rodrigues, J. A.; Fonseca, A. S.; Mencalha, A. L.

    2017-07-01

    Cancer is among the leading causes of mortality worldwide, increasing the importance of treatment development. Low-level lasers are used in several diseases, but some concerns remains on cancers. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a technique used to understand cellular behavior through quantification of mRNA levels. Output data from target genes are commonly relative to a reference that cannot vary according to treatment. This study evaluated reference genes levels from MDA-MB-231 cells exposed to red or infrared lasers at different fluences. Cultures were exposed to red and infrared lasers, incubated (4 h, 37 °C), total RNA was extracted and cDNA synthesis was performed to evaluate mRNA levels from ACTB, GUSB and TRFC genes by RT-qPCR. Specific amplification was verified by melting curves and agarose gel electrophoresis. RefFinder enabled data analysis by geNorm, NormFinder and BestKeeper. Specific amplifications were obtained and, although mRNA levels from ACTB, GUSB or TRFC genes presented no significant variation through traditional statistical analysis, Excel-based tools revealed that the use of these reference genes are dependent of laser characteristics. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from ACTB, GUSB and TRFC in MDA-MB-231 cells.

  9. Over-expression of the miRNA cluster at chromosome 14q32 in the alcoholic brain correlates with suppression of predicted target mRNA required for oligodendrocyte proliferation.

    Manzardo, A M; Gunewardena, S; Butler, M G

    2013-09-10

    We examined miRNA expression from RNA isolated from the frontal cortex (Broadman area 9) of 9 alcoholics (6 males, 3 females, mean age 48 years) and 9 matched controls using both the Affymetrix GeneChip miRNA 2.0 and Human Exon 1.0 ST Arrays to further characterize genetic influences in alcoholism and the effects of alcohol consumption on predicted target mRNA expression. A total of 12 human miRNAs were significantly up-regulated in alcohol dependent subjects (fold change≥1.5, false discovery rate (FDR)≤0.3; p<0.05) compared with controls including a cluster of 4 miRNAs (e.g., miR-377, miR-379) from the maternally expressed 14q32 chromosome region. The status of the up-regulated miRNAs was supported using the high-throughput method of exon microarrays showing decreased predicted mRNA gene target expression as anticipated from the same RNA aliquot. Predicted mRNA targets were involved in cellular adhesion (e.g., THBS2), tissue differentiation (e.g., CHN2), neuronal migration (e.g., NDE1), myelination (e.g., UGT8, CNP) and oligodendrocyte proliferation (e.g., ENPP2, SEMA4D1). Our data support an association of alcoholism with up-regulation of a cluster of miRNAs located in the genomic imprinted domain on chromosome 14q32 with their predicted gene targets involved with oligodendrocyte growth, differentiation and signaling. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. EphA2 Is a Potential Player of Malignant Cellular Behavior in Non-Metastatic Renal Cell Carcinoma Cells but Not in Metastatic Renal Cell Carcinoma Cells.

    Cho, Min Chul; Cho, Sung Yong; Yoon, Cheol Yong; Lee, Seung Bae; Kwak, Cheol; Kim, Hyeon Hoe; Jeong, Hyeon

    2015-01-01

    To investigate the role of EphA2 in malignant cellular behavior in renal cell carcinoma (RCC) cells and whether FAK/RhoA signaling can act as downstream effectors of EphA2 on RCC cells. Expression of EphA2 protein in non-metastatic RCC (Caki-2 and A498), metastatic RCC cells (Caki-1 and ACHN), HEK-293 cells and prostate cancer cells (PC-3 and DU-145; positive controls of EphA2 expression) was evaluated by Western blot. Changes in mRNA or protein expression of EphA2, FAK or membrane-bound RhoA following EphA2, FAK or RhoA small interfering RNA (siRNA) transfection were determined by reverse transcription polymerase chain reaction or Western blot. The effect of siRNA treatment on cellular viability, apoptosis and invasion was analyzed by cell counting kit-8, Annexin-V and modified Matrigel-Boyden assays, respectively. In all RCC cell lines, the expression of EphA2 protein was detectable at variable levels; however, in HEK-293 cells, EphA2 expression was very low. Treatment with EphA2 siRNA significantly reduced the expression of EphA2 mRNA and protein in all RCC cell lines. For non-metastatic RCC cells (Caki-2 and A498) but not metastatic RCC cells (Caki-1 and ACHN), cellular viability, invasiveness, resistance to apoptosis, expression of membrane-bound RhoA protein and FAK phosphorylation were significantly decreased in EphA2 siRNA-treated cells compared to the control. In non-metastatic RCC cells, FAK siRNA significantly attenuated the invasiveness, resistance to apoptosis, as well as expression of membrane-bound RhoA protein without changing protein expression of EphA2. RhoA siRNA significantly decreased the malignant cellular behavior and expression of membrane-bound RhoA protein without changing EphA2 protein expression or FAK phosphorylation. Our data provide the first functional evidence that the EphA2/FAK/RhoA signaling pathway plays a critical role in the malignant cellular behavior of RCC and appears to be functional particularly in the early stage of

  11. Persistent effects of chronic clozapine on the cellular and behavioral responses to LSD in mice

    Moreno, José L.; Holloway, Terrell; Umali, Adrienne; Rayannavar, Vinayak; Sealfon, Stuart C.

    2013-01-01

    Rationale In schizophrenia patients, optimal treatment with antipsychotics requires weeks to months of sustained drug therapy. However, single administration of antipsychotic drugs can reverse schizophrenia-like behavioral alterations in rodent models of psychosis. This raises questions about the physiological relevance of such antipsychotic-like activity. Objective This study evaluates the effects of chronic treatment with clozapine on the cellular and behavioral responses induced by the hallucinogenic serotonin 5-HT2A receptor agonist lysergic acid diethylamide (LSD) as a mouse model of psychosis. Method Mice were treated chronically (21 days) with 25 mg/kg/day clozapine. Experiments were conducted 1, 7, 14, and 21 days after the last clozapine administration. [3H]Ketanserin binding and 5-HT2A mRNA expression were determined in mouse somatosensory cortex. Head-twitch behavior, expression of c-fos, which is induced by all 5-HT2A agonists, and expression of egr-1 and egr-2, which are LSD-like specific, were assayed. Results Head-twitch response was decreased and [3H]ketanserin binding was downregulated in 1, 7, and 14 days after chronic clozapine. 5-HT2A mRNA was reduced 1 day after chronic clozapine. Induction of c-fos, but not egr-1 and egr-2, was rescued 7 days after chronic clozapine. These effects were not observed after short treatment (2 days) with clozapine or chronic haloperidol (1 mg/kg/day). Conclusion Our findings provide a murine model of chronic atypical antipsychotic drug action and suggest downregulation of the 5-HT2A receptor as a potential mechanism involved in these persistent therapeutic-like effects. PMID:22842765

  12. Systemic molecular and cellular changes induced in rats upon inhalation of JP-8 petroleum fuel vapor.

    Hanas, Jay S; Bruce Briggs, G; Lerner, Megan R; Lightfoot, Stan A; Larabee, Jason L; Karsies, Todd J; Epstein, Robert B; Hanas, Rushie J; Brackett, Daniel J; Hocker, James R

    2010-05-01

    Limited information is available regarding systemic changes in mammals associated with exposures to petroleum/hydrocarbon fuels. In this study, systemic toxicity of JP-8 jet fuel was observed in a rat inhalation model at different JP-8 fuel vapor concentrations (250, 500, or 1000 mg/m(3), for 91 days). Gel electrophoresis and mass spectrometry sequencing identified the alpha-2 microglobulin protein to be elevated in rat kidney in a JP-8 dose-dependent manner. Western blot analysis of kidney and lung tissue extracts revealed JP-8 dependent elevation of inducible heat shock protein 70 (HSP70). Tissue changes were observed histologically (hematoxylin and eosin staining) in liver, kidney, lung, bone marrow, and heart, and more prevalently at medium or high JP-8 vapor phase exposures (500-1000 mg/m(3)) than at low vapor phase exposure (250 mg/m(3)) or non-JP-8 controls. JP-8 fuel-induced liver alterations included dilated sinusoids, cytoplasmic clumping, and fat cell deposition. Changes to the kidneys included reduced numbers of nuclei, and cytoplasmic dumping in the lumen of proximal convoluted tubules. JP-8 dependent lung alterations were edema and dilated alveolar capillaries, which allowed clumping of red blood cells (RBCs). Changes in the bone marrow in response to JP-8 included reduction of fat cells and fat globules, and cellular proliferation (RBCs, white blood cells-WBCs, and megakaryocytes). Heart tissue from JP-8 exposed animals contained increased numbers of inflammatory and fibroblast cells, as well as myofibril scarring. cDNA array analysis of heart tissue revealed a JP-8 dependent increase in atrial natriuretic peptide precursor mRNA and a decrease in voltage-gated potassium (K+) ion channel mRNA.

  13. Alternative Polyadenylation and Nonsense-Mediated Decay Coordinately Regulate the Human HFE mRNA Levels

    Martins, Rute; Proença, Daniela; Silva, Bruno; Barbosa, Cristina; Silva, Ana Luísa; Faustino, Paula; Romão, Luísa

    2012-01-01

    Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that selectively recognizes and degrades defective mRNAs carrying premature translation-termination codons. However, several studies have shown that NMD also targets physiological transcripts that encode full-length proteins, modulating their expression. Indeed, some features of physiological mRNAs can render them NMD-sensitive. Human HFE is a MHC class I protein mainly expressed in the liver that, when mutated, can cause hereditary hemochromatosis, a common genetic disorder of iron metabolism. The HFE gene structure comprises seven exons; although the sixth exon is 1056 base pairs (bp) long, only the first 41 bp encode for amino acids. Thus, the remaining downstream 1015 bp sequence corresponds to the HFE 3′ untranslated region (UTR), along with exon seven. Therefore, this 3′ UTR encompasses an exon/exon junction, a feature that can make the corresponding physiological transcript NMD-sensitive. Here, we demonstrate that in UPF1-depleted or in cycloheximide-treated HeLa and HepG2 cells the HFE transcripts are clearly upregulated, meaning that the physiological HFE mRNA is in fact an NMD-target. This role of NMD in controlling the HFE expression levels was further confirmed in HeLa cells transiently expressing the HFE human gene. Besides, we show, by 3′-RACE analysis in several human tissues that HFE mRNA expression results from alternative cleavage and polyadenylation at four different sites – two were previously described and two are novel polyadenylation sites: one located at exon six, which confers NMD-resistance to the corresponding transcripts, and another located at exon seven. In addition, we show that the amount of HFE mRNA isoforms resulting from cleavage and polyadenylation at exon seven, although present in both cell lines, is higher in HepG2 cells. These results reveal that NMD and alternative polyadenylation may act coordinately to control HFE mRNA levels, possibly varying its

  14. Statistical mechanics of cellular automata

    Wolfram, S.

    1983-01-01

    Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions approx. =1.59 or approx. =1.69. With ''random'' initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed

  15. Developmental changes in hypothalamic oxytocin and oxytocin receptor mRNA expression and their sensitivity to fasting in male and female rats.

    Matsuzaki, Toshiya; Iwasa, Takeshi; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kawami, Takako; Murakami, Masahiro; Yamasaki, Mikio; Yamamoto, Yuri; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Oxytocin (OT) affects the central nervous system and is involved in a variety of social and non-social behaviors. Recently, the role played by OT in energy metabolism and its organizational effects on estrogen receptor alpha (ER-α) during the neonatal period have gained attention. In this study, the developmental changes in the hypothalamic mRNA levels of OT, the OT receptor (OTR), and ER-α were evaluated in male and female rats. In addition, the fasting-induced changes in the hypothalamic mRNA levels of OT and the OTR were evaluated. Hypothalamic explants were taken from postnatal day (PND) 10, 20, and 30 rats, and the mRNA level of each molecule was measured. Hypothalamic OT mRNA expression increased throughout the developmental period in both sexes. The rats' hypothalamic OTR mRNA levels were highest on PND 10 and decreased throughout the developmental period. In the male rats, the hypothalamic mRNA levels of ER-α were higher on PND 30 than on PND 10. On the other hand, no significant differences in hypothalamic ER-α mRNA expression were detected among the examined time points in the female rats, although hypothalamic ER-α mRNA expression tended to be higher on PND 30 than on PND 10. Significant positive correlations were detected between hypothalamic OT and ER-α mRNA expression in both the male and female rats. Hypothalamic OT mRNA expression was not affected by fasting at any of the examined time points in either sex. These results indicate that hypothalamic OT expression is not sensitive to fasting during the developmental period. In addition, as a positive correlation was detected between hypothalamic OT and ER-α mRNA expression, these two molecules might interact with each other to induce appropriate neuronal development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Various functions of PBMC from colon cancer patients are not decreased compared to healthy blood donors

    Afzelius, P; Nielsen, Hans Jørgen

    1997-01-01

    The immune surveillance hypothesis suggests impaired immune responses to participate in development of cancer. This may partly be due to increased amounts of PGE2 and histamine, which inhibit cellular immunity. These effects are mediated by cAMP, which is increased and thereby may down-regulate I...... no difference in levels of intracellular cAMP, IL-2 mRNA expression, IL-2R mRNA expression, or proliferative responses of PBMC from colon cancer patients compared to healthy blood donors. There was no effect of the immune modulating agents on PBMC from colon cancer patients....

  17. A standardized seabuckthorn leaf extract (SBL-1) counters radiation induced renal histopathology, oxidative stress as well as changes in mRNA levels

    Saini, Manu; Madhu Bala; Prasad, Jagdish; Farooqi, Humaira; Abdin, M.Z.

    2014-01-01

    Hippophae rhamnoides L., (common name Seabuckthorn; Family: Elaeagnaceae) is a plant growing naturally as well as cultivated in North-West Himalayas at 7000-15,000 feet. It is known for antioxidant and medicinal properties. Our earlier studies showed that administration of SBL-1 (30 mg/kg body weight), 30 minutes before 60 Co-γ-radiation (10 Gy, lethal dose) rendered > 90% survival in mice population. The present study was planned to investigate the effects of radioprotective dose (30 mg/kg body weight) dose of SBL-1 treatment in kidneys of irradiated and control animals. Strain 'A' male mice (weighing 28±2 g) were irradiated without or 30 minutes after administration of SBL-1. Animals were sacrificed at different days (1, 2, 3, 5, 7 and 15) after the treatment. Histopathology and biochemical assays were performed using standardized procedures. Gene expression study was performed by PCR of mRNA. The 60 Co γ-irradiated animals showed a significant reduction in total thiol (T-SH) content till day 5 (p< 0.05), activity of catalase, superoxide dismutase (SOD) (p<0.01) and glutathione-s-transferase (GST) (p<0.05) and significant increase in LPx, ALP and free iron content (p<0.05) on all study days. Histopathology showed Glomeruli shrinkage, nuclear degeneration, tubular dilations, widening of tubular lumen and collapsing of cellular architecture which increased from day 2 till day 7. Significant alterations in mRNA levels of some of the key genes involved in acute renal failure were observed. In animals treated with SBL-1 before irradiation the T-SH increased significantly at day 2, 3 and 5, activity of catalase, SOD and GST decreased significantly (p<0.05) only at day 2 and 3 respectively. Significant increase in (p<0.05) LPx was observed till day 3, ALP levels only at day 3 while free iron content till day 5. Only mild changes in the tissues histology were observed at day 2, 5 and 7. By day 10 no significant difference was observed in comparison to

  18. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  19. 47 CFR 22.909 - Cellular markets.

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular markets...

  20. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung

    Xie, Ling; Zhou, Jundong; Zhang, Shuyu; Chen, Qing; Lai, Rensheng; Ding, Weiqun; Song, ChuanJun; Meng, XingJun; Wu, Jinchang

    2014-01-01

    Exposure to radiation provokes cellular responses, which are likely regulated by gene expression networks. MicroRNAs are small non-coding RNAs, which regulate gene expression by promoting mRNA degradation or inhibiting protein translation. The expression patterns of both mRNA and miRNA during the radiation-induced lung injury (RILI) remain less characterized and the role of miRNAs in the regulation of this process has not been studied. The present study sought to evaluate miRNA and mRNA expression profiles in the rat lung after irradiation. Male Wistar rats were subjected to single dose irradiation with 20 Gy using 6 MV x-rays to the right lung. (A dose rate of 5 Gy/min was applied). Rats were sacrificed at 3, 12 and 26 weeks after irradiation, and morphological changes in the lung were examined by haematoxylin and eosin. The miRNA and mRNA expression profiles were evaluated by microarrays and followed by quantitative RT-PCR analysis. A cDNA microarray analysis found 2183 transcripts being up-regulated and 2917 transcripts down-regulated (P ≤ 0.05, ≥2.0 fold change) in the lung tissues after irradiation. Likewise, a miRNAs microarray analysis indicated 15 miRNA species being up-regulated and 8 down-regulated (P ≤ 0.05). Subsequent bioinformatics anal -yses of the differentially expressed mRNA and miRNAs revealed that alterations in mRNA expression following irradiation were negatively correlated with miRNAs expression. Our results provide evidence indicating that irradiation induces alterations of mRNA and miRNA expression in rat lung and that there is a negative correlation of mRNA and miRNA expression levels after irradiation. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of radiation-induced lung injury. In summary, RILI does not develop gradually in a linear process. In fact, different cell types interact via cytokines in a very complex network. Furthermore, this study suggests that

  1. Modulation of metallothionein, pi-GST and Se-GPx mRNA expression in the freshwater bivalve Dreissena polymorpha transplanted into polluted areas

    Périne Doyen

    2015-04-01

    Full Text Available Glutathione S-transferases (GST, glutathione peroxidases (GPx and metallothioneins (MT are essential components of cellular detoxication systems. We studied the expression of pi-GST, Se-GPx, and MT transcripts in the digestive gland of Dreissena polymorpha exposed to organic and metallic pollutants. Mussels from a control site were transplanted during 3, 15 and 30 days into the Moselle River, upstream and downstream to the confluence with the Fensch River, a tributary highly polluted by polycyclic aromatic hydrocarbons and heavy metals. Se-GPx and pi-GST mRNA expression increased in mussels transplanted into the upstream site, Se-GPx response being the earliest. These genes were also induced after 3-days exposure at the downstream site. These inductions suggest an adaptative response to an alteration of the environment. Moreover, at this site, a significant decrease of the expression of MT, pi-GST and Se-GPx transcripts was observed after 30 days which could correspond to an inefficiency of detoxification mecanisms. The results are in correlation with the levels of pollutants in the sediments and their bioaccumulation in mussels, they confirm the environmental deleterious impact of the pollutants carried by the Fensch River.

  2. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  3. HIV-1 matrix dependent membrane targeting is regulated by Gag mRNA trafficking.

    Jing Jin

    Full Text Available Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV post-transcriptional regulatory element (PRE mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA.

  4. Combinatorial programming of human neuronal progenitors using magnetically-guided stoichiometric mRNA delivery.

    Azimi, Sayyed M; Sheridan, Steven D; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih

    2018-05-01

    Identification of optimal transcription-factor expression patterns to direct cellular differentiation along a desired pathway presents significant challenges. We demonstrate massively combinatorial screening of temporally-varying mRNA transcription factors to direct differentiation of neural progenitor cells using a dynamically-reconfigurable magnetically-guided spotting technology for localizing mRNA, enabling experiments on millimetre size spots. In addition, we present a time-interleaved delivery method that dramatically reduces fluctuations in the delivered transcription-factor copy-numbers per cell. We screened combinatorial and temporal delivery of a pool of midbrain-specific transcription factors to augment the generation of dopaminergic neurons. We show that the combinatorial delivery of LMX1A, FOXA2 and PITX3 is highly effective in generating dopaminergic neurons from midbrain progenitors. We show that LMX1A significantly increases TH -expression levels when delivered to neural progenitor cells either during proliferation or after induction of neural differentiation, while FOXA2 and PITX3 increase expression only when delivered prior to induction, demonstrating temporal dependence of factor addition. © 2018, Azimi et al.

  5. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  6. Intracerebroventricular C75 decreases meal frequency and reduces AgRP gene expression in rats.

    Aja, Susan; Bi, Sheng; Knipp, Susan B; McFadden, Jill M; Ronnett, Gabriele V; Kuhajda, Francis P; Moran, Timothy H

    2006-07-01

    3-Carboxy-4-alkyl-2-methylenebutyrolactone (C75), an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyltransferase-1, reduces food intake and body weight in rodents when given systemically or centrally. Intracellular molecular mechanisms involving changes in cellular energy status are proposed to initiate the feeding and body weight reductions. However, effectors that lie downstream of these initial steps are not yet fully identified. Present experiments characterize the time courses of hypophagia and weight loss after single injections of C75 into the lateral cerebroventicle in rats and go on to identify specific meal pattern changes and coinciding alterations in gene expression for feeding-related hypothalamic neuropeptides. C75 reduced chow intake and body weight dose dependently. Although the principal effects occurred on the first day, weight losses relative to vehicle control were maintained over multiple days. C75 did not affect generalized locomotor activity. C75 began to reduce feeding after a 6-h delay. The hypophagia was due primarily to decreased meal number during 6-12 h without a significant effect on meal size, suggesting that central C75 reduced the drive to initiate meals. C75 prevented the anticipated hypophagia-induced increases in mRNA for AgRP in the arcuate nucleus at 22 h and at 6 h when C75 begins to suppress feeding. Overall, the data suggest that gene expression changes leading to altered melanocortin signaling are important for the hypophagic response to intracerebroventricular C75.

  7. A pilot trial assessing urinary gene expression profiling with an mRNA array for diabetic nephropathy.

    Min Zheng

    Full Text Available BACKGROUND: The initiation and progression of diabetic nephropathy (DN is complex. Quantification of mRNA expression in urinary sediment has emerged as a novel strategy for studying renal diseases. Considering the numerous molecules involved in DN development, a high-throughput platform with parallel detection of multiple mRNAs is needed. In this study, we constructed a self-assembling mRNA array to analyze urinary mRNAs in DN patients with aims to reveal its potential in searching novel biomarkers. METHODS: mRNA array containing 88 genes were fabricated and its performance was evaluated. A pilot study with 9 subjects including 6 DN patients and 3 normal controls were studied with the array. DN patients were assigned into two groups according to their estimate glomerular rate (eGFR: DNI group (eGFR>60 ml/min/1.73 m(2, n = 3 and DNII group (eGFR<60 ml/min/1.73 m(2, n = 3. Urinary cell pellet was collected from each study participant. Relative abundance of these target mRNAs from urinary pellet was quantified with the array. RESULTS: The array we fabricated displayed high sensitivity and specificity. Moreover, the Cts of Positive PCR Controls in our experiments were 24±0.5 which indicated high repeatability of the array. A total of 29 mRNAs were significantly increased in DN patients compared with controls (p<0.05. Among these genes, α-actinin4, CDH2, ACE, FAT1, synaptopodin, COL4α, twist, NOTCH3 mRNA expression were 15-fold higher than those in normal controls. In contrast, urinary TIMP-1 mRNA was significantly decreased in DN patients (p<0.05. It was shown that CTGF, MCP-1, PAI-1, ACE, CDH1, CDH2 mRNA varied significantly among the 3 study groups, and their mRNA levels increased with DN progression (p<0.05. CONCLUSION: Our pilot study demonstrated that mRNA array might serve as a high-throughput and sensitive tool for detecting mRNA expression in urinary sediment. Thus, this primary study indicated that mRNA array probably could be a

  8. [Incontinentia pigmenti with defect in cellular immunity].

    Zamora-Chávez, Antonio; Escobar-Sánchez, Argelia; Sadowinski-Pine, Stanislaw; Saucedo-Ramírez, Omar Josué; Delgado-Barrera, Palmira; Enríquez-Quiñones, Claudia G

    Incontinentia pigmenti is a rare, X-linked genetic disease and affects all ectoderm-derived tissues such as skin, appendages, eyes, teeth and central nervous system as well as disorders of varying degree of cellular immunity characterized by decreasing melanin in the epidermis and increase in the dermis. When the condition occurs in males, it is lethal. We present the case of a 2-month-old infant with severe incontinentia pigmenti confirmed by histological examination of skin biopsy. The condition evolved with severe neurological disorders and seizures along with severe cellular immune deficiency, which affected the development of severe infections and caused the death of the patient. The importance of early clinical diagnosis is highlighted along with the importance of multidisciplinary management of neurological disorders and infectious complications. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines

    Barredo Julio C

    2002-03-01

    Full Text Available Abstract Background We describe an alternative method to determine mRNA half-life (t1/2 based on the Real-Time RT-PCR procedure. This approach was evaluated by using the β-actin gene as a reference molecule for measuring of mRNA stability. Results Human leukemia Nalm-6 and CCRF-CEM cells were treated with various concentrations of Actinomycin D to block transcription and aliquots were removed periodically. Total RNA was isolated and quantified using the RiboGreen® fluorescent dye with the VersaFluor Fluorometer System. One μg of total RNA was reverse transcribed and used as template for the amplification of a region of the β-actin gene (231 bp. To generate the standard curve, serial ten-fold dilutions of the pBactin-231 vector containing the cDNA amplified fragment were employed, β-actin mRNAs were quantified by Real-Time RT-PCR using the SYBR® Green I fluorogenic dye and data analyzed using the iCycle iQ system software. Using this method, the β-actin mRNA exhibited a half-life of 6.6 h and 13.5 h in Nalm-6 and CCRF-CEM cells, respectively. The t1/2 value obtained for Nalm-6 is comparable to those estimated from Northern blot studies, using normal human leukocytes (5.5 h. Conclusions We have developed a rapid, sensitive, and reliable method based on Real-Time RT-PCR for measuring mRNA half-life. Our results confirm that β-actin mRNA half-life can be affected by the cellular growth rate.

  10. In vitro detection of mdr1 mRNA in murine leukemia cells with 111In-labeled oligonucleotide

    Bai Jingming; Yokoyama, Kunihiko; Kinuya, Seigo; Michigishi, Takatoshi; Tonami, Norihisa; Shiba, Kazuhiro; Matsushita, Ryo; Nomura, Masaaki

    2004-01-01

    The feasibility of intracellular mdr1 mRNA expression detection with radiolabeled antisense oligonucleotide (ODN) was investigated in the murine leukemia cell line, P388/S, and its subclonal, adriamycin-resistant cell line, P388/R. The expression level of mdr1 mRNA was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Existence of the multidrug resistance (MDR) phenomenon was assessed via cellular uptake of 99m Tc-sestamibi (MIBI), a known substrate for P-glycoprotein. A 15-mer phosphorothioate antisense ODN complementary to the sequences located at -1 to 14 of mdr1 mRNA and its corresponding sense ODN were conjugated with the cyclic anhydride of diethylene triamine penta-acetic acid (cDTPA) via an amino group linked to the terminal phosphate at the 5' end at pH 8-9. The DTPA-ODN complexes at concentrations of 0.1-17.4 μMwere reacted with 111 InCl 3 at pH 5 for 1 h. The hybridization affinity of labeled ODN was evaluated with size-exclusion high-performance liquid chromatography following incubation with the complementary sequence. Cellular uptake of labeled ODN was examined in vitro. Furthermore, enhancing effects of synthetic lipid carriers (Transfast) on transmembrane delivery of ODN were assessed. P388/R cells displayed intense mdr1 mRNA expression in comparison with P388/S cells. 99m Tc-MIBI uptake in P388/S cells was higher than that in P388/R cells. Specific radioactivity up to 1,634 MBq/nmol was achieved via elevation of added radioactivity relative to ODN molar amount. The hybridization affinity of antisense 111 In-ODN was preserved at approximately 85% irrespective of specific activity. Cellular uptake of antisense 111 In-ODN did not differ from that of sense 111 In-ODN in either P388/S cells or P388/R cells. However, lipid carrier incorporation significantly increased transmembrane delivery of 111 In-ODN; moreover, specific uptake of antisense 111 In-ODN was demonstrated in P388/R cells. Radiolabeling of ODN at high specific

  11. MSAT and cellular hybrid networking

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  12. Cellular automata analysis and applications

    Hadeler, Karl-Peter

    2017-01-01

    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  13. MIMO Communication for Cellular Networks

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  14. RNase L controls terminal adipocyte differentiation, lipids storage and insulin sensitivity via CHOP10 mRNA regulation

    Fabre, Odile Martine Julie; Salehzada, T; Lambert, K

    2012-01-01

    Adipose tissue structure is altered during obesity, leading to deregulation of whole-body metabolism. Its function depends on its structure, in particular adipocytes number and differentiation stage. To better understand the mechanisms regulating adipogenesis, we have investigated the role...... is associated with CHOP10 mRNA and regulates its stability. CHOP10 expression is conserved in RNase L(-/-)-MEFs, maintaining preadipocyte state while impairing their terminal differentiation. RNase L(-/-)-MEFs have decreased lipids storage capacity, insulin sensitivity and glucose uptake. Expression of ectopic...... RNase L in RNase L(-/-)-MEFs triggers CHOP10 mRNA instability, allowing increased lipids storage, insulin response and glucose uptake. Similarly, downregulation of CHOP10 mRNA with CHOP10 siRNA in RNase L(-/-)-MEFs improves their differentiation in adipocyte. In vivo, aged RNase L(-)/(-) mice present...

  15. Benazepril hydrochloride improves diabetic nephropathy and decreases proteinuria by decreasing ANGPTL-4 expression.

    Xue, Lingyu; Feng, Xiaoqing; Wang, Chuanhai; Zhang, Xuebin; Sun, Wenqiang; Yu, Kebo

    2017-10-04

    This study aimed to investigate the effects of benazepril hydrochloride (BH) on proteinuria and ANGPTL-4 expression in a diabetic nephropathy (DN) rat model. A total of 72 Wistar male rats were randomly divided into three groups: normal control (NC), DN group and BH treatment (BH) groups. The DN model was induced by streptozotocin (STZ). Weight, glucose, proteinuria, biochemical indicators and the kidney weight index were examined at 8, 12 and 16 weeks. In addition, ANGPTL-4 protein and mRNA expressions were assessed by immunohistochemistry and qRT-PCR, respectively. Relationships between ANGPTL-4 and biochemical indicators were investigated using Spearman analysis. Weight was significantly lower but glucose levels were significantly higher in both the DN and BH groups than in the NC group (P Benazepril hydrochloride improves DN and decreases proteinuria by decreasing ANGPTL-4 expression.

  16. Correlation of mRNA Expression and Signal Variability in Chronic Intracortical Electrodes.

    Falcone, Jessica D; Carroll, Sheridan L; Saxena, Tarun; Mandavia, Dev; Clark, Alexus; Yarabarla, Varun; Bellamkonda, Ravi V

    2018-01-01

    The goal for this research was to identify molecular mechanisms that explain animal-to-animal variability in chronic intracortical recordings. Microwire electrodes were implanted into Sprague Dawley rats at an acute (1 week) and a chronic (14 weeks) time point. Weekly recordings were conducted, and action potentials were evoked in the barrel cortex by deflecting the rat's whiskers. At 1 and 14 weeks, tissue was collected, and mRNA was extracted. mRNA expression was compared between 1 and 14 weeks using a high throughput multiplexed qRT-PCR. Pearson correlation coefficients were calculated between mRNA expression and signal-to-noise ratios at 14 weeks. At 14 weeks, a positive correlation between signal-to-noise ratio (SNR) and NeuN and GFAP mRNA expression was observed, indicating a relationship between recording strength and neuronal population, as well as reactive astrocyte activity. The inflammatory state around the electrode interface was evaluated using M1-like and M2-like markers. Expression for both M1-like and M2-like mRNA markers remained steady from 1 to 14 weeks. Anti-inflammatory markers, CD206 and CD163, however, demonstrated a significant positive correlation with SNR quality at 14 weeks. VE-cadherin, a marker for adherens junctions, and PDGFR-β, a marker for pericytes, both partial representatives of blood-brain barrier health, had a positive correlation with SNR at 14 weeks. Endothelial adhesion markers revealed a significant increase in expression at 14 weeks, while CD45, a pan-leukocyte marker, significantly decreased at 14 weeks. No significant correlation was found for either the endothelial adhesion or pan-leukocyte markers. A positive correlation between anti-inflammatory and blood-brain barrier health mRNA markers with electrophysiological efficacy of implanted intracortical electrodes has been demonstrated. These data reveal potential mechanisms for further evaluation to determine potential target mechanisms to improve

  17. mRNA localization mechanisms in Trypanosoma cruzi.

    Lysangela R Alves

    Full Text Available Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.

  18. Programmable cellular arrays. Faults testing and correcting in cellular arrays

    Cercel, L.

    1978-03-01

    A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)

  19. Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA

    Warren, Luigi; Manos, Philip D.; Ahfeldt, Tim; Loh, Yuin-Han; Li, Hu; Lau, Frank; Ebina, Wataru; Mandal, Pankaj; Smith, Zachary D.; Meissner, Alexander; Daley, George Q.; Brack, Andrew S.; Collins, James J.; Cowan, Chad; Schlaeger, Thorsten M.

    2010-01-01

    Clinical application of induced pluripotent stem (iPS) cells is limited by the low efficiency of iPS derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPS cells towards clinically useful cell types are lacking. Here we describe a simple, non-integrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate anti-viral re...

  20. Combinatorial Control of mRNA Fates by RNA-Binding Proteins and Non-Coding RNAs

    Valentina Iadevaia

    2015-09-01

    Full Text Available Post-transcriptional control of gene expression is mediated by RNA-binding proteins (RBPs and small non-coding RNAs (e.g., microRNAs that bind to distinct elements in their mRNA targets. Here, we review recent examples describing the synergistic and/or antagonistic effects mediated by RBPs and miRNAs to determine the localisation, stability and translation of mRNAs in mammalian cells. From these studies, it is becoming increasingly apparent that dynamic rearrangements of RNA-protein complexes could have profound implications in human cancer, in synaptic plasticity, and in cellular differentiation.

  1. Involvement of hGLD-2 in cytoplasmic polyadenylation of human p53 mRNA

    Glahder, Jacob-Andreas Harald; Norrild, Bodil

    2011-01-01

    Cytoplasmic polyadenylation is a post-transcriptional mechanism regulating mRNA stability and translation. The human p53 3'-untranslated region (3'-UTR) contains two regions similar to cytoplasmic polyadenylation elements (CPEs) just upstream of the poly(A) hexanucleotide. Evaluation of the p53 CPE......-like elements was performed by luciferase reporter assays, qPCR, and poly(A) assays. Herein, we report the down regulation of a luciferase reporter fused to the p53 3'-UTR, when human CPE-binding protein 1 (hCPEB1) is overexpressed. This inhibition is partially rescued when hCPEB1fused to hGLD-2 [a human...... cytoplasmic poly(A) polymerase] is overexpressed instead. The stability of a luciferase mRNA containing the p53 3'-UTR downstream, is decreased when hCPEB1 is overexpressed as seen by qPCR. Expression of hGLD-2 restores the mRNA stability. This is due to elongation of the poly(A) tail as seen by a PCR...

  2. Short interfering RNAs targeting a vampire-bat related rabies virus phosphoprotein mRNA.

    Ono, Ekaterina Alexandrovna Durymanova; Taniwaki, Sueli Akemi; Brandão, Paulo

    The aim of this study was to assess the in vitro and in vivo effects of short-interfering RNAs (siRNAs) against rabies virus phosphoprotein (P) mRNA in a post-infection treatment for rabies as an extension of a previous report (Braz J Microbiol. 2013 Nov 15;44(3):879-82). To this end, rabies virus strain RABV-4005 (related to the Desmodus rotundus vampire bat) were used to inoculate BHK-21 cells and mice, and the transfection with each of the siRNAs was made with Lipofectamine-2000™. In vitro results showed that siRNA 360 was able to inhibit the replication of strain RABV-4005 with a 1log decrease in virus titter and 5.16-fold reduction in P mRNA, 24h post-inoculation when compared to non-treated cells. In vivo, siRNA 360 was able to induce partial protection, but with no significant difference when compared to non-treated mice. These results indicate that, despite the need for improvement for in vivo applications, P mRNA might be a target for an RNAi-based treatment for rabies. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of exogenous ATM gene on mRNA expression of human telomerase reverse transcriptase in AT cells induced by irradiation

    Sheng Fangjun; Cao Jianping; Luo Jialin; Zhu Wei; Liu Fenju; Feng Shuang; Song Jianyuan; Li Chong

    2005-01-01

    The study is to observe effects of exogenous ATM gene on mRNA expression of hTERT (human telomerase reverse transcriptase) in fibroblast cells (AT5BIVA cells) from skin of Ataxia-telangiectasia (AT) patients and to study the regulation of ATM to hTERT. Using reverse transcription polymerase chain reaction (RT-PCR), mRNA expression of hTERT in AT, PEBS7-AT, ATM + -AT and GM cells irradiated with 0 and 3 Gy of 60 Co γ-rays were examined respectively. The difference of the mRNA expression of hTERT among AT, PEBS7-AT, ATM + -AT and GM cells were analyzed. Difference of the mRNA expression of hTERT between 0 Gy and 3 Gy groups was analyzed, too. The results showed that the mRNA expression of hTERT in GM cells was negative, but positive mRNA expression of hTERT in AT cells. The mRNA expression of hTERT in ATM + -AT cells decreased significantly (p 60 Co γ-rays, the mRNA expression of hTERT in GM cells was positive, and that in AT, PEBS7-AT, ATM + -AT cells was increased (p + -AT cells was lower than that in AT and PEBS7-AT cells respectively (p<0.05). It is postulated that exogenous ATM is able to downregulate the mRNA expression of hTERT in AT cells, ionizing radiation can induce the mRNA expression of hTERT in cells and telomerase anticipates the repair of damaged DNA. (authors)

  5. Protein Structure and the Sequential Structure of mRNA

    Brunak, Søren; Engelbrecht, Jacob

    1996-01-01

    entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment, By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets, These signals do not originate from......A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed, We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting...... protein, The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain, A complete search for GenBank nucleotide sequences coding for structural...

  6. miR-103 Promotes Neurite Outgrowth and Suppresses Cells Apoptosis by Targeting Prostaglandin-Endoperoxide Synthase 2 in Cellular Models of Alzheimer's Disease.

    Yang, Hui; Wang, Hongcai; Shu, Yongwei; Li, Xuling

    2018-01-01

    miR-103 has been reported to be decreased in brain of transgenic mouse model of Alzheimer's disease (AD) and in cerebrospinal fluid (CSF) of AD patients, while the detailed mechanism of its effect on AD is obscure, thus this study aimed to investigate the effect of miR-103 expression on neurite outgrowth and cells apoptosis as well as its targets in cellular models of AD. Blank mimic (NC1-mimic), miR-103 mimic, blank inhibitor (NC2-mimic) and miR-103 inhibitor plasmids were transferred into PC12 cellular AD model and Cellular AD model of cerebral cortex neurons which were established by Aβ1-42 insult. Rescue experiment was subsequently performed by transferring Prostaglandin-endoperoxide synthase 2 (PTGS2) and miR-103 mimic plasmid. mRNA and protein expressions were detected by qPCR and Western Blot assays. Total neurite outgrowth was detected by microscope, cells apoptosis was determined by Hoechst/PI assay, and apoptotic markers Caspase 3 and p38 expressions were determined by Western Blot assay. In both PC12 and cerebral cortex neurons cellular AD models, miR-103 mimic increases the total neurite outgrowth compared with NC1-mimic, while miR-103 inhibitor decreases the total neurite outgrowth than NC2-inhibitor. The apoptosis rate was decreased in miR-103 mimic group than NC1-mimic group while increased in miR-103 inhibitor group than NC2-inhibitor group. PTGS2, Adisintegrin and metalloproteinase 10 (ADAM10) and neprilysin (NEP) were selected as target genes of miR-103 by bioinformatics analysis. And PTGS2 was found to be conversely regulated by miR-103 expression while ADAM10 and NEP were not affected. After transfection by PTGS2 and miR-103 mimic plasmid in PC12 cellular AD model, the total neurite growth was shortened compared with miR-103 mimic group, and cells apoptosis was enhanced which indicated PTGS2 mimic attenuated the influence of miR-103 mimic on progression of AD. In conclusion, miR-103 promotes total neurite outgrowth and inhibits cells apoptosis

  7. Simultaneous detection of mRNA and protein stem cell markers in live cells

    Bao Gang

    2009-04-01

    Full Text Available Abstract Background Biological studies and medical application of stem cells often require the isolation of stem cells from a mixed cell population, including the detection of cancer stem cells in tumor tissue, and isolation of induced pluripotent stem cells after eliciting the expression of specific genes in adult cells. Here we report the detection of Oct-4 mRNA and SSEA-1 protein in live carcinoma stem cells using respectively molecular beacon and dye-labeled antibody, aiming to establish a new method for stem cells detection and isolation. Results Quantification of Oct-4 mRNA and protein in P19 mouse carcinoma stem cells using respectively RT-PCR and immunocytochemistry confirmed that their levels drastically decreased after differentiation. To visualize Oct-4 mRNA in live stem cells, molecular beacons were designed, synthesized and validated, and the detection specificity was confirmed using control studies. We found that the fluorescence signal from Oct-4-targeting molecular beacons provides a clear discrimination between undifferentiated and retinoic acid-induced differentiated cells. Using deconvolution fluorescence microscopy, Oct-4 mRNAs were found to reside on one side of the cytosol. We demonstrated that, using a combination of Oct-4 mRNA-targeting molecular beacon with SSEA-1 antibody in flow cytometric analysis, undifferentiated stem cells can be clearly distinguished from differentiated cells. We revealed that Oct-4 targeting molecular beacons do not seem to affect stem cell biology. Conclusion Molecular beacons have the potential to provide a powerful tool for highly specific detection and isolation of stem cells, including cancer stem cells and induced pluripotent stem (iPS cells without disturbing cell physiology. It is advantageous to perform simultaneous detection of intracellular (mRNA and cell-surface (protein stem cell markers in flow cytometric analysis, which may lead to high detection sensitivity and efficiency.

  8. Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes.

    Jones, Sophie; Sutherland, Colin J; Hermsen, Cornelus; Arens, Theo; Teelen, Karina; Hallett, Rachel; Corran, Patrick; van der Vegte-Bolmer, Marga; Sauerwein, Robert; Drakeley, Chris J; Bousema, Teun

    2012-08-08

    Accurate sampling of sub-microscopic gametocytes is necessary for epidemiological studies to identify the infectious reservoir of Plasmodium falciparum. Detection of gametocyte mRNA achieves sensitive detection, but requires careful handling of samples. Filter papers can be used for collecting RNA samples, but rigorous testing of their capacity to withstand adverse storage conditions has not been fully explored. Three gametocyte dilutions: 10/μL, 1.0/μL and 0.1/μL were spotted onto Whatman™ 903 Protein Saver Cards, FTA Classic Cards and 3MM filter papers that were stored under frozen, cold chain or tropical conditions for up to 13 weeks . RNA was extracted, then detected by quantitative nucleic acid sequence-based amplification (QT-NASBA) and reverse-transcriptase PCR (RT-PCR). Successful gametocyte detection was more frequently observed from the Whatman 903 Protein Saver Card compared to the Whatman FTA Classic Card, by both techniques (pFTA Classic Card but not the 903 Protein Saver Card or Whatman 3MM filter paper. The sensitivity of gametocyte detection was decreased when papers were stored at high humidity. This study indicates the Whatman 903 Protein Saver Card is better for Pfs25 mRNA sampling compared to the Whatman FTA Classic Card, and that the Whatman 3MM filter paper may prove to be a satisfactory cheaper option for Pfs25 mRNA sampling. When appropriately dried, filter papers provide a useful approach to Pfs25 mRNA sampling, especially in settings where storage in RNA-protecting buffer is not possible.

  9. Top-down cellular pyramids

    Wu, A Y; Rosenfeld, A

    1983-10-01

    A cellular pyramid is an exponentially tapering stack of arrays of processors (cells), where each cell is connected to its neighbors (siblings) on its own level, to a parent on the level above, and to its children on the level below. It is shown that in some situations, if information flows top-down only, from fathers to sons, then a cellular pyramid may be no faster than a one-level cellular array; but it may be possible to use simpler cells in the pyramid case. 23 references.

  10. Complexity on Acute Myeloid Leukemia mRNA Transcript Variant

    Carlo Cattani

    2011-01-01

    Full Text Available This paper deals with the sequence analysis of acute myeloid leukemia mRNA. Six transcript variants of mlf1 mRNA, with more than 2000 bps, are analyzed by focusing on the autocorrelation of each distribution. Through the correlation matrix, some patches and similarities are singled out and commented, with respect to similar distributions. The comparison of Kolmogorov fractal dimension will be also given in order to classify the six variants. The existence of a fractal shape, patterns, and symmetries are discussed as well.

  11. Detection of melatonin receptor mRNA in human muscle

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  12. Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.

    Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W

    1997-07-07

    RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.

  13. Quantitative analyses of postmortem heat shock protein mRNA profiles in the occipital lobes of human cerebral cortices: implications in cause of death.

    Chung, Ukhee; Seo, Joong-Seok; Kim, Yu-Hoon; Son, Gi Hoon; Hwang, Juck-Joon

    2012-11-01

    Quantitative RNA analyses of autopsy materials to diagnose the cause and mechanism of death are challenging tasks in the field of forensic molecular pathology. Alterations in mRNA profiles can be induced by cellular stress responses during supravital reactions as well as by lethal insults at the time of death. Here, we demonstrate that several gene transcripts encoding heat shock proteins (HSPs), a gene family primarily responsible for cellular stress responses, can be differentially expressed in the occipital region of postmortem human cerebral cortices with regard to the cause of death. HSPA2 mRNA levels were higher in subjects who died due to mechanical asphyxiation (ASP), compared with those who died by traumatic injury (TI). By contrast, HSPA7 and A13 gene transcripts were much higher in the TI group than in the ASP and sudden cardiac death (SCD) groups. More importantly, relative abundances between such HSP mRNA species exhibit a stronger correlation to, and thus provide more discriminative information on, the death process than does routine normalization to a housekeeping gene. Therefore, the present study proposes alterations in HSP mRNA composition in the occipital lobe as potential forensic biological markers, which may implicate the cause and process of death.

  14. Role of protein and mRNA oxidation in seed dormancy and germination

    hayat eel-maarouf-bouteau

    2013-04-01

    Full Text Available Reactive oxygen species (ROS are key players in the regulation of seed germination and dormancy. Although their regulated accumulation is a prerequisite for germination, the cellular basis of their action remains unknown, but very challenging to elucidate due to the lack of specificity of these compounds that can potentially react with all biomolecules. Among these, nucleic acids and proteins are very prone to oxidative damage. RNA is highly sensitive to oxidation because of its single-stranded structure and the absence of a repair system. Oxidation of mRNAs induces their decay through processing bodies or results in the synthesis of aberrant proteins through altered translation. Depending on the oxidized amino acid, ROS damage of proteins can be irreversible (i.e. carbonylation thus triggering the degradation of the oxidized proteins by the cytosolic 20S proteasome or can be reversed through the action of thioredoxins, peroxiredoxins or glutaredoxins (cysteine oxidation or by methionine sulfoxide reductase (methionine oxidation. Seed dormancy alleviation in the dry state, referred to as after-ripening, requires both selective mRNA oxidation and protein carbonylation. Similarly, seed imbibition of non-dormant seeds is associated with targeted oxidation of a subset of proteins. Altogether, these specific features testify that such oxidative modifications play important role in commitment of the cellular functioning toward germination completion.

  15. Urinary granzyme A mRNA is a biomarker to diagnose subclinical and acute cellular rejection in kidney transplant recipients

    van Ham, S. Marieke; Heutinck, Kirstin M.; Jorritsma, Tineke; Bemelman, Fréderike J.; Strik, Merel C. M.; Vos, Wim; Muris, Jettie J. F.; Florquin, Sandrine; ten Berge, Ineke J. M.; Rowshani, Ajda T.

    2010-01-01

    The distinction between T-cell-mediated rejection (TCMR) and other causes of kidney transplant dysfunction such as tubular necrosis requires biopsy. Subclinical rejection (SCR), an established risk factor for chronic allograft dysfunction, can only be diagnosed by protocol biopsy. A specific

  16. Altered PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics.

    Giebler, Maria; Greither, Thomas; Müller, Lisa; Mösinger, Carina; Behre, Hermann M

    2018-01-01

    In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5 th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.

  17. Expression and cellular distribution of ubiquitin in response to injury in the developing spinal cord of Monodelphis domestica.

    Natassya M Noor

    Full Text Available Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to postnatal day P35 in control opossums (Monodelphis domestica and in response to complete spinal transection (T10 at P7, when axonal growth through site of injury occurs, and P28 when this is no longer possible. Cords were collected 1 or 7 days after injury, with age-matched controls and segments rostral to lesion were studied. Following spinal injury ubiquitin levels (western blotting appeared reduced compared to controls especially one day after injury at P28. In contrast, after injury mRNA expression (qRT-PCR was slightly increased at P7 but decreased at P28. Changes in isoelectric point of separated ubiquitin indicated possible post-translational modifications. Cellular distribution demonstrated a developmental shift between earliest (P8 and latest (P35 ages examined, from a predominantly cytoplasmic immunoreactivity to a nuclear expression; staining level and shift to nuclear staining was more pronounced following injury, except 7 days after transection at P28. After injury at P7 immunostaining increased in neurons and additionally in oligodendrocytes at P28. Mass spectrometry showed two ubiquitin bands; the heavier was identified as a fusion product, likely to be an ubiquitin precursor. Apparent changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets.

  18. An essential nuclear protein in trypanosomes is a component of mRNA transcription/export pathway.

    Mariana Serpeloni

    decrease of translation levels, reinforcing that Trypanosoma-Sub2 (Tryp-Sub2 is a component of mRNA transcription/export pathway in trypanosomes.

  19. Analysis of mRNA expression of genes related to fatty acids synthesis in goose fatty liver

    Shuxia Xiang

    2010-11-01

    Full Text Available The aim of our study was to evaluate the effect of overfeeding on mRNA expression levels of genes involved in lipogenesis, in order to understand the mechanism of hepatic stea - tosis in the goose. Using Landes geese (Anser anser and Sichuan White geese (Anser cygnoides as experimental animals, we quantified the mRNA expression of lipogenic genes, acetyl-CoA carboxylase-α (ACCα and fatty acid synthase (FAS, and of two transcription factors, sterol regulatory element-binding proteins- 1 (SREBP-1 and carbohydrate responsive element-binding protein (ChREBP by real-time polymerase chain reaction (RTPCR, and measured the lipid and triglyceride (TG content in the liver and the plasma level of glucose, insulin and TG. Our results indicated that compared to the control group, the overfeeding induced an increase of the lipid and TG content in the liver and also of the plasma insulin and TG concentration in both breeds. However, the plasma glucose level decreased after overfeeding in the Sichuan White goose, and there was no evident change in the Landes goose. Lastly, the mRNA expression of ACCα, FAS, SREBP-1 and ChREBP in the overfed group was lower than in the control group in both breeds. We concluded that the lipogenesis pathway plays a role in overfeeding- induced hepatic steatosis and that the decreased mRNA level of related genes may be the indicator of hepatic steatosis.

  20. Mesenchymal stem cells cannot affect mRNA expression of toll-like receptors in different tissues during sepsis.

    Pedrazza, Leonardo; Pereira, Talita Carneiro Brandão; Abujamra, Ana Lucia; Nunes, Fernanda Bordignon; Bogo, Maurício Reis; de Oliveira, Jarbas Rodrigues

    2017-07-01

    Experimental animal models and human clinical studies support a crucial role for TLRs in infectious diseases. The aim of this study was to test the ability of MSCs, which have immunomodulatory effects, of altering the mRNA expression of toll-like receptors during a experimental model of sepsis in different tissues. Three experimental groups (male C57BL/6 mice) were formed for the test: control group, untreated septic group and septic group treated with MSCs (1 × 10 6 cells/animal). Lungs, cortex, kidney, liver and colon tissue were dissected after 12 h of sepsis induction and TLR2/3/4/9 mRNA were evaluated by RT-qPCR. We observed a decrease of TLR2 and 9 mRNA expression in the liver of the sepsis group, while TLR3 was decreased in the lung and liver. No change was found between the sepsis group and the sepsis + MSC group. In this model of experimental sepsis the MSCs were unable to modify the mRNA expression of the different toll-like receptors evaluated.

  1. Cellular senescence and organismal aging.

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  2. Origami interleaved tube cellular materials

    Cheung, Kenneth C; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-01-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)

  3. Origami interleaved tube cellular materials

    Cheung, Kenneth C.; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-09-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.

  4. Cellular Angiofibroma of the Nasopharynx.

    Erdur, Zülküf Burak; Yener, Haydar Murat; Yilmaz, Mehmet; Karaaltin, Ayşegül Batioğlu; Inan, Hakki Caner; Alaskarov, Elvin; Gozen, Emine Deniz

    2017-11-01

    Angiofibroma is a common tumor of the nasopharynx region but cellular type is extremely rare in head and neck. A 13-year-old boy presented with frequent epistaxis and nasal obstruction persisting for 6 months. According to the clinical symptoms and imaging studies juvenile angiofibroma was suspected. Following angiographic embolization total excision of the lesion by midfacial degloving approach was performed. Histological examination revealed that the tumor consisted of staghorn blood vessels and irregular fibrous stroma. Stellate fibroblasts with small pyknotic to large vesicular nuclei were seen in a highly cellular stroma. These findings identified cellular angiofibroma mimicking juvenile angiofibroma. This article is about a very rare patient of cellular angiofibroma of nasopharynx.

  5. Cloning and mRNA expression pattern analysis under low ...

    This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results indicated that the ...

  6. Efficacy of peptide nucleic acid and selected conjugates against specific cellular pathologies of amyotrophic lateral sclerosis.

    Browne, Elisse C; Parakh, Sonam; Duncan, Luke F; Langford, Steven J; Atkin, Julie D; Abbott, Belinda M

    2016-04-01

    Cellular studies have been undertaken on a nonamer peptide nucleic acid (PNA) sequence, which binds to mRNA encoding superoxide dismutase 1, and a series of peptide nucleic acids conjugated to synthetic lipophilic vitamin analogs including a recently prepared menadione (vitamin K) analog. Reduction of both mutant superoxide dismutase 1 inclusion formation and endoplasmic reticulum stress, two of the key cellular pathological hallmarks in amyotrophic lateral sclerosis, by two of the prepared PNA oligomers is reported for the first time. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. Immunochemical determination of cellular content of translation release factor RF4 in Escherichia coli

    Andersen, Lars Dyrskjøt; Manuel Palacios Moreno, Juan; Clark, Brian F. C.

    1999-01-01

    of the stop codons, and RF3 is known to accelerate the overall termination process. Release factor RF4 is a protein involved in the release of the mRNA and tRNA from the ribosomal complex. Furthermore, RF4 is involved in the proofreading in the elongation step of protein biosynthesis. The cellular contents...... of RF1, RF2, and RF3 were determined earlier. Here we report the cellular content of RF4 in Escherichia coli to be approximately 16,500 molecules per cell. The cells were grown in a rich medium and harvested in the beginning of the exponential growth phase. The quantifications were performed by using...

  8. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  9. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  10. Molecular Cloning, mRNA Expression, and Localization of the G-protein Subunit Galphaq in Sheep Testis and Epididymis

    Zhen Li

    2016-12-01

    Full Text Available The reproductive function of G-protein subunit Galphaq (GNAQ, a member of the G protein alpha subunit family, has been extensively studied in humans and rats. However, no data is available on its status in ruminants. The objectives of this study were to evaluate the expression pattern of the GNAQ in the testis and epididymis of sheep by polymerase chain reaction (PCR. The mRNA expression levels were detected by real-time fluorescent quantitative PCR, and cellular localization of GNAQ in the testis and epididymis was examined by immunohistochemistry. Additionally, GNAQ protein was qualitatively evaluated via western blot, with the results indicating that similarities between GNAQ mRNA levels from sheep was highly conserved with those observed in Bos taurus and Sus scrofa. Our results also indicated that GNAQ exists in the caput and cauda epididymis of sheep, while GNAQ in the testis and epididymis was localized to Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells, spermatid, principal cells, and epididymis interstitial cells. The concentrations of GNAQ mRNA and protein in the caput and cauda epididymis were significantly greater than those observed in the corpus epididymis (p<0.01 and testis (p<0.05. Our results indicated that GNAQ exists at high concentrations in the caput and cauda epididymis of sheep, suggesting that GNAQ may play an important role in gonad development and sperm maturation.

  11. Changes in growth hormone (GH) messenger RNA (GH mRNA) expression in the rat anterior pituitary after single interferon (IFN) alpha administration

    Romanowski, W.; Braczkowski, R.; Nowakowska-Zajdel, E.; Muc-Wierzgon, M.; Zubelewicz-Szkodzinska, B.; Kosiewicz, J.; Korzonek, I.

    2006-01-01

    Introduction: Interferon a (IFN-a) is a cytokine with pleiotropic effects which, via different pathways, influences the secretion of certain cytokines and hormones. Growth hormone (GH) secreted from the pituitary has physiological effects on various target tissues. The question is how IFN-a administered in various types of disease influences GH secretion. This study investigated the acute effect of IFN-a on GH mRNA expression in the rat anterior pituitary. Objective: The aim of the study was to measure the cellular expression of GH mRNA by in situ hybridisation in the anterior pituitary after a single administration of IFN-a. Material and methods: Rats were administered an intraperitoneal injection of IFN-a or saline. The rat pituitaries were taken 2 and 4 hours after IFN/saline administration and kept frozen until in situ hybridisation histochemistry. A 31 - base 35S -labelled oligonucleotide probe complementary to part of the exonic mRNA sequence coding for GH mRNA was used. All control and experimental sections were hybridised in the same hybridisation reaction. Results: Acute administration of interferon a increased GH mRNA expression in the anterior pituitary in the 4-hour group in comparison with the control group, and there was no difference between the control group and the 2-hour rats. Conclusion: A single IFN-a administration was found to exert an influence on anterior pituitary GH mRNA expression. These observations may pave the way for presenting a possible new action of IFN-a. (author) GH mRNA, anterior pituitary, interferon

  12. Role of a redox-based methylation switch in mRNA life cycle ( pre- & post- transcriptional maturation and protein turnover : Implications in neurological disorders

    MALAV SUCHIN TRIVEDI

    2012-06-01

    Full Text Available Homeostatic synaptic scaling in response to neuronal stimulus or activation, as well as due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions. Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic. This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition and behavior. Thus a regulatory switch, controlling the lifespan, maturation and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at 1.The pre-transcription level, by regulating precursor-RNA (pre-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and 2. the post-transcription level by modulating the regulatory functions of ribonucleoproteins (RNP and RNA binding proteins (RNABP in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione antioxidant levels, the redox status of neurons might be the central regulatory switch for methylation

  13. Prolonged treatment with imatinib mesylate in patients with advanced chronic myeloid leukemia causes a reduction of bcr/abl mRNA levels independent of cytogenetic response.

    Cariani, E; Capucci, M; Micheletti, M; Spalenza, F; Zanella, I; Albertini, A; Rossi, G

    2003-06-01

    Bcr/abl mRNA levels were monitored in 13 patients with chronic myeloid leukemia receiving imatinib mesylate over a period of 78 weeks. During treatment median bcr/abl mRNA levels progressively declined from 77.2 normalized dose (nD) at baseline to 11.28 nD after 13 weeks ( P<0.05) and to 1.28 nD after 78 weeks ( P<0.05). After 13 weeks, bcr/abl mRNA levels were significantly lower in cytogenetic responders compared to nonresponders ( P<0.05), but subsequent decrease in the transcript levels caused the loss of any correlation to the cytogenetic status. These results suggest that bcr/abl mRNA levels may reflect cytogenetic response only during the early phases of imatinib therapy.

  14. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease.

    Marco Confalonieri

    Full Text Available The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14 expression during diffuse alveolar damage (DAD, but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein only in human lung samples with DAD or interstitial lung disease (ILD. In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.

  15. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Complex mutual regulation of facilitates chromatin transcription (FACT) subunits on both mRNA and protein levels in human cells.

    Safina, Alfiya; Garcia, Henry; Commane, Mairead; Guryanova, Olga; Degan, Seamus; Kolesnikova, Kateryna; Gurova, Katerina V

    2013-08-01

    Facilitates chromatin transcription (FACT) is a chromatin remodeling complex with two subunits: SSRP1 and SPT16. Mechanisms controlling FACT levels are of interest, since the complex is not expressed in most differentiated cells, but is frequently upregulated in cancer, particularly in poorly differentiated, aggressive tumors. Moreover, inhibition of FACT expression or function in tumor cells interferes with their survival. Here we demonstrate that SSRP1 and SPT16 protein levels decline upon induction of cellular differentiation or senescence in vitro and that similar declines in protein levels for both SSRP1 and SPT16 occur upon RNAi-mediated knockdown of either SSRP1 or SPT16. The interdependence of SSRP1 and SPT16 protein levels was found to be due to their association with SSRP1 and SPT16 mRNAs, which stabilizes the proteins. In particular, presence of SSRP1 mRNA is critical for SPT16 protein stability. In addition, binding of SSRP1 and SPT16 mRNAs to the FACT complex increases the stability and efficiency of translation of the mRNAs. These data support a model in which the FACT complex is stable when SSRP1 mRNA is present, but quickly degrades when SSRP1 mRNA levels drop. In the absence of FACT complex, SSRP1 and SPT16 mRNAs are unstable and inefficiently translated, making reactivation of FACT function unlikely in normal cells. Thus, we have described a complex and unusual mode of regulation controlling cellular FACT levels that results in amplified and stringent control of FACT activity. The FACT dependence of tumor cells suggests that mechanisms controlling FACT levels could be targeted for anticancer therapy.

  17. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers

    Malgoyre, A.; Banzet, S.; Mouret, C.; Bigard, A.X.; Peinnequin, A.

    2007-01-01

    Real-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

  18. Cellular-based preemption system

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  19. Novel Materials for Cellular Nanosensors

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were synthesized from...

  20. Sexual phenotype differences in zic2 mRNA abundance in the preoptic area of a protogynous teleost, Thalassoma bifasciatum.

    Katherine McCaffrey

    Full Text Available The highly conserved members of the zic family of zinc-finger transcription factors are primarily known for their roles in embryonic signaling pathways and regulation of cellular proliferation and differentiation. This study describes sexual phenotype differences in abundances of zic2 mRNA in the preoptic area of the hypothalamus, a region strongly implicated in sexual behavior and function, in an adult teleost, Thalassoma bifasciatum. The bluehead wrasse (Thalassoma bifasciatum is a valuable model for studying neuroendocrine processes because it displays two discrete male phenotypes, initial phase (IP males and territorial, terminal phase (TP males, and undergoes socially-controlled protogynous sex change. Previously generated microarray-based comparisons suggested that zic2 was upregulated in the brains of terminal phase males relative to initial phase males. To further explore this difference, we cloned a 727 bp sequence for neural zic2 from field-collected animals. Riboprobe-based in situ hybridization was employed to localize zic2 signal in adult bluehead brains and assess the relative abundance of brain zic2 mRNA across sexual phenotypes. We found zic2 mRNA expression was extremely abundant in the granular cells of the cerebellum and widespread in other brain regions including in the thalamus, hypothalamus, habenula, torus semicircularis, torus longitudinalis, medial longitudinal fascicle and telencephalic areas. Quantitative autoradiography and phosphorimaging showed zic2 mRNA hybridization signal in the preoptic area of the hypothalamus was significantly higher in terminal phase males relative to both initial phase males and females, and silver grain analysis confirmed this relationship between phenotypes. No significant difference in abundance was found in zic2 signal across phenotypes in the habenula, a brain region not implicated in the control of sexual behavior, or cerebellum.

  1. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic β-cells

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic β-cells, and to examine this in relation to β-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP...

  2. Suppression of FAT/CD36 mRNA by human growth hormone in pancreatic ß-cells

    Dalgaard, Louise Torp; Thams, Peter Grevsen; Gaarn, Louise Winkel

    2011-01-01

    of this study was to examine the effect of human growth hormone (hGH) on mRNAs of fatty acid transport and binding proteins expressed in pancreatic ß-cells, and to examine this in relation to ß-cell survival after exposure to fatty acids. hGH decreased mRNA levels of FAT/CD36, whereas mRNAs of GPR40, FASN, FABP...

  3. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we ...

  4. Molecular and Cellular Effects Induced in Mytilus galloprovincialis Treated with Oxytetracycline at Different Temperatures.

    Mohamed Banni

    Full Text Available The present study evaluated the interactive effects of temperature (16°C and 24°C and a 4-day treatment with the antibiotic oxytetracycline (OTC at 1 and 100 μg/L on cellular and molecular parameters in the mussel Mytilus galloprovincialis. Lysosomal membrane stability (LMS, a sensitive biomarker of impaired health status in this organism, was assessed in the digestive glands. In addition, oxidative stress markers and the expression of mRNAs encoding proteins involved in antioxidant defense (catalase (cat and glutathione-S-transferase (gst and the heat shock response (hsp90, hsp70, and hsp27 were evaluated in the gills, the target tissue of soluble chemicals. Finally, cAMP levels, which represent an important cell signaling pathway related to oxidative stress and the response to temperature challenges, were also determined in the gills. Exposure to heat stress as well as to OTC rendered a decrease in LMS and an increase in malonedialdehyde accumulation (MDA. CAT activity was not significantly modified, whereas GST activity decreased at 24°C. Cat and gst expression levels were reduced in animals kept at 24°C compared to 16°C in the presence or absence of OTC. At 16°C, treatment with OTC caused a significant increase in cat and gst transcript levels. Hsp27 mRNA was significantly up-regulated at all conditions compared to controls at 16°C. cAMP levels were increased at 24°C independent of the presence of OTC. PCA analysis showed that 37.21% and 25.89% of the total variance was explained by temperature and OTC treatment, respectively. Interestingly, a clear interaction was observed in animals exposed to both stressors increasing LMS and MDA accumulation and reducing hsp27 gene expression regulation. These interactions may suggest a risk for the organisms due to temperature increases in contaminated seawaters.

  5. Molecular and Cellular Effects Induced in Mytilus galloprovincialis Treated with Oxytetracycline at Different Temperatures

    Banni, Mohamed; Sforzini, Susanna; Franzellitti, Silvia; Oliveri, Caterina; Viarengo, Aldo; Fabbri, Elena

    2015-01-01

    The present study evaluatedthe interactive effects of temperature (16°C and 24°C) and a 4-day treatment with the antibiotic oxytetracycline (OTC) at 1 and 100μg/L on cellular and molecular parameters in the mussel Mytilus galloprovincialis. Lysosomal membrane stability (LMS), a sensitive biomarker of impaired health status in this organism, was assessed in the digestive glands. In addition, oxidative stress markers and the expression of mRNAs encoding proteins involved in antioxidant defense (catalase (cat) and glutathione-S-transferase (gst)) and the heat shock response (hsp90, hsp70, and hsp27) were evaluated in the gills, the target tissue of soluble chemicals. Finally, cAMP levels, which represent an important cell signaling pathway related to oxidative stress and the response to temperature challenges, were also determined in the gills. Exposure to heat stress as well as to OTC rendered a decrease in LMS and an increase in malonedialdehyde accumulation (MDA). CAT activity was not significantly modified, whereas GST activity decreased at 24°C. Cat and gst expression levels were reduced in animals kept at 24°C compared to 16°C in the presence or absence of OTC. At 16°C, treatment with OTC caused a significant increase in cat and gst transcript levels. Hsp27 mRNA was significantly up-regulated at all conditions compared to controls at 16°C. cAMP levels were increased at 24°C independent of the presence of OTC. PCA analysis showed that 37.21% and 25.89% of the total variance was explained by temperature and OTC treatment, respectively. Interestingly, a clear interaction was observed in animals exposed to both stressors increasing LMS and MDA accumulation and reducing hsp27 gene expression regulation. These interactions may suggest a risk for the organisms due to temperature increases in contaminated seawaters. PMID:26067465

  6. Global properties of cellular automata

    Jen, E.

    1986-01-01

    Cellular automata are discrete mathematical systems that generate diverse, often complicated, behavior using simple deterministic rules. Analysis of the local structure of these rules makes possible a description of the global properties of the associated automata. A class of cellular automata that generate infinitely many aperoidic temporal sequences is defined,a s is the set of rules for which inverses exist. Necessary and sufficient conditions are derived characterizing the classes of ''nearest-neighbor'' rules for which arbitrary finite initial conditions (i) evolve to a homogeneous state; (ii) generate at least one constant temporal sequence

  7. Cellular structures with interconnected microchannels

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    2018-01-30

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to melt infiltration.

  8. Interleukin-21 mRNA expression during virus infections

    Holm, Christian; Nyvold, Charlotte Guldborg; Paludan, Søren Riis

    2006-01-01

    and activational effects of IL-21 on different leukocytes come into play in vivo in an immune response has so far not been fully investigated. We show here for the first time in vivo, that IL-21 mRNA is produced in the spleen when mice are challenged with herpes simplex virus type 2 (HSV-2) or lymphocytic...... choriomeningitis virus (LCMV). We show in HSV-2 challenged mice that this production takes place in CD4+ T cell fractions and is absent in CD4+ T cell-depleted fractions. We also show that the peak of IL-21 mRNA production in both the HSV-2 and LCMV-challenged mice coincides with the onset of the adaptive immune...

  9. Collagen mRNA levels changes during colorectal cancer carcinogenesis

    Skovbjerg, Hanne; Anthonsen, Dorit; Lothe, Inger M B

    2009-01-01

    BACKGROUND: Invasive growth of epithelial cancers is a complex multi-step process which involves dissolution of the basement membrane. Type IV collagen is a major component in most basement membranes. Type VII collagen is related to anchoring fibrils and is found primarily in the basement membrane...... zone of stratified epithelia. Immunohistochemical studies have previously reported changes in steady-state levels of different alpha(IV) chains in several epithelial cancer types. In the present study we aimed to quantitatively determine the mRNA levels of type IV collagen (alpha1/alpha 4/alpha 6......) and type VII collagen (alpha1) during colorectal cancer carcinogenesis. METHODS: Using quantitative RT-PCR, we have determined the mRNA levels for alpha1(IV), alpha 4(IV), alpha 6(IV), and alpha1(VII) in colorectal cancer tissue (n = 33), adenomas (n = 29) and in normal tissue from the same individuals...

  10. Peptide inhibitors of botulinum neurotoxin by mRNA display

    Yiadom, Kwabena P.A.B.; Muhie, Seid; Yang, David C.H.

    2005-01-01

    Botulinum neurotoxins (BoNTs) are extremely toxic. The metalloproteases associated with the toxins cleave proteins essential for neurotransmitter secretion. Inhibitors of the metalloprotease are currently sought to control the toxicity of BoNTs. Toward that goal, we produced a synthetic cDNA for the expression and purification of the metalloprotease of BoNT/A in Escherichia coli as a biotin-ubiquitin fusion protein, and constructed a combinatorial peptide library to screen for BoNT/A light chain inhibitors using mRNA display. A protease assay was developed using immobilized intact SNAP-25 as the substrate. The new peptide inhibitors showed a 10-fold increase in affinity to BoNT/A light chain than the parent peptide. Interestingly, the sequences of the new peptide inhibitors showed abundant hydrophobic residues but few hydrophilic residues. The results suggest that mRNA display may provide a general approach in developing peptide inhibitors of BoNTs

  11. Effects of low dose radiation on expressions of ICAM-1 mRNA and protein in kidney of diabetic mice

    Zhang Chi; Li Xiaokun; Gong Shouliang; Liu Xiaoju; Zhao Xue; Liu Xiaoju; Zhao Xue; Shen Wenjie; Li Cai; Cai Lu

    2010-01-01

    Objective: To study the effects of low dose radiation (LDR) on the expressions of intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in kidney of diabetes mellitus (DM) mice and illuminate that anti-inflammation of LDR is a main mechanism for diabetic therapy. Methods: The healthy and right age C57BL/6J mice were divided into 4 groups including control, DM, LDR and DM/LDR. The mice in DM and DM/LDR groups were injected intraperitoneally with streptozocin (STZ) to set up DM models. The mice in DM/LDR and LDR groups were irradiated with 25 mGy every other day for 4 weeks. The expressions of ICAM-1 mRNA and protein in kidney were detected with RT-PCR and Western blotting 2, 4, 8, 12 and 16 weeks after irradiation. Results: The expressions of ICAM-1 mRNA and protein in kidney had no significant difference among 4 groups before LDR (P>0.05). The expressions of ICAM-1 mRNA and protein 2 weeks after irradiation with LDR were higher than those in the other 3 groups (P<0.05). The expressions of ICAM-1 mRNA and protein in the DM/LDR group 4 weeks after irradiation were also significantly higher than those in non-DM groups (P<0.05), but still significantly lower than those in DM group (P<0.05), and the significant differences were kept to 16 weeks after irradiation. But the expressions of ICAM-1 mRNA and protein in LDR group were significantly higher than those in control group (P<0.05). IHC assay showed that the glomerular and tubular in DM and DM/LDR groups were abnormal and the quantities of the positive staining cells were significantly increased compared with non-DM groups. However the damage of glomerular and tubular in DM/LDR was significantly supressed compared with DM group and the positive staining cells were also decreased. Conclusion: Under the circumstance of DM, LDR can significantly decrease the expressions of ICAM-1 mRNA and protein in mouse kidney to relief the inflammation reaction in kidney; but in normal condition, LDR can improve the immunity and

  12. Cup regulates oskar mRNA stability during oogenesis.

    Broyer, Risa M; Monfort, Elena; Wilhelm, James E

    2017-01-01

    The proper regulation of the localization, translation, and stability of maternally deposited transcripts is essential for embryonic development in many organisms. These different forms of regulation are mediated by the various protein subunits of the ribonucleoprotein (RNP) complexes that assemble on maternal mRNAs. However, while many of the subunits that regulate the localization and translation of maternal transcripts have been identified, relatively little is known about how maternal mRNAs are stockpiled and stored in a stable form to support early development. One of the best characterized regulators of maternal transcripts is Cup - a broadly conserved component of the maternal RNP complex that in Drosophila acts as a translational repressor of the localized message oskar. In this study, we have found that loss of cup disrupts the localization of both the oskar mRNA and its associated proteins to the posterior pole of the developing oocyte. This defect is not due to a failure to specify the oocyte or to disruption of RNP transport. Rather, the localization defects are due to a drop in oskar mRNA levels in cup mutant egg chambers. Thus, in addition to its role in regulating oskar mRNA translation, Cup also plays a critical role in controlling the stability of the oskar transcript. This suggests that Cup is ideally positioned to coordinate the translational control function of the maternal RNP complex with its role in storing maternal transcripts in a stable form. Published by Elsevier Inc.

  13. Cellular uptake of metallated cobalamins

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...

  14. Repaglinide at a cellular level

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...

  15. Cellular automaton for surface reactions

    Pechatnikov, E L [AN SSSR, Chernogolovka (Russian Federation). Otdelenie Inst. Khimicheskoj Fiziki; Frankowicz, A; Danielak, R [Uniwersytet Jagiellonski, Cracow (Poland)

    1994-06-01

    A new algorithm which overcomes some specific difficulties arising in modeling of heterogeneous catalytic processes by cellular automata (CA) technique is proposed. The algorithm was tested with scheme introduced by Ziff, Gulari and Barshad and showed a good agreement with their results. The problem of the physical adequacy and interpretation of the algorithm was discussed. (author). 10 refs, 4 figs.

  16. Cellular Automata and the Humanities.

    Gallo, Ernest

    1994-01-01

    The use of cellular automata to analyze several pre-Socratic hypotheses about the evolution of the physical world is discussed. These hypotheses combine characteristics of both rigorous and metaphoric language. Since the computer demands explicit instructions for each step in the evolution of the automaton, such models can reveal conceptual…

  17. Cellular buckling in long structures

    Hunt, G.W.; Peletier, M.A.; Champneys, A.R.; Woods, P.D.; Wadee, M.A.; Budd, C.J.; Lord, G.J.

    2000-01-01

    A long structural system with an unstable (subcritical)post-buckling response that subsequently restabilizes typically deformsin a cellular manner, with localized buckles first forming and thenlocking up in sequence. As buckling continues over a growing number ofcells, the response can be described

  18. Natural selection and algorithmic design of mRNA.

    Cohen, Barry; Skiena, Steven

    2003-01-01

    Messenger RNA (mRNA) sequences serve as templates for proteins according to the triplet code, in which each of the 4(3) = 64 different codons (sequences of three consecutive nucleotide bases) in RNA either terminate transcription or map to one of the 20 different amino acids (or residues) which build up proteins. Because there are more codons than residues, there is inherent redundancy in the coding. Certain residues (e.g., tryptophan) have only a single corresponding codon, while other residues (e.g., arginine) have as many as six corresponding codons. This freedom implies that the number of possible RNA sequences coding for a given protein grows exponentially in the length of the protein. Thus nature has wide latitude to select among mRNA sequences which are informationally equivalent, but structurally and energetically divergent. In this paper, we explore how nature takes advantage of this freedom and how to algorithmically design structures more energetically favorable than have been built through natural selection. In particular: (1) Natural Selection--we perform the first large-scale computational experiment comparing the stability of mRNA sequences from a variety of organisms to random synonymous sequences which respect the codon preferences of the organism. This experiment was conducted on over 27,000 sequences from 34 microbial species with 36 genomic structures. We provide evidence that in all genomic structures highly stable sequences are disproportionately abundant, and in 19 of 36 cases highly unstable sequences are disproportionately abundant. This suggests that the stability of mRNA sequences is subject to natural selection. (2) Artificial Selection--motivated by these biological results, we examine the algorithmic problem of designing the most stable and unstable mRNA sequences which code for a target protein. We give a polynomial-time dynamic programming solution to the most stable sequence problem (MSSP), which is asymptotically no more complex

  19. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  20. Cellular and tissue expression of DAPIT, a phylogenetically conserved peptide

    H. Kontro

    2012-05-01

    Full Text Available DAPIT (Diabetes Associated Protein in Insulin-sensitive Tissues is a small, phylogenetically conserved, 58 amino acid peptide that was previously shown to be down-regulated at mRNA level in insulin-sensitive tissues of type 1 diabetes rats. In this study we characterize a custom made antibody against DAPIT and confirm the mitochondrial presence of DAPIT on cellular level. We also show that DAPIT is localized in lysosomes of HUVEC and HEK 293T cells. In addition, we describe the histological expression of DAPIT in several tissues of rat and man and show that it is highly expressed especially in cells with high aerobic metabolism and epithelial cells related to active transport of nutrients and ions. We propose that DAPIT, in addition to indicated subunit of mitochondrial F-ATPase, is also a subunit of lysosomal V-ATPase suggesting that it is a common component in different proton pumps.

  1. Effect of rat ovary irradiation or OVX on the expression of COLI and TGF-β1 mRNA in the rat bone

    Gao Yanhong; Gao Jianjun; Jin Weifang; Wang Hongfu

    2003-01-01

    To observe the effects of exposure of rat ovary to radiation or OVX on the expression of TGF-β 1 and COLI in the rat bone. The mRNA levels of TGF-β 1 and COLI in rat tibiae were measured with RT-PCR after the rat ovaries were irradiated by 50 Gy of 137 Cs γ-rays or OVX. For both the radiation group and the OVX group, the COLI mRNA level in the rat bone increased, whereas the TGF-β 1 decreased. Irradiation of ovary and OVX affect the expression of COLI and TGF-β 1 mRNA in bone probably in a similar way which is related to estrogen decrease

  2. Interplay of bistable kinetics of gene expression during cellular growth

    Zhdanov, Vladimir P

    2009-01-01

    In cells, the bistable kinetics of gene expression can be observed on the level of (i) one gene with positive feedback between protein and mRNA production, (ii) two genes with negative mutual feedback between protein and mRNA production, or (iii) in more complex cases. We analyse the interplay of two genes of type (ii) governed by a gene of type (i) during cellular growth. In particular, using kinetic Monte Carlo simulations, we show that in the case where gene 1, operating in the bistable regime, regulates mutually inhibiting genes 2 and 3, also operating in the bistable regime, the latter genes may eventually be trapped either to the state with high transcriptional activity of gene 2 and low activity of gene 3 or to the state with high transcriptional activity of gene 3 and low activity of gene 2. The probability to get to one of these states depends on the values of the model parameters. If genes 2 and 3 are kinetically equivalent, the probability is equal to 0.5. Thus, our model illustrates how different intracellular states can be chosen at random with predetermined probabilities. This type of kinetics of gene expression may be behind complex processes occurring in cells, e.g., behind the choice of the fate by stem cells

  3. Molecular cloning and distribution of oxytocin/vasopressin-like mRNA in the blue swimming crab, Portunus pelagicus, and its inhibitory effect on ovarian steroid release.

    Saetan, Jirawat; Kruangkum, Thanapong; Phanthong, Phetcharat; Tipbunjong, Chittipong; Udomuksorn, Wandee; Sobhon, Prasert; Sretarugsa, Prapee

    2018-04-01

    This study was aimed to characterize the full length of mRNA of oxytocin/vasopressin (OT/VP)-like mRNA in female Portunus pelagicus (PpelOT/VP-like mRNA) using a partial PpelOT/VP-like sequence obtained previously in our transcriptome analysis (Saetan, 2014) to construct the primers. The PpelOT/VP-like mRNA was 626 bp long and it encoded the preprohormones containing 158 amino acids. This preprohormone consisted of a signal peptide, an active nonapeptide (CFITNCPPG) followed by the dibasic cleavage site (GKR), and the neurophysin domain. Sequence alignment of the PpelOT/VP-like peptide with those of other animals revealed strong molecular conservation. Phylogenetic analysis of encoded proteins revealed that the PpelOT/VP-like peptide was clustered within the group of crustacean OT/VP-like peptide. Analysis by RT-PCR revealed the expression of mRNA transcripts in the eyestalk, brain, ventral nerve cord (VNC), ovary, intestine and gill. The in situ hybridization demonstrated the cellular localizations of the transcripts in the central nervous system (CNS) and ovary tissues. In the eyestalk, the mRNA expression was observed in the neuronal clusters 1-5 but not in the sinus gland complex. In the brain and the VNC, the transcripts were detected in all neuronal clusters but not in the glial cell. In the ovary, the transcripts were found in all stages of oocytes (Oc1, Oc2, Oc3, and Oc4). In addition, synthetic PpelOT/VP-like peptide could inhibit steroid release from the ovary. The knowledge gained from this study will provide more understanding on neuro-endocrinological controls in this crab species. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice.

    Jourová, L; Anzenbacher, P; Lišková, B; Matušková, Z; Hermanová, P; Hudcovic, T; Kozáková, H; Hrnčířová, L; Anzenbacherová, E

    2017-11-01

    Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877 ; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.

  5. Health aspects of cellular mobile telephones

    Garn, H.

    1996-01-01

    Cellular mobile telephones are one of the main topics among health aspects of electromagnetic fields. In many countries, the number of people opposing communication towers is on the rise. Lawsuits against telecommunication and power line companies have been filed. All this makes people doubt the safety of electromagnetic fields. With respect to cellular phones, there are two scenarios: * Exposure of the operators of hand-held terminals (HHT). * Exposure of the general public from base stations (BS). In the first case, the transmit antenna of the HHT is very close to the human body. For normal operation, the distance will roughly be 2 - 3 cm. The transmitter power of the HHT is comparatively low, but there is a considerable fraction of the radiated electromagnetic energy penetrating the tissue. Considering the second case, BS transmitter powers are by a factor of 100-1000 higher, but the distance between antenna and the human body is by a factor of 1000-100,000 greater, as far as areas of unrestricted public access are concerned. As the power density of an electromagnetic wave decreases inversely proportional to the square of the distance, exposure of the public is always significantly (by many orders of magnitude) lower than exposure of operators of HHTs. Some well-known interaction mechanisms of microwave radiation with the human body have been very well-established today. In some other areas, there is still a need for further research. This paper summarizes present knowledge on human safety with mobile telephone systems. (author)

  6. Advanced cell-based modeling of the royal disease: characterization of the mutated F9 mRNA.

    Martorell, L; Luce, E; Vazquez, J L; Richaud-Patin, Y; Jimenez-Delgado, S; Corrales, I; Borras, N; Casacuberta-Serra, S; Weber, A; Parra, R; Altisent, C; Follenzi, A; Dubart-Kupperschmitt, A; Raya, A; Vidal, F; Barquinero, J

    2017-11-01

    Essentials The Royal disease (RD) is a form of hemophilia B predicted to be caused by a splicing mutation. We generated an iPSC-based model of the disease allowing mechanistic studies at the RNA level. F9 mRNA analysis in iPSC-derived hepatocyte-like cells showed the predicted abnormal splicing. Mutated F9 mRNA level was very low but we also found traces of wild type transcripts. Background The royal disease is a form of hemophilia B (HB) that affected many descendants of Queen Victoria in the 19th and 20th centuries. It was found to be caused by the mutation F9 c.278-3A>G. Objective To generate a physiological cell model of the disease and to study F9 expression at the RNA level. Methods Using fibroblasts from skin biopsies of a previously identified hemophilic patient bearing the F9 c.278-3A>G mutation and his mother, we generated induced pluripotent stem cells (iPSCs). Both the patient's and mother's iPSCs were differentiated into hepatocyte-like cells (HLCs) and their F9 mRNA was analyzed using next-generation sequencing (NGS). Results and Conclusion We demonstrated the previously predicted aberrant splicing of the F9 transcript as a result of an intronic nucleotide substitution leading to a frameshift and the generation of a premature termination codon (PTC). The F9 mRNA level in the patient's HLCs was significantly reduced compared with that of his mother, suggesting that mutated transcripts undergo nonsense-mediated decay (NMD), a cellular mechanism that degrades PTC-containing mRNAs. We also detected small proportions of correctly spliced transcripts in the patient's HLCs, which, combined with genetic variability in splicing and NMD machineries, could partially explain some clinical variability among affected members of the European royal families who had lifespans above the average. This work allowed the demonstration of the pathologic consequences of an intronic mutation in the F9 gene and represents the first bona fide cellular model of HB allowing the

  7. Selection of mRNA 5'-untranslated region sequence with high translation efficiency through ribosome display

    Mie, Masayasu; Shimizu, Shun; Takahashi, Fumio; Kobatake, Eiry

    2008-01-01

    The 5'-untranslated region (5'-UTR) of mRNAs functions as a translation enhancer, promoting translation efficiency. Many in vitro translation systems exhibit a reduced efficiency in protein translation due to decreased translation initiation. The use of a 5'-UTR sequence with high translation efficiency greatly enhances protein production in these systems. In this study, we have developed an in vitro selection system that favors 5'-UTRs with high translation efficiency using a ribosome display technique. A 5'-UTR random library, comprised of 5'-UTRs tagged with a His-tag and Renilla luciferase (R-luc) fusion, were in vitro translated in rabbit reticulocytes. By limiting the translation period, only mRNAs with high translation efficiency were translated. During translation, mRNA, ribosome and translated R-luc with His-tag formed ternary complexes. They were collected with translated His-tag using Ni-particles. Extracted mRNA from ternary complex was amplified using RT-PCR and sequenced. Finally, 5'-UTR with high translation efficiency was obtained from random 5'-UTR library

  8. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  9. The Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats.

    Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali

    2018-01-01

    Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (PStAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.

  10. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (...... = 13) performed 3 days of treadmill running. Cellular proliferation was investigated 3 days before and 48 h after the running exercise with the use of FLT and positron emission tomography/computed tomography (PET/CT). Results were compared to a sedentary control group (n = 10). Image......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  11. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    Li Jinmei; Wang Xuefeng; Xi Zhiqin; Gong Yun; Liu Fengying; Sun Jijun; Wu Yuan; Luan Guoming; Wang Yuping; Li Yunlin; Zhang Jianguo; Lu Yong; Li Hongwei

    2006-01-01

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in the temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures

  12. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  13. Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones.

    Kononen, J; Soinila, S; Persson, H; Honkaniemi, J; Hökfelt, T; Pelto-Huikko, M

    1994-12-01

    We studied the expression of messenger ribonucleic acids (mRNAs) for neurotrophins and neurotrophin receptors in the rat pituitary gland and examined the influence of adrenal hormones on their mRNA levels, using in situ hybridization and Northern blot analysis. The only neurotrophin present at detectable levels in the pituitary was brain-derived neurotrophic factor (BDNF), which was observed in the anterior and intermediate lobes. Several transcripts of the putative receptor for BDNF, trkB, were present in the anterior and posterior lobes of the pituitary. A low amount of trkC mRNA was found in both the anterior and the intermediate lobe. Dexamethasone treatment decreased both BDNF and trkB mRNA levels in the anterior lobe of the pituitary. Adrenalectomy had no effect on trkB expression, but it decreased BDNF mRNA levels in comparison to the control animals. This effect could not be reversed by dexamethasone substitution, suggesting that BDNF, mRNA levels may be regulated not only by glucocorticoids but also by other adrenal hormones. These results demonstrate that BDNF, trkB and trkC are expressed in the pituitary gland and that glucocorticoids and possibly other adrenal hormones may modulate pituitary functions by regulating the expression of neurotrophic factors and their receptors. Whether BDNF acts as a secreted hormone, a trophic factor, or has autocrine/paracrine functions within the pituitary through its receptor, trkB, remains to be studied.

  14. Dietary turmeric modulates DMBA-induced p21ras, MAP kinases and AP-1/NF-κB pathway to alter cellular responses during hamster buccal pouch carcinogenesis

    Garg, Rachana; Ingle, Arvind; Maru, Girish

    2008-01-01

    The chemopreventive efficacy of turmeric has been established in experimental systems. However, its mechanism(s) of action are not fully elucidated in vivo. The present study investigates the mechanism of turmeric-mediated chemoprevention in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis at 2, 4, 6, 10 and 12 weeks. Dietary turmeric (1%) led to decrease in DMBA-induced tumor burden and multiplicity, and enhanced the latency period in parallel, to its modulatory effects on oncogene products and various cellular responses during HBP tumorigenesis. DMBA-induced expression of ras oncogene product, p21 and downstream target, the mitogen-activated protein kinases were significantly decreased by turmeric during HBP carcinogenesis. Turmeric also diminished the DMBA-induced mRNA expression of proto-oncogenes (c-jun, c-fos) and NF-κB, leading to decreased protein levels and in further attenuation of DMBA-induced AP-1/NF-κB DNA-binding in the buccal pouch nuclear extracts. Besides, buccal pouch of hamsters receiving turmeric diet showed significant alterations in DMBA-induced effects: (a) decrease in cell proliferation (diminished PCNA and Bcl2 expression), (b) enhanced apoptosis (increased expression of Bax, caspase-3 and apoptotic index), (c) decrease in inflammation (levels of Cox-2, the downstream target of AP-1/NF-κB, and PGE2) and (d) aberrant expression of differentiation markers, the cytokeratins (1, 5, 8, and 18). Together, the protective effects of dietary turmeric converge on augmenting apoptosis of the initiated cells and decreasing cell proliferation in DMBA-treated animals, which in turn, is reflected in decreased tumor burden, multiplicity and enhanced latency period. Some of these biomarkers are likely to be helpful in monitoring clinical trials and evaluating drug effect measurements

  15. Universal map for cellular automata

    García-Morales, V.

    2012-01-01

    A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived. -- Highlights: ► A universal map is derived for all deterministic 1D cellular automata (CA). ► The map is generalized to 2D for Von Neumann, Moore and hexagonal neighborhoods. ► A map for all Wolfram's 256 elementary CAs is derived. ► A map for Conway's “Game of Life” is obtained.

  16. Simulating physics with cellular automata

    Vichniac, G Y

    1984-01-01

    Cellular automata are dynamical systems where space, time, and variables are discrete. They are shown on two-dimensional examples to be capable of non-numerical simulations of physics. They are useful for faithful parallel processing of lattice models. At another level, they exhibit behaviours and illustrate concepts that are unmistakably physical, such as non-ergodicity and order parameters, frustration, relaxation to chaos through period doublings, a conspicuous arrow of time in reversible microscopic dynamics, causality and light-cone, and non-separability. In general, they constitute exactly computable models for complex phenomena and large-scale correlations that result from very simple short-range interactions. The author studies their space, time, and intrinsic symmetries and the corresponding conservation laws, with an emphasis on the conservation of information obeyed by reversible cellular automata. 60 references.

  17. Intergenic mRNA molecules resulting from trans-splicing.

    Finta, Csaba; Zaphiropoulos, Peter G

    2002-02-22

    Accumulated recent evidence is indicating that alternative splicing represents a generalized process that increases the complexity of human gene expression. Here we show that mRNA production may not necessarily be limited to single genes, as human liver also has the potential to produce a variety of hybrid cytochrome P450 3A mRNA molecules. The four known cytochrome P450 3A genes in humans, CYP3A4, CYP3A5, CYP3A7, and CYP3A43, share a high degree of similarity, consist of 13 exons with conserved exon-intron boundaries, and form a cluster on chromosome 7. The chimeric CYP3A mRNA molecules described herein are characterized by CYP3A43 exon 1 joined at canonical splice sites to distinct sets of CYP3A4 or CYP3A5 exons. Because the CYP3A43 gene is in a head-to-head orientation with the CYP3A4 and CYP3A5 genes, bypassing transcriptional termination can not account for the formation of hybrid CYP3A mRNAs. Thus, the mechanism generating these molecules has to be an RNA processing event that joins exons of independent pre-mRNA molecules, i.e. trans-splicing. Using quantitative real-time polymerase chain reaction, the ratio of one CYP3A43/3A4 intergenic combination was estimated to be approximately 0.15% that of the CYP3A43 mRNAs. Moreover, trans-splicing has been found not to interfere with polyadenylation. Heterologous expression of the chimeric species composed of CYP3A43 exon 1 joined to exons 2-13 of CYP3A4 revealed catalytic activity toward testosterone.

  18. mRNA transfection of mouse and human neural stem cell cultures

    McLenachan, Samuel; Zhang, D.; Palomo, A.B.; Edel, Michael John; Chen, F.K.

    2013-01-01

    The use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has ...

  19. Cellular Adhesion and Adhesion Molecules

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  20. Cellular automata with voting rule

    Makowiec, D.

    1996-01-01

    The chosen local interaction - the voting (majority) rule applied to the square lattice is known to cause the non ergodic cellular automata behaviour. Presented computer simulation results verify two cases of non ergodicity. The first one is implicated by the noise introduced to the local interactions and the second one follows properties of the initial lattice configuration selected at random. For the simplified voting rule - non symmetric voting, the critical behaviour has been explained rigorously. (author)

  1. Expression of Flk-1 and Cyclin D2 mRNA in the Myocardium of Rats with Doxorubicin-Induced Cardiomyopathy and after Treatment with Betulonic Acid Amide.

    Mzhelskaya, M M; Klinnikova, M G; Koldysheva, E V; Lushnikova, E L

    2017-10-01

    The expression of VEGFR2 (Flk-1, according to immunohistochemistry) and of cyclin D2 mRNA (according to real-time PCR) in the myocardium of rats is studied in doxorubicin-induced cardiomyopathy and in response to betulonic acid amide. Doxorubicin alone and in combination with betulonic acid amide causes after 3 days a manifest reduction of cyclin D2 mRNA expression (by 38 and 63%, respectively), while injection of betulonic acid amide alone causes a 23-fold increase of cyclin D2 mRNA expression. An increase of cyclin D2 mRNA expression has been detected in all experimental groups after 14 days of experiment, the most pronounced in response to betulonic acid amide (63 times). The expression of Flk-1 in cardiomyocytes increases significantly in response to both chemical agents starting from day 3 of experiment. These results indicate that doxorubicin and betulonic acid amide induce cytoprotective reactions in the myocardium, first at the intracellular, then at the cellular levels.

  2. Effect of low-dose irradiation on expression of mRNA and protein. Pt.1. Induction of thioredoxin as radioprotective protein in human lymphocytes

    Hoshi, Yuko; Tanooka, Hiroshi; Wakasugi, Hiro; Miyasaki, Kunihisa

    1997-01-01

    To elucidate the mechanism of hormetic effect by low-dose ionizing radiation, we studied the expression of the thioredoxin (TRX) gene in human lymphocytes after irradiation. TRX is a radioprotector and a key protein regulating cellular functions through redox reaction. The major results obtained were as follows; (1) The peaks of TRX mRNA expression and protein synthesis in human lymphocytes appeared 6-8 hr after irradiation with 25cGy. (2) At 6 hr after irradiation, the optimum dose for induction of TRX mRNA and TRX protein in human lymphocytes appeared to be 25-50cGy. (3) Induction of expression TRX mRNA had individual variations about twice. (4) Lymphocytes prepared from fresh venous blood showed the lowest TRX mRNA level in other cells such a Jurkat cells, lymphocytes stimulated for now with IL-2 and CD3 and the immortalized cell line 1G8. (5) The optimal dose and time course of induction of TRX by low-dose radiation suggest that TRX is related to the radio-adaptive response. (author)

  3. Increments in insulin sensitivity during intensive treatment are closely correlated with decrements in glucocorticoid receptor mRNA in skeletal muscle from patients with Type II diabetes

    Vestergaard, H; Bratholm, P; Christensen, N J

    2001-01-01

    decreased significantly after intensive insulin treatment. A close correlation was found between increments in glucose uptake during intensive treatment and decrements in skeletal muscle total GCR mRNA (r=0.95, Pmultiple regression analysis), and between glucose uptake and alpha/alpha 2 GCR m RNA...

  4. Effects of irradiation on TGF-β1 mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line

    Song, Ju Seop; Kim, Kyoung A; Koh, Kwang Joon

    2008-01-01

    To investigate the effects of irradiation on transforming growth factor β1 (TGF-β 1 ) mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line. Cells were cultured in alpha-minimum essential medium (α-MEM) supplemented with 10% fetal bovine serum and antibiotics. When the cells reached the level of 70-80% confluence, culture media were changed with α-MEM supplemented with 10% FBS, 5 mM β-glycerol phosphate, and 50 μg/mL ascorbic acid. Thereafter the cells were irradiated with a single dose of 2, 4, 6, 8 Gy at a dose rate of 1.5 Gy/min. The expression pattern of TGF-β 1 mRNA, calcium content and calcific nodule formation were examined on day 3, 7, 14, 21, 28, respectively, after the irradiation. The amount of TGF-β 1 mRNA expression decreased significantly on day 7 after irradiation of 4, 6, 8 Gy. It also decreased on day 14 after irradiation of 6, 8 Gy, and decreased on day 21 after irradiation of 8 Gy. The amount of calcium deposition decreased significantly on day 7 after irradiation of 4, 8 Gy (P 1 mRNA expression that was associated with proliferation and the production of extracellular matrix in MC3T3-E1 osteoblastic cell line

  5. mRNA levels of enzymes and receptors implicated in arachidonic acid metabolism in gliomas.

    De Armas, Rafael; Durand, Karine; Guillaudeau, Angélique; Weinbreck, Nicolas; Robert, Sandrine; Moreau, Jean-Jacques; Caire, François; Acosta, Gisela; Pebet, Matias; Chaunavel, Alain; Marin, Benoît; Labrousse, François; Denizot, Yves

    2010-07-01

    Gliomas are tumors of the central nervous system derived from glial cells. They show cellular heterogeneity and lack specific diagnostic markers. Although a possible role for the eicosanoid cascade has been suggested in glioma tumorigenesis, the relationship between enzymes and receptors implicated in arachidonic acid metabolism, with histological tumor type has not yet been determined. Quantitative real-time reverse transcription-polymerase chain reaction was performed to measure and compare transcript levels of enzymes and receptors implicated in both lipoxygenase and cyclooxygenase pathways between oligodendrogliomas, astrocytomas, glioblastomas and mixed oligoastrocytomas. Arachidonic acid metabolism-related enzymes and receptor transcripts (i) were underexpressed in classical oligodendrogliomas compared to astrocytomas and/or glioblastomas, (ii) differed between astrocytomas and glioblastomas and (iii) had an intermediate expression in mixed oligoastrocytomas. mRNA levels of enzymes and receptors implicated both in lipoxygenase and cyclooxygenase pathways differed significantly in gliomas according to the histological type. Copyright 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. ARMOUR – A Rice miRNA: mRNA Interaction Resource

    Neeti Sanan-Mishra

    2018-05-01

    Full Text Available ARMOUR was developed as ARice miRNA:mRNA interaction resource. This informative and interactive database includes the experimentally validated expression profiles of miRNAs under different developmental and abiotic stress conditions across seven Indian rice cultivars. This comprehensive database covers 689 known and 1664 predicted novel miRNAs and their expression profiles in more than 38 different tissues or conditions along with their predicted/known target transcripts. The understanding of miRNA:mRNA interactome in regulation of functional cellular machinery is supported by the sequence information of the mature and hairpin structures. ARMOUR provides flexibility to users in querying the database using multiple ways like known gene identifiers, gene ontology identifiers, KEGG identifiers and also allows on the fly fold change analysis and sequence search query with inbuilt BLAST algorithm. ARMOUR database provides a cohesive platform for novel and mature miRNAs and their expression in different experimental conditions and allows searching for their interacting mRNA targets, GO annotation and their involvement in various biological pathways. The ARMOUR database includes a provision for adding more experimental data from users, with an aim to develop it as a platform for sharing and comparing experimental data contributed by research groups working on rice.

  7. ARMOUR - A Rice miRNA: mRNA Interaction Resource.

    Sanan-Mishra, Neeti; Tripathi, Anita; Goswami, Kavita; Shukla, Rohit N; Vasudevan, Madavan; Goswami, Hitesh

    2018-01-01

    ARMOUR was developed as A Rice miRNA:mRNA interaction resource. This informative and interactive database includes the experimentally validated expression profiles of miRNAs under different developmental and abiotic stress conditions across seven Indian rice cultivars. This comprehensive database covers 689 known and 1664 predicted novel miRNAs and their expression profiles in more than 38 different tissues or conditions along with their predicted/known target transcripts. The understanding of miRNA:mRNA interactome in regulation of functional cellular machinery is supported by the sequence information of the mature and hairpin structures. ARMOUR provides flexibility to users in querying the database using multiple ways like known gene identifiers, gene ontology identifiers, KEGG identifiers and also allows on the fly fold change analysis and sequence search query with inbuilt BLAST algorithm. ARMOUR database provides a cohesive platform for novel and mature miRNAs and their expression in different experimental conditions and allows searching for their interacting mRNA targets, GO annotation and their involvement in various biological pathways. The ARMOUR database includes a provision for adding more experimental data from users, with an aim to develop it as a platform for sharing and comparing experimental data contributed by research groups working on rice.

  8. Generation and Comprehensive Analysis of an Influenza Virus Polymerase Cellular Interaction Network▿†§

    Tafforeau, Lionel; Chantier, Thibault; Pradezynski, Fabrine; Pellet, Johann; Mangeot, Philippe E.; Vidalain, Pierre-Olivier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent

    2011-01-01

    The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response. PMID:21994455

  9. Generation and comprehensive analysis of an influenza virus polymerase cellular interaction network.

    Tafforeau, Lionel; Chantier, Thibault; Pradezynski, Fabrine; Pellet, Johann; Mangeot, Philippe E; Vidalain, Pierre-Olivier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent

    2011-12-01

    The influenza virus transcribes and replicates its genome inside the nucleus of infected cells. Both activities are performed by the viral RNA-dependent RNA polymerase that is composed of the three subunits PA, PB1, and PB2, and recent studies have shown that it requires host cell factors to transcribe and replicate the viral genome. To identify these cellular partners, we generated a comprehensive physical interaction map between each polymerase subunit and the host cellular proteome. A total of 109 human interactors were identified by yeast two-hybrid screens, whereas 90 were retrieved by literature mining. We built the FluPol interactome network composed of the influenza virus polymerase (PA, PB1, and PB2) and the nucleoprotein NP and 234 human proteins that are connected through 279 viral-cellular protein interactions. Analysis of this interactome map revealed enriched cellular functions associated with the influenza virus polymerase, including host factors involved in RNA polymerase II-dependent transcription and mRNA processing. We confirmed that eight influenza virus polymerase-interacting proteins are required for virus replication and transcriptional activity of the viral polymerase. These are involved in cellular transcription (C14orf166, COPS5, MNAT1, NMI, and POLR2A), translation (EIF3S6IP), nuclear transport (NUP54), and DNA repair (FANCG). Conversely, we identified PRKRA, which acts as an inhibitor of the viral polymerase transcriptional activity and thus is required for the cellular antiviral response.

  10. Cellular communications a comprehensive and practical guide

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  11. Long-term treatment with haloperidol affects neuropeptide S and NPSR mRNA levels in the rat brain.

    Palasz, Artur; Rojczyk, Ewa; Golyszny, Milosz; Filipczyk, Lukasz; Worthington, John J; Wiaderkiewicz, Ryszard

    2016-04-01

    The brainstem-derived neuropeptide S (NPS) has a multidirectional regulatory activity, especially as a potent anxiolytic factor. Accumulating data suggests that neuroleptics affect peptidergic signalling in various brain structures. However, there is no information regarding the influence of haloperidol on NPS and NPS receptor (NPSR) expression. We assessed NPS and NPSR mRNA levels in brains of rats treated with haloperidol using quantitative real-time polymerase chain reaction. Chronic haloperidol treatment (4 weeks) led to a striking upregulation of NPS and NPSR expression in the rat brainstem. Conversely, the NPSR mRNA expression was decreased in the hippocampus and striatum. This stark increase of NPS in response to haloperidol treatment supports the hypothesis that this neuropeptide is involved in the dopamine-dependent anxiolytic actions of neuroleptics and possibly also in the pathophysiology of mental disorders. Furthermore, our findings underline the complex nature of potential interactions between dopamine receptors and brain peptidergic pathways, which has potential clinical applications.

  12. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    Sjøgaard, Gisela; Zebis, Mette Kreutzfeldt; Kiilerich, Kristian

    2013-01-01

    healthy controls. Those with myalgia performed similar to 7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after...... 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism......The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16...

  13. MNK1 expression increases during cellular senescence and modulates the subcellular localization of hnRNP A1

    Ziaei, Samira; Shimada, Naoko; Kucharavy, Herman; Hubbard, Karen

    2012-01-01

    Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an RNA-binding protein that modulates splice site usage, polyadenylation, and cleavage efficiency. This protein has also been implicated in mRNA stability and transport from the nucleus. We have previously demonstrated that hnRNP A1 had diminished protein levels and showed cytoplasmic accumulation in senescent human diploid fibroblasts. Furthermore, we have shown that inhibition of p38 MAPK, a key regulator of cellular senescence, elevated hnRNP A1 protein levels and inhibited hnRNP A1 cytoplasmic localization. In this study, we have explored the possible involvement of MNK1, one of the downstream effector of p38 MAPK, in the regulation of hnRNP A1. We have demonstrated that pharmacological inhibition of MNK1 by CGP 57380 decreased the phosphorylation levels of hnRNP A1 in young and senescent fibroblast cells and blocked the cytoplasmic accumulation of hnRNP A1 in senescent cells. In addition, MNK1 formed a complex with hnRNP A1 in vivo. The expression levels of MNK1, phospho-MNK1, and phospho-eIF4E proteins were found to be elevated in senescent cells. These data suggest that MNK1 regulates the phosphorylation and the subcellular distribution of hnRNP A1 and that MNK1 may play a role in the induction of senescence. -- Highlights: ► MNK1 and not MAPKAPK2 phosphorylates hnRNP A1. ► MNK1 has elevated levels in senescent cells, this has not been reported previously. ► MNK1 activity induces cytoplasmic accumulation of hnRNP A1 in senescent cells. ► Altered cytoplasmic localization of hnRNP A1 may alter gene expression patterns. ► Our studies may increase our understanding of RNA metabolism during cellular aging.

  14. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    Ying, Bo; Campbell, Robert B.

    2014-01-01

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  15. Pathogenesis of pulmonary emphysema – cellular and molecular events

    Antonio Di Petta

    2010-06-01

    Full Text Available Pulmonary emphysema is a chronic obstructive disease, resulting fromimportant alterations in the whole distal structure of terminal bronchioles, either by enlargement of air spaces or by destruction of the alveolar wall, leading to loss of respiratory surface, decreased elastic recoil and lung hyperinflation. For many years, the hypothesis of protease-antiprotease unbalance prevailed as the central theme in the pathogenesis of pulmonary emphysema. According to this hypothesis, the release of active proteolytic enzymes, produced mainly by neutrophils and macrophages, degrades the extracellular matrix, affecting the integrity of its components, especially collagen and elastic fibers. However, new concepts involving cellular and molecular events were proposed, including oxidative stress, cell apoptosis, cellular senescence and failed lung tissue repair. The aim of this review paper was to evaluate the cellular and molecular mechanisms seen in the pathogenesis of pulmonary emphysema.

  16. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.).

    Shibuya, Kenichi; Nagata, Masayasu; Tanikawa, Natsu; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.

  17. Correlation between AQP4 mRNA and PKC activity after gamma knife radiosurgery in rat brain

    Shen Guangjian; Xu Minhui; Gen Mingying; Tang Wenyuan; Sun Shanquan

    2009-01-01

    Objective: To explore the change of AQP4 mRNA expression and the correlation with PKC in rat brain irradiated by γ knife radiosurgery (GKS). Methods: 30 Wistar rats were used in the study. The experimental radiosurgery model was established by radiating rat left rotral caudate nucleus with GKS(one target, 100 Gy in isocenter dose and 4 mm in collimator), and was examined at 1,3,7,15,30 and 45 d post-irradiation. AQP4 mRNA expression, PKC activity and free intracellular calcium ion concentration ([Ca 2+ ] i ) of brain tissue were determined by RT-PCR, liquid scintillation counter and Fura-2/AM, respectively. Results: AQP4 mRNA expression increased gradually from 0.99 ± 0.05 in control group to 2.32 ± 0.10 at 30 d post-irradiation, and decreased to 2.21 ± 0.08 at 45 d post-irradiation. The PKC activity and the free [Ca 2+ ] i decreased gradually from 0.5896 ± 0.2101 and 455.82 ± 20.13 in control group to 0.0404 ± 0.0294 and 196.72 ± 9.87 at 30 d post- irradiation, and increased to 0.1050 ± 0.0607 and 219.26 ± 10.43 at 45 d post-irradiation, respectively. The significant differences were found between experimental group and control group except at 1 d post-irradiation (P 2+ ] i and the PKC activity was positive (P=0.001, r=0.959). Conclusions: The increased expression of AQP4 mRNA might result from the inhibition of PKC activity due to the reduction of free [Ca 2+ ] i after GKS. (authors)

  18. HOXB7 mRNA is overexpressed in pancreatic ductal adenocarcinomas and its knockdown induces cell cycle arrest and apoptosis

    Chile, Thais; Bacchella, Telésforo; Giorgi, Ricardo Rodrigues; Fortes, Maria Angela Henriques Zanella; Corrêa-Giannella, Maria Lúcia Cardillo; Brentani, Helena Paula; Maria, Durvanei Augusto; Puga, Renato David; Paula, Vanessa de Jesus R de; Kubrusly, Marcia Saldanha; Novak, Estela Maria

    2013-01-01

    Human homeobox genes encode nuclear proteins that act as transcription factors involved in the control of differentiation and proliferation. Currently, the role of these genes in development and tumor progression has been extensively studied. Recently, increased expression of HOXB7 homeobox gene (HOXB7) in pancreatic ductal adenocarcinomas (PDAC) was shown to correlate with an invasive phenotype, lymph node metastasis and worse survival outcomes, but no influence on cell proliferation or viability was detected. In the present study, the effects arising from the knockdown of HOXB7 in PDAC cell lines was investigated. Real time quantitative PCR (qRT-PCR) (Taqman) was employed to assess HOXB7 mRNA expression in 29 PDAC, 6 metastatic tissues, 24 peritumoral tissues and two PDAC cell lines. siRNA was used to knockdown HOXB7 mRNA in the cell lines and its consequences on apoptosis rate and cell proliferation were measured by flow cytometry and MTT assay respectively. Overexpression of HOXB7 mRNA was observed in the tumoral tissues and in the cell lines MIA PaCa-2 and Capan-1. HOXB7 knockdown elicited (1) an increase in the expression of the pro-apoptotic proteins BAX and BAD in both cell lines; (2) a decrease in the expression of the anti-apoptotic protein BCL-2 and in cyclin D1 and an increase in the number of apoptotic cells in the MIA PaCa-2 cell line; (3) accumulation of cell in sub-G1 phase in both cell lines; (4) the modulation of several biological processes, especially in MIA PaCa-2, such as proteasomal ubiquitin-dependent catabolic process and cell cycle. The present study confirms the overexpression of HOXB7 mRNA expression in PDAC and demonstrates that decreasing its protein level by siRNA could significantly increase apoptosis and modulate several biological processes. HOXB7 might be a promising target for future therapies

  19. High Intensity High Volume Interval Training Improves Endurance Performance and Induces a Nearly Complete Slow-to-Fast Fiber Transformation on the mRNA Level

    Julian Eigendorf

    2018-05-01

    Full Text Available We present here a longitudinal study determining the effects of two 3 week-periods of high intensity high volume interval training (HIHVT (90 intervals of 6 s cycling at 250% maximum power, Pmax/24 s on a cycle ergometer. HIHVT was evaluated by comparing performance tests before and after the entire training (baseline, BSL, and endpoint, END and between the two training sets (intermediate, INT. The mRNA expression levels of myosin heavy chain (MHC isoforms and markers of energy metabolism were analyzed in M. vastus lateralis biopsies by quantitative real-time PCR. In incremental tests peak power (Ppeak was increased, whereas V˙O2peak was unaltered. Prolonged time-to-exhaustion was found in endurance tests with 65 and 80% Pmax at INT and END. No changes in blood levels of lipid metabolites were detected. Training-induced decreases of hematocrit indicate hypervolemia. A shift from slow MHCI/β to fast MHCIIa mRNA expression occurred after the first and second training set. The mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α, a master regulator of oxidative energy metabolism, decreased after the second training set. In agreement, a significant decrease was also found for citrate synthase mRNA after the second training set, indicating reduced oxidative capacity. However, mRNA expression levels of glycolytic marker enzyme glyceraldehyde-3-phosphate dehydrogenase did not change after the first and second training set. HIHVT induced a nearly complete slow-to-fast fiber type transformation on the mRNA level, which, however, cannot account for the improvements of performance parameters. The latter might be explained by the well-known effects of hypervolemia on exercise performance.

  20. Stochastic fluctuations and distributed control of gene expression impact cellular memory.

    Guillaume Corre

    Full Text Available Despite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins. Both types of clones displayed strong heterogeneity of reporter gene expression levels. However, cells expressing stable gene products produced daughter cells with similar level of reporter proteins, while in cell clones with short mRNA and protein half-lives the epigenetic memory of the gene expression level was completely suppressed. Computer simulations also confirmed the role of mRNA and protein stability in the conservation of constant gene expression levels over several cell generations. These data indicate that the conservation of a stable phenotype in a cellular lineage may largely depend on the slow turnover of mRNA-s and proteins.

  1. Potential Cellular Signatures of Viral Infections in Human Hematopoietic Cells

    J. Mikovits

    2001-01-01

    Full Text Available Expression profiling of cellular genes was performed using a 10,000 cDNA human gene array in order to identify expression changes following chronic infection of human hematopoietic cells with Kapsosi’s Sarcoma -associated Virus (KSHV also known as Human Herpesvirus 8 (HHV8 and Human T cell leukemia virus-1 (HTLV-1. We performed cell-free {\\it in vitro} infection of primary bone marrow derived CD34+ cells using semi-purified HHV8 and a mature IL-2 dependent T cell line, KIT 225, using highly concentrated viral stocks prepared from an infectious molecular clone of HTLV-1. Thirty days post infection, mRNA was isolated from infected cultures and uninfected controls and submitted for microarray analysis. More than 400 genes were differentially expressed more than two-fold following HHV8 infection of primary bone marrow derived CD34+ cells. Of these 400, interferon regulatory factor 4 (IRF4, cyclin B2, TBP-associated factor, eukaryotic elongation factor and pim 2 were up-regulated more than 3.5 fold. In contrast, less than 100 genes were differentially expressed more than two-fold following chronic infection of a mature T cell line with HTLV-1. Of these, only cdc7 was up-regulated more than 3.5 fold. These data may provide insight into cellular signatures of infection useful for diagnosis of infection as well as potential targets for therapeutic intervention.

  2. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.

    Cadiou, Hervé; Aoudé, Imad; Tazir, Bassim; Molinas, Adrien; Fenech, Claire; Meunier, Nicolas; Grosmaitre, Xavier

    2014-04-02

    Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses' kinetics were faster. These effects are specific to the odorant-receptor pair lyral-MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.

  3. Cucurbitacin IIb exhibits anti-inflammatory activity through modulating multiple cellular behaviors of mouse lymphocytes.

    Yao Wang

    Full Text Available Cucurbitacin IIb (CuIIb is one of the major active compounds in Hemsleyadine tablets which have been used for clinical treatment of bacillary dysentery, enteritis and acute tonsilitis. However, its action mechanism has not been completely understood. This study aimed to explore the anti-inflammatory activity of CuIIb and its underlying mechanism in mitogen-activated lymphocytes isolated from mouse mesenteric lymph nodes. The results showed that CuIIb inhibited the proliferation of concanavalin A (Con A-activated lymphocytes in a time- and dose-dependent manner. CuIIb treatment arrested their cell cycle in S and G2/M phases probably due to the disruption of the actin cytoskeleton and the modulation of p27(Kip1 and cyclin levels. Moreover, the surface expression of activation markers CD69 and CD25 on Con A-activated CD3(+ T lymphocytes was suppressed by CuIIb treatment. Both Con A- and phorbol ester plus ionomycin-induced expression of TNF-α, IFN-γ and IL-6 proteins was attenuated upon exposure to CuIIb. Mechanistically, CuIIb treatment suppressed the phosphorylation of JNK and Erk1/2 but not p38 in Con A-activated lymphocytes. Although CuIIb unexpectedly enhanced the phosphorylation of IκB and NF-κB (p65, it blocked the nuclear translocation of NF-κB (p65. In support of this, CuIIb significantly decreased the mRNA levels of IκBα and TNF-α, two target genes of NF-κB, in Con A-activated lymphocytes. In addition, CuIIb downregulated Con A-induced STAT3 phosphorylation and increased cell apoptosis. Collectively, these results suggest that CuIIb exhibits its anti-inflammatory activity through modulating multiple cellular behaviors and signaling pathways, leading to the suppression of the adaptive immune response.

  4. The cellular approach to band structure calculations

    Verwoerd, W.S.

    1982-01-01

    A short introduction to the cellular approach in band structure calculations is given. The linear cellular approach and its potantial applicability in surface structure calculations is given some consideration in particular

  5. Enteral intestinal alkaline phosphatase administration in newborns decreases iNOS expression in a neonatal necrotizing enterocolitis rat model.

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Pritchard, Kirkwood; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2013-01-01

    To determine if intestinal alkaline phosphatase (IAP) decreases intestinal injury resulting from experimentally induced necrotizing enterocolitis (NEC). We hypothesized that IAP administration prevents the initial development of NEC related intestinal inflammation. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day 1 of life. Pre-term pups were exposed to intermittent hypoxia and formula containing LPS to induce NEC. Select NEC pups were given 40, 4 or 0.4 units/kg of bovine IAP (NEC+IAP40u, IAP4u or IAP0.4u) enterally, once daily. Ileal sections were evaluated by real-time PCR (qRT-PCR) for IAP, iNOS, IL-1β, IL-6, and TNF-α mRNA and immunofluorescence for 3-nitrotyrosine (3-NT). Experimentally induced NEC decreased IAP mRNA expression by 66% (p ≤ 0.001). IAP supplementation increased IAP mRNA expression to control. Supplemental enteral IAP decreased nitrosative stress as measured by iNOS mRNA expression and 3-NT staining in the NEC stressed pups (p ≤ 0.01), as well as decreased intestinal TNF-α mRNA expression. In addition, IAP decreased LSP translocation into the serum in the treated pups. We conclude that enterally administered IAP prevents NEC-related intestinal injury and inflammation. Enteral IAP may prove a useful strategy in the prevention of NEC in preterm neonates. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition.

    Fiorini, Francesca; Robin, Jean-Philippe; Kanaan, Joanne; Borowiak, Malgorzata; Croquette, Vincent; Le Hir, Hervé; Jalinot, Pierre; Mocquet, Vincent

    2018-01-30

    Up-Frameshift Suppressor 1 Homolog (UPF1) is a key factor for nonsense-mediated mRNA decay (NMD), a cellular process that can actively degrade mRNAs. Here, we study NMD inhibition during infection by human T-cell lymphotropic virus type I (HTLV-1) and characterise the influence of the retroviral Tax factor on UPF1 activity. Tax interacts with the central helicase core domain of UPF1 and might plug the RNA channel of UPF1, reducing its affinity for nucleic acids. Furthermore, using a single-molecule approach, we show that the sequential interaction of Tax with a RNA-bound UPF1 freezes UPF1: this latter is less sensitive to the presence of ATP and shows translocation defects, highlighting the importance of this feature for NMD. These mechanistic insights reveal how HTLV-1 hijacks the central component of NMD to ensure expression of its own genome.

  7. Cytochrome c oxidase subunit 1-based human RNA quantification to enhance mRNA profiling in forensic biology

    Dong Zhao

    2017-01-01

    Full Text Available RNA analysis offers many potential applications in forensic science, and molecular identification of body fluids by analysis of cell-specific RNA markers represents a new technique for use in forensic cases. However, due to the nature of forensic materials that often admixed with nonhuman cellular components, human-specific RNA quantification is required for the forensic RNA assays. Quantification assay for human RNA has been developed in the present study with respect to body fluid samples in forensic biology. The quantitative assay is based on real-time reverse transcription-polymerase chain reaction of mitochondrial RNA cytochrome c oxidase subunit I and capable of RNA quantification with high reproducibility and a wide dynamic range. The human RNA quantification improves the quality of mRNA profiling in the identification of body fluids of saliva and semen because the quantification assay can exclude the influence of nonhuman components and reduce the adverse affection from degraded RNA fragments.

  8. LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression.

    Donald B Bloch

    Full Text Available The mRNA processing body (P-body is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1 is a murine oocyte RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. In this study, autoantibodies were used to identify Limkain B (LMKB, the human orthologue of MARF1, as a P-body component. Indirect immunofluorescence demonstrated that Ge-1 (a central component of the mammalian core-decapping complex co-localized with LMKB in P-bodies. Two-hybrid and co-immunoprecipitation assays were used to demonstrate interaction between Ge-1 and LMKB. The C-terminal 120 amino acids of LMKB mediated interaction with Ge-1 and the N-terminal 1094 amino acids of Ge-1 were required for interaction with LMKB. LMKB is the first protein identified to date that interacts with this portion of Ge-1. LMKB was expressed in human B and T lymphocyte cell lines; depletion of LMKB increased expression of IFI44L, a gene that has been implicated in the cellular response to Type I interferons. The interaction between LMKB/MARF1, a protein that contains RNA-binding domains, and Ge-1, which interacts with core-decapping proteins, suggests that LMKB has a role in the regulation of mRNA stability. LMKB appears to have different functions in different cell types: maintenance of genomic stability in developing oocytes and possible dampening of the inflammatory response in B and T cells.

  9. The clinical value of HPV E6/E7 and STAT3 mRNA detection in cervical cancer screening.

    Fan, Yibing; Shen, Zongji

    2018-02-11

    To explore the value of human papillomavirus (HPV) E6/E7 and signal transducer and activator of transcription 3 (STAT3) mRNA detection in the screening of cervical lesions. 192 patients with abnormal ThinPrep cytology test (TCT) results and/or high-risk HPV infection were screened to identify possible cervical lesions in cases. Diagnoses were confirmed by histopathology. Fluorescence in situ hybridization (FISH) was performed to detect and qualify the mRNAs of HPV E6/E7, STAT3, and Survivin in cervical exfoliated cells. In addition, the performance of separate and combined mRNA detection methods were compared with TCT, HR-HPV DNA schemes respectively. 1. Compared with HPVE6/E7 and STAT3 mRNA methods, Survivin mRNA assay had poor specificity (Sp), Youden index (YI) and concordance rate. 2. HPV E6/E7, STAT3, and STAT3 + HR-HPV methods had the best Sp, concordance rate and positive predictive value (PPV) for cervical lesions screening and atypical squamous cells of undetermined significance (ASCUS) triage. For screening of high grade squamous intraepithelial lesions or greater (HSILs+), no difference was observed in the Se of mRNA detection methods in comparison with that of TCT, HR-HPV and TCT + HR-HPV, whereas the false positive rate (FPR) decreased by 41.48%/55.99%/17.19% and the colposcopy referral rate reduced by about 20.00%/25.00%/11.17%. For triage of women with ASCUS, no difference was observed in the Se of mRNA detection methods as compared to that of HR-HPV (χ 2  = 1.05, P > 0.75), while the FPR decreased by 45.83%/37.50%/41.66% and the colposcopy referral rate reduced by 32.42%/22.60%/25.28%, respectively. The Se, YI, and PPV of the combined methods increased in comparison to each method alone. 3. Compared with the TCT + HR-HPV method, HPV E6/E7 + STAT3 method had perfect Sp (95.92%) and PPV (95.40%) for screening HSILs+, the FPR and colposcopy referral rate decreased by 31.06% and 22.48% respectively. 1. The expression of HPV E6/E

  10. [Cellular subcutaneous tissue. Anatomic observations].

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  11. mRNA and microRNA transcriptomics analyses in a murine model of dystrophin loss and therapeutic restoration

    Thomas C. Roberts

    2016-03-01

    Full Text Available Duchenne muscular dystrophy (DMD is a pediatric, X-linked, progressive muscle-wasting disorder caused by loss of function mutations affecting the gene encoding the dystrophin protein. While the primary genetic insult in DMD is well described, many details of the molecular and cellular pathologies that follow dystrophin loss are incompletely understood. To investigate gene expression in dystrophic muscle we have applied mRNA and microRNA (miRNA microarray technology to the mdx mouse model of DMD. This study was designed to generate a complete description of gene expression changes associated with dystrophic pathology and the response to an experimental therapy which restores dystrophin protein function. These datasets have enabled (1 the determination of gene expression changes associated with dystrophic pathology, (2 identification of differentially expressed genes that are restored towards wild-type levels after therapeutic dystrophin rescue, (3 investigation of the correlation between mRNA and protein expression (determined by parallel mass spectrometry proteomics analysis, and (4 prediction of pathology associated miRNA-target interactions. Here we describe in detail how the data were generated including the basic analysis as contained in the manuscript published in Human Molecular Genetics with PMID 26385637. The data have been deposited in the Gene Expression Omnibus (GEO with the accession number GSE64420.

  12. Zeno's paradox in quantum cellular automata

    Groessing, G.; Zeilinger, A.

    1991-01-01

    The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.)

  13. Zeno's paradox in quantum cellular automata

    Groessing, G [Atominst. der Oesterreichischen Universitaeten, Vienna (Austria); Zeilinger, A [Inst. fuer Experimentalphysik, Univ. Innsbruck (Austria)

    1991-07-01

    The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.).

  14. Game of Life Cellular Automata

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  15. 'Biomoleculas': cellular metabolism didactic software

    Menghi, M L; Novella, L P; Siebenlist, M R

    2007-01-01

    'Biomoleculas' is a software that deals with topics such as the digestion, cellular metabolism and excretion of nutrients. It is a pleasant, simple and didactic guide, made by and for students. In this program, each biomolecule (carbohydrates, lipids and proteins) is accompanied until its degradation and assimilation by crossing and interrelating the different metabolic channels to finally show the destination of the different metabolites formed and the way in which these are excreted. It is used at present as a teaching-learning process tool by the chair of Physiology and Biophysics at the Facultad de Ingenieria - Universidad Nacional de Entre Rios

  16. Symmetry analysis of cellular automata

    García-Morales, V.

    2013-01-01

    By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.

  17. On two integrable cellular automata

    Bobenko, A [Technische Univ. Berlin (Germany). Fachbereich Mathematik; Bordemann, M [Freiburg Univ. (Germany). Fachbereich Physik; Gunn, C [Technische Univ. Berlin (Germany). Fachbereich Mathematik; Pinkall, U [Technische Univ. Berlin (Germany). Fachbereich Mathematik

    1993-11-01

    We describe two simple cellular automata (CA) models which exhibit the essential attributes of soliton systems. The first one is an invertible, 2-state, 1-dimensional CA or, in other words, a nonlinear Z[sub 2]-valued dynamical system with discrete space and time. Against a vacuum state of 0, the system exhibits light cone particles in both spatial directions, which interact in a soliton-like fashion. A complete solution of this system is obtained. We also consider another CA, which is described by the Hirota equation over a finite field, and present a Lax representation for it. (orig.)

  18. Cellular automata a parallel model

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  19. Increased uncoupling protein-2 mRNA abundance and glucocorticoid action in adipose tissue in the sheep fetus during late gestation is dependent on plasma cortisol and triiodothyronine

    Gnanalingham, MG; Mostyn, A; Forhead, AJ; Fowden, AL; Symonds, ME; Stephenson, T

    2005-01-01

    The endocrine regulation of uncoupling protein-2 (UCP2), an inner mitochondrial protein, in fetal adipose tissue remains unclear. The present study aimed to determine if fetal plasma cortisol and triiodothyronine (T3) influenced the mRNA abundance of UCP2, glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and 2 (11βHSD2) in fetal adipose tissue in the sheep during late gestation. Perirenal–abdominal adipose tissue was sampled from ovine fetuses to which either cortisol (2–3 mg kg−1 day−1) or saline was infused for 5 days up to 127–130 days gestation, or near term fetuses (i.e. 142–145 days gestation) that were either adrenalectomised (AX) or remained intact. Fetal plasma cortisol and T3 concentrations were higher in the cortisol infused animals and lower in AX fetuses compared with their corresponding control group, and increased with gestational age. UCP2 and GR mRNA abundance were significantly lower in AX fetuses compared with age-matched controls, and increased with gestational age and by cortisol infusion. Glucocorticoid action in fetal adipose tissue was augmented by AX and suppressed by cortisol infusion, the latter also preventing the gestational increase in 11βHSD1 mRNA and decrease in 11βHSD2 mRNA. When all treatment groups were combined, both fetal plasma cortisol and T3 concentrations were positively correlated with UCP2, GR and 11βHSD2 mRNA abundance, but negatively correlated with 11βHSD1 mRNA abundance. In conclusion, plasma cortisol and T3 are both required for the late gestation rise in UCP2 mRNA and differentially regulate glucocorticoid action in fetal adipose tissue in the sheep during late gestation. PMID:15961419

  20. Airplane radiation dose decrease during a strong Forbush decrease

    Spurný, František; Kudela, K.; Dachev, T.

    2004-01-01

    Roč. 2, S05001 (2004), s. 1-4 ISSN 1542-7390 Grant - others:EC project(XE) FIGM-CT2000-00068 Institutional research plan: CEZ:AV0Z1048901 Keywords : airplane dose * Forbush decrease * cosmic rays Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  1. Two Phase Flow Simulation Using Cellular Automata

    Marcel, C.P.

    2002-01-01

    The classical mathematical treatment of two-phase flows is based on the average of the conservation equations for each phase.In this work, a complementary approach to the modeling of these systems based on statistical population balances of aut omata sets is presented.Automata are entities defined by mathematical states that change following iterative rules representing interactions with the neighborhood.A model of automata for two-phase flow simulation is presented.This model consists of fie lds of virtual spheres that change their volumes and move around a certain environment.The model is more general than the classical cellular automata in two respects: the grid of cellular automata is dismissed in favor of a trajectory generator, and the rules of interaction involve parameters representing the actual physical interactions between phases.Automata simulation was used to study unsolved two-phase flow problems involving high heat flux rates. One system described in this work consists of a vertical channel with saturated water at normal pressure heated from the lower surface.The heater causes water to boil and starts the bubble production.We used cellular automata to describe two-phase flows and the interaction with the heater.General rule s for such cellular automata representing bubbles moving in stagnant liquid were used, with special attention to correct modeling of different mechanisms of heat transfer.The results of the model were compared to previous experiments and correlations finding good agreement.One of the most important findings is the confirmation of Kutateladze's idea about a close relation between the start of critical heat flux and a change in the flow's topology.This was analyzed using a control volume located in the upper surface of the heater.A strong decrease in the interfacial surface just before the CHF start was encountered.The automata describe quite well some characteristic parameters such as the shape of the local void fraction in the

  2. Decreased expression of fibulin-4 in aortic wall of aortic dissection.

    Huawei, P; Qian, C; Chuan, T; Lei, L; Laing, W; Wenlong, X; Wenzhi, L

    2014-02-01

    In this research, we will examine the expression of Fibulin-4 in aortic wall to find out its role in aortic dissection development. The samples of aortic wall were obtained from 10 patients operated for acute ascending aortic dissection and five patients for chronic ascending aortic dissection. Another 15 pieces of samples from patients who had coronary artery bypass were as controls. The aortic samples were stained with aldehyde magenta dyeing to evaluate the arrangement of elastic fibers. The Fibulin-4 protein and mRNA expression were both determined by Western blot and realtime quantitative polymerase chain reaction. Compared with the control group, both in acute and chronic ascending aortic dissection, elastic fiber fragments increased and the expression of fibulin-4 protein significantly decreased (P= 0.045 < 0.05). The level of fibulin-4 mRNA decreased in acute ascending aortic dissection (P= 0.034 < 0.05), while it increased in chronic ascending aortic dissection (P=0.004 < 0.05). The increased amounts of elastic fiber fragments were negatively correlated with the expression of fibulin-4 mRNA in acute ascending aortic dissection. In conclusion, in aortic wall of ascending aortic dissection, the expression of fibulin-4 protein decreased and the expression of fibulin-4 mRNA was abnormal. Fibulin-4 may play an important role in the pathogenesis of aortic dissection.

  3. Melanoma screening with cellular phones.

    Cesare Massone

    Full Text Available BACKGROUND: Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria. Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. CONCLUSIONS/SIGNIFICANCE: The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  4. Evaluation of an mRNA lipofection procedure for human dendritic cells and induction of cytotoxic T lymphocytes against enhanced green fluorescence protein.

    Okano, Kozue; Fukui, Mikiko; Suehiro, Yutaka; Hamanaka, Yuichiro; Imai, Kohzoh; Hinoda, Yuji

    2003-01-01

    We utilized an mRNA lipofection procedure in human dendritic cells (DCs) and attempted to induce cytotoxic T lymphocytes (CTLs) against enhanced green fluorescence protein (EGFP). EGFP mRNA was transfected into phytohemagglutinin (PHA)-stimulated lymphocytes or adherent peripheral blood mononuclear cell-derived DCs using a liposomal reagent. Lipofection efficiency was measured by flow cytometry. In PHA-stimulated lymphocytes, increasing concentrations of liposome or mRNA increased EGFP expression levels by up to 64.4%, but caused a decrease in cell viability. A similar trend was also observed in DCs. For 70% DC viability, the concentration of liposomes was 24 microl/ml, and the mRNA concentration was 6 microg/ml. Under these conditions, ELISPOT and (51)Cr release assays were performed on CD8+ T cells stimulated twice with EGFP mRNA-transfected DCs. The number of interferon-gamma-producing cells was increased when the CD8+ T cells were cocultured for 24 h with PHA-stimulated lymphocytes transfected with EGFP mRNA. The level of specific lysis of EGFP mRNA-transfected DCs also increased to approximately 80%, with an effector to target ratio of 40:1. These data suggest that EGFP is immunogenic for human T cells, confirming that our lipofection procedure may be of use for inducing specific CTLs. Copyright 2003 S. Karger AG, Basel

  5. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  6. Cellular content and biosynthesis of polyamines during rooster spermatogenesis.

    Oliva, R; Vidal, S; Mezquita, C

    1982-01-01

    The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration. Images PLATE 1 PMID:7159401

  7. Tissue-specific expression and regulation by 1,25(OH)2D3 of chick protein kinase inhibitor (PKI) mRNA.

    Marchetto, G S; Henry, H L

    1997-02-01

    The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.

  8. Differential regulation of proopiomelanocortin (POMC mRNA expression in hypothalamus and anterior pituitary following repeated cyanamide with ethanol administration

    Kinoshita Hiroshi

    2005-01-01

    Full Text Available Background/Aim. We have investigated proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of the hypothalamus (ARC and the anterior lobe of the pituitary (AL following repeated cyanamide-ethanol reaction (CER. Methods. Adult male Sprague -Dawley rats (250 −290 gr were housed in a temperature and humidity controlled environment with free access to food and water. Four experimental groups were used as follows: saline (as control, cyanamide alone, ethanol alone and ethanol with cyanamide. The animals received daily intraperitoneal injections (i.p. of cyanamide (10mg/kg, 60 min before ethanol dosing with or without ethanol (1g/kg for 5 consecutive days, and were sacrificed 60 min after the last dosing of ethanol. The results were presented as the mean ± SEM for each group. All groups within each data set were compared by one-way ANOVA followed by Fisher PLSD test for multiple comparisons. A value of p<0.05 was considered significant. Results. The POMC mRNA levels in ARC were significantly decreased with cyanamide compared to the control and ethanol alone (p<0.05 and p<0.05 respectively, but increased in AL following repeated CER. Conclusion. We speculate that this differential regulation of POMC mRNA expression may be partially involved in the preventive effects on alcohol intake in response to CER.

  9. The Impact of Ramadan Fasting on SIRT1 mRNA Expression in Peripheral Blood Mononuclear Cells

    Mostafa Haji Molahoseini

    2016-11-01

    Full Text Available Background:The aim of this study was to evaluate the effect of Ramadan fasting on SIRT1 mRNA expression in healthy men.Islamic Ramadan fasting is a holy religious ceremony that has many spiritual benefits. Additionally, it can be considered as the equivalent of calorie restriction that may affect physical health. The results of previous studies revealed that calorie restriction increases the lifespan in laboratory rodents via increasing the expression of a histone deacetylase named SIRT1. Additionally, SIRT1 is known for its anti-inflammatory properties. Materials and Methods: Overall, 43 men volunteered for participating in this one-group before and after (self-controlled study. Two mL blood samples were taken prior to fasting and at the end of the 30th day of fasting. Routine biochemical tests and SIRT1 mRNA expression analysis were performed. Results: Cholesterol and low-density lipoproteins increase, however, high-density lipoproteins level decreased after Ramadan fasting. The analysis of real-time PCR results revealed that SIRT1 mRNA expression in human peripheral blood mononuclear cells increased 4.63 fold in fasting state in comparison with non-fasting state. Conclusion: Ramadan fasting has a significant effect on SIRT1 gene expression. Considering the immunosuppressive and anti-inflammatory properties of SIRT1, further studies are needed to evaluate the effects of SIRT1 up-regulation on the autoimmune and inflammatory diseases during Ramadan fasting.

  10. PKA- and PKC-dependent regulation of angiopoietin 2 mRNA in human granulosa lutein cells.

    Witt, P S; Pietrowski, D; Keck, C

    2004-02-01

    New blood vessels develop from preexisting vessels in response to growth factors or hypoxic conditions. Recent studies have shown that angiopoietin 2 (ANGPT-2) plays an important role in the modulation of angiogenesis and vasculogenesis in humans and mice. The signaling pathways that lead to the regulation of ANGPT-2 are largely unclear. Here, we report that protein kinase C and protein kinase A activators (ADMB, 8-Cl-cAMP) increased the mRNA levels of ANGPT-2 in human Granulosa cells, whereas PKC and PKA Inhibitors (Rp-cAMP, GO 6983) decreased markedly the level of ANGPT-2 mRNA. Due to varying specificity of the modulators for certain protein kinases subunits, we conclude that the conventional PKCs, but not PKC alpha and beta1, the atypical PKCs and the PKA I, are involved in the regulation of ANGPT-2. These findings may help to explain the role of both PKA and PKC dependent signaling cascades in the regulation of ANGPT-2 mRNA.

  11. The NO signaling pathway differentially regulates KCC3a and KCC3b mRNA expression.

    Di Fulvio, Mauricio; Lauf, Peter K; Adragna, Norma C

    2003-11-01

    Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.

  12. [Why is bread consumption decreasing?].

    Rolland, M F; Chabert, C; Serville, Y

    1977-01-01

    In France bread plays a very special and ambivalent role among our foodstuffs because of the considerable drop in its consumption, its alleged harmful effects on our health and the respect in which it is traditionally held. More than half the 1 089 adults interviewed in this study say they have decreased their consumption of bread in the last 10 years. The reasons given vary according to age, body weight and urbanization level. The main reasons given for this restriction are the desire to prevent or reduce obesity, the decrease in physical activity, the general reduction in food consumption and the possibility of diversifying foods even further. Moreover, the decreasing appeal of bread in relation to other foods, as well as a modification in the structure of meals, in which bread becomes less useful to accompany other food, accentuate this loss of attraction. However, the respect for bread as part of the staple diet remains very acute as 95 p. 100 of those interviewed express a reluctance to throw bread away, more for cultural than economic reasons. Mechanization and urbanization having brought about a decrease in energy needs, the most common alimentary adaptation is general caloric restriction by which glucids, and especially bread, are curtailed.

  13. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus.

    Dicken, Matthew S; Hughes, Alexander R; Hentges, Shane T

    2015-11-01

    The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. ESTRADIOL IN FEMALES MAY NEGATE SKELETAL MUSCLE MYOSTATIN MRNA EXPRESSION AND SERUM MYOSTATIN PROPEPTIDE LEVELS AFTER ECCENTRIC MUSCLE CONTRACTIONS

    Darryn S. Willoughby

    2006-12-01

    Full Text Available Eccentric contractions produce a significant degree of inflammation and muscle injury that may increase the expression of myostatin. Due to its anti- oxidant and anti-flammatory effects, circulating 17-β estradiol (E2 may attenuate myostatin expression. Eight males and eight females performed 7 sets of 10 reps of eccentric contractions of the knee extensors at 150% 1-RM. Each female performed the eccentric exercise bout on a day that fell within her mid-luteal phase (d 21-23 of her 28-d cycle. Blood and muscle samples were obtained before and 6 and 24 h after exercise, while additional blood samples were obtained at 48 and 72 h after exercise. Serum E2 and myostatin LAP/propeptide (LAP/pro levels were determined with ELISA, and myostatin mRNA expression determined using RT-PCR. Data were analyzed with two-way ANOVA and bivariate correlations (p 0.05. Compared to pre-exercise, males had significant increases (p < 0.05 in LAP/propetide and mRNA of 78% and 28%, respectively, at 24 h post-exercise, whereas females underwent respective decreases of 10% and 21%. E2 and LAP/propeptide were correlated at 6 h (r = -0.804, p = 0.016 and 24 h post- exercise (r = -0.841, p = 0.009 in males, whereas in females E2 levels were correlated to myostatin mRNA at 6 h (r =0.739, p = 0.036 and 24 h (r = 0.813, p = 0.014 post-exercise and LAP/propeptide at 6 h (r = 0.713, p = 0.047 and 24 h (r = 0.735, p = 0.038. In females, myostatin mRNA expression and serum LAP/propeptide levels do not appear to be significantly up-regulated following eccentric exercise, and may be due to higher levels of circulating E2

  15. 47 CFR 22.970 - Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone...

    2010-10-01

    ...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. 22.970 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.970 Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. (a) Definition...

  16. Molecular, cellular, and tissue engineering

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  17. Pressure-actuated cellular structures

    Pagitz, M; Hol, J M A M; Lamacchia, E

    2012-01-01

    Shape changing structures will play an important role in future engineering designs since rigid structures are usually only optimal for a small range of service conditions. Hence, a concept for reliable and energy-efficient morphing structures that possess a large strength to self-weight ratio would be widely applicable. We propose a novel concept for morphing structures that is inspired by the nastic movement of plants. The idea is to connect prismatic cells with tailored pentagonal and/or hexagonal cross sections such that the resulting cellular structure morphs into given target shapes for certain cell pressures. An efficient algorithm for computing equilibrium shapes as well as cross-sectional geometries is presented. The potential of this novel concept is demonstrated by several examples that range from a flagellum like propulsion device to a morphing aircraft wing.

  18. Cellular automata in cytoskeletal lattices

    Smith, S A; Watt, R C; Hameroff, S R

    1984-01-01

    Cellular automata (CA) activities could mediate biological regulation and information processing via nonlinear electrodynamic effects in cytoskeletal lattice arrays. Frohlich coherent oscillations and other nonlinear mechanisms may effect discrete 10/sup -10/ to 10/sup -11/ s interval events which result in dynamic patterns in biolattices such as cylindrical protein polymers: microtubules (MT). Structural geometry and electrostatic forces of MT subunit dipole oscillations suggest neighbor rules among the hexagonally packed protein subunits. Computer simulations using these suggested rules and MT structural geometry demonstrate CA activities including dynamical and stable self-organizing patterns, oscillators, and traveling gliders. CA activities in MT and other cytoskeletal lattices may have important biological regulatory functions. 23 references, 6 figures, 1 table.

  19. Sensing Phosphatidylserine in Cellular Membranes

    Jason G. Kay

    2011-01-01

    Full Text Available Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  20. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid

  1. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5'UTRs.

    Finn Grey

    2010-06-01

    Full Text Available Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3' untranslated region (UTR. Using RNA induced silencing complex immunoprecipitation (RISC-IP techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5'UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5'UTRs.

  2. Magical thinking decreases across adulthood.

    Brashier, Nadia M; Multhaup, Kristi S

    2017-12-01

    Magical thinking, or illogical causal reasoning such as superstitions, decreases across childhood, but almost no data speak to whether this developmental trajectory continues across the life span. In four experiments, magical thinking decreased across adulthood. This pattern replicated across two judgment domains and could not be explained by age-related differences in tolerance of ambiguity, domain-specific knowledge, or search for meaning. These data complement and extend findings that experience, accumulated over decades, guides older adults' judgments so that they match, or even exceed, young adults' performance. They also counter participants' expectations, and cultural sayings (e.g., "old wives' tales"), that suggest that older adults are especially superstitious. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Does fertility decrease household consumption?

    Jungho Kim; Henriette Engelhardt; Alexia Fürnkranz-Prskawetz; Arnstein Aassve

    2009-01-01

    This paper presents an empirical analysis of the relationship between fertility and a direct measure of poverty for Indonesia, a country, which has experienced unprecedented economic growth and sharp fertility declines over recent decades. It focuses on illustrating the sensitivity of the effect of fertility on household consumption with respect to the equivalence scale by applying the propensity score matching method. The analysis suggests that a newborn child decreases household consumption...

  4. Car Deceleration Considering Its Own Velocity in Cellular Automata Model

    Li Keping

    2006-01-01

    In this paper, we propose a new cellular automaton model, which is based on NaSch traffic model. In our method, when a car has a larger velocity, if the gap between the car and its leading car is not enough large, it will decrease. The aim is that the following car has a buffer space to decrease its velocity at the next time, and then avoid to decelerate too high. The simulation results show that using our model, the car deceleration is realistic, and is closer to the field measure than that of NaSch model.

  5. Systematic Characterisation of Cellular Localisation and Expression Profiles of Proteins Containing MHC Ligands

    Juncker, Agnieszka; Larsen, Mette Voldby; Weinhold, Nils

    2009-01-01

    Background: Presentation of peptides on Major Histocompatibility Complex (MHC) molecules is the cornerstone in immune system activation and increased knowledge of the characteristics of MHC ligands and their source proteins is highly desirable. Methodology/Principal Finding: In the present large......-scale study, we used a large data set of proteins containing experimentally identified MHC class I or II ligands and examined the proteins according to their expression profiles at the mRNA level and their Gene Ontology (GO) classification within the cellular component ontology. Proteins encoded by highly...

  6. In situ hybridization on the change of m1 receptor mRNA in different brain areas of aged rats and the effect of Yin tonic Zhimu studied

    Hu Yaer; Xia Zongqin; Yi Ningyu

    1996-01-01

    The change of gene expression of m1 receptors in different brain areas of aged rats and the effects of water extract of the Yin tonic Zhimu and its active principle ZMS was studied. In situ hybridization using 35 S-labelled m1 and m2 probes and analysis of the autoradiographs using a computerized image-analyzer was selected. The grain density of m1 mRNA in striatum was significantly lowered in old rats as compared with young rats (decreased by 12.26 +- 3.60, P<0.01). Long-term oral administration of ZMS, the active principle of Yin tonic Zhimu but not the water extraction of Zhimu, elevated the m1 mRNA in striatum of aged rats (increased by 15.71 +- 3.27, P<0.01). Neither significant change of the grain density of m1 mRNA in old rats nor significant effect of Zhimu or ZMS was observed in cerebral cortex and hippocampus. The m1 mRNA level in striatum is decreased in aged rats and ZMS is able to elevate it

  7. Functions of the nonsense-mediated mRNA decay pathway in Drosophila development.

    Mark M Metzstein

    2006-12-01

    Full Text Available Nonsense-mediated mRNA decay (NMD is a cellular surveillance mechanism that degrades transcripts containing premature translation termination codons, and it also influences expression of certain wild-type transcripts. Although the biochemical mechanisms of NMD have been studied intensively, its developmental functions and importance are less clear. Here, we describe the isolation and characterization of Drosophila "photoshop" mutations, which increase expression of green fluorescent protein and other transgenes. Mapping and molecular analyses show that photoshop mutations are loss-of-function mutations in the Drosophila homologs of NMD genes Upf1, Upf2, and Smg1. We find that Upf1 and Upf2 are broadly active during development, and they are required for NMD as well as for proper expression of dozens of wild-type genes during development and for larval viability. Genetic mosaic analysis shows that Upf1 and Upf2 are required for growth and/or survival of imaginal cell clones, but this defect can be overcome if surrounding wild-type cells are eliminated. By contrast, we find that the PI3K-related kinase Smg1 potentiates but is not required for NMD or for viability, implying that the Upf1 phosphorylation cycle that is required for mammalian and Caenorhabditis elegans NMD has a more limited role during Drosophila development. Finally, we show that the SV40 3' UTR, present in many Drosophila transgenes, targets the transgenes for regulation by the NMD pathway. The results establish that the Drosophila NMD pathway is broadly active and essential for development, and one critical function of the pathway is to endow proliferating imaginal cells with a competitive growth advantage that prevents them from being overtaken by other proliferating cells.

  8. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia.

    Hsien-Sung Huang

    2007-08-01

    Full Text Available Dysfunction of prefrontal cortex in schizophrenia includes changes in GABAergic mRNAs, including decreased expression of GAD1, encoding the 67 kDa glutamate decarboxylase (GAD67 GABA synthesis enzyme. The underlying molecular mechanisms remain unclear. Alterations in DNA methylation as an epigenetic regulator of gene expression are thought to play a role but this hypothesis is difficult to test because no techniques are available to extract DNA from GAD1 expressing neurons efficiently from human postmortem brain. Here, we present an alternative approach that is based on immunoprecipitation of mononucleosomes with anti-methyl-histone antibodies differentiating between sites of potential gene expression as opposed to repressive or silenced chromatin. Methylation patterns of CpG dinucleotides at the GAD1 proximal promoter and intron 2 were determined for each of the two chromatin fractions separately, using a case-control design for 14 schizophrenia subjects affected by a decrease in prefrontal GAD1 mRNA levels. In controls, the methylation frequencies at CpG dinucleotides, while overall higher in repressive as compared to open chromatin, did not exceed 5% at the proximal GAD1 promoter and 30% within intron 2. Subjects with schizophrenia showed a significant, on average 8-fold deficit in repressive chromatin-associated DNA methylation at the promoter. These results suggest that chromatin remodeling mechanisms are involved in dysregulated GABAergic gene expression in schizophrenia.

  9. Relationship between PPARα mRNA expression and mitochondrial respiratory function and ultrastructure of the skeletal muscle of patients with COPD.

    Zhang, Jian-Qing; Long, Xiang-Yu; Xie, Yu; Zhao, Zhi-Huan; Fang, Li-Zhou; Liu, Ling; Fu, Wei-Ping; Shu, Jing-Kui; Wu, Jiang-Hai; Dai, Lu-Ming

    2017-11-02

    Peripheral muscle dysfunction is an important complication in patients with chronic obstructive pulmonary disease (COPD). The objective of this study was to explore the relationship between the levels of peroxisome proliferator-activated receptor α (PPARα) mRNA expression and the respiratory function and ultrastructure of mitochondria in the vastus lateralis of patients with COPD. Vastus lateralis biopsies were performed on 14 patients with COPD and 6 control subjects with normal lung function. PPARα mRNA levels in the muscle tissue were detected by real-time PCR. A Clark oxygen electrode was used to assess mitochondrial respiratory function. Mitochondrial number, fractional area in skeletal muscle cross-sections, and Z-line width were observed via transmission electron microscopy. The PPARα mRNA expression was significantly lower in COPD patients with low body mass index (BMIL) than in both COPD patients with normal body mass index (BMIN) and controls. Mitochondrial respiratory function (assessed by respiratory control ratio) was impaired in COPD patients, particularly in BMIL. Compared with that in the control group, mitochondrial number and fractional area were lower in the BMIL group, but were maintained in the BMIN group. Further, the Z-line became narrow in the BMIL group. PPARα mRNA expression was positively related to mitochondrial respiratory function and volume density. In COPD patients with BMIN, mitochondria volume density was maintained, while respiratory function decreased, whereas both volume density and respiratory function decreased in COPD patients with BMIL. PPARα mRNA expression levels are associated with decreased mitochondrial respiratory function and volume density, which may contribute to muscle dysfunction in COPD patients.

  10. Effects of Thermal Stress on the mRNA Expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass ( Lateolabrax maculatus)

    Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam

    2018-03-01

    The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.

  11. Dietary acidification enhances phosphorus digestibility but decreases H+/K+-ATPase expression in rainbow trout.

    Sugiura, Shozo H; Roy, Prabir K; Ferraris, Ronaldo P

    2006-10-01

    Oxynticopeptic cells of fish stomach are thought to secrete less acid than the specialized parietal cells of mammalian stomach. Gastric acidity, however, has not been directly compared between fish and mammals. We therefore fed rainbow trout and rats the same meal, and found that the lowest postprandial pH of trout stomach was 2.7, which was only transiently sustained for 1 h, whereas that of rat stomach was 1.3, which was sustained for 3 h. Postprandial pH of the small intestine was slightly higher in trout (approximately 8.0) than in rats (approximately 7.6), but pH of the large intestine was similar (approximately 8.0). Addition of acids to fish feeds, in an attempt to aid the weak acidity of fish stomach, has been known to improve phosphorus digestibility, but its physiological effect on fish stomach is not known. Exogenous acids did improve phosphorus digestibility but also decreased steady-state mRNA expression of trout H(+)/K(+)-ATPase (ATP4A, the proton pump) as well as Na(+)/bicarbonate cotransporter (NBC), and had no effect on gastrin-like mRNA and somastostatin (SST) mRNA abundance. Gastrin-like mRNA and SST-2 mRNA were equally distributed between corpus and antrum. ATP4A mRNA and NBC mRNA were in the corpus, whereas SST-1 mRNA was in the antrum. Trout gastrin-like EST had modest homology to halibut and pufferfish gastrin, whereas trout ATP4A mRNA had > or = 95% amino acid homology with mammalian, Xenopus and flounder ATP4A. Although ATP4A seems highly conserved among vertebrates, gastric acidity is much less in trout than in rats, explaining the low digestibility of bone phosphorus, abundant in fish diets. Dietary acidification does not reduce acidity enough to markedly improve phosphorus digestibility, perhaps because exogenous acids may inhibit endogenous acid production.

  12. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription

    Dreyfuss, G.; Adam, S.A.; Choi, Y.D.

    1984-01-01

    Exposure of intact cells to UV light brings about cross-linking of polyadenylated mRNA to a set of cytoplasmic proteins which are in direct contact with the mRNA in vivo. Substantial amounts of an additional protein of molecular weight 38,000 become cross-linked to the mRNA when cells are treated with inhibitors of mRNA synthesis (actinomycin D, camptothecin, and 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole) or after infection with vesicular stomatitis virus. Cordycepin, which inhibits polyadenylation but not mRNA synthesis, has no such effect. Inhibitors of protein synthesis and of rRNA synthesis are also without effect on 38K cross-linking to mRNA. The onset of the effect of inhibitors of mRNA synthesis on the UV cross-linkable interaction between mRNA and 38K is rapid and reaches a maximal level in less than 60 min, and it is completely and rapidly reversible. In cells treated with actinomycin D, the amount of 38K which becomes cross-linked to mRNA is proportional to the extent of inhibition of mRNA synthesis. The association of 38K with mRNA during transcriptional arrest does not require protein synthesis because simultaneous treatment with the protein synthesis inhibitor emetine does not interfere with it. The effectors which promote the interaction of 38K with mRNA do not affect the proteins which are in contact with polyadenylated heterogeneous nuclear RNA and do not markedly affect protein synthesis in the cell. The 38K protein can be isolated with the polyribosomal polyadenylated fraction from which it was purified, and monoclonal antibodies against it were prepared

  13. Wnt Signaling Alteration in the Spinal Cord of Amyotrophic Lateral Sclerosis Transgenic Mice: Special Focus on Frizzled-5 Cellular Expression Pattern.

    Carlos González-Fernández

    Full Text Available Amyotrophic lateral sclerosis is a chronic neurodegenerative disease characterized by progressive paralysis due to degeneration of motor neurons by unknown causes. Recent evidence shows that Wnt signaling is involved in neurodegenerative processes, including Amyotrophic Lateral Sclerosis. However, to date, little is known regarding the expression of Wnt signaling components in this fatal condition. In the present study we used transgenic SOD1G93A mice to evaluate the expression of several Wnt signaling components, with special focus on Frizzled-5 cellular expression alteration along disease progression.Based on previous studies demonstrating the expression of Wnts and their transcriptional regulation during Amyotrophic lateral sclerosis development, we have analyzed the mRNA expression of several Wnt signaling components in the spinal cord of SOD1G93A transgenic mice at different stages of the disease by using real time quantitative PCR analysis. Strikingly, one of the molecules that seemed not to be altered at mRNA level, Frizzled-5, showed a clear up-regulation at late stages in neurons, as evidenced by immunofluorescence assays. Moreover, increased Frizzled-5 appears to correlate with a decrease in NeuN signal in these cells, suggesting a correlation between neuronal affectation and the increased expression of this receptor.Our data suggest the involvement of Wnt signaling pathways in the pathophysiology of Amyotrophic Lateral Sclerosis and, more specifically, the implication of Frizzled-5 receptor in the response of neuronal cells against neurodegeneration. Nevertheless, further experimental studies are needed to shed light on the specific role of Frizzled-5 and the emerging but increasing Wnt family of proteins research field as a potential target for this neuropathology.

  14. Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels

    Theander Grünfeld, Heidi; Bonefeld-Jørgensen, Eva Cecilie

    2004-01-01

    of the ERα mRNA level, but only significantly for prochloraz, dieldrin, and tolchlofos-methyl. Alone no pesticides affected the ERβ mRNA level significantly, but chlorpyrifos increased the mRNA level weakly. Co-exposure with E2 elicited a significant increased ERβ mRNA level by prochloraz, fenarimol...

  15. Decreasing Fires in Mediterranean Europe.

    Marco Turco

    Full Text Available Forest fires are a serious environmental hazard in southern Europe. Quantitative assessment of recent trends in fire statistics is important for assessing the possible shifts induced by climate and other environmental/socioeconomic changes in this area. Here we analyse recent fire trends in Portugal, Spain, southern France, Italy and Greece, building on a homogenized fire database integrating official fire statistics provided by several national/EU agencies. During the period 1985-2011, the total annual burned area (BA displayed a general decreasing trend, with the exception of Portugal, where a heterogeneous signal was found. Considering all countries globally, we found that BA decreased by about 3020 km2 over the 27-year-long study period (i.e. about -66% of the mean historical value. These results are consistent with those obtained on longer time scales when data were available, also yielding predominantly negative trends in Spain and France (1974-2011 and a mixed trend in Portugal (1980-2011. Similar overall results were found for the annual number of fires (NF, which globally decreased by about 12600 in the study period (about -59%, except for Spain where, excluding the provinces along the Mediterranean coast, an upward trend was found for the longer period. We argue that the negative trends can be explained, at least in part, by an increased effort in fire management and prevention after the big fires of the 1980's, while positive trends may be related to recent socioeconomic transformations leading to more hazardous landscape configurations, as well as to the observed warming of recent decades. We stress the importance of fire data homogenization prior to analysis, in order to alleviate spurious effects associated with non-stationarities in the data due to temporal variations in fire detection efforts.

  16. Decreasing Fires in Mediterranean Europe.

    Turco, Marco; Bedia, Joaquín; Di Liberto, Fabrizio; Fiorucci, Paolo; von Hardenberg, Jost; Koutsias, Nikos; Llasat, Maria-Carmen; Xystrakis, Fotios; Provenzale, Antonello

    2016-01-01

    Forest fires are a serious environmental hazard in southern Europe. Quantitative assessment of recent trends in fire statistics is important for assessing the possible shifts induced by climate and other environmental/socioeconomic changes in this area. Here we analyse recent fire trends in Portugal, Spain, southern France, Italy and Greece, building on a homogenized fire database integrating official fire statistics provided by several national/EU agencies. During the period 1985-2011, the total annual burned area (BA) displayed a general decreasing trend, with the exception of Portugal, where a heterogeneous signal was found. Considering all countries globally, we found that BA decreased by about 3020 km2 over the 27-year-long study period (i.e. about -66% of the mean historical value). These results are consistent with those obtained on longer time scales when data were available, also yielding predominantly negative trends in Spain and France (1974-2011) and a mixed trend in Portugal (1980-2011). Similar overall results were found for the annual number of fires (NF), which globally decreased by about 12600 in the study period (about -59%), except for Spain where, excluding the provinces along the Mediterranean coast, an upward trend was found for the longer period. We argue that the negative trends can be explained, at least in part, by an increased effort in fire management and prevention after the big fires of the 1980's, while positive trends may be related to recent socioeconomic transformations leading to more hazardous landscape configurations, as well as to the observed warming of recent decades. We stress the importance of fire data homogenization prior to analysis, in order to alleviate spurious effects associated with non-stationarities in the data due to temporal variations in fire detection efforts.

  17. Technologies for Decreasing Mining Losses

    Valgma, Ingo; Väizene, Vivika; Kolats, Margit; Saarnak, Martin

    2013-12-01

    In case of stratified deposits like oil shale deposit in Estonia, mining losses depend on mining technologies. Current research focuses on extraction and separation possibilities of mineral resources. Selective mining, selective crushing and separation tests have been performed, showing possibilities of decreasing mining losses. Rock crushing and screening process simulations were used for optimizing rock fractions. In addition mine backfilling, fine separation, and optimized drilling and blasting have been analyzed. All tested methods show potential and depend on mineral usage. Usage in addition depends on the utilization technology. The questions like stability of the material flow and influences of the quality fluctuations to the final yield are raised.

  18. Cytoplasmic Control of Sense-Antisense mRNA Pairs

    Flore Sinturel

    2015-09-01

    Full Text Available Transcriptome analyses have revealed that convergent gene transcription can produce many 3′-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3′-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3′-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3′-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5′-3′ cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression.

  19. Cytoplasmic Control of Sense-Antisense mRNA Pairs.

    Sinturel, Flore; Navickas, Albertas; Wery, Maxime; Descrimes, Marc; Morillon, Antonin; Torchet, Claire; Benard, Lionel

    2015-09-22

    Transcriptome analyses have revealed that convergent gene transcription can produce many 3'-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3'-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3'-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3'-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD) in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs) form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5'-3' cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Regulation of mRNA translation during mitosis.

    Tanenbaum, Marvin E; Stern-Ginossar, Noam; Weissman, Jonathan S; Vale, Ronald D

    2015-08-25

    Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ~200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function.

  1. IER5 gene's mRNA expression after irradiation

    Ding Kuke; Shen Jingjing; Xu Lili; Li Yanling; Zhou Ping; Ma Binrong; Zhao Zengqiang; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To explore the effect of irradiation on IER5 gene expression. Methods: Two kinds of cells (AHH-1 and HeLa) and the BALB/c-nu mice inoculated with tumor cells were exposed to 60 Co γ- rays and analyzed by real-time PCR. The above-mentioned irradiated objects were firstly divided into groups by different doses and post-radiation time, then mRNA were extracted and reverse-transcripted to DNA before real-time PCR test. Results: Under the same condition, AHH-1 was more sensitive to radiation than HeLa. The dose level corresponding to the expression peak of AHH-1 was less than that of HeLa. For AHH-1 cells, the response to 2 Gy irradiation was earlier than that to 10 Gy. But there was not remarkable difference for HeLa response between 2 and 10 Gy, and the top transcriptional levels for both cells nearly simultaneously appeared at 2 h after irradiation. In addition, the IER5 gene of human liver tumor was more sensitive than that of lung cancer and brain tumor. Conclusions: IER5 might be a candidate biomarker of radiation injury, and had the potential value in radiation-therapy for liver tumor. (authors)

  2. mRNA related to insulin family in human placenta

    Younes, M.A.; D'Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-01-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A + ) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A + ) RNA templates. Five hundred transformants were initially screened by colony hybridization using a 32 P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II

  3. mRNA related to insulin family in human placenta

    Younes, M.A.; D' Agostino, J.B.; Frazier, M.L.; Besch, P.K.

    1986-03-01

    The authors have previously reported that human term placenta contains mRNA displaying sequence homology to a rat preproinsulin I cDNA clone (p119). When placental poly(A/sup +/) RNA was analyzed for homology to p119 by RNA/DNA blot hybridization, prominent hybridization was observed which was found by densitometric analysis to be three-fold higher than control. To further characterize this insulin-like message, a cDNA library was generated (approx.7000 transformants) using normal term cesarean-sectioned tissue to prepare placental poly(A/sup +/) RNA templates. Five hundred transformants were initially screened by colony hybridization using a /sup 32/P-labeled rat preproinsulin I cDNA as probe. Of the ten initial positives obtained, three were found to be true positives based on Southern hybridization analyses of the recombinant plasmids. Using Taq I digested pBr322 as a size marker, the cDNAs were found to be approximately 300 bp in length. Preliminary DNA sequencing using the Sanger dideoxy chain termination method has revealed that one of these clones displays significant homology to the 5' region of human insulin-like growth factors I and II.

  4. A radiation measurement study on cellular phone

    Mohd Yusof Mohd Ali; Rozaimah Abd Rahim; Roha Tukimin; Khairol Nizam Mohamed; Mohd Amirul Nizam Mohamad Thari; Ahmad Fadzli Ahmad Sanusi

    2007-01-01

    This paper will explain the radiation level produced by various selected cellular phone from various models and brands available in the market. The result obtained from this study will also recommend whether a cellular phone is safe for public usage or it might cause any effect on public health. Finally, a database of radiation measurement level produced by selected various cellular phone will also be developed and exhibited in this paper. (Author)

  5. Radiation, nitric oxide and cellular death

    Dubner, D.; Perez, M.R. Del; Michelin, S.C.; Gisone, P.A.

    1997-01-01

    The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death

  6. A Computational model for compressed sensing RNAi cellular screening

    Tan Hua

    2012-12-01

    Full Text Available Abstract Background RNA interference (RNAi becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. Results In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi, which employs a unique combination of group of small interfering RNAs (siRNAs to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear, which is ill-posed in general. However, the recently developed compressed sensing (CS theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. Conclusions This csRNAi system is very promising in saving both time and cost for large-scale RNAi

  7. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA

    Nielsen, M. E.; Rasmussen, I. A.; Kristensen, S. G.

    2011-01-01

    significantly with the expression of AMHRII, but did not correlate with any of the hormones in the follicular fluid. These data demonstrate an intimate association between AR expression in immature granulosa cells, and the expression of FSHR in normal small human antral follicles and between the follicular......Human small antral follicles (diameter 3-9 mm) were obtained from ovaries surgically removed for fertility preservation. From the individual aspirated follicles, granulosa cells and the corresponding follicular fluid were isolated in 64 follicles, of which 55 were available for mRNA analysis (24...... and to the follicular fluid concentrations of AMH, inhibin-B, progesterone and estradiol. AR mRNA expression in granulosa cells and the follicular fluid content of androgens both showed a highly significant positive association with the expression of FSHR mRNA in granulosa cells. AR mRNA expression also correlated...

  8. Cellular Targets of Dietary Polyphenol Resveratrol

    Wu, Joseph M

    2006-01-01

    To test the hypothesis that resveratrol, a grape derived polyphenol, exerts its chemopreventive properties against prostate cancer by interacting with specific cellular targets, denoted resveratrol targeting proteins (RTPs...

  9. A Channel Allocation Mechanism for Cellular Networks

    Chi-Hua Chen

    2017-04-01

    Full Text Available In cellular networks, call blocking causes lower customer satisfaction and economic loss. Therefore, the channel allocation for call block avoidance is an important issue. This study proposes a mechanism that considers the real-time traffic information (e.g., traffic flow and vehicle speed and the user behavior (e.g., call inter-arrival time and call holding time to analyze the adaptable number of communication calls in the specific cell for channel allocation. In experiments about call block probabilities (CBP, this study simulated two cases that are the situations of the whole day and traffic accident. The simulation results show that all CBPs in the scenario of whole day are less than 21.5% by using the proposed mechanism, which is better than using the static channel allocation (SCA mechanism. Moreover, all CBPs in the scenario of traffic accidents are less than 16.5% by using the proposed mechanism, which is better than using the SCA mechanism. Therefore, the proposed mechanism can decrease the number of CBPs effectively.

  10. Cellular mechanisms in drug - radiation interaction

    Trott, K.R.

    1979-01-01

    Some cytotoxic drugs, especially those belonging to the group of antibiotics and antimetabolites, sensitize the cells having survived drug treatment to the subsequent irradiation by either increasing the slope of the radiation dose response curves or by decreasing extrapolation number. Bleomycin was found to interact with radiation in L-cells and FM3A cells, but not in HeLa-cells. The data with EMT-6 cells suggest that the interaction depends on drug dose: no interaction occurred after the exposure to bleomycin which killed only 20 - 40% of the cells; yet the exposure to bleomycin which killed 90% of the cells in addition sensitized the surviving cells by the DMF of 1.3. The sensitization found 24 hr after the exposure of HeLa cells to methotrexate was due to cell synchronization. Other cytostatic drugs were found to synchronize proliferating cells even better. Therefore, the fluctuation of radiosensitivity has been commonly observed after the termination of exposure to these drugs. Preirradiation may lead to the change in drug dose response curves. The recruitment of resting cells into cycle occurs hours or days later, in some irradiated normal and malignant tissues. Since many cytostatic drugs are far more active in proliferating cells than in resting cells, the recruitment after irradiation may lead to the sudden increase in drug sensitivity, days after the irradiation. No single, simple theory seems to exist to classify and predict the cellular response to combined modality treatment. (Yamashita, S.)

  11. Mobile telephony (cellular) and public health

    Saravi, F.D.

    2007-01-01

    One third of the world population uses mobile phones or cellular (TM), as possible repercussions on health has resulted in numerous studies. TM and their bases (antennae) exchange information through microwaves, which are non-ionizing electromagnetic radiations. Microwaves have thermal effects, which are avoided by current safety standards. However, there are lingering doubts about possible adverse health consequences of non-thermal effects of microwaves. As a whole, basic and epidemiological research on TM and cancer indicates a very low or nonexistent risk, although longer prospective studies are needed. In the nervous system, TM microwaves cause electrophysiological changes and modifications of blood flow, with little effect on performance. Possible effects on the thyroid gland, the reproductive system, and oxidative stress demand additional research. Some TM users complain of unspecific symptoms, but no causal relationship has been proved either in normal subjects or those self-characterized as hypersensitive to electromagnetic fields. Epidemiological research on populations living close to base stations suggests adverse effects from exposition, but experimental work has yielded contradictory results. The effects on children have just begun to be explored. TM may interfere with medical equipment when the phones are operated very close to the devices. Ironically, the clearest adverse effect of TM has no direct relationship with microwaves. The use of TM while driving causes a decrease in performance comparable to moderate consumption of alcohol and quadruples the risk of accidents. (author) [es

  12. Decreasing incidence rates of bacteremia

    Nielsen, Stig Lønberg; Pedersen, C; Jensen, T G

    2014-01-01

    BACKGROUND: Numerous studies have shown that the incidence rate of bacteremia has been increasing over time. However, few studies have distinguished between community-acquired, healthcare-associated and nosocomial bacteremia. METHODS: We conducted a population-based study among adults with first......-time bacteremia in Funen County, Denmark, during 2000-2008 (N = 7786). We reported mean and annual incidence rates (per 100,000 person-years), overall and by place of acquisition. Trends were estimated using a Poisson regression model. RESULTS: The overall incidence rate was 215.7, including 99.0 for community......-acquired, 50.0 for healthcare-associated and 66.7 for nosocomial bacteremia. During 2000-2008, the overall incidence rate decreased by 23.3% from 254.1 to 198.8 (3.3% annually, p incidence rate of community-acquired bacteremia decreased by 25.6% from 119.0 to 93.8 (3.7% annually, p

  13. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    2017-01-01

    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  14. Price of forest chips decreasing

    Hakkila, P.

    2001-01-01

    Use of forest chips was studied in 1999 in the national Puuenergia (Wood Energy) research program. Wood combusting heating plants were questioned about are the main reasons restricting the increment of the use of forest chips. Heating plants, which did not use forest chips at all or which used less than 250 m 3 (625 bulk- m 3 ) in 1999 were excluded. The main restrictions for additional use of forest chips were: too high price of forest chips; lack of suppliers and/or uncertainty of deliveries; technical problems of reception and processing of forest chips; insufficiency of boiler output especially in winter; and unsatisfactory quality of chips. The price of forest chips becomes relatively high because wood biomass used for production of forest chips has to be collected from wide area. Heavy equipment has to be used even though small fragments of wood are processed, which increases the price of chips. It is essential for forest chips that the costs can be pressed down because competition with fossil fuels, peat and industrial wood residues is hard. Low market price leads to the situation in which forest owner gets no price of the raw material, the entrepreneurs operate at the limit of profitability and renovation of machinery is difficult, and forest chips suppliers have to sell the chips at prime costs. Price of forest chips has decreased significantly during the past decade. Nominal price of forest chips is now lower than two decades ago. The real price of chips has decreased even more than the nominal price, 35% during the past decade and 20% during the last five years. Chips, made of small diameter wood, are expensive because the price includes the felling costs and harvesting is carried out at thinning lots. Price is especially high if chips are made of delimbed small diameter wood due to increased the work and reduced amount of chips. The price of logging residue chips is most profitable because cutting does not cause additional costs. Recovery of chips is

  15. Variable EBV DNA Load Distributions and Heterogeneous EBV mRNA Expression Patterns in the Circulation of Solid Organ versus Stem Cell Transplant Recipients

    A. E. Greijer

    2012-01-01

    Full Text Available Epstein-Barr virus (EBV driven post-transplant lymphoproliferative disease (PTLD is a heterogeneous and potentially life-threatening condition. Early identification of aberrant EBV activity may prevent progression to B-cell lymphoma. We measured EBV DNA load and RNA profiles in plasma and cellular blood compartments of stem cell transplant (SCT; n=5, solid organ transplant recipients (SOT; n=15, and SOT having chronic elevated EBV-DNA load (n=12. In SCT, EBV DNA was heterogeneously distributed, either in plasma or leukocytes or both. In SOT, EBV DNA load was always cell associated, predominantly in B cells, but occasionally in T cells (CD4 and CD8 or monocytes. All SCT with cell-associated EBV DNA showed BARTs and EBNA1 expression, while LMP1 and LMP2 mRNA was found in 1 and 3 cases, respectively. In SOT, expression of BARTs was detected in all leukocyte samples. LMP2 and EBNA1 mRNA was found in 5/15 and 2/15, respectively, but LMP1 mRNA in only 1, coinciding with severe PTLD and high EBV DNA. Conclusion: EBV DNA is differently distributed between white cells and plasma in SOT versus SCT. EBV RNA profiling in blood is feasible and may have added value for understanding pathogenic virus activity in patients with elevated EBV-DNA.

  16. Diagnostic utility of LunX mRNA in peripheral blood and pleural fluid in patients with primary non-small cell lung cancer

    Tian Zhigang

    2008-05-01

    Full Text Available Abstract Background Progress in lung cancer is hampered by the lack of clinically useful diagnostic markers. The goal of this study was to provide a detailed evaluation of lung cancer tumor markers indicative of molecular abnormalities and to assess their diagnostic utility in non-small cell lung cancer (NSCLC patients. Methods Quantitative real-time RT-PCR was used to determine LunX, CK19, CEA, VEGF-C and hnRNP A2/B1 mRNA levels in peripheral blood and pleural fluid from NSCLC patients, compared with those from patients with other epithelial cancer (esophagus cancer and breast cancer, benign lung disease (pneumonia and tuberculo pleurisy and from healthy volunteers. Results In peripheral blood LunX mRNA was detectable in 75.0% (33/44 of patients with NSCLC, but not in patients with other epithelial cancer (0/28, benign lung disease (0/10 or in healthy volunteers (0/15. In contrast, all other genetic markers were detected in patients with either NSCLC, other epithelia cancer or benign lung disease, and in healthy volunteers. The expression level and positive rate of LunX mRNA in peripheral blood correlated with the pathologic stage of NSCLC (P LunX mRNA was detected in 92.9% (13/14 of malignant pleural fluid samples and was the only marker whose expression level was significantly different between malignant and benign pleural fluid (P LunX mRNA in the peripheral blood of NSCLC patients decreased shortly after clinical treatment (P = 0.005. Conclusion Of several commonly used genetic markers, LunX mRNA is the most specific gene marker for lung cancer and has potential diagnostic utility when measured in the peripheral blood and pleural fluid of NSCLC patients.

  17. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs.

    Hillman, Noah H; Gisslen, Tate; Polglase, Graeme R; Kallapur, Suhas G; Jobe, Alan H

    2014-01-01

    Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.

  18. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Ventilation-induced increases in EGFR ligand mRNA are not altered by intra-amniotic LPS or ureaplasma in preterm lambs.

    Noah H Hillman

    Full Text Available Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA LPS or Ureaplasma parvum (UP. Epidermal growth factor receptor (EGFR ligands participate in lung development, and angiotensin converting enzyme (ACE 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG, epiregulin (EREG, heparin binding epidermal growth factor (HB-EGF, and betacellulin (BTC mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.

  20. Infiltrating giant cellular blue naevus.

    Bittencourt, A L; Monteiro, D A; De Pretto, O J

    2007-01-01

    Cellular blue naevi (CBN) measure 1-2 cm in diameter and affect the dermis, occasionally extending into the subcutaneous fat. The case of a 14-year-old boy with a giant CBN (GCBN) involving the right half of the face, the jugal mucosa and the lower eyelid with a tumour that had infiltrated the bone and the maxillary and ethmoidal sinuses is reported. Biopsies were taken from the skin, jugal mucosa and maxillary sinus. The following markers were used in the immunohistochemical evaluation: CD34, CD56, HMB-45, anti-S100, A-103, Melan A and MIB-1. The biopsy specimens showed a biphasic pattern affecting the lower dermis, subcutaneous fat, skeletal muscle, bone, jugal mucosa and maxillary sinus, but there was no histological evidence of malignancy. The tumour cells were CD34-, CD56-, HMB45+, anti-S100+ and A-103+. Melan A was focally expressed. No positive MIB-1 cells were identified. The present case shows that GCBN may infiltrate deeply, with no evidence of malignancy.

  1. Diselenolane-mediated cellular uptake.

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi; Matile, Stefan

    2018-02-21

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.

  2. Cellular Senescence: A Translational Perspective

    James L. Kirkland

    2017-07-01

    Full Text Available Cellular senescence entails essentially irreversible replicative arrest, apoptosis resistance, and frequently acquisition of a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP. Senescent cells accumulate in various tissues with aging and at sites of pathogenesis in many chronic diseases and conditions. The SASP can contribute to senescence-related inflammation, metabolic dysregulation, stem cell dysfunction, aging phenotypes, chronic diseases, geriatric syndromes, and loss of resilience. Delaying senescent cell accumulation or reducing senescent cell burden is associated with delay, prevention, or alleviation of multiple senescence-associated conditions. We used a hypothesis-driven approach to discover pro-survival Senescent Cell Anti-apoptotic Pathways (SCAPs and, based on these SCAPs, the first senolytic agents, drugs that cause senescent cells to become susceptible to their own pro-apoptotic microenvironment. Several senolytic agents, which appear to alleviate multiple senescence-related phenotypes in pre-clinical models, are beginning the process of being translated into clinical interventions that could be transformative.

  3. Re: Epigenetics of Cellular Reprogramming

    Fehmi Narter

    2016-12-01

    Full Text Available EDITORIAL COMMENT Cells have some specific molecular and physiological properties that act their functional process. However, many cells have an ability of efficient transition from one type to another. This ability is named plasticity. This process occurs due to epigenetic reprogramming that involves changes in transcription and chromatin structure. Some changes during reprogramming that have been identified in recent years as genomic demethylation (both histone and DNA, histone acetylation and loss of heterochromatin during the development of many diseases such as infertility and cancer progression. In this review, the authors focused on the latest work addressing the mechanisms surrounding the epigenetic regulation of various types of reprogramming, including somatic cell nuclear transfer, cell fusion and transcription factor- and microRNA-induced pluripotency. There are many responsible factors such as genes, cytokines, proteins, co-factors (i.e. vitamin C in this local area network. The exact mechanisms by which these changes are achieved and the detailed interplay between the players responsible, however, remain relatively unclear. In the treatment of diseases, such as infertility, urooncology, reconstructive urology, etc., epigenetic changes and cellular reprogramming will be crucial in the near future. Central to achieving that goal is a more thorough understanding of the epigenetic state of fully reprogrammed cells. By the progress of researches on this topic, new treatment modalities will be identified for these diseases.

  4. Efficiency of cellular information processing

    Barato, Andre C; Hartich, David; Seifert, Udo

    2014-01-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the Escherichia coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium in an environment that changes at a very slow time-scale is quite inefficient, dissipating much more than it learns. Using the concept of a coarse-grained learning rate, we show for the model with adaptation that while the activity learns about the external signal the option of changing the methylation level increases the concentration range for which the learning rate is substantial. (paper)

  5. Rigidity spectrum of Forbush decrease

    Sakakibara, S.; Munakata, K.; Nagashima, K.

    1985-01-01

    Using data from neutron monitors and muon telescopes at surface and underground stations, the average rigidity spectrum of Forbush decreases (Fds) during the period of 1978-1982 were obtained. Thirty eight Ed-events are classified into two groups, Hard Fd and Soft FD according to size of Fd at the Sakashita station. It is found that a spectral form of a fractional-power type (P to the-gamma sub 1 (P+P sub c) to the -gamma sub2) is more suitable than that of a power-exponential type or of a power type with an upper limiting rigidity. The best fitted spectrum of the fractional-power type is expressed by gamma sub1 = 0.37, gamma sub2 = 0.89 and P subc = 10 GV for Hard Fd and gamma sub1 = 0.77, gamma sub2 = 1.02 and P sub c - 14GV for Soft Fd

  6. Method of decreasing nuclear power

    Masuda, Hiromi

    1987-01-01

    Purpose: To easily attain the power decreasing in a HWLWR type reactor and improve the reactor safety. Method: The method is applied to a nuclear reactor in which the reactor reactivity is controlled by control rods and liquid posions dissolved in moderators. Means for forecasting the control rod operation amount required for the reactor power down and means for removing liquid poisons in the moderators are provided. The control rod operation amount required for the power down is forecast before the power down and the liquid poisons in the moderators are removed. Then, the control rods are inserted into a deep insertion position to reduce the reactor power. This invention can facilitate easy power down, as well as provide effects of improving the controllability in the usual operation and of avoiding abrupt power down which leads to an improved availability. (Kamimura, M.)

  7. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  8. Pulsed feedback defers cellular differentiation.

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  9. Cellular phone use while driving at night.

    Vivoda, Jonathon M; Eby, David W; St Louis, Renée M; Kostyniuk, Lidia P

    2008-03-01

    Use of a cellular phone has been shown to negatively affect one's attention to the driving task, leading to an increase in crash risk. At any given daylight hour, about 6% of US drivers are actively talking on a hand-held cell phone. However, previous surveys have focused only on cell phone use during the day. Driving at night has been shown to be a riskier activity than driving during the day. The purpose of the current study was to assess the rate of hand-held cellular phone use while driving at night, using specialized night vision equipment. In 2006, two statewide direct observation survey waves of nighttime cellular phone use were conducted in Indiana utilizing specialized night vision equipment. Combined results of driver hand-held cellular phone use from both waves are presented in this manuscript. The rates of nighttime cell phone use were similar to results found in previous daytime studies. The overall rate of nighttime hand-held cellular phone use was 5.8 +/- 0.6%. Cellular phone use was highest for females and for younger drivers. In fact, the highest rate observed during the study (of 11.9%) was for 16-to 29-year-old females. The high level of cellular phone use found within the young age group, coupled with the increased crash risk associated with cellular phone use, nighttime driving, and for young drivers in general, suggests that this issue may become an important transportation-related concern.

  10. On Elementary and Algebraic Cellular Automata

    Gulak, Yuriy

    In this paper we study elementary cellular automata from an algebraic viewpoint. The goal is to relate the emergent complex behavior observed in such systems with the properties of corresponding algebraic structures. We introduce algebraic cellular automata as a natural generalization of elementary ones and discuss their applications as generic models of complex systems.

  11. Cellular Factors Shape 3D Genome Landscape

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  12. Cellular chain formation in Escherichia coli biofilms

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    ; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates...

  13. Influence of Macromolecular Biosynthesis on Cellular Autolysis in Streptococcus faecalis

    Sayare, Mitchel; Daneo-Moore, Lolita; Shockman, Gerald D.

    1972-01-01

    The addition of several different antibiotics to growing cultures of Streptococcus faecalis, ATCC 9790, was found to inhibit autolysis of cells in sodium phosphate buffer. When added to exponential-phase cultures, mitomycin C (0.4 μg/ml) or phenethyl alcohol (3 mg/ml) inhibited deoxyribonucleic acid synthesis, but did not appreciably affect the rate of cellular autolysis. Addition of chloramphenicol (10 μg/ml), tetracycline (0.5 μg/ml), puromycin (25 μg/ml), or 5-azacytidine (5 μg/ml) to exponential-phase cultures inhibited protein synthesis and profoundly decreased the rate of cellular autolysis. Actinomycin D (0.075 μg/ml) and rifampin (0.01 μg/ml), both inhibitors of ribonucleic acid (RNA) synthesis, also reduced the rate of cellular autolysis. However, the inhibitory effect of actinomycin D and rifampin on cellular autolysis was more closely correlated with their concomitant secondary inhibition of protein synthesis than with the more severe inhibition of RNA synthesis. The dose-dependent inhibition of protein synthesis by 5-azacytidine was quickly diluted out of a growing culture. Reversal of inhibition was accompanied by a disproportionately rapid increase in the ability of cells to autolyze. Thus, inhibition of the ability of cells to autolyze can be most closely related to inhibition of protein synthesis. Furthermore, the rapidity of the response of cellular autolysis to inhibitors of protein synthesis suggests that regulation is exerted at the level of autolytic enzyme activity and not enzyme synthesis. PMID:4116754

  14. Nonparametric testing for DNA copy number induced differential mRNA gene expression

    van Wieringen, W.N.; van de Wiel, M.A.

    2009-01-01

    The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer.

  15. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    Arae, Toshihiro

    2017-04-18

    Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.

  16. Survivin mRNA antagonists using locked nucleic acid, potential for molecular cancer therapy

    Fisker, Niels; Westergaard, Majken; Hansen, Henrik Frydenlund

    2007-01-01

    We have investigated the effects of different locked nucleic acid modified antisense mRNA antagonists against Survivin in a prostate cancer model. These mRNA antagonists were found to be potent inhibitors of Survivin expression at low nanomolar concentrations. Additionally there was a pronounced ...

  17. Coordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.

    Arae, Toshihiro; Isai, Shiori; Sakai, Akira; Mineta, Katsuhiko; Hirai, Masami Yokota; Suzuki, Yuya; Kanaya, Shigehiko; Yamaguchi, Junji; Naito, Satoshi; Chiba, Yukako

    2017-01-01

    stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were

  18. In situ localization of chalcone synthase mRNA in pea root nodule development.

    Yang, W.C.; Canter Cremers, H.C.J.; Hogendijk, P.; Katinakis, P.; Wijffelman, C.A.; Franssen, H.J.; Kammen, van A.; Bisseling, T.

    1992-01-01

    In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it

  19. Responses of mRNA expression of PepT1 in small intestine to ...

    To study the effect of circulation small peptides concentration on mRNA expression in small intestine, graded amount of soybean small peptides (SSP) were infused into lactating goats through duodenal fistulas. Peptide-bound amino acid (PBAA) concentration in arterial plasma and the mRNA expression of PepT1 was ...

  20. SIRT3 Expression Decreases with Reactive Oxygen Species Generation in Rat Cortical Neurons during Early Brain Injury Induced by Experimental Subarachnoid Hemorrhage

    Wei Huang

    2016-01-01

    Full Text Available Sirtuin3 (SIRT3 is an important protein deacetylase which predominantly presents in mitochondria and exhibits broad bioactivities including regulating energy metabolism and counteracting inflammatory effect. Since inflammatory cascade was proved to be critical for pathological damage following subarachnoid hemorrhage (SAH, we investigated the overall expression and cell-specific distribution of SIRT3 in the cerebral cortex of Sprague-Dawley rats with experimental SAH induced by internal carotid perforation. Results suggested that SIRT3 was expressed abundantly in neurons and endothelia but rarely in gliocytes in normal cerebral cortex. After experimental SAH, mRNA and protein expressions of SIRT3 decreased significantly as early as 8 hours and dropped to the minimum value at 24 h after SAH. By contrast, SOD2 expression increased slowly as early as 12 hours after experimental SAH, rose up sharply at the following 12 hours, and then was maintained at a higher level. In conclusion, attenuated SIRT3 expression in cortical neurons was associated closely with enhanced reactive oxygen species generation and cellular apoptosis, implying that SIRT3 might play an important neuroprotective role during early brain injury following SAH.

  1. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle

    Jørgensen, Stine Ringholm; Biensø, Rasmus S; Kiilerich, Kristian

    2011-01-01

    Background: The aim was to test the hypothesis that one week of bed rest will reduce mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle, but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after......-legged knee extensor exercise performed before and after bed rest. Results: Maximal oxygen uptake decreased 5% and exercise endurance decreased non-significantly 25% by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content ~45%, 3...... bed rest. Research Design and Methods: Twelve young, healthy, male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from 6 of the subjects prior to, immediately after and 3h after 45 min one...

  2. Neurocognitive and neuroinflammatory correlates of PDYN and OPRK1 mRNA expression in the anterior cingulate in postmortem brain of HIV-infected subjects.

    Yuferov, Vadim; Butelman, Eduardo R; Ho, Ann; Morgello, Susan; Kreek, Mary Jeanne

    2014-01-09

    Chronic inflammation may contribute to neuropsychological impairments in individuals with HIV, and modulation of this inflammatory response by opiate receptor ligands is important in light of the prevalence of drug use in HIV populations. Exogenous MOR and KOR agonists have differential effects on central nervous system (CNS) immunity and, while some data suggest KOR agonists are immunosuppressive, the KOR agonist dynorphin has been shown to stimulate human monocyte chemotaxis. In this study, we examined mRNA levels of endogenous opioid receptors OPRK1 and OPRM1, prodynorphin (PDYN), macrophage scavenger receptor CD163, and microglia/macrophage marker CD68 in the caudate and anterior cingulate of postmortem brains from HIV-positive and HIV-negative subjects. Brain tissues of HIV-infected (n = 24) and control subjects (n = 15) were obtained from the Manhattan HIV Brain Bank. Quantification of the gene mRNA was performed using SYBR Green RT-PCR. CD68 and CD163 were increased in HIV-positive (HIV+) compared to HIV-negative (HIV-) individuals in both brain regions. There were higher OPRK1 (P <0.005), and lower PDYN mRNA (P <0.005) levels in the anterior cingulate of HIV+ compared to HIV- subjects. This difference between the clinical groups was not found in the caudate. There was no difference in the levels of OPRM1 mRNA between HIV+ and HIV- subjects. Using linear regression analysis, we examined the relationship of OPRK1 and PDYN mRNA levels in the HIV+ subjects with seven cognitive domain T scores of a neuropsychological test battery. Within the HIV+ subjects, there was a positive correlation between anterior cingulate PDYN mRNA levels and better T-scores in the motor domain. Within the HIV+ subjects there were also positive correlations of both OPRK1 and PDYN mRNA levels with the anti-inflammatory marker CD163, but not with proinflammatory CD68 levels. In this setting, decreased PDYN mRNA may reflect a homeostatic mechanism to reduce monocyte

  3. The potential role of IGF-I receptor mRNA in rats with diabetic retinopathy

    匡洪宇; 邹伟; 刘丹; 史榕荇; 程丽华; 殷慧清; 刘晓民

    2003-01-01

    Objective To evaluate the potential role of insulin-like growth factor-1 receptor mRNA(IGF-IR mRNA) in the onset and development of retinopathy in diabetic rats.Methods A diabetic model was duplicated in Wistar rats. The early changes in the retina were examined using light and transmission electron microscopy. Expression of IGF-IR mRNA was analyzed using in situ hybridization.Results Weak expression of IGF-IR mRNA(5%) was found in retinas of normal rats, but was significantly increased (15% and 18%) in the retinas of diabetic rats after 3 and 6 months of diabetes (P<0.01). In situ hybridization and morphological study demonstrated that there was a positive correlation between IGF-IR mRNA expression and retinal changes at various stages.Conclusion Increased IGF-IR mRNA might play an important role in the onset and development of diabetic retinopathy.

  4. Simultaneous isolation of mRNA and native protein from minute samples of cells

    Petersen, Tonny Studsgaard; Andersen, Claus Yding

    2014-01-01

    Precious biological samples often lack a sufficient number of cells for multiple procedures, such as extraction of mRNA while maintaining protein in a non-denatured state suitable for subsequent characterization. Here we present a new method for the simultaneous purification of mRNA and native...... in their native state for traditional protein assays. We validated the procedure using neonatal rat ovaries and small numbers of human granulosa cells, demonstrating the extraction of mRNA suitable for gene expression analysis with simultaneous isolation of native proteins suitable for downstream characterization...... proteins from samples containing small numbers of cells. Our approach utilizes oligodeoxythymidylate [oligo(dT)25]-coated paramagnetic beads in an optimized reaction buffer to isolate mRNA comparable in quantity and quality to mRNA isolated with existing methods, while maintaining the proteins...

  5. In vitro studies of cellular response to DNA damage induced by boron neutron capture therapy

    Perona, M.; Pontiggia, O.; Carpano, M.; Thomasz, L.; Thorp, S.; Pozzi, E.; Simian, M.; Kahl, S.; Juvenal, G.; Pisarev, M.; Dagrosa, A.

    2011-01-01

    The aim of these studies was to evaluate the mechanisms of cellular response to DNA damage induced by BNCT. Thyroid carcinoma cells were incubated with 10 BPA or 10 BOPP and irradiated with thermal neutrons. The surviving fraction, the cell cycle distribution and the expression of p53 and Ku70 were analyzed. Different cellular responses were observed for each irradiated group. The decrease of Ku70 in the neutrons +BOPP group could play a role in the increase of sensitization to radiation.

  6. DNA supercoiling: changes during cellular differentiation and activation of chromatin transcription

    Luchnik, A.N.; Bakayev, V.V.; Glaser, V.M.; Moscow State Univ., USSR)

    1983-01-01

    In this paper it is reported that elastic DNA torsional tension has been observed in a fraction of isolated SV40 minichromosomes, which are shown to be transcriptionally active, and that the number of DNA topological (titratable superhelical) turns in closed superhelical loops of nuclear DNA decreases during cellular differentiation, which, we propose, may be responsible for the coordinate switch in transcription of genes controlling cellular proliferation. 37 references, 6 figures, 2 tables

  7. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  8. Decreased cisplatin uptake by resistant L1210 leukemia cells

    Hromas, R.A.; North, J.A.; Burns, C.P.

    1987-01-01

    Cisplatin resistance remains poorly understood compared to other forms of anti-neoplastic drug resistance. In this report radiolabelled cisplatin and rapid separation techniques were used to compare drug uptake by L1210 leukemia cells that are sensitive (K25) or resistant (SCR9) to cisplatin. Uptake of cisplatin by both cell lines was linear without saturation kinetics up to 100 μM. The resistant ZCR9 cells had 36-60% reduced drug uptake as compared to its sensitive parent line, K25. In contrast, there was no difference in the rate of efflux. We conclude that a decreased rate of uptake is one possible mechanism of cellular cisplatin resistance. (Author)

  9. Identification of sperm mRNA biomarkers associated with testis injury during preclinical testing of pharmaceutical compounds

    Dere, Edward; Spade, Daniel J.; Hall, Susan J.; Altemus, Aimee; Smith, James D.; Phillips, Jonathan A.; Moffit, Jeffrey S.; Blanchard, Kerry T.; Boekelheide, Kim

    2017-01-01

    The human testis is sensitive to toxicant-induced injury but current methods for detecting adverse effects are limited, insensitive and unreliable. Animal studies use sensitive histopathological endpoints to assess toxicity, but require testicular tissue that is not available during human clinical trials. More sensitive and reliable molecular biomarkers of testicular injury are needed to better monitor testicular toxicity in both clinical and preclinical. Adult male Wistar Han rats were exposed for 4 weeks to compounds previously associated with testicular injury, including cisplatin (0, 0.2, 0.3, or 0.4 mg/kg/day), BI665915 (0, 20, 70, 100 mg/kg/d), BI665636 (0, 20, 100 mg/kg/d) or BI163538 (0, 70, 150, 300 mg/kg/d) to evaluate reproductive toxicity and assess changes in sperm mRNA levels. None of the compounds resulted in any significant changes in body, testis or epididymis weights, nor were there decreases in testicular homogenization resistant spermatid head counts. Histopathological evaluation found that only BI665915 treatment caused any testicular effects, including minor germ cell loss and disorganization of the seminiferous tubule epithelium, and an increase in the number of retained spermatid heads. A custom PCR-array panel was used to assess induced changes in sperm mRNA. BI665915 treatment resulted in a significant increase in clusterin (Clu) levels and decreases in GTPase, IMAP family member 4 (Gimap4), prostaglandin D2 synthase (Ptgds) and transmembrane protein with EGF like and two follistatin like domains 1 (Tmeff1) levels. Correlation analysis between transcript levels and quantitative histopathological endpoints found a modest association between Clu with retained spermatid heads. These results demonstrate that sperm mRNA levels are sensitive molecular indicators of testicular injury that can potentially be translated into a clinical setting. - Highlights: • Testing of pharmaceutical compounds identified altered sperm mRNA transcripts.

  10. Identification of sperm mRNA biomarkers associated with testis injury during preclinical testing of pharmaceutical compounds

    Dere, Edward [Division of Urology, Rhode Island Hospital, Providence, RI (United States); Department of Pathology and Laboratory Medicine, Brown University, Providence, RI (United States); Spade, Daniel J.; Hall, Susan J. [Department of Pathology and Laboratory Medicine, Brown University, Providence, RI (United States); Altemus, Aimee; Smith, James D.; Phillips, Jonathan A.; Moffit, Jeffrey S.; Blanchard, Kerry T. [Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT (United States); Boekelheide, Kim, E-mail: kim_boekelheide@brown.edu [Department of Pathology and Laboratory Medicine, Brown University, Providence, RI (United States)

    2017-04-01

    The human testis is sensitive to toxicant-induced injury but current methods for detecting adverse effects are limited, insensitive and unreliable. Animal studies use sensitive histopathological endpoints to assess toxicity, but require testicular tissue that is not available during human clinical trials. More sensitive and reliable molecular biomarkers of testicular injury are needed to better monitor testicular toxicity in both clinical and preclinical. Adult male Wistar Han rats were exposed for 4 weeks to compounds previously associated with testicular injury, including cisplatin (0, 0.2, 0.3, or 0.4 mg/kg/day), BI665915 (0, 20, 70, 100 mg/kg/d), BI665636 (0, 20, 100 mg/kg/d) or BI163538 (0, 70, 150, 300 mg/kg/d) to evaluate reproductive toxicity and assess changes in sperm mRNA levels. None of the compounds resulted in any significant changes in body, testis or epididymis weights, nor were there decreases in testicular homogenization resistant spermatid head counts. Histopathological evaluation found that only BI665915 treatment caused any testicular effects, including minor germ cell loss and disorganization of the seminiferous tubule epithelium, and an increase in the number of retained spermatid heads. A custom PCR-array panel was used to assess induced changes in sperm mRNA. BI665915 treatment resulted in a significant increase in clusterin (Clu) levels and decreases in GTPase, IMAP family member 4 (Gimap4), prostaglandin D2 synthase (Ptgds) and transmembrane protein with EGF like and two follistatin like domains 1 (Tmeff1) levels. Correlation analysis between transcript levels and quantitative histopathological endpoints found a modest association between Clu with retained spermatid heads. These results demonstrate that sperm mRNA levels are sensitive molecular indicators of testicular injury that can potentially be translated into a clinical setting. - Highlights: • Testing of pharmaceutical compounds identified altered sperm mRNA transcripts.

  11. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  12. Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients.

    Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko

    2013-01-01

    Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (Pknowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.

  13. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  14. 1200 nt rat liver mRNA identified by differential hybridization exhibits coordinate regulation with 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase

    Tanaka, R.D.; Clarke, C.F.; Fogelman, A.M.; Edwards, P.A.

    1986-01-01

    Differential hybridization has been used to identify genes in rat liver that encode transcripts which are increased by the drugs cholestyramine and mevinolin and are decreased by dietary cholesterol. This approach should prove useful in isolating and identifying coordinately regulated genes involved in the isoprene biosynthetic pathway. Rat liver poly (A) + RNA was isolated from animals fed diets supplemented with either cholestyramine and mevinolin or with cholesterol. Radiolabeled cDNAs generated from these two RNA preparations were used to screen a rat cDNAs library. A preliminary screen of 10,000 recombinants has led to the identification of a clone with an insert of 1200 bp that hybridizes to a mRNA species of about 1200 nt. The level of this RNA species in rat liver is elevated by the drugs cholestyramine and mevinolin and is decreased by cholesterol feeding. This RNA species is also decreased by mevalonate administration to rats. The regulation of this 1200 nt mRNA species mirrors that of HMG CoA reductase and HMG CoA synthase. It seems very likely that this 1200 nt mRNA encodes a polypeptide which is involved in the isoprene biosynthetic pathway

  15. PGC-1α mRNA Level and Oxidative Capacity of the Plantaris Muscle in Rats with Metabolic Syndrome, Hypertension, and Type 2 Diabetes

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Gu, Ning; Takeda, Isao; Ishioka, Noriaki; Tsuda, Kinsuke; Ishihara, Akihiko

    2011-01-01

    We examined the fiber profiles and the mRNA levels of peroxisome proliferator-activated receptors (PPARα and PPARδ/β) and of the PPARγ coactivator-1α (PGC-1α) in the plantaris muscles of 15-week-old control (WR), metabolic syndrome (CP), hypertensive (SHR), and type 2 diabetic (GK) rats. The deep regions in the muscles of SHR and GK rats exhibited lower percentages of high-oxidative type I and IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR and CP rats. The surface regions in the muscles of CP, SHR, and GK rats exhibited lower percentages of high-oxidative type IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR rats. The muscles of SHR and GK rats had lower oxidative enzyme activity compared with WR rats. The muscles of SHR rats had the lowest PPARδ/β mRNA level. In addition, the muscles of SHR and GK rats had lower PGC-1α mRNA level compared with WR and CP rats. We concluded that the plantaris muscles of rats with hypertension and type 2 diabetes have lower oxidative capacity, which is associated with the decreased level of PGC-1α mRNA

  16. Low-level lasers on microRNA and uncoupling protein 2 mRNA levels in human breast cancer cells

    Canuto, K. S.; Teixeira, A. F.; Rodrigues, J. A.; Paoli, F.; Nogueira, E. M.; Mencalha, A. L.; Fonseca, A. S.

    2017-06-01

    MicroRNA is short non-coding RNA and is a mediator of post-transcriptional regulation of gene expression. In addition, uncoupling proteins (UCPs) regulate thermogenesis, metabolic and energy balance, and decrease reactive oxygen species production. Both microRNA and UCP2 expression can be altered in cancer cells. At low power, laser wavelength, frequency, fluence and emission mode deternube photobiological responses, which are the basis of low-level laser therapy. There are few studies on miRNA and UCP mRNA levels after low-level laser exposure on cancer cells. In this work, we evaluate the micrRNA (mir-106b and mir-15a) and UCP2 mRNA levels in human breast cancer cells exposed to low-level lasers. MDA-MB-231 human breast cancer cells were exposed to low-level red and infrared lasers, total RNA was extracted for cDNA synthesis and mRNA levels by real time quantitative polymerase chain reaction were evaluated. Data show that mir-106b and mir-15a relative levels are not altered, but UCP2 mRNA relative levels are increased in MDA-MB-231 human breast cancer cells exposed to low-level red and infrared lasers at fluences used in therapeutic protocols.

  17. A focus on polarity: Investigating the role of orientation cues in mediating student performance on mRNA synthesis tasks in an introductory cell and molecular biology course.

    Olimpo, Jeffrey T; Quijas, Daniel A; Quintana, Anita M

    2017-11-01

    The central dogma has served as a foundational model for information flow, exchange, and storage in the biological sciences for several decades. Despite its continued importance, however, recent research suggests that novices in the domain possess several misconceptions regarding the aforementioned processes, including those pertaining specifically to the formation of messenger ribonucleic acid (mRNA) transcripts. In the present study, we sought to expand upon these observations through exploration of the influence of orientation cues on students' aptitude at synthesizing mRNAs from provided deoxyribonucleic acid (DNA) template strands. Data indicated that participants (n = 45) were proficient at solving tasks of this nature when the DNA template strand and the mRNA molecule were represented in an antiparallel orientation. In contrast, participants' performance decreased significantly on items in which the mRNA was depicted in a parallel orientation relative to the DNA template strand. Furthermore, participants' Grade Point Average, self-reported confidence in understanding the transcriptional process, and spatial ability were found to mediate their performance on the mRNA synthesis tasks. Collectively, these data reaffirm the need for future research and pedagogical interventions designed to enhance students' comprehension of the central dogma in a manner that makes transparent its relevance to real-world scientific phenomena. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):501-508, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  18. A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells.

    Ashish Mehta

    Full Text Available Genetically unmodified cardiomyocytes mandated for cardiac regenerative therapy is conceivable by "foot-print free" reprogramming of somatic cells to induced pluripotent stem cells (iPSC. In this study, we report generation of foot-print free hiPSC through messenger RNA (mRNA based reprograming. Subsequently, we characterize cardiomyocytes derived from these hiPSC using molecular and electrophysiological methods to characterize their applicability for regenerative medicine. Our results demonstrate that mRNA-iPSCs differentiate ontogenetically into cardiomyocytes with increased expression of early commitment markers of mesoderm, cardiac mesoderm, followed by cardiac specific transcriptional and sarcomeric structural and ion channel genes. Furthermore, these cardiomyocytes stained positively for sarcomeric and ion channel proteins. Based on multi-electrode array (MEA recordings, these mRNA-hiPSC derived cardiomyocytes responded predictably to various pharmacologically active drugs that target adrenergic, sodium, calcium and potassium channels. The cardiomyocytes responded chronotropically to isoproterenol in a dose dependent manner, inotropic activity of nifidipine decreased spontaneous contractions. Moreover, Sotalol and E-4031 prolonged QT intervals, while TTX reduced sodium influx. Our results for the first time show a systemic evaluation based on molecular, structural and functional properties of cardiomyocytes differentiated from mRNA-iPSC. These results, coupled with feasibility of generating patient-specific iPSCs hold great promise for the development of large-scale generation of clinical grade cardiomyocytes for cardiac regenerative medicine.

  19. Induction of a specific strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and guinea pig experimental models of tuberculosis.

    Guirado, Evelyn; Gil, Olga; Cáceres, Neus; Singh, Mahavir; Vilaplana, Cristina; Cardona, Pere-Joan

    2008-08-01

    RUTI is a therapeutic vaccine that is generated from detoxified and liposomed Mycobacterium tuberculosis cell fragments that has demonstrated its efficacy in the control of bacillus reactivation after short-term chemotherapy. The aim of this study was to characterize the cellular immune response generated after the therapeutic administration of RUTI and to corroborate the lack of toxicity of the vaccine. Mouse and guinea pig experimental models were infected with a low-dose M. tuberculosis aerosol. RUTI-treated animals showed the lowest bacillary load in both experimental models. RUTI also decreased the percentage of pulmonary granulomatous infiltration in the mouse and guinea pig models. This was not the case after Mycobacterium bovis BCG treatment. Cellular immunity was studied through the characterization of the intracellular gamma interferon (IFN-gamma)-producing cells after the splenocytes' stimulation with M. tuberculosis-specific structural and growth-related antigens. Our data show that the difference between the therapeutic administration of BCG and RUTI resides mainly in the stronger activation of IFN-gamma(+) CD4(+) cells and CD8(+) cells against tuberculin purified protein derivative, ESAT-6, and Ag85B that RUTI generates. Both vaccines also triggered a specific immune response against the M. tuberculosis structural antigens Ag16kDa and Ag38kDa and a marked mRNA expression of IFN-gamma, tumor necrosis factor, interleukin-12, inducible nitric oxide synthase, and RANTES in the lung. The results show that RUTI's therapeutic effect is linked not only to the induction of a Th1 response but also to the stimulation of a quicker and stronger specific immunity against structural and growth-related antigens that reduces both the bacillary load and the pulmonary pathology.

  20. BubR1 Acts as a Promoter in Cellular Motility of Human Oral Squamous Cancer Cells through Regulating MMP-2 and MMP-9

    Chou-Kit Chou

    2015-07-01

    Full Text Available BubR1 is a critical component of spindle assembly checkpoint, ensuring proper chromatin segregation during mitosis. Recent studies showed that BubR1 was overexpressed in many cancer cells, including oral squamous cell carcinomas (OSCC. However, the effect of BubR1 on metastasis of OSCC remains unclear. This study aimed to unravel the role of BubR1 in the progression of OSCC and confirm the expression of BubR1 in a panel of malignant OSCC cell lines with different invasive abilities. The results of quantitative real-time PCR showed that the mRNA level of BubR1 was markedly increased in four OSCC cell lines, Ca9-22, HSC3, SCC9 and Cal-27 cells, compared to two normal cells, normal human oral keratinocytes (HOK and human gingival fibroblasts (HGF. Moreover, the expression of BubR1 in these four OSCC cell lines was positively correlated with their motility. Immunofluorescence revealed that BubR1 was mostly localized in the cytosol of human gingival carcinoma Ca9-22 cells. BubR1 knockdown significantly decreased cellular invasion but slightly affect cellular proliferation on both Ca9-22 and Cal-27 cells. Consistently, the activities of metastasis-associated metalloproteinases MMP-2 and MMP-9 were attenuated in BubR1 knockdown Ca9-22 cells, suggesting the role of BubR1 in promotion of OSCC migration. Our present study defines an alternative pathway in promoting metastasis of OSCC cells, and the expression of BubR1 could be a prognostic index in OSCC patients.

  1. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes.

    Parsanathan, Rajesh; Jain, Sushil K

    2018-04-06

    L-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of L-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and L-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. L-Cysteine treatment significantly (p adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas L-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.

  2. Estimating cellular network performance during hurricanes

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  3. Oxytocin Acting in the Nucleus Accumbens Core Decreases Food Intake.

    Herisson, F M; Waas, J R; Fredriksson, R; Schiöth, H B; Levine, A S; Olszewski, P K

    2016-04-01

    Central oxytocin (OT) promotes feeding termination in response to homeostatic challenges, such as excessive stomach distension, salt loading and toxicity. OT has also been proposed to affect feeding reward by decreasing the consumption of palatable carbohydrates and sweet tastants. Because the OT receptor (OTR) is expressed in the nucleus accumbens core (AcbC) and shell (AcbSh), a site regulating diverse aspects of eating behaviour, we investigated whether OT acts there to affect appetite in rats. First, we examined whether direct AcbC and AcbSh OT injections affect hunger- and palatability-driven consumption. We found that only AcbC OT infusions decrease deprivation-induced chow intake and reduce the consumption of palatable sucrose and saccharin solutions in nondeprived animals. These effects were abolished by pretreatment with an OTR antagonist, L-368,899, injected in the same site. AcbC OT at an anorexigenic dose did not induce a conditioned taste aversion, which indicates that AcbC OT-driven anorexia is not caused by sickness/malaise. The appetite-specific effect of AcbC OT is supported by the real-time polymerase chain reaction analysis of OTR mRNA in the AcbC, which revealed that food deprivation elevates OTR mRNA expression, whereas saccharin solution intake decreases OTR transcript levels. We also used c-Fos immunohistochemistry as a marker of neuronal activation and found that AcbC OT injection increases activation of the AcbC itself, as well as of two feeding-related sites: the hypothalamic paraventricular and supraoptic nuclei. Finally, considering the fact that OT plays a significant role in social behaviour, we examined whether offering animals a meal in a social setting would modify their hypophagic response to AcbC OT injections. We found that a social context abolishes the anorexigenic effects of AcbC OT. We conclude that OT acting via the AcbC decreases food intake driven by hunger and reward in rats offered a meal in a nonsocial setting. © 2016

  4. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission

    Gao Ying; Li Shuai; Xu Dan; Wang Junjun; Sun Yeqing

    2015-01-01

    Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation. (author)

  5. Imaging in cellular and tissue engineering

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  6. Advanced 3D Printers for Cellular Solids

    2016-06-30

    06-2016 1-Aug-2014 31-Dec-2015 Final Report: Advanced 3D printers for Cellular Solids The views, opinions and/or findings contained in this report are...2211 3d printing, cellular solids REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...Papers published in non peer-reviewed journals: Final Report: Advanced 3D printers for Cellular Solids Report Title Final Report for DURIP grant W911NF

  7. Cellularity of certain quantum endomorphism algebras

    Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.

    Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...

  8. Selenium Deficiency Influences the mRNA Expression of Selenoproteins and Cytokines in Chicken Erythrocytes.

    Luan, Yilin; Zhao, Jinxin; Yao, Haidong; Zhao, Xia; Fan, Ruifeng; Zhao, Wenchao; Zhang, Ziwei; Xu, Shiwen

    2016-06-01

    Selenium (Se) deficiency induces hemolysis in chickens, but the molecular mechanism for this effect remains unclear. Se primarily elicits its function through the activity of selenoproteins, which contain the unique amino acid selenocysteine (Sec). In this study, we aimed to investigate the effect of Se deficiency on the expression of 24 selenoproteins and 10 cytokines. One hundred eighty chickens were randomly divided into 2 groups (90 chickens per group). During the entire experimental period, chickens were allowed ad libitum consumption of feed and water. The chickens were fed either a Se-deficient diet (0.008 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a Se-supplemented diet (as sodium selenite) at 0.2 mg/kg for 35 days. At the 35th day, the messenger RNA (mRNA) levels of 24 selenoproteins and 10 cytokines were examined in erythrocytes of 5 chickens per group, and the correlation was analyzed. The results showed that the expression of 24 selenoproteins and 7 cytokines (IL-2, IL-4, IL-8, IL-10, IL-12β, TGF-β4, and IFN-γ) decreased (P chicken erythrocytes (P chickens was damaged by the Se deficiency. Correlation analysis suggested that although the expression of 24 selenoproteins and 7 cytokines decreased and that of 3 cytokines increased, there was a close correlation between their expression levels and a Se diet. These results suggested that Se deficiency influenced the expressions of 24 selenoproteins and 10 cytokines in chicken erythrocytes, revealing a relationship between Se and the chicken immune system. This study offers information regarding the mechanism of Se deficiency-induced hemolysis.

  9. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    O.Popescu

    1999-01-01

    Full Text Available Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of isolated and purified glyconectins revealed the presence of specific carbohydrate structures, acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight containing fucose, glucuronic or galacturonic acids, and sulfate groups, originally found in sponges and sea urchin embryos, may represent a new class of carbohydrate carcino-embryonal antigens in mice and humans. Such interactions between biological macromolecules are usually investigated by kinetic binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance, and other spectroscopic analyses. However, these methods do not supply a direct estimation of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Recently, we have introduced atomic force microscopy to quantify the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion proteoglycans is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. As a model, we selected the glyconectin 1, a cell adhesion proteoglycan isolated from the marine sponge Microciona prolifera. This glyconectin mediates in vivo cell recognition and aggregation via homophilic, species-specific, polyvalent, and calcium ion-dependent carbohydrate-carbohydrate interactions. Under physiological conditions, an adhesive force of up to 400 piconewtons

  10. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise.

    D'Lugos, Andrew C; Patel, Shivam H; Ormsby, Jordan C; Curtis, Donald P; Fry, Christopher S; Carroll, Chad C; Dickinson, Jared M

    2018-04-01

    Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6 Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1 Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before

  11. Energetic evolution of cellular Transportomes

    Darbani, Behrooz; Kell, Douglas B.; Borodina, Irina

    2018-01-01

    of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues......) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5–6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants...... of modern mitochondrial solute carriers. Conclusions: The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important...

  12. Stimulation of S14 mRNA and lipogenesis in brown fat by hypothyroidism, cold exposure, and cafeteria feeding: evidence supporting a general role for S14 in lipogenesis and lipogenesis in the maintenance of thermogenesis

    Freake, H.C.; Oppenheimer, J.H.

    1987-05-01

    In liver, thyroid hormone rapidly induces S14 mRNA, which encodes a small acidic protein. This sequence is abundantly expressed only in lipogenic tissues and is thought to have some function in fat metabolism. In the euthyroid rat, we measured 20-fold higher levels of S14 mRNA in interscapular brown adipose tissue than liver. Furthermore, whereas in liver or epididymal fat, hypothyroidism resulted in an 80% fall in S14 mRNA, in brown fat the level of this sequence increased a further 3-fold. In all three tissues, the expression of S14 mRNA correlated well with lipogenesis, as assessed by /sup 3/H/sub 2/O incorporation. Physiological activation of brown fat by chronic cold exposure or cafeteria feeding increased the concentration of S14 mRNA in this tissue and again this was accompanied by a greater rate of fatty acid synthesis. Overall, in liver and white and brown adipose tissue, S14 mRNA and lipogenesis were well correlated and strongly suggest a function of the S14 protein related to fat synthesis. These studies suggest that the S14 protein and lipogenesis may be important for thyroid hormone-induced and brown adipose tissue thermogenesis and that stimulation of these functions in hypothyroid brown fat is a consequence of decreased thyroid hormone-induced thermogenesis elsewhere.

  13. Stimulation of S14 mRNA and lipogenesis in brown fat by hypothyroidism, cold exposure, and cafeteria feeding: evidence supporting a general role for S14 in lipogenesis and lipogenesis in the maintenance of thermogenesis

    Freake, H.C.; Oppenheimer, J.H.

    1987-01-01

    In liver, thyroid hormone rapidly induces S14 mRNA, which encodes a small acidic protein. This sequence is abundantly expressed only in lipogenic tissues and is thought to have some function in fat metabolism. In the euthyroid rat, we measured 20-fold higher levels of S14 mRNA in interscapular brown adipose tissue than liver. Furthermore, whereas in liver or epididymal fat, hypothyroidism resulted in an 80% fall in S14 mRNA, in brown fat the level of this sequence increased a further 3-fold. In all three tissues, the expression of S14 mRNA correlated well with lipogenesis, as assessed by 3 H 2 O incorporation. Physiological activation of brown fat by chronic cold exposure or cafeteria feeding increased the concentration of S14 mRNA in this tissue and again this was accompanied by a greater rate of fatty acid synthesis. Overall, in liver and white and brown adipose tissue, S14 mRNA and lipogenesis were well correlated and strongly suggest a function of the S14 protein related to fat synthesis. These studies suggest that the S14 protein and lipogenesis may be important for thyroid hormone-induced and brown adipose tissue thermogenesis and that stimulation of these functions in hypothyroid brown fat is a consequence of decreased thyroid hormone-induced thermogenesis elsewhere

  14. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clinical impact on patients' stratification and outcome. Methods: Specimens were obtained from RMS patients and cell lines, and ALK expression was analysed by quantitative RT–PCR, western blotting, IHC, and copy number analysis. Results: High ALK mRNA expression was detected in the vast majority of PAX3/7-FOXO1-positive tumours, whereas PAX3/7-FOXO1-negative RMS displayed considerably lower amounts of both mRNA and protein. Notably, ALK mRNA distinguished unfavourable PAX3/7-FOXO1-positive tumours from PAX3/7-FOXO1-negative RMS (Ptumour size (PALK mRNA levels were of prognostic relevance by Cox univariate regression analysis and correlated with increased risk of relapse (P=0.001) and survival (P=0.01), whereas by multivariate analysis elevated ALK mRNA expression resulted a negative prognostic marker when clinical stage was not included. Conclusion: Quantitative assessment of ALK mRNA expression helps to improve risk stratification of RMS patients and identifies tumours with adverse biological characteristics and aggressive behaviour. PMID:24149177

  15. The hypoxic proteome is influenced by gene-specific changes in mRNA translation

    Koritzinsky, Marianne; Seigneuric, Renaud; Magagnin, Michael G.; Beucken, Twan van den; Lambin, Philippe; Wouters, Bradly G.

    2005-01-01

    Background and purpose: Hypoxia causes a rapid reduction in mRNA translation efficiency. This inhibition does not affect all mRNA species to the same extent and can therefore contribute significantly to hypoxia-induced differential protein expression. Our aim in this study was to characterize changes in gene expression during acute hypoxia and evaluate the contribution of regulation via mRNA translation on these changes. For each gene, the contribution of changes in mRNA abundance versus mRNA translation was determined. Materials and methods: DU145 prostate carcinoma cells were exposed to 4 h of hypoxia ( 2 ). Efficiently translated mRNAs were isolated by sedimentation through a sucrose gradient. Affymetrix microarray technology was used to evaluate both the transcriptional and translational contribution to gene expression. Results were validated by quantitative PCR. Results: One hundred and twenty genes were more than 4-fold upregulated by hypoxia in the efficiently translated fraction of mRNA, in comparison to only 76 genes at the level of transcription. Of the 50 genes demonstrating the largest changes in translation, 11 were found to be more than 2-fold over represented in the translated fraction in comparison to their overall transcriptional level. The gene with the highest translational contribution to its induction was CITED-2, which is a negative regulator of HIF-1 transcriptional activity. Conclusions: Gene-specific regulation of mRNA translation contributes significantly to differential gene expression during hypoxia

  16. Complement mRNA in the mammalian brain: responses to Alzheimer's disease and experimental brain lesioning.

    Johnson, S A; Lampert-Etchells, M; Pasinetti, G M; Rozovsky, I; Finch, C E

    1992-01-01

    This study describes evidence in the adult human and rat brain for mRNAs that encode two complement (C) proteins, C1qB and C4. C proteins are important effectors of humoral immunity and inflammation in peripheral tissues but have not been considered as normally present in brain. Previous immunocytochemical studies showed that C proteins are associated with plaques, tangles, and dystrophic neurites in Alzheimer's disease (AD), but their source is unknown. Combined immunocytochemistry and in situ hybridization techniques show C4 mRNA in pyramidal neurons and C1qB mRNA in microglia. Primary rat neuron cultures also show C1qB mRNA. In the cortex from AD brains, there were two- to threefold increases of C1qB mRNA and C4 mRNA, and increased C1qB mRNA prevalence was in part associated with microglia. As a model for AD, we examined entorhinal cortex perforant path transection in the rat brain, which caused rapid increases of C1qB mRNA in the ipsilateral, but not contralateral, hippocampus and entorhinal cortex. The role of brain-derived acute and chronic C induction during AD and experimental lesions can now be considered in relation to functions of C proteins that pertain to cell degeneration and/or cell preservation and synaptic plasticity.

  17. The mRNA expression of XRCC repair genes in mice after γ-ray radiation

    Wang Qin; Yue Jingyin; Li Jin; Mu Chuanjie; Fan Feiyue

    2006-01-01

    Objective: To investigate the role of XRCC repair genes in radioresistance of IRM-2 inbred mice. Methods: Northern hybridization was used to measure mRNA expression of XRCC1 and XRCC5 genes in IRM-2 inbred mice. ICR/JCL and 615 after exposure to different doses of γ-ray radiation at different postirradiation time. Results: The levels of XRCC1 and XRCC5 mRNA expression in control IRM-2 mice were higher significantly than those in their control parental mice (P<0.01 and P<0.05). The mRNA expression of XRCC genes in ICR/JCL and 615 mice all increased to some extent after exposure 1, 2 and 4 Gy radiation. But the levels were significantly higher at 2h postirradiation (P<0.05) . The levels of XRCC mRNA expression in IRM-2 mice did not increase significnatly compared with the control mice after exposure 1 and 2 Gy radiation. But the levels of XRCC1 and XRCC5 mRNA expression increased markedly at 4Gy 1h postirradiation (P<0.05 and P<0.01). Conclusion: The basal levels of XRCC1 and XRCC5 mRNA expression in IRM-2 mice were high. The high level of XRCC5 mRNA expression was involved in the repair of DNA double strand breaks induced by higher dose radiation, which perhaps was one of radioresistance causes of IRM-2 mice. (authors)

  18. Polyadenylated mRNA from the photosynthetic procaryote Rhodospirillum rubrum

    Majumdar, P.K.; McFadden, B.A.

    1984-01-01

    Total cellular RNA extracted from Rhodospirillum rubrum cultured in butyrate-containing medium under strict photosynthetic conditions to the stationary phase of growth has been fractionated on an oligodeoxy-thymidylic acid-cellulose column into polyadenylated [poly(A) + ] RNA and poly(A) - RNA fractions. The poly(A) + fraction was 9 to 10% of the total bulk RNA isolated. Analysis of the poly(A) + RNA on a denaturing urea-polyacrylamide gel revealed four sharp bands of RNA distributed in heterodisperse fashion between 16S and 9S. Similar fractionation of the poly(A) - RNA resulted in the separation of 23, 16, and 5S rRNAs and 4S tRNA. Poly(A) + fragments isolated after combined digestion with pancreatic A and T 1 RNases and analysis by denaturing gel electrophoresis demonstrated two major components of 80 and 100 residues. Alkaline hydrolysis of the nuclease-resistant, purified residues showed AMP-rich nucleotides. Through the use of snake venom phosphodiesterase, poly(A) tracts were placed at the 3' end of poly(A) + RNA. Stimulation of [ 3 H]leucine incorporation into hot trichloroacetic acid-precipitable polypeptides in a cell-free system from wheat germ primed by the poly(A) + RNA mixture was found to be 220-fold higher than that for poly(A) - RNAs (on a unit mass basis), a finding which demonstrated that poly(A) + RNAs in R. rubrum are mRNAs. Gel electrophoretic analysis of the translation mixture revealed numerous 3 H-labeled products including a major band (M/sub r/, 52,000). The parent protein was precipitated by antibodies to ribulose bisphosphate carboxylase-oxygenase and comprised 6.5% of the total translation products

  19. Collagen V-induced nasal tolerance downregulates pulmonary collagen mRNA gene and TGF-beta expression in experimental systemic sclerosis

    Parra Edwin R

    2010-01-01

    Full Text Available Abstract Background The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGF-beta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods Female New Zealand rabbits (N = 12 were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM. After 150 days, six immunized animals were tolerated by nasal administration of collagen V (25 μg/day (IM-TOL daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p Results IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 ± 0.118 vs. 0.874 ± 0.282, p p p = 0.026. The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 ± 0.07 vs. 1.0 ± 0.528, p = 0.002 and V (1.12 ± 0.42 vs. 4.74 ± 2.25, p = 0.009 collagen, in addition to decreased TGF-beta expression (p Conclusions Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.

  20. Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation.

    Clément Chevalier

    2010-03-01

    Full Text Available Staphylococcus aureus RNAIII is the intracellular effector of the quorum sensing system that temporally controls a large number of virulence factors including exoproteins and cell-wall-associated proteins. Staphylocoagulase is one major virulence factor, which promotes clotting of human plasma. Like the major cell surface protein A, the expression of staphylocoagulase is strongly repressed by the quorum sensing system at the post-exponential growth phase. Here we used a combination of approaches in vivo and in vitro to analyze the mechanism used by RNAIII to regulate the expression of staphylocoagulase. Our data show that RNAIII represses the synthesis of the protein through a direct binding with the mRNA. Structure mapping shows that two distant regions of RNAIII interact with coa mRNA and that the mRNA harbors a conserved signature as found in other RNAIII-target mRNAs. The resulting complex is composed of an imperfect duplex masking the Shine-Dalgarno sequence of coa mRNA and of a loop-loop interaction occurring downstream in the coding region. The imperfect duplex is sufficient to prevent the formation of the ribosomal initiation complex and to repress the expression of a reporter gene in vivo. In addition, the double-strand-specific endoribonuclease III cleaves the two regions of the mRNA bound to RNAIII that may contribute to the degradation of the repressed mRNA. This study validates another direct target of RNAIII that plays a role in virulence. It also illustrates the diversity of RNAIII-mRNA topologies and how these multiple RNAIII-mRNA interactions would mediate virulence regulation.