WorldWideScience

Sample records for mri-induced temperature change

  1. MRI appearance of radiation-induced changes of normal cervical tissues

    International Nuclear Information System (INIS)

    Noemayr, A.; Lell, M.; Bautz, W.; Sweeney, R.; Lukas, P.

    2001-01-01

    Irradiation causes specific MRI changes in anatomic morphology and signal intensity. To avoid misinterpretation, it is important to consider the potential radiation changes of normal tissue in MRI. The aim of this study was to describe the detected radiation effects on normal cervical tissues in MRI. Pretreatment and posttreatment MRI of 52 patients with primary neck tumors were evaluated retrospectively. The MR imaging was performed before initiating radiotherapy and at the end of the treatment period. Patients underwent follow-up studies within 24 months after the end of irradiation. Edema was the main radiation-induced effect. It was detected in the epiglottis, larynx, pharynx wall, retro- and parapharyngeal space, salivary glands, muscles, and subcutaneous tissue. In some cases the bone marrow of the mandible showed edema, due to osteonecrosis. We additionally detected fluid accumulation in the mastoid cells. Radiation caused volume reduction of the parotid gland, thickening of the pharynx wall, and fatty degeneration of bone marrow. Magnetic resonance imaging is an excellent method of depicting radiation-induced changes of normal tissue. Especially T2-weighted sequences allow the detection of even slight edema. It is important to be aware of the most common radiation-induced changes in MRI and to take them into account when assessing an examination. (orig.)

  2. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.

    Science.gov (United States)

    Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio

    2015-07-08

    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.

  3. Estimation of temperature change in human body using MRI

    International Nuclear Information System (INIS)

    Nikawa, Yoshio; Nakamura, Suguru

    2016-01-01

    In the field of traditional oriental medicine, two types of treatment style, which are an acupuncture treatment and a moxibustion treatment have been performed. These treatments are used and effected by doctor or acupuncturist in their clinic or hospital and are widely spread. In spite of such a general treatment, it is not deeply discussed about mechanism of heat transfer modality and about temperature distribution in the treatment of moxibustion. Also, it is not discussed about temperature distribution deep inside human tissue during acupuncture treatment. It comes from the difficulty of noninvasive measurement of temperature deep inside human body. In this study, a temperature distribution for acupuncture and moxibustion treatment is measured and analyzed using thermograph and MRI by measuring the phase of longitudinal relaxation time of protons. The experimental results of measured temperature distribution under the human legs have been demonstrated. The result of temperature analysis in the human body is also reported. (author)

  4. Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants.

    Science.gov (United States)

    Cortese, Aurelio; Amano, Kaoru; Koizumi, Ai; Lau, Hakwan; Kawato, Mitsuo

    2017-04-01

    Neurofeedback studies using real-time functional magnetic resonance imaging (rt-fMRI) have recently incorporated the multi-voxel pattern decoding approach, allowing for fMRI to serve as a tool to manipulate fine-grained neural activity embedded in voxel patterns. Because of its tremendous potential for clinical applications, certain questions regarding decoded neurofeedback (DecNef) must be addressed. Specifically, can the same participants learn to induce neural patterns in opposite directions in different sessions? If so, how does previous learning affect subsequent induction effectiveness? These questions are critical because neurofeedback effects can last for months, but the short- to mid-term dynamics of such effects are unknown. Here we employed a within-subjects design, where participants underwent two DecNef training sessions to induce behavioural changes of opposing directionality (up or down regulation of perceptual confidence in a visual discrimination task), with the order of training counterbalanced across participants. Behavioral results indicated that the manipulation was strongly influenced by the order and the directionality of neurofeedback training. We applied nonlinear mathematical modeling to parametrize four main consequences of DecNef: main effect of change in confidence, strength of down-regulation of confidence relative to up-regulation, maintenance of learning effects, and anterograde learning interference. Modeling results revealed that DecNef successfully induced bidirectional confidence changes in different sessions within single participants. Furthermore, the effect of up- compared to down-regulation was more prominent, and confidence changes (regardless of the direction) were largely preserved even after a week-long interval. Lastly, the effect of the second session was markedly diminished as compared to the effect of the first session, indicating strong anterograde learning interference. These results are interpreted in the framework

  5. Beam-induced temperature changes in HVEM irradiations

    International Nuclear Information System (INIS)

    Garner, F.A.; Thomas, L.E.; Gelles, D.S.

    1975-01-01

    The peak value of the temperature distribution induced by energy loss of 1.0 MeV electrons in traversing a typical HVEM irradiation specimen can be very substantial. The origin and various features of this distribution were analyzed for a variety of specimen geometries. The major parametric dependencies are shown to be relatively independent of specimen geometry, however, and allow the definition of a scaling relationship that can be employed to predict temperature rises in materials that cannot be measured directly. The use of this scaling relationship requires that the experimenter minimize perturbations of the heat flow due to proximity of the central hole in the specimen. An experimental method of determining directly the magnitude and distribution of beam-induced temperature profiles was developed which utilizes the order-disorder transformation in Fe 3 Al and Cu 3 Au. Scaling of experimentally determined temperature changes leads to more realistic estimates of the total temperature rise than are currently available in various literature tabulations. The factors which determine the optimum selection of irradiation parameters for a given experiment are also discussed

  6. SU-F-I-27: Measurement of SAR and Temperature Elevation During MRI Scans

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-06-15

    Purpose: The poor reliability and repeatability of the manufacturer-reported SAR values on clinical MRI systems have been acknowledged. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation at 1.5 and 3T MRI systems. Methods: SAR measurement experiment was performed at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T1w inversion recovery, and T2w TSE) with imaging parameters were selected. A hydroxyl-ethylcelluose (HEC) gelled saline phantom mimicking human body tissue was made. Human torso phantom were constructed, based on Korean adult standard anthropometric reference data (Fig.1). FDTD method was utilized to calculate the SAR distribution using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located inside the phantom. 55 Fiber Bragg Grating (FBG) temperature sensors (27 sensors in upper and lower cover lids, and one sensor located in the center as a reference) were located inside the phantom to measure temperature change during MRI scan (Fig.2). Results: Simulation shows that SAR value is 0.4 W/kg in the periphery and 0.001 W/kg in the center (Fig.2). One 1.5T and one of two 3T MRI systems represent that the measured SAR values were lower than MRI scanner-reported SAR values. However, the other 3T MRI scanner shows that the averaged SAR values measured by probe 2, 3, and 4 are 6.83, 7.59, and 6.01 W/kg, compared to MRI scanner-reported whole body SAR value (<1.5 W/kg) for T2w TSE (Table 1). The temperature elevation measured by FBG sensors is 5.2°C in the lateral shoulder, 5.1°C in the underarm, 4.7°C in the anterior axilla, 4.8°C in the posterior axilla, and 4.8°C in the lateral waist for T2w TSE (Fig.3). Conclusion: It is essential to assess the safety of MRI system for patient by measuring accurate SAR deposited in the body during clinical MRI.

  7. Radiofrequency heating and magnetically induced displacement of dental magnetic attachments during 3.0 T MRI

    Science.gov (United States)

    Miyata, K; Hasegawa, M; Abe, Y; Tabuchi, T; Namiki, T; Ishigami, T

    2012-01-01

    Objective The aim of this study was to estimate the risk of injury from dental magnetic attachments due to their radiofrequency (RF) heating and magnetically induced displacement during 3.0 T MRI. Methods To examine the magnetic attachments, we adopted the American Society for Testing and Materials F2182-02a and F2052-06 standards in two MRI systems (Achieva 3.0 T Nova Dual; Philips, Tokyo, Japan, and Signa HDxt 3.0 T; GE Healthcare, Milwaukee, WI). The temperature change was measured in a cylindrical keeper (GIGAUSS D600; GC, Tokyo, Japan) with coping of the casting alloy and a keeper with a dental implant at the maximum specific absorption rate (SAR) for 20 min. To measure the magnetically induced displacement force, three sizes of keepers (GIGAUSS D400, D600 and D1000) were used in deflection angle tests conducted at the point of the maximum magnetic field strength. Results Temperature elevations of both coping and implant were higher in the Signa system than in the Achieva system. The highest temperature changes in the keeper with implant and keeper with coping were 0.6 °C and 0.8 °C in the Signa system, respectively. The temperature increase did not exceed 1.0 °C at any location. The deflection angle (α) was not measurable because it exceeded 90°. GIGAUSS D400 required an extra 3.0 g load to constrain the deflection angle to less than 45°; GIGAUSS D600 and D1000 required 5.0 and 9.0 g loads, respectively. Conclusions Dental magnetic attachments pose no risk due to RF heating and magnetically induced displacement at 3.0 T MRI. However, it is necessary to confirm that these keepers are securely attached to the prosthesis before imaging. PMID:22499128

  8. An all optical system for studying temperature induced changes in diamond

    CSIR Research Space (South Africa)

    Masina, B

    2010-01-01

    Full Text Available .csir.co.za An all optical system for studying temperature induced changes in diamond Bathusile Masina and Andrew Forbes 1 September 2010 © CSIR 2010 Slide 2 It is acknowledged that temperature induces damage in the diamond bits due to friction during the drilling...

  9. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    International Nuclear Information System (INIS)

    Cianfoni, A.; Caulo, M.; Cerase, A.; Della Marca, G.; Falcone, C.; Di Lella, G.M.; Gaudino, S.; Edwards, J.; Colosimo, C.

    2013-01-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention

  10. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Cianfoni, A., E-mail: acianfoni@hotmail.com [Neuroradiology, Neurocenter of Italian Switzerland–Ospedale regionale Lugano, Via Tesserete 46, Lugano, 6900, CH (Switzerland); Caulo, M., E-mail: caulo@unich.it [Department of Neuroscience and Imaging, University of Chieti, Via dei Vestini 33, 6610 Chieti. Italy (Italy); Cerase, A., E-mail: alfonsocerase@gmail.com [Unit of Neuroimaging and Neurointervention NINT, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico “Santa Maria alle Scotte”, V.le Bracci 16, Siena (Italy); Della Marca, G., E-mail: dellamarca@rm.unicatt.it [Neurology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Falcone, C., E-mail: carlo_falc@libero.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Di Lella, G.M., E-mail: gdilella@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Gaudino, S., E-mail: sgaudino@sirm.org [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Edwards, J., E-mail: edwardjc@musc.edu [Neuroscience Dept., Medical University of South Carolina, 96J Lucas st, 29425, Charleston, SC (United States); Colosimo, C., E-mail: colosimo@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy)

    2013-11-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention.

  11. Carbamazepine reduces memory induced activation of mesial temporal lobe structures: a pharmacological fMRI-study

    Directory of Open Access Journals (Sweden)

    Okujava Michael

    2001-11-01

    Full Text Available Abstract Background and Purpose It is not known whether carbamazepine (CBZ; a drug widely used in neurology and psychiatry influences the blood oxygenation level dependent (BOLD contrast changes induced by neuronal activation and measured by functional MRI (fMRI. We aimed to investigate the influence of CBZ on memory induced activation of the mesial temporal lobes in patients with symptomatic temporal lobe epilepsy (TLE. Material and Methods Twenty-one individual patients with refractory symptomatic TLE with different CBZ serum levels and 20 healthy controls were studied using BOLD fMRI. Mesial temporal lobe (MTL activation was induced by a task that is based on the retrieval of individually familiar visuo-spatial knowledge. The extent of significant MTL fMRI activation was measured and correlated with the CBZ serum level. Results In TLE patients, the extent of significant fMRI activation over both MTL was negatively correlated to the CBZ serum level (Spearman r = -0.654, P Conclusions In TLE patients, carbamazepine reduces the fMRI-detectable changes within the mesial temporal lobes as induced by effortful memory retrieval. FMRI appears to be suitable to study the effects of chronic drug treatment in patients with epilepsy.

  12. Radiation-induced conductivity and high-temperature Q changes in quartz resonators

    International Nuclear Information System (INIS)

    Koehler, D.R.

    1981-01-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques have been investigated - one involves measurement of the radiation induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in ionic conduction and in the second case resulting in increased acoustic losses. Radiation induced conductivity measurements have been carried out with a 200 kV, 14 mA x-ray machine producing 5 rads/s. With electric fields of the order of 10 4 V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature ( 300 to 800 0 K) Q -1 measurement technique will be determined. A number of resonators constructed of quartz material of different impurity contents have been tested and both the radiation induced conductivity and the high temperature Q -1 results compared with earlier radiation induced frequency and resonator resistance changes. 10 figures

  13. MRI-guided laser-induced thermotherapy (LITT) of liver metastases: clinical evaluation

    International Nuclear Information System (INIS)

    Vogl, T.J.; Weinhold, N.; Mueller, P.; Mack, M.; Scholz, W.; Philipp, C.; Roggan, A.; Felix, R.

    1996-01-01

    The goal was to perform an evaluation of MRI-guided laser-induced thermotherapy (LITT) of liver metastases as a clinical method. In a prospective study, 50 patients with liver metastases of colorectal carcinoma (35 patients), or other primary tumors (15 patients) were treated with LITT. For preparation and intermittent controls of therapy, standardized MRI examinations were made. Online monitoring during the the LITT was done with temperature-sensitive T1-weighted sequences (FLASH-2D, TurboFLASH). All in all, 83 metastases of a volume between 1 and 282 cubic centimeters (median = ± 10 cm 3 ) were treated.During performance of the LITT, a decrease of signal intensity in the thermosensitive sequences was measured for the application area, and was correlated with fluorine-optical temperature measurements. The MRI-guided LITT is a novel, potential modality for treatment of liver metastases, and poses only minimal clinical risks. (orig./VHE) [de

  14. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Onukwufor, John O.; Kibenge, Fred; Stevens, Don; Kamunde, Collins

    2015-01-01

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q 10 values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and intensifying

  15. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Onukwufor, John O. [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada)

    2015-01-15

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q{sub 10} values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and

  16. Characteristics of seizure-induced signal changes on MRI in patients with first seizures.

    Science.gov (United States)

    Kim, Si Eun; Lee, Byung In; Shin, Kyong Jin; Ha, Sam Yeol; Park, JinSe; Park, Kang Min; Kim, Hyung Chan; Lee, Joonwon; Bae, Soo-Young; Lee, Dongah; Kim, Sung Eun

    2017-05-01

    The aim of this study was to investigate the predictive factors and identify the characteristics of the seizure-induced signal changes on MRI (SCM) in patients with first seizures. We conducted a retrospective study of patients with first seizures from March 2010 to August 2014. The inclusion criteria for this study were patients with 1) first seizures, and 2) MRI and EEG performed within 24h of the first seizures. The definition of SCM was hyper-intensities in the brain not applying to cerebral arterial territories. Multivariate logistic regression was performed with or without SCM as a dependent variable. Of 431 patients with seizures visiting the ER, 69 patients met the inclusion criteria. Of 69 patients, 11 patients (15.9%) had SCM. Epileptiform discharge on EEG (OR 29.7, 95% CI 1.79-493.37, p=0.018) was an independently significant variable predicting the presence of SCM in patients with first seizures. In addition, the topography of SCM was as follows; i) ipsilateral hippocampus, thalamus and cerebral cortex (5/11), ii) unilateral cortex (4/11), iii) ipsilateral thalamus and cerebral cortex (1/11), iv) bilateral hippocampus (1/11). Moreover, 6 out of 7 patients who underwent both perfusion CT and MRI exhibited unilateral cortical hyperperfusion with ipsilateral thalamic involvement reflecting unrestricted vascular territories. There is an association between epileptiform discharges and SCM. Additionally, the involvement of the unilateral cortex and ipsilateral thalamus in SCM and its hyperperfusion state could be helpful in differentiating the consequences of epileptic seizures from other pathologies. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  17. Investigation of Factors Affecting Body Temperature Changes During Routine Clinical Head Magnetic Resonance Imaging

    Science.gov (United States)

    Kim, Myeong Seong

    2016-01-01

    Background Pulsed radiofrequency (RF) magnetic fields, required to produce magnetic resonance imaging (MRI) signals from tissue during the MRI procedure have been shown to heat tissues. Objectives To investigate the relationship between body temperature rise and the RF power deposited during routine clinical MRI procedures, and to determine the correlation between this effect and the body’s physiological response. Patients and Methods We investigated 69 patients from the Korean national cancer center to identify the main factors that contribute to an increase in body temperature (external factors and the body’s response) during a clinical brain MRI. A routine protocol sequence of MRI scans (1.5 T and 3.0 T) was performed. The patient’s tympanic temperature was recorded before and immediately after the MRI procedure and compared with changes in variables related to the body’s physiological response to heat. Results Our investigation of the physiological response to RF heating indicated a link between increasing age and body temperature. A higher increase in body temperature was observed in older patients after a 3.0-T MRI (r = 0.07, P = 0.29 for 1.5-T MRI; r = 0.45, P = 0.002 for 3.0-T MRI). The relationship between age and body heat was related to the heart rate (HR) and changes in HR during the MRI procedure; a higher RF power combined with a reduction in HR resulted in an increase in body temperature. Conclusion A higher magnetic field strength and a decrease in the HR resulted in an increase in body temperature during the MRI procedure. PMID:27895872

  18. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices

    Directory of Open Access Journals (Sweden)

    Schnorr Jörg

    2005-04-01

    Full Text Available Abstract Background Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. Methods This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. Results The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality

  19. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices.

    Science.gov (United States)

    Busch, Martin H J; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich H W

    2005-04-08

    Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI

  20. Radiation induced currents in MRI RF coils: application to linac/MRI integration

    Science.gov (United States)

    Burke, B.; Fallone, B. G.; Rathee, S.

    2010-02-01

    The integration of medical linear accelerators (linac) with magnetic resonance imaging (MRI) systems is advancing the current state of image-guided radiotherapy. The MRI in these integrated units will provide real-time, accurate tumor locations for radiotherapy treatment, thus decreasing geometric margins around tumors and reducing normal tissue damage. In the real-time operation of these integrated systems, the radiofrequency (RF) coils of MRI will be irradiated with radiation pulses from the linac. The effect of pulsed radiation on MRI radio frequency (RF) coils is not known and must be studied. The instantaneous radiation induced current (RIC) in two different MRI RF coils were measured and presented. The frequency spectra of the induced currents were calculated. Some basic characterization of the RIC was also done: isolation of the RF coil component responsible for RIC, dependence of RIC on dose rate, and effect of wax buildup placed on coil on RIC. Both the time and frequency characteristics of the RIC were seen to vary with the MRI RF coil used. The copper windings of the RF coils were isolated as the main source of RIC. A linear dependence on dose rate was seen. The RIC was decreased with wax buildup, suggesting an electronic disequilibrium as the cause of RIC. This study shows a measurable RIC present in MRI RF coils. This unwanted current could be possibly detrimental to the signal to noise ratio in MRI and produce image artifacts.

  1. Temperature-induced changes in lecithin model membranes detected by novel covalent spin-labelled phospholipids.

    Science.gov (United States)

    Stuhne-Sekalec, L; Stanacev, N Z

    1977-02-01

    Several spin-labelled phospholipids carrying covalently bound 5-doxylstearic acid (2-(3-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinoxyl) were intercalated in liposomes of saturated and unsaturated lecithins. Temperature-induced changes of these liposomes, detected by the spin-labelled phospholipids, were found to be in agreement with the previously described transitions of hydrocarbon chains of host lecithins detected by different probes and different techniques, establishing that spin-labelled phosopholipids are sensitive probes for the detection of temperature-induced changes in lecithin model membranes. In addition to the detection of already-known transitions in lecithin liposomes, the coexistence of two distinctly different enviroments was observed above the characteristic transition temperature. This phenomenon was tentatively attributed to the influence of the lecithin polar group on the fluidity of fatty acyl chains near the polar group. Combined with other results from the literature, the coexistence of two environments could be associated with the coexistence of two conformational isomers of lecithin, differing in the orientation of the polar head group with respect to the plane of bilayer. These findings have been discussed in view of the present state of knowledge regarding temperature-induced changes in model membranes.

  2. Brain mechanisms of abnormal temperature perception in cold allodynia induced by ciguatoxin.

    Science.gov (United States)

    Eisenblätter, Anneka; Lewis, Richard; Dörfler, Arnd; Forster, Clemens; Zimmermann, Katharina

    2017-01-01

    Cold allodynia occurs as a major symptom of neuropathic pain states. It remains poorly treated with current analgesics. Ciguatoxins (CTXs), ichthyosarcotoxins that cause ciguatera, produce a large peripheral sensitization to dynamic cold stimuli in Aδ-fibers by activating sodium channels without producing heat or mechanical allodynia. We used CTXs as a surrogate model of cold allodynia to dissect the framework of cold allodynia-activated central pain pathways. Reversible cold allodynia was induced in healthy male volunteers by shallow intracutaneous injection of low millimolar concentrations of CTX into the dorsal skin of the forefoot. Cold and warm stimuli were delivered to the treated and the control site using a Peltier-driven thermotest device. Functional magnetic resonance imaging (fMRI) scans were acquired with a 3T MRI scanner using a blood oxygen level-dependent (BOLD) protocol. The CTX-induced substantial peripheral sensitization to cooling stimuli in Aδ-fibers is particularly retrieved in BOLD changes due to dynamic temperature changes and less during constant cooling. Brain areas that responded during cold allodynia were almost always located bilaterally and appeared in the medial insula, medial cingulate cortex, secondary somatosensory cortex, frontal areas, and cerebellum. Whereas these areas also produced changes in BOLD signal during the dynamic warming stimulus on the control site, they remained silent during the warming stimuli on the injected site. We describe the defining feature of the cold allodynia pain percept in the human brain and illustrate why ciguatera sufferers often report a perceptual temperature reversal. ANN NEUROL 2017;81:104-116. © 2016 American Neurological Association.

  3. Complexity of MRI induced heating on metallic leads: Experimental measurements of 374 configurations

    Directory of Open Access Journals (Sweden)

    Mendoza Gonzalo

    2008-03-01

    Full Text Available Abstract Background MRI induced heating on PM leads is a very complex issue. The widely varying results described in literature suggest that there are many factors that influence the degree of heating and that not always are adequately addressed by existing testing methods. Methods We present a wide database of experimental measurements of the heating of metallic wires and PM leads in a 1.5 T RF coil. The aim of these measurements is to systematically quantify the contribution of some potential factors involved in the MRI induced heating: the length and the geometric structure of the lead; the implant location within the body and the lead path; the shape of the phantom used to simulate the human trunk and its relative position inside the RF coil. Results We found that the several factors are the primary influence on heating at the tip. Closer locations of the leads to the edge of the phantom and to the edge of the coil produce maximum heating. The lead length is the other crucial factor, whereas the implant area does not seem to have a major role in the induced temperature increase. Also the lead structure and the geometry of the phantom revealed to be elements that can significantly modify the amount of heating. Conclusion Our findings highlight the factors that have significant effects on MRI induced heating of implanted wires and leads. These factors must be taken into account by those who plan to study or model MRI heating of implants. Also our data should help those who wish to develop guidelines for defining safe medical implants for MRI patients. In addition, our database of the entire set of measurements can help those who wish to validate their numerical models of implants that may be exposed to MRI systems.

  4. Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change

    International Nuclear Information System (INIS)

    Teunissen, L P J; Daanen, H A M; De Haan, A; De Koning, J J

    2012-01-01

    Core temperature measurement with an ingestible telemetry pill has been scarcely investigated during extreme rates of temperature change, induced by short high-intensity exercise in the heat. Therefore, nine participants performed a protocol of rest, (sub)maximal cycling and recovery at 30 °C. The pill temperature (T pill ) was compared with the rectal temperature (T re ) and esophageal temperature (T es ). T pill corresponded well to T re during the entire trial, but deviated considerably from T es during the exercise and recovery periods. During maximal exercise, the average ΔT pill −T re and ΔT pill −T es were 0.13 ± 0.26 and −0.57 ± 0.53 °C, respectively. The response time from the start of exercise, the rate of change during exercise and the peak temperature were similar for T pill and T re. T es responded 5 min earlier, increased more than twice as fast and its peak value was 0.42 ± 0.46 °C higher than T pill . In conclusion, also during considerable temperature changes at a very high rate, T pill is still a representative of T re . The extent of the deviation in the pattern and peak values between T pill and T es (up to >1 °C) strengthens the assumption that T pill is unsuited to evaluate central blood temperature when body temperatures change rapidly. (paper)

  5. Temperature-induced changes in neuromuscular function: central and peripheral mechanisms.

    Science.gov (United States)

    Goodman, D; Hancock, P A; Runnings, D W; Brown, S L

    1984-10-01

    Three series of experimental tests were conducted on subjects under both elevated and depressed thermal conditions. Tripartite series consisted of whole-body immersion excepting the head, whole-body immersion excepting the head and response limb, and immersion of the discrete-response limb. Measures of physiological and behavioural responses were made at sequential .4 degrees C changes during whole-body immersions and approximately 5 degrees C changes of water temperature during the immersion of a limb only. Results suggested that velocity of nerve conduction decreased with thermal depression. Premotor, motor, simple, and choice reaction times varied differentially as a function of the hot and cold conditions. Implications of these differential effects on neuromuscular function are examined with respect to person-machine performance in artificially induced or naturally occurring extremes of ambient temperature.

  6. In Vivo Evaluation of the Visual Pathway in Streptozotocin-Induced Diabetes by Diffusion Tensor MRI and Contrast Enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Swarupa Kancherla

    Full Text Available Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI. Ten-week-old Sprague-Dawley rats were divided into an experimental diabetic group by intraperitoneal injection of 65 mg/kg streptozotocin in 0.01 M citric acid, and a sham control group by intraperitoneal injection of citric acid only. One month later, diffusion tensor MRI (DTI was performed to examine the white matter integrity in the brain, followed by chromium-enhanced MRI of retinal integrity and manganese-enhanced MRI of anterograde manganese transport along the visual pathway. Prior to MRI experiments, the streptozotocin-induced diabetic rats showed significantly smaller weight gain and higher blood glucose level than the control rats. DTI revealed significantly lower fractional anisotropy and higher radial diffusivity in the prechiasmatic optic nerve of the diabetic rats compared to the control rats. No apparent difference was observed in the axial diffusivity of the optic nerve, the chromium enhancement in the retina, or the manganese enhancement in the lateral geniculate nucleus and superior colliculus between groups. Our results suggest that streptozotocin-induced diabetes leads to early injury in the optic nerve when no substantial change in retinal integrity or anterograde transport along the visual pathways was observed in MRI using contrast agent enhancement. DTI may be a useful tool for detecting and monitoring early pathophysiological changes in the visual system of experimental diabetes non-invasively.

  7. Stress-induced core temperature changes in pigeons (Columba livia).

    Science.gov (United States)

    Bittencourt, Myla de Aguiar; Melleu, Fernando Falkenburger; Marino-Neto, José

    2015-02-01

    Changes in body temperature are significant physiological consequences of stressful stimuli in mammals and birds. Pigeons (Columba livia) prosper in (potentially) stressful urban environments and are common subjects in neurobehavioral studies; however, the thermal responses to stress stimuli by pigeons are poorly known. Here, we describe acute changes in the telemetrically recorded celomatic (core) temperature (Tc) in pigeons given a variety of potentially stressful stimuli, including transfer to a novel cage (ExC) leading to visual isolation from conspecifics, the presence of the experimenter (ExpR), gentle handling (H), sham intracelomatic injections (SI), and the induction of the tonic immobility (TI) response. Transfer to the ExC cage provoked short-lived hyperthermia (10-20 min) followed by a long-lasting and substantial decrease in Tc, which returned to baseline levels 2 h after the start of the test. After a 2-hour stay in the ExC, the other potentially stressful stimuli evoked only weak, marginally significant hyperthermic (ExpR, IT) or hypothermic (SI) responses. Stimuli delivered 26 h after transfer to the ExC induced definite and intense increases in Tc (ExpR, H) or hypothermic responses (SI). These Tc changes appear to be unrelated to modifications in general activity (as measured via telemetrically recorded actimetric data). Repeated testing failed to affect the hypothermic responses to the transference to the ExC, even after nine trials and at 1- or 8-day intervals, suggesting that the social (visual) isolation from conspecifics may be a strong and poorly controllable stimulus in this species. The present data indicated that stress-induced changes in Tc may be a consistent and reliable physiological parameter of stress but that they may also show stressor type-, direction- and species-specific attributes. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Quantifying Post- Laser Ablation Prostate Therapy Changes on MRI via a Domain-Specific Biomechanical Model: Preliminary Findings.

    Directory of Open Access Journals (Sweden)

    Robert Toth

    Full Text Available Focal laser ablation destroys cancerous cells via thermal destruction of tissue by a laser. Heat is absorbed, causing thermal necrosis of the target region. It combines the aggressive benefits of radiation treatment (destroying cancer cells without the harmful side effects (due to its precise localization. MRI is typically used pre-treatment to determine the targeted area, and post-treatment to determine efficacy by detecting necrotic tissue, or tumor recurrence. However, no system exists to quantitatively evaluate the post-treatment effects on the morphology and structure via MRI. To quantify these changes, the pre- and post-treatment MR images must first be spatially aligned. The goal is to quantify (a laser-induced shape-based changes, and (b changes in MRI parameters post-treatment. The shape-based changes may be correlated with treatment efficacy, and the quantitative effects of laser treatment over time is currently poorly understood. This work attempts to model changes in gland morphology following laser treatment due to (1 patient alignment, (2 changes due to surrounding organs such as the bladder and rectum, and (3 changes due to the treatment itself. To isolate the treatment-induced shape-based changes, the changes from (1 and (2 are first modeled and removed using a finite element model (FEM. A FEM models the physical properties of tissue. The use of a physical biomechanical model is important since a stated goal of this work is to determine the physical shape-based changes to the prostate from the treatment, and therefore only physical real deformations are to be allowed. A second FEM is then used to isolate the physical, shape-based, treatment-induced changes. We applied and evaluated our model in capturing the laser induced changes to the prostate morphology on eight patients with 3.0 Tesla, T2-weighted MRI, acquired approximately six months following treatment. Our results suggest the laser treatment causes a decrease in prostate

  9. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study.

    Science.gov (United States)

    Shinohe, Yutaka; Higuchi, Satomi; Sasaki, Makoto; Sato, Masahito; Noda, Mamoru; Joh, Shigeharu; Satoh, Kenichi

    2016-12-07

    Conscious sedation with propofol sometimes causes amnesia while keeping the patient awake. However, it remains unknown how propofol compromises the memory function. Therefore, we investigated the changes in brain activation induced by visual stimulation during and after conscious sedation with propofol using serial functional MRI. Healthy volunteers received a target-controlled infusion of propofol, and underwent functional MRI scans with a block-design paradigm of visual stimulus before, during, and after conscious sedation. Random-effect model analyses were performed using Statistical Parametric Mapping software. Among the areas showing significant activation in response to the visual stimulus, the visual cortex and fusiform gyrus were significantly suppressed in the sedation session and tended to recover in the early-recovery session of ∼20 min (Psedation and early-recovery sessions (Psedation with propofol may cause prolonged suppression of the activation of memory-related structures, such as the hippocampus, during the early-recovery period, which may lead to transient amnesia.

  10. Pharmacokinetic changes induced by focused ultrasound in glioma-bearing rats as measured by dynamic contrast-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Feng-Yi Yang

    Full Text Available Focused ultrasound (FUS combined with microbubbles has been shown to be a noninvasive and targeted drug delivery technique for brain tumor treatment. The purpose of this study was to measure the kinetics of Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA in glioma-bearing rats in the presence of FUS-induced blood-brain barrier disruption (BBB-D by magnetic resonance imaging (MRI. A total of ten glioma-bearing rats (9-12 weeks, 290-340 g were used in this study. Using dynamic contrast-enhanced (DCE-MRI, the spatial permeability of FUS-induced BBB-D was evaluated and the kinetic parameters were calculated by a general kinetic model (GKM. The results demonstrate that the mean Ktrans of the sonicated tumor (0.128±0.019 at 20 min and 0.103±0.023 at 24 h after sonication, respectively was significantly higher than (2.46-fold at 20 min and 1.78-fold at 24 h that of the contralateral (non-sonicated tumor (0.052±0.019 at 20 min and 0.058±0.012 at 24 h after sonication, respectively. In addition, the transfer constant Ktrans in the sonicated tumor correlated strongly with tissue EB extravasation (R = 0.95, which suggests that DCE-MRI may reflect drug accumulation in the brain. Histological observations showed no macroscopic damage except for a few small erythrocyte extravasations. The current study demonstrates that DCE-MRI can monitor the dynamics of the FUS-induced BBB-D process and constitutes a useful tool for quantifying BBB permeability in tumors.

  11. Heroin-induced leukoencephalopathy: characterization using MRI, diffusion-weighted imaging, and MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Offiah, C. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom); Hall, E. [Department of Neuroradiology, St Bartholomew' s and the London Hospitals NHS Trust, London (United Kingdom)], E-mail: curtis.offiah@bartsandthelondon.nhs.uk

    2008-02-15

    Aim: To describe the magnetic resonance imaging (MRI) characteristics of heroin-induced leukoencephalopathy or 'chasing the dragon syndrome' and, in particular, the diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) features. Material and methods: Six patients with a clinical or histopathological diagnosis of heroin-induced leukoencephalopathy were identified and MRI examinations, including DWI and single-voxel MRS, reviewed. Results: Cerebellar white matter was involved in all six cases demonstrating similar symmetrical distribution with sparing of the dentate nuclei. Brain stem signal change was evident in five of the six patients imaged. Supratentorial brain parenchymal involvement, as well as brain stem involvement, correlated anatomically with corticospinal tract distribution. None of the areas of signal abnormality were restricted on DWI. Of those patients subjected to MRS, the areas of parenchymal damage demonstrated reduced N-acetylaspartate, reduced choline, and elevated lactate. Conclusion: Heroin-induced leukoencephalopathy results in characteristic and highly specific signal abnormalities on MRI, which can greatly aid diagnosis. DWI and MRS findings can be explained by known reported neuropathological descriptions in this condition and can be used to support a proposed mechanism for the benefit of current recommended drug treatment regimes.

  12. MRI feedback temperature control for focused ultrasound surgery

    International Nuclear Information System (INIS)

    Vanne, A; Hynynen, K

    2003-01-01

    A temperature feedback controller routine using a physical model for temperature evolution was developed for use with focused ultrasound surgery. The algorithm for the controller was a multi-input, single-output linear quadratic regulator (LQR) derived from Pennes' bioheat transfer equation. The controller was tested with simulated temperature data that had the same characteristics as those obtained with magnetic resonance imaging (MRI). The output of the controller was the appropriate power level to be used by the transducer. Tissue parameters estimated prior to the simulated treatments were used to determine the controller parameters. The controller performance was simulated in three dimensions with varying system parameters, and sufficient temperature tracking was achieved. The worst-case overshoot was 7 deg. C and the steady-state error was 5 deg. C. The simulated behaviour of the controller suggests satisfactory performance and that the controller may be useful in controlling the power output during MRI-monitored ultrasound surgery

  13. Does the MRI or MRI contrast medium gadopentetate dimeglumine change the oxidant and antioxidant status in humans?

    International Nuclear Information System (INIS)

    Olmaz, Refik; Oguz, Ebru Gok; Kiykim, Ahmet; Turgutalp, Kenan; Horoz, M.; Ozhan, Onur; Muslu, Necati; Sungur, Mehmet

    2013-01-01

    Background: It has become evident that gadolinium-based contrast agents (GBCA) may have nephrotoxic potential. Oxidative stress is one of the most important pathways in the pathogenesis of iodinated contrast-induced nephropathy. Purpose: To investigate the effects of static magnetic fields and gadopentetate dimeglumine (Magnevist) on oxidant/antioxidant status via measurement of total antioxidant capacity (TAC), total oxidant status (TOS), and serum malondialdehide (MDA). Material and Methods: Two age- and sex-matched groups of patients not under oxidative stress conditions that underwent magnetic resonance imaging (MRI) were recruited to this study. While contrast-enhanced (Magnevist, 0.2 mmol/kg) MRI was performed in group 1, MRI without GBCA was performed in group 2. Fasting blood glucose, C-reactive protein, serum creatinine, liver enzymes, uric acid, and lipid parameters were examined in all patients. Peripheral venous blood samples in order to determine TAC, TOS, and MDA were collected before and 6, 24, and 72 h after the MRI procedures. The TOS:TAC ratio was used as the oxidative stress index (OSI). Patients were followed up to 72 h. Results: There were no significant changes in serum TAC, TOS, and MDA levels (Δ s erum T AC, Δ s erum T OS, and Δ M DA) in either group 6, 24, or 72 h after the procedures (P > 0.05). Furthermore, OSI did not change after the procedures in either group (P > 0.05). Conclusion: Magnetic field and gadopentetate dimeglumine (Magnevist) do not change the oxidant or antioxidant status at a dose of 0.2 mmol/kg

  14. Does the MRI or MRI contrast medium gadopentetate dimeglumine change the oxidant and antioxidant status in humans?

    Energy Technology Data Exchange (ETDEWEB)

    Olmaz, Refik; Oguz, Ebru Gok; Kiykim, Ahmet; Turgutalp, Kenan [Dept. of Internal Medicine, Div. of Nephrology, School of Medicine, Mersin Univ., Mersin (Turkey)], e-mail: k.turgutalp@hotmail.com; Horoz, M. [Dept. of Internal Medicine, Div. of Nephrology, School of Medicine, Harran Univ., Sanliurfa (Turkey); Ozhan, Onur [Dept. of Internal Medicine, Div. of Endocrinology and Metabolism, School of Medicine, Mersin Univ., Mersin (Turkey); Muslu, Necati [Dept. of Biochemistry, School of Medicine, Mersin Univ., Mersin (Turkey); Sungur, Mehmet [Dept. of Biostatistics, School of Medicine, Mersin Univ., Mersin (Turkey)

    2013-02-15

    Background: It has become evident that gadolinium-based contrast agents (GBCA) may have nephrotoxic potential. Oxidative stress is one of the most important pathways in the pathogenesis of iodinated contrast-induced nephropathy. Purpose: To investigate the effects of static magnetic fields and gadopentetate dimeglumine (Magnevist) on oxidant/antioxidant status via measurement of total antioxidant capacity (TAC), total oxidant status (TOS), and serum malondialdehide (MDA). Material and Methods: Two age- and sex-matched groups of patients not under oxidative stress conditions that underwent magnetic resonance imaging (MRI) were recruited to this study. While contrast-enhanced (Magnevist, 0.2 mmol/kg) MRI was performed in group 1, MRI without GBCA was performed in group 2. Fasting blood glucose, C-reactive protein, serum creatinine, liver enzymes, uric acid, and lipid parameters were examined in all patients. Peripheral venous blood samples in order to determine TAC, TOS, and MDA were collected before and 6, 24, and 72 h after the MRI procedures. The TOS:TAC ratio was used as the oxidative stress index (OSI). Patients were followed up to 72 h. Results: There were no significant changes in serum TAC, TOS, and MDA levels ({Delta}{sub s}erum{sub T}AC, {Delta}{sub s}erum{sub T}OS, and {Delta}{sub M}DA) in either group 6, 24, or 72 h after the procedures (P > 0.05). Furthermore, OSI did not change after the procedures in either group (P > 0.05). Conclusion: Magnetic field and gadopentetate dimeglumine (Magnevist) do not change the oxidant or antioxidant status at a dose of 0.2 mmol/kg.

  15. Modelling property changes in graphite irradiated at changing irradiation temperature

    CSIR Research Space (South Africa)

    Kok, S

    2011-01-01

    Full Text Available A new method is proposed to predict the irradiation induced property changes in nuclear; graphite, including the effect of a change in irradiation temperature. The currently used method; to account for changes in irradiation temperature, the scaled...

  16. MRI-induced retrocalcaneal bursitis

    International Nuclear Information System (INIS)

    Tol, J.L.; Dijk, C.N. van; Maas, M.

    1999-01-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis. This artifact was caused by postsurgical metallic particles. We postulate that these particles were mechanically stimulated by the magnetic field and induced the inflammatory response. (orig.)

  17. MRI-induced retrocalcaneal bursitis

    Energy Technology Data Exchange (ETDEWEB)

    Tol, J.L.; Dijk, C.N. van [Dept. of Orthopaedic Surgery, University of Amsterdam (Netherlands); Maas, M. [Dept. of Radiology, University of Amsterdam (Netherlands)

    1999-10-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis. This artifact was caused by postsurgical metallic particles. We postulate that these particles were mechanically stimulated by the magnetic field and induced the inflammatory response. (orig.)

  18. Laminectomy-induced arachnoradiculitis: a postoperative serial MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, H [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Tsuji, H [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Kanamori, M [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Kawaguchi, Y [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Yudoh, K [Departments of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan); Futatsuya, R [Departments of Radiology, Toyama Medical and Pharmaceutical University, Faculty of Medicine, Toyama (Japan)

    1995-11-01

    Time-related changes of laminectomy-induced cauda equina adhesions were investigated by MRI in ten patients with degenerative spinal disease who underwent posterior surgery to the lumbar spine; seven had disc herniations and three spinal stenosis. Axial MRI was performed before and 3, 7, 21 and 42 days after surgery. Cauda equina adhesions were most severe at the laminectomised levels L3-4, L4-5 and L5-S1 (n = 16); partial adhesions were found in 9 of 16 levels at 6 weeks after surgery. At the L3-4 or L5-S1 levels (n = 14), the area of laminar exposure without laminectomy, the cauda equina adhesions continued 1 week after surgery, but thereafter resolved; only partial adhesions were seen at 5 of 14 levels 6 weeks after surgery. Shrinkage of the arachnoid sac was also found at the level of the laminectomy, but it re-expanded 3 weeks after surgery in all cases. Cauda equina adhesions and shrinkage of the sac were correlated closely with laminectomy, with or without discectomy, suggesting that an inflammatory process of deep wound healing may be involved in the mechanism of a laminectomy-induced arachnoradiculitis which may be correlated with postoperative leg symptoms. (orig.). With 7 figs., 1 tab.

  19. Laminectomy-induced arachnoradiculitis: a postoperative serial MRI study

    International Nuclear Information System (INIS)

    Matsui, H.; Tsuji, H.; Kanamori, M.; Kawaguchi, Y.; Yudoh, K.; Futatsuya, R.

    1995-01-01

    Time-related changes of laminectomy-induced cauda equina adhesions were investigated by MRI in ten patients with degenerative spinal disease who underwent posterior surgery to the lumbar spine; seven had disc herniations and three spinal stenosis. Axial MRI was performed before and 3, 7, 21 and 42 days after surgery. Cauda equina adhesions were most severe at the laminectomised levels L3-4, L4-5 and L5-S1 (n = 16); partial adhesions were found in 9 of 16 levels at 6 weeks after surgery. At the L3-4 or L5-S1 levels (n = 14), the area of laminar exposure without laminectomy, the cauda equina adhesions continued 1 week after surgery, but thereafter resolved; only partial adhesions were seen at 5 of 14 levels 6 weeks after surgery. Shrinkage of the arachnoid sac was also found at the level of the laminectomy, but it re-expanded 3 weeks after surgery in all cases. Cauda equina adhesions and shrinkage of the sac were correlated closely with laminectomy, with or without discectomy, suggesting that an inflammatory process of deep wound healing may be involved in the mechanism of a laminectomy-induced arachnoradiculitis which may be correlated with postoperative leg symptoms. (orig.). With 7 figs., 1 tab

  20. MR imaging findings of generalized tonic clonic seizure induced brain changes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Ah; Chung, Jin Il; Yonn, Pyeong Ho; Kim, Dong Ik; Chung, Tae Sub; Kim, Joo Hee [College of Medicine, Yonsei Unversity, Seoul (Korea, Republic of)

    2000-03-01

    To evaluate MRI signal changes in the brain induced by generalized tonic clonic seizure. Six patients who underwent MRI within three days of generalized tonic clonic seizure were retrospectively reviewed. Diffusion -weighted images were added in three patients during initial examination, and in six, the follow-up MRI was performed nine days to five months after the onset of seizure. We evaluated the patterns of signal change, location of the lesion and degree of contrast enhancement, and the signal change seen on diffusion weighted images. We also compared the signal changes seen on initial and follow-up MRI. In all six patients, MR images showed focally increased T2 signal intensity, and swelling and increased volume of the involved cortical gyrus. In five, the lesion was mainly located in the cortical gray matter and subcortical white matter; namely, in the bilateral cingulate gyri, and the bilateral parieto-occipital, left parietal, left frontoparietal, and left temporal lobe. In the remaining patient, the lesion was located in the right hippocampus. Two patients showed bilateral lesions and one showed multiple lesions. In four patients, T1-weighted images revealed decreased signal intensity of the same location, and in one, gyral contrast enhancement was noted. On diffusion-weighted images, three patients showed increased signal intensity. Follow-up MRI demonstrated complete resolution of the abnormal signal change (n=3D5), or a decrease (n=3D1). A transient increase in MR signal intensity with increased volume was noted in cortical and subcortical white matter after generalized tonic clonic seizure. This finding reflects the vasogenic and cytotoxic edema induced by seizure and can help exclude etiologic lesions such as tumors, inflammation and demyelinating disease that induce epilepsy. (author)

  1. MR imaging findings of generalized tonic clonic seizure induced brain changes

    International Nuclear Information System (INIS)

    Kim, Jeong Ah; Chung, Jin Il; Yonn, Pyeong Ho; Kim, Dong Ik; Chung, Tae Sub; Kim, Joo Hee

    2000-01-01

    To evaluate MRI signal changes in the brain induced by generalized tonic clonic seizure. Six patients who underwent MRI within three days of generalized tonic clonic seizure were retrospectively reviewed. Diffusion -weighted images were added in three patients during initial examination, and in six, the follow-up MRI was performed nine days to five months after the onset of seizure. We evaluated the patterns of signal change, location of the lesion and degree of contrast enhancement, and the signal change seen on diffusion weighted images. We also compared the signal changes seen on initial and follow-up MRI. In all six patients, MR images showed focally increased T2 signal intensity, and swelling and increased volume of the involved cortical gyrus. In five, the lesion was mainly located in the cortical gray matter and subcortical white matter; namely, in the bilateral cingulate gyri, and the bilateral parieto-occipital, left parietal, left frontoparietal, and left temporal lobe. In the remaining patient, the lesion was located in the right hippocampus. Two patients showed bilateral lesions and one showed multiple lesions. In four patients, T1-weighted images revealed decreased signal intensity of the same location, and in one, gyral contrast enhancement was noted. On diffusion-weighted images, three patients showed increased signal intensity. Follow-up MRI demonstrated complete resolution of the abnormal signal change (n=3D5), or a decrease (n=3D1). A transient increase in MR signal intensity with increased volume was noted in cortical and subcortical white matter after generalized tonic clonic seizure. This finding reflects the vasogenic and cytotoxic edema induced by seizure and can help exclude etiologic lesions such as tumors, inflammation and demyelinating disease that induce epilepsy. (author)

  2. MRI findings of radiation-induced changes in the urethra and periurethral tissues after treatment for prostate cancer

    International Nuclear Information System (INIS)

    Marigliano, Chiara; Donati, Olivio F.; Vargas, Hebert Alberto; Akin, Oguz; Goldman, Debra A.; Eastham, James A.; Zelefsky, Michael J.; Hricak, Hedvig

    2013-01-01

    Purpose: To assess radiotherapy (RT)-induced changes in the urethra and periurethral tissues after treatment for prostate cancer (PCa). Methods and materials: This retrospective study included 108 men (median age, 64 years; range, 43–87 years) who received external-beam radiotherapy (EBRT) and/or brachytherapy for PCa and underwent endorectal-coil MRI of the prostate within 180 days before RT and a median of 20 months (range, 2–62 months) after RT. On all MRIs, two readers independently measured the urethral length (UL) and graded the margin definition (MD) of the urethral wall and the signal intensities (SIs) of the urethral wall and pelvic muscles on 4-point scales. Results: The mean urethral length decreased significantly from pre- to post-RT MRI (from 15.2 to 12.6 mm and from 14.4 to 12.9 mm for readers 1 and 2, respectively; both p-values <0.0001). Brachytherapy resulted in greater urethral shortening than EBRT. After RT, SI in the urethral wall increased in 57% (62/108) and 35% (38/108) of patients (readers 1 and 2, respectively). The frequency and magnitude of SI increase in pelvic muscles depended on muscle location. In the obturator internus muscle, SI increased more often after EBRT than after brachytherapy, while in the periurethral levator ani muscle SI increased more often after brachytherapy than after EBRT. Conclusion: After RT for PCa, MRI shows urethral shortening and increased SI of the urethral wall and pelvic muscles in substantial percentages of patients

  3. MRI findings of radiation-induced changes in the urethra and periurethral tissues after treatment for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Marigliano, Chiara [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Department of Radiology, University “Sapienza”, Rome (Italy); Donati, Olivio F., E-mail: olivio.donati@usz.ch [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich (Switzerland); Vargas, Hebert Alberto; Akin, Oguz; Goldman, Debra A. [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Eastham, James A. [Department of Urology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Zelefsky, Michael J. [Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Hricak, Hedvig, E-mail: hricakh@mskcc.org [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2013-12-01

    Purpose: To assess radiotherapy (RT)-induced changes in the urethra and periurethral tissues after treatment for prostate cancer (PCa). Methods and materials: This retrospective study included 108 men (median age, 64 years; range, 43–87 years) who received external-beam radiotherapy (EBRT) and/or brachytherapy for PCa and underwent endorectal-coil MRI of the prostate within 180 days before RT and a median of 20 months (range, 2–62 months) after RT. On all MRIs, two readers independently measured the urethral length (UL) and graded the margin definition (MD) of the urethral wall and the signal intensities (SIs) of the urethral wall and pelvic muscles on 4-point scales. Results: The mean urethral length decreased significantly from pre- to post-RT MRI (from 15.2 to 12.6 mm and from 14.4 to 12.9 mm for readers 1 and 2, respectively; both p-values <0.0001). Brachytherapy resulted in greater urethral shortening than EBRT. After RT, SI in the urethral wall increased in 57% (62/108) and 35% (38/108) of patients (readers 1 and 2, respectively). The frequency and magnitude of SI increase in pelvic muscles depended on muscle location. In the obturator internus muscle, SI increased more often after EBRT than after brachytherapy, while in the periurethral levator ani muscle SI increased more often after brachytherapy than after EBRT. Conclusion: After RT for PCa, MRI shows urethral shortening and increased SI of the urethral wall and pelvic muscles in substantial percentages of patients.

  4. Effect of SPIO Nanoparticle Concentrations on Temperature Changes for Hyperthermia via MRI

    Directory of Open Access Journals (Sweden)

    Alsayed A. M. Elsherbini

    2013-01-01

    Full Text Available Magnetic nanoparticles (MNPs are being developed for a wide range of biomedical applications. In particular, hyperthermia involves heating the MNPs through exposure to an alternating magnetic field (AMF. These materials offer the potential for selectively by heating cancer tissue locally and at the cellular level. This may be a successful method if there are enough particles in a tumor possessing sufficiently high specific absorption rate (SAR to deposit heat quickly while minimizing thermal damage to surrounding tissue. The current research aim is to study the influence of super paramagnetic iron oxides Fe3O4 (SPIO NPs concentration on the total heat energy dose and the rate of temperature change in AMF to induce hyperthermia in Ehrlich carcinoma cells implanted in female mice. The results demonstrated a linearly increasing trend between these two factors.

  5. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates.

    Directory of Open Access Journals (Sweden)

    Abu Bakar Ali Asad

    Full Text Available Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored.Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8. BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail.Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8, while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures.These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate

  6. Changes of right-hemispheric activation after constraint-induced, intensive language action therapy in chronic aphasia: fMRI evidence from auditory semantic processing1

    Science.gov (United States)

    Mohr, Bettina; Difrancesco, Stephanie; Harrington, Karen; Evans, Samuel; Pulvermüller, Friedemann

    2014-01-01

    The role of the two hemispheres in the neurorehabilitation of language is still under dispute. This study explored the changes in language-evoked brain activation over a 2-week treatment interval with intensive constraint induced aphasia therapy (CIAT), which is also called intensive language action therapy (ILAT). Functional magnetic resonance imaging (fMRI) was used to assess brain activation in perilesional left hemispheric and in homotopic right hemispheric areas during passive listening to high and low-ambiguity sentences and non-speech control stimuli in chronic non-fluent aphasia patients. All patients demonstrated significant clinical improvements of language functions after therapy. In an event-related fMRI experiment, a significant increase of BOLD signal was manifest in right inferior frontal and temporal areas. This activation increase was stronger for highly ambiguous sentences than for unambiguous ones. These results suggest that the known language improvements brought about by intensive constraint-induced language action therapy at least in part relies on circuits within the right-hemispheric homologs of left-perisylvian language areas, which are most strongly activated in the processing of semantically complex language. PMID:25452721

  7. Dynamic changes during evacuation of a left temporal abscess in open MRI: technical case report

    International Nuclear Information System (INIS)

    Bernays, R.L.; Yonekawa, Y.; Kollias, S.S.

    2002-01-01

    We demonstrate the usefulness of ''near real-time'' neuro-navigation by open MRI systems for guidance of stereotactic evacuation of intracranial abscesses. A 70-year-old patient was referred to our institution with an intracranial left temporal abscess. He presented with headache, senso-motor aphasia and mild right hemiparesis. The abscess (35 x 25 mm) was stereotactically evacuated under MRI guidance, and a recurrence of a daughter abscess was again evacuated on the 9th postoperative day. ''Near real-time'' imaging showed an indentation of the abscess wall of 11 mm along the trajectory. A thermosensitive MRI protocol demonstrated a higher temperature around the abscess capsule than in the brain tissue more distant to the capsule, demonstrating the inflammatory process. The patient had 6 weeks of antibiotic therapy for gram-negative bacteria and was discharged with improved clinical symptoms 5 weeks after admission. Follow-up CT 2 months postoperatively showed a complete resolution of the abscess. Open MRI-guided interventions with ''near real-time'' imaging demonstrate the anatomical changes during an ongoing procedure and can be accommodated for enhancing the overall precision of stereotactic procedures. Thermosensitive MRI protocols are capable of revealing temperature gradients around inflammatory processes. (orig.)

  8. Somatosensory BOLD fMRI reveals close link between salient blood pressure changes and the murine neuromatrix.

    Science.gov (United States)

    Reimann, Henning Matthias; Todiras, Mihail; Hodge, Russ; Huelnhagen, Till; Millward, Jason Michael; Turner, Robert; Seeliger, Erdmann; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2018-05-15

    The neuromatrix, or "pain matrix", is a network of cortical brain areas which is activated by noxious as well as salient somatosensory stimulation. This has been studied in mice and humans using blood oxygenation level-dependent (BOLD) fMRI. Here we demonstrate that BOLD effects observed in the murine neuromatrix in response to salient somatosensory stimuli are prone to reflect mean arterial blood pressure (MABP) changes, rather than neural activity. We show that a standard electrostimulus typically used in murine somatosensory fMRI can induce substantial elevations in MABP. Equivalent drug-induced MABP changes - without somatosensory stimulation - evoked BOLD patterns in the neuromatrix strikingly similar to those evoked by electrostimulation. This constitutes a serious caveat for murine fMRI. The regional specificity of these BOLD patterns can be attributed to the co-localization of the neuromatrix with large draining veins. Based on these findings we propose a cardiovascular support mechanism whereby abrupt elevations in MABP provide additional energy supply to the neuromatrix and other essential brain areas in fight-or-flight situations. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Interventional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Junta; Dohi, Michiko; Yoshihiro, Akiko; Mogami, Takuji; Kuwada, Tomoko; Nakata, Norio [Jikei Univ., Chiba (Japan). Kashiwa Hospital

    2000-06-01

    Open type MR system and fast sequence is now available and MRI becomes a new modality for interventional Radiology, including biopsy, drainage operation, and monitoring for minimally invasive therapy. Experimental studies of temperature monitoring were performed under hot and cold status. Signal changes of porcine disc and meat under microwave and laser ablation were observed as low signal area by signal intensity method. Using proton chemical shift method, signal change by laser ablation was displaced color imaging and correlated with thermometric temperature measurement. The very T2 relaxation time of ice affords excellent contrast between ice and surrounding gelatin tissue allowing acute depiction of the extent of the iceball under MRI. (author)

  10. Temperature mapping using proton phase shift on a 0.3 T permanent magnet open MRI system

    International Nuclear Information System (INIS)

    Komura, Kazumi; Takahashi, Tetsuhiko; Dohi, Michiko; Harada, Junta

    2000-01-01

    Temperature mapping using proton phase shift (PPS) was evaluated for ex vivo objects. The evaluation was done on a 0.3 T permanent magnet open magnetic resonance imaging (MRI) machine, like those widely used for clinical diagnosis. Temperature maps were acquired using a gradient echo sequence (TR/TE =80/30 ms, flip angle =60 degrees, field of view =200 x 200 mm, slice thickness =8 mm, matrix size =128 x 128, data acquisition number =1, and imaging time =10.2 s). Specific first order data correction was performed to eliminate calculated temperature fluctuation due to magnetic field instability. A ham, 10 cm in diameter, was heated with a Nd: YAG laser with a wavelength of 1064 nm. The laser fiber was inserted into the ham to a depth of 3 cm. The laser power was 5, 8, or 10 W. Magnetic resonance images were taken continually during and after irradiation. Temperature maps were taken every 15 s. The maps taken during laser ablation showed color changes for the heated areas. Temperatures measured by the MRI and thermocouple had a linear relationship of r 2 =0.80. The inter-image standard deviation of the temperature maps of a non-heated object was 2.07 degrees for a 4.68 x 4.68 x 8 mm volume. This value is negligible for a monitored laser heating process since temperature rise is typically larger than 30 degrees. These results show that temperature mapping based on PPS is feasible for a 0.3 T permanent magnet open MRI system. (author)

  11. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    International Nuclear Information System (INIS)

    Verhaart, René F.; Paulides, Margarethus M.; Fortunati, Valerio; Walsum, Theo van; Veenland, Jifke F.; Verduijn, Gerda M.; Lugt, Aad van der

    2014-01-01

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI db ). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T max ) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI db . Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient

  12. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: A comparison of CT and CT-MRI based tissue segmentation on simulated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Verhaart, René F., E-mail: r.f.verhaart@erasmusmc.nl; Paulides, Margarethus M. [Hyperthermia Unit, Department of Radiation Oncology, Erasmus MC - Cancer Institute, Groene Hilledijk 301, Rotterdam 3008 AE (Netherlands); Fortunati, Valerio; Walsum, Theo van; Veenland, Jifke F. [Biomedical Imaging Group of Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC, Dr. Molewaterplein 50/60, Rotterdam 3015 GE (Netherlands); Verduijn, Gerda M. [Department of Radiation Oncology, Erasmus MC - Cancer Institute, Groene Hilledijk 301, Rotterdam 3008 AE (Netherlands); Lugt, Aad van der [Department of Radiology, Erasmus MC, Dr. Molewaterplein 50/60, Rotterdam 3015 GE (Netherlands)

    2014-12-15

    Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm

  13. MRI spectrum of bone changes in the diabetic foot

    International Nuclear Information System (INIS)

    Roug, Inger K.; Pierre-Jerome, Claude

    2012-01-01

    Purposes: (1) To assess the prevalence of bone marrow changes in the diabetic foot and (2) to discuss the clinical significance of these changes. Methods: 85 patients with radiographic and magnetic resonance imaging (MRI) foot examinations were selected. Inclusion criteria were clinical diagnosis of diabetes and bone changes on radiographs and MRI. The material was selected from the image storage (PACS) system. We searched for vascular (infarct and necrosis), traumatic (bruise and occult fractures), destruction and debris, dislocation, osteochondritis, osteomyelitis. Five patients had bilateral examinations. A total of 90 feet were evaluated. Results: From 90 feet, 17 (18.9%) presented with vascular changes, from them, 11 feet had infarct and 6 feet had necrosis. Twenty (22.2%) feet had traumatic changes; of them, 10 (50%) had edema on MRI. Five (25%) cases had occult fracture on MRI; and 5 (25%) had visible fracture on both X-ray and MRI. Bone destruction was detected in 8 (8.9%) feet. Bony debris was visualized in three of them. Bone dislocation was visualized in 11 (12.2%) feet. There was evidence of osteochondritis in twenty-four (26.7%) feet. Osteomyelitis was diagnosed in ten (11.1%) feet. Conclusion: Diabetic foot is a challenge for both clinicians and radiologists due to its complexity. The bone derangements inherent to the diabetic foot can be evaluated with high accuracy with MRI.

  14. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: a comparison of CT and CT-MRI based tissue segmentation on simulated temperature.

    Science.gov (United States)

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-12-01

    In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI

  15. Dynamic changes during evacuation of a left temporal abscess in open MRI: technical case report

    Energy Technology Data Exchange (ETDEWEB)

    Bernays, R.L.; Yonekawa, Y. [Department of Neurosurgery, University Hospital, Zurich (Switzerland); Kollias, S.S. [Institute of Neuroradiology, University Hospital of Zurich (Switzerland)

    2002-05-01

    We demonstrate the usefulness of ''near real-time'' neuro-navigation by open MRI systems for guidance of stereotactic evacuation of intracranial abscesses. A 70-year-old patient was referred to our institution with an intracranial left temporal abscess. He presented with headache, senso-motor aphasia and mild right hemiparesis. The abscess (35 x 25 mm) was stereotactically evacuated under MRI guidance, and a recurrence of a daughter abscess was again evacuated on the 9th postoperative day. ''Near real-time'' imaging showed an indentation of the abscess wall of 11 mm along the trajectory. A thermosensitive MRI protocol demonstrated a higher temperature around the abscess capsule than in the brain tissue more distant to the capsule, demonstrating the inflammatory process. The patient had 6 weeks of antibiotic therapy for gram-negative bacteria and was discharged with improved clinical symptoms 5 weeks after admission. Follow-up CT 2 months postoperatively showed a complete resolution of the abscess. Open MRI-guided interventions with ''near real-time'' imaging demonstrate the anatomical changes during an ongoing procedure and can be accommodated for enhancing the overall precision of stereotactic procedures. Thermosensitive MRI protocols are capable of revealing temperature gradients around inflammatory processes. (orig.)

  16. Temperature-induced structural changes in fluorozirconate glasses and liquids

    International Nuclear Information System (INIS)

    Sen, S.; Youngman, R.E.

    2002-01-01

    The atomic structure and its temperature dependence in fluorozirconate glasses and supercooled liquids have been studied with high-resolution and high-temperature 19 F and 23 Na nuclear-magnetic-resonance (NMR) spectroscopy. The 19 F NMR spectra in these glasses show the presence of multiple F environments. Temperature dependence of the 19 F magic-angle-spinning NMR spectra indicates a progressive change in the average F coordination environment in the glass structure, besides motional narrowing due to substantial mobility of F - ions. The observed change in the average 19 F NMR chemical shift is consistent with progressive breaking of the Zr-F-Zr linkages in the glass structure with increasing temperature. The onset of such a change in F speciation is observed at temperatures well below T g . This result is evidence of changes in the average equilibrium structure in an inorganic glass-forming liquid at T g , albeit on a local scale. The 23 Na NMR spectra indicate that the cations in these glasses become significantly mobile only at temperatures T≥T g , which allows for the onset of global structural relaxation and viscous flow

  17. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion......, GE-EPI under the present condition was superior to SE-EPI in monitoring cerebral vascular changes...

  18. Nonconventional MRI and microstructural cerebral changes in multiple sclerosis

    DEFF Research Database (Denmark)

    Enzinger, Christian; Barkhof, Frederik; Ciccarelli, Olga

    2015-01-01

    on disease-associated changes. This Review summarizes the rapid technical progress in the use of MRI in patients with MS, with a focus on nonconventional structural MRI. We critically discuss the present utility of nonconventional MRI in MS, and provide an outlook on future applications, including clinical...

  19. MRI grading method for active and chronic spinal changes in spondyloarthritis

    International Nuclear Information System (INIS)

    Madsen, K.B.; Jurik, A.G.

    2010-01-01

    Aim: To describe a magnetic resonance imaging (MRI) grading method for both active and chronic spondyloarthritis (SpA) changes in the spine, to test its validity, and compare chronic MRI scores with findings obtained by radiography. Material and methods: A total of 91 patients (41 males; 50 females) with back pain fulfilling the European Spondylarthropathy Study Group (ESSG) criteria for SpA were examined using MRI and radiography of the spine. The mean age was 36.7 years (range 16-51 years) and symptom duration was between 3 and 27 years. The MRI images were assessed for signs of disease activity (bone marrow oedema at the vertebral plates and costo-vertebral joints) and chronic structural changes [syndesmophytes/vertebral fusion, erosion, and fatty marrow deposition (FMD)]. The interobserver agreement was analysed based on 37 examinations. Radiographs were assessed for the presence of shiny corners, vertebral squaring, syndesmophytes/fusion, and erosion. Results: The interobserver agreement for the assessed MRI abnormalities was acceptable, with kappa values between 0.62 and 0.77. A total of 56 patients had SpA-related spinal abnormalities as depicted using MRI. The total chronic MRI score was not significantly related to the radiographic score, mainly because syndesmophytes were difficult to detect by MRI and FMD was only visualized by MRI. However, FMD was significantly related to the total radiographic score and vertebral squaring. Conclusion: The described MRI grading method was reliable for assessing both disease activity and chronic changes. MRI is promising for estimating chronic changes, but cervical radiography may still be needed. FMD seems to be an important sign of chronicity.

  20. MRI grading method for active and chronic spinal changes in spondyloarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, K.B. [Department of Radiology, Aarhus University Hospital, Aarhus Sygehus (Denmark); Jurik, A.G., E-mail: anne.jurik@aarhus.rm.d [Department of Radiology, Aarhus University Hospital, Aarhus Sygehus (Denmark)

    2010-01-15

    Aim: To describe a magnetic resonance imaging (MRI) grading method for both active and chronic spondyloarthritis (SpA) changes in the spine, to test its validity, and compare chronic MRI scores with findings obtained by radiography. Material and methods: A total of 91 patients (41 males; 50 females) with back pain fulfilling the European Spondylarthropathy Study Group (ESSG) criteria for SpA were examined using MRI and radiography of the spine. The mean age was 36.7 years (range 16-51 years) and symptom duration was between 3 and 27 years. The MRI images were assessed for signs of disease activity (bone marrow oedema at the vertebral plates and costo-vertebral joints) and chronic structural changes [syndesmophytes/vertebral fusion, erosion, and fatty marrow deposition (FMD)]. The interobserver agreement was analysed based on 37 examinations. Radiographs were assessed for the presence of shiny corners, vertebral squaring, syndesmophytes/fusion, and erosion. Results: The interobserver agreement for the assessed MRI abnormalities was acceptable, with kappa values between 0.62 and 0.77. A total of 56 patients had SpA-related spinal abnormalities as depicted using MRI. The total chronic MRI score was not significantly related to the radiographic score, mainly because syndesmophytes were difficult to detect by MRI and FMD was only visualized by MRI. However, FMD was significantly related to the total radiographic score and vertebral squaring. Conclusion: The described MRI grading method was reliable for assessing both disease activity and chronic changes. MRI is promising for estimating chronic changes, but cervical radiography may still be needed. FMD seems to be an important sign of chronicity.

  1. MRI assessment of whole-brain structural changes in aging.

    Science.gov (United States)

    Guo, Hui; Siu, William; D'Arcy, Ryan Cn; Black, Sandra E; Grajauskas, Lukas A; Singh, Sonia; Zhang, Yunting; Rockwood, Kenneth; Song, Xiaowei

    2017-01-01

    One of the central features of brain aging is the accumulation of multiple age-related structural changes, which occur heterogeneously in individuals and can have immediate or potential clinical consequences. Each of these deficits can coexist and interact, producing both independent and additive impacts on brain health. Many of the changes can be visualized using MRI. To collectively assess whole-brain structural changes, the MRI-based Brain Atrophy and Lesion Index (BALI) has been developed. In this study, we validate this whole-brain health assessment approach using several clinical MRI examinations. Data came from three independent studies: the Alzheimer's Disease Neuroimaging Initiative Phase II (n=950; women =47.9%; age =72.7±7.4 years); the National Alzheimer's Coordinating Center (n=722; women =55.1%; age =72.7±9.9 years); and the Tianjin Medical University General Hospital Research database on older adults (n=170; women =60.0%; age =62.9±9.3 years). The 3.0-Tesla MRI scans were evaluated using the BALI rating scheme on the basis of T1-weighted (T1WI), T2-weighted (T2WI), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), and T2*-weighted gradient-recalled echo (T2*GRE) images. Atrophy and lesion changes were commonly seen in each MRI test. The BALI scores based on different sequences were highly correlated (Spearman r 2 >0.69; P age ( r 2 >0.29; P 26.48, P aging and dementia-related decline of structural brain health. Inclusion of additional MRI tests increased lesion differentiation. Further research is to integrate MRI tests for a clinical tool to aid the diagnosis and intervention of brain aging.

  2. Close relationship between fMRI signals and transient heart rate changes accompanying K-complex. Simultaneous EEG/fMRI study

    International Nuclear Information System (INIS)

    Kan, Shigeyuki; Koike, Takahiko; Miyauchi, Satoru; Misaki, Masaya

    2009-01-01

    Combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) allows the investigation of spontaneous activities in the human brain. Recently, by using this technique, increases in fMRI signal accompanying transient EEG activities such as sleep spindles and slow waves were reported. Although these fMRI signal increases appear to arise as a result of the neural activities being reflected in the EEG, when the influence of physiological activities upon fMRI signals are taken into consideration, it is highly controversial that fMRI signal increases accompanying transient EEG activities reflect actual neural activities. In the present study, we conducted simultaneous fMRI and polysomnograph recording of 18 normal adults, to study the effect of transient heart rate changes after a K-complex on fMRI signals. Significant fMRI signal increase was observed in the cerebellum, the ventral thalamus, the dorsal part of the brainstem, the periventricular white matter and the ventricle (quadrigeminal cistern). On the other hand, significant fMRI signal decrease was observed only in the right insula. Moreover, intensities of fMRI signal increase that was accompanied by a K-complex correlated positively with the magnitude of heart rate changes after a K-complex. Previous studies have reported that K-complex is closely related with sympathetic nervous activity and that the attributes of perfusion regulation in the brain differ during wakefulness and sleep. By taking these findings into consideration, our present results indicate that a close relationship exists between a K-complex and the changes in cardio- and neurovascular regulations that are mediated by the autonomic nervous system during sleep; further, these results indicate that transient heart rate changes after a K-complex can affect the fMRI signal generated in certain brain regions. (author)

  3. MRI Visualization of Staphyloccocus aureus-Induced Infective Endocarditis in Mice

    Science.gov (United States)

    Ring, Janine; Hoerr, Verena; Tuchscherr, Lorena; Kuhlmann, Michael T.; Löffler, Bettina; Faber, Cornelius

    2014-01-01

    Infective endocarditis (IE) is a severe and often fatal disease, lacking a fast and reliable diagnostic procedure. The purpose of this study was to establish a mouse model of Staphylococcus aureus-induced IE and to develop a MRI technology to characterize and diagnose IE. To establish the mouse model of hematogenous IE, aortic valve damage was induced by placing a permanent catheter into right carotid artery. 24 h after surgery, mice were injected intravenously with either iron particle-labeled or unlabeled S. aureus (strain 6850). To distinguish the effect of IE from mere tissue injury or recruited macrophages, subgroups of mice received sham surgery prior to infection (n = 17), received surgery without infection (n = 8), or obtained additionally injection of free iron particles to label macrophages (n = 17). Cardiac MRI was performed 48 h after surgery using a self-gated ultra-short echo time (UTE) sequence (TR/TE, 5/0.31 ms; in-plane/slice, 0.125/1 mm; duration, 12∶08 min) to obtain high-resolution, artifact-free cinematographic images of the valves. After MRI, valves were either homogenized and plated on blood agar plates for determination of bacterial titers, or sectioned and stained for histology. In the animal model, both severity of the disease and mortality increased with bacterial numbers. Infection with 105 S. aureus bacteria reliably caused endocarditis with vegetations on the valves. Cinematographic UTE MRI visualised the aortic valve over the cardiac cycle and allowed for detection of bacterial vegetations, while mere tissue trauma or labeled macrophages were not detected. Iron labeling of S. aureus was not required for detection. MRI results were consistent with histology and microbial assessment. These data showed that S. aureus-induced IE in mice can be detected by MRI. The established mouse model allows for investigation of the pathophysiology of IE, testing of novel drugs and may serve for the development of a clinical diagnostic

  4. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought

    Science.gov (United States)

    Adams, Henry D.; Guardiola-Claramonte, Maite; Barron-Gafford, Greg A.; Villegas, Juan Camilo; Breshears, David D.; Zou, Chris B.; Troch, Peter A.; Huxman, Travis E.

    2009-01-01

    Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (≈4 °C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off. PMID:19365070

  5. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function.

    Science.gov (United States)

    Andersen, Anders H; Hardy, Peter A; Forman, Eric; Gerhardt, Greg A; Gash, Don M; Grondin, Richard C; Zhang, Zhiming

    2015-02-01

    The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A functional MRI study of the brain in stroke patients with upper-limb paralysis treated with constraint-induced movement therapy

    International Nuclear Information System (INIS)

    Wen Bo; Ma Lin; Weng Changshui; Zheng Zhixin; Sun Tong

    2009-01-01

    Objective: To investigate and compare the activation patterns of stroke patients with upper-limb paralysis using functional MRI before and after treatment with constraint-induced movement therapy (CIMT) so as to explore the mechanism of CIMT. Methods: Six patients in chronic stage of brain infarction who have functional disturbance in right upper-limb and 9 normal controls were entered into the study. All of the patients were asked to perform the thumb-to-index finger tapping task and underwent functional MRI before and two weeks after CIMT. The controls underwent fMRI of same protocol once. The patients' upper-limb function scores before and after CIMT were analyzed with SPSS 11.5 by paired t test. The fMRI data were analyzed with analysis of functional neurolmages (AFNI) software. The percentage of blood oxygenation level dependent (BOLD) signal change for the normal control was analyzed by one-sample t test to indentify the activated brain regions. The percentage change of BOLD signal for the patients before and after CIMT was compared to control's data by independent-samples t test. The percentage change of BOLD signal for the patients before and after CIMT was analyzed by paired-samples t test. The significant difference level was set P<0.05. Results: The fMRI showed the patients' activated brain regions before CIMT were similar to that of the controls', while the activation level was lower. There were wide areas activated to compensate the impaired function especially for the fight upper-limb. Before CIMT, the patients' score for fight upper-limb on the action research arm test was 27±4. After CIMT, the patients' score was 40±3, and the difference was significant (t=14.626, P<0.05), which indicated the improved function. These subjects also displayed cortical reorganization after CIMT on fMRI. The areas responsible for the right hand movement showed increased activation and the activation level at bilateral corpora striata thalami, and cerebella increased

  7. Temperature measurement on neurological pulse generators during MR scans

    Directory of Open Access Journals (Sweden)

    Alesch François

    2002-09-01

    Full Text Available Abstract According to manufacturers of both magnetic resonance imaging (MRI machines, and implantable neurological pulse generators (IPGs, MRI is contraindicated for patients with IPGs. A major argument for this restriction is the risk to induce heat in the leads due to the electromagnetic field, which could be dangerous for the surrounding brain parenchyma. The temperature change on the surface of the case of an ITREL-III (Medtronic Inc., Minneapolis, MN and the lead tip during MRI was determined. An anatomical realistic and a cubic phantom, filled with phantom material mimicking human tissue, and a typical lead configuration were used to imitate a patient who carries an IPG for deep brain stimulation. The measurements were performed in a 1.5 T and a 3.0 T MRI. 2.1°C temperature increases at the lead tip uncovered the lead tip as the most critical part concerning heating problems in IPGs. Temperature increases in other locations were low compared to the one at the lead tip. The measured temperature increase of 2.1°C can not be considered as harmful to the patient. Comparison with the results of other studies revealed the avoidance of loops as a practical method to reduce heating during MRI procedures.

  8. MRI of head trauma. Serial changes and comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Osamu; Sato, Shuji; Suzuki, Takashi; Endo, Shunro; Takaku, Akira.

    1988-08-01

    Sequential changes in magnetic resonance imaging (MRI) were investigated in comparison with computed tomography (CT) in 31 cases of head trauma. Twenty-one of them were of acute head trauma; the first MRI study was performed within 48 hours after the accident. Forty-two intracranial lesions were observed in these cases on MRI. The other 10 cases were of chronic subdural hematoma, two cases of which had bilateral lesions. Fourteen lesions of acute head trauma and two lesions of chronic subdural hematoma were detected only by MRI. MRI was superior to CT for the detection of small contusions and thin extra-axial collections, especially those which were located near the bony structures. The abnormal lesions were visualized in MRI during a longer period than in CT. Because the signal intensity of a hematoma changed sequentially, the detection of brain edema was easier than that of a subarachnoid and parenchimal hemorrhage. Judging from this experience, it seems that careful attention should be taken in the diagnosis of hemorrhagic lesions. However, MRI was poor in tissue characterization because of the too-high tissue sensitivity. T/sub 2/-weight SE imaging was essentially sensitive and useful in the early stage.

  9. Homodynamic changes with liver fibrosis measured by dynamic contrast-enhanced MRI in the rat

    International Nuclear Information System (INIS)

    Kubo, Hitoshi; Harada, Masafumi; Ishikawa, Makoto; Nishitani, Hiromu

    2006-01-01

    The purpose of this study was to evaluate the hemodynamic changes of liver cirrhosis in the rat and investigate the relationship between hemodynamic changes and properties of fibrotic change in the liver. Three rats with cirrhosis induced by thioacetamide (TAA), three with disease induced by carbon tetrachloride (CCl 4 ), and three with no treatment were measured on dynamic MRI using a 1.5T scanner. Compartment and moment analysis were used to quantitate hemodynamic changes. Compartment model analysis showed that increased transition speed from vessels to the liver correlated with grade of liver fibrosis. Moment analysis demonstrated that decrease of area under the curve (AUC), mean residence time (MRT), variance of residence time (VRT), half life (T1/2) and increased total clearance (CL) correlated with grade of liver fibrosis. Hemodynamic changes in injured fibrotic liver may be influenced by the grade of fibrosis. Compartment model and moment analysis may be useful for evaluating hemodynamic changes in injured liver. (author)

  10. Property changes in graphite irradiated at changing irradiation temperature

    International Nuclear Information System (INIS)

    Price, R.J.; Haag, G.

    1979-07-01

    Design data for irradiated graphite are usually presented as families of isothermal curves showing the change in physical property as a function of fast neutron fluence. In this report, procedures for combining isothermal curves to predict behavior under changing irradiation temperatures are compared with experimental data on irradiation-induced changes in dimensions, Young's modulus, thermal conductivity, and thermal expansivity. The suggested procedure fits the data quite well and is physically realistic

  11. Changes in myosin S1 orientation and force induced by a temperature increase.

    Science.gov (United States)

    Griffiths, Peter J; Bagni, Maria A; Colombini, Barbara; Amenitsch, Heinz; Bernstorff, Sigrid; Ashley, Christopher C; Cecchi, Giovanni; Ameritsch, Heinz

    2002-04-16

    Force generation in myosin-based motile systems is thought to result from an angular displacement of the myosin subfragment 1 (S1) tail domain with respect to the actin filament axis. In muscle, raised temperature increases the force generated by S1, implying a greater change in tail domain angular displacement. We used time-resolved x-ray diffraction to investigate the structural corollary of this force increase by measuring M3 meridional reflection intensity during sinusoidal length oscillations. This technique allows definition of S1 orientation with respect to the myofilament axis. M3 intensity changes were approximately sinusoid at low temperatures but became increasingly distorted as temperature was elevated, with the formation of a double intensity peak at maximum shortening. This increased distortion could be accounted for by assuming a shift in orientation of the tail domain of actin-bound S1 toward the orientation at which M3 intensity is maximal, which is consistent with a tail domain rotation model of force generation in which the tail approaches a more perpendicular projection from the thin filament axis at higher temperatures. In power stroke simulations, the angle between S1 tail mean position during oscillations and the position at maximum intensity decreased by 4.7 degrees, corresponding to a mean tail displacement toward the perpendicular of 0.73 nm for a temperature-induced force increase of 0.28 P(0) from 4 to 22 degrees C. Our findings suggest that at least 62% of crossbridge compliance is associated with the tail domain.

  12. Pathophysiological changes detected by MRI within 24 hours after head injury

    International Nuclear Information System (INIS)

    Nagaoka, Tsukasa; Wakabayashi, Shinichi; Nariai, Tadashi; Ohno, Kikuo; Hirakawa, Kimiyoshi; Fukui, Shinsuke; Takei, Hidenori.

    1995-01-01

    This report concerns the evaluation of the usefulness of high-field magnetic resonance imaging (MRI) for the diagnosis and prognosis of patients with head injuries. For this purpose we compared the CT and MRI results obtained on 48 such patients. MRI of all cases was taken within 24 hours after head injury using a 1.5-Tesla unit. The sensitivity of the two modalities in the detection of small traumatic lesions was compared. Traumatic lesions of 23 patients (47.9%) were not detected by CT, but they were demonstrated on MRI. Overall, MRI was significantly more sensitive than CT in detecting early and/or subtle traumatic changes of the brain parenchyma (P 1 -WI and T 2 -WI. (B) Corpus callosum lesions with hyperintensity on T 2 -WI were in fact hemorrhagic contusions by signal changes on sequential MRI. The follow-up of chronological changes of a given corpus callosum lesion was essential for confirmation of its pathology. (C) In one case, scratch-like lesions with strong hypointensity on T 1 -WI and hyperintensity on T 2 -WI were clearly demonstrated in the white matter. These observations appeared to indicate axonal damages. (D) Even if initial GCS score is low ( 2 -WI and subsequently disappeared completely. We conclude that performing MRI in the early stage of a head injury is of utility for the understanding of pertinent pathophysiological changes and for predicting outcome. (author)

  13. Detecting climate change oriented and human induced changes in stream temperature across the Southeastern U.S.

    Science.gov (United States)

    Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.

    2017-12-01

    In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for

  14. Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang

    2010-03-01

    Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.

  15. MRI of white matter changes in the Sjoegren-Larsson syndrome

    International Nuclear Information System (INIS)

    Hussain, M.Z.; Oba, H.; Ohtomo, K.; Aihara, M.; Hayashibe, H.; Nakazawa, S.; Uchiyama, G.

    1995-01-01

    We report a case of Sjoegren-Larsson syndrome with spastic diplegia and conduction aphasia. MRI demonstrated the white matter changes deep in the cerebral hemispheres. We analyse the MRI findings and compare the results with neuropsychological signs. (orig.)

  16. MRI of white matter changes in the Sjoegren-Larsson syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, M.Z. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan); Oba, H. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan); Ohtomo, K. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan); Aihara, M. [Dept. of Paediatrics, Yamanashi Medical Coll., Tamahocho, Yamanashi (Japan); Hayashibe, H. [Dept. of Paediatrics, Yamanashi Medical Coll., Tamahocho, Yamanashi (Japan); Nakazawa, S. [Dept. of Paediatrics, Yamanashi Medical Coll., Tamahocho, Yamanashi (Japan); Uchiyama, G. [Dept. of Radiology, Yamanashi Medical Coll., Yamanashi (Japan)

    1995-10-01

    We report a case of Sjoegren-Larsson syndrome with spastic diplegia and conduction aphasia. MRI demonstrated the white matter changes deep in the cerebral hemispheres. We analyse the MRI findings and compare the results with neuropsychological signs. (orig.)

  17. Cognitive impairment, clinical severity and MRI changes in MELAS syndrome.

    Science.gov (United States)

    Kraya, Torsten; Neumann, Lena; Paelecke-Habermann, Yvonne; Deschauer, Marcus; Stoevesandt, Dietrich; Zierz, Stephan; Watzke, Stefan

    2017-12-29

    To examine clinical severity, cognitive impairment, and MRI changes in patients with MELAS syndrome. Cognitive-mnestic functions, brain MRI (lesion load, cella media index) and clinical severity of ten patients with MELAS syndrome were examined. All patients carried the m.3243A>G mutation. The detailed neuropsychological assessment revealed cognitive deficits in attention, executive function, visuoperception, and -construction. There were significant correlations between these cognitive changes, lesion load in MRI, disturbances in everyday life (clinical scale), and high scores in NMDAS. Patients with MELAS syndrome showed no global neuropsychological deficit, but rather distinct cognitive deficits. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  18. Cerebral hemodynamic changes measured by gradient-echo or spin-echo bolus tracking and its correlation to changes in ICA blood flow measured by phase-mapping MRI

    DEFF Research Database (Denmark)

    Marstrand, J.R.; Rostrup, Egill; Garde, Ellen

    2001-01-01

    Changes in cerebral blood flow (CBF) induced by Acetazolamide (ACZ) were measured using dynamic susceptibility contrast MRI (DSC-MRI) with both spin echo (SE) EPI and gradient echo (GE) EPI, and related to changes in internal carotid artery (ICA) flow measured by phase-mapping. Also examined...... was the effect of repeated bolus injections. CBF, cerebral blood volume (CBV), and mean transit time (MTT) were calculated by singular value decomposition (SVD) and by deconvolution using an exponential function as kernel. The results showed no dependency on calculation method. GE-EPI measured a significant...... increase in CBF and CBV in response to ACZ, while SE-EPI measured a significant increase in CBV and MTT. CBV and MTT change measured by SE-EPI was sensitive to previous bolus injections. There was a significant linear relation between change in CBF measured by GE-EPI and change in ICA flow. In conclusion...

  19. Sequential change in MRI in two cases with small brainstem infarctions

    International Nuclear Information System (INIS)

    Masuda, Ryoichi; Fukuda, Osamu; Endoh, Shunro; Takaku, Akira; Suzuki, Takashi; Satoh, Shuji

    1987-01-01

    Magnetic resonance imaging (MRI) has been found to be very useful for the diagnosis of a small brainstem infarction. However, most reported cases have shown the changes at only the chronic stage. In this report, sequential changes in the MRI in two cases with small brainstem infarctions are presented. In Case 1, a 67-year-old man with a pure sensory stroke on the right side, a small infarcted area was observed at the left medial side of the pontomedullary junction on MRI. In Case 2, a 62-year-old man with a pure motor hemiparesis of the left side, MRI revealed a small infarcted area on the right ventral of the middle pons. The initial changes were confirmed 5 days (Case 1) and 18 hours (Case 2) after the onset of the completed stroke. No abnormal findings could be found in the computed tomography in either case. (author)

  20. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots

    Directory of Open Access Journals (Sweden)

    Grönemeyer Dietrich HW

    2006-05-01

    worst case, points out that resonators with a small product of inductance volume and quality factor (Q Vind 3 are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q Vind > 10 cm3. Such resonators exclude patients from exactly the MRI investigation these devices are made for.

  1. Respiratory challenge MRI: Practical aspects

    Directory of Open Access Journals (Sweden)

    Fiona C. Moreton

    2016-01-01

    Full Text Available Respiratory challenge MRI is the modification of arterial oxygen (PaO2 and/or carbon dioxide (PaCO2 concentration to induce a change in cerebral function or metabolism which is then measured by MRI. Alterations in arterial gas concentrations can lead to profound changes in cerebral haemodynamics which can be studied using a variety of MRI sequences. Whilst such experiments may provide a wealth of information, conducting them can be complex and challenging. In this paper we review the rationale for respiratory challenge MRI including the effects of oxygen and carbon dioxide on the cerebral circulation. We also discuss the planning, equipment, monitoring and techniques that have been used to undertake these experiments. We finally propose some recommendations in this evolving area for conducting these experiments to enhance data quality and comparison between techniques.

  2. Influenza A (H3N2-induced rhabdomyolysis complicating anterior compartment syndrome: Serial changes in muscle MRI T2 fat suppression imaging

    Directory of Open Access Journals (Sweden)

    Tadanori Hamano

    2017-06-01

    Conclusions: Muscle MRI T2 fat suppression imaging is a useful method to monitor influenza A induced rhabdomyolysis. We should keep in mind the possibilities of rhabdomyolysis and ACS in patients with influenza A infection presenting serious muscle pain.

  3. Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts.

    Science.gov (United States)

    Seuwen, Aline; Schroeter, Aileen; Grandjean, Joanes; Rudin, Markus

    2015-10-15

    Functional proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional 1H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse 1H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12 min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Sequential changes on [sup 23]Na MRI after cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T. (Cerebrovascular Div., Dept. of Medicine, National Cardiovascular Center, Osaka (Japan)); Naritomi, H. (Cerebrovascular Div., Dept. of Medicine, National Cardiovascular Center, Osaka (Japan)); Sawada, T. (Cerebrovascular Div., Dept. of Medicine, National Cardiovascular Center, Osaka (Japan))

    1993-01-01

    [sup 23]Na MRI changes from the acute to chronic phase were investigated in seven patients with cerebral infarcts. They showed no signal increase during the first 13 h after the stroke and revealed a definite signal increase thereafter. This reached a maximum 45-82 h after stroke and became sightly less marked in the subacute and chronic phases, probably as a result of disappearance of cerebral oedema. In the early acute phase of stroke, [sup 23]Na MRI appears to fail to demonstrate Na[sup +] increases in the ischaemic area, due presumably to the invisibility on MRI of intracellular [sup 23]Na in the intact brain. The increase more than 13 h after stroke, during which ischaemic cells are likely to die, is presumably because of increased visibility of intracellular [sup 23]Na in the dead cells. [sup 23]Na MRI is apparently insensitive to early ischaemic changes, but may be useful for assessing the cell viability in the ischaemic brain. (orig.)

  5. Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change

    Science.gov (United States)

    Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian

    2018-01-01

    Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe

  6. Neural correlates of fear-induced sympathetic response associated with the peripheral temperature change rate.

    Science.gov (United States)

    Yoshihara, Kazufumi; Tanabe, Hiroki C; Kawamichi, Hiroaki; Koike, Takahiko; Yamazaki, Mika; Sudo, Nobuyuki; Sadato, Norihiro

    2016-07-01

    Activation of the sympathetic nervous system is essential for coping with environmental stressors such as fearful stimuli. Recent human imaging studies demonstrated that activity in some cortical regions, such as the anterior cingulate cortex (ACC) and anterior insula cortex (aIC), is related to sympathetic activity. However, little is known about the functional brain connectivity related to sympathetic response to fearful stimuli. The participants were 32 healthy, right-handed volunteers. Functional magnetic resonance imaging (fMRI) was used to examine brain activity when watching horror and control movies. Fingertip temperature was taken during the scanning as a measure of sympathetic response. The movies were watched a second time, and the degree of fear (9-point Likert-type scale) was evaluated every three seconds. The brain activity of the ACC, bilateral aIC, and bilateral anterior prefrontal cortex (aPFC) was correlated with the change rate of fingertip temperature, with or without fearful stimuli. Functional connectivity analysis revealed significantly greater positive functional connectivity between the amygdala and the ACC and between the amygdala and the aIC when watching the horror movie than when watching the control movie. Whole-brain psycho-physiological interaction (PPI) analysis revealed that the functional connectivity between the left amygdala and the ACC was modulated according to the fear rating. Our results indicate that the increased functional connectivity between the left amygdala and the ACC represents a sympathetic response to fearful stimuli. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  8. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease.

    Science.gov (United States)

    Wu, Dan; Faria, Andreia V; Younes, Laurent; Mori, Susumu; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Miller, Michael I

    2017-10-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Light induces petal color change in Quisqualis indica (Combretaceae

    Directory of Open Access Journals (Sweden)

    Juan Yan

    2018-02-01

    Full Text Available Petal color change, a common phenomenon in angiosperms, is induced by various environmental and endogenous factors. Interestingly, this phenomenon is important for attracting pollinators and further reproductive success. Quisqualis indica L. (Combretaceae is a tropical Asian climber that undergoes sequential petal color change from white to pink to red. This color changing process is thought to be a good strategy to attract more pollinators. However, the underlying physiological and biochemical mechanisms driving this petal color change phenomenon is still underexplored. In this context, we investigated whether changes in pH, pollination, light, temperature or ethylene mediate petal color change. We found that the detected changes in petal pH were not significant enough to induce color alterations. Additionally, pollination and temperatures of 20–30 °C did not alter the rate of petal color change; however, flowers did not open when exposed to constant temperatures at 15 °C or 35 °C. Moreover, the application of ethylene inhibitor, i.e., silver thiosulphate, did not prevent color change. It is worth mentioning here that in our study we found light as a strong factor influencing the whole process of petal color change, as petals remained white under dark conditions. Altogether, the present study suggests that petal color change in Q. indica is induced by light and not by changes in petal pH, pollination, ethylene, or temperature, while extremely low or high temperatures affect flower anthesis. In summary, our findings represent the probable mechanism underlying the phenomenon of petal color change, which is important for understanding flower color evolution.

  10. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    Science.gov (United States)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  11. Analysis of MRI signal changes in the adjacent pedicle of adolescent patients with fresh lumbar spondylolysis.

    Science.gov (United States)

    Goda, Yuichiro; Sakai, Toshinori; Sakamaki, Tadanori; Takata, Yoichiro; Higashino, Kosaku; Sairyo, Koichi

    2014-09-01

    The purpose of this study is to investigate a discrepancy between MRI and computed tomography (CT) findings in the spinal level distribution of spondylolysis. Recent advances in MRI have led to the early diagnosis of spondylolysis. Therefore, bony healing can be expected before the condition has a chance to worsen. In this study, we used MRI to examine the changes in spinal level signals in the pedicles adjacent to the pars interarticularis in adolescents with fresh lumbar spondylolysis. We then compared spinal level distribution of spondylolysis with that of previous results obtained by multidetector CT. The study included 98 adolescent patients (31 women and 67 men; mean age, 13.6 years; age range, 9-18 years) with fresh lumbar spondylolysis who showed MRI signal changes in the adjacent pedicle. An MRI signal change was defined as a high signal change on fat-suppressed imaging. MRI signal changes were detected in 150 adjacent pedicles of 101 vertebrae. Of these vertebrae, MRI signal changes in only 67 (66.3%) corresponded to L5, while changes in 34 (33.7%) corresponded to L3 or L4. In our follow-up study, the bone-healing rate with no vertebral defect was 100% at L3, 97.1% at L4, and 84.4% at L5. In addition, 11 of 34 (32.4%) vertebrae with signal changes at L3 or L4 occurred with L5 terminal-stage spondylolysis (no MRI signal change). MRI revealed a higher prevalence of L3 or L4 spondylolysis than observed with CT.

  12. Amplification and dampening of soil respiration by changes in temperature variability

    Science.gov (United States)

    C.A. Sierra; M.E. Harmon; E.A. Thomann; S.S. Perakis; H.W. Loescher

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic...

  13. Temperature-induced plasticity in egg size and resistance of eggs to temperature stress in a soil arthropod.

    NARCIS (Netherlands)

    Liefting, M.; Weerenbeck, M.; van Dooremalen, J.A.; Ellers, J.

    2010-01-01

    Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms, resulting in predictable changes in egg size. However, the fitness consequences of temperature-induced plasticity in egg size are not well understood and are often assessed at mild temperatures,

  14. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Suresh

    2007-02-01

    Full Text Available Abstract Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy.

  15. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI)

    Science.gov (United States)

    Yu, Xichun; Tesiram, Yasvir A; Towner, Rheal A; Abbott, Andrew; Patterson, Eugene; Huang, Shijun; Garrett, Marion W; Chandrasekaran, Suresh; Matsuzaki, Satoshi; Szweda, Luke I; Gordon, Brian E; Kem, David C

    2007-01-01

    Background Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Methods Diabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls. Results After 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction. Conclusion Our study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy. PMID:17309798

  16. Peri-ictal signal changes in seven patients with status epilepticus: interesting MRI observations

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Manoj K; Sinha, Sanjib [National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neurology, Bangalore, Karnataka (India); Ravishankar, Shivshankar; Shivshankar, Jai Jai [National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neuroimaging and Interventional Radiology, Bangalore (India)

    2009-03-15

    Transient peri-ictal changes on imaging had been described following status epilepticus (SE), but its cause is not very well understood. We analyzed the magnetic resonance imaging (MRI) findings in SE patients in order to elucidate such changes including peri-ictal signal. This prospective study involved 34 patients (M/F 23:11, mean age 25.8 {+-} 17.2 years) who experienced SE. MRI was performed during or within 96 h of cessation of seizures. Twenty-five patients had generalized convulsive status epilectus (GCSE; ten secondary GCSE and 15 primary GCSE). Seven patients had epilepsia partialis continua and two patients non-convulsive SE. Eight patients had a history of seizures and three patients previous SE. The mean duration of SE prior to MRI was 89.2 {+-} 105.3 h (range 2-360 h). MRI provided diagnosis in 17 patients, and in 13 patients, no structural cause was identified. Peri-ictal focal signal changes with restricted diffusion on apparent diffusion coefficient maps were present in seven (20.6%) patients with SE (generalized convulsive, three; partial, three; non-convulsive, one). The changes were observed when MRI was performed during SE in 3/10 (30%) patients, or within 24 h in 1/7 (14.3%), 48 h in 1/5 (20%), 72 h in 1/6 (16.7%), or 96 h in 1/6 (16.7%) patients after cessation of seizures. Repeat MRI revealed disappearance of signal changes in two patients. Peri-ictal MR changes with restricted diffusion appear to be an effect rather than the cause of SE. (orig.)

  17. Peri-ictal signal changes in seven patients with status epilepticus: interesting MRI observations

    International Nuclear Information System (INIS)

    Goyal, Manoj K.; Sinha, Sanjib; Ravishankar, Shivshankar; Shivshankar, Jai Jai

    2009-01-01

    Transient peri-ictal changes on imaging had been described following status epilepticus (SE), but its cause is not very well understood. We analyzed the magnetic resonance imaging (MRI) findings in SE patients in order to elucidate such changes including peri-ictal signal. This prospective study involved 34 patients (M/F 23:11, mean age 25.8 ± 17.2 years) who experienced SE. MRI was performed during or within 96 h of cessation of seizures. Twenty-five patients had generalized convulsive status epilectus (GCSE; ten secondary GCSE and 15 primary GCSE). Seven patients had epilepsia partialis continua and two patients non-convulsive SE. Eight patients had a history of seizures and three patients previous SE. The mean duration of SE prior to MRI was 89.2 ± 105.3 h (range 2-360 h). MRI provided diagnosis in 17 patients, and in 13 patients, no structural cause was identified. Peri-ictal focal signal changes with restricted diffusion on apparent diffusion coefficient maps were present in seven (20.6%) patients with SE (generalized convulsive, three; partial, three; non-convulsive, one). The changes were observed when MRI was performed during SE in 3/10 (30%) patients, or within 24 h in 1/7 (14.3%), 48 h in 1/5 (20%), 72 h in 1/6 (16.7%), or 96 h in 1/6 (16.7%) patients after cessation of seizures. Repeat MRI revealed disappearance of signal changes in two patients. Peri-ictal MR changes with restricted diffusion appear to be an effect rather than the cause of SE. (orig.)

  18. Can positional MRI predict dynamic changes in the medial plantar arch?

    DEFF Research Database (Denmark)

    Johannsen, Finn E; Hansen, Philip; Stallknecht, Sandra

    2016-01-01

    BACKGROUND: Positional MRI (pMRI) allows for three-dimensional visual assessment of navicular position. In this exploratory pilot study pMRI was validated against a stretch sensor device, which measures movement of the medial plantar arch. We hypothesized that a combined pMRI measure incorporating...... and c) standing position with addition of 10 % body weight during static loading of the foot. Stretch sensor measurements were also performed during barefoot walking. RESULTS: The total change in navicular position measured by pMRI was 10.3 mm (CI: 7.0 to 13.5 mm). No further displacement occurred when.......08). CONCLUSIONS: Total navicular bone displacements determined by pMRI showed concurrent validity with stretch sensor measurements but only so under static loading conditions. Although assessment of total navicular displacement by combining concomitant vertical and medial navicular bone movements would appear...

  19. Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences.

    Science.gov (United States)

    Finkenstaedt, Tim; Del Grande, Filippo; Bolog, Nicolae; Ulrich, Nils; Tok, Sina; Kolokythas, Orpheus; Steurer, Johann; Andreisek, Gustav; Winklhofer, Sebastian

    2018-02-01

     To assess the performance of fat-suppressed fluid-sensitive MRI sequences compared to T1-weighted (T1w) / T2w sequences for the detection of Modic 1 end-plate changes on lumbar spine MRI.  Sagittal T1w, T2w, and fat-suppressed fluid-sensitive MRI images of 100 consecutive patients (consequently 500 vertebral segments; 52 female, mean age 74 ± 7.4 years; 48 male, mean age 71 ± 6.3 years) were retrospectively evaluated. We recorded the presence (yes/no) and extension (i. e., Likert-scale of height, volume, and end-plate extension) of Modic I changes in T1w/T2w sequences and compared the results to fat-suppressed fluid-sensitive sequences (McNemar/Wilcoxon-signed-rank test).  Fat-suppressed fluid-sensitive sequences revealed significantly more Modic I changes compared to T1w/T2w sequences (156 vs. 93 segments, respectively; p definition of Modic I changes is not fully applicable anymore.. · Fat-suppressed fluid-sensitive MRI sequences revealed more/greater extent of Modic I changes.. · Finkenstaedt T, Del Grande F, Bolog N et al. Modic Type 1 Changes: Detection Performance of Fat-Suppressed Fluid-Sensitive MRI Sequences. Fortschr Röntgenstr 2018; 190: 152 - 160. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Pathological and MRI study on experimental heroin-induced brain damage in rats

    International Nuclear Information System (INIS)

    Long Yu; Kong Xiangquan; Xu Haibo; Liu Dingxi; Yuan Ren; Yu Qun; Xiong Yin; Deng Xianbo

    2005-01-01

    changes were deaths of granular cells in the CA 1-4 area of hippocampus on light microscope, and the loss of granular cells was not obvious; (3) The pyknotic degeneration, necrosis, and loss were disp layed within the Purkinje's cells of the cerebellum; (4) It was the first discovery that there were stroma destructions around the microvessels in the cerebral cortex on electron microscope; (5) There was mild degeneration but no typical demyelination in the cerebrum and cerebellum. As for the MR signals, there was no difference in the cerebral cortex, hippocampus, basal ganglia area, and cerebellum between the heroin intoxicated rats with the control group. Conclusion The main characteristics of heroin-induced brain damage in rats are the degeneration and death of nerve cells, and stroma destructions around microvessels in the cerebrum and cerebellum, but these changes could not be detected by routine MRI. (authors)

  1. Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.

    Science.gov (United States)

    Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun

    2017-09-07

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.

  2. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Ertürk, M. Arcan [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21287 and Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States); El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A., E-mail: bottoml@mri.jhu.edu [Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2015-03-15

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  3. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Science.gov (United States)

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  4. Monitoring local heating around an interventional MRI antenna with RF radiometry

    International Nuclear Information System (INIS)

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  5. Identifying MRI markers to evaluate early treatment-related changes post-laser ablation for cancer pain management

    Science.gov (United States)

    Tiwari, Pallavi; Danish, Shabbar; Madabhushi, Anant

    2014-03-01

    Laser interstitial thermal therapy (LITT) has recently emerged as a new treatment modality for cancer pain management that targets the cingulum (pain center in the brain), and has shown promise over radio-frequency (RF) based ablation which is reported to provide temporary relief. One of the major advantages enjoyed by LITT is its compatibility with magnetic resonance imaging (MRI), allowing for high resolution in vivo imaging to be used in LITT procedures. Since laser ablation for pain management is currently exploratory and is only performed at a few centers worldwide, its short-, and long-term effects on the cingulum are currently unknown. Traditionally treatment effects are evaluated by monitoring changes in volume of the ablation zone post-treatment. However, this is sub-optimal since it involves evaluating a single global parameter (volume) to detect changes pre-, and post-MRI. Additionally, the qualitative observations of LITT-related changes on multi-parametric MRI (MPMRI) do not specifically address differentiation between the appearance of treatment related changes (edema, necrosis) from recurrence of the disease (pain recurrence). In this work, we explore the utility of computer extracted texture descriptors on MP-MRI to capture early treatment related changes on a per-voxel basis by extracting quantitative relationships that may allow for an in-depth understanding of tissue response to LITT on MRI, subtle changes that may not be appreciable on original MR intensities. The second objective of this work is to investigate the efficacy of different MRI protocols in accurately capturing treatment related changes within and outside the ablation zone post-LITT. A retrospective cohort of studies comprising pre- and 24-hour post-LITT 3 Tesla T1-weighted (T1w), T2w, T2-GRE, and T2-FLAIR acquisitions was considered. Our scheme involved (1) inter-protocol as well as inter-acquisition affine registration of pre- and post-LITT MRI, (2) quantitation of MRI parameters

  6. 3T MRI induced post-traumatic stress disorder: a case report

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2012-10-01

    Full Text Available Abstract Introduction MRI is considered a safe and well tolerated imaging technique with risks largely limited to heating and/or displacement of implanted ferromagnetic metal in the patient’s body, worsening anxiety, triggering claustrophobia, and gadolinium induced nephrogenic systemic fibrosis. Case presentation We present a case of a 26 year old Asian American man with no significant past medical or psychiatric history and two months of left T4 radicular pain. During 3T-MRI of the whole spine, the patient experienced acute agitation, fear, anxiety, tachypnea, tachycardia with palpitations, and dizziness. He felt intense surface heat over segments of his body and very loud noises. He perceived impending serious bodily harm by the scanner. The scan was aborted at the lumbar spine, and cervical and thoracic spine was unremarkable. The patient’s pain resolved in the weeks following with over the counter analgesics, however, he developed increased arousal, re-experiencing the event, persistent avoidance, and significant psychosocial impairment consistent with DSM-IV-TR criteria for post-traumatic stress disorder (PTSD. Conclusion This is the first reported case of MRI induced PTSD. Theoretically, the high-magnetic field of the 3T scanner may have contributed to the development of symptoms.

  7. Cold temperature blocks thyroid hormone-induced changes in lipid and energy metabolism in the liver of Lithobates catesbeianus tadpoles.

    Science.gov (United States)

    Suzuki, Shunsuke; Awai, Koichiro; Ishihara, Akinori; Yamauchi, Kiyoshi

    2016-01-01

    Exposure of the American bullfrog Lithobates catesbeianus tadpoles to low temperature affects many biological processes including lipid metabolism and the thyroid hormone (TH) signaling pathway, resulting in arrest of TH-induced metamorphosis. To clarify what molecular events occur in this phenomenon, we investigated the glycerophospholipid and fatty acid (FA) compositions, the activities of mitochondrial enzymes and the transcript levels of related genes in the liver of control (26 °C) and cold-treated (4 °C) tadpoles with or without 5 nM 3,3',5-triiodothyronine (T3). Exposure to T3 decreased the tail height and polyunsaturation of FAs in the glycerophospholipids, and increased plasma glucose levels and transcript levels of primary TH-response genes including TH receptor, and some energy metabolic (cox4, srebp1 and fas) and FA chain elongase genes (elovl3 and elovl5). However, these T3-induced responses were abolished at 4 °C. Exposure to cold temperature enhanced plasma glucose, triglyceride and free FA levels, monounsaturation of FAs, mitochondrial enzymes activities (cytochrome c oxidase and carnitine palmitoyltransferase; U/g liver), with the upregulation of the genes involved in glycogenolysis (pygl), gluconeogenesis (pck1 and g6pc2), FA β-oxidation (acadl), and cholesterol uptake and synthesis (hmgcr, srebp2 and ldlr1), glycerophospholipids synthesis (pcyt1, pcyt2, pemt, and pparg), and FA monounsaturation (scd1) and chain elongation (elovl1 and elovl2). T3 had little effect on the cold-induced changes. Our study demonstrated that exposures to T3 and cold temperature exert different effects on lipid metabolism, resulting in changes in the FA composition in glycerophospholipids, and suggests that a cold-induced signal may block TH-signaling pathway around primary TH-response genes.

  8. Network based statistical analysis detects changes induced by continuous theta burst stimulation on brain activity at rest.

    Directory of Open Access Journals (Sweden)

    Chiara eMastropasqua

    2014-08-01

    Full Text Available We combined continuous theta burst stimulation (cTBS and resting state (RS -fMRI approaches to investigate changes in functional connectivity (FC induced by right dorso-lateral prefrontal cortex (DLPFC cTBS at rest in a group of healthy subjects. Seed based fMRI analysis revealed a specific pattern of correlation between the right prefrontal cortex and several brain regions: based on these results, we defined a 29-node network to assess changes in each network connection before and after, respectively, DLPFC-cTBS and sham sessions. A decrease of correlation between the right prefrontal cortex and right parietal cortex (Brodmann areas 46 and 40 respectively was detected after cTBS, while no significant result was found when analyzing sham-session data. To our knowledge, this is the first study that demonstrates within-subject changes in FC induced by cTBS applied on prefrontal area. The possibility to induce selective changes in a specific region without interfering with functionally correlated area could have several implications for the study of functional properties of the brain, and for the emerging therapeutic strategies based on transcranial stimulation.

  9. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    Science.gov (United States)

    Qi, Y.; Liu, S.; Lindenberg, A. M.; Rappe, A. M.

    2018-01-01

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈1011 K /s ) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO3 occurring on few picosecond time scales. We explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on a ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO3 and BaTiO3 . Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.

  10. Can induced hypothermia be assured during brain MRI in neonates with hypoxic-ischemic encephalopathy?

    International Nuclear Information System (INIS)

    Wintermark, Pia; Labrecque, Michelle; Hansen, Anne; Warfield, Simon K.; DeHart, Stephanie

    2010-01-01

    Until now, brain MRIs in asphyxiated neonates who are receiving therapeutic hypothermia have been performed after treatment is complete. However, there is increasing interest in utilizing early brain MRI while hypothermia is still being provided to rapidly understand the degree of brain injury and possibly refine neuroprotective strategies. This study was designed to assess whether therapeutic hypothermia can be maintained while performing a brain MRI. Twenty MRI scans were obtained in 12 asphyxiated neonates while they were treated with hypothermia. The median difference between esophageal temperature on NICU departure and return was 0.1 C (range: -0.8 to 0.8 C). We found that therapeutic hypothermia can be safely and reproducibly maintained during a brain MRI. Hypothermia treatment should not prevent obtaining an early brain MRI if clinically indicated. (orig.)

  11. Can induced hypothermia be assured during brain MRI in neonates with hypoxic-ischemic encephalopathy?

    Energy Technology Data Exchange (ETDEWEB)

    Wintermark, Pia [Children' s Hospital Boston, Division of Newborn Medicine, Boston, MA (United States); Children' s Hospital Boston, Department of Radiology, Boston, MA (United States); Montreal Children' s Hospital, Division of Newborn Medicine, Montreal, QC (Canada); Labrecque, Michelle; Hansen, Anne [Children' s Hospital Boston, Division of Newborn Medicine, Boston, MA (United States); Warfield, Simon K.; DeHart, Stephanie [Children' s Hospital Boston, Department of Radiology, Boston, MA (United States)

    2010-12-15

    Until now, brain MRIs in asphyxiated neonates who are receiving therapeutic hypothermia have been performed after treatment is complete. However, there is increasing interest in utilizing early brain MRI while hypothermia is still being provided to rapidly understand the degree of brain injury and possibly refine neuroprotective strategies. This study was designed to assess whether therapeutic hypothermia can be maintained while performing a brain MRI. Twenty MRI scans were obtained in 12 asphyxiated neonates while they were treated with hypothermia. The median difference between esophageal temperature on NICU departure and return was 0.1 C (range: -0.8 to 0.8 C). We found that therapeutic hypothermia can be safely and reproducibly maintained during a brain MRI. Hypothermia treatment should not prevent obtaining an early brain MRI if clinically indicated. (orig.)

  12. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  13. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  14. Early bilateral radiation-induced optic neuropathy with follow-up MRI

    International Nuclear Information System (INIS)

    McClellan, R.L.; El Gammal, T.; Kline, L.B.

    1995-01-01

    Most documented cases of radiation-induced optic neuropathy are unilateral and occur more than 1 year after radiotherapy to the sellar region. We describe a patient with bilateral radiation optic neuropathy 3 months following the completion of radiotherapy. MRI 13 months after the onset of visual failure showed bilateral optic atrophy with residual gadolinium enhancement. (orig.)

  15. Early bilateral radiation-induced optic neuropathy with follow-up MRI

    Energy Technology Data Exchange (ETDEWEB)

    McClellan, R.L. [Alabama Univ., Birmingham (United States). Dept. of Radiology; El Gammal, T. [Alabama Univ., Birmingham (United States). Dept. of Radiology; Kline, L.B. [Alabama Univ., Birmingham (United States). Dept. of Radiology

    1995-02-01

    Most documented cases of radiation-induced optic neuropathy are unilateral and occur more than 1 year after radiotherapy to the sellar region. We describe a patient with bilateral radiation optic neuropathy 3 months following the completion of radiotherapy. MRI 13 months after the onset of visual failure showed bilateral optic atrophy with residual gadolinium enhancement. (orig.)

  16. MRI and associated clinical characteristics of EV71-induced brainstem encephalitis in children with hand-foot-mouth disease

    International Nuclear Information System (INIS)

    Zeng, Hongwu; Gan, Yungen; Wen, Feiqiu; Huang, Wenxian

    2012-01-01

    This study was conducted to investigate MRI and associated clinical characteristics of brainstem encephalitis induced by enterovirus 71 (EV71) in children with hand-foot-mouth disease (HFMD). We analyzed clinical and imaging data from 42 HFMD cases with EV71-induced brainstem encephalitis. All patients underwent plain and enhanced MRI cranial scans and were placed into one of two groups according to MRI enhancement results, an enhanced group or a nonenhanced group. Thirty-two cases were positive on MRI exam. The primary location of the lesion for brainstem encephalitis was the dorsal pons and medulla oblongata (32 cases), followed by the cerebellar dentate nucleus (8 cases), midbrain (5 cases), and thalamus (2 cases). Plain T1-weighted images showed isointense or hypointense signals, and T2-weighted images showed isointense and hyperintense signals. Enhanced MRI scans showed that 12 cases had slight to moderate enhancement; 4 of these were normal on plain scan. The time from MRI examination to disease onset was statistically different between the enhanced (n = 12) and nonenhanced (n = 21) groups with a mean of 7.67 days (SD = 1.07) vs 11.95 days (SD = 5.33), respectively. The most common neurological symptoms for brainstem encephalitis were myoclonus and tremor. The greater the area of affected brain, the more severe the clinical symptoms were. The locations of EV71-induced HFMD-associated brainstem encephalitis lesions are relatively specific. Enhanced MRI scans could also identify the lesions missed by early plain scans. MRI scans can provide important information for clinical evaluation and treatment. (orig.)

  17. MRI and associated clinical characteristics of EV71-induced brainstem encephalitis in children with hand-foot-mouth disease

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hongwu; Gan, Yungen [Shenzhen Children' s Hospital, Department of Radiology, Shenzhen (China); Wen, Feiqiu [Shenzhen Children' s Hospital, Department of Neurology, Shenzhen (China); Huang, Wenxian [Shenzhen Children' s Hospital, Department of Respiratory, Shenzhen (China)

    2012-06-15

    This study was conducted to investigate MRI and associated clinical characteristics of brainstem encephalitis induced by enterovirus 71 (EV71) in children with hand-foot-mouth disease (HFMD). We analyzed clinical and imaging data from 42 HFMD cases with EV71-induced brainstem encephalitis. All patients underwent plain and enhanced MRI cranial scans and were placed into one of two groups according to MRI enhancement results, an enhanced group or a nonenhanced group. Thirty-two cases were positive on MRI exam. The primary location of the lesion for brainstem encephalitis was the dorsal pons and medulla oblongata (32 cases), followed by the cerebellar dentate nucleus (8 cases), midbrain (5 cases), and thalamus (2 cases). Plain T1-weighted images showed isointense or hypointense signals, and T2-weighted images showed isointense and hyperintense signals. Enhanced MRI scans showed that 12 cases had slight to moderate enhancement; 4 of these were normal on plain scan. The time from MRI examination to disease onset was statistically different between the enhanced (n = 12) and nonenhanced (n = 21) groups with a mean of 7.67 days (SD = 1.07) vs 11.95 days (SD = 5.33), respectively. The most common neurological symptoms for brainstem encephalitis were myoclonus and tremor. The greater the area of affected brain, the more severe the clinical symptoms were. The locations of EV71-induced HFMD-associated brainstem encephalitis lesions are relatively specific. Enhanced MRI scans could also identify the lesions missed by early plain scans. MRI scans can provide important information for clinical evaluation and treatment. (orig.)

  18. MRI induced second-degree burn in a patient with extremely large uterine leiomyomas: A case report

    International Nuclear Information System (INIS)

    Lee, Chul Min; Kang, Bo Kyeong; Song, Soon Young; Koh, Byung Hee; Choi, Joong Sub; Lee, Won Moo

    2015-01-01

    Burns and thermal injuries related with magnetic resonance imaging (MRI) are rare. Previous literature indicates that medical devices with cable, cosmetics or tattoo are known as risk factors for burns and thermal injuries. However, there is no report of MRI-related burns in Korea. Herein, we reported a case of deep second degree burn after MRI in a 38-year-old female patient with multiple uterine leiomyomas including some that were large and degenerated. The large uterine leiomyoma-induced protruded anterior abdominal wall in direct contact with the body coil during MRI was suspected as the cause of injury, by retrospective analysis. Therefore, awareness of MRI related thermal injury is necessary to prevent this hazard, together with extreme care during MRI

  19. MRI induced second-degree burn in a patient with extremely large uterine leiomyomas: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Min; Kang, Bo Kyeong; Song, Soon Young; Koh, Byung Hee; Choi, Joong Sub; Lee, Won Moo [Hanyang University Medical Center, Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2015-12-15

    Burns and thermal injuries related with magnetic resonance imaging (MRI) are rare. Previous literature indicates that medical devices with cable, cosmetics or tattoo are known as risk factors for burns and thermal injuries. However, there is no report of MRI-related burns in Korea. Herein, we reported a case of deep second degree burn after MRI in a 38-year-old female patient with multiple uterine leiomyomas including some that were large and degenerated. The large uterine leiomyoma-induced protruded anterior abdominal wall in direct contact with the body coil during MRI was suspected as the cause of injury, by retrospective analysis. Therefore, awareness of MRI related thermal injury is necessary to prevent this hazard, together with extreme care during MRI.

  20. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry

    International Nuclear Information System (INIS)

    Smith, Nadine Barrie; Buchanan, Mark T.; Hynynen, Kullervo

    1999-01-01

    Purpose: For potential localized hyperthermia treatment of tumors within the prostate, an ultrasound applicator consisting entirely of nonmagnetic materials for use with magnetic resonance imaging (MRI) has been developed and tested on muscle tissue ex vivo and in vivo. Methods and Materials: A partial-cylindrical intracavitary transducer consisting of 16 elements in a 4 x 4 pattern was constructed. It produced a radially propagating acoustic pressure field. Each element of this array (1.5 x 0.75 cm), operating at 1.5 MHz, could be separately powered to produce a desired energy deposition pattern within a target volume. Spatial and temporal temperature elevations were determined using the temperature-dependent proton resonant frequency (PRF) shift and phase subtraction of MR images acquired during ultrasonic heating. Four rabbits were exposed to the ultrasound to raise the local tissue temperature to 45 deg. C for 25 minutes. Six experiments compared thermocouple temperature results to PRF shift temperature results. Results: The tests showed that the multi-element ultrasound applicator was MRI-compatible and allowed imaging during sonication. The induced temperature distribution could be controlled by monitoring the RF power to each transducer element. Therapeutic temperature elevations were easily achieved in vivo at power levels that were about 16% of the maximum system power. From the six thermocouple experiments, comparison between the thermocouple temperature and the PRF temperature yielded an average error of 0.34 ± 0.36 deg. C. Conclusions: The MRI-compatible intracavitary applicator and driving system was able to control the ultrasound field and temperature pattern in vivo. MRI thermometry using the PRF shift can provide adequate temperature accuracy and stability for controlling the temperature distribution

  1. MRI-guided therapeutic ultrasound: Temperature feedback control for extracorporeal and endoluminal applicators

    Science.gov (United States)

    Salomir, Rares

    2005-09-01

    Therapeutic ultrasound is a mini-invasive and promising tool for in situ ablation of non-resectable tumors in uterus, breast, esophagus, kidney, liver, etc. Extracorporeal, endoluminal, and interstitial applicators have been successfully tested to date. Magnetic resonance imaging (MRI) is the only available technique providing non-invasive temperature mapping, together with excellent contrast of soft tissue. Coupling of these two technologies offers the advantage of both: (1) on line spatial guidance to the target region, and (2) thermal dose control during the treatment. This talk will provide an overview of the author's experience with automatic, active feedback control of the temperature evolution in tissues, which has been demonstrated with MRI compatible extracorporeal transducers (focused beam) or endoluminal applicators (plane waves). The feedback loop is based on fast switching capabilities of the driving electronics and real time data transfer out of the MR scanner. Precision of temperature control was typically better than 1°C. This approach is expected to improve the efficacy of the treatment (complete tumor ablation) and the thermal security of the critical regions crossed by the acoustic beam. It also permits one to reach an under-lethal heating regime for local drug delivery using thermosensitive liposomes or gene expression control based on hsp promoters.

  2. Temperature induced alternative splicing is affected in sdg8 and sdg26

    OpenAIRE

    Pajoro, A.; Severing, E.I.; Immink, G.H.

    2017-01-01

    Plants developed a plasticity to environmental conditions, such as temperature, that allows their adaptation. A change in ambient temperature leads to changes in the transcriptome in plants, such as the production of different splicing isoforms. Here we study temperature induced alternative splicing events in Arabidopsis thaliana wild-type and two epigenetic mutants, sdg8-2 and sdg26-1 using an RNA-seq approach.

  3. Postradiotherapeutic changes and their evolution in MRI in children with aggressive soft tissue tumors.

    Science.gov (United States)

    Jastrzębska, Małgorzata; Bekiesińska-Figatowska, Monika; Romaniuk-Doroszewska, Anna; Brągoszewska, Hanna; Iwanowska, Beata; Uliasz, Maria; Szkudlińska-Pawlak, Sylwia; Mądzik, Jarosław

    2010-07-01

    Magnetic resonance imaging is a commonly used method of monitoring of soft tissue tumours. The aim of the work was to describe precisely the typical changes within soft tissues and bones occurring after radiotherapy in children treated for sarcomas and other soft tissue tumours. With time, the changes undergo evolution and their characteristics and comparison with previous examinations help in a difficult differentiation between tumour lesions and posttherapeutic changes. Fifteen children and young adolescents (9 boys and 6 girls) aged between 2 and 22 years (mean age of 13.4 years) with diagnosed aggressive soft tissue tumours, were treated with radiotherapy. There were 102 MRI examinations analysed in the period from February 2004 to February 2008. The examinations were performed with a 1.5T MRI scanner in the following sequences: SE T1, SE T1+fatsat, before and after gadolinium administration (Gd), FSE T2 and STIR in three planes, and, in some selected cases, a dynamic gadolinium-enhanced (DCE MRI) examination with FAME sequence. HISTOPATHOLOGICAL EXAMINATIONS SHOWED: rhabdomyosarcoma (RMS) in 8 cases, synovial sarcoma - 3, agressive desmoid fibroma - 3, mesenchymoma mal. - 1. MRI examinations were performed at different postradiotherapeutic stages, several times in one patient (12 times at the most). Every postirradiation stage revealed a typical picture of posttherapeutic changes. We distinguished four stages and described changes in different sequences within soft tissues and bones, as well as features of contrast enhancement and enhancement curves in a dynamic study. The stages included: I stage - early, up to 3 months after rth, II stage - chronic, from 3 months to 12 months after rth, with some differences between the following periods: • 3-9 months; 9-12 months; III stage - late, from 1 to 3 years after rth, IV stage - distant, more than 3 years after rth. In the early stage, there were 2 cases with a suspicious, equivocal image of postradiotherapeutic

  4. Dependence of excitation frequency of resonant circuit on RF irradiation position of MRI equipment

    International Nuclear Information System (INIS)

    Shimizu, Masato; Yamada, Tsutomu; Takemura, Yasushi; Niwa, Touru; Inoue, Tomio

    2010-01-01

    Hyperthermia using implants is a cancer treatment in which cancer tissue is heated to over 42.5 deg C to selectively kill the cancer cells. In this study, a resonant circuit was used as an implant, and a weak magnetic field of radiofrequency (RF) pulses from a magnetic resonance imaging (MRI) device was used as an excitation source. We report here how the temperature of the resonant circuit was controlled by changing the excitation frequency of the MRI. As a result, the temperature rise of the resonant circuit was successfully found to depend on its position in the MRI device. This significant result indicates that the temperature of the resonant circuit can be controlled only by adjusting the excitation position. Accurate temperature control is therefore expected to be possible by combining this control technique with the temperature measurement function of MRI equipment. (author)

  5. Health Impacts of Climate Change-Induced Subzero Temperature Fires.

    Science.gov (United States)

    Metallinou, Maria-Monika; Log, Torgrim

    2017-07-20

    General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km² of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires.

  6. Relationship between phase development and swelling of AISI 316 during temperature changes

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Garner, F.A.

    1982-04-01

    The effect of temperature changes on radiation-induced swelling and phase development of AISI 316 has been examined for specimens irradiated in two different experiments. The formation of radiation-stable phases at low temperature appears to precede swelling but these phases tend to dissolve when subsequently subjected to higher temperature. Phases which develop at high temperature persist when the temperature is subsequently lowered. Once nucleated at low temperatures, voids tend to persist without reduction in density at higher temperatures. However, a new round of void nucleation occurs when the temperature is decreased during irradiation. If the swelling has entered the steady-state swelling regime prior to the temperature change, there is no effect on the subsequent swelling rate. For temperature changes that occur before the end of the transient swelling regime, substantial changes can occur in the swelling behavior, particularly if the changes occur in the range around 500 0 . The isothermal swelling behavior of AISI 316 is much less sensitive to irradiation temperature than previously envisioned

  7. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    International Nuclear Information System (INIS)

    Frohwein, Lynn J.; Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-01-01

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  8. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Hoerr, Verena; Faber, Cornelius [Department of Clinical Radiology, University Hospital of Münster, Münster 48149 (Germany)

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  9. Preliminary Study of Oxygen-Enhanced Longitudinal Relaxation in MRI: A Potential Novel Biomarker of Oxygenation Changes in Solid Tumors

    International Nuclear Information System (INIS)

    O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan

    2009-01-01

    Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R 1 ). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R 1 while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced ΔR 1 . Results: ΔR 1 showed significant increases of 0.021 to 0.058 s -1 in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the ΔR 1 curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.

  10. An optically coupled system for quantitative monitoring of MRI-induced RF currents into long conductors.

    Science.gov (United States)

    Zanchi, Marta G; Venook, Ross; Pauly, John M; Scott, Greig C

    2010-01-01

    The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions.

  11. An Optically-Coupled System for Quantitative Monitoring of MRI-Induced RF Currents into Long Conductors

    Science.gov (United States)

    Zanchi, Marta G.; Venook, Ross; Pauly, John M.; Scott, Greig C.

    2010-01-01

    The currents induced in long conductors such as guidewires by the radio frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically-coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed LED transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions. PMID:19758855

  12. Past temperature reconstructions from deep ice cores: relevance for future climate change

    Directory of Open Access Journals (Sweden)

    V. Masson-Delmotte

    2006-01-01

    Full Text Available Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP and Antarctic (Dome C ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice

  13. Temperature-induced transitions between domain structures of ultrathin magnetic films

    International Nuclear Information System (INIS)

    Polyakova, T.; Zablotskii, V.

    2005-01-01

    Full text: Understanding of the influence of temperature on behavior of domain patterns of ultrathin magnetic films is of high significance for the fundamental physics of nanomagnetism as well as for technological applications. A thickness-dependent Curie temperature of ultrathin films may cause many interesting phenomena in the thermal evolution of domain structures (DS): i) nontrivial changes of the anisotropy constants as a function of the film thickness; ii) so-called inverse melting of DSs (processes where a more symmetric domain phase is found at lower temperatures than at higher temperatures - the inverse phase sequence) [1]; iii) temperature-induced transitions between domain structures. The possibility of such transitions is determined by lowering of the potential barriers separating different magnetization states as the film temperature approaches the Curie point. In this case with an increase of temperature, due to a significant decrease of the anisotropy constant, the domain wall energy is low enough and allows the system to reach equilibrium by a change of the domain wall number in the sample. This manifests itself in a transition from a metastable DS to a more stable DS which corresponds to new values of the anisotropy constant and magnetizations saturation. Thus, the temperature-induced transitions are driven by temperature changes of the magnetic parameters of the film. The key parameters controlling the DS geometry and period are the characteristic length, l c =σ/4πM S 2 (the ratio between the domain wall and demagnetization energies), and the quality factor Q =K/2πM S 2 (K is the first anisotropy constant). We show that for films with a pronounced nonmonotonic temperature dependence of l c one can expect a counter thermodynamic behavior: the inverse phase sequence and cooling-induced disordering. On changing temperature the existing domain structure should accommodate itself under new magnitudes of l c and Q. There are the two possible

  14. Structural mechanisms of high-temperature shape changes in titanium-nickel alloys after low-temperature thermomechanical treatment

    International Nuclear Information System (INIS)

    Prokoshkin, S.D.; Turenne, S.; Khmelevskaya, I.Yu.; Brailovski, V.; Trochu, F.

    2000-01-01

    High-Temperature Shape Memory Effect (HTSME) in Ti-Ni alloys and corresponding structural and internal stress changes were studied using dilatometry, in situ electron microscope and X-ray diffractometry. The HTSME induced by the Low Temperature Thermomechanical Treatment (LTMT) consists of two stages. The temperature range of the first stage is limited to 250 o C, while the second stage extends to 400-500 o C. The first stage is caused by the oriented reverse martensite transformation. The heterogeneous residual stress field causes a different thermal stability for the different martensite orientations. During the reverse transformation an anisotropic shift of martensite and austenite X-ray lines is observed that can be due to a relaxation of the orientated stresses and to changes in the martensite lattice. The second stage of HTSME is caused by internal stress relaxation during recovery and polygonization of austenite that are not typical shape memory mechanisms. The possible reasons for the martensite stabilization induced by LTMT will be discussed. (author)

  15. Late radiation effects in the dog brain: correlation of MRI and histological changes

    International Nuclear Information System (INIS)

    Hopewell, J.; Tenhunen, M.; Joensuu, H.; Farkkila, M.; Joensuu, R.; Ramadan, U.A.; Kallio, M.; Snellman, M.; DeGritz, B.; Morris, G.M.

    2003-01-01

    The brains of groups of five beagle dogs were locally irradiated with single doses of 10 - 16 Gy of 6 MV photons in order to determine the correlation between sequential changes in the brain, as detected by magnetic resonance imaging (MRI), with the eventual appearance of histological lesions. Sequential MRIs were made to detect changes in the brain for up to 77-115 weeks after irradiation. Dose-effect relationships were established for changes in the brain as detected by MRI, gross morphology and histology. The doses that caused a specified response in 50 % of the animals (ED50 ± SE) were calculated using these dose-effect relationships for each endpoint. The ED50 values (± SE) for focal and diffuse changes on T2-weighted MRI were 11.0 ± 1.1 Gy and 10.8 ± 0.9 Gy, respectively. The ED50 values (± SE) for contrast enhancement on T1-weighted MRI was 13.4 ± 0.6 Gy. It was 11.4 ± 0.6 Gy for any type of histological lesion (haemorrhage, reactive change or glial scar) 77-115 weeks after irradiation. For a macroscopic lesion and for the histological appearance of a glial scar (indicative of an earlier area of necrosis) the ED50 (± SE) values were 13.0 ± 1.1 Gy and 13.4 ± 0.57 Gy, respectively. The presence of focal or diffuse changes on T2-weighted MRIs was the best indicator for the eventual appearance of any type of histological lesion in the dog brain after irradiation with single doses of photons. The ED50 for any histological lesion did not differ significantly from the ED50 for a focal (p > 0.35) or diffuse (p = 0.3) change on T2-weighted MRIs. The ED50 for a glial scar, indicative of an earlier region of necrosis, was not significantly different (p > 0.4) from that for the appearance of contrast enhancement on T1-weighted MRI

  16. Detection of electroporation-induced membrane permeabilization states in the brain using diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Hansen, Rasmus H; Agerholm-Larsen, Birgit

    2015-01-01

    BACKGROUND: Tissue permeabilization by electroporation (EP) is a promising technique to treat certain cancers. Non-invasive methods for verification of induced permeabilization are important, especially in deep-seated cancers. In this study we evaluated diffusion-weighted magnetic resonance imaging...... (NP), transient membrane permeabilization (TMP), and permanent membrane permeabilization (PMP), respectively. DW-MRI was acquired 5 minutes, 2 hours, 24 hours and 48 hours after EP. Histology was performed for validation of the permeabilization states. Tissue content of water, Na+, K+, Ca2...... minutes after EP, compared to NP. Kurtosis was also significantly higher at 24 hours (pstates, supporting the DW-MRI findings. We conclude that DW-MRI is capable of detecting EP...

  17. An analysis of the gradient-induced electric fields and current densities in human models when situated in a hybrid MRI-LINAC system

    International Nuclear Information System (INIS)

    Liu, Limei; Trakic, Adnan; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart

    2014-01-01

    MRI-LINAC is a new image-guided radiotherapy treatment system that combines magnetic resonance imaging (MRI) with a linear accelerator (LINAC) in a single unit. One drawback is that the pulsing of the split gradient coils of the system induces an electric field and currents in the patient which need to be predicted and evaluated for patient safety. In this novel numerical study the in situ electric fields and associated current densities were evaluated inside tissue-accurate male and female human voxel models when a number of different split-geometry gradient coils were operated. The body models were located in the MRI-LINAC system along the axial and radial directions in three different body positions. Each model had a region of interest (ROI) suitable for image-guided radiotherapy. The simulation results show that the amplitudes and distributions of the field and current density induced by different split x-gradient coils were similar with one another in the ROI of the body model, but varied outside of the region. The fields and current densities induced by a split classic coil with the surface unconnected showed the largest deviation from those given by the conventional non-split coils. Another finding indicated that the distributions of the peak current densities varied when the body position, orientation or gender changed, while the peak electric fields mainly occurred in the skin and fat tissues. (paper)

  18. Thermal conditions influence changes in body temperature induced by intragastric administration of capsaicin in mice.

    Science.gov (United States)

    Mori, Noriyuki; Urata, Tomomi; Fukuwatari, Tsutomu

    2016-08-01

    Capsaicin has been reported to have unique thermoregulatory actions. However, changes in core temperature after the administration of capsaicin are a controversial point. Therefore, we investigated the effects of environmental thermal conditions on changes in body temperature caused by capsaicin in mice. We showed that intragastric administration of 10 and 15 mg/kg capsaicin increased tail temperature and decreased colonic temperatures in the core temperature (CT)-constant and CT-decreasing conditions. In the CT-increasing condition, 15 mg/kg capsaicin increased tail temperature and decreased colonic temperature. However, 10 mg/kg capsaicin increased colonic temperature. Furthermore, the amount of increase in tail temperature was greater in the CT-decreasing condition and lower in the CT-increasing condition, compared with that of the CT-constant condition. These findings suggest that the changes in core temperature were affected by the environmental thermal conditions and that preliminary thermoregulation state might be more important than the constancy of temperature to evaluate the effects of heat diffusion and thermogensis.

  19. Investigation of the mechanisms mediating MDMA "Ecstasy"-induced increases in cerebro-cortical perfusion determined by btASL MRI.

    Science.gov (United States)

    Rouine, J; Kelly, M E; Jennings-Murphy, C; Duffy, P; Gorman, I; Gormley, S; Kerskens, C M; Harkin, Andrew

    2015-05-01

    Acute administration of the recreational drug of abuse 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) has previously been shown to increase cerebro-cortical perfusion as determined by bolus-tracking arterial spin labelling (btASL) MRI. The purpose of the current study was to assess the mechanisms mediating these changes following systemic administration of MDMA to rats. Pharmacological manipulation of serotonergic, dopaminergic and nitrergic transmission was carried out to determine the mechanism of action of MDMA-induced increases in cortical perfusion using btASL MRI. Fenfluramine (10 mg/kg), like MDMA (20 mg/kg), increased cortical perfusion. Increased cortical perfusion was not obtained with the 5-HT2 receptor agonist 2,5-dimethoxy-4-iodophenyl-aminopropane hydrochloride (DOI) (1 mg/kg). Depletion of central 5-HT following systemic administration of the tryptophan hydroxylase inhibitor para-chlorophenylalanine (pCPA) produced effects similar to those observed with MDMA. Pre-treatment with the 5-HT receptor antagonist metergoline (4 mg/kg) or with the 5-HT reuptake inhibitor citalopram (30 mg/kg), however, failed to produce any effect alone or influence the response to MDMA. Pre-treatment with the dopamine D1 receptor antagonist SCH 23390 (1 mg/kg) failed to influence the changes in cortical perfusion obtained with MDMA. Treatment with the neuronal nitric oxide (NO) synthase inhibitor 7-nitroindazole (7-NI) (25 mg/kg) provoked no change in cerebral perfusion alone yet attenuated the MDMA-related increase in cortical perfusion. Cortical 5-HT depletion is associated with increases in perfusion although this mechanism alone does not account for MDMA-related changes. A role for NO, a key regulator of cerebrovascular perfusion, is implicated in MDMA-induced increases in cortical perfusion.

  20. Volcanic influence on centennial to millennial Holocene Greenland temperature change.

    Science.gov (United States)

    Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu

    2017-05-03

    Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K + and Na + ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ 18 O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.

  1. Data collection and analysis strategies for phMRI.

    Science.gov (United States)

    Mandeville, Joseph B; Liu, Christina H; Vanduffel, Wim; Marota, John J A; Jenkins, Bruce G

    2014-09-01

    Although functional MRI traditionally has been applied mainly to study changes in task-induced brain function, evolving acquisition methodologies and improved knowledge of signal mechanisms have increased the utility of this method for studying responses to pharmacological stimuli, a technique often dubbed "phMRI". The proliferation of higher magnetic field strengths and the use of exogenous contrast agent have boosted detection power, a critical factor for successful phMRI due to the restricted ability to average multiple stimuli within subjects. Receptor-based models of neurovascular coupling, including explicit pharmacological models incorporating receptor densities and affinities and data-driven models that incorporate weak biophysical constraints, have demonstrated compelling descriptions of phMRI signal induced by dopaminergic stimuli. This report describes phMRI acquisition and analysis methodologies, with an emphasis on data-driven analyses. As an example application, statistically efficient data-driven regressors were used to describe the biphasic response to the mu-opioid agonist remifentanil, and antagonism using dopaminergic and GABAergic ligands revealed modulation of the mesolimbic pathway. Results illustrate the power of phMRI as well as our incomplete understanding of mechanisms underlying the signal. Future directions are discussed for phMRI acquisitions in human studies, for evolving analysis methodologies, and for interpretative studies using the new generation of simultaneous PET/MRI scanners. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. MRI assessment of mid-urethral ligament changes in female stress urinary incontinence

    International Nuclear Information System (INIS)

    Bai Mei; Liu Hongyi; Han Yue; Xu Guoping; Fang Ping; Zhao Yang; Li Jingjin

    2012-01-01

    Objective: To evaluate the MRI value in changes of mid-urethral ligament injury of female stress urinary incontinence (SUI). Methods: Comparison of MRI changes of mid-urethral ligament on 30 healthy female volunteers and 20 female SUI patients. Chi-square test was used to compare the form of SUI patient's mid-urethral support ligaments. Results: The female mid-urethral support ligaments were composed of 4 groups of ligaments, including the periurethral ligament and pubourethral ligaments (1 pair), and at both sides of the urethra's paraurethral ligaments (1 pair) and suburethral ligament lying dorsal urethra, connecting the urethra and pelvic arcus tendinous fasciae. In normal MRI, ligament was a thin strip and showed low signal on both T 1 WI and T 2 WI, T 2 WI sagittal and cross-section scan was the best combination to show the middle urethral support ligaments changes, with tension; 6 patients (20%) in the 30 patients normal control group could be seen tortuously and slack like around the urethra ligaments. Twenty SUI patients mid-urethral support ligaments were performance laxity or rupture,rates were 39% (47/120) and 42% (50/120) (χ 2 =43.191, P<0.05). On T 2 WI, the ligamentous laxity was floating,and loss tension, also could performance one side extension and thinner than the other side. The ligament rupture was performance of the signal interruption, ligament contracture and one end of ligament attachment points separation. Conclusion: MRI can objective effective evaluate the mid-urethral support ligaments' pathological changes in stress urinary incontinence patients. (authors)

  3. Language changes coincide with motor and fMRI changes following upper extremity motor therapy for hemiparesis: a brief report.

    Science.gov (United States)

    Harnish, Stacy; Meinzer, Marcus; Trinastic, Jonathan; Fitzgerald, David; Page, Stephen

    2014-09-01

    To formally assess changes in language, affected UE movement, and motor functional activation changes via functional magnetic resonance imaging (fMRI) following participation in motor therapy without any accompanying language intervention. Pre-post case series. Five subjects with stroke exhibiting chronic, stable UE hemiparesis. The upper extremity section of the Fugl-Meyer (FM), the Western Aphasia Battery (WAB), and functional magnetic resonance imaging (fMRI), administered during performance of an affected UE motor task. All subjects were administered six weeks of repetitive task specific training (RTP), performed for approximately 2.5 hours per day, split into two sessions. For the first four weeks of the intervention period, RTP was administered every weekday, whereas, for the subsequent two weeks, RTP was administered 3 days/week. Epidural cortical stimulation was co-administered with the RTP via an electrode array and implanted pulse generator. For all sessions, one subject worked with a single therapist. Four weeks before and four weeks after the intervention period, all subjects were administered the FM, WAB, and fMRI. Three of the subjects exhibited clinically significant language changes on the WAB. These individuals exhibited the largest motor changes as measured by the FM. Functional MRI revealed distinct motor activation patterns in these subjects, characterized by more strongly right lateralized focal BOLD activity or a shift in activation toward the right hemisphere. Language changes appear to co-occur with motor changes after UE RTP. Understanding the underlying mechanisms of these findings may lead to more efficient and synergistic rehabilitative therapy delivery.

  4. Amplification and dampening of soil respiration by changes in temperature variability

    Directory of Open Access Journals (Sweden)

    C. A. Sierra

    2011-04-01

    Full Text Available Accelerated release of carbon from soils is one of the most important feedbacks related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature variability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature. Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long-term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen the release of carbon through soil respiration as climate regimes change. These effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  5. Amplification and dampening of soil respiration by changes in temperature variability

    Science.gov (United States)

    Sierra, C.A.; Harmon, M.E.; Thomann, E.; Perakis, S.S.; Loescher, H.W.

    2011-01-01

    Accelerated release of carbon from soils is one of the most important feed backs related to anthropogenically induced climate change. Studies addressing the mechanisms for soil carbon release through organic matter decomposition have focused on the effect of changes in the average temperature, with little attention to changes in temperature vari-ability. Anthropogenic activities are likely to modify both the average state and the variability of the climatic system; therefore, the effects of future warming on decomposition should not only focus on trends in the average temperature, but also variability expressed as a change of the probability distribution of temperature.Using analytical and numerical analyses we tested common relationships between temperature and respiration and found that the variability of temperature plays an important role determining respiration rates of soil organic matter. Changes in temperature variability, without changes in the average temperature, can affect the amount of carbon released through respiration over the long term. Furthermore, simultaneous changes in the average and variance of temperature can either amplify or dampen there release of carbon through soil respiration as climate regimes change. The effects depend on the degree of convexity of the relationship between temperature and respiration and the magnitude of the change in temperature variance. A potential consequence of this effect of variability would be higher respiration in regions where both the mean and variance of temperature are expected to increase, such as in some low latitude regions; and lower amounts of respiration where the average temperature is expected to increase and the variance to decrease, such as in northern high latitudes.

  6. Local changes in bone marrow at MRI after treatment of extremity soft tissue sarcoma

    International Nuclear Information System (INIS)

    Hwang, Sinchun; Lefkowitz, Robert; Landa, Jonathan; Akin, Oguz; Schwartz, Lawrence H.; Cassie, Conrad; Panicek, David M.; Healey, John H.; Alektiar, Kaled M.

    2009-01-01

    To determine the prevalence and appearance of magnetic resonance imaging (MRI) signal changes that occur in local bone marrow after radiation therapy (RT) and/or chemotherapy for extremity soft tissue sarcoma (STS). Seventy patients with primary STS at the level of a long bone who also had undergone pretreatment MRI and at least one post-treatment MRI of the tumor bed were identified. MRIs of each patient were retrospectively reviewed for new changes in marrow signal in the region of the tumor bed and for the morphology, relative signal intensities, heterogeneity, and progression or regression of changes over time. Focal signal changes in marrow were observed in 26/70 patients (37%) at a median of 9.5 months after RT and/or chemotherapy and diffuse changes in seven (10%) at a median of 8 months. Patients who received neither RT nor chemotherapy did not develop marrow changes. Mean RT doses in patients with changes and those without were 5,867 and 6,076 cGy, respectively. In most patients with focal changes, changes were seen in all sequences and were linear-curvilinear, patchy, or mixed at the level of the tumor bed. Predominant signal intensity of changes was between muscle and fat at T1WI and between muscle and fluid at fat-saturated T2WI or short tau inversion recovery. Most focal changes enhanced heterogeneously and increased or fluctuated in size over time. Changes in MRI appearance of long bone marrow frequently are evident after combined RT and chemotherapy for STS and most commonly increase or fluctuate in size over time. These changes have various non-mass-like configurations and often show signal intensities similar to those of red marrow and thus should not be mistaken for metastases. The marrow changes might represent an early stage of gelatinous transformation of marrow. (orig.)

  7. Attributing Changing Rates of Temperature Record Breaking to Anthropogenic Influences

    Science.gov (United States)

    King, Andrew D.

    2017-11-01

    Record-breaking temperatures attract attention from the media, so understanding how and why the rate of record breaking is changing may be useful in communicating the effects of climate change. A simple methodology designed for estimating the anthropogenic influence on rates of record breaking in a given time series is proposed here. The frequency of hot and cold record-breaking temperature occurrences is shown to be changing due to the anthropogenic influence on the climate. Using ensembles of model simulations with and without human-induced forcings, it is demonstrated that the effect of climate change on global record-breaking temperatures can be detected as far back as the 1930s. On local scales, a climate change signal is detected more recently at most locations. The anthropogenic influence on the increased occurrence of hot record-breaking temperatures is clearer than it is for the decreased occurrence of cold records. The approach proposed here could be applied in rapid attribution studies of record extremes to quantify the influence of climate change on the rate of record breaking in addition to the climate anomaly being studied. This application is demonstrated for the global temperature record of 2016 and the Central England temperature record in 2014.

  8. Increased Risk of Drug-Induced Hyponatremia during High Temperatures

    Directory of Open Access Journals (Sweden)

    Anna K Jönsson

    2017-07-01

    Full Text Available Purpose: To investigate the relationship between outdoor temperature in Sweden and the reporting of drug-induced hyponatremia to the Medical Products Agency (MPA. Methods: All individual adverse drug reactions (ADR reported to MPA from 1 January 2010 to 31 October 2013 of suspected drug-induced hyponatremia and random controls were identified. Reports where the ADR had been assessed as having at least a possible relation to the suspected drug were included. Information on administered drugs, onset date, causality assessment, sodium levels, and the geographical origin of the reports was extracted. A case-crossover design was used to ascertain the association between heat exposure and drug-induced hyponatremia at the individual level, while linear regression was used to study its relationship to sodium concentration in blood. Temperature exposure data were obtained from the nearest observation station to the reported cases. Results: During the study period, 280 reports of hyponatremia were identified. More cases of drug-induced hyponatremia were reported in the warmer season, with a peak in June, while other ADRs showed an opposite annual pattern. The distributed lag non-linear model indicated an increasing odds ratio (OR with increasing temperature in the warm season with a highest odds ratio, with delays of 1–5 days after heat exposure. A cumulative OR for a lag time of 1 to 3 days was estimated at 2.21 at an average daily temperature of 20 °C. The change in sodium per 1 °C increase in temperature was estimated to be −0.37 mmol/L (95% CI: −0.02, −0.72. Conclusions: Warm weather appears to increase the risk of drug-induced hyponatremia

  9. A rabbit model of atherosclerosis at carotid artery: MRI visualization and histopathological characterization

    International Nuclear Information System (INIS)

    Ma, Zhan-Long; Teng, Gao-Jun; Chen, Jun; Zhang, Hong-Ying; Cao, Ai-Hong; Ni, Yicheng

    2008-01-01

    To induce a rabbit model of atherosclerosis at carotid artery, to visualize the lesion evolution with magnetic resonance imaging (MRI), and to characterize the lesion types by histopathology. Atherosclerosis at the right common carotid artery (RCCA) was induced in 23 rabbits by high-lipid diet following balloon catheter injury to the endothelium. The rabbits were examined in vivo with a 1.5-T MRI and randomly divided into three groups of 6 weeks (n=6), 12 weeks (n=8) and 15 weeks (n=9) for postmortem histopathology. The lesions on both MRI and histology were categorized according to the American Heart Association (AHA) classifications of atherosclerosis. Type I and type II of atherosclerotic changes were detected at week 6, i.e., nearly normal signal intensity (SI) of the injured RCCA wall without stenosis on MRI, but with subendothelial inflammatory infiltration and proliferation of smooth muscle cells on histopathology. At week 12, 75.0% and 62.5% of type III changes were encountered on MRI and histopathology respectively with thicker injured RCCA wall of increased SI on T 1 -weighted and proton density (PD)-weighted MRI and microscopically a higher degree of plaque formation. At week 15, carotid atherosclerosis became more advanced, i.e., type IV and type V in 55.6% and 22.2% of the lesions with MRI and 55.6% and 33.3% of the lesions with histopathology, respectively. Statistical analysis revealed a significant agreement (p<0.05) between the MRI and histological findings for lesion classification (r=0.96). A rabbit model of carotid artery atherosclerosis has been successfully induced and noninvasively visualized. The atherosclerotic plaque formation evolved from type I to type V with time, which could be monitored with 1.5-T MRI and confirmed with histomorphology. This experimental setting can be applied in preclinical research on atherosclerosis. (orig.)

  10. A receptor-based model for dopamine-induced fMRI signal

    Science.gov (United States)

    Mandeville, Joseph. B.; Sander, Christin Y. M.; Jenkins, Bruce G.; Hooker, Jacob M.; Catana, Ciprian; Vanduffel, Wim; Alpert, Nathaniel M.; Rosen, Bruce R.; Normandin, Marc D.

    2013-01-01

    This report describes a multi-receptor physiological model of the fMRI temporal response and signal magnitude evoked by drugs that elevate synaptic dopamine in basal ganglia. The model is formulated as a summation of dopamine’s effects at D1-like and D2-like receptor families, which produce functional excitation and inhibition, respectively, as measured by molecular indicators like adenylate cyclase or neuroimaging techniques like fMRI. Functional effects within the model are described in terms of relative changes in receptor occupancies scaled by receptor densities and neuro-vascular coupling constants. Using literature parameters, the model reconciles many discrepant observations and interpretations of pre-clinical data. Additionally, we present data showing that amphetamine stimulation produces fMRI inhibition at low doses and a biphasic response at higher doses in the basal ganglia of non-human primates (NHP), in agreement with model predictions based upon the respective levels of evoked dopamine. Because information about dopamine release is required to inform the fMRI model, we simultaneously acquired PET 11C-raclopride data in several studies to evaluate the relationship between raclopride displacement and assumptions about dopamine release. At high levels of dopamine release, results suggest that refinements of the model will be required to consistently describe the PET and fMRI data. Overall, the remarkable success of the model in describing a wide range of preclinical fMRI data indicate that this approach will be useful for guiding the design and analysis of basic science and clinical investigations and for interpreting the functional consequences of dopaminergic stimulation in normal subjects and in populations with dopaminergic neuroadaptations. PMID:23466936

  11. Safety considerations to avoid current-induced skin burns in MRI

    International Nuclear Information System (INIS)

    Knopp, M.V.; Metzner, R.; Kaick, G. van; Brix, G.; Bundesamt fuer Strahlenschutz, Oberschleissheim

    1998-01-01

    The safety aspects of radiological methods continue to evolve. In this paper we report on two cases of skin burns in MRI caused by induced electrical current. A second- and a third-degree skin burn occurred during imaging in a 1.5 T system. The electromagnetic radiofrequency field inadvertently led to electrical currents caused by a conducting loop through the extremities and trunk. Skin burns induced by electrical current may occur in extremely rare cases even with standard MR imaging protocols operating within all current safety guidelines by inadvertently forming a closed conducting loop. By avoiding focal skin to skin contact of the extremities, this extremely rare adverse event can be avoided. (orig.) [de

  12. Modic type 1 changes. Detection performance of fat-suppressed fluid-sensitive MRI sequences

    Energy Technology Data Exchange (ETDEWEB)

    Finkenstaedt, Tim; Andreisek, Gustav [University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Del Grande, Filippo [Ospedale Regionale di Lugano (Switzerland). Inst. of Diagnostic and Interventional Radiology; Bolog, Nicolae [Phoenix Diagnostic Clinic, Bucharest (Romania); Ulrich, Nils; Tok, Sina [Schulthess Clinic, Zurich (Switzerland). Dept. of Neurosurgery; Kolokythas, Orpheus [Kantonsspital Winterthur (Switzerland). Inst. for Radiology and Nuclear Medicine; Steurer, Johann [University Hospital Zurich (Switzerland). Horten Center for Patient Oriented Research and Knowledge Transfer; Winklhofer, Sebastian [University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; University Hospital Zurich (Switzerland). Dept. of Neuroradiology; Collaboration: LSOS Study Group

    2018-02-15

    To assess the performance of fat-suppressed fluid-sensitive MRI sequences compared to T1-weighted (T1w) / T2w sequences for the detection of Modic 1 end-plate changes on lumbar spine MRI. Sagittal T1w, T2w, and fat-suppressed fluid-sensitive MRI images of 100 consecutive patients (consequently 500 vertebral segments; 52 female, mean age 74 ± 7.4 years; 48 male, mean age 71 ± 6.3 years) were retrospectively evaluated. We recorded the presence (yes/no) and extension (i.e., Likert-scale of height, volume, and end-plate extension) of Modic I changes in T1w/T2w sequences and compared the results to fat-suppressed fluid-sensitive sequences (McNemar/Wilcoxon-signed-rank test). Fat-suppressed fluid-sensitive sequences revealed significantly more Modic I changes compared to T1w/T2w sequences (156 vs. 93 segments, respectively; p < 0.001). The extension of Modic I changes in fat-suppressed fluid-sensitive sequences was significantly larger compared to T1w/T2w sequences (height: 2.53 ± 0.82 vs. 2.27 ± 0.79, volume: 2.35 ± 0.76 vs. 2.1 ± 0.65, end-plate: 2.46 ± 0.76 vs. 2.19 ± 0.81), (p < 0.05). Modic I changes that were only visible in fat-suppressed fluid-sensitive sequences but not in T1w/T2w sequences were significantly smaller compared to Modic I changes that were also visible in T1w/T2w sequences (p < 0.05). In conclusion, fat-suppressed fluid-sensitive MRI sequences revealed significantly more Modic I end-plate changes and demonstrated a greater extent compared to standard T1w/T2w imaging.

  13. LSD-induced entropic brain activity predicts subsequent personality change.

    Science.gov (United States)

    Lebedev, A V; Kaelen, M; Lövdén, M; Nilsson, J; Feilding, A; Nutt, D J; Carhart-Harris, R L

    2016-09-01

    Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Effect of temperature changes on swelling and creep of AISI 316

    International Nuclear Information System (INIS)

    Garner, F.A.; Gilbert, E.R.; Gelles, D.S.; Foster, J.P.

    1980-04-01

    A number of previous publications have shown that the swelling of cold-worked AISI 316 is quite sensitive to changes in temperature which occur during irradiation. In this report those data are expanded and reanalyzed to show that the concurrent irradiation creep is also quite sensitive to changes in irradiation temperature. An explanation is advanced to explain this behavior in terms of the sensitivity to temperture history of the radiation-induced microchemical evolution of this steel. In particular, the sensitivity to temperature history of the radiation-stabilized gamma prime phase is invoked to explain the enhanced creep and swelling behavior of AISI 316 components which experienced either gradual or abrupt decreases in temperature. The phase development observed in this steel in response to temperature changes during irradiation is also compared to the similar behavior found in aged specimens subjected to isothermal irradiation

  15. Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).

    Science.gov (United States)

    Kendrick, B Jacob; DiTullio, Giacomo R; Cyronak, Tyler J; Fulton, James M; Van Mooy, Benjamin A S; Bidle, Kay D

    2014-01-01

    Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi's susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.

  16. Lipid- and temperature-dependent structural changes in Acholeplasma laidlawii cell membrances

    Energy Technology Data Exchange (ETDEWEB)

    James, R.; Branton, D.

    1973-01-01

    The lipids in cell membranes of Acholeplasma laidlawii were enriched with different fatty acids selected to produce membranes showing molecular motion discontinuities at temperatures between 10 and 35/sup 0/C. Molecular motion in these membranes was probed by ESR after labelling with 12-nitroxide stearate, and structure in these membranes was examined by electron microscopy after freeze-etching. Freeze-etching and electron microscopy showed that under certain conditions the particles in the A. laidlawii membranes aggregated, resulting in particle-rich and particle-depleted regions in the cell membrane. Depending upon the lipid content of the membrane, this aggregation could begin at temperatures well above the ESR-determined discontinuity. Aggregation increased with decreasing temperature but was completed at or near the discontinuity. However, cell membranes grown and maintained well below their ESR-determined discontinuity did not show maximum particle aggregation until after they had been exposed to temperatures at or above the discontinuity. The results show that temperatures at or near a phase transition temperature can induce aggregation of the membrane particles. This suggests that temperature-induced changes in the lipid phase of a biological membrane can induce phase separations which affect the topography of associated proteins.

  17. NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Wu, H; Wang, X; Gao, Y; Lin, F; Song, T; Zou, Y; Xu, L; Lei, H

    2016-05-13

    Animal models of N-methyl-d-aspartate receptor (NMDAR) antagonism have been widely used for schizophrenia research. Less is known whether these models are associated with macroscopic brain structural changes that resemble those in clinical schizophrenia. Magnetic resonance imaging (MRI) was used to measure brain structural changes in rats subjected to repeated administration of MK801 in a regimen (daily dose of 0.2mg/kg for 14 consecutive days) known to be able to induce schizophrenia-like cognitive impairments. Voxel-based morphometry (VBM) revealed significant gray matter (GM) atrophy in the hippocampus, ventral striatum (vStr) and cortex. Diffusion tensor imaging (DTI) demonstrated microstructural impairments in the corpus callosum (cc). Histopathological results corroborated the MRI findings. Treatment-induced behavioral abnormalities were not measured such that correlation between the brain structural changes observed and schizophrenia-like behaviors could not be established. Chronic MK801 administration induces MRI-observable brain structural changes that are comparable to those observed in schizophrenia patients, supporting the notion that NMDAR hypofunction contributes to the pathology of schizophrenia. Imaging-derived brain structural changes in animal models of NMDAR antagonism may be useful measurements for studying the effects of treatments and interventions targeting schizophrenia. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Evaluation of MRI issues for an access port with a radiofrequency identification (RFID) tag.

    Science.gov (United States)

    Titterington, Blake; Shellock, Frank G

    2013-10-01

    A medical implant that contains metal, such as an RFID tag, must undergo proper MRI testing to ensure patient safety and to determine that the function of the RFID tag is not compromised by exposure to MRI conditions. Therefore, the objective of this investigation was to assess MRI issues for a new access port that incorporates an RFID tag. Samples of the access port with an RFID tag (Medcomp Power Injectable Port with CertainID; Medcomp, Harleysville, PA) were evaluated using standard protocols to assess magnetic field interactions (translational attraction and torque; 3-T), MRI-related heating (3-T), artifacts (3-T), and functional changes associated with different MRI conditions (nine samples, exposed to different MRI conditions at 1.5-T and 3-T). Magnetic field interactions were not substantial and will pose no hazards to patients. MRI-related heating was minimal (highest temperature change, 1.7°C; background temperature rise, 1.6°C). Artifacts were moderate in size in relation to the device. Exposures to MRI conditions at 1.5-T and 3-T did not alter or damage the functional aspects of the RFID tag. Based on the findings of the test, this new access port with an RFID tag is acceptable (or, MR conditional, using current MRI labeling terminology) for patients undergoing MRI examinations at 1.5-T/64-MHz and 3-T/128-MHz. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Wang, Liya; Ali, Shazia; Fa, Tianning; Mao, Hui; Dandan, Chen; Olson, Jeffrey

    2012-01-01

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  20. Observed changes of temperature extremes during 1960-2005 in China: natural or human-induced variations?

    Science.gov (United States)

    Zhang, Qiang; Li, Jianfeng; David Chen, Yongqin; Chen, Xiaohong

    2011-12-01

    The purpose of this study was to statistically examine changes of surface air temperature in time and space and to analyze two factors potentially influencing air temperature changes in China, i.e., urbanization and net solar radiation. Trends within the temperature series were detected by using Mann-Kendall trend test technique. The scientific problem this study expected to address was that what could be the role of human activities in the changes of temperature extremes. Other influencing factors such as net solar radiation were also discussed. The results of this study indicated that: (1) increasing temperature was observed mainly in the northeast and northwest China; (2) different behaviors were identified in the changes of maximum and minimum temperature respectively. Maximum temperature seemed to be more influenced by urbanization, which could be due to increasing urban albedo, aerosol, and air pollutions in the urbanized areas. Minimum temperature was subject to influences of variations of net solar radiation; (3) not significant increasing and even decreasing temperature extremes in the Yangtze River basin and the regions south to the Yangtze River basin could be the consequences of higher relative humidity as a result of increasing precipitation; (4) the entire China was dominated by increasing minimum temperature. Thus, we can say that the warming process of China was reflected mainly by increasing minimum temperature. In addition, consistently increasing temperature was found in the upper reaches of the Yellow River basin, the Yangtze River basin, which have the potential to enhance the melting of permafrost in these areas. This may trigger new ecological problems and raise new challenges for the river basin scale water resource management.

  1. Climate-induced changes in river water temperature in North Iberian Peninsula

    Science.gov (United States)

    Soto, Benedicto

    2017-06-01

    This study evaluates the effects of climate change on the thermal regime of 12 rivers in the Northern Iberian Peninsula by using a non-linear regression model that employs air temperature as the only input variable. Prediction of future air temperature was obtained from five regional climate models (RCMs) under emission scenario Special Report on Emissions Scenarios A1B. Prior to simulation of water temperature, air temperature was bias-corrected (B-C) by means of variance scaling (VS) method. This procedure allows an improvement of fit between observed and estimated air temperature for all climate models. The simulation of water temperature for the period 1990-2100 shows an increasing trend, which is higher for the period of June-August (summer) and September-November (autumn) (0.0275 and 0.0281 °C/year) than that of winter (December-February) and spring (March-May) (0.0181 and 0.0218 °C/year). In the high air temperature range, daily water temperature is projected to increase on average by 2.2-3.1 °C for 2061-2090 relative to 1961-1990. During the coldest days, the increment of water temperature would range between 1.0 and 1.7 °C. In fact, employing the numbers of days that water temperature exceeded the upper incipient lethal temperature (UILT) for brown trout (24.7 °C) has been noted that this threshold is exceeded 14.5 days per year in 2061-2090 while in 1961-1990, this values was exceeded 2.6 days per year of mean and 3.6 days per year in observation period (2000-2014).

  2. The value of DCE-MRI in assessing histopathological and molecular biological features in induced rat epithelial ovarian carcinomas.

    Science.gov (United States)

    Yuan, Su Juan; Qiao, Tian Kui; Qiang, Jin Wei; Cai, Song Qi; Li, Ruo Kun

    2017-09-26

    To investigate dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) for assessing histopathological and molecular biological features in induced rat epithelial ovarian carcinomas (EOCs). 7,12-dimethylbenz[A]anthracene (DMBA) was applied to induce EOCs in situ in 46 SD rats. Conventional MRI and DCE-MRI were performed to evaluate the morphology and perfusion features of the tumors, including the time-signal intensity curve (TIC), volume transfer constant (K trans ), rate constant (K ep ), extravascular extracellular space volume ratio (V e ) and initial area under the curve (IAUC). DCE-MRI parameters were correlated with histological grade, microvascular density (MVD), vascular endothelial growth factor (VEGF) and fraction of Ki67-positive cells and the serum level of cancer antigen 125 (CA125). Thirty-five of the 46 rats developed EOCs. DCE-MRI showed type III TIC more frequently than type II (29/35 vs. 6/35, p values showed significant differences in different histological grades in overall and pairwise comparisons except for IAUC in grade 2 vs. grade 3 (all p values among the three grade groups (p > 0.05). K trans , K ep and IAUC values were positively correlated with MVD, VEGF and Ki67 expression (all p  0.05). TIC types and perfusion parameters of DCE-MRI can reflect tumor grade, angiogenesis and cell proliferation to some extent, thereby helping treatment planning and predicting prognosis.

  3. MRI of the sacroiliac joints in spondyloarthritis: the added value of intra-articular signal changes for a 'positive MRI'.

    Science.gov (United States)

    Laloo, Frederiek; Herregods, N; Jaremko, J L; Verstraete, K; Jans, L

    2018-05-01

    To determine if intra-articular signal changes at the sacroiliac joint space on MRI have added diagnostic value for spondyloarthritis, when compared to bone marrow edema (BME). A retrospective study was performed on the MRIs of sacroiliac joints of 363 patients, aged 16-45 years, clinically suspected of sacroiliitis. BME of the sacroiliac joints was correlated to intra-articular sacroiliac joint MR signal changes: high T1 signal, fluid signal, ankylosis and vacuum phenomenon (VP). These MRI findings were correlated with final clinical diagnosis. Sensitivity (SN), specificity (SP), likelihood ratios (LR), predictive values and post-test probabilities were calculated. BME had SN of 68.9%, SP of 74.0% and LR+ of 2.6 for diagnosis of spondyloarthritis. BME in absence of intra-articular signal changes had a lower SN and LR+ for spondyloarthritis (SN = 20.5%, LR+ 1.4). Concomitant BME and high T1 signal (SP = 97.2%, LR + = 10.5), BME and fluid signal (SP = 98.6%, LR + = 10.3) or BME and ankylosis (SP = 100%) had higher SP and LR+ for spondyloarthritis. Concomitant BME and VP had low LR+ for spondyloarthritis (SP = 91%, LR + =0.9). When BME was absent, intra-articular signal changes were less prevalent, but remained highly specific for spondyloarthritis. Our results suggest that both periarticular and intra-articular MR signal of the sacroiliac joint should be examined to determine whether an MRI is 'positive' or 'not positive' for sacroiliitis associated with spondyloarthritis.

  4. Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Solovchuk, Maxim A., E-mail: solovchuk@gmail.com [Center for Advanced Study in Theoretical Sciences (CASTS), National Taiwan University, Taipei 10617, Taiwan (China); Hwang, San Chao; Chang, Hsu [Medical Engineering Research Division, National Health Research Institute, Miaoli 35053, Taiwan (China); Thiriet, Marc [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); Sheu, Tony W. H., E-mail: twhsheu@ntu.edu.tw [Department of Engineering Science and Ocean Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China and Center for Advanced Study in Theoretical Sciences (CASTS), National Taiwan University, Taipei 10617, Taiwan (China)

    2014-05-15

    Purpose: High-intensity focused ultrasound is a rapidly developing medical technology with a large number of potential clinical applications. Computational model can play a pivotal role in the planning and optimization of the treatment based on the patient's image. Nonlinear propagation effects can significantly affect the temperature elevation and should be taken into account. In order to investigate the importance of nonlinear propagation effects, nonlinear Westervelt equation was solved. Weak nonlinear propagation effects were studied. The purpose of this study was to investigate the correlation between the predicted and measured temperature elevations and lesion in a porcine muscle. Methods: The investigated single-element transducer has a focal length of 12 cm, an aperture of 8 cm, and frequency of 1.08 MHz. Porcine muscle was heated for 30 s by focused ultrasound transducer with an acoustic power in the range of 24–56 W. The theoretical model consists of nonlinear Westervelt equation with relaxation effects being taken into account and Pennes bioheat equation. Results: Excellent agreement between the measured and simulated temperature rises was found. For peak temperatures above 85–90 °C “preboiling” or cavitation activity appears and lesion distortion starts, causing small discrepancy between the measured and simulated temperature rises. From the measurements and simulations, it was shown that distortion of the lesion was caused by the “preboiling” activity. Conclusions: The present study demonstrated that for peak temperatures below 85–90 °C numerical simulation results are in excellent agreement with the experimental data in three dimensions. Both temperature rise and lesion size can be well predicted. Due to nonlinear effect the temperature in the focal region can be increased compared with the linear case. The current magnetic resonance imaging (MRI) resolution is not sufficient. Due to the inevitable averaging the measured

  5. A temperature sensor implant for active implantable medical devices for in vivo subacute heating tests under MRI.

    Science.gov (United States)

    Silemek, Berk; Acikel, Volkan; Oto, Cagdas; Alipour, Akbar; Aykut, Zaliha Gamze; Algin, Oktay; Atalar, Ergin

    2018-05-01

    To introduce a temperature sensor implant (TSI) that mimics an active implantable medical device (AIMD) for animal testing of MRI heating. Computer simulations and phantom experiments poorly represent potential temperature increases. Animal experiments could be a better model, but heating experiments conducted immediately after the surgery suffer from alterations of the thermoregulatory and tissue properties during acute testing conditions. Therefore, the aim of this study was to introduce a temperature sensor implant that mimics an AIMD and capable of measuring the electrode temperature after implantation of the device without any further intervention at any time after the surgery in an animal model. A battery-operated TSI, which resembled an AIMD, was used to measure the lead temperature and impedance and the case temperature. The measured values were transmitted to an external computer via a low-power Bluetooth communication protocol. In addition to validation experiments on the phantom, a sheep experiment was conducted to test the feasibility of the system in subacute conditions. The measurements had a maximum of 0.5°C difference compared to fiber-optic temperature probes. In vivo animal experiments demonstrated feasibility of the system. An active implant, which can measure its own temperature, was proposed to investigate implant heating during MRI examinations. Magn Reson Med 79:2824-2832, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Brain MRI changes in chronic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Skehan, S. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Norris, S. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Hegarty, J. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Owens, A. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); MacErlaine, D. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland)

    1997-08-01

    Cirrhotic patients are known to have abnormally high signal principally in the globus pallidus on non-contrast T1-weighted MRI. The purpose of this study was to relate MR changes to clinical and pathological features of chronic liver disease. We confirmed abnormally high signal in the globus pallidus on T1-weighted images in 25 of 28 patients with chronic liver disease, showing that it also occurs in patients who have not yet progressed to cirrhosis. Changes were seen in patients both with and without clinical portosystemic shunting. This abnormality is not responsible for hepatic encephalopathy. Cholestatic disease was more likely to produce marked changes than non-cholestatic disease. No statistically significant correlation was demonstrated between the severity of liver disease and the degree of MR abnormality. However, marked improvement in MR appearances was seen after successful liver transplantation. (orig.). With 3 figs., 4 tabs.

  7. Brain MRI changes in chronic liver disease

    International Nuclear Information System (INIS)

    Skehan, S.; Norris, S.; Hegarty, J.; Owens, A.; MacErlaine, D.

    1997-01-01

    Cirrhotic patients are known to have abnormally high signal principally in the globus pallidus on non-contrast T1-weighted MRI. The purpose of this study was to relate MR changes to clinical and pathological features of chronic liver disease. We confirmed abnormally high signal in the globus pallidus on T1-weighted images in 25 of 28 patients with chronic liver disease, showing that it also occurs in patients who have not yet progressed to cirrhosis. Changes were seen in patients both with and without clinical portosystemic shunting. This abnormality is not responsible for hepatic encephalopathy. Cholestatic disease was more likely to produce marked changes than non-cholestatic disease. No statistically significant correlation was demonstrated between the severity of liver disease and the degree of MR abnormality. However, marked improvement in MR appearances was seen after successful liver transplantation. (orig.). With 3 figs., 4 tabs

  8. Irradiation-induced dimensional changes of poorly crystalline carbons

    International Nuclear Information System (INIS)

    Bullock, R.E.

    1979-01-01

    Data are presented on irradiation-induced changes of poorly crystalline carbons at high temperatures(>900 0 C). The materials surveyed include: (1) carbon fibers, (2) glassy carbons, (3) carbonaceous matrix materials for HTGR fuel rods and (4) pyrocarbons. The materials are listed in order of increasing stability, with maximum strains ranging from more than 50% for fibers to less than 10% for pyrocarbons. Dimensional changes of highly anisotropic carbon fibers appear to be sensitive to irradiation temperature, as slightly anisotropic pyrocarbons are, whereas temperature seems to have little influence on the behavior of isotropic glassy carbons over the range from 600 to 1350 0 C. Dimensional changes for graphite-filled matrix materials were roughly isotropic on the average and did not seem to be strongly temperature dependent for the lower fluences investigated. Increased graphite filler lowered volumetric dimensional changes of the matrix in agreement with a rule-of-mixtures relationship between change components for the filler and the less-stable binder phases. Instabilities of all of the poorly crystalline materials were generally greater than those for more crystalline carbons under the same conditions, including highly orientated graphites that approximate single-crystal behavior. (author)

  9. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes.

    Science.gov (United States)

    Lee, Joon Ha; Dillman, Adler R; Hallem, Elissa A

    2016-05-06

    Entomopathogenic nematodes (EPNs) are lethal parasites of insects that are of interest as biocontrol agents for insect pests and disease vectors. Although EPNs have been successfully commercialized for pest control, their efficacy in the field is often inconsistent for reasons that remain elusive. EPN infective juveniles (IJs) actively search for hosts to infect using a diverse array of host-emitted odorants. Here we investigate whether their host-seeking behavior is subject to context-dependent modulation. We find that EPN IJs exhibit extreme plasticity of olfactory behavior as a function of cultivation temperature. Many odorants that are attractive for IJs grown at lower temperatures are repulsive for IJs grown at higher temperatures and vice versa. Temperature-induced changes in olfactory preferences occur gradually over the course of days to weeks and are reversible. Similar changes in olfactory behavior occur in some EPNs as a function of IJ age. EPNs also show temperature-dependent changes in their host-seeking strategy: IJs cultured at lower temperatures appear to more actively cruise for hosts than IJs cultured at higher temperatures. Furthermore, we find that the skin-penetrating rat parasite Strongyloides ratti also shows temperature-dependent changes in olfactory behavior, demonstrating that such changes occur in mammalian-parasitic nematodes. IJs are developmentally arrested and long-lived, often surviving in the environment through multiple seasonal temperature changes. Temperature-dependent modulation of behavior may enable IJs to optimize host seeking in response to changing environmental conditions, and may play a previously unrecognized role in shaping the interactions of both beneficial and harmful parasitic nematodes with their hosts.

  10. Temperature and SAR measurement errors in the evaluation of metallic linear structures heating during MRI using fluoroptic (registered) probes

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, E [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Triventi, M [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Calcagnini, G [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Censi, F [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy); Kainz, W [Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD (United States); Bassen, H I [Center for Devices and Radiological Health, Food and Drug Administration, Rockville, MD (United States); Bartolini, P [Department of Technologies and Health, Italian National Institute of Health, Rome (Italy)

    2007-03-21

    The purpose of this work is to evaluate the error associated with temperature and SAR measurements using fluoroptic (registered) temperature probes on pacemaker (PM) leads during magnetic resonance imaging (MRI). We performed temperature measurements on pacemaker leads, excited with a 25, 64, and 128 MHz current. The PM lead tip heating was measured with a fluoroptic (registered) thermometer (Luxtron, Model 3100, USA). Different contact configurations between the pigmented portion of the temperature probe and the PM lead tip were investigated to find the contact position minimizing the temperature and SAR underestimation. A computer model was used to estimate the error made by fluoroptic (registered) probes in temperature and SAR measurement. The transversal contact of the pigmented portion of the temperature probe and the PM lead tip minimizes the underestimation for temperature and SAR. This contact position also has the lowest temperature and SAR error. For other contact positions, the maximum temperature error can be as high as -45%, whereas the maximum SAR error can be as high as -54%. MRI heating evaluations with temperature probes should use a contact position minimizing the maximum error, need to be accompanied by a thorough uncertainty budget and the temperature and SAR errors should be specified.

  11. Self-induced temperature gradients in Brownian dynamics

    Science.gov (United States)

    Devine, Jack; Jack, M. W.

    2017-12-01

    Brownian systems often surmount energy barriers by absorbing and emitting heat to and from their local environment. Usually, the temperature gradients created by this heat exchange are assumed to dissipate instantaneously. Here we relax this assumption to consider the case where Brownian dynamics on a time-independent potential can lead to self-induced temperature gradients. In the same way that externally imposed temperature gradients can cause directed motion, these self-induced gradients affect the dynamics of the Brownian system. The result is a coupling between the local environment and the Brownian subsystem. We explore the resulting dynamics and thermodynamics of these coupled systems and develop a robust method for numerical simulation. In particular, by focusing on one-dimensional situations, we show that self-induced temperature gradients reduce barrier-crossing rates. We also consider a heat engine and a heat pump based on temperature gradients induced by a Brownian system in a nonequilibrium potential.

  12. MRI-induced retrocalcaneal bursitis

    NARCIS (Netherlands)

    Tol, J. L.; van Dijk, C. N.; Maas, M.

    1999-01-01

    This case report describes a patient with acute retrocalcaneal bursitis, which developed after MRI examination of the ankle. The sagittal T2*-weighted gradient echo sequence revealed an extensive susceptibility artifact in the area surrounding the Achilles tendon near its insertion at the os calcis.

  13. Repaired supraspinatus tendons in clinically improving patients: Early postoperative findings and interval changes on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Eun; Park, Ji Seon; Ryu, Kyung Nam; Rhee, Yong Girl [Kyung Hee University Hospital, Seoul (Korea, Republic of); Yoon, So Hee; Park, So Young; Jin Wook [Dept. of Radiology, Kyung Hee University Hospital at Gangdong, Seoul (Korea, Republic of)

    2015-04-15

    To demonstrate and further determine the incidences of repaired supraspinatus tendons on early postoperative magnetic resonance imaging (MRI) findings in clinically improving patients and to evaluate interval changes on follow-up MRIs. Fifty patients, who showed symptomatic and functional improvements after supraspinatus tendon repair surgery and who underwent postoperative MRI twice with a time interval, were included. The first and the second postoperative MRIs were obtained a mean of 4.4 and 11.5 months after surgery, respectively. The signal intensity (SI) patterns of the repaired tendon on T2-weighted images from the first MRI were classified into three types of heterogeneous high SI with fluid-like bright high foci (type I), heterogeneous high SI without fluid-like bright high foci (type II), and heterogeneous or homogeneous low SI (type III). Interval changes in the SI pattern, tendon thickness, and rotator cuff interval thickness between the two postoperative MRIs were evaluated. The SI patterns on the first MRI were type I or II in 45 tendons (90%) and type III in five (10%). SI decreased significantly on the second MRI (p < 0.050). The mean thickness of repaired tendons and rotator cuff intervals also decreased significantly (p < 0.050). Repaired supraspinatus tendons exhibited high SI in 90% of clinically improving patients on MRI performed during the early postsurgical period. The increased SI and thickness of the repaired tendon decreased on the later MRI, suggesting a gradual healing process rather than a retear.

  14. Repaired supraspinatus tendons in clinically improving patients: Early postoperative findings and interval changes on MRI

    International Nuclear Information System (INIS)

    Lee, Jung Eun; Park, Ji Seon; Ryu, Kyung Nam; Rhee, Yong Girl; Yoon, So Hee; Park, So Young; Jin Wook

    2015-01-01

    To demonstrate and further determine the incidences of repaired supraspinatus tendons on early postoperative magnetic resonance imaging (MRI) findings in clinically improving patients and to evaluate interval changes on follow-up MRIs. Fifty patients, who showed symptomatic and functional improvements after supraspinatus tendon repair surgery and who underwent postoperative MRI twice with a time interval, were included. The first and the second postoperative MRIs were obtained a mean of 4.4 and 11.5 months after surgery, respectively. The signal intensity (SI) patterns of the repaired tendon on T2-weighted images from the first MRI were classified into three types of heterogeneous high SI with fluid-like bright high foci (type I), heterogeneous high SI without fluid-like bright high foci (type II), and heterogeneous or homogeneous low SI (type III). Interval changes in the SI pattern, tendon thickness, and rotator cuff interval thickness between the two postoperative MRIs were evaluated. The SI patterns on the first MRI were type I or II in 45 tendons (90%) and type III in five (10%). SI decreased significantly on the second MRI (p < 0.050). The mean thickness of repaired tendons and rotator cuff intervals also decreased significantly (p < 0.050). Repaired supraspinatus tendons exhibited high SI in 90% of clinically improving patients on MRI performed during the early postsurgical period. The increased SI and thickness of the repaired tendon decreased on the later MRI, suggesting a gradual healing process rather than a retear.

  15. On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI

    Science.gov (United States)

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2017-06-01

    The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.

  16. Radiation-induced optic neuropathy 4 years after radiation: report of a case followed up with MRI

    International Nuclear Information System (INIS)

    Piquemal, R.; Renard, J.P.; Cottier, J.P.; Herbreteau, D.; Arsene, S.; Rospars, C.; Lioret, E.; Jan, M.

    1998-01-01

    We report a case of radiation-induced optic neuropathy in a 32-year-old man with Cushing's disease and a recurrent tumour of the left cavernous sinus. The patient experienced rapid, painless loss of vision 4 years after treatment without recurrence of tumour or other visual disorder. MRI showed enlargement and contrast enhancement of the optic chiasm. A year later the patient was almost blind and MRI showed atrophy and persistent contrast enhancement of the chiasm. (orig.)

  17. Surrogate MRI markers for hyperthermia-induced release of doxorubicin from thermosensitive liposomes in tumors.

    Science.gov (United States)

    Peller, Michael; Willerding, Linus; Limmer, Simone; Hossann, Martin; Dietrich, Olaf; Ingrisch, Michael; Sroka, Ronald; Lindner, Lars H

    2016-09-10

    The efficacy of systemically applied, classical anti-cancer drugs is limited by insufficient selectivity to the tumor and the applicable dose is limited by side effects. Efficacy could be further improved by targeting of the drug to the tumor. Using thermosensitive liposomes (TSL) as a drug carrier, targeting is achieved by control of temperature in the target volume. In such an approach, effective local hyperthermia (40-43°C) (HT) of the tumor is considered essential but technically challenging. Thus, visualization of local heating and drug release using TSL is considered an important tool for further improvement. Visualization and feasibility of chemodosimetry by magnetic resonance imaging (MRI) has previously been demonstrated using TSL encapsulating both, contrast agent (CA) and doxorubicin (DOX) simultaneously in the same TSL. Dosimetry has been facilitated using T1-relaxation time change as a surrogate marker for DOX deposition in the tumor. To allow higher loading of the TSL and to simplify clinical development of new TSL formulations a new approach using a mixture of TSL either loaded with DOX or MRI-CA is suggested. This was successfully tested using phosphatidyldiglycerol-based TSL (DPPG2-TSL) in Brown Norway rats with syngeneic soft tissue sarcomas (BN175) implanted at both hind legs. After intravenous application of DOX-TSL and CA-TSL, heating of one tumor above 40°C for 1h using laser light resulted in highly selective DOX uptake. The DOX-concentration in the heated tumor tissue compared to the non-heated tumor showed an almost 10-fold increase. T1 and additional MRI surrogate parameters such as signal phase change were correlated to intratumoral DOX concentration. Visualization of DOX delivery in the sense of a chemodosimetry was demonstrated. Although phase-based MR-thermometry was affected by CA-TSL, phase information was found suitable for DOX concentration assessment. Local differences of DOX concentration in the tumors indicated the need for

  18. MRI monitoring of lesions created at temperature below the boiling point and of lesions created above the boiling point using high intensity focused ultrasound

    OpenAIRE

    Damianou, C.; Ioannides, K.; Hadjisavvas, V.; Mylonas, N.; Couppis, A.; Iosif, D.; Kyriacou, P. A.

    2010-01-01

    Magnetic Resonance Imaging (MRI) was utilized to monitor lesions created at temperature below the boiling point and lesions created at temperature above the boiling point using High Intensity Focused Ultrasound (HIFU) in freshly excised kidney, liver and brain and in vivo rabbit kidney and brain. T2-weighted fast spin echo (FSE) was proven as an excellent MRI sequence that can detect lesions with temperature above the boiling point in kidney. This advantage is attributed to the significant di...

  19. Comparison of static MRI and pseudo-dynamic MRI in temporomandibular joint disorder patients

    International Nuclear Information System (INIS)

    Lee, Jin Ho; Yun, Kyoung In; Park, In Woo; Choi, Hang Moon; Park, Moon Soo

    2006-01-01

    The purpose of this study was to elevate comparison of static MRI and pseudo-dynamic (cine) MRI in temporomandibular joint (TMJ) disorder patients. In this investigation, 33 patients with TMJ disorders were examined using both conventional static MRI and pseudo-dynamic MRI. Multiple spoiled gradient recalled acquisition in the steady state (SPGR) images were obtained when mouth opened and closed. Proton density weighted images were obtained at the closed and open mouth position in static MRI. Two oral and maxillofacial radiologists evaluated location of the articular disk, movement of condyle and bony change respectively and the posterior boundary of articular disk was obtained. No statistically significant difference was found in the observation of articular disk position, mandibular condylar movement and posterior boundary of articular disk using static MRI and pseudo-dynamic MRI (P>0.05). Statistically significant difference was noted in bony changes of condyle using static MRI and pseudo-dynamic MRI (P<0.05). This study showed that pseudo-dynamic MRI didn't make a difference in diagnosing internal derangement of TMJ in comparison with static MRI. But it was considered as an additional method to be supplemented in observing bony change

  20. Comparison of static MRI and pseudo-dynamic MRI in temporomandibular joint disorder patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Ho; Yun, Kyoung In [Eulji Univ. School of Medicine, Seoul (Korea, Republic of); Park, In Woo; Choi, Hang Moon; Park, Moon Soo [Kangnung National Univ. College of Dentistry, Kangnung (Korea, Republic of)

    2006-12-15

    The purpose of this study was to elevate comparison of static MRI and pseudo-dynamic (cine) MRI in temporomandibular joint (TMJ) disorder patients. In this investigation, 33 patients with TMJ disorders were examined using both conventional static MRI and pseudo-dynamic MRI. Multiple spoiled gradient recalled acquisition in the steady state (SPGR) images were obtained when mouth opened and closed. Proton density weighted images were obtained at the closed and open mouth position in static MRI. Two oral and maxillofacial radiologists evaluated location of the articular disk, movement of condyle and bony change respectively and the posterior boundary of articular disk was obtained. No statistically significant difference was found in the observation of articular disk position, mandibular condylar movement and posterior boundary of articular disk using static MRI and pseudo-dynamic MRI (P>0.05). Statistically significant difference was noted in bony changes of condyle using static MRI and pseudo-dynamic MRI (P<0.05). This study showed that pseudo-dynamic MRI didn't make a difference in diagnosing internal derangement of TMJ in comparison with static MRI. But it was considered as an additional method to be supplemented in observing bony change.

  1. Do MRI Findings Change Over a Period of Up to 1 Year in Patients With Low Back Pain and/or Sciatica?: A Systematic Review.

    Science.gov (United States)

    Panagopoulos, John; Hush, Julia; Steffens, Daniel; Hancock, Mark J

    2017-04-01

    Systematic review OBJECTIVE.: The aim of the study was to investigate whether magnetic resonance imaging (MRI) findings change over a relatively short period of time (sciatica. We also investigated whether there was an association between any change in MRI findings and change in clinical outcomes. MRI offers the potential to identify possible pathoanatomic sources of LBP and/or sciatica; however, the clinical importance of MRI findings remains unclear. Little is known about whether lumbar MRI findings change over the short term and if so whether these changes are associated with changes in clinical outcomes. Medline, EMBASE, and CINAHL databases were searched. Included were cohort studies that performed repeat MRI scans within 12 months in patients with LBP and/or sciatica. Data on study characteristics and change in MRI findings were extracted from included studies. Any data describing associations between change in MRI findings and change in clinical outcomes were also extracted. A total of 12 studies met the inclusion criteria and were included in the review. Pooling was not possible due to heterogeneity of studies and findings. Seven studies reported on changes in disc herniation and reported 15% to 93% of herniations reduced or disappeared in size. Two studies reported on changes in nerve root compression and reported 17% to 91% reduced or disappeared. Only one study reported on the association between change in MRI findings and change in clinical outcomes within 1 year, and found no association. This review found moderate evidence that the natural course of herniations and nerve root compression is favorable over a 1-year period in people with sciatica or LBP. There is a lack of evidence on whether other MRI findings change, and whether changes in MRI findings are associated with changes in clinical outcomes. 1.

  2. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R; Feneberg, B; Ponater, M [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  3. Climatic impact of aircraft induced ozone changes

    Energy Technology Data Exchange (ETDEWEB)

    Sausen, R.; Feneberg, B.; Ponater, M. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The effect of aircraft induced ozone changes on the global climate is studied by means of the general circulation model ECHAM4. The zonal mean temperature signal is considered. In order to estimate the statistical significance of the climatic impact a multivariate statistical test hierarchy combined with the fingerprint method has been applied. Sensitivity experiments show a significant coherent temperature response pattern in the northern extra-tropics for mid-latitude summer conditions. It consists of a tropospheric warming of about 0.2 K with a corresponding stratospheric cooling of the same magnitude. (author) 16 refs.

  4. MRI signal changes of the bone marrow in HIV-infected patients with lipodystrophy: correlation with clinical parameters

    International Nuclear Information System (INIS)

    Garcia, Ana I.; Tomas, Xavier; Pomes, Jaume; Amo, Montserrat del; Milinkovic, Ana; Perez, Inaki; Mallolas, Josep; Rios, Jose; Vidal-Sicart, Sergi

    2011-01-01

    To assess the prevalence, imaging appearance, and clinical significance, of bone marrow MR signal changes in a group of human immunodeficiency virus (HIV)-infected patients with lipodystrophy syndrome. Twenty-eight HIV-infected patients with lipodystrophy syndrome treated with highly active antiretroviral therapy, and 12 HIV-negative controls underwent MRI of the legs. Whole-body MRI, SPECT/CT, and a complete radiographic skeletal survey were obtained in subjects with signal changes in bone marrow. MRI and clinical evaluations were reviewed 6 months after baseline to determine changes after switching from thymidine analogs (TA) to tenofovir-DF (TDF). MRI results correlated with clinical parameters. We observed foci of a serous-like pattern (low signal and no enhancement on T1-weighted, high signal on T2-weighted images) in 4 out of 28 patients (14.3%) and an intermediate signal on T1-weighted images in 4 out of 28 patients (14.3%). Serous-like lesions were located in the lower limbs and scattered in the talus, calcaneus, femurs, and humeral bones; they showed slight uptake on SPECT bone scans and were normal on CT and radiographs. Patients with serous-like lesions had significantly lower peripheral and total fat at baseline than other groups (P < 0.05). No changes at 6 months were observed on MRI, and the serous-like lesion group showed good peripheral fat recovery after changing drug treatment. A serous-like MRI pattern is observed in the peripheral skeletons of HIV-infected patients with lipodystrophy, which correlates with peripheral lipoatrophy, and should not be misdiagnosed as malignant or infectious diseases. Although the MR lesions did not improve after switching the treatment, there was evidence of lipoatrophy recovery. (orig.)

  5. Radiation-induced optic neuropathy 4 years after radiation: report of a case followed up with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal, R.; Renard, J.P. [Service de Medecine Interne A, Hopital Bretonneau, Tours (France); Cottier, J.P.; Herbreteau, D. [Service de Neuroradiologie, Hopital Bretonneau, Tours (France); Arsene, S.; Rospars, C. [Service d`Ophthalmologie, Hopital Bretonneau, Tpurs (France); Lioret, E.; Jan, M. [Service de Neurochirurgie, Hopital Bretonneau, Tours (France)

    1998-07-01

    We report a case of radiation-induced optic neuropathy in a 32-year-old man with Cushing`s disease and a recurrent tumour of the left cavernous sinus. The patient experienced rapid, painless loss of vision 4 years after treatment without recurrence of tumour or other visual disorder. MRI showed enlargement and contrast enhancement of the optic chiasm. A year later the patient was almost blind and MRI showed atrophy and persistent contrast enhancement of the chiasm. (orig.) With 3 figs., 13 refs.

  6. Climate Impacts of Fire-Induced Land-Surface Changes

    Science.gov (United States)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  7. Spinal Cord Glioblastoma Induced by Radiation Therapy of Nasopharyngeal Rhabdomyosarcoma with MRI Findings: Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Jin; Kim, In One [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2012-09-15

    Radiation-induced spinal cord gliomas are extremely rare. Since the first case was reported in 1980, only six additional cases have been reported.; The radiation-induced gliomas were related to the treatment of Hodgkin's lymphoma, thyroid cancer, and medullomyoblastoma, and to multiple chest fluoroscopic examinations in pulmonary tuberculosis patient. We report a case of radiation-induced spinal cord glioblastoma developed in a 17-year-old girl after a 13-year latency period following radiotherapy for nasopharyngeal rhabdomyosarcoma. MRI findings of our case are described.

  8. Magnetic rubber inspection (MRI)

    International Nuclear Information System (INIS)

    Carro, L.

    1997-01-01

    Magnetic Rubber Inspection (MRI) was developed to inspect for small cracks and flaws encountered in high performance aircraft. A formula of very fine magnetic particles immersed in a room temperature curing rubber is catalysed and poured into dams (retainers) on the surface of the part to be inspected. Inducing a magnetic field then causes the particles to be drawn to discontinuities in the component under test. These indicating particles are held to the discontinuity by magnetic attraction, as the rubber cures. The solid rubber cast (Replica) is then removed and examined under a microscope for indicating lines of particle concentrations. 3 refs., 6 figs

  9. Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: a resting state fMRI study.

    Science.gov (United States)

    Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-06-01

    Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Thermally induced changes of optical and vital parameters in human cancer cells

    Science.gov (United States)

    Dressler, C.; Schwandt, D.; Beuthan, J.; Mildaziene, V.; Zabarylo, U.; Minet, O.

    2010-11-01

    Minimally invasive laser-induced thermotherapy (LITT) presents an alternative method to conventional tumor therapeutically interventions, such as surgery, chemotherapy, radiotherapy or nuclear medicine. Optical tissue characteristics of tumor cells and their heat-induced changes are essential issues for controlling LITT progressions. Therefore, it is indispensable to exactly know the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g as well as their changes under rising temperatures in order to simulate the treatment parameters successfully. Optical parameters of two different cancer model tissues - breast cancer cells species MX1 and colon cancer cells species CX1 - were measured in the spectral range 400 - 1100 nm as well as in the temperature range 37 - 60°C. The absorption coefficient of both cell species was low throughout the spectral range analyzed, while μs of both species rose with increasing temperatures. The anisotropy factor g however dropped for both tissues with increasing temperatures. Light scatterings inside tissues proceeded continuously forward for all species tested. It was demonstrated that optical tissue properties undergo significant changes along with the vital status of the cells when the temperature increases.

  11. Experimental evaluation of the pressure and temperature dependence of ion-induced nucleation.

    Science.gov (United States)

    Munir, Muhammad Miftahul; Suhendi, Asep; Ogi, Takashi; Iskandar, Ferry; Okuyama, Kikuo

    2010-09-28

    An experimental system for the study of ion-induced nucleation in a SO(2)/H(2)O/N(2) gas mixture was developed, employing a soft x-ray at different pressure and temperature levels. The difficulties associated with these experiments included the changes in physical properties of the gas mixture when temperature and pressure were varied. Changes in the relative humidity (RH) as a function of pressure and temperature also had a significant effect on the different behaviors of the mobility distributions of particles. In order to accomplish reliable measurement and minimize uncertainties, an integrated on-line control system was utilized. As the pressure decreased in a range of 500-980 hPa, the peak concentration of both ions and nanometer-sized particles decreased, which suggests that higher pressure tended to enhance the growth of particles nucleated by ion-induced nucleation. Moreover, the modal diameters of the measured particle size distributions showed a systematic shift to larger sizes with increasing pressure. However, in the temperature range of 5-20 °C, temperature increases had no significant effects on the mobility distribution of particles. The effects of residence time, RH (7%-70%), and SO(2) concentration (0.08-6.7 ppm) on ion-induced nucleation were also systematically investigated. The results show that the nucleation and growth were significantly dependent on the residence time, RH, and SO(2) concentration, which is in agreement with both a previous model and previous observations. This research will be inevitable for a better understanding of the role of ions in an atmospheric nucleation mechanism.

  12. Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites

    NARCIS (Netherlands)

    Shen, J. T.; Buschhorn, S. T.; De Hosson, J. Th. M.; Schulte, K.; Fiedler, B.

    2015-01-01

    In this study, we investigate the changes of electrical resistance of the carbon black (CB) and carbon nanotube (CNT) filled epoxy composites upon compression, swelling and temperature variation. For all samples we observe a decrease of electrical resistance under compression, while an increase of

  13. 11C-MET PET/MRI for detection of recurrent glioma.

    Science.gov (United States)

    Deuschl, C; Kirchner, J; Poeppel, T D; Schaarschmidt, B; Kebir, S; El Hindy, N; Hense, J; Quick, H H; Glas, M; Herrmann, K; Umutlu, L; Moenninghoff, C; Radbruch, A; Forsting, M; Schlamann, M

    2018-04-01

    Radiological assessment of brain tumors is widely based on the Radiology Assessment of Neuro-Oncology (RANO) criteria that consider non-specific T1 and T2 weighted images. Limitation of the RANO criteria is that they do not include metabolic imaging techniques that have been reported to be helpful to differentiate treatment related changes from true tumor progression. In the current study, we assessed if the combined use of MRI and PET with hybrid 11 C-MET PET/MRI can improve diagnostic accuracy and diagnostic confidence of the readers to differentiate treatment related changes from true progression in recurrent glioma. Fifty consecutive patients with histopathologically proven glioma were prospectively enrolled for a hybrid 11 C-MET PET/MRI to differentiate recurrent glioma from treatment induced changes. Sole MRI data were analyzed based on RANO. Sole PET data and in a third evaluation hybrid 11 C-MET-PET/MRI data were assessed for metabolic respectively metabolic and morphologic glioma recurrence. Diagnostic performance and diagnostic confidence of the reader were calculated for the different modalities, and the McNemar test and Mann-Whitney U Test were applied for statistical analysis. Hybrid 11 C-MET PET/MRI was successfully performed in all 50 patients. Glioma recurrence was diagnosed in 35 of the 50 patients (70%). Sensitivity and specificity were calculated for MRI (86.11% and 71.43%), for 11 C-MET PET (96.77% and 73.68%), and for hybrid 11 C-MET-PET/MRI (97.14% and 93.33%). For diagnostic accuracy hybrid 11 C-MET-PET/MRI (96%) showed significantly higher values than MRI alone (82%), whereas no significant difference was found for 11C-MET PET (88%). Furthermore, by rating on a five-point Likert scale significantly higher scores were found for diagnostic confidence when comparing 11 C-MET PET/MRI (4.26 ± 0,777) to either PET alone (3.44 ± 0.705) or MRI alone (3.56 ± 0.733). This feasibility study showed that hybrid PET/MRI might strengthen

  14. Change in brain and lesion volumes after CEE therapies: the WHIMS-MRI studies.

    Science.gov (United States)

    Coker, Laura H; Espeland, Mark A; Hogan, Patricia E; Resnick, Susan M; Bryan, R Nick; Robinson, Jennifer G; Goveas, Joseph S; Davatzikos, Christos; Kuller, Lewis H; Williamson, Jeff D; Bushnell, Cheryl D; Shumaker, Sally A

    2014-02-04

    To determine whether smaller brain volumes in older women who had completed Women's Health Initiative (WHI)-assigned conjugated equine estrogen-based hormone therapy (HT), reported by WHI Memory Study (WHIMS)-MRI, correspond to a continuing increased rate of atrophy an average of 6.1 to 7.7 years later in WHIMS-MRI2. A total of 1,230 WHI participants were contacted: 797 (64.8%) consented, and 729 (59%) were rescanned an average of 4.7 years after the initial MRI scan. Mean annual rates of change in total brain volume, the primary outcome, and rates of change in ischemic lesion volumes, the secondary outcome, were compared between treatment groups using mixed-effect models with adjustment for trial, clinical site, age, intracranial volumes, and time between MRI measures. Total brain volume decreased an average of 3.22 cm(3)/y in the active arm and 3.07 cm(3)/y in the placebo arm (p = 0.53). Total ischemic lesion volumes increased in both arms at a rate of 0.12 cm(3)/y (p = 0.88). Conjugated equine estrogen-based postmenopausal HT, previously assigned at WHI baseline, did not affect rates of decline in brain volumes or increases in brain lesion volumes during the 4.7 years between the initial and follow-up WHIMS-MRI studies. Smaller frontal lobe volumes were observed as persistent group differences among women assigned to active HT compared with placebo. Women with a history of cardiovascular disease treated with active HT, compared with placebo, had higher rates of accumulation in white matter lesion volume and total brain lesion volume. Further study may elucidate mechanisms that explain these findings.

  15. MRI Evaluation of Post Core Decompression Changes in Avascular Necrosis of Hip.

    Science.gov (United States)

    Nori, Madhavi; Marupaka, Sravan Kumar; Alluri, Swathi; Md, Naseeruddin; Irfan, Kazi Amir; Jampala, Venkateshwarlu; Apsingi, Sunil; Eachempati, Krishna Kiran

    2015-12-01

    Avascular necrosis of hip typically presents in young patients. Core decompression in precollapse stage provides pain relief and preservation of femoral head. The results of core decompression vary considerably despite early diagnosis. The role of MRI in monitoring patients post surgically has not been clearly defined. To study pre and post core decompression MRI changes in avascular necrosis of hip. This is a contiguous observational cohort of 40 hips treated by core decompression for precollapse avascular necrosis of femoral head, who had a baseline MRI performed before surgery. Core decompression of the femoral head was performed within 4 weeks. Follow up radiograph and MRI scans were done at six months. Harris hip score preoperatively, 1 month and 6 months after the surgery was noted. Success in this study was defined as postoperative increase in Harris hip score (HHS) by 20 points and no additional femoral collapse. End point of clinical adverse outcome as defined by fall in Harris hip score was conversion or intention to convert to total hip replacement (THR). MRI parameters in the follow up scan were compared to the preoperative MRI. Effect of core decompression on bone marrow oedema and femoral head collapse was noted. Results were analysed using SPSS software version. Harris hip score improved from 57 to 80 in all patients initially. Six hips had a fall in Harris hip score to mean value of 34.1 during follow up (9 to 12 months) and underwent total hip replacement. MRI predictors of positive outcome are lesions with grade A extent, Grade A & B location. Bone marrow oedema with lesions less than 50% involvement, medial and central location. Careful selection of patients by MR criteria for core decompression provides satisfactory outcome in precollapse stage of avascular necrosis of hip.

  16. Visualization of morphological parenchymal changes in emphysema: Comparison of different MRI sequences to 3D-HRCT

    International Nuclear Information System (INIS)

    Ley-Zaporozhan, Julia; Ley, Sebastian; Eberhardt, Ralf; Kauczor, Hans-Ulrich; Heussel, Claus Peter

    2010-01-01

    Purpose: Thin-section CT is the modality of choice for morphological imaging the lung parenchyma, while proton-MRI might be used for functional assessment. However, the capability of MRI to visualize morphological parenchymal alterations in emphysema is undetermined. Thus, the aim of the study was to compare different MRI sequences with CT. Materials and methods: 22 patients suffering from emphysema underwent thin-section MSCT serving as a reference. MRI (1.5 T) was performed using three different sequences: T2-HASTE in coronal and axial orientation, T1-GRE (VIBE) in axial orientation before and after application of contrast media (ce). All datasets were evaluated by four chest radiologists in consensus for each sequence separately independent from CT. The severity of emphysema, leading type, bronchial wall thickening, fibrotic changes and nodules was analyzed visually on a lobar level. Results: The sensitivity for correct categorization of emphysema severity was 44%, 48% and 41% and the leading type of emphysema was identical to CT in 68%, 55% and 60%, for T2-HASTE, T1-VIBE and T1-ce-VIBE respectively. A bronchial wall thickening was found in 43 lobes in CT and was correctly seen in MRI in 42%, 33% and 26%. Of those 74 lobes presented with fibrotic changes in CT were correctly identified by MRI in 39%, 35% and 58%. Small nodules were mostly underdiagnosed in MRI. Conclusion: MRI matched the CT severity classification and leading type of emphysema in half of the cases. All sequences showed a similar diagnostic performance, however a combination of HASTE and ce-VIBE should be recommended.

  17. Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II?

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Nørholm, Ann-Beth; Hendus-Altenburger, Ruth

    2010-01-01

    temperature, which most likely reflects formation of transient alpha-helices or loss of polyproline II (PPII) content. Using three IDPs, ACTR, NHE1, and Spd1, we show that the temperature-induced structural change is common among IDPs and is accompanied by a contraction of the conformational ensemble...... with increasing temperature, and accordingly these were not responsible for the change in the CD spectra. In contrast, the nonhelical regions exhibited a general temperature-dependent structural change that was independent of long-range interactions. The temperature-dependent CD spectroscopic signature of IDPs...

  18. Correlation of MRI Biomarkers with Tumor Necrosis in Hras5 Tumor Xenograft in Athymic Rats

    Directory of Open Access Journals (Sweden)

    Daniel P. Bradley

    2007-05-01

    Full Text Available Magnetic resonance imaging (MRI can measure the effects of therapies targeting the tumor vasculature and has demonstrated that vascular-damaging agents (VDA induce acute vascular shutdown in tumors in human and animal models. However, at subtherapeutic doses, blood flow may recover before the induction of significant levels of necrosis. We present the relationship between changes in MRI biomarkers and tumor necrosis. Multiple MRI measurements were taken at 4.7 T in athymic rats (n = 24 bearing 1.94 ± 0.2-cm3 subcutaneous Hras5 tumors (ATCC 41000 before and 24 hours after clinically relevant doses of the VDA, ZD6126 (0-10 mg/kg, i.v.. We measured effective transverse relaxation rate (R2*, initial area under the gadolinium concentration-time curve (IAUGC60/150, equivalent enhancing fractions (EHF60/150, time constant (Ktrans, proportion of hypoperfused voxels as estimated from fit failures in Ktrans analysis, and signal intensity (SI in T2-weighted MRI (T2W. ZD6126 treatment induced < 90% dose-dependent tumor necrosis at 10 mg/kg; correspondingly, SI changes were evident from T2W MRI. Although R2* did not correlate, other MRI biomarkers significantly correlated with necrosis at doses of ≥ 5 mg/kg ZD6126. These data on Hras5 tumors suggest that the quantification of hypoperfused voxels might provide a useful biomarker of tumor necrosis.

  19. Fluctuations in Brain Temperature Induced by Lypopolysaccharides: Central and Peripheral Contributions

    Directory of Open Access Journals (Sweden)

    Jeremy S. Tang

    2010-01-01

    Full Text Available In this study, we examined changes in central (anterior-preoptic hypothalamus and peripheral (temporal muscle and facial skin temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS at low doses (1 and 10 μg/kg at thermoneutral conditions (28˚C. Recordings were made with high temporal resolution (5-s bin and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/ body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  20. Fluctuations in brain temperature induced by lipopolysaccharides: central and peripheral contributions.

    Science.gov (United States)

    Tang, Jeremy S; Kiyatkin, Eugene A

    2010-01-01

    In this study, we examined changes in central (anterior-preoptic hypothalamus) and peripheral (temporal muscle and facial skin) temperatures in freely moving rats following intravenous administration of bacterial lipopolysaccharides (LPS) at low doses (1 and 10 μg/kg) at thermoneutral conditions (28°C). Recordings were made with high temporal resolution (5-s bin) and the effects of LPS were compared with those induced by a tail-pinch, a standard arousing somato-sensory stimulus. At each dose, LPS moderately elevated brain, muscle, and skin temperatures. In contrast to rapid, monophasic and relatively short hyperthermic responses induced by a tail-pinch, LPS-induced increases in brain and muscle temperatures occurred with ~40 min onset latencies, showed three not clearly defined phases, were slightly larger with the 10 μm/kg dose, and maintained for the entire 4-hour post-injection recording duration. Based on dynamics of brain-muscle and skin-muscle temperature differentials, it appears that the hyperthermic response induced by LPS at the lowest dose originates from enhanced peripheral heat production, with no evidence of brain metabolic activation and skin vasoconstriction. While peripheral heat production also appears to determine the first phase of brain and body temperature elevation with LPS at 10 μg/kg, a further prolonged increase in brain-muscle differentials (onset at ~100 min) suggests metabolic brain activation as a factor contributing to brain and body hyperthermia. At this dose, skin temperature increase was weaker than in temporal muscle, suggesting vasoconstriction as another contributor to brain/body hyperthermia. Therefore, although both LPS at low doses and salient sensory stimuli moderately increase brain and body temperatures, these hyperthermic responses have important qualitative differences, reflecting unique underlying mechanisms.

  1. Structural changes in brain substance in children with epilepsy (MRI findings)

    International Nuclear Information System (INIS)

    Kaduk, Je.G.

    2000-01-01

    The structural changes in the brain substance and the parameters of liquor-containing spaces in children with epilepsy are studied. Structural morphological changes in the brain were found in 30, 7 % of cases. In 27, 7 % MRI findings did not differ from the control. The number of porencephalic changes in the both groups was similar (4, 2 - 4, 3 % of cases). Hypotrophy of cortical and subcortical structures, dysgenesis of the colossal body were observed in the group of local epilepsy. Typodense changes of pervantricular structures were more frequent in the patients will local disease. Hypodense changes of the periventricular structures were more frequent in the patients with local disturbances

  2. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    Science.gov (United States)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  3. Temperature fluctuations superimposed on background temperature change

    International Nuclear Information System (INIS)

    Otto, James; Roberts, J.A.

    2016-01-01

    Proxy data allows the temperature of the Earth to be mapped over long periods of time. In this work the temperature fluctuations for over 200 proxy data sets were examined and from this set 50 sets were analyzed to test for periodic and quasi-periodic fluctuations in the data sets. Temperature reconstructions over 4 different time scales were analyzed to see if patterns emerged. Data were put into four time intervals; 4,000 years, 14,000 years, 1,000,000 years, and 3,000,000 years and analyzed with a goal to understanding periodic and quasi-periodic patterns in global temperature change superimposed on a “background” average temperature change. Quasi-periodic signatures were identified that predate the Industrial Revolution, during much of which direct data on temperature are not available. These data indicate that Earth temperatures have undergone a number of periodic and quasi-periodic intervals that contain both global warming and global cooling cycles. The fluctuations are superimposed on a background of temperature change that has a declining slope during the two periods, pre-ice age and post ice age with a transition about 12,000 BCE. The data are divided into “events” that span the time periods 3,000,000 BCE to “0” CE, 1,000,000 BCE to “0” CE, 12,000 BCE to 2,000 CE and 2,000 BCE to 2,000 CE. An equation using a quasi-periodic (frequency modulated sine waves) patterns was developed to analyze the date sets for quasi-periodic patterns. “Periodicities” which show reasonable agreement with the predictions of Milankovitch and other investigators were found in the data sets.

  4. Breast Dynamic Contrast Enhanced MRI: Fibrocystic Changes Presenting as a Non-mass Enhancement Mimicking Malignancy.

    Science.gov (United States)

    Milosevic, Zorica C; Nadrljanski, Mirjan M; Milovanovic, Zorka M; Gusic, Nina Z; Vucicevic, Slavko S; Radulovic, Olga S

    2017-06-01

    We aimed to analyse the morphokinetic features of breast fibrocystic changes (nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia) presenting as a non-mass enhancement (NME)in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) examination. Forty-six patients with histologically proven fibrocystic changes (FCCs) were retrospectively reviewed, according to Breast Imaging Reporting and Data System (BI-RADS) lexicon. Prior to DCE-MRI examination, a unilateral breast lesion suspicious of malignancy was detected clinically, on mammography or breast ultrasonography. The predominant features of FCCs presenting as NME in DCE-MRI examination were: unilateral regional or diffuse distribution (in 35 patients or 76.1%), heterogeneous or clumped internal pattern of enhancement (in 36 patients or 78.3%), plateau time-intensity curve (in 25 patients or 54.3%), moderate or fast wash-in (in 31 patients or 67.4%).Nonproliferative lesions were found in 11 patients (24%), proliferative lesions without atypia in 29 patients (63%) and lesions with atypia in six patients (13%), without statistically significant difference of morphokinetic features, except of the association of clustered microcysts with proliferative dysplasia without atypia. FCCs presenting as NME in DCE-MRI examination have several morphokinetic features suspicious of malignancy, therefore requiring biopsy (BI-RADS 4). Nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia predominantly share the same predefined DCE-MRI morphokinetic features.

  5. Variability of ischiofemoral space dimensions with changes in hip flexion: an MRI study

    International Nuclear Information System (INIS)

    Johnson, Adam C.; Howe, Benjamin M.; Hollman, John H.; Finnoff, Jonathan T.

    2017-01-01

    The primary aim of this study was to determine if ischiofemoral space (IFS) dimensions vary with changes in hip flexion as a result of placing a bolster behind the knees during magnetic resonance imaging (MRI). A secondary aim was to determine if IFS dimensions vary between supine and prone hip neutral positions. The study employed a prospective design. Sports medicine center within a tertiary care institution. Five male and five female adult subjects (age mean = 29.2, range = 23-35; body mass index [BMI] mean = 23.5, range = 19.5-26.6) were recruited to participate in the study. An axial, T1-weighted MRI sequence of the pelvis was obtained of each subject in a supine position with their hips in neutral and flexed positions, and in a prone position with their hips in neutral position. Supine hip flexion was induced by placing a standard, 9-cm-diameter MRI knee bolster under the subject's knees. The order of image acquisition (supine hip neutral, supine hip flexed, prone hip neutral) was randomized. The IFS dimensions were then measured on a separate workstation. The investigator performing the IFS measurements was blinded to the subject position for each image. The main outcome measurements were the IFS dimensions acquired with MRI. The mean IFS dimensions in the prone position were 28.25 mm (SD 5.91 mm, standard error mean 1.32 mm). In the supine hip neutral position, the IFS dimensions were 25.1 (SD 5.6) mm. The mean difference between the two positions of 3.15 (3.6) mm was statistically significant (95 % CI of the difference = 1.4 to 4.8 mm, t_1_9 = 3.911, p =.001). The mean IFS dimensions in the hip flexed position were 36.9 (SD 5.7) mm. The mean difference between the two supine positions of 11.8 (4.1) mm was statistically significant (95 % CI of the difference = 9.9 to 13.7 mm, t_1_9 = 12.716, p <.001). Our findings demonstrate that the IFS measurements obtained with MRI are dependent upon patient positioning with respect to hip flexion and supine versus

  6. Variability of ischiofemoral space dimensions with changes in hip flexion: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Adam C.; Howe, Benjamin M. [Mayo Clinic College of Medicine, Department of Radiology, Rochester, MN (United States); Hollman, John H.; Finnoff, Jonathan T. [Mayo Clinic College of Medicine, Department of Physical Medicine and Rehabilitation, Rochester, MN (United States)

    2017-01-15

    The primary aim of this study was to determine if ischiofemoral space (IFS) dimensions vary with changes in hip flexion as a result of placing a bolster behind the knees during magnetic resonance imaging (MRI). A secondary aim was to determine if IFS dimensions vary between supine and prone hip neutral positions. The study employed a prospective design. Sports medicine center within a tertiary care institution. Five male and five female adult subjects (age mean = 29.2, range = 23-35; body mass index [BMI] mean = 23.5, range = 19.5-26.6) were recruited to participate in the study. An axial, T1-weighted MRI sequence of the pelvis was obtained of each subject in a supine position with their hips in neutral and flexed positions, and in a prone position with their hips in neutral position. Supine hip flexion was induced by placing a standard, 9-cm-diameter MRI knee bolster under the subject's knees. The order of image acquisition (supine hip neutral, supine hip flexed, prone hip neutral) was randomized. The IFS dimensions were then measured on a separate workstation. The investigator performing the IFS measurements was blinded to the subject position for each image. The main outcome measurements were the IFS dimensions acquired with MRI. The mean IFS dimensions in the prone position were 28.25 mm (SD 5.91 mm, standard error mean 1.32 mm). In the supine hip neutral position, the IFS dimensions were 25.1 (SD 5.6) mm. The mean difference between the two positions of 3.15 (3.6) mm was statistically significant (95 % CI of the difference = 1.4 to 4.8 mm, t{sub 19} = 3.911, p =.001). The mean IFS dimensions in the hip flexed position were 36.9 (SD 5.7) mm. The mean difference between the two supine positions of 11.8 (4.1) mm was statistically significant (95 % CI of the difference = 9.9 to 13.7 mm, t{sub 19} = 12.716, p <.001). Our findings demonstrate that the IFS measurements obtained with MRI are dependent upon patient positioning with respect to hip flexion and

  7. Experimental study of MRI signal changes of calcification

    International Nuclear Information System (INIS)

    Gong Xiangyang; Li Senhua; Li Rongfen; Hong Xiang; Gong Xiaoya; Xu Fengfeng

    1999-01-01

    Objective: To evaluate MRI signal changes according to different calcium compound, concentration and proportion, and try to give an reasonable explanation. Methods: Sixty samples composed of different calcium powders, various concentration and proportion of calcium were examined with CT and MRI. Five different calcium particles were evaluated with scanning electron microscopy. Results: (1) CT value of calcium gradually increased as the concentration increased; (2) CaSO 4 ·H 2 O was similar to CaCO 3 in terms of MRI T 1 WI signal intensity (P > 0.05); (3) Ca 3 (PO 4 ) 2 and Ca(OH) 2 showed hyperintensity in T 1 WI and was higher than other calcium salts (P 1 WI signal intensity of Ca 3 (PO 4 ) 2 / and Ca(OH) 2 showed biphasic curves with their peaks at 0.3 g/ml; (5) T 2 WI signal intensity of all series of calcium decreased as the concentration increased; (6) Signal intensity of mixed Ca 3 (PO 4 ) 2 /CaCO 3 was higher than CaHPO 4 ·2H 2 O/CaCO 3 on T 1 WI and lower on T 2 WI (P 3 , CaHPO 4 ·2H 2 O and CaSO 4 ·2H 2 O showed regular crystal shapes and smooth surface under scanning electron microscopy, but Ca 3 (PO 4 ) 2 and Ca(OH) 2 displayed their irregular figures and rough surface. Conclusions: Calcifications show variable MR signal due to difference of calcium compounds, various concentration and proportion of calcium. Understanding of these finding will help interpretation of MR images more precisely

  8. Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI

    Science.gov (United States)

    Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.

    2014-01-01

    The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328

  9. In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI

    Science.gov (United States)

    Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.

    2016-10-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.

  10. {sup 11}C-MET PET/MRI for detection of recurrent glioma

    Energy Technology Data Exchange (ETDEWEB)

    Deuschl, C. [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Kirchner, J.; Schaarschmidt, B. [University Duesseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Duesseldorf (Germany); Poeppel, T.D.; Herrmann, K. [University Hospital Essen, Clinic for Nuclear Medicine, Essen (Germany); Kebir, S.; Glas, M. [University Hospital Essen, Division of Clinical Neurooncology, Department of Neurology, Essen (Germany); El Hindy, N. [University Hospital Essen, Department of Neurosurgery, Essen (Germany); Hense, J. [University Hospital Essen, Department of Medical Oncology, West German Cancer Center, Essen (Germany); Quick, H.H. [University of Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany); Umutlu, L.; Moenninghoff, C.; Radbruch, A.; Forsting, M. [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Schlamann, M. [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne (Germany)

    2018-04-15

    Radiological assessment of brain tumors is widely based on the Radiology Assessment of Neuro-Oncology (RANO) criteria that consider non-specific T1 and T2 weighted images. Limitation of the RANO criteria is that they do not include metabolic imaging techniques that have been reported to be helpful to differentiate treatment related changes from true tumor progression. In the current study, we assessed if the combined use of MRI and PET with hybrid {sup 11}C-MET PET/MRI can improve diagnostic accuracy and diagnostic confidence of the readers to differentiate treatment related changes from true progression in recurrent glioma. Fifty consecutive patients with histopathologically proven glioma were prospectively enrolled for a hybrid {sup 11}C-MET PET/MRI to differentiate recurrent glioma from treatment induced changes. Sole MRI data were analyzed based on RANO. Sole PET data and in a third evaluation hybrid {sup 11}C-MET-PET/MRI data were assessed for metabolic respectively metabolic and morphologic glioma recurrence. Diagnostic performance and diagnostic confidence of the reader were calculated for the different modalities, and the McNemar test and Mann-Whitney U Test were applied for statistical analysis. Hybrid {sup 11}C-MET PET/MRI was successfully performed in all 50 patients. Glioma recurrence was diagnosed in 35 of the 50 patients (70%). Sensitivity and specificity were calculated for MRI (86.11% and 71.43%), for {sup 11}C-MET PET (96.77% and 73.68%), and for hybrid {sup 11}C-MET-PET/MRI (97.14% and 93.33%). For diagnostic accuracy hybrid {sup 11}C-MET-PET/MRI (96%) showed significantly higher values than MRI alone (82%), whereas no significant difference was found for 11C-MET PET (88%). Furthermore, by rating on a five-point Likert scale significantly higher scores were found for diagnostic confidence when comparing {sup 11}C-MET PET/MRI (4.26 ± 0,777) to either PET alone (3.44 ± 0.705) or MRI alone (3.56 ± 0.733). This feasibility study showed that hybrid

  11. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.

    Science.gov (United States)

    Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel

    2011-06-01

    Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.

  12. Detection of parenchymal abnormalities in experimentally induced acute pyelonephritis in rabbits using contrast-enhanced ultrasonography, CT, and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Ah; Kim, Bo Hyun; Kim, Seung Kwon; Seo, Jin Won [Dept. of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Jong Sung [Laboratory Animal Research Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    We evaluated the efficacy of contrast-enhanced ultrasonography (CEUS) in detecting acute pyelonephritis (APN) using the rabbit kidney model and compared it with CT and MRI. This study was approved by the Institutional Review Board. In a total of 20 New Zealand White rabbits, APN was induced experimentally. CEUS, CT, and MRI were performed on the first, third, and seventh postoperative days. After imaging studies, the subjects were sacrificed and the pathological diagnosis of APN was confirmed in each animal by a pathologist. Imaging studies were obtained in eight animals, including eight CEUS, four computed tomography (CT), and four magnetic resonance imaging (MRI) images. CEUS depicted diffuse renal enlargement (7), diffuse heterogeneous parenchymal enhancement (6), and focal areas of decreased parenchymal enhancement (6). These findings were well correlated with the CT and MRI findings in five cases in which these studies were available. CT and MRI showed diffuse renal enlargement, diffuse heterogeneous parenchymal enhancement, focal areas of decreased parenchymal enhancement, focal contour bulging, and the finding of perinephric spread of infection. In a rabbit model, CEUS could depict the parenchymal lesions of APN similar to CT or MRI; however, it was limited in depicting the perinephric extension of inflammation.

  13. Investigation of radiofrequency heating for a closed conducting loop formed in a part of the patient's body in 1.5 tesla magnetic resonance (MR) imaging and 3.0 tesla MR imaging. Measurement of temperature by use of human body-equivalent phantom

    International Nuclear Information System (INIS)

    Yamazaki, Masaru; Higashida, Mitsuji; Kudo, Sadahiro; Ideta, Takahiro; Nakazawa, Masami

    2012-01-01

    Thermal injuries have been sometimes reported due to a closed conducting loop formed in a part of the patient's body during magnetic resonance imaging (MRI). In recent years, 3.0 T-MRI scanner has been widely used. However, it is considered that the specific absorption rate (SAR) of 3.0 T-MRI can affect the heat of the loop because its own SAR becomes approximately 4 times as much as that of the 1.5 T-MRI scanner. With this, the change in temperature was measured with human body-equivalent loop phantom in both 1.5 T-MRI and 3.0 T-MRI. In the two scanners, the temperature during 20 min of scanning time was measured with three types of sequences such as field echo (FE), spin echo (SE), and turbo SE (TSE) set up with the same scanning condition. It was found from the result that rise in temperature depended on SAR of the scanning condition irrespective of static magnetic field intensity and any pulse sequences. Furthermore, the increase of SAR and rise in temperature were not only in proportion to each other but also were indicated to have good correlation. However, even low SAR can occasionally induce serious thermal injuries. It was found from result that we had to attempt not to form a closed conducting loop with in a part of the patient's body during MRI. (author)

  14. DCE-MRI-Derived Parameters in Evaluating Abraxane-Induced Early Vascular Response and the Effectiveness of Its Synergistic Interaction with Cisplatin.

    Directory of Open Access Journals (Sweden)

    Xilin Sun

    Full Text Available Our previous studies revealed molecular alterations of tumor vessels, varying from immature to mature alterations, resulting from Abraxane, and demonstrated that the integrin-specific PET tracer 18F-FPPRGD2 can be used to noninvasively monitor such changes. However, changes in the tumor vasculature at functional levels such as perfusion and permeability are also important for monitoring Abraxane treatment outcomes in patients with cancer. The purpose of this study is to further investigate the vascular response during Abraxane therapy and the effectiveness of its synergistic interaction with cisplatin using Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI. Thirty MDA-MB-435 tumor mice were randomized into three groups: PBS control (C group, Abraxane only (A group, and sequential treatment with Abraxane followed by cisplatin (A-P group. Tumor volume was monitored based on caliper measurements. A DCE-MRI protocol was performed at baseline and day 3. The Ktrans, Kep and Ve were calculated and compared with CD31, α-SMA, and Ki67 histology data. Sequential treatment with Abraxane followed by cisplatin produced a significantly greater inhibition of tumor growth during the three weeks of the observation period. Decreases in Ktrans and Kep for the A and A-P groups were observed on day 3. Immunohistological staining suggested vascular remodeling during the Abraxane therapy. The changes in Ktrans and Kep values were correlated with alterations in the permeability of the tumor vasculature induced by the Abraxane treatment. In conclusion, Abraxane-mediated permeability variations in tumor vasculature can be quantitatively visualized by DCE-MRI, making this a useful method for studying the effects of early cancer treatment, especially the early vascular response. Vascular remodeling by Abraxane improves the efficiency of cisplatin delivery and thus results in a favorable treatment outcome.

  15. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-12-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  16. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  17. Asymetric change of daily temperature range: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G. [ed.] [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Earth Observatory; Karl, T.R. [ed.] [National Climatic Data Center, Asheville, NC (United States); Riches, M.R. [ed.] [USDOE, Washington, DC (United States)

    1994-04-01

    This report is a compilation of abstracts of papers presented at the MINIMAX workshop. Topics include; temperature fluxes, influence of clouds on temperature, anthropogenic influences on temperature flux, and carbon dioxide and aerosol induced greenhouse effect.

  18. Asymetric change of daily temperature range: Proceedings

    International Nuclear Information System (INIS)

    Kukla, G.; Riches, M.R.

    1994-04-01

    This report is a compilation of abstracts of papers presented at the MINIMAX workshop. Topics include; temperature fluxes, influence of clouds on temperature, anthropogenic influences on temperature flux, and carbon dioxide and aerosol induced greenhouse effect

  19. Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2012-11-01

    Full Text Available The impact of historical land use induced land cover change (LULCC on regional-scale climate extremes is examined using four climate models within the Land Use and Climate, IDentification of robust impacts project. To assess those impacts, multiple indices based on daily maximum and minimum temperatures and daily precipitation were used. We contrast the impact of LULCC on extremes with the impact of an increase in atmospheric CO2 from 280 ppmv to 375 ppmv. In general, consistent changes in both high and low temperature extremes are similar to the simulated change in mean temperature caused by LULCC and are restricted to regions of intense modification. The impact of LULCC on both means and on most temperature extremes is statistically significant. While the magnitude of the LULCC-induced change in the extremes can be of similar magnitude to the response to the change in CO2, the impacts of LULCC are much more geographically isolated. For most models, the impacts of LULCC oppose the impact of the increase in CO2 except for one model where the CO2-caused changes in the extremes are amplified. While we find some evidence that individual models respond consistently to LULCC in the simulation of changes in rainfall and rainfall extremes, LULCC's role in affecting rainfall is much less clear and less commonly statistically significant, with the exception of a consistent impact over South East Asia. Since the simulated response of mean and extreme temperatures to LULCC is relatively large, we conclude that unless this forcing is included, we risk erroneous conclusions regarding the drivers of temperature changes over regions of intense LULCC.

  20. High signal of the striatum in sporadic Creutzfeldt-Jakob disease: sequential change on T2-weighted MRI

    International Nuclear Information System (INIS)

    Uemura, A.; O'uchi, T.; Sakamoto, T.; Yashiro, N.

    2002-01-01

    The object of this study is to describe the sequential change of high signal of the striatum on T2-weighted MRI in sporadic Creutzfeldt-Jakob disease (CJD). Three cases of autopsy-proven sporadic CJD and a total of 18 serial MR images are included in this study. The degree of high signal of the striatum on T2-weighted MRI was evaluated by two neuroradiologists and divided into four grades by mutual agreement. Initial MRI of all three cases showed a slightly high signal of the bilateral striatum, and the conspicuity of the high signal became more prominent as the disease progressed. In each case the pathological change of striatum and globus pallidus was compared with the high signal on the last MR image. (orig.)

  1. High signal of the striatum in sporadic Creutzfeldt-Jakob disease: sequential change on T2-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, A.; O' uchi, T.; Sakamoto, T.; Yashiro, N. [Department of Radiology, Kameda Medical Center, Kamogawa, Chiba (Japan)

    2002-04-01

    The object of this study is to describe the sequential change of high signal of the striatum on T2-weighted MRI in sporadic Creutzfeldt-Jakob disease (CJD). Three cases of autopsy-proven sporadic CJD and a total of 18 serial MR images are included in this study. The degree of high signal of the striatum on T2-weighted MRI was evaluated by two neuroradiologists and divided into four grades by mutual agreement. Initial MRI of all three cases showed a slightly high signal of the bilateral striatum, and the conspicuity of the high signal became more prominent as the disease progressed. In each case the pathological change of striatum and globus pallidus was compared with the high signal on the last MR image. (orig.)

  2. High-resolution magnetic resonance imaging (HR-MRI) of the pleura and chest wall: Normal findings and pathological changes

    International Nuclear Information System (INIS)

    Bittner, R.C.; Schnoy, N.; Schoenfeld, N.; Grassot, A.; Loddenkemper, R.; Lode, H.; Kaiser, D.; Krumhaar, D.; Felix, R.

    1995-01-01

    To determine the value of high-resolution MRI in pleural and chest wall diseases, the normal and pathologic costal pleura and adjacent chest wall between paravertebral and the axillar region were examined with contrast enhanced high-resolution T 1 -weighted MRI images using a surface coil. Normal anatomy was evaluated in 5 healthy volunteers and a normal specimen of the thoracic wall, and correlation was made with corresponding HR-CT and histologic sections. CT-proved focal and diffuse changes of the pleura and the chest wall in 36 patients underwent HR-MRI, and visual comparison of MRI and CT was done retrospectively. Especially sagittal T 1 -weighted HR-MRI images allowed accurate delineation of the peripleural fat layer (PFL) and the innermost intercostal muscle (IIM), which served as landmarks of the intact inner chest wall. PFL and IIM were well delineated in 3/4 patients with tuberculous pleuritis, and in all 7 patients with non-specific pleuritis, as opposed to impairment of the PFL and/or the IIM, which was detected in 15/18 malignancies as a pattern of malignant chest wall involvement. In one case of tuberculous pleural empyema with edema of the inner chest wall HR-MRI produced false positive diagnosis of malignant disease. HR-MRI images improved non-invasive evaluation of pleural and chest wall diseases, and allowed for differentiation of bengin and malignant changes. (orig./MG) [de

  3. Residual fMRI sensitivity for identity changes in acquired prosopagnosia.

    Science.gov (United States)

    Fox, Christopher J; Iaria, Giuseppe; Duchaine, Bradley C; Barton, Jason J S

    2013-01-01

    While a network of cortical regions contribute to face processing, the lesions in acquired prosopagnosia are highly variable, and likely result in different combinations of spared and affected regions of this network. To assess the residual functional sensitivities of spared regions in prosopagnosia, we designed a rapid event-related functional magnetic resonance imaging (fMRI) experiment that included pairs of faces with same or different identities and same or different expressions. By measuring the release from adaptation to these facial changes we determined the residual sensitivity of face-selective regions-of-interest. We tested three patients with acquired prosopagnosia, and all three of these patients demonstrated residual sensitivity for facial identity changes in surviving fusiform and occipital face areas of either the right or left hemisphere, but not in the right posterior superior temporal sulcus. The patients also showed some residual capabilities for facial discrimination with normal performance on the Benton Facial Recognition Test, but impaired performance on more complex tasks of facial discrimination. We conclude that fMRI can demonstrate residual processing of facial identity in acquired prosopagnosia, that this adaptation can occur in the same structures that show similar processing in healthy subjects, and further, that this adaptation may be related to behavioral indices of face perception.

  4. Residual fMRI sensitivity for identity changes in acquired prosopagnosia

    Directory of Open Access Journals (Sweden)

    Christopher J Fox

    2013-10-01

    Full Text Available While a network of cortical regions contribute to face processing, the lesions in acquired prosopagnosia are highly variable, and likely result in different combinations of spared and affected regions of this network. To assess the residual functional sensitivities of spared regions in prosopagnosia, we designed a rapid event-related functional magnetic resonance imaging (fMRI experiment that included pairs of faces with same or different identities and same or different expressions. By measuring the release from adaptation to these facial changes we determined the residual sensitivity of face-selective regions-of-interest. We tested three patients with acquired prosopagnosia, and all three of these patients demonstrated residual sensitivity for facial identity changes in surviving fusiform and occipital face areas of either the right or left hemisphere, but not in the right posterior superior temporal sulcus. The patients also showed some residual capabilities for facial discrimination with normal performance on the Benton Facial Recognition Test, but impaired performance on more complex tasks of facial discrimination. We conclude that fMRI can demonstrate residual processing of facial identity in acquired prosopagnosia, that this adaptation can occur in the same structures that show similar processing in healthy subjects, and further, that this adaptation may be related to behavioral indices of face perception.

  5. Whole-globe biomechanics using high-field MRI.

    Science.gov (United States)

    Voorhees, Andrew P; Ho, Leon C; Jan, Ning-Jiun; Tran, Huong; van der Merwe, Yolandi; Chan, Kevin; Sigal, Ian A

    2017-07-01

    The eye is a complex structure composed of several interconnected tissues acting together, across the whole globe, to resist deformation due to intraocular pressure (IOP). However, most work in the ocular biomechanics field only examines the response to IOP over smaller regions of the eye. We used high-field MRI to measure IOP induced ocular displacements and deformations over the whole globe. Seven sheep eyes were obtained from a local abattoir and imaged within 48 h using MRI at multiple levels of IOP. IOP was controlled with a gravity perfusion system and a cannula inserted into the anterior chamber. T2-weighted imaging was performed to the eyes serially at 0 mmHg, 10 mmHg, 20 mmHg and 40 mmHg of IOP using a 9.4 T MRI scanner. Manual morphometry was conducted using 3D visualization software to quantify IOP-induced effects at the globe scale (e.g. axial length and equatorial diameters) or optic nerve head scale (e.g. canal diameter, peripapillary sclera bowing). Measurement sensitivity analysis was conducted to determine measurement precision. High-field MRI revealed an outward bowing of the posterior sclera and anterior bulging of the cornea due to IOP elevation. Increments in IOP from 10 to 40 mmHg caused measurable increases in axial length in 6 of 7 eyes of 7.9 ± 5.7% (mean ± SD). Changes in equatorial diameter were minimal, 0.4 ± 1.2% between 10 and 40 mmHg, and in all cases less than the measurement sensitivity. The effects were nonlinear, with larger deformations at normal IOPs (10-20 mmHg) than at elevated IOPs (20-40 mmHg). IOP also caused measurable increases in the nasal-temporal scleral canal diameter of 13.4 ± 9.7% between 0 and 20 mmHg, but not in the superior-inferior diameter. This study demonstrates that high-field MRI can be used to visualize and measure simultaneously the effects of IOP over the whole globe, including the effects on axial length and equatorial diameter, posterior sclera displacement and bowing, and even

  6. Quantitative analysis of contrast enhanced MRI of the inferior alveolar nerve in inflammatory changes of the mandible

    International Nuclear Information System (INIS)

    Gottschalk, G.; Gerber, S.; Solbach, T.; Baehren, W.; Anders, L.; Kress, B.

    2003-01-01

    Purpose: To evaluate the role of contrast enhanced MRI in quantifying signal changes of the inferior alveolar nerve following inflammatory changes of the mandible. Material and methods: 30 patients with inflammatory changes of the mandible underwent MRI of the face. Both sides of the mandible, the affected as well as the unaffected healthy side were evaluated retrospectively. Regions of interest were placed at 5 defined placed on both sides to assess signal intensity before and after intravenous application of paramagnetic contrast agent. The results of the measurements were compared between the healthy and the affected side (t-test, p [de

  7. A Technique for Generating Volumetric Cine MRI (VC-MRI)

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose To develop a technique to generate on-board volumetric-cine MRI (VC-MRI) using patient prior images, motion modeling and on-board 2D-cine MRI. Methods One phase of a 4D-MRI acquired during patient simulation is used as patient prior images. 3 major respiratory deformation patterns of the patient are extracted from 4D-MRI based on principal-component-analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2D-cine MRI. The method was evaluated using both XCAT simulation of lung cancer patients and MRI data from four real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using Volume-Percent-Difference(VPD), Center-of-Mass-Shift(COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest(ROI) selection, patient breathing pattern change and noise on the estimation accuracy were also evaluated. Results Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was on average 8.43±1.52% and the COMS was on average 0.93±0.58mm across all time-steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR=20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions Preliminary studies demonstrated the

  8. Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI.

    Science.gov (United States)

    Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C; Corum, Curt; Martinez, Gary V; Garwood, Michael; Gillies, Robert J

    2014-09-01

    The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT). The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week-old immunocompromised male mice. Tumor growth was assessed weekly for 3 weeks before euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4 Tesla (T) and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of nonexposure to ionizing radiation, quietness, and speed. Copyright © 2013 Wiley Periodicals, Inc.

  9. Safety of routine early MRI in preterm infants

    International Nuclear Information System (INIS)

    Plaisier, Annemarie; Feijen-Roon, Monique; Heemskerk, Anneriet M.; Dudink, Jeroen; Raets, Marlou M.A.; Govaert, Paul; Starre, Cynthia van der; Lequin, Maarten H.

    2012-01-01

    Cerebral MRI performed on preterm infants at term-equivalent 30 weeks' gestational age (GA) is increasingly performed as part of standard clinical care. We evaluated safety of these early MRI procedures. We retrospectively collected data on patient safety of preterm infants who underwent early MRI scans. Data were collected at fixed times before and after the MRI scan. MRI procedures were carried out according to a comprehensive guideline. A total of 52 infants underwent an MRI scan at 30 weeks' GA. Although no serious adverse events occurred and vital parameters remained stable during the procedure, minor adverse events were encountered in 26 infants (50%). The MRI was terminated in three infants (5.8%) because of respiratory instability. Increased respiratory support within 24 h after the MRI was necessary for 12 infants (23.1%) and was significantly associated with GA, birth weight and the mode of respiratory support. Hypothermia (core temperature < 36 C) occurred in nine infants (17.3%). Temperature dropped significantly after the MRI scan. Minor adverse events after MRI procedures at 30 weeks GA were common and should not be underestimated. A dedicated and comprehensive guideline for MRI procedures in preterm infants is essential. (orig.)

  10. Safety of routine early MRI in preterm infants

    Energy Technology Data Exchange (ETDEWEB)

    Plaisier, Annemarie; Feijen-Roon, Monique; Heemskerk, Anneriet M.; Dudink, Jeroen [Erasmus Medical Centre - Sophia, Division of Neonatology, Department of Pediatrics, Rotterdam (Netherlands); Erasmus Medical Centre - Sophia, Division of Pediatric Radiology, Department of Radiology, Rotterdam (Netherlands); Raets, Marlou M.A.; Govaert, Paul [Erasmus Medical Centre - Sophia, Division of Neonatology, Department of Pediatrics, Rotterdam (Netherlands); Starre, Cynthia van der [Erasmus Medical Centre - Sophia, Division of Neonatology, Department of Pediatrics, Rotterdam (Netherlands); Erasmus Medical Centre - Sophia, Intensive Care, Department of Pediatrics and Pediatric Surgery, Rotterdam (Netherlands); Lequin, Maarten H. [Erasmus Medical Centre - Sophia, Division of Pediatric Radiology, Department of Radiology, Rotterdam (Netherlands)

    2012-10-15

    Cerebral MRI performed on preterm infants at term-equivalent 30 weeks' gestational age (GA) is increasingly performed as part of standard clinical care. We evaluated safety of these early MRI procedures. We retrospectively collected data on patient safety of preterm infants who underwent early MRI scans. Data were collected at fixed times before and after the MRI scan. MRI procedures were carried out according to a comprehensive guideline. A total of 52 infants underwent an MRI scan at 30 weeks' GA. Although no serious adverse events occurred and vital parameters remained stable during the procedure, minor adverse events were encountered in 26 infants (50%). The MRI was terminated in three infants (5.8%) because of respiratory instability. Increased respiratory support within 24 h after the MRI was necessary for 12 infants (23.1%) and was significantly associated with GA, birth weight and the mode of respiratory support. Hypothermia (core temperature < 36 C) occurred in nine infants (17.3%). Temperature dropped significantly after the MRI scan. Minor adverse events after MRI procedures at 30 weeks GA were common and should not be underestimated. A dedicated and comprehensive guideline for MRI procedures in preterm infants is essential. (orig.)

  11. Evaluating temperature changes of brain tissue due to induced heating of cell phone waves

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2018-01-01

    Full Text Available Background: Worries have recently been increased in the absorption of radiofrequency waves and their destructing effects on human health by increasing use of cell phones (mobile phones. This study performed to determine the thermal changes due to mobile phone radio frequency waves in gray and white brain tissue. Methods: This study is an empirical study, where the thermal changes of electromagnetic waves resulted from cell phones (900 MHZ, specific absorption rate for head 1.18 w/kg on the 15 brain tissue of a cow were analyzed in a compartment with three different thickness of 2 mm, 12 mm, and 22 mm, for 15 min. The Lutron thermometer (model: MT-917 with 0.01°C precision was used for measuring the tissue temperature. For each thickness was measured three times. Data analysis is done by Lutron and MATLAB software packages. Results: In confronting of the tissue with the cell phone, the temperature was increased by 0.53°C in the 2 mm thickness that is the gray matter of the brain, increased by 0.99°C in the 12 mm thickness, and also increased by 0.92°C in the 22 mm thickness. Brain temperature showed higher rates than the base temperature after 15 min of confrontation with cell phone waves in all the three thicknesses. Conclusions: Cell phone radiated radio frequency waves were effective on increasing brain tissue temperature, and this temperature increase has cumulative effect on the tissue, being higher, for some time after the confrontation than the time with no confrontation.

  12. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") exposure.

    Science.gov (United States)

    Coman, Daniel; Sanganahalli, Basavaraju G; Jiang, Lihong; Hyder, Fahmeed; Behar, Kevin L

    2015-10-01

    (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is an abused psychostimulant that produces strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP-3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA(4-))). The MDMA-induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA-induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions

  13. Extended Remediation of Sleep Deprived-Induced Working Memory Deficits Using fMRI-guided Transcranial Magnetic Stimulation

    Science.gov (United States)

    Luber, Bruce; Steffener, Jason; Tucker, Adrienne; Habeck, Christian; Peterchev, Angel V.; Deng, Zhi-De; Basner, Robert C.; Stern, Yaakov; Lisanby, Sarah H.

    2013-01-01

    Study Objectives: We attempted to prevent the development of working memory (WM) impairments caused by sleep deprivation using fMRI-guided repetitive transcranial magnetic stimulation (rTMS). Novel aspects of our fMRI-guided rTMS paradigm included the use of sophisticated covariance methods to identify functional networks in imaging data, and the use of fMRI-targeted rTMS concurrent with task performance to modulate plasticity effects over a longer term. Design: Between-groups mixed model. Setting: TMS, MRI, and sleep laboratory study. Participants: 27 subjects (13 receiving Active rTMS, and 14 Sham) completed the sleep deprivation protocol, with another 21 (10 Active, 11 Sham) non-sleep deprived subjects run in a second experiment. Interventions: Our previous covariance analysis had identified a network, including occipital cortex, which demonstrated individual differences in resilience to the deleterious effects of sleep deprivation on WM performance. Five Hz rTMS was applied to left lateral occipital cortex while subjects performed a WM task during 4 sessions over the course of 2 days of total sleep deprivation. Measurements and Results: At the end of the sleep deprivation period, Sham sleep deprived subjects exhibited degraded performance in the WM task. In contrast, those receiving Active rTMS did not show the slowing and lapsing typical in sleep deprivation, and instead performed similarly to non- sleep deprived subjects. Importantly, the Active sleep deprivation group showed rTMS-induced facilitation of WM performance a full 18 hours after the last rTMS session. Conclusions: Over the course of sleep deprivation, these results indicate that rTMS applied concurrently with WM task performance affected neural circuitry involved in WM to prevent its full impact. Citation: Luber B; Steffener J; Tucker A; Habeck C; Peterchev AV; Deng ZD; Basner RC; Stern Y; Lisanby SH. Extended remediation of sleep deprived-induced working memory deficits using fMRI

  14. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences

    DEFF Research Database (Denmark)

    Cohen, Eric R.; Rostrup, Egill; Sidaros, Karam

    2004-01-01

    to be more accurately localized and quantified based on changes in venous blood oxygenation alone. The normalized BOLD signal induced by the motor task was consistent across different magnetic fields and pulse sequences, and corresponded well with cerebral blood flow measurements. Our data suggest...... size, as well as experimental, such as pulse sequence and static magnetic field strength (B(0)). Thus, it is difficult to compare task-induced fMRI signals across subjects, field strengths, and pulse sequences. This problem can be overcome by normalizing the neural activity-induced BOLD fMRI response...... for global stimulation, subjects breathed a 5% CO(2) gas mixture. Under all conditions, voxels containing primarily large veins and those containing primarily active tissue (i.e., capillaries and small veins) showed distinguishable behavior after hypercapnic normalization. This allowed functional activity...

  15. Pinpointing Synaptic Loss Caused by Alzheimer?s Disease with fMRI

    OpenAIRE

    Brickman, Adam M.; Small, Scott A.; Fleisher, Adam

    2009-01-01

    During its earliest stage, before cell loss and independent of amyloid plaques and neurofibrillary tangles, Alzheimer's disease (AD) causes synaptic loss affecting the basal functional properties of neurons. In principle, synaptic loss can be detected by measuring AD-induced changes in basal function, or by measuring stimulus-evoked responses on top of basal changes. Functional magnetic resonance imaging (fMRI) is sensitive to both basal changes and evoked-responses, and there are therefore t...

  16. Cortical language activation in aphasia: a functional MRI study

    International Nuclear Information System (INIS)

    Xu Xiaojun; Zhang Minming; Shang Desheng; Wang Qidong; Luo Benyan

    2004-01-01

    Objective: To investigate the differences of the underlying neural basis of language processing between normal subjects and aphasics, and to study the feasibility for functional magnetic resonance imaging (fMRI) in examining the cortical language activation in clinical aphasics. Methods: fMRI was used to map language network in 6 normal subjects and 3 patients with aphasia who were in the stage of recovery from acute stroke. The participants performed word generation task during fMRI scanning, which measured the signal changes associated with regional neural activity induced by the task. These signal changes were processed to statistically generate the activation map that represented the language area. Results: In normal subjects, a distributed language network was activated. Activations were present in the frontal, temporal, parietal and occipital regions in normal group. In the patient group, however, no activation was showed in the left inferior frontal gyrus whether or not the patient had lesion in the left frontal lobe. Two patients showed activations in some right hemisphere regions where no activation appeared in normal subjects. Conclusion: The remote effect of focal lesion and functional redistribution or reorganization was found in aphasic patients. fMRI was useful in evaluating the language function in aphasic patients. (authors)

  17. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    Science.gov (United States)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  18. The Rate of Seasonal Changes in Temperature Alters Acclimation of Performance under Climate Change.

    Science.gov (United States)

    Nilsson-Örtman, Viktor; Johansson, Frank

    2017-12-01

    How the ability to acclimate will impact individual performance and ecological interactions under climate change remains poorly understood. Theory predicts that the benefit an organism can gain from acclimating depends on the rate at which temperatures change relative to the time it takes to induce beneficial acclimation. Here, we present a conceptual model showing how slower seasonal changes under climate change can alter species' relative performance when they differ in acclimation rate and magnitude. To test predictions from theory, we performed a microcosm experiment where we reared a mid- and a high-latitude damselfly species alone or together under the rapid seasonality currently experienced at 62°N and the slower seasonality predicted for this latitude under climate change and measured larval growth and survival. To separate acclimation effects from fixed thermal responses, we simulated growth trajectories based on species' growth rates at constant temperatures and quantified how much and how fast species needed to acclimate to match the observed growth trajectories. Consistent with our predictions, the results showed that the midlatitude species had a greater capacity for acclimation than the high-latitude species. Furthermore, since acclimation occurred at a slower rate than seasonal temperature changes, the midlatitude species had a small growth advantage over the high-latitude species under the current seasonality but a greater growth advantage under the slower seasonality predicted for this latitude under climate change. In addition, the two species did not differ in survival under the current seasonality, but the midlatitude species had higher survival under the predicted climate change scenario, possibly because rates of cannibalism were lower when smaller heterospecifics were present. These findings highlight the need to incorporate acclimation rates in ecological models.

  19. WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Gierman, S; Schmerge, J [SLAC National Accelerator Laboratory, Palo Alto, CA (United States); Holloway, L [Ingham Institute, Sydney, NSW (Australia); Fahrig, R [Stanford University, Stanford, CA (United States)

    2015-06-15

    Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modelling (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and minimise

  20. MRI of the musculature in patients with myalgia - indications and imaging results

    International Nuclear Information System (INIS)

    Beese, M.S.; Winkler, G.; Maas, R.; Buechler, E.

    1996-01-01

    241 patients suffering from myalgic symptoms were examined by axial scans of the muscular system with T1w and STIR-sequences. All patients underwent a complete neuromuscular examination, which included an MRI guided muscle-biopsy of 203 patients. The images were retrospectively analysed as to the typical characteristics of differential diagnosis. In cases of idiopathic or bacterial/viral induced myositis, primary vasculitis, and rhabdomyolysis, edematous changes of the muscles could always be found. Abscesses were only found in bacterial myositis. In cases of poly- and dermatomyositis as well as inclusion-body-myositis, MRI showed a uniform distribution pattern with emphasis on the quadriceps muscles. In contrast to other neuromuscular diseases in bacterial induced myositis, focal myositis, and rhabdomyolysis a strong contrast agent enhancement was seen. All patients with myalgic syndromes without any other additional neuropathological findings and 86% of the patients suffering from polymyalgia rheumatica had normal MR-findings. MRI allows a correct exclusion of an inflammatory, tumorous, or rhabdomyolitic cause of a myalgia and leads to pathognomonic findings for these diseases. Diseases belonging to the group of endocrine, toxic, or metabolic myopathies might be normal in MRI. (orig./MG) [de

  1. Various anti-motion sickness drugs and core body temperature changes.

    Science.gov (United States)

    Cheung, Bob; Nakashima, Ann M; Hofer, Kevin D

    2011-04-01

    Blood flow changes and inactivity associated with motion sickness appear to exacerbate the rate of core temperature decrease during subsequent body cooling. We investigated the effects of various classes of anti-motion sickness drugs on core temperature changes. There were 12 healthy male and female subjects (20-35 yr old) who were given selected classes of anti-motion sickness drugs prior to vestibular Coriolis cross coupling induced by graded yaw rotation and periodic pitch-forward head movements in the sagittal plane. All subjects were then immersed in water at 18 degrees C for a maximum of 90 min or until their core temperature reached 35 degrees C. Double-blind randomized trials were administered, including a placebo, a non-immersion control with no drug, and six anti-motion sickness drugs: meclizine, dimenhydrinate, chlorpheniramine, promethazine + dexamphetamine, promethazine + caffeine, and scopolamine + dexamphetamine. A 7-d washout period was observed between trials. Core temperature and the severity of sickness were monitored throughout each trial. A repeated measures design was performed on the severity of sickness and core temperature changes prior to motion provocation, immediately after the motion sickness end point, and throughout the period of cold-water immersion. The most effective anti-motion sickness drugs, promethazine + dexamphetamine (with a sickness score/duration of 0.65 +/- 0.17) and scopolamine + dexamphetamine (with a sickness score/duration of 0.79 +/- 0.17), significantly attenuated the decrease in core temperature. The effect of this attenuation was lower in less effective drugs. Our results suggest that the two most effective anti-motion sickness drugs are also the most effective in attenuating the rate of core temperature decrease.

  2. Temperature dependence of the radiation induced change of depletion voltage in silicon PIN detectors

    International Nuclear Information System (INIS)

    Ziock, H.J.; Holzscheiter, K.; Morgan, A.; Palounek, A.P.T.; Ellison, J.; Heinson, A.P.; Mason, M.; Wimpenny, S.J.; Barberis, E.; Cartiglia, N.; Grillo, A.; O'Shaughnessy, K.; Rahn, J.; Rinaldi, P.; Rowe, W.A.; Sadrozinski, H.F.W.; Seiden, A.; Spencer, E.; Webster, A.; Wichmann, R.; Wilder, M.; Coupal, D.; Pal, T.

    1993-01-01

    The silicon microstrip detectors that will be used in the SDC experiment at the Superconducting Super Collider (SSC) will be exposed to very large fluences of charged particles, neutrons, and gammas. The authors present a study of how temperature affects the change in the depletion voltage of silicon PIN detectors damaged by radiation. They study the initial radiation damage and the short-term and long-term annealing of that damage as a function of temperature in the range from -10 degrees C to +50 degrees C, and as a function of 800 MeV proton fluence up to 1.5 x 10 14 p/cm 2 . They express the pronounced temperature dependencies in a simple model in terms of two annealing time constants which depend exponentially on the temperature

  3. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    International Nuclear Information System (INIS)

    Kandasamy, S.B.; Hunt, W.A.

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine

  4. Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay

    Directory of Open Access Journals (Sweden)

    W.Z. Chen

    2017-06-01

    Full Text Available Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydro-mechanical (THM coupling behaviour of Boom Clay, a series of permeability tests using temperature-controlled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory (URL HADES. Due to its sedimentary nature, Boom Clay presents across-anisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical (Kv and horizontal (Kh hydraulic conductivities show that the hydraulic conductivity at 80 °C is about 2.4 times larger than that at room temperature (23 °C, and the hydraulic conductivity variation with temperature is basically reversible during heating–cooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope (SEM tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance (NMR tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted (considering water viscosity and density changes with temperature can be attributed to the microstructural weakening effect on the thermal volume change

  5. Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T S; Straus, R; Sih, A [Univ. of Kentucky, Dept. of Biological Sciences, Lexington, Kentucky (United States)

    2003-04-01

    Temperature has been shown to affect body color in several species of amphibians. The interaction between color and temperature may also change over larval ontogeny, perhaps because of age-related or seasonal changes in selection pressures on color. We quantified the effects of temperature on the color of the salamander sister species Ambystoma barbouri and Ambystoma texanum over larval ontogeny. We found that early-stage larvae responded to cold temperatures with a dark color relative to that of the warm temperature response. Both species then exhibited an ontogenetic shift in larval color, with larvae becoming lighter with age. Interestingly, older larvae showed decreased plasticity in color change to temperature when compared with younger stages. Older A. texanum larvae exhibited a reversal in the direction of color change, with cold temperatures inducing a lighter color relative to warm temperatures. We suggest that the overall pattern of color change (a plastic color response to temperature for young larvae, a progressive lightening of larvae over development, and an apparent loss of color plasticity to temperature over ontogeny) can be plausibly explained by seasonal changes in environmental factors (temperature, ultraviolet radiation) selecting for body color. (author)

  6. Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum

    International Nuclear Information System (INIS)

    Garcia, T.S.; Straus, R.; Sih, A.

    2003-01-01

    Temperature has been shown to affect body color in several species of amphibians. The interaction between color and temperature may also change over larval ontogeny, perhaps because of age-related or seasonal changes in selection pressures on color. We quantified the effects of temperature on the color of the salamander sister species Ambystoma barbouri and Ambystoma texanum over larval ontogeny. We found that early-stage larvae responded to cold temperatures with a dark color relative to that of the warm temperature response. Both species then exhibited an ontogenetic shift in larval color, with larvae becoming lighter with age. Interestingly, older larvae showed decreased plasticity in color change to temperature when compared with younger stages. Older A. texanum larvae exhibited a reversal in the direction of color change, with cold temperatures inducing a lighter color relative to warm temperatures. We suggest that the overall pattern of color change (a plastic color response to temperature for young larvae, a progressive lightening of larvae over development, and an apparent loss of color plasticity to temperature over ontogeny) can be plausibly explained by seasonal changes in environmental factors (temperature, ultraviolet radiation) selecting for body color. (author)

  7. Electromagnetically induced transparency in high-temperature magnetoactive plasma

    International Nuclear Information System (INIS)

    Kryachko, A.Yu.; Litvak, A.G.; Tokman, M.D.

    2002-01-01

    The classical analog of the presently popular in the quantum electronics effect of the electromagnetically induced transparency (EIT) is studied. The EIT effect is considered for the electron-cyclotron waves in the plasma with the finite temperature. The expression for the effective index of the electromagnetic wave refraction is identified and the dispersion law and this wave absorption under the EIT conditions are studied. It is shown, that accounting for the thermal motion, which radically changes the behavior of the signal wave dispersion curves in the EIT area, as compared with the cold plasma case [ru

  8. Descriptions of spinal MRI lesions and definition of a positive MRI of the spine in axial spondyloarthritis

    DEFF Research Database (Denmark)

    Hermann, Kay-Geert A; Baraliakos, Xenofon; van der Heijde, Désirée M F M

    2012-01-01

    The aim of this study was to define characteristic MRI findings in the spine of patients with axial spondyloarthritis (SpA) and provide a definition of a positive spinal MRI for inflammation and structural changes.......The aim of this study was to define characteristic MRI findings in the spine of patients with axial spondyloarthritis (SpA) and provide a definition of a positive spinal MRI for inflammation and structural changes....

  9. Detection of Acute Tubular Necrosis Using Blood Oxygenation Level-Dependent (BOLD MRI

    Directory of Open Access Journals (Sweden)

    Frederic Bauer

    2017-12-01

    Full Text Available Background/Aims: To date, there is no imaging technique to assess tubular function in vivo. Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI measures tissue oxygenation based on the transverse relaxation rate (R2*. The present study investigates whether BOLD MRI can assess tubular function using a tubule-specific pharmacological maneuver. Methods: Cross sectional study with 28 participants including 9 subjects with ATN-induced acute kidney injury (AKI, 9 healthy controls, and 10 subjects with nephron sparing tumor resection (NSS with clamping of the renal artery serving as a model of ischemia/reperfusion (I/R-induced subclinical ATN (median clamping time 15 min, no significant decrease of eGFR, p=0.14. BOLD MRI was performed before and 5, 7, and 10 min after intravenous administration of 40 mg furosemide. Results: Urinary neutrophil gelatinase-associated lipocalin was significantly higher in ATN-induced AKI and NSS subjects than in healthy controls (p=0.03 and p=0.01, respectively. Before administration of furosemide, absolute medullary R2*, cortical R2*, and medullary/cortical R2* ratio did not significantly differ between ATN-induced AKI vs. healthy controls and between NSS-I/R vs. contralateral healthy kidneys (p>0.05 each. Furosemide led to a significant decrease in the medullary and cortical R2* of healthy subjects and NSS contralateral kidneys (p<0.05 each, whereas there was no significant change of R2* in ATN-induced AKI and the NSS-I/R kidneys (p>0.05 each. Conclusion: BOLD-MRI is able to detect even mild tubular injury but necessitates a tubule-specific pharmacological maneuver, e.g. blocking the Na+-K+-2Cl- transporter by furosemide.

  10. Comparison of X-ray, CT and MRI in detection of abnormal sacroiliac joint changes in patients with early stage of ankylosing spondylitis

    International Nuclear Information System (INIS)

    Huang Zhenguo; Zhang Xuezhe; Hong Wen; Wang Guochun; Zhou Huiqiong; Lu Xin; Wang Wu

    2011-01-01

    Objective: To compare X-ray, CT, and MRI in detection of abnormal sacroiliac joint changes in patients with early stage of ankylosing spondylitis (AS). Methods: Fifty-three patients with clinical suspected early stage of AS underwent X-ray and MRI scan. MR scan sequences for the sacroiliac joints consisted of T 1 -weighted, T 2 -weighted, short time inversion recovery (STIR) and three dimensional balance turbo field echo with water selective excitation (3D-BTFE-WATS) in all patients. In 24 of the patients, fat-saturated contrast-enhanced T 1 -weighted was used. Twenty-five of 53 patients underwent CT scan. The Chi-square test was used to analyse the uniformity of bone erosions detected by X-ray, CT, and MRI. Results: Of the 106 sacroiliac joints in 53 patients, 16 sacroiliac joints with bone erosions were detected by X-ray and 63 sacroiliac joints by MRI. Of the 50 sacroiliac joints in 25 patients, 26 sacroiliac joints with bone erosions were found by CT. With regard to the detection of bone erosions, there was no difference between Cf and MRI (χ 2 =0.16, P>0.05) and there was significant difference between CT and X-ray or MRI and X-ray (χ 2 =14.44 and 17.36, P<0.05). 3D-BTFE-WATS was better than other sequences in detection of bone erosions. Acute inflammatory changes were determined by MRI, which included subchondral bone marrow edema in 32 patients, synovitis in 35 patients, fat depositions in 16 patients, enthesitis in 15 patients, capsulitis in 9 patients, and cartilaginous disruption in 31 patients. Conclusions: MRI can detect acute inflammatory changes that can not display by X-ray and CT. Compared with radiography and CT, MRI is more useful in detection of abnormal sacroiliac joint changes in patients with early stage of AS. (authors)

  11. Resistive switching characteristics of interfacial phase-change memory at elevated temperature

    Science.gov (United States)

    Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji

    2018-04-01

    Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.

  12. Dynamic change in size of the lateral ventricle evaluated by cine MRI

    International Nuclear Information System (INIS)

    Abe, Toshi

    1990-01-01

    CSF pulsation suggests variation in the size of the cerebral ventricle during the cardiac cycle. CINE MRI, which is a useful technique for observation of the pulsatile CSF flow, demonstrates a dynamic change in size of the lateral ventricle. CINE MRI was performed on a 0.5 tesla MR imaging system (SMT-50, SHIMADZU). Sixteen different phased images during cardiac cycle were made by a gradient acho technique (STAGE: Short Tip Angle Gradient Echo, TE=14 msec, Flip Angle=30deg). From the measurement of the lateral ventricular areas of two different phases of CINE MRI during cadiac cycle, variation rate of cerebral ventricular area (VRCVA) was calculated. Twenty-five normal volunteers (14 younger adults aged 27-44 years, 11 older adults aged 56-73 years) and six cases of marked diffuse cerebral atrophy were studied. The results included: The mean VRCVA of younger adults was 14.4% (at right body of lateral ventricle) ∼ 30.0% (at left anterior horn of lateral ventricle). The mean VRCVA of younger adults is higher than the mean VRCVA of older adults. In the cases of marked diffuse cerebral atrophy, the mean VRCVA was very lower than the mean VRCVA of older adults. VRCVA of lateral ventricle calculated from CINE MRI seemed to have a good relationship to the brain elasticity. This noninvasive method would be used as an indication of the elastic response of the ventricles and the surrounding brain. (J.P.N.)

  13. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    Science.gov (United States)

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Effects of temperature changes on maize production in Mozambique

    Science.gov (United States)

    Harrison, L.; Michaelsen, J.; Funk, Chris; Husak, G.

    2011-01-01

    We examined intraseasonal changes in maize phenology and heat stress exposure over the 1979-2008 period, using Mozambique meteorological station data and maize growth requirements in a growing degree-day model. Identifying historical effects of warming on maize growth is particularly important in Mozambique because national food security is highly dependent on domestic food production, most of which is grown in already warm to hot environments. Warming temperatures speed plant development, shortening the length of growth periods necessary for optimum plant and grain size. This faster phenological development also alters the timing of maximum plant water demand. In hot growing environments, temperature increases during maize pollination threaten to make midseason crop failure the norm. In addition to creating a harsher thermal environment, we find that early season temperature increases have caused the maize reproductive period to start earlier, increasing the risk of heat and water stress. Declines in time to maize maturation suggest that, independent of effects to water availability, yield potential is becoming increasingly limited by warming itself. Regional variations in effects are a function of the timing and magnitude of temperature increases and growing season characteristics. Continuation of current climatic trends could induce substantial yield losses in some locations. Farmers could avoid some losses through simple changes to planting dates and maize varietal types.

  15. MRI in acute phase of whiplash injury

    Energy Technology Data Exchange (ETDEWEB)

    Fagerlund, M. [Dept. of Diagnostic Radiology, Univ. Hospital of Northern Sweden, Umeaa (Sweden); Bjoernebrink, J. [Dept. of Diagnostic Radiology, Univ. Hospital of Northern Sweden, Umeaa (Sweden); Pettersson, K. [Dept. of Orthopaedic Surgery, Univ. Hospital of Northern Sweden, Umeaa (Sweden); Hildingsson, C. [Dept. of Orthopaedic Surgery, Univ. Hospital of Northern Sweden, Umeaa (Sweden)

    1995-11-01

    A prospective MRI study of 39 whiplash patients was performed and the results were compared with the clinical findings within 15 days after trauma. The MRI parameters included disc bulging either with impingement on the anterior epidural space or with medullary compression, foraminal stenosis, dorsal ligament thickening, osteophyte extension and intramedullary or paravertebral soft tissue injury. All changes were graded visually on a four-point scale (no, some, moderate or extensive changes). After the MRI evaluation was made the clinical findings were analysed by two orthopaedic surgeons using a specially designed protocol. With MRI 29 patients (74 %) showed no or only slight changes, and were thus regarded as normal variations. Of these, 10 of 29 patients (34 %) had as the only symptom pain in the head or in the neck, 19 of 29 patients (66 %) showed neurological changes, either paresthesias, sensory deficits or weakness of upper extremities. In 10 (26 %) patients with moderate or extensive MRI changes, 3 of 10 (33 %) had only head or neck pain, or both, and 7 of 10 (66 %) had neurological changes. Use of MRI in whiplash injury is helpful, but it is not the first-choice radiological examination method. Despite neurological changes, the frequency of true traumatic lesions is low. There is no clear correlation between the patients` subjective symptoms or clinical signs and the findings with MRI. However, MRI can be used to find patients with disk herniation that can be treated surgically. (orig.)

  16. MRI in acute phase of whiplash injury

    International Nuclear Information System (INIS)

    Fagerlund, M.; Bjoernebrink, J.; Pettersson, K.; Hildingsson, C.

    1995-01-01

    A prospective MRI study of 39 whiplash patients was performed and the results were compared with the clinical findings within 15 days after trauma. The MRI parameters included disc bulging either with impingement on the anterior epidural space or with medullary compression, foraminal stenosis, dorsal ligament thickening, osteophyte extension and intramedullary or paravertebral soft tissue injury. All changes were graded visually on a four-point scale (no, some, moderate or extensive changes). After the MRI evaluation was made the clinical findings were analysed by two orthopaedic surgeons using a specially designed protocol. With MRI 29 patients (74 %) showed no or only slight changes, and were thus regarded as normal variations. Of these, 10 of 29 patients (34 %) had as the only symptom pain in the head or in the neck, 19 of 29 patients (66 %) showed neurological changes, either paresthesias, sensory deficits or weakness of upper extremities. In 10 (26 %) patients with moderate or extensive MRI changes, 3 of 10 (33 %) had only head or neck pain, or both, and 7 of 10 (66 %) had neurological changes. Use of MRI in whiplash injury is helpful, but it is not the first-choice radiological examination method. Despite neurological changes, the frequency of true traumatic lesions is low. There is no clear correlation between the patients' subjective symptoms or clinical signs and the findings with MRI. However, MRI can be used to find patients with disk herniation that can be treated surgically. (orig.)

  17. Drug-related cue induced craving and the correlation between the activation in nucleus accumbens and drug craving: a fMRI study on heroin addicts

    International Nuclear Information System (INIS)

    Wang Yarong; Yang Lanying; Li Qiang; Yang Weichuan; Du Pang; Wang Wei

    2010-01-01

    Objective: To explore the neural mechanism underlying the craving of heroin addicts induced by picture-cue and the correlation between the brain activation degree in nucleus accumbens (NAc)/ the ventral striatum and the scores of patients self-report craving. Methods: Twelve active heroin addicts and 12 matched healthy controls underwent fMRI scan while viewing drug-related pictures and neutral pictures presented in a block design paradigm after anatomical scanning in GE 3.0 T scanner. The fMRI data were analyzed with SPM 5. The change of craving scores was tested by Wilcoxon signed rank test. The Pearson correlation between the activation of NAc/the ventral striatum and the heroin craving score was tested by SPSS 13.0. Results: The craving scores of heroin addicts ranged from 0 to 3.70 (median 0.15) before exposed to drug cue and 0 to 5.10 (median 3.25) after viewing drug-related pictures and showed statistical significance (Z=-2.666, P<0.05). There were 16 activated brain areas when heroin dependent patients exposed to visual drug-related cue vs. neutral visual stimuli. The activation brain regions belonged to two parts, one was limbic system (amygdale, hippocampus, putamen, anterior cingulate cortex and caudate), another was brain cortex (middle frontal cortex, inferior frontal cortex, precentral gyrus, middle temporal cortex, inferior temporal cortex, fusiform gyrus, precuneus and middle occipital gyrus). The MR signal activation magnitude of heroin addicts ranged from 0.19 to 3.50. The result displayed a significant positive correlation between the cue-induced fMRI activation in NAc/the ventral striatum and heroin craving severity (r=0.829, P<0.05). Conclusion: Heroin shared the same neural circuitry in part with other drugs of abuse for cue-induced craving, including brain reward circuitry, visualspatial attention circuit and working memory region. In addition, the dysfunction of NAc/the ventral striatum may attribute to heroin-related cue induced craving

  18. Post-anoxic quantitative MRI changes may predict emergence from coma and functional outcomes at discharge.

    Science.gov (United States)

    Reynolds, Alexandra S; Guo, Xiaotao; Matthews, Elizabeth; Brodie, Daniel; Rabbani, Leroy E; Roh, David J; Park, Soojin; Claassen, Jan; Elkind, Mitchell S V; Zhao, Binsheng; Agarwal, Sachin

    2017-08-01

    Traditional predictors of neurological prognosis after cardiac arrest are unreliable after targeted temperature management. Absence of pupillary reflexes remains a reliable predictor of poor outcome. Diffusion-weighted imaging has emerged as a potential predictor of recovery, and here we compare imaging characteristics to pupillary exam. We identified 69 patients who had MRIs within seven days of arrest and used a semi-automated algorithm to perform quantitative volumetric analysis of apparent diffusion coefficient (ADC) sequences at various thresholds. Area under receiver operating characteristic curves (ROC-AUC) were estimated to compare predictive values of quantitative MRI with pupillary exam at days 3, 5 and 7 post-arrest, for persistence of coma and functional outcomes at discharge. Cerebral Performance Category scores of 3-4 were considered poor outcome. Excluding patients where life support was withdrawn, ≥2.8% diffusion restriction of the entire brain at an ADC of ≤650×10 -6 m 2 /s was 100% specific and 68% sensitive for failure to wake up from coma before discharge. The ROC-AUC of ADC changes at ≤450×10 -6 mm 2 /s and ≤650×10 -6 mm 2 /s were significantly superior in predicting failure to wake up from coma compared to bilateral absence of pupillary reflexes. Among survivors, >0.01% of diffusion restriction of the entire brain at an ADC ≤450×10 -6 m 2 /s was 100% specific and 46% sensitive for poor functional outcome at discharge. The ROC curve predicting poor functional outcome at ADC ≤450×10 -6 mm 2 /s had an AUC of 0.737 (0.574-0.899, p=0.04). Post-anoxic diffusion changes using quantitative brain MRI may aid in predicting persistent coma and poor functional outcomes at hospital discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of glyceryl trinitrate and calcitonin-gene-related peptide on BOLD signal and arterial diameter –methodological studies by fMRI and MRA

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Ashina, Messoud

    2013-01-01

    Over the last decades MRI has proved to be very useful in the field of drug development and discovery. Pharmacological MRI (phMRI) explores the interaction between brain physiology, neuronal activity and drugs[1]. The BOLD-signal is an indirect method to investigate brain activity by way...... of measuring task-related hemodynamic changes. Pharmacological substances that induce hemodynamic changes can therefore potentially alter the BOLD-signal that in turn falsely can be interpreted as changes in neuronal activity. It is therefore important to characterize possible effects of a pharmacological...... substance on the BOLD-response per see before that substance can be used in an fMRI experiment. Furthermore MR-angiography is useful in determining the vascular site-of-action of vasoactive substances....

  20. Working gas temperature and pressure changes for microscale thermal creep-driven flow caused by discontinuous wall temperatures

    International Nuclear Information System (INIS)

    Han, Yen-Lin

    2010-01-01

    Microscale temperature gradient-driven (thermal creep/transpiration) gas flows have attracted significant interest during the past decade. For free molecular and transitional conditions, applying temperature gradients to a flow channel's walls induces the thermal creep effect. This results in a working gas flowing through the channel from cold to hot, which is generally accompanied by a rising pressure from cold to hot in the channel. Working gas temperature and pressure distributions can vary significantly, depending on a flow channel's configuration and wall temperature distribution. Understanding working gas temperature excursions, both increases and decreases, is essential to ensure the effective use of thermal creep flows in microscale applications. In this study, the characterizations of working gas temperature variations, due to both temperature discontinuities and more gradual changes, on a variety of flow channel walls, were systematically investigated using the direct simulation Monte Carlo (DSMC) method. A micro/meso-scale pump, the Knudsen compressor, was chosen to illustrate the importance of controlling working gas temperature in thermal creep-driven flows. Gas pressure and temperature variations, through several Knudsen compressor stage configurations, were studied to determine the most advantageous flow phenomena for the efficient operation of Knudsen compressors.

  1. TU-F-CAMPUS-J-02: Evaluation of Textural Feature Extraction for Radiotherapy Response Assessment of Early Stage Breast Cancer Patients Using Diffusion Weighted MRI and Dynamic Contrast Enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y; Wang, C; Horton, J; Chang, Z [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To investigate the feasibility of using classic textural feature extraction in radiotherapy response assessment, we studied a unique cohort of early stage breast cancer patients with paired pre - and post-radiation Diffusion Weighted MRI (DWI-MRI) and Dynamic Contrast Enhanced MRI (DCE-MRI). Methods: 15 female patients from our prospective phase I trial evaluating preoperative radiotherapy were included in this retrospective study. Each patient received a single-fraction radiation treatment, and DWI and DCE scans were conducted before and after the radiotherapy. DWI scans were acquired using a spin-echo EPI sequence with diffusion weighting factors of b = 0 and b = 500 mm{sup 2} /s, and the apparent diffusion coefficient (ADC) maps were calculated. DCE-MRI scans were acquired using a T{sub 1}-weighted 3D SPGR sequence with a temporal resolution of about 1 minute. The contrast agent (CA) was intravenously injected with a 0.1 mmol/kg bodyweight dose at 2 ml/s. Two parameters, volume transfer constant (K{sup trans} ) and k{sub ep} were analyzed using the two-compartment Tofts kinetic model. For DCE parametric maps and ADC maps, 33 textural features were generated from the clinical target volume (CTV) in a 3D fashion using the classic gray level co-occurrence matrix (GLCOM) and gray level run length matrix (GLRLM). Wilcoxon signed-rank test was used to determine the significance of each texture feature’s change after the radiotherapy. The significance was set to 0.05 with Bonferroni correction. Results: For ADC maps calculated from DWI-MRI, 24 out of 33 CTV features changed significantly after the radiotherapy. For DCE-MRI pharmacokinetic parameters, all 33 CTV features of K{sup trans} and 33 features of k{sub ep} changed significantly. Conclusion: Initial results indicate that those significantly changed classic texture features are sensitive to radiation-induced changes and can be used for assessment of radiotherapy response in breast cancer.

  2. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA,‘ecstasy’) exposure

    Science.gov (United States)

    Coman, Daniel; Sanganahalli, Basavaraju G.; Jiang, Lihong; Hyder, Fahmeed; Behar, Kevin L.

    2015-01-01

    (+/−)3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is an abused psychostimulant producing strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCP), primarily a type specific to skeletal muscle (UCP-3) and which is absent in brain, although other UCP types are expressed in brain (e.g., thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights of MDMA action, we measured spatial distributions of systemically-administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation of Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA4−)). The MDMA-induced temperature rise in cortex was greater than in subcortex (1.6±0.4°C vs. 1.3±0.4°C) and occurred more rapidly (2.0±0.2°C/h vs. 1.5±0.2°C/h). MDMA-induced temperature changes and dynamics in cortex and body were correlated, although body temperature exceeded cortex before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in cortex and subcortex (i.e., thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to cortex, a biphasic relationship was seen in subcortex (i.e., thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature >37°C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions. Considering that MDMA effects on CBF and heat dissipation (as well as

  3. Correlation between radiographic, echographic and MRI changes and rheumatoid arthritis progression

    Directory of Open Access Journals (Sweden)

    G. Garlaschi

    2011-09-01

    Full Text Available Objectives: To review the imaging methods used for the evaluation of disease progression in rheumatoid arthritis (RA and to evaluate the results of their application in pharmacological trials. Methods: Literature articles dealing with radiology, echography, and magnetic resonance imaging (MRI of patients with RA were evaluated in a non-systematic fashion. Results: Conventional radiology is the gold standard for the evaluation of disease progression in RA because of its diffusion, economy, and standardization. Different techniques have been proposed to evaluate radiological damage of the joints, with the Larsen’s and Sharp’s methods being most widely used. These methods are commonly used for the evaluation of the ability of DMARDs to slow RA progression. Among traditional DMARDs, gold salts, sulphasalazine, methotrexate, cyclosporin, and leflunomide have shown efficacy in slowing the appearance of new erosions. The same effect has been recently demonstrated for infliximab plus methotrexate, anakinra and etanercept. However, conventional radiology has several disadvantages, because it is monoplanar and has a low sensitivity to change. Newer imaging techniques, such as echography and MRI are extensively studied and have been used occasionally in the mediumterm evaluation of DMARDs, with promising results. Conclusions: Although conventional radiology is still the gold standard for the evaluation of disease progression in RA, newer techniques are increasingly studied. In particular, standardization of echographic and MRI imaging of the joints is in progress.

  4. Lumbar Modic Changes - A Comparison Between Findings at Low-and High-field MRI

    DEFF Research Database (Denmark)

    Bendix, Tom; Sorensen, Joan S; Henriksson, Gustaf A C

    2012-01-01

    Study Design. A cross-sectional observational study.Objective. To investigate if there is a difference in findings of lumbar Modic changes in low-field (0.3 Tesla) magnetic resonance imaging (MRI) as compared to high field (1.5 Tesla).Summary of Background Data. It is a challenge to give patients...

  5. IClinfMRI Software for Integrating Functional MRI Techniques in Presurgical Mapping and Clinical Studies.

    Science.gov (United States)

    Hsu, Ai-Ling; Hou, Ping; Johnson, Jason M; Wu, Changwei W; Noll, Kyle R; Prabhu, Sujit S; Ferguson, Sherise D; Kumar, Vinodh A; Schomer, Donald F; Hazle, John D; Chen, Jyh-Horng; Liu, Ho-Ling

    2018-01-01

    Task-evoked and resting-state (rs) functional magnetic resonance imaging (fMRI) techniques have been applied to the clinical management of neurological diseases, exemplified by presurgical localization of eloquent cortex, to assist neurosurgeons in maximizing resection while preserving brain functions. In addition, recent studies have recommended incorporating cerebrovascular reactivity (CVR) imaging into clinical fMRI to evaluate the risk of lesion-induced neurovascular uncoupling (NVU). Although each of these imaging techniques possesses its own advantage for presurgical mapping, a specialized clinical software that integrates the three complementary techniques and promptly outputs the analyzed results to radiology and surgical navigation systems in a clinical format is still lacking. We developed the Integrated fMRI for Clinical Research (IClinfMRI) software to facilitate these needs. Beyond the independent processing of task-fMRI, rs-fMRI, and CVR mapping, IClinfMRI encompasses three unique functions: (1) supporting the interactive rs-fMRI mapping while visualizing task-fMRI results (or results from published meta-analysis) as a guidance map, (2) indicating/visualizing the NVU potential on analyzed fMRI maps, and (3) exporting these advanced mapping results in a Digital Imaging and Communications in Medicine (DICOM) format that are ready to export to a picture archiving and communication system (PACS) and a surgical navigation system. In summary, IClinfMRI has the merits of efficiently translating and integrating state-of-the-art imaging techniques for presurgical functional mapping and clinical fMRI studies.

  6. Evaluation of femoral perfusion in a rabbit model of steroid-induced osteonecrosis by dynamic contrast-enhanced MRI with a high magnetic field MRI system.

    Science.gov (United States)

    Hayashi, Shigeki; Fujioka, Mikihiro; Ikoma, Kazuya; Saito, Masazumi; Ueshima, Keiichiro; Ishida, Masashi; Kuribayashi, Masaaki; Ikegami, Akira; Mazda, Osam; Kubo, Toshikazu

    2015-04-01

    To evaluate perfusion during the early phase after steroid administration in vivo using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with a high magnetic field MRI system. The main pathogenesis of steroid-induced osteonecrosis is considered to be ischemia. A single dose of methylprednisolone (MPSL) was injected into nine rabbits. DCE-MRI was performed for these rabbits before MPSL administration and 1, 5, 10, and 14 days after administration. Time-signal intensity curves were created for each femur based on the signal intensity to evaluate perfusion. Enhancement ratio (ER), initial slope (IS), and area under the curve (AUC) were calculated and the value before MPSL administration and the minimal value after administration were compared statistically. ER, IS, and AUC values after MPSL administration significantly decreased (P < 0.05, P < 0.01, and P < 0.01, respectively). All of them decreased by the 5th day in 56% of the femora and by the 14th day in 83%, and some femora even showed a decrease from the 1st day. In this study, decreased perfusion in the femora after steroid administration was proven. Additionally, we could show that it occurred from the early days after steroid administration. © 2014 Wiley Periodicals, Inc.

  7. Who gets afraid in the MRI-scanner? Neurogenetics of state-anxiety changes during an fMRI experiment.

    Science.gov (United States)

    Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio

    2014-11-07

    Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. S-Ketamine-Induced NMDA Receptor Blockade during Natural Speech Production and Its Implications for Formal Thought Disorder in Schizophrenia: A Pharmaco-fMRI Study.

    Science.gov (United States)

    Nagels, Arne; Cabanis, Maurice; Oppel, Andrea; Kirner-Veselinovic, Andre; Schales, Christian; Kircher, Tilo

    2018-05-01

    Structural and functional changes in the lateral temporal language areas have been related to formal thought disorder (FTD) in schizophrenia. Continuous, natural speech production activates the right lateral temporal lobe in schizophrenia, as opposed to the left in healthy subjects. Positive and negative FTD can be elicited in healthy subjects by glutamatergic NMDA blockade with ketamine. It is unclear whether the glutamate system is related to the reversed hemispheric lateralization during speaking in patients. In a double-blind, crossover, placebo-controlled study, 15 healthy, male, right-handed volunteers overtly described 7 pictures for 3 min each while BOLD signal changes were acquired with fMRI. As a measure of linguistic demand, the number of words within 20 s epochs was correlated with BOLD responses. Participants developed S-ketamine-induced psychotic symptoms, particularly positive FTD. Ketamine vs placebo was associated with enhanced neural responses in the right middle and inferior temporal gyri. Similar to a previous fMRI study in schizophrenia patients vs healthy controls applying the same design, S-ketamine reversed functional lateralization during speech production in healthy subjects. Results demonstrate an association between glutamatergic imbalance, dysactivations in lateral temporal brain areas, and FTD symptom formation.

  9. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    International Nuclear Information System (INIS)

    Paulson, Eric S.; Erickson, Beth; Schultz, Chris; Allen Li, X.

    2015-01-01

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  10. Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, Eric S., E-mail: epaulson@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States); Erickson, Beth; Schultz, Chris; Allen Li, X. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 (United States)

    2015-01-15

    Purpose: The use of magnetic resonance imaging (MRI) in radiation oncology is expanding rapidly, and more clinics are integrating MRI into their radiation therapy workflows. However, radiation therapy presents a new set of challenges and places additional constraints on MRI compared to diagnostic radiology that, if not properly addressed, can undermine the advantages MRI offers for radiation treatment planning (RTP). The authors introduce here strategies to manage several challenges of using MRI for virtual simulation in external beam RTP. Methods: A total of 810 clinical MRI simulation exams were performed using a dedicated MRI scanner for external beam RTP of brain, breast, cervix, head and neck, liver, pancreas, prostate, and sarcoma cancers. Patients were imaged in treatment position using MRI-optimal immobilization devices. Radiofrequency (RF) coil configurations and scan protocols were optimized based on RTP constraints. Off-resonance and gradient nonlinearity-induced geometric distortions were minimized or corrected prior to using images for RTP. A multidisciplinary MRI simulation guide, along with window width and level presets, was created to standardize use of MR images during RTP. A quality assurance program was implemented to maintain accuracy and repeatability of MRI simulation exams. Results: The combination of a large bore scanner, high field strength, and circumferentially wrapped, flexible phased array RF receive coils permitted acquisition of thin slice images with high contrast-to-noise ratio (CNR) and image intensity uniformity, while simultaneously accommodating patient setup and immobilization devices. Postprocessing corrections and alternative acquisition methods were required to reduce or correct off-resonance and gradient nonlinearity induced geometric distortions. Conclusions: The methodology described herein contains practical strategies the authors have implemented through lessons learned performing clinical MRI simulation exams. In

  11. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    Science.gov (United States)

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  12. Neural Changes following Behavioral Activation for a Depressed Breast Cancer Patient: A Functional MRI Case Study

    Directory of Open Access Journals (Sweden)

    Michael J. Gawrysiak

    2012-01-01

    Full Text Available Functional neuroimaging is an innovative but at this stage underutilized method to assess the efficacy of psychotherapy for depression. Functional magnetic resonance imaging (fMRI was used in this case study to examine changes in brain activity in a depressed breast cancer patient receiving an 8-session Behavioral Activation Treatment for Depression (BATD, based on the work of Hopko and Lejuez (2007. A music listening paradigm was used during fMRI brain scans to assess reward responsiveness at pre- and posttreatment. Following treatment, the patient exhibited attenuated depression and changes in blood oxygenation level dependence (BOLD response in regions of the prefrontal cortex and the subgenual cingulate cortex. These preliminary findings outline a novel means to assess psychotherapy efficacy and suggest that BATD elicits functional brain changes in areas implicated in the pathophysiology of depression. Further research is necessary to explore neurobiological mechanisms of change in BATD, particularly the potential mediating effects of reward responsiveness and associated brain functioning.

  13. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  14. Wernicke's encephalopathy induced by total parenteral nutrition in patient with acute leukaemia: unusual involvement of caudate nuclei and cerebral cortex on MRI

    Energy Technology Data Exchange (ETDEWEB)

    D' Aprile, P.; Tarantino, A.; Carella, A. [Division of Neuroradiology, Policlinico, Univ. of Bari (Italy); Santoro, N. [Inst. of Paediatric Clinic I, Policlinico, University of Bari, Bari (Italy)

    2000-10-01

    We report a 13-year-old girl with leukaemia and Wernicke's encephalopathy induced by total parenteral nutrition. MRI showed unusual bilateral lesions of the caudate nuclei and cerebral cortex, as well as typical lesions surrounding the third ventricle and aqueduct. After intravenous thiamine, the patient improved, and the abnormalities on MRI disappeared. (orig.)

  15. Strain-induced structural changes and chemical reactions. 1: Thermomechanical and kinetic models

    International Nuclear Information System (INIS)

    Levitas, V.I.; Nesterenko, V.F.; Meyers, M.A.

    1998-01-01

    Strain-induced chemical reactions were observed recently (Nesterenko et al) in experiments in the shear band in both Ti-Si and Nb-Si mixtures. Reactions can start in the solid state or after melting of at least one component. One of the aims is to find theoretically whether there are possible macroscopic mechanisms of mechanical intensification of the above and other chemical reactions due to plastic shear in the solid state. Continuum thermodynamical theory of structural changes with an athermal kinetics, which includes martensitic phase transformations, plastic strain-induced chemical reactions and polymorphic transformations, is developed at finite strains. The theory includes kinematics, criterion of structural change and extremum principle for determination of all unknown variable parameters for the case with neglected elastic strains. Thermodynamically consistent kinetic theory of thermally activated structural changes is suggested. The concept of the effective temperature is introduced which takes into account that temperature can vary significantly (on 1,000 K) during the chemical reactions under consideration. The theory will be applied in Part 2 of the paper for the description of chemical reactions in the shear band

  16. Quantification of regional early stage gas exchange changes using hyperpolarized {sup 129}Xe MRI in a rat model of radiation-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Doganay, Ozkan, E-mail: ozkan.doganay@oncology.ox.ac.uk [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom); Stirrat, Elaine [Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); McKenzie, Charles [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Schulte, Rolf F. [General Electric Global Research, Munich 85748 (Germany); Santyr, Giles E. [Department of Medical Biophysics, Western University, London, Ontario N6A5C1 (Canada); Imaging Research Laboratories, Robarts Research Institute, London, Ontario N6A5C1 (Canada); Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8 (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G1L7 (Canada)

    2016-05-15

    Purpose: To assess the feasibility of hyperpolarized (HP) {sup 129}Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a {sup 60}Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L{sub PT}) and relative blood volume (V{sub RBC}) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L{sub PT} and V{sub RBC} were observed between the irradiated and non-irradiated cohorts. In particular, L{sub PT} of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V{sub RBC} of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the

  17. Decomposing climate-induced temperature and water effects on the expansion and operation of the US electricity system

    Science.gov (United States)

    Sun, Y.; Eurek, K.; Macknick, J.; Steinberg, D. C.; Averyt, K.; Badger, A.; Livneh, B.

    2017-12-01

    Climate change has the potential to affect the supply and demands of the U.S. power sector. Rising air temperatures can affect the seasonal and total demand for electricity, alter the thermal efficiency of power plants, and lower the maximum capacity of electric transmission lines. Changes in hydrology can affect seasonal and total availability of water used for power plant operations. Prior studies have examined some climate impacts on the electricity sector, but there has been no systematic study quantifying and comparing the importance of these climate-induced effects in isolation and in combination. Here, we perform a systematic assessment using the Regional Energy Deployment System (ReEDS) electricity sector model in combination with downscaled climate results from four models in the CMIP5 archive that provide contrasting temperature and precipitation trends for key regions in the U.S. The ReEDS model captures dynamic climate and hydrological resource data .when choosing the cost optimal mix of generation resources necessary to balance supply and demand for electricity. We examine how different climate-induced changes in air temperature and water availability, considered in isolation and in combination, may affect energy and economic outcomes at a regional and national level from the present through 2050. Results indicate that temperature-induced impacts on electricity consumption show consistent trends nationwide across all climate scenarios. Hydrological impacts and variability differ by model and tend to have a minor effect on national electricity trends, but can be important determinants regionally. Taken together, this suggests that isolated climate change impacts on the electricity system depend on the geographic scale of interest - the effect of rising temperatures on demand, which is qualitatively robust to the choice of climate model, largely determines impacts on generation, capacity and cost at the national level, whereas other impact pathways may

  18. Dynamic changes in ear temperature in relation to separation distress in dogs.

    Science.gov (United States)

    Riemer, Stefanie; Assis, Luciana; Pike, Thomas W; Mills, Daniel S

    2016-12-01

    Infrared thermography can visualize changes in body surface temperature that result from stress-induced physiological changes and alterations of blood flow patterns. Here we explored its use for remote stress monitoring (i.e. removing need for human presence) in a sample of six pet dogs. Dogs were tested in a brief separation test involving contact with their owner, a stranger, and social isolation for two one-minute-periods. Tests were filmed using a thermographic camera set up in a corner of the room, around 7m from where the subjects spent most of the time. Temperature was measured from selected regions of both ear pinnae simultaneously. Temperatures of both ear pinnae showed a pattern of decrease during separation and increase when a person (either the owner or a stranger) was present, with no lateralized temperature differences between the two ears. Long distance thermographic measurement is a promising technique for non-invasive remote stress assessment, although there are some limitations related to dogs' hair structure over the ears, making it unsuitable for some subjects. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. MRI findings in acute Hendra virus meningoencephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Nakka, P.; Amos, G.J. [Department of Diagnostic Radiology, Princess Alexandra Hospital, Woolloongabba, Qld 4102 (Australia); Saad, N., E-mail: nivena100@hotmail.com [Department of Diagnostic Radiology, Princess Alexandra Hospital, Woolloongabba, Qld 4102 (Australia); Jeavons, S. [Department of Diagnostic Radiology, Princess Alexandra Hospital, Woolloongabba, Qld 4102 (Australia)

    2012-05-15

    Aim: To describe serial changes in brain magnetic resonance imaging (MRI) in acute human infection from two outbreaks of Hendra virus (HeV), relate these changes to disease prognosis, and compare HeV encephalitis to reported cases of Nipah virus encephalitis. Materials and methods: The MRI images of three human cases (two of which were fatal) of acute HeV meningoencephalitis were reviewed. Results: Cortical selectivity early in the disease is evident in all three patients, while deep white matter involvement appears to be a late and possibly premorbid finding. This apparent early grey matter selectivity may be related to viral biology or ribavirin pharmacokinetics. Neuronal loss is evident at MRI, and the rate of progression of MRI abnormalities can predict the outcome of the infection. In both fatal cases, the serial changes in the MRI picture mirrored the clinical course. Conclusion: This is the first comprehensive report of serial MRI findings in acute human cerebral HeV infection from two outbreaks. The cortical selectivity appears to be an early finding while deep white matter involvement a late, and possibly premorbid, finding. In both fatal cases, the serial changes in MRI mirrored the clinical course.

  20. MRI findings in acute Hendra virus meningoencephalitis

    International Nuclear Information System (INIS)

    Nakka, P.; Amos, G.J.; Saad, N.; Jeavons, S.

    2012-01-01

    Aim: To describe serial changes in brain magnetic resonance imaging (MRI) in acute human infection from two outbreaks of Hendra virus (HeV), relate these changes to disease prognosis, and compare HeV encephalitis to reported cases of Nipah virus encephalitis. Materials and methods: The MRI images of three human cases (two of which were fatal) of acute HeV meningoencephalitis were reviewed. Results: Cortical selectivity early in the disease is evident in all three patients, while deep white matter involvement appears to be a late and possibly premorbid finding. This apparent early grey matter selectivity may be related to viral biology or ribavirin pharmacokinetics. Neuronal loss is evident at MRI, and the rate of progression of MRI abnormalities can predict the outcome of the infection. In both fatal cases, the serial changes in the MRI picture mirrored the clinical course. Conclusion: This is the first comprehensive report of serial MRI findings in acute human cerebral HeV infection from two outbreaks. The cortical selectivity appears to be an early finding while deep white matter involvement a late, and possibly premorbid, finding. In both fatal cases, the serial changes in MRI mirrored the clinical course.

  1. Signal-inducing bone cements for MRI-guided spinal cementoplasty: evaluation of contrast-agent-based polymethylmethacrylate cements

    International Nuclear Information System (INIS)

    Bail, Hermann Josef; Tsitsilonis, Serafim; Wichlas, Florian; Sattig, Christoph; Papanikolaou, Ioannis; Teichgraeber, Ulf Karl Mart

    2012-01-01

    The purpose of this work is to evaluate two signal-inducing bone cements for MRI-guided spinal cementoplasty. The bone cements were made of polymethylmethacrylate (PMMA, 5 ml monomeric, 12 g polymeric) and gadoterate meglumine as a contrast agent (CA, 0-40 μl) with either saline solution (NaCl, 2-4 ml) or hydroxyapatite bone substitute (HA, 2-4 ml). The cement's signal was assessed in an open 1-Tesla MR scanner, with T1W TSE and fast interventional T1W TSE pulse sequences, and the ideal amount of each component was determined. The compressive and bending strength for different amounts of NaCl and HA were evaluated. The cement's MRI signal depended on the concentration of CA, the amount of NaCl or HA, and the pulse sequence. The signal peaks were recorded between 1 and 10 μl CA per ml NaCl or HA, and were higher in fast T1W TSE than in T1W TSE images. The NaCl-PMMA-CA cements had a greater MRI signal intensity and compressive strength; the HA-PMMA-CA cements had a superior bending strength. Concerning the MR signal and biomechanical properties, these cements would permit MRI-guided cementoplasty. Due to its higher signal and greater compressive strength, the NaCl-PMMA-CA compound appears to be superior to the HA-PMMA-CA compound. (orig.)

  2. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    Science.gov (United States)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  3. Impact of the MLC on the MRI field distortion of a prototype MRI-linac

    International Nuclear Information System (INIS)

    Kolling, Stefan; Keall, Paul; Oborn, Brad

    2013-01-01

    Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0 T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps of the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30 cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300 μT. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200 cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20 cm 2 , to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B 0 of 0.5, 1.0, and 1.5 T, to estimate how the MLC impact changes with B 0 .Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was

  4. MRI or not to MRI! Should brain MRI be a routine investigation in children with autistic spectrum disorders?

    Science.gov (United States)

    Zeglam, Adel M; Al-Ogab, Marwa F; Al-Shaftery, Thouraya

    2015-09-01

    To evaluate the routine usage of Magnetic Resonance Imaging (MRI) of brain and estimate the prevalence of brain abnormalities in children presenting to the Neurodevelopment Clinic of Al-Khadra Hospital (NDC-KH), Tripoli, Libya with autistic spectrum disorders (ASD). The records of all children with ASD presented to NDC-KH over 4-year period (from January 2009 to December 2012) were reviewed. All MRIs were acquired with a 1.5-T Philips (3-D T1, T2, FLAIR coronal and axial sequences). MRIs were reported to be normal, abnormal or no significant abnormalities by a consultant neuroradiologist. One thousand and seventy-five children were included in the study. Seven hundred and eighty-two children (72.7 %) had an MRI brain of whom 555 (71 %) were boys. 26 children (24 males and 2 females) (3.3 %) demonstrated MRI abnormalities (8 leukodystrophic changes, 4 periventricular leukomalacia, 3 brain atrophy, 2 tuberous sclerosis, 2 vascular changes, 1 pineoblastoma, 1 cerebellar angioma, 1 cerebellar hypoplasia, 3 agenesis of corpus callosum, 1 neuro-epithelial cyst). An unexpectedly high rate of MRI abnormalities was found in the first large series of clinical MRI investigations in children with autism. These results could contribute to further research into the pathogenesis of autistic spectrum disorder.

  5. Reversible and irreversible temperature-induced changes in exchange-biased planar Hall effect bridge (PHEB) magnetic field sensors

    DEFF Research Database (Denmark)

    Rizzi, G.; Lundtoft, N.C.; Østerberg, F.W.

    2012-01-01

    We investigate the changes of planar Hall effect bridge magnetic field sensors upon exposure to temperatures between 25° C and 90°C. From analyses of the sensor response vs. magnetic fields we extract the exchange bias field Hex, the uniaxial anisotropy field HK and the anisotropic...... magnetoresistance (AMR) of the exchange biased thin film at a given temperature and by comparing measurements carried out at elevated temperatures T with measurements carried out at 25° C after exposure to T, we can separate the reversible from the irreversible changes of the sensor. The results are not only...... relevant for sensor applications but also demonstrate the method as a useful tool for characterizing exchange-biased thin films....

  6. Non-linear temperature-dependent curvature of a phase change composite bimorph beam

    Science.gov (United States)

    Blonder, Greg

    2017-06-01

    Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and  >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.

  7. Contrast medium-enhanced MRI findings and changes over time in stage I tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Oztoprak, I. [Department of Radiology Cumhuriyet University Faculty of Medicine, 58140 Sivas (Turkey)], E-mail: oztoprak@cumhuriyet.edu.tr; Guemues, C.; Oztoprak, B. [Department of Radiology Cumhuriyet University Faculty of Medicine, 58140 Sivas (Turkey); Engin, A. [Department of Infectious Diseases, Cumhuriyet University Faculty of Medicine, Sivas (Turkey)

    2007-12-15

    Aim: To demonstrate the detailed imaging characteristics of early tuberculous meningitis (TBM) and changes over time on standard gadolinium-enhanced, T1-weighted magnetic resonance imaging (MRI) images. Materials and methods: Contrast-enhanced, T1-weighted, spin-echo MRI images of 26 patients with early TBM were evaluated retrospectively. Meningeal enhancement characteristics were categorized according to distribution and pattern as diffuse, focal, linear, nodular, and mixed. Results: We found that 35% of patients had diffuse meningeal enhancement and 65% of cases had focal meningeal enhancement. There was a predilection for focal meningeal enhancement in basal pial areas, the interpeduncular fossa being the most common. In six patients with diffuse meningeal enhancement admitted to hospital relatively early after the onset of symptoms, the type of meningeal enhancement later changed to the focal form. Conclusion: Reactive diffuse meningeal enhancement occurs in the early period of TBM on contrast medium-enhanced T1-weighted MR images, but later becomes limited to basal areas.

  8. Serial changes of humor comprehension for four-frame comic Manga: an fMRI study.

    Science.gov (United States)

    Osaka, Mariko; Yaoi, Ken; Minamoto, Takehiro; Osaka, Naoyuki

    2014-07-25

    Serial changes of humor comprehension evoked by a well organized four-frame comic Manga were investigated by fMRI in each step of humor comprehension. The neural substrates underlying the amusing effects in response to funny and mixed order manga were compared. In accordance with the time course of the four frames, fMRI activations changed serially. Beginning with the second frame (development scene), activation of the temporo-parietal junction (TPJ) was observed, followed by activations in the temporal and frontal areas during viewing of the third frame (turn scene). For the fourth frame (punch line), strong increased activations were confirmed in the medial prefrontal cortex (MPFC) and cerebellum. Interestingly, distinguishable activation differences in the cerebellum between funny and non-funny conditions were also found for the fourth frame. These findings suggest that humor comprehension evokes activation that initiates in the TPJ and expands to the MPFC and cerebellum at the convergence level.

  9. Contrast medium-enhanced MRI findings and changes over time in stage I tuberculous meningitis

    International Nuclear Information System (INIS)

    Oztoprak, I.; Guemues, C.; Oztoprak, B.; Engin, A.

    2007-01-01

    Aim: To demonstrate the detailed imaging characteristics of early tuberculous meningitis (TBM) and changes over time on standard gadolinium-enhanced, T1-weighted magnetic resonance imaging (MRI) images. Materials and methods: Contrast-enhanced, T1-weighted, spin-echo MRI images of 26 patients with early TBM were evaluated retrospectively. Meningeal enhancement characteristics were categorized according to distribution and pattern as diffuse, focal, linear, nodular, and mixed. Results: We found that 35% of patients had diffuse meningeal enhancement and 65% of cases had focal meningeal enhancement. There was a predilection for focal meningeal enhancement in basal pial areas, the interpeduncular fossa being the most common. In six patients with diffuse meningeal enhancement admitted to hospital relatively early after the onset of symptoms, the type of meningeal enhancement later changed to the focal form. Conclusion: Reactive diffuse meningeal enhancement occurs in the early period of TBM on contrast medium-enhanced T1-weighted MR images, but later becomes limited to basal areas

  10. Short-Term changes on MRI predict long-Term changes on radiography in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Peterfy, Charles; Strand, Vibeke; Tian, Lu

    2017-01-01

    Objective In rheumatoid arthritis (RA), MRI provides earlier detection of structural damage than radiography (X-ray) and more sensitive detection of intra-Articular inflammation than clinical examination. This analysis was designed to evaluate the ability of early MRI findings to predict subsequent...

  11. Body temperature change characteristics of Lake Michigan fishes

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Thommes, M.M.; Beitinger, T.L.

    1974-01-01

    Body temperature change rate experiments were conducted on alewife, brown trout, rainbow trout, brook trout, and carp collected from the discharge flumes and inshore areas near the Point Beach Nuclear Plant. Test fish were exposed to immediate water temperature changes of up to 10.6 0 C by transfer between ambient and discharge water holding tanks. Results showed that the temperature change rate was related to fish size, species, and direction of change, suggesting that rapid temperature changes would have a more pronounced effect on smaller fish

  12. Are MRI high-signal changes of alar and transverse ligaments in acute whiplash injury related to outcome?

    Directory of Open Access Journals (Sweden)

    Eide Geir E

    2010-11-01

    Full Text Available Abstract Background Upper neck ligament high-signal changes on magnetic resonance imaging (MRI have been found in patients with whiplash-associated disorders (WAD but also in non-injured controls. The clinical relevance of such changes is controversial. Their prognostic role has never been evaluated. The purpose of this study was to examine if alar and transverse ligament high-signal changes on MRI immediately following the car accident are related to outcome after 12 months for patients with acute WAD grades 1-2. Methods Within 13 days after a car accident, 114 consecutive acute WAD1-2 patients without prior neck injury or prior neck problems underwent upper neck high-resolution proton-weighted MRI. High-signal changes of the alar and transverse ligaments were graded 0-3. A questionnaire including the impact of event scale for measuring posttraumatic stress response and questions on patients' expectations of recovery provided clinical data at injury. At 12 months follow-up, 111 (97.4% patients completed the Neck Disability Index (NDI and an 11-point numeric rating scale (NRS-11 on last week neck pain intensity. Factors potentially related to these outcomes were assessed using multiple logistic regression analyses. Results Among the 111 responders (median age 29.8 years; 63 women, 38 (34.2% had grades 2-3 alar ligament changes and 25 (22.5% had grades 2-3 transverse ligament changes at injury. At 12 months follow-up, 49 (44.1% reported disability (NDI > 8 and 23 (20.7% neck pain (NRS-11 > 4. Grades 2-3 ligament changes in the acute phase were not related to disability or neck pain at 12 months. More severe posttraumatic stress response increased the odds for disability (odds ratio 1.46 per 10 points on the impact of event scale, p = 0.007 and so did low expectations of recovery (odds ratio 4.66, p = 0.005. Conclusions High-signal changes of the alar and transverse ligaments close after injury did not affect outcome for acute WAD1-2 patients

  13. Thermal injuries associated with MRI

    International Nuclear Information System (INIS)

    Dempsey, Mary F.; Condon, Barrie

    2001-01-01

    Most physicians are aware of the absolute contraindications to magnetic resonance imaging (MRI). However, less familiar is the potential for an MRI-induced thermal or electrical burn associated with electrical monitoring devices. Although detailed studies concerning the burn hazard in MRI have not been reported, it is widely believed that direct electromagnetic induction in looped cables associated with the patient is responsible for the excessive heating and it is on this theory that present guidelines are based. Recent reports have however indicated that other mechanisms may cause the heating of metal, either in or on the patient. This document reviews numerous reported burn injuries sustained during MRI and addresses the underlying heating mechanisms possibly causing these events. Dempsey, M.F. and Condon, B. (2001)

  14. Assessing the Risks Associated with MRI in Patients with a Pacemaker or Defibrillator.

    Science.gov (United States)

    Russo, Robert J; Costa, Heather S; Silva, Patricia D; Anderson, Jeffrey L; Arshad, Aysha; Biederman, Robert W W; Boyle, Noel G; Frabizzio, Jennifer V; Birgersdotter-Green, Ulrika; Higgins, Steven L; Lampert, Rachel; Machado, Christian E; Martin, Edward T; Rivard, Andrew L; Rubenstein, Jason C; Schaerf, Raymond H M; Schwartz, Jennifer D; Shah, Dipan J; Tomassoni, Gery F; Tominaga, Gail T; Tonkin, Allison E; Uretsky, Seth; Wolff, Steven D

    2017-02-23

    The presence of a cardiovascular implantable electronic device has long been a contraindication for the performance of magnetic resonance imaging (MRI). We established a prospective registry to determine the risks associated with MRI at a magnetic field strength of 1.5 tesla for patients who had a pacemaker or implantable cardioverter-defibrillator (ICD) that was "non-MRI-conditional" (i.e., not approved by the Food and Drug Administration for MRI scanning). Patients in the registry were referred for clinically indicated nonthoracic MRI at a field strength of 1.5 tesla. Devices were interrogated before and after MRI with the use of a standardized protocol and were appropriately reprogrammed before the scanning. The primary end points were death, generator or lead failure, induced arrhythmia, loss of capture, or electrical reset during the scanning. The secondary end points were changes in device settings. MRI was performed in 1000 cases in which patients had a pacemaker and in 500 cases in which patients had an ICD. No deaths, lead failures, losses of capture, or ventricular arrhythmias occurred during MRI. One ICD generator could not be interrogated after MRI and required immediate replacement; the device had not been appropriately programmed per protocol before the MRI. We observed six cases of self-terminating atrial fibrillation or flutter and six cases of partial electrical reset. Changes in lead impedance, pacing threshold, battery voltage, and P-wave and R-wave amplitude exceeded prespecified thresholds in a small number of cases. Repeat MRI was not associated with an increase in adverse events. In this study, device or lead failure did not occur in any patient with a non-MRI-conditional pacemaker or ICD who underwent clinically indicated nonthoracic MRI at 1.5 tesla, was appropriately screened, and had the device reprogrammed in accordance with the prespecified protocol. (Funded by St. Jude Medical and others; MagnaSafe ClinicalTrials.gov number, NCT

  15. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter

    2003-01-01

    Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock...... gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  16. MRI-guided periradicular nerve root infiltration therapy in low-field (0.23-T) MRI system using optical instrument tracking

    International Nuclear Information System (INIS)

    Sequeiros, Roberto Blanco; Ojala, Risto O.; Klemola, Rauli; Jyrkinen, Lasse; Tervonen, Osmo A.; Vaara, Teuvo J.

    2002-01-01

    The purpose of this study was to evaluate the feasibility of the MRI-guided periradicular nerve root infiltration therapy. Sixty-seven nerve root infiltrations under MRI guidance were done for 61 patients suffering from lumbosacral radicular pain. Informed consent was acquired from all patients. A 0.23-T open-MRI scanner with interventional tools (Outlook Proview, Philips Medical Systems, MR Technologies, Finland) was used. A surface coil was used in all cases. Nerve root infiltration was performed with MRI-compatible 20-G needle (Chiba type MReye, Cook, Bloomington, Ind.; or Manan type, MD Tech, Florida). The evaluation of clinical outcome was achieved with 6 months of clinical follow-up and questionnaire. The effect of nerve root infiltration to the radicular pain was graded: 1=good to excellent, i.e., no pain or not disturbing pain allowing normal physical activity at 3 months from the procedure; 2=temporary, i.e., temporary relief of pain; 3=no relief of pain; and 4=worsening of pain. As an adjunct to MRI-guided positioning of the needle the correct needle localization by the nerve root was confirmed with saline injection to nerve root channel and single-shot fast spin echo (SSFSE) imaging. The MRI guidance allowed adequate needle positioning in all but 1 case (98.5%). This failure was caused by degeneration-induced changes in anatomy. Of patients, 51.5% had good to excellent effect with regard to radicular pain from the procedure, 22.7% had temporary relief, 21.2% had no effect, and in 4.5% the pain worsened. Our results show that MRI guidance is accurate and safe in performing nerve root infiltration at lumbosacral area. The results of radicular pain relief from nerve root infiltration are comparable to CT or fluoroscopy studies on the subject. (orig.)

  17. An Observational Study to Assess Brain MRI Change and Disease Progression in Multiple Sclerosis Clinical Practice-The MS-MRIUS Study.

    Science.gov (United States)

    Zivadinov, Robert; Khan, Nasreen; Medin, Jennie; Christoffersen, Pia; Price, Jennifer; Korn, Jonathan R; Bonzani, Ian; Dwyer, Michael G; Bergsland, Niels; Carl, Ellen; Silva, Diego; Weinstock-Guttman, Bianca

    2017-05-01

    To describe methodology, interim baseline, and longitudinal magnetic resonance imaging (MRI) acquisition parameter characteristics of the multiple sclerosis clinical outcome and MRI in the United States (MS-MRIUS). The MS-MRIUS is an ongoing longitudinal and retrospective study of MS patients on fingolimod. Clinical and brain MRI image scan data were collected from 600 patients across 33 MS centers in the United States. MRI brain outcomes included change in whole-brain volume, lateral ventricle volume, T2- and T1-lesion volumes, and new/enlarging T2 and gadolinium-enhancing lesions. Interim baseline and longitudinal MRI acquisition parameters results are presented for 252 patients. Mean age was 44 years and 81% were female. Forty percent of scans had 3-dimensional (3D) T1 sequence in the preindex period, increasing to 50% in the postindex period. Use of 2-dimensional (2D) T1 sequence decreased over time from 85% in the preindex period to 65% in the postindex. About 95% of the scans with FLAIR and 2D T1-WI were considered acceptable or good quality compared to 99-100% with 3D T1-WI. There were notable changes in MRI hardware, software, and coil (39.5% in preindex to index and 50% in index to postindex). MRI sequence parameters (orientation, thickness, or protocol) differed for 36%, 29%, and 20% of index/postindex scans for FLAIR, 2D T1-WI, and 3D T1-WI, respectively. The MS-MRIUS study linked the clinical and brain MRI outcomes into an integrated database to create a cohort of fingolimod patients in real-world practice. Variability was observed in MRI acquisition protocols overtime. © 2016 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  18. Stress-induced changes in circadian rhythms of body temperature and activity in rats are not caused by pacemaker changes

    NARCIS (Netherlands)

    Meerlo, P; vandenHoofdakker, RH; Koolhaas, JM; Daan, S

    1997-01-01

    Previous work has shown that social stress in rats (i.e., defeat by an aggressive male conspecific) causes a variety of behavioral and physiological changes including alterations in the daily rhythms of body temperature and activity. To study the role of the circadian pacemaker in these

  19. Temperature-induced itinerant-electron metamagnetism in ErCo3 studied by neutron diffraction

    International Nuclear Information System (INIS)

    Gratz, E.; Markosyan, A.S.; Gaidukova, I.Yu.; Rodimin, V.E.; Paul-Boncour, V.; Hoser, A.; Stuesser, N.

    2002-01-01

    Powder neutron diffraction studies in the temperature range from 2 K to 450 K of the ferrimagnetic ErCo 3 compound (T C =401 K) revealed an increase of the unit-cell volume at 100 K (T m ) when cooling down (ΔV/V∼4 x 10 -3 ). This is referred to as a temperature-induced change in the Co sublattice magnetization from a low-magnetic state (T>T m ) to a high-magnetic state (T m ). From the temperature variation of the sublattice magnetization (ErI (3a sites), ErII (6c), CoI (3b), CoII (6c) and CoIII (18h)) it was found that the Co moments at the 6c and 18h sites change near 100 K, giving rise to the volume anomaly at T m . A qualitative discussion of the mechanism behind this phenomenon is given. (orig.)

  20. Temperature-mediated changes in seed dormancy and light requirement for Penstemon palmeri (Scrophulariaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, S.G.; Meyer, S.E. (Dept of Agriculture, Provo, UT (United States))

    1992-03-01

    Penstemon palmeri is a short-lived perennial herb colonizing disturbed sites in semiarid habitats in the western US. In this study seed was harvested from six native and four seeded populations during two consecutive years. In laboratory germination trials at constant 15C, considerable between-lot variation in primary dormancy and light requirement was observed. Four weeks of moist chilling (1C) induced secondary dormancy at 15C. Cold-induced secondary dormancy was reversed by one week of dark incubation at 30C. This warm incubation treatment also reduced the light requirement of unchilled, after-ripened seed. Fluctuations in dormancy and light requirement of buried seeds have been linked to seasonal changes in soil temperature. Penstemon palmeri germination responses to temperature appear to be similar to those of facultative winter annuals.

  1. Novel Synthesis of Ultra-Small Dextran Coated Maghemite Nanoparticles for MRI and CT Contrast Agents via a Low Temperature Co-Precipitation Reaction.

    Science.gov (United States)

    Rabias, Ioannis; Fardis, Michael; Kehagias, Thomas; Kletsas, Dimitris; Pratsinis, Harris; Tsitrouli, Danai; Maris, Thomas G; Papavassiliou, George

    2015-01-01

    Ultra-small dextran coated maghemite nanoparticles are synthesized via a low temperature modified co-precipitation method. A monoethylene glycol/water solution of 1:1 molar ratios and a fixed apparatus is used at a constant temperature of 5-10 degrees C. The growth of nanoparticles is prohibited due to low temperature synthesis and differs from usual thermal decomposition methods via Ostwald ripening. Strict temperature control and reaction timing of less than 20 minutes are essential to maintain narrow distribution in particle size. These nanoparticles are water-dispersible and biocompatible by capping with polyethylene glycol ligands. The aqueous suspensions are tested for cytotoxic activity on normal human skin fibroblasts. There is no reduction of the cells' viability at any concentration tested, the highest being 1% v/v of the suspension in culture medium, corresponding to the highest concentrations to be administered in vivo. Initial comparison with a T1 MRI contrast agent in sale shows that maghemite nanoparticles exhibit high r1 and r2 relaxivities in MRI tomography and strong contrast in computed tomography, demonstrating that these nanoparticles can be efficient T1, T2 and CT contrast agents.

  2. Breast dynamic contrast enhanced MRI: fibrocystic changes presenting as a non-mass enhancement mimicking malignancy

    Directory of Open Access Journals (Sweden)

    Milosevic Zorica C.

    2017-06-01

    Full Text Available We aimed to analyse the morphokinetic features of breast fibrocystic changes (nonproliferative lesions, proliferative lesions without atypia and proliferative lesions with atypia presenting as a non-mass enhancement (NMEin dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI examination.

  3. Fast and direct detection of neuronal activation with diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Le Bihan, D. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), Lab. Anatomical and Functional Neuroimaging, 91 - Orsay (France); Urayama, S.; Aso, T.; Hanakawa, T.; Fukuyama, H. [Kyoto Univ. Graduate School of Medicine, Human Brain Research Center, Kyoto (Japan)

    2006-07-01

    Over the last 30 years functional neuroimaging has emerged as a revolutionary path to study the brain and the mind. This has been possible because of significant advances mainly in two imaging modalities, namely Positron Emission Tomograph y (PET) and Magnetic Resonance Imaging (MRI). Amazingly, although those two modalities are based on radically different physical approaches (detection of 1 3 radioactivity for the first one and nuclear magnetization for the second), both allo w brain activation images to be obtained through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the same principle that neuronal activation and blood flow are coupled through metabolism: Blood flow increases locally in activated brain regions. In the case of PET one uses H{sub 2}O radioactive water which is produced by using a cyclotron and injected to the subject vasculature. In activated brain regions the increase in blood flow leads to a local increase in the tissue radioactive water content detected and localized by the PE T camera. With MRI the hydrogen nuclei of brain endogenous water molecules are magnetized by a strong external magnetic field. In activated regions the increase in blood flow results in an increase of blood oxygenation which induces a slight perturbation of the magnetization relaxation properties of the water molecules around blood vessels detected by the MRI scanner (so called 'BOLD' effect). I n both approaches water is, thus, merely an indirect means to look at changes in cerebral blood flow which accompany brain activation, and although PET and BOLD f MRI have been extremely successful for the functional neuroimaging community, present well known limitations. While the coupling between neuronal activation, metabolism and blood flow has been verified in most instances including BOLD f MRI, the degree and the mechanism of coupling remains largely debated (Magistratt, Pellerin, Mangia) and may fail in some

  4. Fast and direct detection of neuronal activation with diffusion MRI

    International Nuclear Information System (INIS)

    Le Bihan, D.; Urayama, S.; Aso, T.; Hanakawa, T.; Fukuyama, H.

    2006-01-01

    Over the last 30 years functional neuroimaging has emerged as a revolutionary path to study the brain and the mind. This has been possible because of significant advances mainly in two imaging modalities, namely Positron Emission Tomograph y (PET) and Magnetic Resonance Imaging (MRI). Amazingly, although those two modalities are based on radically different physical approaches (detection of 1 3 radioactivity for the first one and nuclear magnetization for the second), both allo w brain activation images to be obtained through measurements involving water molecules. So far, PET and MRI functional imaging have relied on the same principle that neuronal activation and blood flow are coupled through metabolism: Blood flow increases locally in activated brain regions. In the case of PET one uses H 2 O radioactive water which is produced by using a cyclotron and injected to the subject vasculature. In activated brain regions the increase in blood flow leads to a local increase in the tissue radioactive water content detected and localized by the PE T camera. With MRI the hydrogen nuclei of brain endogenous water molecules are magnetized by a strong external magnetic field. In activated regions the increase in blood flow results in an increase of blood oxygenation which induces a slight perturbation of the magnetization relaxation properties of the water molecules around blood vessels detected by the MRI scanner (so called 'BOLD' effect). I n both approaches water is, thus, merely an indirect means to look at changes in cerebral blood flow which accompany brain activation, and although PET and BOLD f MRI have been extremely successful for the functional neuroimaging community, present well known limitations. While the coupling between neuronal activation, metabolism and blood flow has been verified in most instances including BOLD f MRI, the degree and the mechanism of coupling remains largely debated (Magistratt, Pellerin, Mangia) and may fail in some pathological

  5. Frequency-dependent changes in the regional amplitude and synchronization of resting-state functional MRI in stroke.

    Directory of Open Access Journals (Sweden)

    Jianfang Zhu

    Full Text Available Resting-state functional magnetic resonance imaging (R-fMRI has been intensively used to assess alterations of inter-regional functional connectivity in patients with stroke, but the regional properties of brain activity in stroke have not yet been fully investigated. Additionally, no study has examined a frequency effect on such regional properties in stroke patients, although this effect has been shown to play important roles in both normal brain functioning and functional abnormalities. Here we utilized R-fMRI to measure the amplitude of low-frequency fluctuations (ALFF and regional homogeneity (ReHo, two major methods for characterizing the regional properties of R-fMRI, in three different frequency bands (slow-5: 0.01-0.027 Hz; slow-4: 0.027-0.73 Hz; and typical band: 0.01-0.1 Hz in 19 stroke patients and 15 healthy controls. Both the ALFF and ReHo analyses revealed changes in brain activity in a number of brain regions, particularly the parietal cortex, in stroke patients compared with healthy controls. Remarkably, the regions with changed activity as detected by the slow-5 band data were more extensive, and this finding was true for both the ALFF and ReHo analyses. These results not only confirm previous studies showing abnormality in the parietal cortex in patients with stroke, but also suggest that R-fMRI studies of stroke should take frequency effects into account when measuring intrinsic brain activity.

  6. A Single Session of rTMS Enhances Small-Worldness in Writer’s Cramp: Evidence from Simultaneous EEG-fMRI Multi-Modal Brain Graph

    Directory of Open Access Journals (Sweden)

    Rose D. Bharath

    2017-09-01

    Full Text Available Background and Purpose: Repetitive transcranial magnetic stimulation (rTMS induces widespread changes in brain connectivity. As the network topology differences induced by a single session of rTMS are less known we undertook this study to ascertain whether the network alterations had a small-world morphology using multi-modal graph theory analysis of simultaneous EEG-fMRI.Method: Simultaneous EEG-fMRI was acquired in duplicate before (R1 and after (R2 a single session of rTMS in 14 patients with Writer’s Cramp (WC. Whole brain neuronal and hemodynamic network connectivity were explored using the graph theory measures and clustering coefficient, path length and small-world index were calculated for EEG and resting state fMRI (rsfMRI. Multi-modal graph theory analysis was used to evaluate the correlation of EEG and fMRI clustering coefficients.Result: A single session of rTMS was found to increase the clustering coefficient and small-worldness significantly in both EEG and fMRI (p < 0.05. Multi-modal graph theory analysis revealed significant modulations in the fronto-parietal regions immediately after rTMS. The rsfMRI revealed additional modulations in several deep brain regions including cerebellum, insula and medial frontal lobe.Conclusion: Multi-modal graph theory analysis of simultaneous EEG-fMRI can supplement motor physiology methods in understanding the neurobiology of rTMS in vivo. Coinciding evidence from EEG and rsfMRI reports small-world morphology for the acute phase network hyper-connectivity indicating changes ensuing low-frequency rTMS is probably not “noise”.

  7. Selective magnetic resonance imaging (MRI) in invasive lobular breast cancer based on mammographic density: does it lead to an appropriate change in surgical treatment?

    Science.gov (United States)

    Bansal, Gaurav J; Santosh, Divya; Davies, Eleri L

    2016-01-01

    The purpose of this study was to evaluate whether high mammographic density can be used as one of the selection criteria for MRI in invasive lobular breast cancer (ILC). In our institute, high breast density has been used as one of the indications for performing MRI scan in patients with ILC. We divided the patients in two groups, one with MRI performed pre-operatively and other without MRI. We compared their surgical procedures and analyzed whether surgical plan was altered after MRI. In case of alteration of plan, we analyzed whether the change was adequate by comparing post-operative histological findings. Between 2011 and 2015, there were a total of 1601 breast cancers with 97 lobular cancers, out of which 36 had pre-operative MRI and 61 had no MRI scan. 12 (33.3%) had mastectomy following MRI, out of which 9 (25%) had change in surgical plan from conservation to mastectomy following MRI. There were no unnecessary mastectomies in the MRI group. However, utilization of MRI in this cohort of patients did not reduce reoperation rate (19.3%). Lobular carcinoma in situ (LCIS) was identified in 60% of reoperations on post-surgical histology. Patients in the "No MRI" group had higher mastectomy rate 26 (42.6%), which was again appropriate. High mammographic density is a useful risk stratification criterion for selective MRI in ILC within a multidisciplinary team meeting setting. Provided additional lesions identified on MRI are confirmed with biopsy, pre-operative MRI does not cause unnecessary mastectomies. Used in this selective manner, reoperation rates were not eliminated, albeit reduced when compared to literature. High mammographic breast density can be used as one of the selection criteria for pre-operative MRI in ILC without an increase in inappropriate mastectomies with potential time and cost savings. In this cohort, re-excisions were not reduced markedly with pre-operative MRI.

  8. Temperature-induced changes in polyelectrolyte films at the solid-liquid interface

    International Nuclear Information System (INIS)

    Steitz, R.; Leiner, V.; Tauer, K.; Khrenov, V.; Klitzing, R. v.

    2002-01-01

    Polyelectrolyte multilayers (film thickness 30-60 nm) were built on top of silicon substrates by layer-by-layer deposition of oppositely charged polyelectrolytes from aqueous solutions. Three kinds of films were investigated: (A) films of a homo-polyelectrolyte and a diblock copolymer with a thermosensitive poly(N-isopropyl-acrylamide) block and (B) and (C) two reference systems built solely from homo-polyelectrolytes of opposite charges. Thermal behavior and subsequent structural changes of the functionalized films against D 2 O were investigated by neutron reflectometry. All films showed irreversible annealing effects upon heating. In addition, the thermosensitive films showed a decrease in thickness at elevated temperature (>30 C) while the reference samples, composed of thermo-insensitive polyelectrolytes only, did not. (orig.)

  9. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh

    International Nuclear Information System (INIS)

    Sokka, S D; King, R; Hynynen, K

    2003-01-01

    In this study, we propose a focused ultrasound surgery protocol that induces and then uses gas bubbles at the focus to enhance the ultrasound absorption and ultimately create larger lesions in vivo. MRI and ultrasound visualization and monitoring methods for this heating method are also investigated. Larger lesions created with a carefully monitored single ultrasound exposure could greatly improve the speed of tumour coagulation with focused ultrasound. All experiments were performed under MRI (clinical, 1.5 T) guidance with one of two eight-sector, spherically curved piezoelectric transducers. The transducer, either a 1.1 or 1.7 MHz array, was driven by a multi-channel RF driving system. The transducer was mounted in an MRI-compatible manual positioning system and the rabbit was situated on top of the system. An ultrasound detector ring was fixed with the therapy transducer to monitor gas bubble activity during treatment. Focused ultrasound surgery exposures were delivered to the thighs of seven New Zealand white rabbits. The experimental, gas-bubble-enhanced heating exposures consisted of a high amplitude 300 acoustic watt, half second pulse followed by a 7 W, 14 W or 21 W continuous wave exposure for 19.5 s. The respective control sonications were 20 s exposures of 14 W, 21 W and 28 W. During the exposures, MR thermometry was obtained from the temperature dependency of the proton resonance frequency shift. MR T2-enhanced imaging was used to evaluate the resulting lesions. Specific metrics were used to evaluate the differences between the gas-bubble-enhanced exposures and their respective control sonications: temperatures with respect to time and space, lesion size and shape, and their agreement with thermal dose predictions. The bubble-enhanced exposures showed a faster temperature rise within the first 4 s and higher overall temperatures than the sonications without bubble formation. The spatial temperature maps and the thermal dose maps derived from the MRI

  10. MRI in bone marrow lesions

    International Nuclear Information System (INIS)

    Linden, A.; Theissen, P.; Schauerte, G.; Schicha, H.; Diehl, V.

    1989-01-01

    MRI has the potential to demonstrate bone marrow pathology due to its good soft tissue contrast. Inflammation and necrosis can be detected very early before there is evidence of radiological changes. In bone tumors intramedullary infiltration can be visualized in addition to soft tissue changes. Metastases of bone and bone marrow, especially in spinal and pelvic regions, are well depicted, often before bone scintigraphy yields pathological findings. In haematological disorders MRI permits follow-up studies due to its good reproducibility. Infiltration by malignant lymphoma and multiple myeloma and its extension in bone marrow can be visualized by MRI, too. However, the most common pathological MRI findings in bone marrow are not very specific, and final diagnosis requires further clinical or histological information. (orig.) [de

  11. Comparison of CT and MRI features in sinusitis

    International Nuclear Information System (INIS)

    Chong, V.F.H.; Fan, Y.F.

    1998-01-01

    Objective: To correlate the features of inflammatory changes in the paranasal sinuses on magnetic resonance imaging (MRI) with computed tomography (CT). Methods and patients: One hundred and fourteen patients with histologically proven nasopharyngeal carcinoma (NPC) were staged with both CT and MRI. All CT and MRI images of patients with mucosal thickening but no tumour involvement of the sinuses were retrospectively analysed. Results: There were inflammatory changes in 36 maxillary, 21 sphenoid and 16 ethmoid sinuses. These changes include mucosal thickening, retention cysts, retained secretions, inspissated secretions and dystrophic calcification. MRI is superior to CT in separating thickened mucosa, retained secretions and retentions cysts. Conclusion: It is important to appreciate CT changes of sinusitis and the corresponding spectrum of MRI features. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Assessment of the diagnostic value of dual-energy CT and MRI in the detection of iatrogenically induced injuries of anterior cruciate ligament in a porcine model

    Energy Technology Data Exchange (ETDEWEB)

    Fickert, S.; Niks, M.; Lehmann, L. [University Medical Center Mannheim, Center of Orthopaedics and Traumatology, Mannheim (Germany); Dinter, D.J.; Hammer, M.; Weckbach, S.; Schoenberg, S.O.; Jochum, S. [University Medical Center Mannheim, Department of Clinical Radiology and Nuclear Medicine, Mannheim (Germany)

    2013-03-15

    Magnetic resonance imaging (MRI) is the standard of reference for the non-invasive evaluation of ligament injuries of the knee. The development of dual-energy CT (DE-CT) made it possible to differentiate between tissues of different density by two simultaneous CT measurements with different tube voltages. This approach enables DE-CT to discriminate ligament structures without intra-articular contrast media injection. The aims of this study were on the one hand to determine the delineation of the anterior cruciate ligament (ACL) and on the other hand to assess the diagnostic value of DE-CT and MRI in the detection of iatrogenically induced injury of the ACL in a porcine knee joint model. Twenty porcine hind legs, which were placed in a preformed cast in order to achieve a standardized position, were scanned using DE-CT. Thereafter, a 1.5-T MRI using a standard protocol was performed. The imaging procedures were repeated with the same parameters after inducing defined lesions (total or partial incision) on the ACL arthroscopically. After post-processing, two radiologists and two orthopedic surgeons first analyzed the delineation of the ACL and then, using a consensus approach, the iatrogenically induced lesions. The result of the arthrotomy was defined as the standard of reference. The ACL could be visualized both on DE-CT and MRI in 100% of the cases. As for the MRI, the sensitivity and specificity of detecting the cruciate ligament lesion respectively compared with the defined arthrotomy was 66.7% and 78.6% for intact cruciate ligaments, 100% and 75% in the case of a complete lesion, 33.3% and 78.6% for lesions of the anteromedial bundle, and 0% and 100% for lesions of the posterolateral bundle. In comparison, DE-CT demonstrated a sensitivity and specificity of 66.7% and 71.4% in the case of intact cruciate ligaments, 75% and 68.8% in the case of completely discontinued ACLs, 0% and 92.9% in the case of lesions of the anteromedial bundle, and 25% and 87.5% in the

  13. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco

    2017-12-25

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap and simple fabrication process. The temperature sensor is a negative temperature coefficient thermistor with non-linear response typical of semi-metals. The thermistor shows a 4% decrease of the resistance in a temperature range of 20–60 °C. The flow sensor exploits the piezoresistive properties of laser-induced graphene and can be used both in gaseous and liquid media thanks to a protective polydimethylsiloxane coating. Main characteristics are ultra-fast response and versatility in design offered by the laser technology.

  14. Exposure to MRI-related magnetic fields and vertigo in MRI workers

    NARCIS (Netherlands)

    Schaap, Kristel; Portengen, Lutzen; Kromhout, Hans

    OBJECTIVES: Vertigo has been reported by people working around magnetic resonance imaging (MRI) scanners and was found to increase with increasing strength of scanner magnets. This suggests an association with exposure to static magnetic fields (SMF) and/or motion-induced time-varying magnetic

  15. Cochlear implant with a non-removable magnet: preliminary research at 3-T MRI.

    Science.gov (United States)

    Dubrulle, F; Sufana Iancu, A; Vincent, C; Tourrel, G; Ernst, O

    2013-06-01

    To perform preliminary tests in vitro and with healthy volunteers to determine the 3-T MRI compatibility of a cochlear implant with a non-removable magnet. In the in vitro phase, we tested six implants for temperature changes and internal malfunctioning. We measured the demagnetisation of 65 internal magnets with different tilt angles between the implant's magnetic field (bi) and the main magnetic field (b0). In the in vivo phase, we tested 28 operational implants attached to the scalps of volunteers with the head in three different positions. The study did not find significant temperature changes or electronic malfunction in the implants tested in vitro. We found considerable demagnetisation of the cochlear implant magnets in the in vitro and in vivo testing influenced by the position of the magnet in the main magnetic field. We found that if the bi/b0 angle is 90°, there is demagnetisation in almost 60 % of the cases. When the angle is around 90°, the risk of demagnetisation is low (6.6 %). The preliminary results on cochlear implants with non-removable magnets indicate the need to maintain the contraindication of passage through 3-T MRI. • Magnetic resonance imaging can affect cochlear implants and vice versa. • Demagnetisation of cochlear implant correlates with the angle between bi and b0. • The position of the head in the MRI influences the demagnetisation. • Three-Tesla MRI for cochlear implants is still contraindicated. • However some future solutions are discussed.

  16. WE-FG-202-12: Investigation of Longitudinal Salivary Gland DCE-MRI Changes

    Energy Technology Data Exchange (ETDEWEB)

    Ger, R; Howell, R; Li, H; Liu, H; Mohan, R; Stafford, R; Wang, J; Fuller, C; Court, L [The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX (United States); Awan, M [Case Western Reserve University, Cleveland, OH (United States); University Hospitals, Cleveland, OH (United States); Mohamed, A [The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); The University of Alexandria, Alexandria (Egypt); Ding, Y; Frank, S; Schellingerhout, D [The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To determine the correlation between dose and changes through treatment in dynamic contrast enhanced (DCE) MRI voxel parameters (Ktrans, kep, Ve, and Vp) within salivary glands of head and neck oropharyngeal squamous cell carcinoma (HNSCC) patients. Methods: 17 HNSCC patients treated with definitive radiation therapy completed DCE-MRI scans on a 3T scanner at pre-treatment, mid-treatment, and post-treatment time points. Mid-treatment and post-treatment DCE images were deformably registered to pre-treatment DCE images (Velocity software package). Pharmacokinetic analysis of the DCE images used a modified Tofts model to produce parameter maps with an arterial input function selected from each patient’s perivertebral space on the image (NordicICE software package). In-house software was developed for voxel-by-voxel longitudinal analysis of the salivary glands within the registered images. The planning CT was rigidly registered to the pre-treatment DCE image to obtain dose values in each voxel. Voxels within the lower and upper dose quartiles for each gland were averaged for each patient, then an average of the patients’ means for the two quartiles were compared. Dose-relationships were also assessed by Spearman correlations between dose and voxel parameter changes for each patient’s gland. Results: Changes in parameters’ means between time points were observed, but inter-patient variability was high. Ve of the parotid was the only parameter that had a consistently significant longitudinal difference between dose quartiles. The highest Spearman correlation was Vp of the sublingual gland for the change in the pre-treatment to mid-treatment values with only a ρ=0.29. Conclusion: In this preliminary study, there was large inter-patient variability in the changes of DCE voxel parameters with no clear relationship with dose. Additional patients may reduce the uncertainties and allow for the determination of the existence of parameter and dose relationships.

  17. Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI.

    Science.gov (United States)

    Oya, Hiroyuki; Howard, Matthew A; Magnotta, Vincent A; Kruger, Anton; Griffiths, Timothy D; Lemieux, Louis; Carmichael, David W; Petkov, Christopher I; Kawasaki, Hiroto; Kovach, Christopher K; Sutterer, Matthew J; Adolphs, Ralph

    2017-02-01

    Understanding brain function requires knowledge of how one brain region causally influences another. This information is difficult to obtain directly in the human brain, and is instead typically inferred from resting-state fMRI. Here, we demonstrate the safety and scientific promise of a novel and complementary approach: concurrent electrical stimulation and fMRI (es-fMRI) at 3T in awake neurosurgical patients with implanted depth electrodes. We document the results of safety testing, actual experimental setup, and stimulation parameters, that safely and reliably evoke activation in distal structures through stimulation of amygdala, cingulate, or prefrontal cortex. We compare connectivity inferred from the evoked patterns of activation with that estimated from standard resting-state fMRI in the same patients: while connectivity patterns obtained with each approach are correlated, each method produces unique results. Response patterns were stable over the course of 11min of es-fMRI runs. COMPARISON WITH EXISTING METHOD: es-fMRI in awake humans yields unique information about effective connectivity, complementing resting-state fMRI. Although our stimulations were below the level of inducing any apparent behavioral or perceptual effects, a next step would be to use es-fMRI to modulate task performances. This would reveal the acute network-level changes induced by the stimulation that mediate the behavioral and cognitive effects seen with brain stimulation. es-fMRI provides a novel and safe approach for mapping effective connectivity in the human brain in a clinical setting, and will inform treatments for psychiatric and neurodegenerative disorders that use deep brain stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Do MRI findings identify patients with chronic low back pain and Modic changes who respond best to rest or exercise

    DEFF Research Database (Denmark)

    Jensen, Rikke K; Kent, Peter; Hancock, Mark

    2015-01-01

    BACKGROUND: No previous clinical trials have investigated MRI findings as effect modifiers for conservative treatment of low back pain. This hypothesis-setting study investigated if MRI findings modified response to rest compared with exercise in patients with chronic low back pain and Modic...... changes. METHODS: This study is a secondary analysis of a randomised controlled trial comparing rest with exercise. Patients were recruited from a specialised outpatient spine clinic and included in a clinical trial if they had chronic low back pain and an MRI showing Modic changes. All patients received...... or with large Modic changes Type 1 were all potentially important in size (-0.99 (95 % CI -3.28 to 1.29), -1.49 (-3.73 to 0.75), -1.49 (-3.57 to 0.58), respectively) but the direction of the effect was the opposite to what we had hypothesized-that people with these findings would benefit more from rest than...

  19. Quantitative whole-body MRI in familial partial lipodystrophy type 2: changes in adipose tissue distribution coincide with biochemical improvement.

    LENUS (Irish Health Repository)

    McLaughlin, Patrick D

    2012-11-01

    OBJECTIVE: Familial partial lipodystrophy type 2 (Online Mendelian Inheritance in Man no. 151660) is a systemic disorder characterized by regional lipoatrophy and lipohypertrophy, severe insulin resistance, and early cardiovascular death. At initial presentation, whole-body MRI allows the radiologist to accurately characterize patients with familial partial lipodystrophy and helps differentiate familial partial lipodystrophy from many other subtypes of lipodystophy. We present the findings of serial quantitative MRI analysis in two patients with familial partial lipodystrophy type 2 and outline the objective imaging changes that occur during medical therapy with oral rosiglitazone. CONCLUSION: Cervical adipose volume and visceral adipose area increased by 105% and 60% in the two patients and hepatic fat fraction decreased by 55% during a 21-month period of medical therapy. These changes coincided with a decrease in biochemical indexes of insulin resistance. Whole body quantitative MRI may therefore help to demonstrate the subclinical changes in fat deposition that occur as a result of novel treatment of familial partial lipodystrophy and with continued research may play a role in guiding the choice, duration, and intensity of novel medical therapy.

  20. Quantification of regional early stage gas exchange changes using hyperpolarized "1"2"9Xe MRI in a rat model of radiation-induced lung injury

    International Nuclear Information System (INIS)

    Doganay, Ozkan; Stirrat, Elaine; McKenzie, Charles; Schulte, Rolf F.; Santyr, Giles E.

    2016-01-01

    Purpose: To assess the feasibility of hyperpolarized (HP) "1"2"9Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a "6"0Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L_P_T) and relative blood volume (V_R_B_C) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L_P_T and V_R_B_C were observed between the irradiated and non-irradiated cohorts. In particular, L_P_T of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V_R_B_C of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the MRI measurements for both

  1. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography.

    Science.gov (United States)

    Reid, Lee B; Sale, Martin V; Cunnington, Ross; Mattingley, Jason B; Rose, Stephen E

    2017-09-01

    We have reported reliable changes in behavior, brain structure, and function in 24 healthy right-handed adults who practiced a finger-thumb opposition sequence task with their left hand for 10 min daily, over 4 weeks. Here, we extend these findings by using diffusion MRI to investigate white-matter changes in the corticospinal tract, basal-ganglia, and connections of the dorsolateral prefrontal cortex. Twenty-three participant datasets were available with pre-training and post-training scans. Task performance improved in all participants (mean: 52.8%, SD: 20.0%; group P right caudate nucleus (4.9%; P left nucleus accumbens (-1.3%; P right corticospinal tract (mean 3.28%; P left corticospinal tract did not show any changes. FA also increased in white matter connections between the right middle frontal gyrus and both right caudate nucleus (17/22 participants; P right supplementary motor area (18/22 participants; P left (non-trained) hemisphere. In combination with our functional and structural findings, this study provides detailed, multifocal evidence for widespread neuroplastic changes in the human brain resulting from motor training. Hum Brain Mapp 38:4302-4312, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)

    Science.gov (United States)

    Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    2015-03-01

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.

  3. Late radiation effects in the dog brain: correlation of MRI and histological changes

    International Nuclear Information System (INIS)

    Benczik, Judit; Tenhunen, Mikko; Snellman, Marjatta; Joensuu, Heikki; Faerkkilae, Markus; Joensuu, Raimo; Abo Ramadan, Usama; Kallio, Merja; Gritz, Boris de; Morris, Gerard M.; Hopewell, John W.

    2002-01-01

    Purpose: To determine the correlation between sequential changes in the brain of dogs after irradiation, as detected by magnetic resonance imaging (MRI), with the eventual appearance of histological lesions. Histology was performed 77-115 weeks after irradiation. Materials and methods: Groups of five beagle dogs were irradiated to the brain with single doses of 10, 12, 14 or 16 Gy of 6 MV photons, at the 100% iso-dose. Sequential MRIs were taken to detect changes in the brain for 77-115 weeks after irradiation. Dose-effect relationships were established for changes in the brain as detected by MRI, computerized tomography (CT), gross morphology and histology. The doses that caused a specified response in 50% of the animals (ED 50 ±SE) were calculated from these dose-effect relationships for each endpoint. Results: The ED 50 values (±SE) for focal and diffuse changes on T2-weighted MR images were 11.0±1.1 and 10.8±0.9 Gy, respectively. The ED 50 values (±SE) for contrast enhancement on T1-weighted MR images and on CT were 13.4±0.6 and 13.0±0.6 Gy, respectively. It was 11.4±0.6 Gy for any type of histological lesion (haemorrhage, reactive change or glial scar) 77-115 weeks after irradiation. For a macroscopic lesion the ED 50 (±SE) value was 13.0±1.1 Gy. Conclusions: The presence of focal or diffuse changes on T2-weighted MR images was the best indicator for the eventual appearance of any type of histological lesion in the dog brain after irradiation with single doses of photons. The ED 50 for any histological lesion did not differ significantly from the ED 50 for a focal (P>0.35) or diffuse (P=0.3) change on T2-weighted MR images

  4. Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI.

    Science.gov (United States)

    Düppenbecker, Peter M; Weissler, Bjoern; Gebhardt, Pierre; Schug, David; Wehner, Jakob; Marsden, Paul K; Schulz, Volkmar

    2016-02-01

    Advances in solid-state photon detectors paved the way to combine positron emission tomography (PET) and magnetic resonance imaging (MRI) into highly integrated, truly simultaneous, hybrid imaging systems. Based on the most recent digital SiPM technology, we developed an MRI-compatible PET detector stack, intended as a building block for next generation simultaneous PET/MRI systems. Our detector stack comprises an array of 8 × 8 digital SiPM channels with 4 mm pitch using Philips Digital Photon Counting DPC 3200-22 devices, an FPGA for data acquisition, a supply voltage control system and a cooling infrastructure. This is the first detector design that allows the operation of digital SiPMs simultaneously inside an MRI system. We tested and optimized the MRI-compatibility of our detector stack on a laboratory test bench as well as in combination with a Philips Achieva 3 T MRI system. Our design clearly reduces distortions of the static magnetic field compared to a conventional design. The MRI static magnetic field causes weak and directional drift effects on voltage regulators, but has no direct impact on detector performance. MRI gradient switching initially degraded energy and timing resolution. Both distortions could be ascribed to voltage variations induced on the bias and the FPGA core voltage supply respectively. Based on these findings, we improved our detector design and our final design shows virtually no energy or timing degradations, even during heavy and continuous MRI gradient switching. In particular, we found no evidence that the performance of the DPC 3200-22 digital SiPM itself is degraded by the MRI system.

  5. The influence of body temperature on image contrast in post mortem MRI

    International Nuclear Information System (INIS)

    Ruder, Thomas D.; Hatch, Gary M.; Siegenthaler, Lea; Ampanozi, Garyfalia; Mathier, Sandra; Thali, Michael J.; Weber, Oliver M.

    2012-01-01

    Objective: To assess the temperature dependency of tissue contrast on post mortem magnetic resonance (PMMR) images both objectively and subjectively; and to visually demonstrate the changes of image contrast at various temperatures. Materials and methods: The study was approved by the responsible justice department and the ethics committee. The contrast of water, fat, and muscle was measured using regions of interest (ROI) in the orbit of 41 human corpses to assess how body temperature (range 2.1–39.8 °C) relates to image contrast of T1-weighted (T1W) and T2-weighted (T2W) sequences on PMMR. Regressions were calculated using the method of least squares. Three readers judged visible changes of image contrast subjectively by consensus. Results: There was a positive relationship between temperature and contrast on T1-weighted (T1W) images and between temperature and the contrast of fat/muscle on T2-weighted (T2W) images. There was a negative relationship between temperature and the contrast of water/fat and water/muscle on T2W images. Subjectively, the influence of temperature became visible below 20 °C on T2W images, and below 10 °C on T1W images. Conclusion: Image contrast on PMMR depends on the temperature of a corpse. Radiologists involved in post mortem imaging must be aware of temperature-related changes in MR image contrast. To preserve technical quality, scanning corpses below 10 °C should be avoided.

  6. Intraoperative functional MRI as a new approach to monitor deep brain stimulation in Parkinson's disease

    International Nuclear Information System (INIS)

    Hesselmann, Volker; Sorger, Bettina; Girnus, Ralf; Lasek, Kathrin; Schulte, Oliver; Krug, Barbara; Lackner, Klaus; Maarouf, Mohammad; Sturm, Volker; Wedekind, Christoph; Bunke, Juergen

    2004-01-01

    This article deals with technical aspects of intraoperative functional magnetic resonance imaging (fMRI) for monitoring the effect of deep brain stimulation (DBS) in a patient with Parkinson's disease. Under motor activation, therapeutic high-frequency stimulation of the subthalamic nucleus was accompanied by an activation decrease in the contralateral primary sensorimotor cortex and the ipsilateral cerebellum. Furthermore, an activation increase in the contralateral basal ganglia and insula region were detected. These findings demonstrate that fMRI constitutes a promising clinical application for investigating brain activity changes induced by DBS. (orig.)

  7. Changes on diffusion-weighted MRI with focal motor status epilepticus: case report

    International Nuclear Information System (INIS)

    Loevblad, K.O.; Senn, P.; Zutter, D.; Bassetti, C.; Donati, F.; Loevblad, K.O.; Zeller, O.; Schroth, G.

    2003-01-01

    Transient imaging abnormalities, including changes on diffusion-weighted imaging (DWI), may be seen in focal status epilepticus. The changes on DWI provide an insight into the pathophysiology. We report a 53-year-old man with focal motor status epilepticus involving the left hand, arm and face with focal slowing on EEG. The apparent diffusion coefficients (ADC) were higher in the affected hemisphere than on the other side. At 10 days and 6 weeks after the end of the seizures, we saw normal ADCs and atrophy of the affected hemisphere. We conclude that the MRI findings indicate both cytotoxic and vasogenic oedema during seizure activity and subsequent loss of brain parenchyma. (orig.)

  8. Changes on diffusion-weighted MRI with focal motor status epilepticus: case report

    Energy Technology Data Exchange (ETDEWEB)

    Loevblad, K O [Neuroradiology, Radiodiagnostic, Hopital Cantonal de Geneve HUG, Geneve (Switzerland); Senn, P; Zutter, D; Bassetti, C; Donati, F [Dept. of Neurology, Inselspital, Univ. Hospital, Berne (Switzerland); Loevblad, K O; Zeller, O; Schroth, G [Div. of Neuroradiology, Inselspital, Univ. Hospital, Berne (Switzerland)

    2003-04-01

    Transient imaging abnormalities, including changes on diffusion-weighted imaging (DWI), may be seen in focal status epilepticus. The changes on DWI provide an insight into the pathophysiology. We report a 53-year-old man with focal motor status epilepticus involving the left hand, arm and face with focal slowing on EEG. The apparent diffusion coefficients (ADC) were higher in the affected hemisphere than on the other side. At 10 days and 6 weeks after the end of the seizures, we saw normal ADCs and atrophy of the affected hemisphere. We conclude that the MRI findings indicate both cytotoxic and vasogenic oedema during seizure activity and subsequent loss of brain parenchyma. (orig.)

  9. Utilizing 3D Printing Technology to Merge MRI with Histology: A Protocol for Brain Sectioning

    Science.gov (United States)

    Luciano, Nicholas J; Sati, Pascal; Nair, Govind; Guy, Joseph R; Ha, Seung-Kwon; Absinta, Martina; Chiang, Wen-Yang; Leibovitch, Emily C; Jacobson, Steven; Silva, Afonso C; Reich, Daniel S.

    2016-01-01

    Magnetic resonance imaging (MRI) allows for the delineation between normal and abnormal tissue on a macroscopic scale, sampling an entire tissue volume three-dimensionally. While MRI is an extremely sensitive tool for detecting tissue abnormalities, association of signal changes with an underlying pathological process is usually not straightforward. In the central nervous system, for example, inflammation, demyelination, axonal damage, gliosis, and neuronal death may all induce similar findings on MRI. As such, interpretation of MRI scans depends on the context, and radiological-histopathological correlation is therefore of the utmost importance. Unfortunately, traditional pathological sectioning of brain tissue is often imprecise and inconsistent, thus complicating the comparison between histology sections and MRI. This article presents novel methodology for accurately sectioning primate brain tissues and thus allowing precise matching between histology and MRI. The detailed protocol described in this article will assist investigators in applying this method, which relies on the creation of 3D printed brain slicers. Slightly modified, it can be easily implemented for brains of other species, including humans. PMID:28060281

  10. Utilizing 3D Printing Technology to Merge MRI with Histology: A Protocol for Brain Sectioning.

    Science.gov (United States)

    Luciano, Nicholas J; Sati, Pascal; Nair, Govind; Guy, Joseph R; Ha, Seung-Kwon; Absinta, Martina; Chiang, Wen-Yang; Leibovitch, Emily C; Jacobson, Steven; Silva, Afonso C; Reich, Daniel S

    2016-12-06

    Magnetic resonance imaging (MRI) allows for the delineation between normal and abnormal tissue on a macroscopic scale, sampling an entire tissue volume three-dimensionally. While MRI is an extremely sensitive tool for detecting tissue abnormalities, association of signal changes with an underlying pathological process is usually not straightforward. In the central nervous system, for example, inflammation, demyelination, axonal damage, gliosis, and neuronal death may all induce similar findings on MRI. As such, interpretation of MRI scans depends on the context, and radiological-histopathological correlation is therefore of the utmost importance. Unfortunately, traditional pathological sectioning of brain tissue is often imprecise and inconsistent, thus complicating the comparison between histology sections and MRI. This article presents novel methodology for accurately sectioning primate brain tissues and thus allowing precise matching between histology and MRI. The detailed protocol described in this article will assist investigators in applying this method, which relies on the creation of 3D printed brain slicers. Slightly modified, it can be easily implemented for brains of other species, including humans.

  11. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Robert [University of California, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); University Hospitals - Campus Grosshadern, Ludwig Maximilians University of Munich, Department of Clinical Radiology, Munich (Germany); Krug, Roland; Zuo, Jin; Majumdar, Sharmila; Link, Thomas M. [University of California, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); Kelley, Douglas A.C. [General Electrics Healthcare Technologies, San Francisco, CA (United States); Ma, C.B. [University of California, Department of Orthopedic Surgery, San Francisco, CA (United States)

    2009-08-15

    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p<0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p<0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p<0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use. (orig.)

  12. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    International Nuclear Information System (INIS)

    Stahl, Robert; Krug, Roland; Zuo, Jin; Majumdar, Sharmila; Link, Thomas M.; Kelley, Douglas A.C.; Ma, C.B.

    2009-01-01

    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p<0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p<0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p<0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use. (orig.)

  13. Dynamic gadolinium-enhanced MRI evaluation of porcine femoral head ischemia and reperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T. [Clinic for Orthopaedics and Sports Traumatology, Dreifaltigkeits-Krankenhaus GmbH, Aachener Str. 445-449, 50933 Koeln (Germany); Drescher, W. [Department of Orthopaedics, Christian Albrechts University, Kiel (Germany); Becker, C. [Department of Orthopaedics, Heinrich Heine University, Duesseldorf (Germany); Sangill, R.; Stoedkilde-Joergensen, H. [Institute for Magnetic Resonance Imaging Tomography, University of Aarhus, Skejby Hospital, Aarhus (Denmark); Heydthausen, M. [Computing Center, Heinrich Heine University, Duesseldorf (Germany); Hansen, E.S.; Buenger, C. [Spine Section, Department of Orthopaedics, University of Aarhus (Denmark)

    2003-02-01

    To examine the potential of gadolinium (Gd)-enhanced dynamic MRI in the detection of early femoral head ischemia. Furthermore, to apply a three-compartment model to achieve a clinically applicable MR index for femoral head perfusion during the steady state and arterial hip joint tamponade.Design and materials In a porcine model femoral head perfusion was measured by radioactive tracer microspheres and by using a dynamic Gd-enhanced MRI protocol. Femoral head perfusion measurements and MRI tests were performed unilaterally before, during and after the experimentally induced ischemia of one of the hip joints. Ischemia was induced by increasing intra-articular pressure to 250 mmHg. All pigs showed ischemia of the femoral head epiphysis under hip joint tamponade followed by reperfusion to the same level as before joint tamponade. In two cases perfusion after removal of tamponade continued to be low. In dynamic MRI measurements increases in signal intensity were seen after intravenous infusion of Gd-DTPA, followed by a slow decrease in signal intensity. The signal-intensity curve during femoral head ischemia had a minor increase. Also the coefficient determined was a helpful indicator of femoral head ischemia. Femoral head blood flow as measured by microspheres fell significantly under joint tamponade. Early detection of this disturbed regional blood flow was possible using a dynamic MRI procedure. A biomathematical model resulted from the evaluation of the intervals of signal intensity over time which allows detection of bone blood flow changes at a very early stage. Using this new method earlier detection of femoral head necrosis may be possible. (orig.)

  14. Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses.

    Science.gov (United States)

    Kassem, Mustafa S; Lagopoulos, Jim; Stait-Gardner, Tim; Price, William S; Chohan, Tariq W; Arnold, Jonathon C; Hatton, Sean N; Bennett, Maxwell R

    2013-04-01

    Stress, unaccompanied by signs of post-traumatic stress disorder, is known to decrease grey matter volume (GMV) in the anterior cingulate cortex (ACC) and hippocampus but not the amygdala in humans. We sought to determine if this was the case in stressed mice using high-resolution magnetic resonance imaging (MRI) and to identify the cellular constituents of the grey matter that quantitatively give rise to such changes. Stressed mice showed grey matter losses of 10 and 15 % in the ACC and hippocampus, respectively but not in the amygdala or the retrosplenial granular area (RSG). Concurrently, no changes in the number or volumes of the somas of neurons, astrocytes or oligodendrocytes were detected. A loss of synaptic spine density of up to 60 % occurred on different-order dendrites in the ACC and hippocampus (CA1) but not in the amygdala or RSG. The loss of spines was accompanied by decreases in cumulative dendritic length of neurons of over 40 % in the ACC and hippocampus (CA1) giving rise to decreases in volume of dendrites of 2.6 mm(3) for the former and 0.6 mm(3) for the latter, with no change in the amygdala or RSG. These values are similar to the MRI-determined loss of GMV following stress of 3.0 and 0.8 mm(3) in ACC and hippocampus, respectively, with no changes in the amygdala or RSG. This quantitative study is the first to relate GMV changes in the cortex measured with MRI to volume changes in cellular constituents of the grey matter.

  15. Phase changes induced by guest orientational ordering of filled ice Ih methane hydrate under high pressure and low temperature

    International Nuclear Information System (INIS)

    Hirai, H; Tanaka, T; Yagi, T; Matsuoka, T; Ohishi, Y; Ohtake, M; Yamamoto, Y

    2014-01-01

    Low-temperature and high-pressure experiments were performed with filled ice Ih structure of methane hydrate under pressure and temperature conditions of 2.0 to 77.0 GPa and 30 to 300 K, respectively, using diamond anvil cells and a helium-refrigeration cryostat. Distinct changes in the axial ratios of the host framework were revealed by In-situ X-ray diffractometry. Splitting in the CH vibration modes of the guest methane molecules, which was previously explained by the orientational ordering of the guest molecules, was observed by Raman spectroscopy. The pressure and temperature conditions at the split of the vibration modes agreed well with those of the axial ratio changes. The results indicated that orientational ordering of the guest methane molecules from orientational disordered-state occurred at high pressures and low temperatures, and that this guest ordering led to the axial ratio changes in the host framework. Existing regions of the guest disordered-phase and the guest ordered-phase were roughly estimated by the X-ray data. In addition, above the pressure of the guest-ordered phase, another high pressure phase was developed at a low-temperature region. The deuterated-water host samples were also examined and isotopic effects on the guest ordering and phase changes were observed.

  16. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    Science.gov (United States)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  17. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  18. Effects of constant and stepwise changes in temperature on the species abundance dynamics of four cladocera species

    Directory of Open Access Journals (Sweden)

    Verbitsky V. B.

    2011-09-01

    Full Text Available Laboratory experiments with natural zooplankton communities were carried out to study the effects of two contrasting temperature regimes: constant temperature (15, 20, and 25 °C and graded changes in temperature. The graded regime consisted of repeated sustained (three weeks controlled stepwise temperature changes of 5 or 10 °C within 15–25 °C on the population dynamics of four dominant species of lake littoral zooplankton, Daphnia longispina (Müller, 1785, Diaphanosoma brachyurum (Lievin, 1848, Simocephalus vetulus (Müller, 1776 and Chydorus sphaericus (Müller, 1785. The results show that controlled stepwise changes (positive or negative in temperature within the ranges of 15–20, 20–25, and 15–25 °C can exert either stimulating or inhibitory effect (direct or delayed on the development of D. longispina and S. vetulus populations. The development of D. brachyurum and Ch. sphaericus, both more steno-thermophile, was only stimulated by a stable elevated temperature (25 °C. These results support the previously formulated hypothesis that, in determining the ecological temperature optimum of a species within a natural community, it is not enough to define its optimum from constant, cyclic or random temperature fluctuations, but also from unidirectional stepwise changes in temperature. These stepwise changes may also induce prolonged or delayed effects.

  19. Electric-field-induced extremely large change in resistance in graphene ferromagnets

    Science.gov (United States)

    Song, Yu

    2018-01-01

    A colossal magnetoresistance (˜100×10^3% ) and an extremely large magnetoresistance (˜1×10^6% ) have been previously explored in manganite perovskites and Dirac materials, respectively. However, the requirement of an extremely strong magnetic field (and an extremely low temperature) makes them not applicable for realistic devices. In this work, we propose a device that can generate even larger changes in resistance in a zero-magnetic field and at a high temperature. The device is composed of graphene under two strips of yttrium iron garnet (YIG), where two gate voltages are applied to cancel the heavy charge doping in the YIG-induced half-metallic ferromagnets. By calculations using the Landauer-Büttiker formalism, we demonstrate that, when a proper gate voltage is applied on the free ferromagnet, changes in resistance up to 305×10^6% (16×10^3% ) can be achieved at the liquid helium (nitrogen) temperature and in a zero magnetic field. We attribute such a remarkable effect to a gate-induced full-polarization reversal in the free ferromagnet, which results in a metal-state to insulator-state transition in the device. We also find that the proposed effect can be realized in devices using other magnetic insulators, such as EuO and EuS. Our work should be helpful for developing a realistic switching device that is energy saving and CMOS-technology compatible.

  20. Assessment of MRI Issues at 3 Tesla for a New Metallic Tissue Marker

    Science.gov (United States)

    Cronenweth, Charlotte M.; Shellock, Frank G.

    2015-01-01

    Purpose. To assess the MRI issues at 3 Tesla for a metallic tissue marker used to localize removal areas of tissue abnormalities. Materials and Methods. A newly designed, metallic tissue marker (Achieve Marker, CareFusion, Vernon Hills, IL) used to mark biopsy sites, particularly in breasts, was assessed for MRI issues which included standardized tests to determine magnetic field interactions (i.e., translational attraction and torque), MRI-related heating, and artifacts at 3 Tesla. Temperature changes were determined for the marker using a gelled-saline-filled phantom. MRI was performed at a relatively high specific absorption rate (whole body averaged SAR, 2.9-W/kg). MRI artifacts were evaluated using T1-weighted, spin echo and gradient echo pulse sequences. Results. The marker displayed minimal magnetic field interactions (2-degree deflection angle and no torque). MRI-related heating was only 0.1°C above background heating (i.e., the heating without the tissue marker present). Artifacts seen as localized signal loss were relatively small in relation to the size and shape of the marker. Conclusions. Based on the findings, the new metallic tissue marker is acceptable or “MR Conditional” (using current labeling terminology) for a patient undergoing an MRI procedure at 3 Tesla or less. PMID:26266051

  1. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    Science.gov (United States)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  2. Intracavitary ultrasound phased arrays for prostate thermal therapies: MRI compatibility and in vivo testing.

    Science.gov (United States)

    Hutchinson, E B; Hynynen, K

    1998-12-01

    A 62 element MRI-compatible linear phased array was designed and constructed to investigate the feasibility of using transrectal ultrasound for the thermal therapeutic treatment of prostate cancer and benign prostatic hyperplasia. An aperiodic design technique developed in a previous study was used in the design of this array, which resulted in reduced grating lobe levels by using an optimized random distribution of unequally sized elements. The element sizes used in this array were selected to be favorable for both grating lobe levels as determined by array aperiodicity and array efficiency as determined by width to thickness ratios. The heating capabilities and MRI compatibility of the array were tested with in vivo rabbit thigh muscle heating experiments using MRI temperature monitoring. The array produced therapeutic temperature elevations in vivo at depths of 3-6 cm and axial locations up to 3 cm off the central axis and increased the size of the heated volume with electronic scanning of a single focus. The ability of this array to be used for ultrasound surgery was demonstrated by creating necrosed tissue lesions in vivo using short high-power sonications. The ability of the array to be used for hyperthermia was demonstrated by inducing therapeutic temperature elevations for longer exposures. Based on the acoustic and heating performance of this array, it has the potential to be clinically useful for delivering thermal therapies to the prostate and other target volumes close to body cavities.

  3. Gender differences in the processing of disgust- and fear-inducing pictures: an fMRI study.

    Science.gov (United States)

    Schienle, Anne; Schäfer, Axel; Stark, Rudolf; Walter, Bertram; Vaitl, Dieter

    2005-02-28

    We examined whether males and females differ in the intensity and laterality of their hemodynamic responses towards visual disgust and fear stimuli. Forty-one female, and 51 male subjects viewed disgust-inducing, fear-inducing and neutral pictures in an fMRI block design. Self-report data indicated that the target emotions had been elicited successfully with women responding stronger than men. While viewing the fear pictures, which depicted attacks by humans or animals, men exhibited greater activation in the bilateral amygdala and the left fusiform gyrus than women. This response pattern may reflect greater attention from males to cues of aggression in their environment. Further, the lateralization of brain activation was comparable in the two genders during both aversive picture conditions.

  4. Background parenchymal enhancement in preoperative breast MRI.

    Science.gov (United States)

    Kohara, Satoko; Ishigaki, Satoko; Satake, Hiroko; Kawamura, Akiko; Kawai, Hisashi; Kikumori, Toyone; Naganawa, Shinji

    2015-08-01

    We aimed to assess the influence of background parenchymal enhancement (BPE) on surgical planning performed using preoperative MRI for breast cancer evaluation. Between January 2009 and December 2010, 91 newly diagnosed breast cancer patients (mean age, 55.5 years; range, 30-88 years) who underwent preoperative bilateral breast MRI followed by planned breast conservation therapy were retrospectively enrolled. MRI was performed to assess the tumor extent in addition to mammography and breast ultrasonography. BPE in the contralateral normal breast MRI at the early dynamic phase was visually classified as follows: minimal (n=49), mild (n=27), moderate (n=7), and marked (n=8). The correlations between the BPE grade and age, menopausal status, index tumor size, changes in surgical management based on MRI results, positive predictive value (PPV) of MRI, and surgical margins were assessed. Patients in the strong BPE groups were significantly younger (p=0.002) and generally premenopausal (p<0.001). Surgical treatment was not changed in 67 cases (73.6%), while extended excision and mastectomy were performed in 12 cases (13.2%), each based on additional lesions on MRI. Six of 79 (7.6%) patients who underwent breast conservation therapy had tumor-positive resection margins. In cases where surgical management was changed, the PPV for MRI-detected foci was high in the minimal (91.7%) and mild groups (66.7%), and 0% in the moderate and marked groups (p=0.002). Strong BPE causes false-positive MRI findings and may lead to overly extensive surgery, whereas MRI may be beneficial in select patients with weak BPE.

  5. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI.

    Science.gov (United States)

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2014-06-10

    In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain regions. Here, current DT-MRI analysis techniques are discussed and the available evidence from DT-MRI studies into differences in white matter architecture between musicians and non-musicians is reviewed. Collectively, the existing literature tends to support the hypothesis that musical training can induce changes in cross-hemispheric connections, with significant differences frequently reported in various regions of the corpus callosum of musicians compared with non-musicians. However, differences found in intra-hemispheric fibres have not always been replicated, while findings regarding the internal capsule and corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that variances in white matter structure in non-musicians may correlate with their ability to learn musical skills, offering an alternative explanation for the structural differences observed between musicians and non-musicians. Considering the inconsistencies in the current literature, possible reasons for conflicting results are offered, along with suggestions for future research in this area.

  6. Diffusion, confusion and functional MRI

    International Nuclear Information System (INIS)

    Le Bihan, Denis

    2012-01-01

    Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intra-voxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This 'DfMRI' signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI. (authors)

  7. Topological terms induced by finite temperature and density fluctuations

    International Nuclear Information System (INIS)

    Niemi, A.J.; Department of Physics, The Ohio State University, Columbus, Ohio 43210)

    1986-01-01

    In (3+1)-dimensional finite-temperature and -density SU(2) gauge theories with left-handed fermions, the three-dimensional Chern-Simons term (topological mass) can be induced by radiative corrections. This result is derived by use of a family's index theorem which also implies that in many other quantum field theories various additional lower-dimensional topological terms can be induced. In the high-temperature limit these terms dominate the partition function, which suggests applications to early-Universe cosmology

  8. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents).

    Science.gov (United States)

    Sun, Yueji; Ying, Huang; Seetohul, Ravi M; Xuemei, Wang; Ya, Zheng; Qian, Li; Guoqing, Xu; Ye, Sun

    2012-08-01

    To study crave-related cerebral regions induced by game figure cues in online game addicts. fMRI brain imaging was done when the subjects were shown picture cues of the WoW (World of Warcraft, Version: 4.1.014250) game. 10 male addicts of WoW were selected as addicts' group, and 10 other healthy male non-addicts who were matched by age, were used as non-game addicts' group. All volunteers participated in fMRI paradigms. WoW associated cue pictures and neutral pictures were shown. We examined functional cerebral regions activated by the pictures with 3.0 T Philips MRI. The imaging signals' database was analyzed by SPM5. The correlation between game craving scores and different image results were assessed. When the game addicts watch the pictures, some brain areas show increased signal activity namely: dorsolateral prefrontal cortex, bilateral temporal cortex, cerebellum, right inferior parietal lobule, right cuneus, right hippocampus, parahippocampal gyrus, left caudate nucleus. But in these same brain regions we did not observe remarkable activities in the control group. Differential image signal densities of the addict group were subtracted from the health control group, results of which were expressed in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex, inferior parietal lobe and inferior temporal gyrus, cerebellum, right insular and the right angular gyrus. The increased imaging signal densities were significant and positively correlated with the craving scale scores in the bilateral prefrontal cortex, anterior cingulate cortex and right inferior parietal lobe. Craving of online game addicts was successfully induced by game cue pictures. Crave related brain areas are: dorsolateral prefrontal cortex, anterior cingulate cortex, and right inferior parietal lobe. The brain regions are overlapped with cognitive and emotion related processing brain areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Research progress of functional MRI in depression

    International Nuclear Information System (INIS)

    Xie Shenghui; Niu Guangming; Han Xiaodong; Qiao Pengfei

    2013-01-01

    The mood disorders of depression are associated with abnormalities of brain structure and function, and exploring their pathological mechanism has important significance for the choice of treatment and the curative effect evaluation. In recent years, the research of MRI on brain structure and function of depression has made great progress, especially in functional magnetic resonance imaging (fMRI). fMRI can detect the functional change in real time, and also can display the activity of brain and changes in the nerve pathways in patients with depression. This article summarizes the present research situation and progress of MRI in the diagnosis of depression. (authors)

  10. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  11. Dynamical Changes Induced by the Solar Proton Events in October-November 2003

    Science.gov (United States)

    Jackman, C. H.; Roble, R. G.; Fleming, E. L.

    2006-05-01

    The very large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth and impacted the upper atmospheric polar cap regions. The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Mode (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct-Nov 2003, the fourth largest period of SPEs measured in the past 40 years. The highly energetic solar protons caused ionization and changes in the electric field, which led to Joule heating of the mesosphere and lower thermosphere. This heating led to temperature increases up to 4K in the upper mesosphere. The solar proton-induced ionization, as well as dissociation processes, led to the production of odd hydrogen (HOx) and odd nitrogen (NOy). Substantial (>40%) short-lived ozone decreases followed these enhancements of HOx and NOy and led to a cooling of the mesosphere and upper stratosphere. This cooling led to temperature decreases up to 2.5K. The solar proton-caused temperature changes led to maximum meridional and zonal wind variations of +/- 2 m/s on background winds up to +/- 30 m/s. The solar proton-induced wind perturbations were computed to taper off over a period of several days past the SPEs. Solar cycle 23 was accompanied by ten very large SPEs between 1998 and 2005, along with numerous smaller events. These solar proton-driven atmospheric variations need to be carefully considered when examining other polar changes.

  12. Projections of temperature-related excess mortality under climate change scenarios.

    Science.gov (United States)

    Gasparrini, Antonio; Guo, Yuming; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Huber, Veronika; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Matus Correa, Patricia; Valdes Ortega, Nicolas; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Jaakkola, Jouni J K; Ryti, Niilo R I; Pascal, Mathilde; Goodman, Patrick G; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Diaz, Magali; Cesar Cruz, Julio; Seposo, Xerxes; Kim, Ho; Tobias, Aurelio; Iñiguez, Carmen; Forsberg, Bertil; Åström, Daniel Oudin; Ragettli, Martina S; Guo, Yue Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L; Dang, Tran Ngoc; Van, Dung Do; Heaviside, Clare; Vardoulakis, Sotiris; Hajat, Shakoor; Haines, Andy; Armstrong, Ben

    2017-12-01

    Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature-mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990-2099 under each scenario of climate change, assuming no adaptation or population changes. Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090-99 compared with 2010-19 ranging from -1·2% (empirical 95% CI -3·6 to 1·4) in Australia to -0·1% (-2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat

  13. Distribution law of temperature changes during methane adsorption and desorption in coal using infrared thermography technology

    Science.gov (United States)

    Zhao, Dong; Chen, Hao; An, Jiangfei; Zhou, Dong; Feng, Zengchao

    2018-05-01

    Gas adsorption and desorption is a thermodynamic process that takes place within coal as temperature changes and that is related to methane (CH4) storage. As infrared thermographic technology has been applied in this context to measure surface temperature changes, the aim of this research was to further elucidate the distribution law underlying this process as well as the thermal effects induced by heat adsorption and desorption in coal. Specimens of two different coal ranks were used in this study, and the surface temperature changes seen in the latter were detected. A contour line map was then drawn on the basis of initial results enabling a distribution law of temperature changes for samples. The results show that different regions of coal sample surfaces exhibit different heating rates during the adsorption process, but they all depends on gas storage capacity to a certain extent. It proposes a correlation coefficient that expresses the relationship between temperature change and gas adsorption capacity that could also be used to evaluate the feasibility of coalbed CH4 extraction in the field. And finally, this study is deduced a method to reveal the actual adsorption capacity of coal or CH4 reservoirs in in situ coal seams.

  14. Temperature extremes in Europe: mechanisms and responses to climatic change

    International Nuclear Information System (INIS)

    Cattiaux, Julien

    2010-01-01

    Europe witnessed a spate of record-breaking warm seasons during the 2000's. As illustrated by the devastating heat-wave of the summer 2003, these episodes induced strong societal and environmental impacts. Such occurrence of exceptional events over a relatively short time period raised up many questionings in the present context of climate change. In particular, can recent temperature extremes be considered as 'previews' of future climate conditions? Do they result from an increasing temperature variability? These questions constitute the main motivations of this thesis. Thus, our work aims to contribute to the understanding of physical mechanisms responsible for seasonal temperature extremes in Europe, in order to anticipate their future statistical characteristics. Involved processes are assessed by both statistical data-analysis of observations and climate projections and regional modeling experiments. First we show that while the inter-annual European temperature variability appears driven by disturbances in the North-Atlantic dynamics, the recent warming is likely to be dissociated with potential circulation changes. This inconsistency climaxes during the exceptionally mild autumn of 2006, whose temperature anomaly is only half explained by the atmospheric flow. Recent warm surface conditions in the North-Atlantic ocean seem to substantially contribute to the European warming in autumn-winter, through the establishment of advective and radiative processes. In spring-summer, since both advection by the westerlies and Atlantic warming are reduced, more local processes appear predominant (e.g. soil moisture, clouds, aerosols). Then the issue of future evolution of the relationship between North-Atlantic dynamics and European temperatures is addressed, based on climate projections of the International Panel on Climate Change. Multi-model analysis, using both flow-analogues and weather regimes methods, show that the inconsistency noticed over recent decades is

  15. Can multiparametric MRI replace Roach equations in staging prostate cancer before external beam radiation therapy?

    International Nuclear Information System (INIS)

    Girometti, Rossano; Signor, Marco Andrea; Pancot, Martina; Cereser, Lorenzo; Zuiani, Chiara

    2016-01-01

    Purpose: To investigate the agreement between Roach equations (RE) and multiparametric magnetic resonance imaging (mpMRI) in assessing the T-stage of prostate cancer (PCa). Materials and methods: Seventy-three patients with biopsy-proven PCa and previous RE assessment prospectively underwent mpMRI on a 3.0T magnet before external beam radiation therapy (EBRT). Using Cohen’s kappa statistic, we assessed the agreement between RE and mpMRI in defining the T-stage (≥T3 vs.T ≤ 2) and risk category according to the National comprehensive cancer network criteria (≤intermediate vs. ≥high). We also calculated sensitivity and specificity for ≥T3 stage in an additional group of thirty-seven patients with post-prostatectomy histological examination (mpMRI validation group). Results: The agreement between RE and mpMRI in assessing the T stage and risk category was moderate (k = 0.53 and 0.56, respectively). mpMRI changed the T stage and risk category in 21.9% (95%C.I. 13.4–33-4) and 20.5% (95%C.I. 12.3–31.9), respectively, prevalently downstaging PCa compared to RE. Sensitivity and specificity for ≥T3 stage in the mpMRI validation group were 81.8% (95%C.I. 65.1–91.9) and 88.5% (72.8–96.1). Conclusion: RE and mpMRI show moderate agreement only in assessing the T-stage of PCa, translating into an mpMRI-induced change in risk assessment in about one fifth of patients. As supported by high sensitivity/specificity for ≥T3 stage in the validation group, the discrepancy we found is in favour of mpMRI as a tool to stage PCa before ERBT.

  16. Can multiparametric MRI replace Roach equations in staging prostate cancer before external beam radiation therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Girometti, Rossano, E-mail: rgirometti@sirm.org [Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, University of Udine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia − via Colugna, 50–33100, Udine (Italy); Signor, Marco Andrea, E-mail: marco.signor@asuiud.sanita.fvg.it [Department of Oncological Radiation Therapy, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia, Piazzale S. M. della Misericordia, 15–33100, Udine (Italy); Pancot, Martina, E-mail: martypancot@libero.it [Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, University of Udine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia − via Colugna, 50–33100, Udine (Italy); Cereser, Lorenzo, E-mail: lcereser@sirm.org [Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, University of Udine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia − via Colugna, 50–33100, Udine (Italy); Zuiani, Chiara, E-mail: chiara.zuiani@uniud.it [Institute of Diagnostic Radiology, Department of Medical and Biological Sciences, University of Udine, Azienda Ospedaliero-Universitaria Santa Maria della Misericordia − via Colugna, 50–33100, Udine (Italy)

    2016-12-15

    Purpose: To investigate the agreement between Roach equations (RE) and multiparametric magnetic resonance imaging (mpMRI) in assessing the T-stage of prostate cancer (PCa). Materials and methods: Seventy-three patients with biopsy-proven PCa and previous RE assessment prospectively underwent mpMRI on a 3.0T magnet before external beam radiation therapy (EBRT). Using Cohen’s kappa statistic, we assessed the agreement between RE and mpMRI in defining the T-stage (≥T3 vs.T ≤ 2) and risk category according to the National comprehensive cancer network criteria (≤intermediate vs. ≥high). We also calculated sensitivity and specificity for ≥T3 stage in an additional group of thirty-seven patients with post-prostatectomy histological examination (mpMRI validation group). Results: The agreement between RE and mpMRI in assessing the T stage and risk category was moderate (k = 0.53 and 0.56, respectively). mpMRI changed the T stage and risk category in 21.9% (95%C.I. 13.4–33-4) and 20.5% (95%C.I. 12.3–31.9), respectively, prevalently downstaging PCa compared to RE. Sensitivity and specificity for ≥T3 stage in the mpMRI validation group were 81.8% (95%C.I. 65.1–91.9) and 88.5% (72.8–96.1). Conclusion: RE and mpMRI show moderate agreement only in assessing the T-stage of PCa, translating into an mpMRI-induced change in risk assessment in about one fifth of patients. As supported by high sensitivity/specificity for ≥T3 stage in the validation group, the discrepancy we found is in favour of mpMRI as a tool to stage PCa before ERBT.

  17. A functional MRI study of happy and sad affective states induced by classical music.

    Science.gov (United States)

    Mitterschiffthaler, Martina T; Fu, Cynthia H Y; Dalton, Jeffrey A; Andrew, Christopher M; Williams, Steven C R

    2007-11-01

    The present study investigated the functional neuroanatomy of transient mood changes in response to Western classical music. In a pilot experiment, 53 healthy volunteers (mean age: 32.0; SD = 9.6) evaluated their emotional responses to 60 classical musical pieces using a visual analogue scale (VAS) ranging from 0 (sad) through 50 (neutral) to 100 (happy). Twenty pieces were found to accurately induce the intended emotional states with good reliability, consisting of 5 happy, 5 sad, and 10 emotionally unevocative, neutral musical pieces. In a subsequent functional magnetic resonance imaging (fMRI) study, the blood oxygenation level dependent (BOLD) signal contrast was measured in response to the mood state induced by each musical stimulus in a separate group of 16 healthy participants (mean age: 29.5; SD = 5.5). Mood state ratings during scanning were made by a VAS, which confirmed the emotional valence of the selected stimuli. Increased BOLD signal contrast during presentation of happy music was found in the ventral and dorsal striatum, anterior cingulate, parahippocampal gyrus, and auditory association areas. With sad music, increased BOLD signal responses were noted in the hippocampus/amygdala and auditory association areas. Presentation of neutral music was associated with increased BOLD signal responses in the insula and auditory association areas. Our findings suggest that an emotion processing network in response to music integrates the ventral and dorsal striatum, areas involved in reward experience and movement; the anterior cingulate, which is important for targeting attention; and medial temporal areas, traditionally found in the appraisal and processing of emotions. Copyright 2006 Wiley-Liss, Inc.

  18. Effect of the change in the interface structure of Pd(100)/SrTiO{sub 3} for quantum-well induced ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sakuragi, Shunsuke, E-mail: sakuragi@az.appi.keio.ac.jp [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-0061 (Japan); Ogawa, Tomoyuki [Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Sato, Tetsuya [Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223-0061 (Japan)

    2017-02-01

    Measurements of temperature dependent magnetization of Pd(100) ultrathin films on SrTiO{sub 3}(100) substrates which shows quantum-well induced ferromagnetism were performed. We observed the jump in magnetization of Pd(100) due to the structural phase transition of SrTiO{sub 3}, and then, the disappearance of ferromagnetism after temperature-cycle repetition. X-ray reflectivity measurement revealed that the density of a few layers in the Pd film decreased near the Pd/SrTiO{sub 3} interface after temperature cycles. This suggests that the structural change affects the quantum-well induced ferromagnetism, and lowering of the crystallinity of Pd at the interface has a negative effect on quantum-well induced ferromagnetism of Pd(100) ultrathin films. - Highlights: • Interface manipulation of quantum-well induced ferromagnetism was performed. • Ferromagnetic Pd(100) ultrathin films on SrTiO{sub 3} substrate were prepared. • The structural phase transition of SrTiO{sub 3} degraded gradually the interface structure. • Change in the interface structure caused change in the magnetic moment of Pd. • Magnetic change was interpreted by modulation in the effective thickness of the film.

  19. MRI of pathology-proven peripheral nerve amyloidosis

    International Nuclear Information System (INIS)

    McKenzie, Gavin A.; Broski, Stephen M.; Howe, Benjamin M.; Spinner, Robert J.; Amrami, Kimberly K.; Dispenzieri, Angela; Ringler, Michael D.

    2017-01-01

    To highlight the MRI characteristics of pathologically proven amyloidosis involving the peripheral nervous system (PNS) and determine the utility of MRI in directing targeted biopsy for aiding diagnosis. A retrospective study was performed for patients with pathologically proven PNS amyloidosis who also underwent MRI of the biopsied or excised nerve. MRI signal characteristics, nerve morphology, associated muscular denervation changes, and the presence of multifocal involvement were detailed. Pathology reports were reviewed to determine subtypes of amyloid. Charts were reviewed to gather patient demographics, neurological symptoms and radiologist interpretation. Four men and three women with a mean age of 62 ± 11 years (range 46-76) were identified. All patients had abnormal findings on EMG with mixed sensorimotor neuropathy. All lesions demonstrated diffuse multifocal neural involvement with T1 hypointensity, T2 hyperintensity, and variable enhancement on MRI. One lesion exhibited superimposed T2 hypointensity. Six of seven patients demonstrated associated muscular denervation changes. Peripheral nerve amyloidosis is rare, and the diagnosis is difficult because of insidious symptom onset, mixed sensorimotor neurologic deficits, and the potential for a wide variety of nerves affected. On MRI, peripheral nerve involvement is most commonly characterized by T1 hypointensity, T2 hyperintensity, variable enhancement, maintenance of the fascicular architecture with fusiform enlargement, multifocal involvement and muscular denervation changes. While this appearance mimics other inflammatory neuropathies, MRI can readily detect neural changes and direct-targeted biopsy, thus facilitating early diagnosis and appropriate management. (orig.)

  20. MRI of pathology-proven peripheral nerve amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Gavin A.; Broski, Stephen M.; Howe, Benjamin M.; Spinner, Robert J.; Amrami, Kimberly K.; Dispenzieri, Angela; Ringler, Michael D. [Mayo Clinic, Department of Musculoskeletal Radiology, Rochester, MN (United States)

    2017-01-15

    To highlight the MRI characteristics of pathologically proven amyloidosis involving the peripheral nervous system (PNS) and determine the utility of MRI in directing targeted biopsy for aiding diagnosis. A retrospective study was performed for patients with pathologically proven PNS amyloidosis who also underwent MRI of the biopsied or excised nerve. MRI signal characteristics, nerve morphology, associated muscular denervation changes, and the presence of multifocal involvement were detailed. Pathology reports were reviewed to determine subtypes of amyloid. Charts were reviewed to gather patient demographics, neurological symptoms and radiologist interpretation. Four men and three women with a mean age of 62 ± 11 years (range 46-76) were identified. All patients had abnormal findings on EMG with mixed sensorimotor neuropathy. All lesions demonstrated diffuse multifocal neural involvement with T1 hypointensity, T2 hyperintensity, and variable enhancement on MRI. One lesion exhibited superimposed T2 hypointensity. Six of seven patients demonstrated associated muscular denervation changes. Peripheral nerve amyloidosis is rare, and the diagnosis is difficult because of insidious symptom onset, mixed sensorimotor neurologic deficits, and the potential for a wide variety of nerves affected. On MRI, peripheral nerve involvement is most commonly characterized by T1 hypointensity, T2 hyperintensity, variable enhancement, maintenance of the fascicular architecture with fusiform enlargement, multifocal involvement and muscular denervation changes. While this appearance mimics other inflammatory neuropathies, MRI can readily detect neural changes and direct-targeted biopsy, thus facilitating early diagnosis and appropriate management. (orig.)

  1. Intraoperative MRI to control the extent of brain tumor surgery

    International Nuclear Information System (INIS)

    Knauth, M.; Sartor, K.; Wirtz, C.R.; Tronnier, V.M.; Staubert, A.; Kunze, S.

    1998-01-01

    Intraoperative MRI definitely showed residual tumor in 6 of the 18 patients and resulted in ambiguous findings in 3 patients. In 7 patients surgery was continued. Early postoperative MRI showed residual tumor in 3 patients and resulted in uncertain findings in 2 patients. The rate of patients in whom complete removal of enhancing tumor could be achieved was 50% at the time of the intraoperative MR examination and 72% at the time of the early postoperative MR control. The difference in proportion of patients with 'complete tumor removal' between the groups who had been operated on using neuronavigation (NN) and intraoperative MRI (ioMRI) and those who had been operated on using only modern neurosurgical techniques except NN and ioMRI was statistically highly significant (Fisher exact test; P=0.008). Four different types of surgically induced contrast enhancement were observed. These phenomena carry different confounding potentials with residual tumor. Conclusion: Our preliminary experience with intraoperative MRI in patients with enhancing intraaxial tumors is encouraging. Combined use of neuronavigation and intraoperative MRI was able to increase the proportion of patients in whom complete removal of the enhancing parts of the tumor was achieved. Surgically induced enhancement requires careful analysis of the intraoperative MRI in order not to confuse it with residual tumor. (orig.) [de

  2. Stress cine MRI for detection of coronary artery disease

    International Nuclear Information System (INIS)

    Sommer, T.; Hofer, U.; Schild, H.

    2002-01-01

    Stress testing is the cornerstone in the diagnosis of patients with suspected coronary artery disease (CAD). Stress echocardiography has become a well-established modality for the detection of ischemia-induced wall motion abnormalities. However, display and reliable interpretation of stress echocardiography studies are user-dependent, the test reproducibility is low, and 10 to 15% of patients yield suboptimal or non-diagnostic images. Due to its high spatial and contrast resolution, MRI is known to permit an accurate determination of left ventricular function and wall thickness at rest. Early stress MRI studies provided promising results with respect to the detection of CAD. However, the clinical impact was limited due to long imaging time and problematic patient monitoring in the MRI environment. Recent technical improvements - namely ultrafast MR image acquisition - led to a significant reduction of imaging time and improved patient safety. Stress can be induced by physical exercise or pharmacologically by administration of a beta 1 -agonist (dobutamine) or vasodilatator (dipyridamole and adenosine). The best developed and most promising stress MRI technique is a high-dose dobutamine/atropine stress protocol (10, 20, 30, 40 μg/kg/min; optionally 0.25-mg fractions of atropine up to maximal dose 1 mg). Severe complications (myocardial infarction, ventricular fibrillation and sustained tachycardia, cardiogenic shock) may be expected in 0.25% of patients. Currently, data of three high-dose dobutamine stress MRI studies are available, revealing a good sensitivity (83 - 87%) and specificity (83 - 86%) in the assessment of CAD. The direct comparison between echocardiography and MRI for the detection of stress-induced wall motion abnormalities yielded better results for dobutamine-MRI in terms of sensitivity (86.2% vs. 74.3%; p [de

  3. In Vivo Detection of Perinatal Brain Metabolite Changes in a Rabbit Model of Intrauterine Growth Restriction (IUGR.

    Directory of Open Access Journals (Sweden)

    Rui V Simões

    Full Text Available Intrauterine growth restriction (IUGR is a risk factor for abnormal neurodevelopment. We studied a rabbit model of IUGR by magnetic resonance imaging (MRI and spectroscopy (MRS, to assess in vivo brain structural and metabolic consequences, and identify potential metabolic biomarkers for clinical translation.IUGR was induced in 3 pregnant rabbits at gestational day 25, by 40-50% uteroplacental vessel ligation in one horn; the contralateral horn was used as control. Fetuses were delivered at day 30 and weighted. A total of 6 controls and 5 IUGR pups underwent T2-w MRI and localized proton MRS within the first 8 hours of life, at 7T. Changes in brain tissue volumes and respective contributions to each MRS voxel were estimated by semi-automated registration of MRI images with a digital atlas of the rabbit brain. MRS data were used for: (i absolute metabolite quantifications, using linear fitting; (ii local temperature estimations, based on the water chemical shift; and (iii classification, using spectral pattern analysis.Lower birth weight was associated with (i smaller brain sizes, (ii slightly lower brain temperatures, and (iii differential metabolite profile changes in specific regions of the brain parenchyma. Specifically, we found estimated lower levels of aspartate and N-acetylaspartate (NAA in the cerebral cortex and hippocampus (suggesting neuronal impairment, and higher glycine levels in the striatum (possible marker of brain injury. Our results also suggest that the metabolic changes in cortical regions are more prevalent than those detected in hippocampus and striatum.IUGR was associated with brain metabolic changes in vivo, which correlate well with the neurostructural changes and neurodevelopment problems described in IUGR. Metabolic parameters could constitute non invasive biomarkers for the diagnosis and abnormal neurodevelopment of perinatal origin.

  4. Diffusion MRI: A New Strategy for Assessment of Cancer Therapeutic Efficacy

    Directory of Open Access Journals (Sweden)

    Thomas L. Chenevert

    2002-10-01

    Full Text Available The use of anatomical imaging in clinical oncology practice traditionally relies on comparison of patient scans acquired before and following completion of therapeutic intervention. Therapeutic success is typically determined from inspection of gross anatomical images to assess changes in tumor size. Imaging could provide significant additional insight into therapeutic impact if a specific parameter or combination of parameters could be identified which reflect tissue changes at the cellular or physiologic level. This would provide an early indicator of treatment response/outcome in an individual patient before completion of therapy. Moreover, response of a tumor to therapeutic intervention may be heterogeneous. The use of imaging could assist in delineating therapeutic-induced spatial heterogeneity within a tumor mass by providing information related to specific regions that are resistant or responsive to treatment. Largely untapped potential resides in exploratory methods such as diffusion MRI, which is a non-volumetric intravoxel measure of tumor response based upon water molecular mobility. Alterations in water mobility reflect changes in tissue structure at the cellular level. While the clinical utility of diffusion MRI for oncologic practice is still under active investigation, this overview on the use of diffusion MRI for the evaluation of brain tumors will serve to introduce how this approach may be applied in the future for the management of patients with solid tumors.

  5. Age-related functional changes in gustatory and reward processing regions: An fMRI study.

    Science.gov (United States)

    Jacobson, Aaron; Green, Erin; Murphy, Claire

    2010-11-01

    Changes in appetite in older adults may result in unhealthy weight change and negatively affect overall nutrition. Research examining gustatory processing in young adults has linked changes in patterns of the hemodynamic response of gustatory and motivation related brain regions to the physiological states of hunger and satiety. Whether the same brain regions are involved in taste processing in older adults is unknown. The current study used functional magnetic resonance imaging (fMRI) to examine age-related changes in gustatory processing during hedonic assessment. Caffeine, citric acid, sucrose, and NaCl were administered orally during two event-related fMRI sessions, one during hunger and one after a pre-load. Participants assessed the pleasantness of the solutions in each session. Increased activity of the insula was seen in both age groups during hunger. Activity of secondary and higher order taste processing and reward regions such as the orbitofrontal cortex, amygdala, hippocampus, thalamus, and caudate nucleus was also observed. Hunger and satiety differentially affected the hemodynamic response, resulting in positive global activation during hunger and negative during satiety in both age groups. While in a state of hunger, the frequency and consistency of positive activation in gustatory and reward processing regions was greater in older adults. Additional regions not commonly associated with taste processing were also activated in older adults. Investigating the neurological response of older adults to taste stimuli under conditions of hunger and satiety may aid in understanding appetite, health, and functional changes in this population. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Type gaucher disease: radiographic and MRI manifestations

    International Nuclear Information System (INIS)

    Dong Yanqing; Li Kuncheng; Wang Yunzhao; Tian Ding

    1999-01-01

    Objective: To enhance the understanding of Gaucher disease (GD) type I bone involvement on imaging findings. Methods: The X-ray plain film and MRI findings of GD type I were reported, and literature reviewed. Results: The X-ray plain film of GD had characteristic change. The extent of bone involvement demonstrated could be depicted in longitudinal direction and the changes of marrow involvement on MRI. Conclusions: MRI is the best way to diagnose the bone involvement of GD

  7. Functional MRI Assessment of Task-Induced Deactivation of the Default Mode Network in Alzheimer’s Disease and At-Risk Older Individuals

    Directory of Open Access Journals (Sweden)

    Maija Pihlajamäki

    2009-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia in old age, and is characterized by prominent impairment of episodic memory. Recent functional imaging studies in AD have demonstrated alterations in a distributed network of brain regions supporting memory function, including regions of the default mode network. Previous positron emission tomography studies of older individuals at risk for AD have revealed hypometabolism of association cortical regions similar to the metabolic abnormalities seen in AD patients. In recent functional magnetic resonance imaging (fMRI studies of AD, corresponding brain default mode regions have also been found to demonstrate an abnormal fMRI task-induced deactivation response pattern. That is, the relative decreases in fMRI signal normally observed in the default mode regions in healthy subjects performing a cognitive task are not seen in AD patients, or may even be reversed to a paradoxical activation response. Our recent studies have revealed alterations in the pattern of deactivation also in elderly individuals at risk for AD by virtue of their APOE e4 genotype, or evidence of mild cognitive impairment (MCI. In agreement with recent reports from other groups, these studies demonstrate that the pattern of fMRI task-induced deactivation is progressively disrupted along the continuum from normal aging to MCI and to clinical AD and more impaired in e4 carriers compared to non-carriers. These findings will be discussed in the context of current literature regarding functional imaging of the default network in AD and at-risk populations.

  8. Simulation for temperature changing investigation at RSG-GAS cooling system

    International Nuclear Information System (INIS)

    Utaja

    2002-01-01

    The RSG-GAS cooling system considers of primary and secondary system, is used for heat rejection from reactor core to the atmosphere. For temperature changing investigation cause by atmospherics condition changing or coolant flow rate changing, is more safe done by simulation. This paper describes the simulation for determine the RSG-GAS coolant temperature changing base on heat exchange and cooling tower characteristic. The simulation is done by computer programme running under WINDOWS 95 or higher. The temperature changing is based on heat transfer process on heat exchanger and cooling tower. The simulation will show the water tank temperature changing caused by the temperature and humidity of the atmosphere or by coolant flow rate changing. For example the humidity changing from 60% to 80% atmospherics temperature 30 oC and 32400 k Watt power will change the tank temperature from 37,97 oC to 40,03 oC

  9. Controlled Hyperthermia with MRI-guided Focused Ultrasound

    DEFF Research Database (Denmark)

    Hokland, Steffen; Salomir, Rares; Pedersen, Michael

    Introduction: Hyperthermia is an appealing oncological treatment since the significant regions of hypoxia contained in most solid tumours are known to be sensitive to the cytotoxic effect of heat. However, due to the seemingly insurmountable technical difficulties associated with delivering thermal......-sensitive promoters and localized drug delivery using thermo-sensitive micro-carriers. Subjects Here we will present some of the recent advances in MRI-FUS, and their technical background. This will include: 1) Real-time MRI-thermometry. 2) FUS-technology. 3) Temporal and Spatial temperature control using MRI...... and penetration depth are governed by the wavelength. Hence for US it is possible to body non-invasively position sub-millimeter focal points in deep seated regions of the. Temperature Control: Most solid tumours cover volumes larger than that of the focal region. This problem may be reduced somewhat...

  10. Optically induced dynamic nuclear spin polarisation in diamond

    International Nuclear Information System (INIS)

    Scheuer, Jochen; Naydenov, Boris; Jelezko, Fedor; Schwartz, Ilai; Chen, Qiong; Plenio, Martin B; Schulze-Sünninghausen, David; Luy, Burkhard; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13 C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13 C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13 C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis. (paper)

  11. Summer Season Water Temperature Modeling under the Climate Change: Case Study for Fourchue River, Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2017-05-01

    Full Text Available It is accepted that human-induced climate change is unavoidable and it will have effects on physical, chemical, and biological properties of aquatic habitats. This will be especially important for cold water fishes such as trout. The objective of this study is to simulate water temperature for future periods under the climate change situations. Future water temperature in the Fourchue River (St-Alexandre-de-Kamouraska, QC, Canada were simulated by the CEQUEAU hydrological and water temperature model, using meteorological inputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5 Global Circulation Models (GCMs with Representative Concentration Pathway (RCP 2.6, 4.5 and 8.5 climate change scenarios. The result of the study indicated that water temperature in June will increase 0.2–0.7 °C and that in September, median water temperature could decrease by 0.2–1.1 °C. The rise in summer water temperature may be favorable to brook trout (Salvelinus fontinalis growth, but several days over the Upper Incipient Lethal Temperature (UILT are also likely to occur. Therefore, flow regulation procedures, including cold water releases from the Morin dam may have to be considered for the Fourchue River.

  12. Temperature changes in Three Gorges Reservoir Area and linkage with Three Gorges Project

    Science.gov (United States)

    Song, Zhen; Liang, Shunlin; Feng, Lian; He, Tao; Song, Xiao-Peng; Zhang, Lei

    2017-05-01

    The Three Gorges Project (TGP) is one of the largest hydroelectric projects throughout the world. It has brought many benefits to the society but also led to endless debates about its environmental and climatic impacts. Monitoring the spatiotemporal variations of temperature in the Three Gorges Reservoir Area (TGRA) is important for understanding the climatic impacts of the TGP. In this study, we used remote sensing-based land surface temperature (LST) and ground-measured air temperature data to investigate temperature changes in the TGRA. Results showed that during the daytime in summer, LST exhibited significant cooling (1-5°C) in the downstream region of the reservoir, whereas LST during the nighttime in winter exhibited significant warming (1-5°C) across the entire reservoir. However, these cooling and warming effects were both locally constrained within 5 km buffer along the reservoir. The changes in air temperature were consistent with those in LST, with 0.67°C cooling in summer and 0.33°C warming in winter. The temperature changes along the reservoir not only resulted from the land-water conversion induced by the dam impounding but were also related to the increase of vegetation cover caused by the ecological restoration projects. Significant warming trends were also found in the upstream of TGRA, especially during the daytime in summer, with up to 5°C for LST and 0.52°C for air temperature. The warming was caused mainly by urban expansion, which was driven in part by the population resettlement of TGP. Based on satellite observations, we investigated the comprehensive climatic impacts of TGP caused by multiple factors.

  13. Temperature changes associated with radiofrequency exposure near authentic metallic implants in the head phantom--a near field simulation study with 900, 1800 and 2450 MHz dipole.

    Science.gov (United States)

    Matikka Virtanen, H; Keshvari, J; Lappalainen, R

    2010-10-07

    Along with increased use of wireless communication devices operating in the radiofrequency (RF) range, concern has been raised about the related possible health risks. Among other concerns, the interaction of medical implants and RF devices has been studied in order to assure the safety of implant carriers under various exposure conditions. In the RF range, the main established quantitative effect of electromagnetic (EM) fields on biological tissues is heating due to vibrational movements of water molecules. The temperature changes induced in tissues also constitute the basis for the setting of RF exposure limits and recommendations. In this study, temperature changes induced by electromagnetic field enhancements near passive metallic implants have been simulated in the head region. Furthermore, the effect of the implant material on the induced temperature change was evaluated using clinically used metals with the highest and the lowest thermal conductivities. In some cases, remarkable increases in maximum temperatures of tissues (as much as 8 °C) were seen in the near field with 1 W power level whereas at lower power levels significant temperature increases were not observed.

  14. Comparison of facet joint activity on 99mTc-MDP SPECT/CT with facet joint signal change on MRI with fat suppression.

    Science.gov (United States)

    Lehman, Vance T; Murphy, Robert C; Schenck, Louis A; Carter, Rickey E; Johnson, Geoffrey B; Kotsenas, Amy L; Morris, Jonathan M; Nathan, Mark A; Wald, John T; Maus, Timothy P

    2016-01-01

    We compared signal change on magnetic resonance imaging (MRI) with fat suppression and bone scan activity of lumbar facet joints to determine if these two imaging findings are correlated. We retrospectively identified all patients who underwent imaging of the lumbar spine for pain evaluation using both technetium-99m methylene disphosphonate single-photon emission computed tomography/computed tomography (99mTc-MDP SPECT/CT) and MRI with at least one fat-suppressed T2- or T1-weighted sequence with gadolinium enhancement within a 180-day interval, at our institution between 1 January 2008 and 19 February 2013. Facet joint activity on 99mTc-MDP SPECT/CT and peri-facet signal change on MRI were rated as normal or increased. Agreement between the two examination types were determined with the κ and prevalence-adjusted bias-adjusted κ (PABAK) statistics. This study included 60 patients (28 male, 47%), with a mean age of 49±19.7 years (range, 12-93 years). The κ value indicated no agreement between 99mTc-MDP SPECT/CT and MRI (κ=-0.026; 95% confidence interval: -0.051, 0.000). The PABAK values were fair to high at each spinal level, which suggests that relatively low disease prevalence lowered the κ values. Together, the κ and PABAK values indicate that there is some degree of intermodality agreement, but that it is not consistent. Overall, facet joint signal change on fat-suppressed MRI did not always correlate with increased 99mTc-MDP SPECT/CT activity. MRI and 99mTc-MDP SPECT/CT for facet joint evaluation should not be considered interchangeable examinations in clinical practice or research.

  15. FIACH: A biophysical model for automatic retrospective noise control in fMRI.

    Science.gov (United States)

    Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W

    2016-01-01

    Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Interference between PET and MRI sub-systems in a silicon-photomultiplier-based PET/MRI system

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Hatazawa, Jun; Aoki, Masaaki; Sugiyama, Eiji; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku

    2011-01-01

    The silicon-photomultiplier (Si-PM) is a promising photodetector, especially for integrated PET/MRI systems, due to its small size, high gain, and low sensitivity to static magnetic fields. The major problem using a Si-PM-based PET system within the MRI system is the interference between the PET and MRI units. We measured the interference by combining a Si-PM-based PET system with a permanent-magnet MRI system. When the RF signal-induced pulse height exceeded the lower energy threshold level of the PET system, interference between the Si-PM-based PET system and MRI system was detected. The prompt as well as the delayed coincidence count rates of the Si-PM-based PET system increased significantly. These noise counts produced severe artifacts on the reconstructed images of the Si-PM-based PET system. In terms of the effect of the Si-PM-based PET system on the MRI system, although no susceptibility artifact was observed on the MR images, electronic noise from the PET detector ring was detected by the RF coil and reduced the signal-to-noise ratio (S/N) of the MR images. The S/N degradation of the MR images was reduced when the distance between the RF coil and the Si-PM-based PET system was increased. We conclude that reducing the interference between the PET and MRI systems is essential for achieving the optimum performance of integrated Si-PM PET/MRI systems.

  17. MRI in diagnosis of spinal cord diseases

    International Nuclear Information System (INIS)

    Kobayashi, Naotoshi; Ono, Yuko; Kakinoki, Yoshio; Kimura, Humiko; Ebihara, Reiko; Nagayama, Takashi; Okada, Takaharu; Watanabe, Hiromi

    1985-01-01

    64 MRI studies of 57 cases of spinal cord diseases were reviewed, and following results were obtained. (1) MRI is usefull for screening method of spinal cord diseases, as CT in cerebral diseases. (2) MRI might replaces myelography in most of spinal cord disease, and more reliable informations might be obtained by MRI than in myelography in some cases, but (3) in detection of small organic changes, some technological problems are layed regarding to the image resolution of MRI. (author)

  18. Hypoxial death inferred from thermally induced injuries at upper lethal temperatures, in the banded killifish, Fundulus diaphanus (LeSueur)

    Energy Technology Data Exchange (ETDEWEB)

    Rombough, P J; Garside, E T

    1977-10-01

    Banded killifish, Fundulus diaphanus (LeSueur), acclimated to 25/sup 0/C were subjected to upper lethal temperatures using a 10,000 min bioassay procedure. The incipient upper lethal temperature (LT/sub 50/) was about 34.5/sup 0/C. Histologic examination of heat-treated fish revealed no obvious injury to the heart, spleen, trunk musculature, eye, naris, integument, or digestive tract. Thermal stress induced progressive injury to the gills characterized by subepithelial edema, congestion of lamellar capillaries, and delamination of the respiratory epithelium from the pillar cell system. Areas of necrosis were observed in the lobus inferior of the hypothalamus and in the medulla oblongata. The pseudobranch epithelium was necrotic. Fatty change occurred in the liver. Acinar cells of the pancreas appeared autolytic and adjacent blood vessels damaged. Degenerative tubular changes and contracted glomerular tufts were noted in the kidney. The ovary was extremely temperature sensitive and displayed severe injury to oocytes and follicular cells after relatively short exposure to temperatures near the LT/sub 50/. It is proposed that primary thermally induced injury is to the gills. This results in abnormal gas exchange and osmoregulation and leads to pathologic changes in other tissues. Hypoxia of the central nervous system appears to be the ultimate cause of death.

  19. Self-Healing Phase Change Salogels with Tunable Gelation Temperature.

    Science.gov (United States)

    Karimineghlani, Parvin; Palanisamy, Anbazhagan; Sukhishvili, Svetlana A

    2018-04-19

    Chemically cross-linked polymer matrices have demonstrated strong potential for shape stabilization of molten phase change materials (PCM). However, they are not designed to be fillable and removable from a heat exchange module for an easy replacement with new PCM matrices and lack self-healing capability. Here, a new category of shapeable, self-healing gels, "salogels", is introduced. The salogels reversibly disassemble in a high-salinity environment of a fluid inorganic PCM [lithium nitrate trihydrate (LNH)], at a preprogrammed temperature. LNH was employed as a high latent heat PCM and simultaneously as a solvent, which supported the formation of a network of polyvinyl alcohol (PVA) chains via physical cross-linking through poly(amidoamine) dendrimers of various generations. The existence of hydrogen bonding and the importance of low-hydration state of PVA for the efficient gelation were experimentally confirmed. The thermal behavior of PCM salogels was highly reversible and repeatable during multiple heating/cooling cycles. Importantly, the gel-sol transition temperature could be precisely controlled within a range of temperature above LNH's melting point by the choice of dendrimer generation and their concentration. Shape stabilization and self-healing properties of the salogels, taken together with tunability of their temperature-induced fluidization make these materials attractive for thermal energy storage applications that require on-demand removal and replacement of used inorganic PCM salt hydrates.

  20. Occupational exposure measurements of static and pulsed gradient magnetic fields in the vicinity of MRI scanners

    Energy Technology Data Exchange (ETDEWEB)

    Kaennaelae, Sami; Toivo, Tim; Jokela, Kari [STUK-Radiation and Nuclear Safety Authority, PO Box 14, 00881 Helsinki (Finland); Alanko, Tommi [Finnish Institute of Occupational Health, New Technologies and Risks, Topeliuksenkatu 41a A, 00250 Helsinki (Finland)], E-mail: sami.kannala@stuk.fi

    2009-04-07

    Recent advances in magnetic resonance imaging (MRI) have increased occupational exposure to magnetic fields. In this study, we examined the assessment of occupational exposure to gradient magnetic fields and time-varying magnetic fields generated by motion in non-homogeneous static magnetic fields of MRI scanners. These magnetic field components can be measured simultaneously with an induction coil setup that detects the time rate of change of magnetic flux density (dB/dt). The setup developed was used to measure the field components around two MRI units (1 T open and 3 T conventional). The measured values can be compared with dB/dt reference levels derived from magnetic flux density reference levels given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The measured motion-induced dB/dt values were above the dB/dt reference levels for both MRI units. The measured values for the gradient fields (echo planar imaging (EPI) and fast field echo (FFE) sequences) also exceeded the dB/dt reference levels in positions where the medical staff may have access during interventional procedures. The highest motion-induced dB/dt values were 0.7 T s{sup -1} for the 1 T scanner and 3 T s{sup -1} for the 3 T scanner when only the static field was present. Even higher values (6.5 T s{sup -1}) were measured for simultaneous exposure to motion-induced and gradient fields in the vicinity of the 3 T scanner.

  1. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    International Nuclear Information System (INIS)

    Lin Yuting; Thayer, David; Luk, Alex L; Gulsen, Gultekin; Gao Hao

    2013-01-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully. (paper)

  2. Changes in Prostate Shape and Volume and Their Implications for Radiotherapy After Introduction of Endorectal Balloon as Determined by MRI at 3T

    International Nuclear Information System (INIS)

    Heijmink, Stijn W.T.P.J.; Scheenen, Tom W.J.; Lin, Emile N.J.T. van; Visser, Andries G.; Kiemeney, Lambertus A.L.M.; Witjes, J. Alfred; Barentsz, Jelle O.

    2009-01-01

    Purpose: To determine the changes in prostate shape and volume after the introduction of an endorectal coil (ERC) by means of magnetic resonance imaging (MRI) at 3T. Methods and materials: A total of 44 consecutive patients with biopsy-proven prostate cancer underwent separate MRI examinations at 3T with a body array coil and subsequently with an ERC inflated with 50 mL of fluid. Prospectively, two experienced readers independently evaluated all data sets in random order. The maximal anteroposterior, right-to-left, and craniocaudal prostate diameters, as well as the total prostate and peripheral zone and central gland volumes were measured before and after ERC introduction. The changes in prostate shape and volume were analyzed using Wilcoxon's test for paired samples. Results: The introduction of the ERC significantly changed the prostate shape in all three directions, with mean changes in the anteroposterior, right-to-left, and craniocaudal diameters of 15.7% (5.5 mm), 7.7% (3.5 mm), and 6.3% (2.2 mm), respectively. The mean total prostate, peripheral zone, and central gland volume decreased significantly after ERC introduction by 17.9% (8.3 cm 3 ), 21.6% (4.8 cm 3 ), and 14.2% (3.4 cm 3 ), respectively. Conclusion: ERC introduction as observed by 3T MRI changed the prostate shape and volume significantly. The mean anteroposterior diameter was reduced by nearly one-sixth of its original diameter, and the mean total prostate volume was decreased by approximately 18%. This could cause difficulties and should be considered when using ERC-based MRI for MRI-computed tomography fusion and radiotherapy planning.

  3. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Brossmann, J. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Melchert, U.H. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Schroeder, C. [Radiologische Abt., Universitaets-Kinderklinik, Christian-Albrechts-Universitaet, Kiel (Germany); Boer, R. de [Philips Medical Systems, Best (Netherlands); Spielmann, R.P. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Heller, M. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany)

    1995-12-31

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  4. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Melchert, U.H.; Schroeder, C.; Boer, R. de; Spielmann, R.P.; Heller, M.

    1995-01-01

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  5. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments.

    Science.gov (United States)

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L(-1) of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox-oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47

  6. T1-weighted MRI as a substitute to CT for refocusing planning in MR-guided focused ultrasound

    International Nuclear Information System (INIS)

    Wintermark, Max; Sumer, Suna; Lau, Benison; Cupino, Alan; Tustison, Nicholas J; Demartini, Nicholas; Elias, William J; Kassell, Neal; Patrie, James T; Xin, Wenjun; Eames, Matt; Snell, John; Hananel, Arik; Aubry, Jean-Francois

    2014-01-01

    Precise focusing is essential for transcranial MRI-guided focused ultrasound (TcMRgFUS) to minimize collateral damage to non-diseased tissues and to achieve temperatures capable of inducing coagulative necrosis at acceptable power deposition levels. CT is usually used for this refocusing but requires a separate study (CT) ahead of the TcMRgFUS procedure. The goal of this study was to determine whether MRI using an appropriate sequence would be a viable alternative to CT for planning ultrasound refocusing in TcMRgFUS. We tested three MRI pulse sequences (3D T1 weighted 3D volume interpolated breath hold examination (VIBE), proton density weighted 3D sampling perfection with applications optimized contrasts using different flip angle evolution and 3D true fast imaging with steady state precision T2-weighted imaging) on patients who have already had a CT scan performed. We made detailed measurements of the calvarial structure based on the MRI data and compared those so-called ‘virtual CT’ to detailed measurements of the calvarial structure based on the CT data, used as a reference standard. We then loaded both standard and virtual CT in a TcMRgFUS device and compared the calculated phase correction values, as well as the temperature elevation in a phantom. A series of Bland–Altman measurement agreement analyses showed T1 3D VIBE as the optimal MRI sequence, with respect to minimizing the measurement discrepancy between the MRI derived total skull thickness measurement and the CT derived total skull thickness measurement (mean measurement discrepancy: 0.025; 95% CL (−0.22–0.27); p = 0.825). The T1-weighted sequence was also optimal in estimating skull CT density and skull layer thickness. The mean difference between the phase shifts calculated with the standard CT and the virtual CT reconstructed from the T1 dataset was 0.08 ± 1.2 rad on patients and 0.1 ± 0.9 rad on phantom. Compared to the real CT, the MR-based correction showed a 1 °C drop on the

  7. A century of climate and ecosystem change in Western Montana: What do temperature trends portend?

    Science.gov (United States)

    Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C.

    2010-01-01

    The physical science linking human-induced increases in greenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., -17.8??C (0??F), 0??C (32??F), and 32.2??C (90??F)) are assessed. The daily temperature time series reveal extremely cold days (??? -17.8??C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (???32??C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0??C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana's ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes. ?? Springer Science + Business Media B

  8. EEG-Informed fMRI: A Review of Data Analysis Methods

    Science.gov (United States)

    Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia

    2018-01-01

    The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634

  9. EEG-Informed fMRI: A Review of Data Analysis Methods

    Directory of Open Access Journals (Sweden)

    Rodolfo Abreu

    2018-02-01

    Full Text Available The simultaneous acquisition of electroencephalography (EEG with functional magnetic resonance imaging (fMRI is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest.

  10. The relative importance among anthropogenic forcings of land use/land cover change in affecting temperature extremes

    Science.gov (United States)

    Chen, Liang; Dirmeyer, Paul A.

    2018-05-01

    Land use/land cover change (LULCC) exerts significant influence on regional climate extremes, but its relative importance compared with other anthropogenic climate forcings has not been thoroughly investigated. This study compares land use forcing with other forcing agents in explaining the simulated historical temperature extreme changes since preindustrial times in the CESM-Last Millennium Ensemble (LME) project. CESM-LME suggests that the land use forcing has caused an overall cooling in both warm and cold extremes, and has significantly decreased diurnal temperature range (DTR). Due to the competing effects of the GHG and aerosol forcings, the spatial pattern of changes in 1850-2005 climatology of temperature extremes in CESM-LME can be largely explained by the land use forcing, especially for hot extremes and DTR. The dominance of land use forcing is particularly evident over Europe, eastern China, and the central and eastern US. Temporally, the land-use cooling is relatively stable throughout the historical period, while the warming of temperature extremes is mainly influenced by the enhanced GHG forcing, which has gradually dampened the local dominance of the land use effects. Results from the suite of CMIP5 experiments partially agree with the local dominance of the land use forcing in CESM-LME, but inter-model discrepancies exist in the distribution and sign of the LULCC-induced temperature changes. Our results underline the overall importance of LULCC in historical temperature extreme changes, implying land use forcing should be highlighted in future climate projections.

  11. Annexin V–CLIO: A Nanoparticle for Detecting Apoptosis by MRI

    Directory of Open Access Journals (Sweden)

    Eyk A. Schellenberger

    2002-04-01

    Full Text Available Annexin V, which recognizes the phosphatidylserine of apoptotic cells, was conjugated to crosslinked iron oxide (CLIO nanoparticles, a functionalized superparamagnetic preparation developed for target-specific magnetic resonance imaging (MRI. The resulting nanoparticle had an average of 2.7 annexin V proteins linked per CLIO nanoparticle through disulfide bonds. Using camptothecin to induce apoptosis, a mixture of Jurkat T cells (69% healthy and 31% apoptotic was incubated with annexin V–CLIO and was applied to magnetic columns. The result was an almost complete removal of the apoptotic cells (>99%. In a phantom MRI experiment, untreated control cells (12% apoptotic cells, 88% healthy cells and camptothecin-treated cells (65% apoptotic cells, 35% healthy cells were incubated with either annexin V–CLIO (1.0, 0.5, and 0.1 μg Fe/mL or with unlabeled CLIO. A significant signal decrease of camptothecin-treated cells relative to untreated cells was observed even at the lowest concentration tested. Unmodified CLIO failed to cause a significant signal change of apoptotic cells. Hence, annexin V–CLIO allowed the identification of cell suspensions containing apoptotic cells by MRI even at very low concentrations of magnetic substrate. Conjugation of annexin V to CLIO affords a strategy for the development of a MRI imaging probe for detecting apoptosis.

  12. Brain activation studies with PET and functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan). Biomedical Imaging Research Center; Sadato, Norihiro [Okazaki National Research Inst., Aichi (Japan). National Inst. for Physiological Sciences

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H{sub 2}{sup 15}O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H{sub 2}{sup 15}O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  13. Brain activation studies with PET and functional MRI

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Sadato, Norihiro

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H 2 15 O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H 2 15 O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  14. Cardiac MRI in patients with complex CHD following primary or secondary implantation of MRI-conditional pacemaker system.

    Science.gov (United States)

    Al-Wakeel, Nadya; O h-Ici, Darach; Schmitt, Katharina R; Messroghli, Daniel R; Riesenkampff, Eugénie; Berger, Felix; Kuehne, Titus; Peters, Bjoern

    2016-02-01

    In patients with CHD, cardiac MRI is often indicated for functional and anatomical assessment. With the recent introduction of MRI-conditional pacemaker systems, cardiac MRI has become accessible for patients with pacemakers. The present clinical study aims to evaluate safety, susceptibility artefacts, and image reading of cardiac MRI in patients with CHD and MRI-conditional pacemaker systems. Material and methods CHD patients with MRI-conditional pacemaker systems and a clinical need for cardiac MRI were examined with a 1.5-T MRI system. Lead function was tested before and after MRI. Artefacts and image readings were evaluated using a four-point grading scale. A total of nine patients with CHD (mean age 34.0 years, range 19.5-53.6 years) received a total of 11 cardiac MRI examinations. Owing to clinical indications, seven patients had previously been converted from conventional to MRI-conditional pacemaker systems. All MRI examinations were completed without adverse effects. Device testing immediately after MRI and at follow-up showed no alteration of pacemaker device and lead function. Clinical questions could be addressed and answered in all patients. Cardiac MRI can be performed safely with high certainty of diagnosis in CHD patients with MRI-conditional pacemaker systems. In case of clinically indicated lead and box changing, CHD patients with non-MRI-conditional pacemaker systems should be considered for complete conversion to MRI-conditional systems.

  15. TH-CD-BRA-07: MRI-Linac Dosimetry: Parameters That Change in a Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    O’Brien, D. J.; Sawakuchi, G. O. [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: In MRI-linac integrated systems, the presence of the magnetic (B-)field has a large impact of the dose-distribution and the dose-responses of detectors; yet established protocols and previous experience may lead to assumptions about the commissioning process that are no longer valid. This study quantifies parameters that change when performing dosimetry with an MRI-linac including beam quality specifiers and the effective-point-of-measurement (EPOM) of ionization chambers. Methods: We used the Geant4 Monte Carlo code for this work with physics parameters that pass the Fano cavity test to within 0.1% for the simulated conditions with and without a 1.5 T B-field. A point source model with the energy distribution of an MRI-linac beam was used with and without the B-field to calculate the beam quality specifiers %dd(10)× and TPR{sup 20}{sub 10}, the variation of chamber response with orientation and the how the B-field affects the EPOM of ionization chambers by comparing depth-dose curves calculated in water to those generated by a model PTW30013 Farmer chamber. Results: The %dd(10)× changes by over 2% in the presence of the B-field while the TPR{sup 20}{sub 10} is unaffected. Ionization chamber dose-response is known to depend on the orientation w.r.t. the B-field, but two alternative perpendicular orientations (anti-parallel to each other) also differ in dose-response by over 1%. The B-field shifts the EPOM downstream (closer to the chamber center) but it is also shifted laterally by 0.27 times the chamber’s cavity radius. Conclusion: The EPOM is affected by the B-field and it even shifts laterally. The relationship between %dd(10)× and the Spencer-Attix stopping powers is also changed. Care must be taken when using chambers perpendicular to the field as the dose-response changes depending on which perpendicular orientation is used. All of these effects must be considered when performing dosimetry in B-fields and should be accounted for in future

  16. TH-CD-BRA-07: MRI-Linac Dosimetry: Parameters That Change in a Magnetic Field

    International Nuclear Information System (INIS)

    O’Brien, D. J.; Sawakuchi, G. O.

    2016-01-01

    Purpose: In MRI-linac integrated systems, the presence of the magnetic (B-)field has a large impact of the dose-distribution and the dose-responses of detectors; yet established protocols and previous experience may lead to assumptions about the commissioning process that are no longer valid. This study quantifies parameters that change when performing dosimetry with an MRI-linac including beam quality specifiers and the effective-point-of-measurement (EPOM) of ionization chambers. Methods: We used the Geant4 Monte Carlo code for this work with physics parameters that pass the Fano cavity test to within 0.1% for the simulated conditions with and without a 1.5 T B-field. A point source model with the energy distribution of an MRI-linac beam was used with and without the B-field to calculate the beam quality specifiers %dd(10)× and TPR 20 10 , the variation of chamber response with orientation and the how the B-field affects the EPOM of ionization chambers by comparing depth-dose curves calculated in water to those generated by a model PTW30013 Farmer chamber. Results: The %dd(10)× changes by over 2% in the presence of the B-field while the TPR 20 10 is unaffected. Ionization chamber dose-response is known to depend on the orientation w.r.t. the B-field, but two alternative perpendicular orientations (anti-parallel to each other) also differ in dose-response by over 1%. The B-field shifts the EPOM downstream (closer to the chamber center) but it is also shifted laterally by 0.27 times the chamber’s cavity radius. Conclusion: The EPOM is affected by the B-field and it even shifts laterally. The relationship between %dd(10)× and the Spencer-Attix stopping powers is also changed. Care must be taken when using chambers perpendicular to the field as the dose-response changes depending on which perpendicular orientation is used. All of these effects must be considered when performing dosimetry in B-fields and should be accounted for in future dosimetry protocols. This

  17. Long-lasting changes in brain activation induced by a single REAC technology pulse in Wi-Fi bands. Randomized double-blind fMRI qualitative study.

    Science.gov (United States)

    Rinaldi, Salvatore; Mura, Marco; Castagna, Alessandro; Fontani, Vania

    2014-07-11

    The aim of this randomized double-blind study was to evaluate in healthy adult subjects, with functional magnetic resonance imaging (fMRI), long lasting changes in brain activation patterns following administration of a single, 250 milliseconds pulse emitted with radio-electric asymmetric conveyer (REAC) technology in the Wi-Fi bands. The REAC impulse was not administered during the scan, but after this, according to a protocol that has previously been demonstrated to be effective in improving motor control and postural balance, in healthy subjects and patients. The study was conducted on 33 healthy volunteers, performed with a 1.5 T unit while operating a motor block task involving cyclical and alternating flexion and extension of one leg. Subsequently subjects were randomly divided into a treatment and a sham treatment control group. Repeated fMRI examinations were performed following the administration of the REAC pulse or sham treatment. The Treated group showed cerebellar and ponto-mesencephalic activation components that disappeared in the second scan, while these activation components persisted in the Sham group. This study shows that a very weak signal, such as 250 milliseconds Wi-Fi pulse, administered with REAC technology, could lead to lasting effects on brain activity modification.

  18. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    Science.gov (United States)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be

  19. MRI demonstrates the extension of juxta-articular venous malformation of the knee and correlates with joint changes

    Energy Technology Data Exchange (ETDEWEB)

    Jans, L. [University of Melbourne, Royal Children' s Hospital, Department of Medical Imaging, Melbourne, Victoria (Australia); Ghent University Hospital, Department of Radiology and Medical Imaging, Gent (Belgium); Ditchfield, M.; Jaremko, J.L.; Stephens, N. [University of Melbourne, Royal Children' s Hospital, Department of Medical Imaging, Melbourne, Victoria (Australia); Verstraete, K. [Ghent University Hospital, Department of Radiology and Medical Imaging, Gent (Belgium)

    2010-07-15

    Juxta-articular venous malformations (VMs) are uncommon, but may cause early arthropathy of the knee in children and adolescents. We sought to describe the prevalence, extent and initial magnetic resonance imaging (MRI) features of knee arthropathy in children with VM adjacent to the knee joint. Thirty-five patients with VM adjacent to the knee who had MRI performed between 2000 and 2009 were identified through a keyword search of the radiology information system. VM extended to the joint in 17 of the 35 patients (5.4-21.5 years, mean 11.8 years). Most of these 17 patients had joint changes (15/17, 88%), most commonly haemosiderin deposition (14/17, 82%). Other findings included the presence of subchondral bone lesions (eight, 47%), cartilage loss (six, 35%), synovial thickening (six, 35%), marrow oedema (six, 35%), joint effusion (five, 29%), subchondral cysts (five, 29%) and one loose body (6%). VM location and size did not correlate with the degree of articular involvement. Joint changes were present in focal as well as non-discrete VM. We found that the frequency of arthropathy increased with extension of VM into the joint itself. This finding stresses the importance of early MRI evaluation of all juxta-articular VM. (orig.)

  20. Early perfusion changes within 1 week of systemic treatment measured by dynamic contrast-enhanced MRI may predict survival in patients with advanced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bang-Bin; Yu, Chih-Wei; Liang, Po-Chin [National Taiwan University College of Medicine and Hospital, Department of Medical Imaging and Radiology, Taipei City (China); Hsu, Chao-Yu [National Taiwan University College of Medicine and Hospital, Department of Medical Imaging and Radiology, Taipei City (China); Taipei Hospital, Ministry of Health and Welfare, Department of Radiology, New Taipei City (China); Hsu, Chiun; Hsu, Chih-Hung; Cheng, Ann-Lii [National Taiwan University College of Medicine and Hospital, Department of Oncology, Taipei City (China); Shih, Tiffany Ting-Fang [National Taiwan University College of Medicine and Hospital, Department of Medical Imaging and Radiology, Taipei City (China); Taipei City Hospital, Department of Medical Imaging, Taipei City (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China)

    2017-07-15

    To correlate early changes in the parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) within 1 week of systemic therapy with overall survival (OS) in patients with advanced hepatocellular carcinoma (HCC). Eighty-nine patients with advanced HCC underwent DCE-MRI before and within 1 week following systemic therapy. The relative changes of six DCE-MRI parameters (Peak, Slope, AUC, Ktrans, Kep and Ve) of the tumours were correlated with OS using the Kaplan-Meier model and the double-sided log-rank test. All patients died and the median survival was 174 days. Among the six DCE-MRI parameters, reductions in Peak, AUC, and Ktrans, were significantly correlated with one another. In addition, patients with a high Peak reduction following treatment had longer OS (P = 0.023) compared with those with a low Peak reduction. In multivariate analysis, a high Peak reduction was an independent favourable prognostic factor in all patients [hazard ratio (HR), 0.622; P = 0.038] after controlling for age, sex, treatment methods, tumour size and stage, and Eastern Cooperative Oncology Group performance status. Early perfusion changes within 1 week following systemic therapy measured by DCE-MRI may aid in the prediction of the clinical outcome in patients with advanced HCC. (orig.)

  1. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  2. Active pain coping is associated with the response in real-time fMRI neurofeedback during pain.

    Science.gov (United States)

    Emmert, Kirsten; Breimhorst, Markus; Bauermann, Thomas; Birklein, Frank; Rebhorn, Cora; Van De Ville, Dimitri; Haller, Sven

    2017-06-01

    Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback is used as a tool to gain voluntary control of activity in various brain regions. Little emphasis has been put on the influence of cognitive and personality traits on neurofeedback efficacy and baseline activity. Here, we assessed the effect of individual pain coping on rt-fMRI neurofeedback during heat-induced pain. Twenty-eight healthy subjects completed the Coping Strategies Questionnaire (CSQ) prior to scanning. The first part of the fMRI experiment identified target regions using painful heat stimulation. Then, subjects were asked to down-regulate the pain target brain region during four neurofeedback runs with painful heat stimulation. Functional MRI analysis included correlation analysis between fMRI activation and pain ratings as well as CSQ ratings. At the behavioral level, the active pain coping (first principal component of CSQ) was correlated with pain ratings during neurofeedback. Concerning neuroimaging, pain sensitive regions were negatively correlated with pain coping. During neurofeedback, the pain coping was positively correlated with activation in the anterior cingulate cortex, prefrontal cortex, hippocampus and visual cortex. Thermode temperature was negatively correlated with anterior insula and dorsolateral prefrontal cortex activation. In conclusion, self-reported pain coping mechanisms and pain sensitivity are a source of variance during rt-fMRI neurofeedback possibly explaining variations in regulation success. In particular, active coping seems to be associated with successful pain regulation.

  3. Diffusion tensor and volumetric magnetic resonance imaging using an MR-compatible hand-induced robotic device suggests training-induced neuroplasticity in patients with chronic stroke.

    Science.gov (United States)

    Lazaridou, Asimina; Astrakas, Loukas; Mintzopoulos, Dionyssios; Khanicheh, Azadeh; Singhal, Aneesh B; Moskowitz, Michael A; Rosen, Bruce; Tzika, Aria A

    2013-11-01

    Stroke is the third leading cause of mortality and a frequent cause of long-term adult impairment. Improved strategies to enhance motor function in individuals with chronic disability from stroke are thus required. Post‑stroke therapy may improve rehabilitation and reduce long-term disability; however, objective methods for evaluating the specific impact of rehabilitation are rare. Brain imaging studies on patients with chronic stroke have shown evidence for reorganization of areas showing functional plasticity after a stroke. In this study, we hypothesized that brain mapping using a novel magnetic resonance (MR)-compatible hand device in conjunction with state‑of‑the‑art magnetic resonance imaging (MRI) can serve as a novel biomarker for brain plasticity induced by rehabilitative motor training in patients with chronic stroke. This hypothesis is based on the premises that robotic devices, by stimulating brain plasticity, can assist in restoring movement compromised by stroke-induced pathological changes in the brain and that these changes can then be monitored by advanced MRI. We serially examined 15 healthy controls and 4 patients with chronic stroke. We employed a combination of diffusion tensor imaging (DTI) and volumetric MRI using a 3-tesla (3T) MRI system using a 12-channel Siemens Tim coil and a novel MR-compatible hand‑induced robotic device. DTI data revealed that the number of fibers and the average tract length significantly increased after 8 weeks of hand training by 110% and 64%, respectively (probotics in the molecular medicine era.

  4. Modeled climate-induced glacier change in Glacier National Park, 1850-2100

    Science.gov (United States)

    Hall, M.H.P.; Fagre, D.B.

    2003-01-01

    The glaciers in the Blackfoot-Jackson Glacier Basin of Glacier National Park, Montana, decreased in area from 21.6 square kilometers (km2) in 1850 to 7.4 km2 in 1979. Over this same period global temperatures increased by 0.45??C (?? 0. 15??C). We analyzed the climatic causes and ecological consequences of glacier retreat by creating spatially explicit models of the creation and ablation of glaciers and of the response of vegetation to climate change. We determined the melt rate and spatial distribution of glaciers under two possible future climate scenarios, one based on carbon dioxide-induced global warming and the other on a linear temperature extrapolation. Under the former scenario, all glaciers in the basin will disappear by the year 2030, despite predicted increases in precipitation; under the latter, melting is slower. Using a second model, we analyzed vegetation responses to variations in soil moisture and increasing temperature in a complex alpine landscape and predicted where plant communities are likely to be located as conditions change.

  5. A quality improvement project to reduce hypothermia in infants undergoing MRI scanning

    International Nuclear Information System (INIS)

    Dalal, Priti G.; Parekh, Uma; Dhar, Padmani; McQuillan, Patrick M.; Porath, Janelle; Mujsce, Dennis; Wang, Ming; Hulse, Michael

    2016-01-01

    Hypothermia prevention strategies during MRI scanning under general anesthesia in infants may pose a challenge due to the MRI scanner's technical constraints. Previous studies have demonstrated conflicting results related to increase or decrease in post-scan temperatures in children. We noted occurrences of post-scan hypothermia in anesthetized infants despite the use of routine passive warming techniques. The aims of our quality improvement project were (a) to identify variables associated with post-scan hypothermia in infants and (b) to develop and implement processes to reduce occurrence of hypothermia in neonatal intensive care unit (NICU) infants undergoing MRI. One hundred sixty-four infants undergoing MRI scanning were prospectively audited for post-scan body temperatures. A multidisciplinary team identified potential variables associated with post-scan hypothermia and designed preventative strategies: protocol development, risk factor identification, vigilance and use of a vacuum immobilizer. Another audit was performed, specifically focusing on NICU infants. In the initial phase, we found that younger age (P = 0.002), lower weight (P = 0.005), lower pre-scan temperature (P < 0.01), primary anesthetic technique with propofol (P < 0.01), advanced airway devices (P = 0.02) and being in the NICU (P < 0.01) were associated with higher odds for developing post-scan decrease in body temperature. Quality improvement processes decreased the occurrence of hypothermia in NICU infants undergoing MRI scanning from 65% to 18% (95% confidence interval for the difference, 26-70%, P < 0.001). Several variables, including being in the NICU, are associated with a decrease in post-scan temperature in infants undergoing MRI scanning under sedation/general anesthesia. Implementation of strategies to prevent hypothermia in infants may be challenging in the high-risk MRI environment. We were able to minimize this problem in clinical practice by applying quality improvement

  6. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiaozhen [The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China); Zhejiang University Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Zhang, Hong; Tian, Mei [Zhejiang University Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Chung, June-key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of)

    2017-06-15

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between {sup 11}C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased {sup 11}C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing. (orig.)

  7. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.

    Science.gov (United States)

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei

    2017-06-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.

  8. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging

    International Nuclear Information System (INIS)

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Zhang, Hong; Tian, Mei; Chung, June-key

    2017-01-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with "1"1C-N-methylspiperone ("1"1C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between "1"1C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased "1"1C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing. (orig.)

  9. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    International Nuclear Information System (INIS)

    El-Sherif, O; Xhaferllari, I; Gaede, S; Sykes, J; Butler, J; Wisenberg, G; Prato, F

    2015-01-01

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. A compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post irradiation

  10. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherif, O; Xhaferllari, I; Gaede, S [Western Univeristy, London, ON (United Kingdom); London Regional Cancer Program, London, ON (United Kingdom); Sykes, J; Butler, J [Lawson Health Research Institute, London, ON (United Kingdom); Wisenberg, G; Prato, F [Western Univeristy, London, ON (United Kingdom); Lawson Health Research Institute, London, ON (United Kingdom)

    2015-06-15

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. A compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post irradiation

  11. Macrophage specific MRI imaging for antigen induced arthritides. A potential new strategy for the diagnosis of rheumatoid arthritis

    International Nuclear Information System (INIS)

    Simon, G.H.; Rummeny, E.J.; Daldrup-Link, H.E.

    2007-01-01

    The present work describes the potential of iron oxides for the detection of macrophages in synovitis in experimental, antigen-induced arthritis. The pivotal role of macrophages in rheumatoid arthritis (RA) in humans and in antigen-induced arthritis (AIA) in animal models is discussed. The latter appear to be very similar in many aspects to the human RA. We show the potential for iron oxide-enhanced magnetic resonance imaging (MRI) to determine the macrophage content in the arthritic synovial membranes. The results of our own research, as well as those of other research groups, are presented and discussed. MRI after the intravenous (i.v.) administration of iron oxides enables the depiction of macrophage content in arthritic synovial membranes in AIA through the effects of the intracellular compartmentalisation of iron oxide particles. These effects can be demonstrated in 24-h delayed images after i.v. contrast application, on T2-weighted spin-echo or turbo-spin-echo sequences, and especially on T2 * -weighted gradient-echo sequences. The signal effects are not only apparent in high field strength (4.7 Tesla) but also on 1.5 Tesla clinical scanners. The use of iron oxides enables the determination of the macrophage content in synovitis in animals with AIA. This parameter represents a potential marker to determine disease activity, and possibly represents a marker to evaluate the effectiveness of specific therapies in human RA. Current knowledge of iron oxide-enhanced MRI is limited to animal models. The clinical evaluation of this new method in patients with RA has not yet been performed. However, based on the considerations presented here, significant progress in the diagnostic work-up of RA can be expected

  12. Tibial and Femoral Tunnel Changes After ACL Reconstruction: A Prospective 2-Year Longitudinal MRI Study.

    Science.gov (United States)

    Weber, Alexander E; Delos, Demetris; Oltean, Hanna N; Vadasdi, Katherine; Cavanaugh, John; Potter, Hollis G; Rodeo, Scott A

    2015-05-01

    Tunnel widening after anterior cruciate ligament reconstruction (ACL-R) is a well-accepted and frequent phenomenon, yet little is known regarding its origin or natural history. To prospectively evaluate the cross-sectional area (CSA) changes in tibial and femoral bone tunnels after ACL-R with serial MRI. Case series; Level of evidence, 4. Patients underwent arthroscopic ACL-R with the same surgeon, surgical technique, and rehabilitation protocol. Each patient underwent preoperative dual-energy x-ray absorptiometry and clinical evaluation, as well as postoperative time zero MRI followed by subsequent MRI and clinical examination, including functional and subjective outcome tests, at 6, 12, 24, 52, and 104 weeks. Tibial and femoral tunnel CSA was measured on each MRI at tunnel aperture (ttA and ftA), midsection (ttM and ftM), and exit (ttE and ftE). Logistic regression modeling was used to examine the predictive value of demographic data and preoperative bone quality (as measured by dual-energy x-ray absorptiometry) on functional outcome scores, manual and instrumented laxity measurements, and changes in tunnel area over time. Eighteen patients (including 12 men), mean age 35.5±8.7 years, underwent ACL-R. There was significant tunnel expansion at ttA and ftA sites 6 weeks postoperatively (P=.024 and .0045, respectively). Expansion continued for 24 weeks, with progressive tunnel narrowing thereafter. Average ttA CSA was significantly larger than ftA CSA at all times. The ttM significantly expanded after 6 weeks (P=.06); continued expansion to week 12 was followed by 21 months of reduction in tunnel diameter. The ftM and both ttE and ftE sites decreased in CSA over the 2 years. Median Lysholm and International Knee Documentation Committee scores significantly improved at final follow-up (P=.0083 and 1 year from time of injury) predicted increased tunnel widening and accelerated expansion in CSA (Pclinical outcome. Younger age, male sex, and delay from injury to ACL

  13. Can fMRI help optimise lifestyle behaviour change feedback from wearable technologies?

    Directory of Open Access Journals (Sweden)

    Maxine Whelan

    2015-10-01

    Full Text Available Background Non-communicable diseases (NCDs place severe financial strain on global health resources. Diabetes mellitus, the second most prevalent NCD, has been attributed to 8.4% of deaths worldwide for adults aged 20-79 years (International Diabetes Federation, 2013 with physical inactivity attributable to 7% of cases (Lee et al., 2012. The recent surge in commercially available wearable technology has begun to allow individuals to self-monitor their physical activity and sedentary behaviour as well as the physiological response to these behaviours (e.g., health markers such as glucose levels. Equipped with feedback obtained from such wearables, individuals are better able to understand the relationship between the lifestyle behaviours they take (e.g. going for a walk after dinner and health consequences (e.g. less glucose excursions (area under the curve. However, in order to achieve true behaviour change, the feedback must be optimised. Innovative communications research suggest that health messages (and in our case feedback that activates brain regions such as the medial prefrontal cortex (Falk, Berkman, Mann, Harrison & Lieberman, 2010 can predict and are associated with successful behaviour change. Fortunately, functional magnetic resonance imaging (fMRI can map this neural activity whilst individuals receive various forms of personalised feedback. Such insight into the optimisation of feedback can improve the design and delivery of future behaviour change interventions. Aim Examine neural activity in response to personalised feedback in order to identify health messages most potent for behaviour change. Methods A mixed gender sample of 30 adults (aged 30-65 years will be recruited through campus advertisements at Loughborough University, UK. Physical activity and sedentary behaviour will be assessed using waist-worn ActiGraph GT3x-BT accelerometer (100Hz and LUMO posture sensor (30Hz, respectively. Both devices will be removed for sleep

  14. Human-induced climate change: the impact of land-use change

    Science.gov (United States)

    Gries, Thomas; Redlin, Margarete; Ugarte, Juliette Espinosa

    2018-02-01

    For hundreds of years, human activity has modified the planet's surface through land-use practices. Policies and decisions on how land is managed and land-use changes due to replacement of forests by agricultural cropping and grazing lands affect greenhouse gas emissions. Agricultural management and agroforestry and the resulting changes to the land surface alter the global carbon cycle as well as the Earth's surface albedo, both of which in turn change the Earth's radiation balance. This makes land-use change the second anthropogenic source of climate change after fossil fuel burning. However, the scientific research community has so far not been able to identify the direction and magnitude of the global impact of land-use change. This paper examines the effects of net carbon flux from land-use change on temperature by applying Granger causality and error correction models. The results reveal a significant positive long-run equilibrium relationship between land-use change and the temperature series as well as an opposing short-term effect such that land-use change tends to lead to global warming; however, a rise in temperature causes a decline in land-use change.

  15. Reye's syndrome with cortical laminar necrosis: MRI

    International Nuclear Information System (INIS)

    Kinoshita, T.; Takahashi, S.; Ishii, K.; Higano, S.; Matsumoto, K.; Sakamoto, K.; Haginoya, K.; Iinuma, K.

    1996-01-01

    Serial MRI findings are described in two patients with Reye's syndrome, demonstrating diffuse cortical and white matter changes. In the acute stage, T2-weighted images showed subtle but definite laminar high signal and contrast-enhanced T1-weighted images laminar enhancement, along the entire cerebral cortex bilaterally. In the chronic stage, unenhanced T1-weighted images showed diffuse cortical laminar high signal. These characteristic MRI features seemed very similar to those of laminar cortical necrosis in hypoxic brain damage. MRI also displayed delayed white matter changes with cerebral atrophy. (orig.)

  16. MRI of oriental cholangiohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Wani, N.A., E-mail: ahmad77chinar@gmail.co [Department of Radiodiagnosis and Imaging, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar (India); Robbani, I.; Kosar, T. [Department of Radiodiagnosis and Imaging, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar (India)

    2011-02-15

    Oriental cholangiohepatitis (OCH) also called recurrent pyogenic cholangitis is characterized by intrahepatic duct calculi, strictures, and recurrent infections. In turn cholangitis can result in multiple hepatic abscesses, further biliary strictures, and in severe cases, progressive hepatic parenchymal destruction, cirrhosis, and portal hypertension. Magnetic resonance cholangiopancreatography (MRCP) and conventional T1-weighted (T1 W) and T2-weighted (T2 W) magnetic resonance imaging (MRI) findings have been described in patients with OCH. MRCP findings include duct dilation, strictures, and calculi. MRCP can help to localize the diseased ducts and determine the severity of involvement. T1 and T2 W sequences reveal the parenchymal changes of atrophy, abscess formation, and portal hypertension in addition to calculi. Post-treatment changes are also well depicted using MRI. Comprehensive, non-invasive assessment is achieved by using conventional MRI and MRCP in OCH providing a roadmap for endoscopic or surgical management.

  17. Quantum Zeno subspaces induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Militello, B.; Scala, M.; Messina, A. [Dipartimento di Fisica dell' Universita di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2011-08-15

    We discuss the partitioning of the Hilbert space of a quantum system induced by the interaction with another system at thermal equilibrium, showing that the higher the temperature the more effective is the formation of Zeno subspaces. We show that our analysis keeps its validity even in the case of interaction with a bosonic reservoir, provided appropriate limitations of the relevant bandwidth.

  18. Fetal MRI

    International Nuclear Information System (INIS)

    Prayer, D.; Brugger, P.C.

    2004-01-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  19. Fetal MRI

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, D.; Brugger, P.C. [University Hospital of Vienna (Austria). Division of Neuroradiology

    2004-07-01

    New, ultrafast sequences have made it possible to obtain MR images of the fetus without maternal sedation or immobilization of the fetus itself. While fetal MRI began as an adjunct to ultrasound, it has now been shown that MRI can provide additional information that may change prognosis, the management of pregnancy, or the treatment of the newborn child. It is of particular value in the assessment of malformations of the central nervous system. The steady development and adaptation of MR-sequences to the needs of fetal imaging has led to new indications that can support prognostic and therapeutic decisions. (orig.)

  20. Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network

    Directory of Open Access Journals (Sweden)

    Fukuda eMegumi

    2015-03-01

    Full Text Available Motor or perceptual learning is known to influence functional connectivity between brain regions and induce short-term changes in the intrinsic functional networks revealed as correlations in slow blood-oxygen-level dependent (BOLD signal fluctuations. However, no cause-and-effect relationship has been elucidated between a specific change in connectivity and a long-term change in global networks. Here, we examine the hypothesis that functional connectivity (i.e. temporal correlation between two regions is increased and preserved for a long time when two regions are simultaneously activated or deactivated. Using the connectivity-neurofeedback training paradigm, subjects successfully learned to increase the correlation of activity between the lateral parietal and primary motor areas, regions that belong to different intrinsic networks and negatively correlated before training under the resting conditions. Furthermore, whole-brain hypothesis-free analysis as well as functional network analyses demonstrated that the correlation in the resting state between these areas as well as the correlation between the intrinsic networks that include the areas increased for at least two months. These findings indicate that the connectivity-neurofeedback training can cause long-term changes in intrinsic connectivity and that intrinsic networks can be shaped by experience-driven modulation of regional correlation.

  1. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    Science.gov (United States)

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  2. Ex-vivo diffusion MRI reveals microstructural alterations in stress-sensitive brain regions: A chronic mild stress recovery study

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Hansen, Brian; Wiborg, Ove

    Depression is a leading cause of disability worldwide and causes significant microstructural alterations in stress-sensitive brain regions. However, the potential recovery of these microstructural alterations has not previously been investigated, which we, therefore, set out to do using diffusion...... MRI (d-MRI) in the chronic mild stress (CMS) rat model of depression. This study reveals significant microstructural alterations after 8 weeks of recovery, in the opposite direction to change induced by stress in the acute phase of the experiment. Such findings may be useful in the prognosis...... of depression or for monitoring treatment response....

  3. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    Science.gov (United States)

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Long-term changes in sea surface temperatures

    International Nuclear Information System (INIS)

    Parker, D.E.

    1994-01-01

    Historical observations of sea surface temperature since 1856 have been improved by applying corrections to compensate for the predominant use of uninsulated or partly insulated buckets until the Second World War. There are large gaps in coverage in the late nineteenth century and around the two world wars, but a range of statistical techniques suggest that these gaps do not severely prejudice estimates of global and regional climatic change. Nonetheless, to improve the analysis on smaller scales, many unused historical data are to be digitized and incorporated. For recent years, satellite-based sea surface temperatures have improved the coverage, after adjustments for their biases relative to in situ data. An initial version of a nominally globally complete sea ice and interpolated sea surface temperature data set, beginning in 1871, has been created for use in numerical simulations of recent climate. Long time series of corrected regional, hemispheric, and global sea surface temperatures are mostly consistent with corresponding night marine air temperature series, and confirm the regionally specific climatic changes portrayed in the Scientific Assessments of the intergovernmental Panel on Climate Change. The observations also show an El Nino-like oscillation on bidecadal and longer time scales

  5. Changes in prostate shape and volume and their implications for radiotherapy after introduction of endorectal balloon as determined by MRI at 3T.

    NARCIS (Netherlands)

    Heijmink, S.W.T.P.J.; Scheenen, T.W.J.; Lin, E.N.J.T. van; Visser, A.G.; Kiemeney, L.A.L.M.; Witjes, J.A.; Barentsz, J.O.

    2009-01-01

    PURPOSE: To determine the changes in prostate shape and volume after the introduction of an endorectal coil (ERC) by means of magnetic resonance imaging (MRI) at 3T. METHODS AND MATERIALS: A total of 44 consecutive patients with biopsy-proven prostate cancer underwent separate MRI examinations at 3T

  6. Non-verbal emotion communication training induces specific changes in brain function and structure.

    Science.gov (United States)

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure.

  7. The establishment of a multiple sclerosis model for clinical MRI study

    International Nuclear Information System (INIS)

    Zhang Haiqin; Li Kuncheng; Yu Chunshui; Ma Jia; Qin Wen; Ji Zhijuan; Piao Yueshan

    2009-01-01

    Objective: To establish a rat model of multiple sclerosis (MS) for clinical MRI study. Methods: The Lewis (LEW) rats were immunized by myelin oligodendrocyte glycoprotein peptide 35-55 (MOG 35-55 ) emulsified with complete Freunds adjuvant/incomplete Freunds adjuvant. Twenty LEW rats were selected. Group A rats were 5, group B rats were 10 and control group rats were 5. MRI and histopathology analysis were observed on group A and control group, and clinical course were observed on group B. The clinical course was observed and the brain and spinal cord of EAE rats were scanned on 3.0 T MR system with quadrature wrist joint coil on the third day of the acute stage of disease. The T 2 /T 1 weighted images and Gadolinium enhanced T 1 weighted images in 3D volume were obtained respectively. The magnetization transfer ratio (MTR) images were calculated with special software in workstation. Rats were sacrificed within 24 h after MRI, and the histopathological changes of central nervous system were observed. Results: Twice immunization of MOG 35-55 was used and a rat model of MS was successfully induced with all the rats. The model had varied clinical symptoms. The lesions of central nervous system at acute stage on group A (5 rats) were depicted on MRI. The lesions located in the brain and the spinal cord with main manifestation of hyperintensity on T 2 weighed images and hypointensity on T 1 weighted images. Some lesions had Gd-DTPA enhancement, and the value of MTR decreased. The infiltration of mononuclear cells around blood vessels and the extensive distribution of lesions of demyelination in brain and spinal cord were verified by histological examination. Conclusions: Twice immunization of MOG 35-55 could produce a rat model which mimics MS. The model is stable with higher incidence, and the antigen is cheap and obtained easily. The intravital monitoring of brain and spinal cord lesions in MOG 35-55 induced rat model is possible on 3.0 T clinical whole- body MR

  8. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    Science.gov (United States)

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  9. Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus.

    Science.gov (United States)

    Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R

    2016-11-01

    We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Achieving temperature-size changes in a unicellular organism

    Science.gov (United States)

    Forster, Jack; Hirst, Andrew G; Esteban, Genoveva F

    2013-01-01

    The temperature-size rule (TSR) is an intraspecific phenomenon describing the phenotypic plastic response of an organism size to the temperature: individuals reared at cooler temperatures mature to be larger adults than those reared at warmer temperatures. The TSR is ubiquitous, affecting >80% species including uni- and multicellular groups. How the TSR is established has received attention in multicellular organisms, but not in unicells. Further, conceptual models suggest the mechanism of size change to be different in these two groups. Here, we test these theories using the protist Cyclidium glaucoma. We measure cell sizes, along with population growth during temperature acclimation, to determine how and when the temperature-size changes are achieved. We show that mother and daughter sizes become temporarily decoupled from the ratio 2:1 during acclimation, but these return to their coupled state (where daughter cells are half the size of the mother cell) once acclimated. Thermal acclimation is rapid, being completed within approximately a single generation. Further, we examine the impact of increased temperatures on carrying capacity and total biomass, to investigate potential adaptive strategies of size change. We demonstrate no temperature effect on carrying capacity, but maximum supported biomass to decrease with increasing temperature. PMID:22832346

  11. {sup 18}F-FDG PET/MRI in patients suffering from lymphoma: how much MRI information is really needed?

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, Julian; Heusch, Philipp; Antoch, Gerald [University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany); Deuschl, Cornelius; Grueneisen, Johannes; Forsting, Michael; Umutlu, Lale [University of Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen (Germany); Herrmann, Ken [University of Duisburg-Essen, Department of Nuclear Medicine, University Hospital Essen, Essen (Germany)

    2017-06-15

    To evaluate and compare the diagnostic potential of different reading protocols, entailing non-enhanced/contrast-enhanced and diffusion-weighted {sup 18}F-FDG PET/MR imaging for lesion detection and determination of the tumor stage in lymphoma patients. A total of 101 {sup 18}F-FDG PET/MRI datasets including a (1) transverse T2-w HASTE and {sup 18}F-FDG PET (PET/MRI{sub 1}), (2) with an additional contrast enhanced VIBE (PET/MRI{sub 2}), and (3) with additional diffusion-weighted imaging (PET/MRI{sub 3}) were evaluated. Scans were performed for initial staging, restaging during treatment, or at the end of treatment and under surveillance with suspicion for tumor relapse. In all datasets lymphoma manifestations as well as tumor stage in analogy to the revised criteria of the Ann Arbor staging system were determined. Furthermore, potential changes in therapy compared to the reference standard were evaluated. Hitherto performed PET/CT and all available follow-up and prior examinations as well as histopathology served as reference standard. PET/MRI{sub 1} correctly identified 53/55 patients with active lymphoma and 190/205 lesions. Respective values were 55/55, 202/205 for PET/MRI{sub 2} and 55/55, 205/205 for PET/MRI{sub 3}. PET/MRI{sub 1} determined correct tumor stage in 88 out of 101 examinations, and corresponding results for PET/MRI{sub 2} were 95 out of 101 and 96 out of 101 in PET/MRI{sub 3}. Relating to the reference standard changes in treatment would occur in 11% based on PET/MRI{sub 1}, in 6% based on PET/MRI{sub 2}, and in 3% based on PET/MRI{sub 3}. The additional application of contrast-enhanced and diffusion-weighted imaging to {sup 18}F-FDG PET/MRI resulted in higher diagnostic competence, particularly for initial staging and correct classification of the disease extent with potential impact on patient and therapy management. (orig.)

  12. Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second...

  13. Early Prediction and Evaluation of Breast Cancer Response to Neoadjuvant Chemotherapy Using Quantitative DCE-MRI

    Directory of Open Access Journals (Sweden)

    Alina Tudorica

    2016-02-01

    Full Text Available The purpose is to compare quantitative dynamic contrast-enhanced (DCE magnetic resonance imaging (MRI metrics with imaging tumor size for early prediction of breast cancer response to neoadjuvant chemotherapy (NACT and evaluation of residual cancer burden (RCB. Twenty-eight patients with 29 primary breast tumors underwent DCE-MRI exams before, after one cycle of, at midpoint of, and after NACT. MRI tumor size in the longest diameter (LD was measured according to the RECIST (Response Evaluation Criteria In Solid Tumors guidelines. Pharmacokinetic analyses of DCE-MRI data were performed with the standard Tofts and Shutter-Speed models (TM and SSM. After one NACT cycle the percent changes of DCE-MRI parameters Ktrans (contrast agent plasma/interstitium transfer rate constant, ve (extravascular and extracellular volume fraction, kep (intravasation rate constant, and SSM-unique τi (mean intracellular water lifetime are good to excellent early predictors of pathologic complete response (pCR vs. non-pCR, with univariate logistic regression C statistics value in the range of 0.804 to 0.967. ve values after one cycle and at NACT midpoint are also good predictors of response, with C ranging 0.845 to 0.897. However, RECIST LD changes are poor predictors with C = 0.609 and 0.673, respectively. Post-NACT Ktrans, τi, and RECIST LD show statistically significant (P < .05 correlations with RCB. The performances of TM and SSM analyses for early prediction of response and RCB evaluation are comparable. In conclusion, quantitative DCE-MRI parameters are superior to imaging tumor size for early prediction of therapy response. Both TM and SSM analyses are effective for therapy response evaluation. However, the τi parameter derived only with SSM analysis allows the unique opportunity to potentially quantify therapy-induced changes in tumor energetic metabolism.

  14. The clinical value of routine whole-body magnetic resonance imaging (MRI) in palliative care

    Energy Technology Data Exchange (ETDEWEB)

    Geitung, Jonn Terje (Department of Radiology, Haraldspass Deaconess (University) Hospital (Norway); Department of Surgical Sciences, University of Bergen (Norway)), Email: jtgeit@online.no; Eikeland, Joakim (Department of Public Health and Primary Health Care, University of Bergen (Norway)); Rosland, Jan Henrik (Department of Public Health and Primary Health Care, University of Bergen (Norway); Sunniva Clinic for Palliative Care, Haraldsplass Deaconess (University) Hospital (Norway))

    2012-03-15

    Background. Whole-body MRI (WBMRI) has become an accessible method for detecting different types of pathologies both in the skeleton and the viscera, which may explain painful conditions, for example tumors and inflammation. Purpose. To assess a possible value of using WBMRI in order to improve palliative care. Material and Methods. Twenty patients (all eligible patients) admitted to the Department for Palliative Care were consecutively included in this study. They underwent a modified WBMRI, with fewer and shorter pulse sequences than in a standard WBMRI, to reduce patient stress. However, the patients' physicians were to exclude patients where little might be obtained and discomfort, distress, and pain could be induced. The treating physicians registered clinical utility directly after receiving the MRI report in a questionnaire. The registration was repeated after ended treatment. Results. Eighty percent had new findings detected, and 40% of the patients had a change in treatment due to the MRI result, mainly changes in analgesics and/or radiation therapy. Conclusion. The WBMRI helped the clinicians to improve treatment and a majority of the patients benefited from this. In eight patients the treatment was changed due to the results. The clinical value (utility) was indicated to be high

  15. Contribution to the detection of changes in multi-modal 3D MRI sequences

    International Nuclear Information System (INIS)

    Bosc, Marcel

    2003-01-01

    This research thesis reports the study of automatic techniques for the detection of changes in image sequences of brain magnetic resonance imagery (MRI), and more particularly the study of localised intensity changes occurring during pathological evolutions such as evolutions of lesions into multiple sclerosis. Thus, this work focused on the development of image processing tools allowing to decide whether changes are statistically significant or not. The author developed automatic techniques of identification and correction of the main artefacts (position, deformations, intensity variation, and so on), and proposes an original technique for cortex segmentation which introduced anatomic information for an improved automatic detection. The developed change detection system has been assessed within the frame of the study of the evolution of lesions of multiple sclerosis. Performance have been determined on a large number of multi-modal images, and the automatic system has shown better performance than a human expert [fr

  16. Changes in the Mg profile and in dislocations induced by high temperature annealing of blue LEDs

    Science.gov (United States)

    Meneghini, M.; Trivellin, N.; Berti, M.; Cesca, T.; Gasparotto, A.; Vinattieri, A.; Bogani, F.; Zhu, D.; Humphreys, C. J.; Meneghesso, G.; Zanoni, E.

    2013-03-01

    The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples.

  17. Temperature induced changes in size dependent distributions of two boreal and three Lusitanian flatfish species: A comparative study

    NARCIS (Netherlands)

    Hal, van R.; Kooten, van T.; Rijnsdorp, A.D.

    2016-01-01

    Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in

  18. The effects of changes in object location on object identity detection: A simultaneous EEG-fMRI study.

    Science.gov (United States)

    Yang, Ping; Fan, Chenggui; Wang, Min; Fogelson, Noa; Li, Ling

    2017-08-15

    Object identity and location are bound together to form a unique integration that is maintained and processed in visual working memory (VWM). Changes in task-irrelevant object location have been shown to impair the retrieval of memorial representations and the detection of object identity changes. However, the neural correlates of this cognitive process remain largely unknown. In the present study, we aim to investigate the underlying brain activation during object color change detection and the modulatory effects of changes in object location and VWM load. To this end we used simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings, which can reveal the neural activity with both high temporal and high spatial resolution. Subjects responded faster and with greater accuracy in the repeated compared to the changed object location condition, when a higher VWM load was utilized. These results support the spatial congruency advantage theory and suggest that it is more pronounced with higher VWM load. Furthermore, the spatial congruency effect was associated with larger posterior N1 activity, greater activation of the right inferior frontal gyrus (IFG) and less suppression of the right supramarginal gyrus (SMG), when object location was repeated compared to when it was changed. The ERP-fMRI integrative analysis demonstrated that the object location discrimination-related N1 component is generated in the right SMG. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Infrared thermographic assessment of changes in skin temperature during hypoglycaemia in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Sejling, Anne-Sophie; Lange, Kai H W; Frandsen, Christian S

    2015-01-01

    Aims/hypothesis Hypoglycaemia is associated with reduced skin temperature (Ts). We studied whether infrared thermography can detect Ts changes during hypoglycaemia in patients with type 1 diabetes and how the Ts response differs between patients with normal hypoglycaemia awareness and hypoglycaemia...... unawareness. Methods Twenty-four patients with type 1 diabetes (ten aware, 14 unaware) were studied during normoglycaemia (5.0-6.0 mmol/l), hypoglycaemia (2.0-2.5 mmol/l) and during recovery from hypoglycaemia (5.0-6.0 mmol/l) using hyperinsulinaemic glucose clamping. During each 1 h phase, Ts was measured.......6 degrees C, unaware: -1.1 degrees C). In aware patients, the differences in temperature were statistically significant on both nose and glabella, whereas there was only a trend in the unaware group. There was a significant difference in hypoglycaemia-induced temperature changes between the groups. Patients...

  20. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    Science.gov (United States)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  1. Temperature response to future urbanization and climate change

    Science.gov (United States)

    Argüeso, Daniel; Evans, Jason P.; Fita, Lluís; Bormann, Kathryn J.

    2014-04-01

    This study examines the impact of future urban expansion on local near-surface temperature for Sydney (Australia) using a future climate scenario (A2). The Weather Research and Forecasting model was used to simulate the present (1990-2009) and future (2040-2059) climates of the region at 2-km spatial resolution. The standard land use of the model was replaced with a more accurate dataset that covers the Sydney area. The future simulation incorporates the projected changes in the urban area of Sydney to account for the expected urban expansion. A comparison between areas with projected land use changes and their surroundings was conducted to evaluate how urbanization and global warming will act together and to ascertain their combined effect on the local climate. The analysis of the temperature changes revealed that future urbanization will strongly affect minimum temperature, whereas little impact was detected for maximum temperature. The minimum temperature changes will be noticeable throughout the year. However, during winter and spring these differences will be particularly large and the increases could be double the increase due to global warming alone at 2050. Results indicated that the changes were mostly due to increased heat capacity of urban structures and reduced evaporation in the city environment.

  2. 18F-FDG PET and high-resolution MRI co-registration for pre-surgical evaluation of patients with conventional MRI-negative refractory extra-temporal lobe epilepsy.

    Science.gov (United States)

    Ding, Yao; Zhu, Yuankai; Jiang, Biao; Zhou, Yongji; Jin, Bo; Hou, Haifeng; Wu, Shuang; Zhu, Junming; Wang, Zhong Irene; Wong, Chong H; Ding, Meiping; Zhang, Hong; Wang, Shuang; Tian, Mei

    2018-04-18

    Epilepsy that originates outside of the temporal lobe can present some of the most challenging problems for surgical therapy, especially for patients with conventional magnetic resonance imaging (MRI)-negative refractory extra-temporal lobe epilepsy (ETLE). This study aimed to evaluate the clinical value of pre-surgical 18 F-fluoro-deoxy-glucose positron emission tomography ( 18 F-FDG PET) and high-resolution MRI (HR-MRI) co-registration in patients with conventional MRI-negative refractory ETLE, and compare their surgical outcomes. Sixty-seven patients with conventional MRI-negative refractory ETLE were prospectively included for pre-surgical 18 F-FDG PET and HR-MRI examinations. Under the guidance of 18 F-FDG PET and HR-MRI co-registration, HR-MRI images were re-read. Based on the image result changes from first reading to re-reading, patients were divided into three groups: Change-1 (lesions of subtle abnormality could be identified in re-read), Change-2 (non-specific abnormalities reported in the first reading were considered as lesions on HR-MRI re-read) and No-change. Post-surgical follow-ups were conducted for up to 59 months. Visual analysis of 18 F-FDG PET showed focal or regional abnormality in 46 patients (68.6%), while the abnormal rate increased to 94.0% (P evaluation by co-registration of 18 F-FDG PET and HR-MRI could improve the identification of the epileptogenic onset zone (EOZ), and may further guide the surgical decision-making and improve the outcome of the refractory ETLE with normal conventional MRI; therefore, it should be recommended as a standard procedure for pre-surgical evaluation of these patients.

  3. An fMRI study of caring vs self-focus during induced compassion and pride.

    Science.gov (United States)

    Simon-Thomas, Emiliana R; Godzik, Jakub; Castle, Elizabeth; Antonenko, Olga; Ponz, Aurelie; Kogan, Aleksander; Keltner, Dacher J

    2012-08-01

    This study examined neural activation during the experience of compassion, an emotion that orients people toward vulnerable others and prompts caregiving, and pride, a self-focused emotion that signals individual strength and heightened status. Functional magnetic resonance images (fMRI) were acquired as participants viewed 55 s continuous sequences of slides to induce either compassion or pride, presented in alternation with sequences of neutral slides. Emotion self-report data were collected after each slide condition within the fMRI scanner. Compassion induction was associated with activation in the midbrain periaqueductal gray (PAG), a region that is activated during pain and the perception of others' pain, and that has been implicated in parental nurturance behaviors. Pride induction engaged the posterior medial cortex, a region that has been associated with self-referent processing. Self-reports of compassion experience were correlated with increased activation in a region near the PAG, and in the right inferior frontal gyrus (IFG). Self-reports of pride experience, in contrast, were correlated with reduced activation in the IFG and the anterior insula. These results provide preliminary evidence towards understanding the neural correlates of important interpersonal dimensions of compassion and pride. Caring (compassion) and self-focus (pride) may represent core appraisals that differentiate the response profiles of many emotions.

  4. Exposure to MRI-related magnetic fields and vertigo in MRI workers.

    Science.gov (United States)

    Schaap, Kristel; Portengen, Lützen; Kromhout, Hans

    2016-03-01

    Vertigo has been reported by people working around magnetic resonance imaging (MRI) scanners and was found to increase with increasing strength of scanner magnets. This suggests an association with exposure to static magnetic fields (SMF) and/or motion-induced time-varying magnetic fields (TVMF). This study assessed the association between various metrics of shift-long exposure to SMF and TVMF and self-reported vertigo among MRI workers. We analysed 358 shifts from 234 employees at 14 MRI facilities in the Netherlands. Participants used logbooks to report vertigo experienced during the work day at the MRI facility. In addition, personal exposure to SMF and TVMF was measured during the same shifts, using portable magnetic field dosimeters. Vertigo was reported during 22 shifts by 20 participants and was significantly associated with peak and time-weighted average (TWA) metrics of SMF as well as TVMF exposure. Associations were most evident with full-shift TWA TVMF exposure. The probability of vertigo occurrence during a work shift exceeded 5% at peak exposure levels of 409 mT and 477 mT/s and at full-shift TWA levels of 3 mT and 0.6 mT/s. These results confirm the hypothesis that vertigo is associated with exposure to MRI-related SMF and TVMF. Strong correlations between various metrics of shift-long exposure make it difficult to disentangle the effects of SMF and TVMF exposure, or identify the most relevant exposure metric. On the other hand, this also implies that several metrics of shift-long exposure to SMF and TVMF should perform similarly in epidemiological studies on MRI-related vertigo. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Functional Proton MRI in Emphysematous Rats.

    Science.gov (United States)

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Stiller, Detlef; Rasche, Volker

    2015-12-01

    To demonstrate the feasibility of proton magnetic resonance imaging (MRI) ventilation-related maps in rodents for the evaluation of lung function in the presence of pancreatic porcine elastase (PPE)-induced emphysema. Twelve rats were equally divided into 3 groups: group 1 (no administration of PPE); group 2 (PPE selectively only in the left lung); and group 3 (PPE administered in both lungs). Magnetic resonance imaging (MRI) and computed tomographic (CT) data were acquired at baseline, at 2 weeks and 4 weeks after administration, after which the animals were euthanized. The MRI protocol comprised a golden angle 2-dimensional ultrashort echo time MRI sequence [echo time, 0.343 millisecond (ms); repetition time, 120 ms; 12 slides with thickness, 1 mm; acquisition time, 30 minutes], from which inspiration and expiration images were reconstructed after the extraction of a self-gating signal. Inspiration images were registered to images at expiration, and expansion maps were created by calculating the specific difference in signal intensity. The lungs were segmented, and the mean specific expansion (MSE) calculated as an established surrogate for fractional ventilation. Computed tomographic data provided lung density (peak of the Hounsfield unit histogram, HU_P), whereas histology provided the mean linear intercept for each lung. Two weeks after administration, the control group had a mean MSE in both lungs corresponding to 96% of the baseline. Group 2 had 85% of the baseline, and group 3 had 57%. Considering the PPE-treated lungs alone, a significant reduction in MSE of 27% at 2 weeks and 40% at 4 weeks was found with respect to nontreated lungs. Significant correlations between HU_P and MSE were found at all time points (baseline: r = 0.606, P = 0.0017; 2 weeks: r = 0.837, P ≤ 0.0001; 4 weeks: r = 0.765, P Mean linear intercept values significantly correlated both with MRI MSE (r = -0.770, P The calculated ventilation-related maps showed a reduction of function in

  6. Standard high-resolution pelvic MRI vs. low-resolution pelvic MRI in the evaluation of deep infiltrating endometriosis

    International Nuclear Information System (INIS)

    Scardapane, Arnaldo; Lorusso, Filomenamila; Ferrante, Annunziata; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Scioscia, Marco

    2014-01-01

    To compare the capabilities of standard pelvic MRI with low-resolution pelvic MRI using fast breath-hold sequences to evaluate deep infiltrating endometriosis (DIE). Sixty-eight consecutive women with suspected DIE were studied with pelvic MRI. A double-acquisition protocol was carried out in each case. High-resolution (HR)-MRI consisted of axial, sagittal, and coronal TSE T2W images, axial TSE T1W, and axial THRIVE. Low-resolution (LR)-MRI was acquired using fast single shot (SSH) T2 and T1 images. Two radiologists with 10 and 2 years of experience reviewed HR and LR images in two separate sessions. The presence of endometriotic lesions of the uterosacral ligament (USL), rectovaginal septum (RVS), pouch of Douglas (POD), and rectal wall was noted. The accuracies of LR-MRI and HR-MRI were compared with the laparoscopic and histopathological findings. Average acquisition times were 24 minutes for HR-MRI and 7 minutes for LR-MRI. The more experienced radiologist achieved higher accuracy with both HR-MRI and LR-MRI. The values of sensitivity, specificity, PPV, NPV, and accuracy did not significantly change between HR and LR images or interobserver agreement for all of the considered anatomic sites. LR-MRI performs as well as HR-MRI and is a valuable tool for the detection of deep endometriosis extension. (orig.)

  7. Standard high-resolution pelvic MRI vs. low-resolution pelvic MRI in the evaluation of deep infiltrating endometriosis

    Energy Technology Data Exchange (ETDEWEB)

    Scardapane, Arnaldo; Lorusso, Filomenamila; Ferrante, Annunziata; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe [University Hospital ' ' Policlinico' ' of Bari, Interdisciplinary Department of Medicine, Bari (Italy); Scioscia, Marco [Sacro Cuore Don Calabria General Hospital, Department of Obstetrics and Gynecology, Negrar, Verona (Italy)

    2014-10-15

    To compare the capabilities of standard pelvic MRI with low-resolution pelvic MRI using fast breath-hold sequences to evaluate deep infiltrating endometriosis (DIE). Sixty-eight consecutive women with suspected DIE were studied with pelvic MRI. A double-acquisition protocol was carried out in each case. High-resolution (HR)-MRI consisted of axial, sagittal, and coronal TSE T2W images, axial TSE T1W, and axial THRIVE. Low-resolution (LR)-MRI was acquired using fast single shot (SSH) T2 and T1 images. Two radiologists with 10 and 2 years of experience reviewed HR and LR images in two separate sessions. The presence of endometriotic lesions of the uterosacral ligament (USL), rectovaginal septum (RVS), pouch of Douglas (POD), and rectal wall was noted. The accuracies of LR-MRI and HR-MRI were compared with the laparoscopic and histopathological findings. Average acquisition times were 24 minutes for HR-MRI and 7 minutes for LR-MRI. The more experienced radiologist achieved higher accuracy with both HR-MRI and LR-MRI. The values of sensitivity, specificity, PPV, NPV, and accuracy did not significantly change between HR and LR images or interobserver agreement for all of the considered anatomic sites. LR-MRI performs as well as HR-MRI and is a valuable tool for the detection of deep endometriosis extension. (orig.)

  8. Studying neuroanatomy using MRI.

    Science.gov (United States)

    Lerch, Jason P; van der Kouwe, André J W; Raznahan, Armin; Paus, Tomáš; Johansen-Berg, Heidi; Miller, Karla L; Smith, Stephen M; Fischl, Bruce; Sotiropoulos, Stamatios N

    2017-02-23

    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging and disease. Developments in MRI acquisition, image processing and data modeling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and for inferring microstructural properties; we also describe key artifacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, although methods need to improve and caution is required in interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works.

  9. Effect of 7-nitroindazole on body temperature and methamphetamine-induced dopamine toxicity.

    Science.gov (United States)

    Callahan, B T; Ricaurte, G A

    1998-08-24

    The present study was undertaken to examine the role of temperature on the ability of 7-nitroindazole (7-NI) to prevent methamphetamine-induced dopamine (DA) neurotoxicity. Male Swiss-Webster mice received methamphetamine alone or in combination with 7-NI at either room temperature (20+/-1 degrees C) or at 28+/-1 degrees C. At 20+/-1 degrees C, 7-NI produced hypothermic effects and afforded total protection against methamphetamine-induced DA depletions in the striatum. At 28+/-1 degrees C, 7-NI produced minimal effects on body temperature and failed to prevent methamphetamine-induced DA reductions. These findings indicate that the neuroprotection afforded by 7-NI is likely related to its ability to produce hypothermia because agents that produce hypothermia and/or prevent hyperthermia are known to attenuate methamphetamine-induced neurotoxicity.

  10. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates

    Energy Technology Data Exchange (ETDEWEB)

    Dillenseger, J.P.; Choquet, P.; Goetz, C.; Bierry, G. [University Hospital of Strasbourg, Medical Imaging Department, Strasbourg (France); Icube, CNRS, University of Strasbourg, Strasbourg (France); University of Strasbourg, Translational Medicine Research Federation, Strasbourg Medical School, Strasbourg (France); Moliere, S. [University Hospital of Strasbourg, Medical Imaging Department, Strasbourg (France); Ehlinger, M. [Icube, CNRS, University of Strasbourg, Strasbourg (France); University of Strasbourg, Translational Medicine Research Federation, Strasbourg Medical School, Strasbourg (France); University Hospital of Strasbourg, Department of Orthopedic Surgery, Strasbourg (France)

    2016-05-15

    This article reviews and explains the basic physical principles of metal-induced MRI artifacts, describes simple ways to reduce them, and presents specific reduction solutions. Artifacts include signal loss, pile-up artifacts, geometric distortion, and failure of fat suppression. Their nature and origins are reviewed and explained though schematic representations that ease the understanding. Then, optimization of simple acquisition parameters is detailed. Lastly, dedicated sequences and options specifically developed to reduce metal artifacts (VAT, SEMAC, and MAVRIC) are explained. (orig.)

  11. Cortical laminar necrosis in brain infarcts: chronological changes on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Nishikawa, M. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan); Yasui, T. [Department of Neurosurgery, Osaka City General Hospital, 2-13-22, Miyakojima-Hondouri, Miyakojima, Osaka 534 (Japan)

    1997-07-10

    We studied the MRI characteristics of cortical laminar necrosis in ischaemic stroke. We reviewed 13 patients with cortical laminar high signal on T1-weighted images to analyse the chronological changes in signal intensity and contrast enhancement. High-density cortical lesions began to appear on T1-weighted images about 2 weeks after the ictus. At 1-2 months they were prominent. They began to fade from 3 months but could be seen up to 11 months. These cortical lesions showed isointensity or high intensity on T2-weighted images and did not show low intensity at any stage. Contrast enhancement of the laminar lesions was prominent at 1-2 months and became less apparent from 3 months, but could be seen up to 8 months. (orig.). With 6 figs., 1 tab.

  12. Oxidation-induced embrittlement and structural changes of Zircaloy-4 tubing in steam at 700-1000 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A E; Huessein, A G; El-Sayed, A A; El Banna, O A [Atomic Energy Authority, Cairo (Egypt); El Raghy, S M [Cairo Univ. (Egypt). Faculty of Engineering

    1997-02-01

    The oxidation-induced embrittlement and structural changes of Zircaloy-4 (KWU-Type) tubing was investigated under light water reactors (LWR) Loss-of-Coolant. Accident conditions (LOCA) in temperature range 700-1000 deg. C. The effect of hydrogen addition to steam was also investigated in the temperature range 800-1000 deg. C. The oxidation-induced embrittlement was found to be a function of both temperature and time. Fractography investigation of oxidized tubing showed a typical brittle fracture in the stabilized-alpha zone. The microhardness measurements revealed that the alpha-Zr is harder than that near the mid-wall position. The oxidation-induced embrittlement at 900 deg. C was found to be higher than at 1000 deg. C. The results also indicated that the addition of 5% by volume hydrogen to steam resulted in an increase in the degree of embrittlement. (author). 22 refs, 9 figs, 3 tabs.

  13. Interferon treatment of neuroendocrine tumour xenografts as monitored by MRI

    International Nuclear Information System (INIS)

    Elvin, A.; Oeberg, K.; Lindgren, P.G.; Lundkvist, M.; Wilander, E.; Ericsson, A.; Hemmingsson, A.

    1994-01-01

    The neuroendocrine-differentiated colonic carcinoma cell line (LCC-18) was transplanted to 29 nude mice (Balb/c). The purpose of the present study was to establish an animal model that would allow monitoring with magnetic resonance imaging (MRI) of changes induced by interferon (IFN) therapy and to evaluate whether the therapeutic response, as expressed by changes in MR signal characteristics and tumour proliferative activity, could be modulated by different IFN dosages. IFN did not seem to have any obvious antiproliferative effect on the LCC-18 tumour cell line transplanted to nude mice and no convincing treatment-related changes in rho values or T1 and T2 relaxation values were observed. The animal model was probably unsuitable for demonstration of IFN effects. (orig.)

  14. Effects of Pressure, Temperature, Treatment Time, and Storage on Rheological, Textural, and Structural Properties of Heat-Induced Chickpea Gels

    Directory of Open Access Journals (Sweden)

    María Dolores Alvarez

    2015-04-01

    Full Text Available Pressure-induced gelatinization of chickpea flour (CF was studied in combination with subsequent temperature-induced gelatinization. CF slurries (with 1:5 flour-to-water ratio and CF in powder form were treated with high hydrostatic pressure (HHP, temperature (T, and treatment time (t at three levels (200, 400, 600 MPa; 10, 25, 50 °C; 5, 15, 25 min. In order to investigate the effect of storage (S, half of the HHP-treated CF slurries were immediately analyzed for changes in oscillatory rheological properties under isothermal heating at 75 °C for 15 min followed by cooling to 25 °C. The other half of the HHP-treated CF slurries were refrigerated (at 4 °C for one week and subsequently analyzed for changes in oscillatory properties under the same heating conditions as the unrefrigerated samples. HHP-treated CF in powder form was analyzed for changes in textural properties of heat-induced CF gels under isothermal heating at 90 °C for 5 min and subsequent cooling to 25 °C. Structural changes during gelatinization were investigated using microscopy. Pressure had a more significant effect on rheological and textural properties, followed by T and treatment t (in that order. Gel aging in HHP-treated CF slurries during storage was supported by rheological measurements.

  15. Chemotherapy-induced sclerosing cholangitis

    Energy Technology Data Exchange (ETDEWEB)

    Sandrasegaran, K.; Alazmi, W.M.; Tann, M.; Fogel, E.L.; McHenry, L.; Lehman, G.A

    2006-08-15

    Aim: To review the computed tomography (CT), magnetic resonance imaging (MRI) and cholangiographic findings of chemotherapy-induced sclerosing cholangitis (CISC). Methods: Between January 1995 and December 2004, 11 patients in the endoscopic retrograde cholangiography database were identified with CISC. Twelve CT, four MRI, 69 endoscopic and nine antegrade cholangiographic studies in these patients were reviewed. Serial change in appearance and response to endoscopic treatment were recorded. Results: CISC showed segmental irregular biliary dilatation with strictures of proximal extrahepatic bile ducts. The distal 5 cm of common bile duct was not affected in any patient. CT and MRI findings included altered vascular perfusion of one or more liver segments, liver metastases or peritoneal carcinomatosis. Biliary strictures needed repeated stenting in 10 patients (mean: every 4.7 months). Cirrhosis (n = 1) or confluent fibrosis (n = 0) were uncommon findings. Conclusion: CISC shares similar cholangiographic appearances to primary sclerosing cholangitis (PSC). Unlike PSC, biliary disease primarily involved ducts at the hepatic porta rather than intrahepatic ducts. Multiphasic contrast-enhanced CT or MRI may show evidence of perfusion abnormalities, cavitary liver lesions, or metastatic disease.

  16. Cardiac re-entry dynamics and self-termination in DT-MRI based model of Human Foetal Heart

    Science.gov (United States)

    Biktasheva, Irina V.; Anderson, Richard A.; Holden, Arun V.; Pervolaraki, Eleftheria; Wen, Fen Cai

    2018-02-01

    The effect of human foetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human foetal heart obtained from 100μm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orientation angles of the heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a spatially homogeneous electrophysiological monodomain model with the DT-MRI based heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice, and in the 3D whole heart anatomy models. Excitation was described by simplified FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as fast along the fibres than across the fibers, DT-MRI based fiber anisotropy changes the re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models, the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to the re-entry self-termination. The self-termination time depends on the re-entry’s initial position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy of the myocardial tissue shortens the time to re-entry self-termination several folds. The numerical simulations depend on the validity of the DT-MRI data set used. The ventricular wall showed the characteristic transmural rotation of the helix angle of the developed mammalian heart, while the fiber orientation in the atria was irregular.

  17. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  18. Dynamical Changes Induced by the Very Large Solar Proton Events in October-November 2003

    Science.gov (United States)

    Jackman, Charles H.; Roble, Raymond G.

    2006-01-01

    The very large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth and impacted the upper atmospheric polar cap regions. The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Mode (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct-Nov 2003, the fourth largest period of SPEs measured in the past 40 years. The highly energetic solar protons caused ionization and changes in the electric field, which led to Joule heating of the mesosphere and lower thermosphere. This heating led to temperature increases up to 4K in the upper mesosphere. The solar proton-induced ionization, as well as dissociation processes, led to the production of odd hydrogen (HO(x)) and odd nitrogen (NO(y)). Substantial (>40%) short-lived ozone decreases followed these enhancements of HO(x) and NO(y) and led to a cooling of the mesosphere and upper stratosphere. This cooling led to temperature decreases up to 2.5K. The solar proton-caused temperature changes led to maximum meridional and zonal wind variations of +/- 2 m/s on background winds up to +/- 30 m/s. The solar proton-induced wind perturbations were computed to taper off over a period of several days past the SPEs. Solar cycle 23 was accompanied by ten very large SPEs between 1998 and 2005, along with numerous smaller events. These solar proton-driven atmospheric variations need to be carefully considered when examining other polar changes.

  19. Cortical phase changes measured using 7-T MRI in subjects with subjective cognitive impairment, and their association with cognitive function

    NARCIS (Netherlands)

    Rooden, van Sanneke; Buijs, Mathijs; Vliet, van Marjolein E.; Versluis, Maarten J.; Webb, Andrew G.; Oleksik, Ania M.; Wiel, van de Lotte; Middelkoop, Huub A.M.; Blauw, Gerard Jan; Weverling-Rynsburger, Annelies W.E.; Goos, Jeroen D.C.; Flier, van der Wiesje M.; Koene, Ted; Scheltens, Philip; Barkhof, Frederik; Nieuwerth-van de Rest, Ondine; Slagboom, P.E.; Buchem, van Mark A.; Grond, van der Jeroen

    2016-01-01

    Studies have suggested that, in subjects with subjective cognitive impairment (SCI), Alzheimer's disease (AD)-like changes may occur in the brain. Recently, an in vivo study has indicated the potential of ultra-high-field MRI to visualize amyloid-beta (Aβ)-associated changes in the cortex in

  20. MRI of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Kauczor, Hans-Ulrich (ed.) [University Clinic Heidelberg (Germany). Diagnostic and Interventional Radiology

    2009-07-01

    For a long time, only chest X-ray and CT were used to image lung structure, while nuclear medicine was employed to assess lung function. During the past decade significant developments have been achieved in the field of magnetic resonance imaging (MRI), enabling MRI to enter the clinical arena of chest imaging. Standard protocols can now be implemented on up-to-date scanners, allowing MRI to be used as a first-line imaging modality for various lung diseases, including cystic fibrosis, pulmonary hypertension and even lung cancer. The diagnostic benefits stem from the ability of MRI to visualize changes in lung structure while simultaneously imaging different aspects of lung function, such as perfusion, respiratory motion, ventilation and gas exchange. On this basis, novel quantitative surrogates for lung function can be obtained. This book provides a comprehensive overview of how to use MRI for imaging of lung disease. Special emphasis is placed on benign diseases requiring regular monitoring, given that it is patients with these diseases who derive the greatest benefit from the avoidance of ionizing radiation. (orig.)

  1. Sequential MR imaging (with diffusion-weighted imaging changes in metronidazole-induced encephalopathy

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2017-01-01

    Full Text Available Metronidazole-induced neuro-toxicity, though rare, is known. A characteristic spatial distribution of lesions in cerebellar dentate nuclei and dorsal pons is known. However, temporal progression of lesions on magnetic resonance imaging (MRI has not been described previously. We describe two such cases which presented initially with splenial hyperintesity and showed progression to characterstic lesions. Both cases improved with stoppage of metronidazole.

  2. MRI follow-up after concordant, histologically benign diagnosis of breast lesions sampled by MRI-guided biopsy.

    Science.gov (United States)

    Li, Jie; Dershaw, D David; Lee, Carol H; Kaplan, Jennifer; Morris, Elizabeth A

    2009-09-01

    Follow-up MRI can be useful to confirm a benign diagnosis after MRI-guided breast biopsy. This retrospective study was undertaken to evaluate appropriate timing and imaging interpretation for the initial follow-up MRI when a benign, concordant histology is obtained using MRI-guided breast biopsy. Retrospective review was performed of 177 lesions visualized only by MRI in 172 women who underwent 9-gauge, vacuum-assisted core biopsy and marker placement with imaging-concordant benign histology. All underwent follow-up MRI within 12 months. Timing of the follow-up study, change in size, results of second biopsy if performed, and distance of localizing marker to the lesion on the follow-up study were recorded. At initial follow-up, 155 lesions were decreased or gone, 14 lesions were stable, and eight were enlarged. Seventeen (9.6%, 17/177) lesions underwent a second biopsy, including six enlarging, 10 stable, and one decreasing. Of these, four were malignant. Enlargement was seen in two carcinomas at 6 and 12 months. Two carcinomas, one stable at 2 months and another stable at 3 and 11 months, were rebiopsied because of suspicion of a missed lesion in the former and worrisome mammographic and sonographic changes in the latter. The distance of the marker from the lesion on follow-up did not correlate with biopsy accuracy. Follow-up MRI did not detect missed cancers because of lesion enlargement before 6 months after biopsy; two of four missed cancers were stable. The localizing marker can deploy away from the target despite successful sampling.

  3. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    Science.gov (United States)

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  4. Changes in foetal liver T2* measurements by MRI in response to maternal oxygen breathing: application to diagnosing foetal growth restriction

    International Nuclear Information System (INIS)

    Morris, David M; Semple, Scott IK; Gilbert, Fiona J; Redpath, Thomas W; Ross, John AS; McVicar, Alexandra; Haggarty, Paul; Abramovich, David R; Smith, Norman

    2010-01-01

    The motivation of the project was to investigate the use of oxygen-challenge magnetic resonance imaging (OC-MRI) as a method of diagnosing foetal growth restriction. Foetal growth restriction is associated with restricted foetal oxygen supply and is also associated with increased risks of perinatal mortality and morbidity, and a number of serious and chronic health problems. Measurements of T2* relaxation time, an MRI parameter which increases with blood oxygenation, were made in the right lobe of the foetal liver in 80 singleton pregnancies, before and after the mother breathed oxygen. The groups consisted of 41 foetuses with normal growth and 39 with apparent growth restriction. The mean ± SD gestational age at scanning was 35 ± 3 weeks. Changes in foetal liver T2* on maternal oxygen breathing showed no significant difference between the groups therefore the OC-MRI protocol used in this study has no value in the diagnosis of foetal growth restriction. A secondary finding was that a significant positive correlation of T2* change with gestational age was observed. Future studies on the use of oxygen-challenge MRI to investigate foetal growth restriction may therefore need to control for gestational age at the time of MR scanning in order to observe any underlying foetal growth-related effects

  5. Evaluation of osseous changes of TMJ in internal derangement and osteoarthritis patients using MRI

    International Nuclear Information System (INIS)

    Cho, Su Beom; Koh, Kwang Joon

    2001-01-01

    To evaluate the osseous changes of TMJ in internal derangement and osteoarthritis patients using MRI. MR images of 111 TMJs in 64 patients were analyzed to evaluate the osseous changes. 111 TMJs were divided into 6 groups according to the radiologic Stages by Schellhas and Wilkes. On MR images, we evaluate the osseous changes of articular eminence and condylar head. The most frequent Stage in internal derangement of TMJ was Stage Ι. And 38 joints (25.2%) revealed osteoarthritis with internal derangement. When osseous change of articular eminence and condylar head occur, flattening was the most common osseous change. Sclerosis was observed in all Stages and osteophytosis of condylar head was observed in Stage ΙΙ (1.8%) and ΙΙΙ (0.9%). Out of 28 joints with osteoarthritis, 6 joints (21.4%) showed joint effusion. MR image revealed abnormal configuration of disk, but the detection of minimal osseous change was subtle

  6. PET/MRI in cancer patients

    DEFF Research Database (Denmark)

    Kjær, Andreas; Loft, Annika; Law, Ian

    2013-01-01

    Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear...... described include brain tumors, pediatric oncology as well as lung, abdominal and pelvic cancer. In general the cases show that PET/MRI performs well in all these types of cancer when compared to PET/CT. However, future large-scale clinical studies are needed to establish when to use PET/MRI. We envision...... that PET/MRI in oncology will prove to become a valuable addition to PET/CT in diagnosing, tailoring and monitoring cancer therapy in selected patient populations....

  7. MRI-Guided Intervention for Breast Lesions Using the Freehand Technique in a 3.0-T Closed-Bore MRI Scanner: Feasibility and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Young [Department of Radiology, Gyeongsang National University Hospital, Jinju 660-702 (Korea, Republic of); Kim, Sun Mi; Jang, Mijung; Yun, Bo La [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Kim, Sung-Won; Kang, Eunyoung [Department of Surgery, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Park, So Yeon [Department of Pathology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Moon, Woo Kyung [Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Ko, Eun Sook [Department of Radiology, Samsung Medical Center, Seoul 135-710 (Korea, Republic of)

    2013-07-01

    To report the feasibility of magnetic resonance imaging (MRI)-guided intervention for diagnosing suspicious breast lesions detectable by MRI only, using the freehand technique with a 3.0-T closed-bore MRI scanner. Five women with 5 consecutive MRI-only breast lesions underwent MRI-guided intervention: 3 underwent MRI-guided needle localization and 2, MRI-guided vacuum-assisted biopsy. The interventions were performed in a 3.0-T closed-bore MRI system using a dedicated phased-array breast coil with the patients in the prone position; the freehand technique was used. Technical success and histopathologic outcome were analyzed. MRI showed that four lesions were masses (mean size, 11.5 mm; range, 7-18 mm); and 1, a nonmass-like enhancement (maximum diameter, 21 mm). The locations of the lesions with respect to the breast with index cancer were as follows: different quadrant, same breast - 3 cases; same quadrant, same breast - 1 case; and contralateral breast - 1 case. Histopathologic evaluation of the lesions treated with needle localization disclosed perilobular hemangioma, fibrocystic change, and fibroadenomatous change. The lesions treated with vacuum-assisted biopsy demonstrated a radial scar and atypical apocrine hyperplasia. Follow-up MRI after 2-7 months (mean, 4.6 months) confirmed complete lesion removal in all cases. MRI-guided intervention for breast lesions using the freehand technique with a 3.0-T closed-bore MRI scanner is feasible and accurate for diagnosing MRI-only lesions.

  8. MRI-Guided Intervention for Breast Lesions Using the Freehand Technique in a 3.0-T Closed-Bore MRI Scanner: Feasibility and Initial Results

    International Nuclear Information System (INIS)

    Choi, Hye Young; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Kim, Sung-Won; Kang, Eunyoung; Park, So Yeon; Moon, Woo Kyung; Ko, Eun Sook

    2013-01-01

    To report the feasibility of magnetic resonance imaging (MRI)-guided intervention for diagnosing suspicious breast lesions detectable by MRI only, using the freehand technique with a 3.0-T closed-bore MRI scanner. Five women with 5 consecutive MRI-only breast lesions underwent MRI-guided intervention: 3 underwent MRI-guided needle localization and 2, MRI-guided vacuum-assisted biopsy. The interventions were performed in a 3.0-T closed-bore MRI system using a dedicated phased-array breast coil with the patients in the prone position; the freehand technique was used. Technical success and histopathologic outcome were analyzed. MRI showed that four lesions were masses (mean size, 11.5 mm; range, 7-18 mm); and 1, a nonmass-like enhancement (maximum diameter, 21 mm). The locations of the lesions with respect to the breast with index cancer were as follows: different quadrant, same breast - 3 cases; same quadrant, same breast - 1 case; and contralateral breast - 1 case. Histopathologic evaluation of the lesions treated with needle localization disclosed perilobular hemangioma, fibrocystic change, and fibroadenomatous change. The lesions treated with vacuum-assisted biopsy demonstrated a radial scar and atypical apocrine hyperplasia. Follow-up MRI after 2-7 months (mean, 4.6 months) confirmed complete lesion removal in all cases. MRI-guided intervention for breast lesions using the freehand technique with a 3.0-T closed-bore MRI scanner is feasible and accurate for diagnosing MRI-only lesions

  9. Neurofeedback with fMRI: A critical systematic review.

    Science.gov (United States)

    Thibault, Robert T; MacPherson, Amanda; Lifshitz, Michael; Roth, Raquel R; Raz, Amir

    2018-05-15

    Neurofeedback relying on functional magnetic resonance imaging (fMRI-nf) heralds new prospects for self-regulating brain and behavior. Here we provide the first comprehensive review of the fMRI-nf literature and the first systematic database of fMRI-nf findings. We synthesize information from 99 fMRI-nf experiments-the bulk of currently available data. The vast majority of fMRI-nf findings suggest that self-regulation of specific brain signatures seems viable; however, replication of concomitant behavioral outcomes remains sparse. To disentangle placebo influences and establish the specific effects of neurofeedback, we highlight the need for double-blind placebo-controlled studies alongside rigorous and standardized statistical analyses. Before fMRI-nf can join the clinical armamentarium, research must first confirm the sustainability, transferability, and feasibility of fMRI-nf in patients as well as in healthy individuals. Whereas modulating specific brain activity promises to mold cognition, emotion, thought, and action, reducing complex mental health issues to circumscribed brain regions may represent a tenuous goal. We can certainly change brain activity with fMRI-nf. However, it remains unclear whether such changes translate into meaningful behavioral improvements in the clinical domain. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    Science.gov (United States)

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  11. Methanol induces low temperature resilient methanogens and improves methane generation from domestic wastewater at low to moderate temperatures.

    Science.gov (United States)

    Saha, Shaswati; Badhe, Neha; De Vrieze, Jo; Biswas, Rima; Nandy, Tapas

    2015-01-01

    Low temperature (methanol is a preferred substrate by methanogens in cold habitats. The study hypothesizes that methanol can induce the growth of low-temperature resilient, methanol utilizing, hydrogenotrophs in UASB reactor. The hypothesis was tested in field conditions to evaluate the impact of seasonal temperature variations on methane yield in the presence and absence of methanol. Results show that 0.04% (v/v) methanol increased methane up to 15 times and its effect was more pronounced at lower temperatures. The qPCR analysis showed the presence of Methanobacteriales along with Methanosetaceae in large numbers. This indicates methanol induced the growth of both the hydrogenotrophic and acetoclastic groups through direct and indirect routes, respectively. This study thus demonstrated that methanol can impart resistance in methanogenic biomass to low temperature and can improve performance of UASB reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques

    Energy Technology Data Exchange (ETDEWEB)

    Tang, T.Y.; Sadat, U. [Cambridge University Hospitals NHS Foundation Trust, University Department of Radiology, Cambridge (United Kingdom); Cambridge University Hospitals NHS Foundation Trust, Cambridge Vascular Unit, Cambridge (United Kingdom); Patterson, A.J.; Graves, M.J.; Howarth, S.P.S.; U-King-Im, J.M.; Li, Z.Y.; Young, V.E.; Gillard, J.H. [Cambridge University Hospitals NHS Foundation Trust, University Department of Radiology, Cambridge (United Kingdom); Miller, S.R. [GlaxoSmithKline, Biostatistics and Data Sciences, Harlow (United Kingdom); Walsh, S.R.; Boyle, J.R.; Gaunt, M.E. [Cambridge University Hospitals NHS Foundation Trust, Cambridge Vascular Unit, Cambridge (United Kingdom)

    2009-07-15

    Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced MRI has been shown to be a useful modality to image activated macrophages in vivo, which are principally responsible for plaque inflammation. This study determined the optimum imaging time-window to detect maximal signal change post-USPIO infusion using T{sub 1}-weighted (T{sub 1}w), T{sub 2}*-weighted (T{sub 2}*w) and quantitative T{sub 2}* (qT{sub 2}*) imaging. Six patients with an asymptomatic carotid stenosis underwent high resolution T{sub 1}w, T{sub 2}*w and qT{sub 2}* MR imaging of their carotid arteries at 1.5 T. Imaging was performed before and at 24, 36, 48, 72 and 96 h after USPIO (Sinerem trademark, Guerbet, France) infusion. Each slice showing atherosclerotic plaque was manually segmented into quadrants and signal changes in each quadrant were fitted to an exponential power function to model the optimum time for post-infusion imaging. The power function determining the mean time to convergence for all patients was 46, 41 and 39 h for the T{sub 1}w, T{sub 2}*w and qT{sub 2}* sequences, respectively. When modelling each patient individually, 90% of the maximum signal intensity change was observed at 36 h for three, four and six patients on T{sub 1}w, T{sub 2}*w and qT{sub 2}*, respectively. The rates of signal change decrease after this period but signal change was still evident up to 96 h. This study showed that a suitable imaging window for T{sub 1}w, T{sub 2}*w and qT{sub 2}* signal changes post-USPIO infusion was between 36 and 48 h. Logistically, this would be convenient in bringing patients back for one post-contrast MRI, but validation is required in a larger cohort of patients. (orig.)

  13. Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques

    International Nuclear Information System (INIS)

    Tang, T.Y.; Sadat, U.; Patterson, A.J.; Graves, M.J.; Howarth, S.P.S.; U-King-Im, J.M.; Li, Z.Y.; Young, V.E.; Gillard, J.H.; Miller, S.R.; Walsh, S.R.; Boyle, J.R.; Gaunt, M.E.

    2009-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced MRI has been shown to be a useful modality to image activated macrophages in vivo, which are principally responsible for plaque inflammation. This study determined the optimum imaging time-window to detect maximal signal change post-USPIO infusion using T 1 -weighted (T 1 w), T 2 *-weighted (T 2 *w) and quantitative T 2 * (qT 2 *) imaging. Six patients with an asymptomatic carotid stenosis underwent high resolution T 1 w, T 2 *w and qT 2 * MR imaging of their carotid arteries at 1.5 T. Imaging was performed before and at 24, 36, 48, 72 and 96 h after USPIO (Sinerem trademark, Guerbet, France) infusion. Each slice showing atherosclerotic plaque was manually segmented into quadrants and signal changes in each quadrant were fitted to an exponential power function to model the optimum time for post-infusion imaging. The power function determining the mean time to convergence for all patients was 46, 41 and 39 h for the T 1 w, T 2 *w and qT 2 * sequences, respectively. When modelling each patient individually, 90% of the maximum signal intensity change was observed at 36 h for three, four and six patients on T 1 w, T 2 *w and qT 2 *, respectively. The rates of signal change decrease after this period but signal change was still evident up to 96 h. This study showed that a suitable imaging window for T 1 w, T 2 *w and qT 2 * signal changes post-USPIO infusion was between 36 and 48 h. Logistically, this would be convenient in bringing patients back for one post-contrast MRI, but validation is required in a larger cohort of patients. (orig.)

  14. MRI of Heterogeneous Hydrogenation Reactions Using Parahydrogen Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Burt, Scott Russell [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The power of magnetic resonance imaging (MRI) is its ability to image the internal structure of optically opaque samples and provide detailed maps of a variety of important parameters, such as density, diffusion, velocity and temperature. However, one of the fundamental limitations of this technique is its inherent low sensitivity. For example, the low signal to noise ratio (SNR) is particularly problematic for imaging gases in porous materials due to the low density of the gas and the large volume occluded by the porous material. This is unfortunate, as many industrially relevant chemical reactions take place at gas-surface interfaces in porous media, such as packed catalyst beds. Because of this severe SNR problem, many techniques have been developed to directly increase the signal strength. These techniques work by manipulating the nuclear spin populations to produce polarized} (i.e., non-equilibrium) states with resulting signal strengths that are orders of magnitude larger than those available at thermal equilibrium. This dissertation is concerned with an extension of a polarization technique based on the properties of parahydrogen. Specifically, I report on the novel use of heterogeneous catalysis to produce parahydrogen induced polarization and applications of this new technique to gas phase MRI and the characterization of micro-reactors. First, I provide an overview of nuclear magnetic resonance (NMR) and how parahydrogen is used to improve the SNR of the NMR signal. I then present experimental results demonstrating that it is possible to use heterogeneous catalysis to produce parahydrogen-induced polarization. These results are extended to imaging void spaces using a parahydrogen polarized gas. In the second half of this dissertation, I demonstrate the use of parahydrogen-polarized gas-phase MRI for characterizing catalytic microreactors. Specifically, I show how the improved SNR allows one to map parameters important for characterizing the heat and mass

  15. Wilson's disease: cranial MRI observations and clinical correlation

    International Nuclear Information System (INIS)

    Sinha, S.; Taly, A.B.; Prashanth, L.K.; Venugopal, K.S.; Arunodaya, G.R.; Swamy, H.S.; Ravishankar, S.; Vasudev, M.K.

    2006-01-01

    Study of MRI changes may be useful in diagnosis, prognosis and better understanding of the pathophysiology of Wilson's disease (WD). We aimed to describe and correlate the MRI abnormalities of the brain with clinical features in WD. MRI evaluation was carried out in 100 patients (57 males, 43 females; mean age 19.3±8.9 years) using standard protocols. All but 18 patients were on de-coppering agents. Their history, clinical manifestations and scores for severity of disease were noted. The mean duration of illness and treatment were 8.3±10.8 years and 7.5±7.1 years respectively. MRI of the brain was abnormal in all the 93 symptomatic patients. The most conspicuous observations were atrophy of the cerebrum (70%), brainstem (66%) and cerebellum (52%). Signal abnormalities were also noted: putamen (72%), caudate (61%), thalami (58%), midbrain (49%), pons (20%), cerebral white matter (25%), cortex (9%), medulla (12%) and cerebellum (10%). The characteristic T2-W globus pallidal hypointensity (34%), ''Face of giant panda'' sign (12%), T1-W striatal hyperintensity (6%), central pontine myelinosis (7%), and bright claustral sign (4%) were also detected. MRI changes correlated with disease severity scores (P<0.001) but did not correlate with the duration of illness. MRI changes were universal but diverse and involved almost all the structures of the brain in symptomatic patients. A fair correlation between MRI observations and various clinical features provides an explanation for the protean manifestations of the disease. (orig.)

  16. Radiation induced early delayed changes in mice brain: a 1h MRS and behavioral evaluation study

    International Nuclear Information System (INIS)

    Gupta, Mamta; Rana, Poonam; Haridas, Seenu; Manda, Kailash; Hemanth Kumar, B.S.; Khushu, Subash

    2014-01-01

    Radiation induced CNS injury can be classified as acute, early delayed and late delayed. Most of the studies suggest that acute injury is reversible whereas early delayed and late delayed injury is irreversible leading to metabolic and cognitive impairment. Extensive research has been carried out on cranial radiation induced early and late delayed changes, there are no reports on whole body radiation induced early and delayed changes. The present study was designed to observe early delayed effects of radiation during whole body radiation exposure. A total of 20 C57 male mice were divided in two groups of 10 animals each. One group was exposed to a dose of 5 Gy whole body radiation through Tele 60 Co irradiation facility with source operating at 2.496 Gy/min, while other group served as sham irradiated control. Behavioral and MR spectroscopy was carried out 3 months post irradiation. Behavioral parameters such as locomotor activity and working memory were evaluated first then followed by MR spectroscopy at 7T animal MRI system. For MRS, voxel was localised in the cortex-hippocampus region of mouse brain. MR spectra were acquired using PRESS sequence, FID was processed using LC model for quantitation. The data showed impaired cognitive functions and altered metabolite levels during early delayed phase of whole body radiation induced injury. In behavioural experiments, there was a significant impairment in the cognitive as well as exploratory functions at 3 months post irradiation in irradiated group as compared to controls. MRS results explained changes in mI, glutamine and glx levels in irradiated animals compared to controls. Altered mI level has been found to be associated with reduced cognitive abilities in many brain disorders including MCI and Alzheimer's disease. The findings of this study suggest that whole body radiation exposure may have long lasting effect on the cognitive performance. (author)

  17. Temperature rise induced by some light emitting diode and quartz-tungsten-halogen curing units.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2005-02-01

    Because of the risk of thermal damage to the pulp, the temperature rise induced by light-curing units should not be too high. LED (light emitting diode) curing units have the main part of their irradiation in the blue range and have been reported to generate less heat than QTH (quartz-tungsten-halogen) curing units. This study had two aims: first, to measure the temperature rise induced by ten LED and three QTH curing units; and, second, to relate the measured temperature rise to the power density of the curing units. The light-induced temperature rise was measured by means of a thermocouple embedded in a small cylinder of resin composite. The power density was measured by using a dental radiometer. For LED units, the temperature rise increased with increasing power density, in a statistically significant manner. Two of the three QTH curing units investigated resulted in a higher temperature rise than LED curing units of the same power density. Previous findings, that LED curing units induce less temperature rise than QTH units, does not hold true in general.

  18. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  19. Human-experienced temperature changes exceed global average climate changes for all income groups

    Science.gov (United States)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The

  20. Long-term follow-up of MRI changes in thigh muscles of patients with Facioscapulohumeral dystrophy: A quantitative study.

    Science.gov (United States)

    Fatehi, Farzad; Salort-Campana, Emmanuelle; Le Troter, Arnaud; Lareau-Trudel, Emilie; Bydder, Mark; Fouré, Alexandre; Guye, Maxime; Bendahan, David; Attarian, Shahram

    2017-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common hereditary muscular disorders. Currently FSHD has no known effective treatment and detailed data on the natural history are lacking. Determination of the efficacy of a given therapeutic approach might be difficult in FSHD given the slow and highly variable disease progression. Magnetic resonance imaging (MRI) has been widely used to qualitatively and quantitatively evaluate in vivo the muscle alterations in various neuromuscular disorders. The main aim of the present study was to investigate longitudinally the time-dependent changes occurring in thigh muscles of FSHD patients using quantitative MRI and to assess the potential relationships with the clinical findings. Thirty-five FSHD1 patients (17 females) were enrolled. Clinical assessment tools including manual muscle testing using medical research council score (MRC), and motor function measure (MFM) were recorded each year for a period ranging from 1 to 2 years. For the MRI measurements, we used a new quantitative index, i.e., the mean pixel intensity (MPI) calculated from the pixel-intensity distribution in T1 weighted images. The corresponding MPI scores were calculated for each thigh, for each compartment and for both thighs totally (MPItotal). The total mean pixel intensity (MPItotal) refers to the sum of each pixel signal intensity divided by the corresponding number of pixels. An increased MPItotal indicates both a raised fat infiltration together with a reduced muscle volume thereby illustrating disease progression. Clinical scores did not change significantly over time whereas MPItotal increased significantly from an initial averaged value of 39.6 to 41.1 with a corresponding rate of 0.62/year. While clinical scores and MPItotal measured at the start of the study were significantly related, no correlation was found between the rate of MPItotal and MRC sum score changes, MFMtotal and MFM subscores. The relative rate of MPItotal

  1. Long-term follow-up of MRI changes in thigh muscles of patients with Facioscapulohumeral dystrophy: A quantitative study.

    Directory of Open Access Journals (Sweden)

    Farzad Fatehi

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is one of the most common hereditary muscular disorders. Currently FSHD has no known effective treatment and detailed data on the natural history are lacking. Determination of the efficacy of a given therapeutic approach might be difficult in FSHD given the slow and highly variable disease progression. Magnetic resonance imaging (MRI has been widely used to qualitatively and quantitatively evaluate in vivo the muscle alterations in various neuromuscular disorders. The main aim of the present study was to investigate longitudinally the time-dependent changes occurring in thigh muscles of FSHD patients using quantitative MRI and to assess the potential relationships with the clinical findings. Thirty-five FSHD1 patients (17 females were enrolled. Clinical assessment tools including manual muscle testing using medical research council score (MRC, and motor function measure (MFM were recorded each year for a period ranging from 1 to 2 years. For the MRI measurements, we used a new quantitative index, i.e., the mean pixel intensity (MPI calculated from the pixel-intensity distribution in T1 weighted images. The corresponding MPI scores were calculated for each thigh, for each compartment and for both thighs totally (MPItotal. The total mean pixel intensity (MPItotal refers to the sum of each pixel signal intensity divided by the corresponding number of pixels. An increased MPItotal indicates both a raised fat infiltration together with a reduced muscle volume thereby illustrating disease progression. Clinical scores did not change significantly over time whereas MPItotal increased significantly from an initial averaged value of 39.6 to 41.1 with a corresponding rate of 0.62/year. While clinical scores and MPItotal measured at the start of the study were significantly related, no correlation was found between the rate of MPItotal and MRC sum score changes, MFMtotal and MFM subscores. The relative rate of

  2. Pathological findings correlated with MRI in HIV infection

    International Nuclear Information System (INIS)

    Hawkins, C.P.; McLaughlin, J.E.; Kendall, B.E.; McDonald W.I.

    1993-01-01

    MRI forms an important part of the assessment of patients with HIV-related disease presenting with cerebral symptoms. Eleven formalin-fixed brains were studied at 0.5 T using T2- and T1-weighted sequences. In two cases of progressive multifocal leucoencephalopathy and one case each of toxoplasmosis and lymphoma, the extent of white matter abnormality seen on MRI corresponded broadly with that on pathological examination. In general, however, histological changes were more frequent than lesions on MRI. Cases in wich abnormalities were not seen with standard MRI included those with multiple tuberculous granulomata, multinucleate giant cells, microglial nodules, perivascular cuffing and cytomegalovirus inclusions. A common finding on MRI was punctate or patchy high signal in the basal ganglia on T2-weighted scans, seen in six cases. Corresponding histological changes included calcification of vessels with widened perivascular spaces, and mineralised neurones. (orig.)

  3. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    Science.gov (United States)

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  4. Human-induced geomorphic change across environmental gradients

    Science.gov (United States)

    Vanacker, V.; Molina, A.; Bellin, N.; Christl, M.

    2016-12-01

    Human-induced land cover changes are causing important adverse effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical soil erosion, with direct implications on nutrient cycling, soil fertility and agricultural production. In this study, we present a conceptual model for assessing human-induced erosion for a wide variety of environmental settings and pose that human-induced geomorphic change cannot be assessed solely based on modern erosion rates as natural or baseline erosion rates can be important in e.g. mountainous terrain. As such, we assess the vulnerability of a given ecosystem to human-induced land cover change by quantifying the change in catchment-wide erosion rates resulting from anthropogenic changes in vegetation cover. Human-induced erosion is here approximated by the ratio of the total specific sediment yield to the natural erosional mass flux, and is dimensionless. The conceptual model is applied to three contrasting environmental settings where data on soil production, physical soil erosion and long-term denudation are available: the tropical Andes, subtropical southern Brazil, and semi-arid Spanish Cordillera. The magnitude of human-induced geomorphic change strongly differs between the three regions. The data suggest that the sensitivity to human-induced erosion is ecosystem dependent, and related to soil erosivity and potential vegetation cover disturbances as a result of human impact. It may therefore be expected that the potential for erosion regulation is larger in well-vegetated ecosystem where strong differences may exist in vegetation cover between

  5. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification.

    Science.gov (United States)

    Yuan, Yu; Wyatt, Cory; Maccarini, Paolo; Stauffer, Paul; Craciunescu, Oana; Macfall, James; Dewhirst, Mark; Das, Shiva K

    2012-04-07

    This paper describes a heterogeneous phantom that mimics a human thigh with a deep-seated tumor, for the purpose of studying the performance of radiofrequency (RF) heating equipment and non-invasive temperature monitoring with magnetic resonance imaging (MRI). The heterogeneous cylindrical phantom was constructed with an outer fat layer surrounding an inner core of phantom material mimicking muscle, tumor and marrow-filled bone. The component materials were formulated to have dielectric and thermal properties similar to human tissues. The dielectric properties of the tissue mimicking phantom materials were measured with a microwave vector network analyzer and impedance probe over the frequency range of 80-500 MHz and at temperatures of 24, 37 and 45 °C. The specific heat values of the component materials were measured using a differential scanning calorimeter over the temperature range of 15-55 °C. The thermal conductivity value was obtained from fitting the curves obtained from one-dimensional heat transfer measurement. The phantom was used to verify the operation of a cylindrical four-antenna annular phased array extremity applicator (140 MHz) by examining the proton resonance frequency shift (PRFS) thermal imaging patterns for various magnitude/phase settings (including settings to focus heating in tumors). For muscle and tumor materials, MRI was also used to measure T1/T2* values (1.5 T) and to obtain the slope of the PRFS phase change versus temperature change curve. The dielectric and thermal properties of the phantom materials were in close agreement to well-accepted published results for human tissues. The phantom was able to successfully demonstrate satisfactory operation of the tested heating equipment. The MRI-measured thermal distributions matched the expected patterns for various magnitude/phase settings of the applicator, allowing the phantom to be used as a quality assurance tool. Importantly, the material formulations for the various tissue types

  6. Quantitative MRI shows cerebral microstructural damage in hemolytic-uremic syndrome patients with severe neurological symptoms but no changes in conventional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Weissenborn, Karin; Worthmann, Hans; Heeren, Meike [Hannover Medical School, Clinic for Neurology, Hannover (Germany); Bueltmann, Eva; Donnerstag, Frank; Giesemann, Anja M.; Goetz, Friedrich; Lanfermann, Heinrich; Ding, Xiao-Qi [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany); Kielstein, Jan; Schwarz, Anke [Hannover Medical School, Clinic for Nephrology and Hypertension, Hannover (Germany)

    2013-07-15

    Severe neurological symptoms in Shiga toxin-producing Escherichia coli infection associated hemolytic-uremic syndrome (STEC-HUS) are often accompanied by none or only mild alterations of cerebral magnetic resonance imaging (MRI). This study aims to analyze if quantitative MRI is able to reveal cerebral pathological alterations invisible for conventional MRI. In nine patients with STEC-HUS associated severe neurological symptoms but inconspicuous cerebral MRI findings maps of the parameters T2 relaxation time, relative proton density (PD), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were generated. Quantitative values of these parameters were measured at the basal ganglia, thalamus, and white matter of the frontal and parietal lobe and compared to those of nine age- and sex-matched controls. Significant T2 prolongation (p < 0.01) was found in the basal ganglia of all patients compared to controls. PD and ADC were not significantly altered. A significant reduction of FA in patients was seen at caput nuclei caudati (p < 0.01). Prolonged T2 relaxation time indicates cerebral microstructural damages in these patients despite their inconspicuous MRI findings. T2 relaxometry could be used as a complementary tool for the assessment of metabolic-toxic brain syndromes. (orig.)

  7. Follow up of Crohn's disease under therapy with hydro-MRI

    International Nuclear Information System (INIS)

    Ganten, M.; Flosdorff, P.; Grueber-Hoffmann, B.; Erb, G.; Hansmann, J.; Encke, J.

    2003-01-01

    Evaluation of typical MRI-findings in patients with Crohn's disease receiving therapy.Correlation with the course of disease.Patients and methods 81 follow-up MRI-studies in 25 patients conducted within a period of 3 weeks to 4 years were evaluated retrospectively.Therapy consisted in various combinations of antibiotics and immunosuppressive agents and if necessary operation. The findings of the MRI-studies were correlated with clinical data (e.g.operation of Crohn's complications) and the subjective perception during therapy. The morphological substrate of Crohn's disease in the Hydro-MRI images is reliably detected. Especially in a delineation of extraluminal changes MRI is superior to endoscopy and enteroclysis.Independent from clinical symptoms short- and middleterm follow-up showed inflammatory changes of the intestinal wall in all 25 patients. In 24/81 studies there was persistence or even progression of Crohn's disease in the MRI-studies, although patients were free of symptoms by the time of image acquisition. Hydro-MRI is a modality for the evaluation of inflammatory changes in patients with Crohn's disease.Independent from clinical symptoms persistence of Crohn's disease is detectable. (orig.) [de

  8. Statistical Analysis Methods for the fMRI Data

    Directory of Open Access Journals (Sweden)

    Huseyin Boyaci

    2011-08-01

    Full Text Available Functional magnetic resonance imaging (fMRI is a safe and non-invasive way to assess brain functions by using signal changes associated with brain activity. The technique has become a ubiquitous tool in basic, clinical and cognitive neuroscience. This method can measure little metabolism changes that occur in active part of the brain. We process the fMRI data to be able to find the parts of brain that are involve in a mechanism, or to determine the changes that occur in brain activities due to a brain lesion. In this study we will have an overview over the methods that are used for the analysis of fMRI data.

  9. MRI findings of experimentally induced hepatic infarction: Correlation between changes of MRI findings of liver parenchyma and capsule with time lapse and histopathology

    International Nuclear Information System (INIS)

    Kim, Chang Guhn; Kim, Gang Deuk; Min, Kyung Yoon; Choi, See Sung; Juhng, Seon Kwan; Noh, Byung Suk; Won, Jong Jin

    1994-01-01

    We experimentally induced hepatic infarction in rabbit to evaluate MR findings of liver parenchyma and capsule and its changes with time and to confirm the capsular structure correlating with its histologic findings. After ligation of hepatic artery, vein and duct of right inferior posterior lobe of liver, T1, T2 weighted and enhanced T1 weighted images were obtained at several time intervals. Histologic samples were taken of two rabbits or more at each time intervals. During the first several days, the signal intensity of the ischemic necrosis showed strong high signal intensity relative to normal liver on both T1 and T2 weighted images. After 2 weeks , however, the necrotic areas gradually changed to isointensity or low signal intensity. Capsule structure was observed as slightly high signal intensity compare to ischemic areas on both enhanced T1 and T2 weighted images in six cases, and five cases of 12, retrospectively. From the first day, homogeneous coagulation necrosis without hemorrhage or liquefaction was observed. Fibrous thickening with rich vascularity was observed along the surface of the necrosis area after two weeks. During the first several days, the signal intensity of the ischemic necrosis showed strong high signal intensity on both T1 and T2 weighted images and gradually changed to isointensity or low signal intensity. Liver capsule was shown and slightly high signal intensity along the surface of the necrosis area and could be explained by fibrous thickening of the liver capsule and rich vascularity within in it

  10. Phase-contrast MRI versus numerical simulation to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment

    Science.gov (United States)

    Frolov, Sergey; Prothmann, Sascha; Liepsch, Dieter; Balasso, Andrea; Berg, Philipp; Kaczmarz, Stephan; Kirschke, Jan Stefan

    2018-01-01

    Cerebral aneurysms are a major risk factor for intracranial bleeding with devastating consequences for the patient. One recently established treatment is the implantation of flow-diverters (FD). Methods to predict their treatment success before or directly after implantation are not well investigated yet. The aim of this work was to quantitatively study hemodynamic parameters in patient-specific models of treated cerebral aneurysms and its correlation with the clinical outcome. Hemodynamics were evaluated using both computational fluid dynamics (CFD) and phase contrast (PC) MRI. CFD simulations and in vitro MRI measurements were done under similar flow conditions and results of both methods were comparatively analyzed. For preoperative and postoperative distribution of hemodynamic parameters, CFD simulations and PC-MRI velocity measurements showed similar results. In both cases where no occlusion of the aneurysm was observed after six months, a flow reduction of about 30-50% was found, while in the clinically successful case with complete occlusion of the aneurysm after 6 months, the flow reduction was about 80%. No vortex was observed in any of the three models after treatment. The results are in agreement with recent studies suggesting that CFD simulations can predict post-treatment aneurysm flow alteration already before implantation of a FD and PC-MRI could validate the predicted hemodynamic changes right after implantation of a FD. PMID:29304062

  11. MRI of pituitary adenomas following treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gouliamos, A. [Dept. of Radiology, CT and MRI Section, Areteion Hospital, Univ. of Athens (Greece); Athanassopoulou, A. [Dept. of Radiology, CT and MRI Section, Areteion Hospital, Univ. of Athens (Greece); Rologis, D. [Neurosurgical Clinic, Athens General Hospital (Greece); Kalovidouris, A. [Dept. of Radiology, CT and MRI Section, Areteion Hospital, Univ. of Athens (Greece); Kotoulas, G. [Dept. of Radiology, CT and MRI Section, Areteion Hospital, Univ. of Athens (Greece); Vlahos, L. [Dept. of Radiology, CT and MRI Section, Areteion Hospital, Univ. of Athens (Greece); Papavassiliou, C. [Dept. of Radiology, CT and MRI Section, Areteion Hospital, Univ. of Athens (Greece)

    1993-10-01

    The purpose of this study was to assess pituitary adenomas following surgical and/or medical treatment in 28 patients. All patients were evaluated with both computed tomography (CT) and magnetic resonance imaging (MRI). The results were correlated with the clinical findings. Apart from the visualization of the adenoma itself (either residual or recurrent) other findings and in particular, morphological changes of the optic chiasm, the pituitary stalk and the sellar floor were evaluated with both imaging modalities. By comparing the two imaging modalities it was found that MRI was superior to CT in demonstrating residual/recurrent adenoma as well as evaluating the morphological changes of the optic chiasm and optic nerves. CT was superior or equal to MR in demonstrating the sellar floor changes. The intra-operatively implanted fat was equally seen by CT and MR. In conclusion, the anatomical variations of the optic chiasm and pituitary stalk are better visualized by MRI and allow a more precise evaluation of changes attributed to surgical or medical treatment of pituitary adenomas. (orig.)

  12. MRI of pituitary adenomas following treatment

    International Nuclear Information System (INIS)

    Gouliamos, A.; Athanassopoulou, A.; Rologis, D.; Kalovidouris, A.; Kotoulas, G.; Vlahos, L.; Papavassiliou, C.

    1993-01-01

    The purpose of this study was to assess pituitary adenomas following surgical and/or medical treatment in 28 patients. All patients were evaluated with both computed tomography (CT) and magnetic resonance imaging (MRI). The results were correlated with the clinical findings. Apart from the visualization of the adenoma itself (either residual or recurrent) other findings and in particular, morphological changes of the optic chiasm, the pituitary stalk and the sellar floor were evaluated with both imaging modalities. By comparing the two imaging modalities it was found that MRI was superior to CT in demonstrating residual/recurrent adenoma as well as evaluating the morphological changes of the optic chiasm and optic nerves. CT was superior or equal to MR in demonstrating the sellar floor changes. The intra-operatively implanted fat was equally seen by CT and MR. In conclusion, the anatomical variations of the optic chiasm and pituitary stalk are better visualized by MRI and allow a more precise evaluation of changes attributed to surgical or medical treatment of pituitary adenomas. (orig.)

  13. Changes in thalamus connectivity in mild cognitive impairment: Evidence from resting state fMRI

    International Nuclear Information System (INIS)

    Wang Zhiqun; Jia Xiuqin; Liang Peipeng; Qi Zhigang; Yang Yanhui; Zhou Weidong; Li Kuncheng

    2012-01-01

    Purpose: The subcortical region such as thalamus was believed to have close relationship with many cerebral cortexes which made it especially interesting in the study of functional connectivity. Here, we used resting state functional MRI (fMRI) to examine changes in thalamus connectivity in mild cognitive impairment (MCI), which presented a neuro-disconnection syndrome. Materials and methods: Data from 14 patients and 14 healthy age-matched controls were analyzed. Thalamus connectivity was investigated by examination of the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Results: We found that functional connectivity between the left thalamus and a set of regions was decreased in MCI; these regions are: bilateral cuneus, middle occipital gyrus (MOG), superior frontal gyrus (SFG), medial prefrontal cortex (MPFC), precuneus, inferior frontal gyrus (IFG) and precentral gyrus (PreCG). There are also some regions showed reduced connectivity to right thalamus; these regions are bilateral cuneus, MOG, fusiform gyrus (FG), MPFC, paracentral lobe (PCL), precuneus, superior parietal lobe (SPL) and IFG. We also found increased functional connectivity between the left thalamus and the right thalamus in MCI. Conclusion: The decreased connectivity between the thalamus and the other brain regions might indicate reduced integrity of thalamus-related cortical networks in MCI. Furthermore, the increased connectivity between the left and right thalamus suggest compensation for the loss of cognitive function. Briefly, impairment and compensation of thalamus connectivity coexist in the MCI patients.

  14. MRI with cardiac pacing devices – Safety in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Touko, E-mail: touko.kaasalainen@hus.fi [HUS Medical Imaging Center, Helsinki University Central Hospital, POB 340 (Haartmaninkatu 4), 00290 Helsinki (Finland); Department of Physics, University of Helsinki (Finland); Pakarinen, Sami, E-mail: sami.pakarinen@hus.fi [HUS Department of Cardiology, Helsinki University Central Hospital, POB 340 (Haartmaninkatu 4), 00290 Helsinki (Finland); Kivistö, Sari, E-mail: sari.kivisto@hus.fi [HUS Medical Imaging Center, Helsinki University Central Hospital, POB 340 (Haartmaninkatu 4), 00290 Helsinki (Finland); Holmström, Miia, E-mail: miia.holmstrom@hus.fi [HUS Medical Imaging Center, Helsinki University Central Hospital, POB 340 (Haartmaninkatu 4), 00290 Helsinki (Finland); Hänninen, Helena, E-mail: helena.hanninen@hus.fi [HUS Department of Cardiology, Helsinki University Central Hospital, POB 340 (Haartmaninkatu 4), 00290 Helsinki (Finland); Peltonen, Juha, E-mail: juha.peltonen@hus.fi [HUS Medical Imaging Center, Helsinki University Central Hospital, POB 340 (Haartmaninkatu 4), 00290 Helsinki (Finland); Department of Biomedical Engineering and Computational Science, School of Science, Aalto University, Helsinki (Finland); Lauerma, Kirsi, E-mail: kirsi.lauerma@hus.fi [HUS Medical Imaging Center, Helsinki University Central Hospital, POB 340 (Haartmaninkatu 4), 00290 Helsinki (Finland); Sipilä, Outi, E-mail: outi.sipila@hus.fi [HUS Medical Imaging Center, Helsinki University Central Hospital, POB 340 (Haartmaninkatu 4), 00290 Helsinki (Finland)

    2014-08-15

    Objectives: The aim of this study was to introduce a single centre “real life” experience of performing MRI examinations in clinical practice on patients with cardiac pacemaker systems. Additionally, we aimed to evaluate the safety of using a dedicated safety protocol for these patients. Materials and methods: We used a 1.5 T MRI scanner to conduct 68 MRI scans of different body regions in patients with pacing systems. Of the cardiac devices, 32% were MR-conditional, whereas the remaining 68% were MR-unsafe. We recorded the functional parameters of the devices prior, immediately after, and approximately one month after the MRI scanning, and compared the device parameters to the baseline values. Results: All MRI examinations were completed safely, and each device could be interrogated normally following the MRI. We observed no changes in the programmed parameters of the devices. For most of the participants, the distributions of the immediate and one-month changes in the device parameters were within 20% of the baseline values, although some changes approached clinically important thresholds. Furthermore, we observed no differences in the variable changes between MR-conditional and MR-unsafe pacing systems, or between scans of the thorax area and other scanned areas. Conclusion: MRI in patients with MR-conditional pacing systems and selected MR-unsafe systems could be performed safely under strict conditions in this study.

  15. A description of phases with induced hybridisation at finite temperatures

    Science.gov (United States)

    Golosov, D. I.

    2018-05-01

    In an extended Falicov-Kimball model, an excitonic insulator phase can be stabilised at zero temperature. With increasing temperature, the excitonic order parameter (interaction-induced hybridisation on-site, characterised by the absolute value and phase) eventually becomes disordered, which involves fluctuations of both its phase and (at higher T) its absolute value. In order to build an adequate mean field description, it is important to clarify the nature of degrees of freedom associated with the phase and absolute value of the induced hybridisation, and the corresponding phase space volume. We show that a possible description is provided by the SU(4) parametrisation on-site. In principle, this allows to describe both the lower-temperature regime where phase fluctuations destroy the long-range order, and the higher temperature crossover corresponding to a decrease of absolute value of the hybridisation relative to the fluctuations level. This picture is also expected to be relevant in other contexts, including the Kondo lattice model.

  16. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M. M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B. J. J. M.; Seneviratne, S. I.

    2017-02-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate the role of soil moisture-temperature feedbacks for this response based on multimodel experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of the hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America. Soil moisture trends are more important for this response than short-term soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections.

  17. Microstructure, optical characterization and light induced degradation in a-Si:H deposited at different temperatures

    International Nuclear Information System (INIS)

    Minani, E.; Sigcau, Z.; Adgebite, O.; Ramukosi, F.L.; Ntsoane, T.P.; Harindintwari, S.; Knoesen, D.; Comrie, C.M.; Britton, D.T.; Haerting, M.

    2006-01-01

    The microstructure and optical properties of a series of hydrogenated amorphous silicon layers deposited on glass substrates at different temperature have been characterized by means of X-ray diffraction techniques and optical spectroscopy. The radial distribution function of the as-deposited samples showed an increase in the bond angle and a decrease in the radial distance indicating a relaxation of the amorphous network with increasing the deposition temperature. Light induced degradation was studied using a simulated daylight spectrum. The changes in hydrogen bonding configuration, associated with the light soaking at different stages of illumination, was monitored via the transmission bands of the vibrational wag and stretch modes of the IR spectrum

  18. MRI evaluation of acute articular cartilage injury of knee

    International Nuclear Information System (INIS)

    Zhang Jun; Wu Zhenhua; Fan Guoguang; Pan Shinong; Guo Qiyong

    2003-01-01

    Objective: To study the MRI manifestation of acute articular cartilage injury of knee for evaluating the extension and degree of the injury and guiding treatment. Methods: MRI of 34 patients with acute articular cartilage injury of knee within one day to fifteen days confirmed by arthroscopy and arthrotomy was reviewed and analyzed, with emphasis on articular cartilage and subchondral lesion. And every manifestation on MRI and that of arthroscopy and operation was compared. Results: The articular cartilage injury was diagnosed on MRI in 29 of 34 cases. Cartilage signal changes were found only in 4. The changes of cartilage shape were variable. Thinning of focal cartilage was showed in 3, osteochondral impaction in 3, creases of cartilage in 3, disrupted cartilage with fissuring in 13, cracks cartilage in 2, and cracks cartilage with displaced fragment in 1. Bone bruise and occult fracture were found only on MRI. Conclusion: The assessment of MRI and arthroscopy in acute articular cartilage injury are consistent. Combined with arthroscopy, MRI can succeed in assessing the extension and degree of acute articular injury and allowing treatment planning

  19. Temperature rise and stress induced by microcracks in accelerating structures

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2010-12-01

    Full Text Available The temperature rise and induced stress due to Ohmic heating in the vicinity of microcracks on the walls of high-gradient accelerating structures are considered. The temperature rise and induced stress depend on the orientation of the crack with respect to the rf magnetic field, the shape of the crack, and the power and duration of the rf pulse. Under certain conditions the presence of cracks can double the temperature rise over that of a smooth surface. Stress at the bottom of the cracks can be several times larger than that of the case when there are no cracks. We study these effects both analytically and by computer simulation. It is shown that the stress in cracks is maximal when the crack depth is on the order of the thermal penetration depth.

  20. Functional MRI experiments : acquisition, analysis and interpretation of data

    NARCIS (Netherlands)

    Ramsey, NF; Hoogduin, H; Jansma, JM

    2002-01-01

    Functional MRI is widely used to address basic and clinical neuroscience questions. In the key domains of fMRI experiments, i.e. acquisition, processing and analysis, and interpretation of data, developments are ongoing. The main issues are sensitivity for changes in fMRI signal that are associated