WorldWideScience

Sample records for mri-guided high intensity

  1. Feasibility of MRI-guided high intensity focused ultrasound treatment for adenomyosis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Tien-Ying [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Zhang, Lian; Chen, Wenzhi [Clinical Center of Tumor Therapy of 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400010 (China); Liu, Yinjiang; He, Min; Huang, Xiu [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Orsi, Franco [Interventional Radiology Unit, European Institute of Oncology, 435 Via Ripamonti, 20141 Milan (Italy); Wang, Zhibiao, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine, Department of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Clinical Center of Tumor Therapy of 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400010 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We tested the feasibility of MRIgHIFU ablation for adenomyosis. Black-Right-Pointing-Pointer Patients were treated with MRIgHIFU under conscious sedation. Black-Right-Pointing-Pointer Patient symptoms were assessed using SSS and UFS-QOL. Black-Right-Pointing-Pointer The mean SSS and UFS-QOL showed significant improvements at follow up. Black-Right-Pointing-Pointer No serious complications were observed 62.5 {+-} 21.6. -- Abstract: Purpose: To test the feasibility of MRI-guided high intensity focused ultrasound ablation for adenomyosis. Materials and methods: Patients with symptomatic adenomyosis were treated with MRI-guided high intensity focused ultrasound (MRIgHIFU). Under conscious sedation, MRIgHIFU was performed by a clinical MRI-compatible focused ultrasound tumour therapeutic system (JM15100, Haifu{sup Registered-Sign} Technology Co. Ltd., Chongqing, China) which is combined with a 1.5 T MRI system (Magnetom Symphony, Siemens Healthcare, Erlangen, Germany). MRI was used to calculate the volume of the uterus and lesion. Non-perfused volume of the targeted lesions was evaluated immediately after MRIgHIFU. Patient symptoms were assessed using symptom severity score (SSS) and uterine fibroids symptoms and quality of life questionnaire (UFS-QOL). Results: Ten patients with mean age of 40.3 {+-} 4 years with an average lesion size of 56.9 {+-} 12.7 mm in diameter were treated. Non-perfused volume and the percentage of non-perfused volume obtained from contrast-enhanced T1 Magnetic resonance images immediately post-treatment were 66.6 {+-} 49.4 cm{sup 3} and 62.5 {+-} 21.6%, respectively. The mean SSS and UFS-QOL showed significant improvements of 25%, 16% and 25% at 3, 6 and 12 months follow up, respectively, to pre-treatment scores. No serious complications were observed. Conclusion: Based on the results from this study, MRIgHIFU treatment appears to be a safe and feasible modality to ablate adenomyosis lesion and

  2. Positioning device for MRI-guided high intensity focused ultrasound system

    Energy Technology Data Exchange (ETDEWEB)

    Damianou, Christakis [Frederick Institute of Technology (FIT), Limassol (Cyprus); MEDSONIC, LTD, Limassol (Cyprus); Ioannides, Kleanthis [Polikliniki Igia, Limassol (Cyprus); Milonas, Nicos [Frederick Institute of Technology (FIT), Limassol (Cyprus)

    2008-04-15

    A prototype magnetic resonance imaging (MRI)- compatible positioning device was used to move an MRI-guided high intensity focused ultrasound (HIFU) transducer. The positioning device has three user-controlled degrees of freedom that allow access to various targeted lesions. The positioning device was designed and fabricated using construction materials selected for compatibility with high magnetic fields and fast switching magnetic field gradients encountered inside MRI scanners. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, plastic sheets, brass screws, plastic pulleys and timing belts. The HIFU/MRI system includes the multiple subsystems (a) HIFU system, (b) MR imaging, (c) Positioning device (robot) and associate drivers, (d) temperature measurement, (e) cavitation detection, (f) MRI compatible camera, and (g) Soft ware. The MRI compatibility of the system was successfully demonstrated in a clinical high-field MRI scanner. The ability of the robot to accurately move the transducer thus creating discrete and overlapping lesions in biological tissue was tested successfully. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can use either a lateral or superior-inferior approach. Discrete and large lesions were created successfully with reproducible results. (orig.)

  3. First clinical experience with a dedicated MRI-guided high-intensity focused ultrasound system for breast cancer ablation

    Energy Technology Data Exchange (ETDEWEB)

    Merckel, Laura G.; Knuttel, Floor M.; Peters, Nicky H.G.M.; Mali, Willem P.T.M.; Bosch, Maurice A.A.J. van den [University Medical Center Utrecht, Department of Radiology, HP E 01.132, Utrecht (Netherlands); Deckers, Roel; Moonen, Chrit T.W.; Bartels, Lambertus W. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Dalen, Thijs van [Diakonessenhuis Utrecht, Department of Surgery, Utrecht (Netherlands); Schubert, Gerald [Philips Healthcare, Best (Netherlands); Weits, Teun [Diakonessenhuis Utrecht, Department of Radiology, Utrecht (Netherlands); Diest, Paul J. van [University Medical Center Utrecht, Department of Pathology, Utrecht (Netherlands); Vaessen, Paul H.H.B. [University Medical Center Utrecht, Department of Anesthesiology, Utrecht (Netherlands); Gorp, Joost M.H.H. van [Diakonessenhuis Utrecht, Department of Pathology, Utrecht (Netherlands)

    2016-11-15

    To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. (orig.)

  4. SU-E-J-04: Integration of Interstitial High Intensity Therapeutic Ultrasound Applicators On a Clinical MRI-Guided High Intensity Focused Ultrasound Treatment Planning Software Platform

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, N [Johns Hopkins University, Baltimore, Maryland (United States); Partanen, A [Philips Healthcare, Andover, Massachusetts (United States); Ghoshal, G; Burdette, E [Acoustic MedSystems Inc., Savoy, IL (United States); Farahani, K [National Cancer Institute, Bethesda, MD (United States)

    2015-06-15

    Purpose: Interstitial high intensity therapeutic ultrasound (HITU) applicators can be used to ablate tissue percutaneously, allowing for minimally-invasive treatment without ionizing radiation [1,2]. The purpose of this study was to evaluate the feasibility and usability of combining multielement interstitial HITU applicators with a clinical magnetic resonance imaging (MRI)-guided focused ultrasound software platform. Methods: The Sonalleve software platform (Philips Healthcare, Vantaa, Finland) combines anatomical MRI for target selection and multi-planar MRI thermometry to provide real-time temperature information. The MRI-compatible interstitial US applicators (Acoustic MedSystems, Savoy, IL, USA) had 1–4 cylindrical US elements, each 1 cm long with either 180° or 360° of active surface. Each applicator (4 Fr diameter, enclosed within a 13 Fr flexible catheter) was inserted into a tissue-mimicking agar-silica phantom. Degassed water was circulated around the transducers for cooling and coupling. Based on the location of the applicator, a virtual transducer overlay was added to the software to assist targeting and to allow automatic thermometry slice placement. The phantom was sonicated at 7 MHz for 5 minutes with 6–8 W of acoustic power for each element. MR thermometry data were collected during and after sonication. Results: Preliminary testing indicated that the applicator location could be identified in the planning images and the transducer locations predicted within 1 mm accuracy using the overlay. Ablation zones (thermal dose ≥ 240 CEM43) for 2 active, adjacent US elements ranged from 18 mm × 24 mm (width × length) to 25 mm × 25 mm for the 6 W and 8 W sonications, respectively. Conclusion: The combination of interstitial HITU applicators and this software platform holds promise for novel approaches in minimally-invasive MRI-guided therapy, especially when bony structures or air-filled cavities may preclude extracorporeal HIFU.[1] Diederich et al

  5. Cranial nerve threshold for thermal injury induced by MRI-guided high-intensity focused ultrasound (MRgHIFU): preliminary results on an optic nerve model.

    Science.gov (United States)

    Harnof, Sagi; Zibly, Zion; Cohen, Zvi; Shaw, Andrew; Schlaff, Cody; Kassel, Neal F

    2013-04-01

    Future clinical applications of magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) are moving toward the management of different intracranial pathologies. We sought to validate the production, safety, and efficacy of thermal injury to cranial nerves generated by MRgHIFU. In this study, five female domestic pigs underwent a standard bifrontal craniectomy under general anesthesia. Treatment was then given using an MRgHIFU system to induce hyperthermic ablative sonication (6 to 10 s; 50 to 2000 J.) Histological analyses were done to confirm nerve damage; temperature measured on the optic nerve was approximately 53.4°C (range: 39°C to 70°C.) Histology demonstrated a clear definition between a necrotic, transitional zone, and normal tissue. MRgHIFU induces targeted thermal injury to nervous tissue within a specific threshold of 50°C to 60°C with the tissue near the sonication center yielding the greatest effect; adjacent tissue showed minimal changes. Additional studies utilizing this technology are required to further establish accurate threshold parameters for optic nerve thermo-ablation.

  6. Lobular neoplasia detected in MRI-guided core biopsy carries a high risk for upgrade: a study of 63 cases from four different institutions

    Science.gov (United States)

    Khoury, Thaer; Kumar, Prasanna R; Li, Zaibo; Karabakhtsian, Rouzan G; Sanati, Souzan; Chen, Xiwei; Wang, Dan; Liu, Song; Reig, Beatriu

    2017-01-01

    There are certain criteria to recommend surgical excision for lobular neoplasia diagnosed in mammographically detected core biopsy. The aims of this study are to explore the rate of upgrade of lobular neoplasia detected in magnetic resonance imaging (MRI)-guided biopsy and to investigate the clinicopathological and radiological features that could predict upgrade. We reviewed 1655 MRI-guided core biopsies yielding 63 (4%) cases of lobular neoplasia. Key clinical features were recorded. MRI findings including mass vs non-mass enhancement and the reason for biopsy were also recorded. An upgrade was defined as the presence of invasive carcinoma or ductal carcinoma in situ in subsequent surgical excision. The overall rate of lobular neoplasia in MRI-guided core biopsy ranged from 2 to 7%, with an average of 4%. A total of 15 (24%) cases had an upgrade, including 5 cases of invasive carcinoma and 10 cases of ductal carcinoma in situ. Pure lobular neoplasia was identified in 34 cases, 11 (32%) of which had upgrade. In this group, an ipsilateral concurrent or past history of breast cancer was found to be associated with a higher risk of upgrade (6/11, 55%) than contralateral breast cancer (1 of 12, 8%; P = 0.03). To our knowledge, this is the largest series of lobular neoplasia diagnosed in MRI-guided core biopsy. The incidence of lobular neoplasia is relatively low. Lobular neoplasia detected in MRI-guided biopsy carries a high risk for upgrade warranting surgical excision. However, more cases from different types of institutions are needed to verify our results. PMID:26564004

  7. High-risk lesions diagnosed at MRI-guided vacuum-assisted breast biopsy: can underestimation be predicted?

    Energy Technology Data Exchange (ETDEWEB)

    Crystal, Pavel [Mount Sinai Hospital, University Health Network, Division of Breast Imaging, Toronto, ON (Canada); Mount Sinai Hospital, Toronto, ON (Canada); Sadaf, Arifa; Bukhanov, Karina; Helbich, Thomas H. [Mount Sinai Hospital, University Health Network, Division of Breast Imaging, Toronto, ON (Canada); McCready, David [Princess Margaret Hospital, Department of Surgical Oncology, Toronto, ON (Canada); O' Malley, Frances [Mount Sinai Hospital, Department of Pathology, Laboratory Medicine, Toronto, ON (Canada)

    2011-03-15

    To evaluate the frequency of diagnosis of high-risk lesions at MRI-guided vacuum-assisted breast biopsy (MRgVABB) and to determine whether underestimation may be predicted. Retrospective review of the medical records of 161 patients who underwent MRgVABB was performed. The underestimation rate was defined as an upgrade of a high-risk lesion at MRgVABB to malignancy at surgery. Clinical data, MRI features of the biopsied lesions, and histological diagnosis of cases with and those without underestimation were compared. Of 161 MRgVABB, histology revealed 31 (19%) high-risk lesions. Of 26 excised high-risk lesions, 13 (50%) were upgraded to malignancy. The underestimation rates of lobular neoplasia, atypical apocrine metaplasia, atypical ductal hyperplasia, and flat epithelial atypia were 50% (4/8), 100% (5/5), 50% (3/6) and 50% (1/2) respectively. There was no underestimation in the cases of benign papilloma without atypia (0/3), and radial scar (0/2). No statistically significant differences (p > 0.1) between the cases with and those without underestimation were seen in patient age, indications for breast MRI, size of lesion on MRI, morphological and kinetic features of biopsied lesions. Imaging and clinical features cannot be used reliably to predict underestimation at MRgVABB. All high-risk lesions diagnosed at MRgVABB require surgical excision. (orig.)

  8. A MR-conditional High-torque Pneumatic Stepper Motor for MRI-guided and Robot-assisted Intervention

    Science.gov (United States)

    Chen, Yue; Kwok, Ka-Wai; Tse, Zion Tsz Ho

    2015-01-01

    Magnetic Resonance Imaging allows for visualizing detailed pathological and morphological changes of soft tissue. This increasingly attracts attention on MRI-guided intervention; hence, MR-conditional actuations have been widely investigated for development of image-guided and robot-assisted surgical devices under the MRI. This paper presents a simple design of MR-conditional stepper motor which can provide precise and high-torque actuation without adversely affecting the MR image quality. This stepper motor consists of two MR-conditional pneumatic cylinders and the corresponding supporting structures. Alternating the pressurized air can drive the motor to rotate each step in 3.6° with the motor coupled to a planetary gearbox. Experimental studies were conducted to validate its dynamics performance. Maximum 800mNm output torque can be achieved. The motor accuracy independently varied by two factors: motor operating speed and step size, was also investigated. The motor was tested within a Siemens 3T MRI scanner. The image artifact and the signal-to-noise ratio (SNR) were evaluated in order to study its MRI compliancy. The results show that the presented pneumatic stepper motor generated 2.35% SNR reduction in MR images and no observable artifact was presented besides the motor body itself. The proposed motor test also demonstrates a standard to evaluate the motor capability for later incorporation with motorized devices used in robot-assisted surgery under MRI. PMID:24957635

  9. Accuracy of applicator tip reconstruction in MRI-guided interstitial 192Ir-high-dose-rate brachytherapy of liver tumors

    International Nuclear Information System (INIS)

    Wybranski, Christian; Eberhardt, Benjamin; Fischbach, Katharina; Fischbach, Frank; Walke, Mathias; Hass, Peter; Röhl, Friedrich-Wilhelm; Kosiek, Ortrud; Kaiser, Mandy; Pech, Maciej; Lüdemann, Lutz; Ricke, Jens

    2015-01-01

    Background and purpose: To evaluate the reconstruction accuracy of brachytherapy (BT) applicators tips in vitro and in vivo in MRI-guided 192 Ir-high-dose-rate (HDR)-BT of inoperable liver tumors. Materials and methods: Reconstruction accuracy of plastic BT applicators, visualized by nitinol inserts, was assessed in MRI phantom measurements and in MRI 192 Ir-HDR-BT treatment planning datasets of 45 patients employing CT co-registration and vector decomposition. Conspicuity, short-term dislocation, and reconstruction errors were assessed in the clinical data. The clinical effect of applicator reconstruction accuracy was determined in follow-up MRI data. Results: Applicator reconstruction accuracy was 1.6 ± 0.5 mm in the phantom measurements. In the clinical MRI datasets applicator conspicuity was rated good/optimal in ⩾72% of cases. 16/129 applicators showed not time dependent deviation in between MRI/CT acquisition (p > 0.1). Reconstruction accuracy was 5.5 ± 2.8 mm, and the average image co-registration error was 3.1 ± 0.9 mm. Vector decomposition revealed no preferred direction of reconstruction errors. In the follow-up data deviation of planned dose distribution and irradiation effect was 6.9 ± 3.3 mm matching the mean co-registration error (6.5 ± 2.5 mm; p > 0.1). Conclusion: Applicator reconstruction accuracy in vitro conforms to AAPM TG 56 standard. Nitinol-inserts are feasible for applicator visualization and yield good conspicuity in MRI treatment planning data. No preferred direction of reconstruction errors were found in vivo

  10. Highly directional transurethral ultrasound applicators with rotational control for MRI-guided prostatic thermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Anthony B [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Diederich, Chris J [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Nau, William H [Thermal Therapy Research Group, UCSF Radiation Oncology, San Francisco, CA (United States); Gill, Harcharan [Department of Urology, Stanford University, Stanford, CA (United States); Bouley, Donna M [Department of Comparative Medicine, Stanford University, Stanford, CA (United States); Daniel, Bruce [Department of Radiology, Stanford University, Stanford, CA (United States); Rieke, Viola [Department of Radiology, Stanford University, Stanford, CA (United States); Butts, R Kim [Department of Radiology, Stanford University, Stanford, CA (United States); Sommer, Graham [Department of Radiology, Stanford University, Stanford, CA (United States)

    2004-01-21

    Transurethral ultrasound applicators with highly directional energy deposition and rotational control were investigated for precise treatment of benign prostatic hyperplasia (BPH) and adenocarcinoma of the prostate (CaP). Two types of catheter-based applicators were fabricated, using either sectored tubular (3.5 mm OD x 10 mm) or planar transducers (3.5 mm x 10 mm). They were constructed to be MRI compatible, minimally invasive and allow for manual rotation of the transducer array within a 10 mm cooling balloon. In vivo evaluations of the applicators were performed in canine prostates (n 3) using MRI guidance (0.5 T interventional magnet). MR temperature imaging (MRTI) utilizing the proton resonance frequency shift method was used to acquire multiple-slice temperature overlays in real time for monitoring and guiding the thermal treatments. Post-treatment T1-weighted contrast-enhanced imaging and triphenyl tetrazolium chloride stained tissue sections were used to define regions of tissue coagulation. Single sonications with the tubular applicator ) produced coagulated zones covering a wedge of the prostate extending from 1-2 mm outside the urethra to the outer boundary of the gland (16 mm radial coagulation). Single sonications with the planar applicator (15-20 W, 10 min, {approx}8 MHz) generated thermal lesions of {approx}30 extending to the prostate boundary. Multiple sequential sonications (sweeping) of a planar applicator (12 W with eight rotations of 30 each) demonstrated controllable coagulation of a 270 contiguous section of the prostate extending to the capsule boundary. The feasibility of using highly directional transurethral ultrasound applicators with rotational capabilities to selectively coagulate regions of the prostate while monitoring and controlling the treatments with MRTI was demonstrated in this study.

  11. Early observed transient prostate-specific antigen elevations on a pilot study of external beam radiation therapy and fractionated MRI guided High Dose Rate brachytherapy boost

    International Nuclear Information System (INIS)

    Singh, Anurag K; Godette, Denise J; Stall, Bronwyn R; Coleman, C Norman; Camphausen, Kevin; Ménard, Cynthia; Guion, Peter; Susil, Robert C; Citrin, Deborah E; Ning, Holly; Miller, Robert W; Ullman, Karen; Smith, Sharon; Crouse, Nancy Sears

    2006-01-01

    To report early observation of transient PSA elevations on this pilot study of external beam radiation therapy and magnetic resonance imaging (MRI) guided high dose rate (HDR) brachytherapy boost. Eleven patients with intermediate-risk and high-risk localized prostate cancer received MRI guided HDR brachytherapy (10.5 Gy each fraction) before and after a course of external beam radiotherapy (46 Gy). Two patients continued on hormones during follow-up and were censored for this analysis. Four patients discontinued hormone therapy after RT. Five patients did not receive hormones. PSA bounce is defined as a rise in PSA values with a subsequent fall below the nadir value or to below 20% of the maximum PSA level. Six previously published definitions of biochemical failure to distinguish true failure from were tested: definition 1, rise >0.2 ng/mL; definition 2, rise >0.4 ng/mL; definition 3, rise >35% of previous value; definition 4, ASTRO defined guidelines, definition 5 nadir + 2 ng/ml, and definition 6, nadir + 3 ng/ml. Median follow-up was 24 months (range 18–36 mo). During follow-up, the incidence of transient PSA elevation was: 55% for definition 1, 44% for definition 2, 55% for definition 3, 33% for definition 4, 11% for definition 5, and 11% for definition 6. We observed a substantial incidence of transient elevations in PSA following combined external beam radiation and HDR brachytherapy for prostate cancer. Such elevations seem to be self-limited and should not trigger initiation of salvage therapies. No definition of failure was completely predictive

  12. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J; Low, D [University of California, Los Angeles, Los Angeles, CA (United States); Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency of 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was

  13. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    International Nuclear Information System (INIS)

    Lamb, J; Low, D; Mutic, S; Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J

    2016-01-01

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency of 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was

  14. First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment

    Science.gov (United States)

    Raaymakers, B. W.; Jürgenliemk-Schulz, I. M.; Bol, G. H.; Glitzner, M.; Kotte, A. N. T. J.; van Asselen, B.; de Boer, J. C. J.; Bluemink, J. J.; Hackett, S. L.; Moerland, M. A.; Woodings, S. J.; Wolthaus, J. W. H.; van Zijp, H. M.; Philippens, M. E. P.; Tijssen, R.; Kok, J. G. M.; de Groot-van Breugel, E. N.; Kiekebosch, I.; Meijers, L. T. C.; Nomden, C. N.; Sikkes, G. G.; Doornaert, P. A. H.; Eppinga, W. S. C.; Kasperts, N.; Kerkmeijer, L. G. W.; Tersteeg, J. H. A.; Brown, K. J.; Pais, B.; Woodhead, P.; Lagendijk, J. J. W.

    2017-12-01

    The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.

  15. Magnetic resonance–guided interstitial high-intensity focused ultrasound for brain tumor ablation

    Science.gov (United States)

    MacDonell, Jacquelyn; Patel, Niravkumar; Rubino, Sebastian; Ghoshal, Goutam; Fischer, Gregory; Burdette, E. Clif; Hwang, Roy; Pilitsis, Julie G.

    2018-01-01

    Currently, treatment of brain tumors is limited to resection, chemotherapy, and radiotherapy. Thermal ablation has been recently explored. High-intensity focused ultrasound (HIFU) is being explored as an alternative. Specifically, the authors propose delivering HIFU internally to the tumor with an MRI-guided robotic assistant (MRgRA). The advantage of the authors’ interstitial device over external MRI-guided HIFU (MRgHIFU) is that it allows for conformal, precise ablation and concurrent tissue sampling. The authors describe their workflow for MRgRA HIFU delivery. PMID:29385926

  16. Ultrasound- and MRI-Guided Prostate Biopsy

    Science.gov (United States)

    ... assistance of a nurse and an MR imaging technologist. As with the ultrasound procedure, you may receive antibiotics, sedatives and pain medication before the biopsy. The MRI-guided procedure may use contrast ... A nurse or technologist will insert an intravenous (IV) catheter into a ...

  17. Fully automated MRI-guided robotics for prostate brachytherapy

    International Nuclear Information System (INIS)

    Stoianovici, D.; Vigaru, B.; Petrisor, D.; Muntener, M.; Patriciu, A.; Song, D.

    2008-01-01

    The uncertainties encountered in the deployment of brachytherapy seeds are related to the commonly used ultrasound imager and the basic instrumentation used for the implant. An alternative solution is under development in which a fully automated robot is used to place the seeds according to the dosimetry plan under direct MRI-guidance. Incorporation of MRI-guidance creates potential for physiological and molecular image-guided therapies. Moreover, MRI-guided brachytherapy is also enabling for re-estimating dosimetry during the procedure, because with the MRI the seeds already implanted can be localised. An MRI compatible robot (MrBot) was developed. The robot is designed for transperineal percutaneous prostate interventions, and customised for fully automated MRI-guided brachytherapy. With different end-effectors, the robot applies to other image-guided interventions of the prostate. The robot is constructed of non-magnetic and dielectric materials and is electricity free using pneumatic actuation and optic sensing. A new motor (PneuStep) was purposely developed to set this robot in motion. The robot fits alongside the patient in closed-bore MRI scanners. It is able to stay fully operational during MR imaging without deteriorating the quality of the scan. In vitro, cadaver, and animal tests showed millimetre needle targeting accuracy, and very precise seed placement. The robot tested without any interference up to 7T. The robot is the first fully automated robot to function in MRI scanners. Its first application is MRI-guided seed brachytherapy. It is capable of automated, highly accurate needle placement. Extensive testing is in progress prior to clinical trials. Preliminary results show that the robot may become a useful image-guided intervention instrument. (author)

  18. Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Lindegaard, Jacob Christian; Lænsø Madsen, Mads; Hansen, Anders Traberg

    2016-01-01

    Intracavitary–interstitial applicators for MRI guided brachytherapy are becoming increasingly important in locally advanced cervical cancer. The 3D printing technology enables a versatile method for obtaining a high degree of individualisation of the implant. Our clinical workflow is presented...

  19. Saline as the Sole Contrast Agent for Successful MRI-guided Epidural Injections

    International Nuclear Information System (INIS)

    Deli, Martin; Fritz, Jan; Mateiescu, Serban; Busch, Martin; Carrino, John A.; Becker, Jan; Garmer, Marietta; Grönemeyer, Dietrich

    2013-01-01

    Purpose. To assess the performance of sterile saline solution as the sole contrast agent for percutaneous magnetic resonance imaging (MRI)-guided epidural injections at 1.5 T. Methods. A retrospective analysis of two different techniques of MRI-guided epidural injections was performed with either gadolinium-enhanced saline solution or sterile saline solution for documentation of the epidural location of the needle tip. T1-weighted spoiled gradient echo (FLASH) images or T2-weighted single-shot turbo spin echo (HASTE) images visualized the test injectants. Methods were compared by technical success rate, image quality, table time, and rate of complications. Results. 105 MRI-guided epidural injections (12 of 105 with gadolinium-enhanced saline solution and 93 of 105 with sterile saline solution) were performed successfully and without complications. Visualization of sterile saline solution and gadolinium-enhanced saline solution was sufficient, good, or excellent in all 105 interventions. For either test injectant, quantitative image analysis demonstrated comparable high contrast-to-noise ratios of test injectants to adjacent body substances with reliable statistical significance levels (p < 0.001). The mean table time was 22 ± 9 min in the gadolinium-enhanced saline solution group and 22 ± 8 min in the saline solution group (p = 0.75). Conclusion. Sterile saline is suitable as the sole contrast agent for successful and safe percutaneous MRI-guided epidural drug delivery at 1.5 T.

  20. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    International Nuclear Information System (INIS)

    Ellens, N; Farahani, K

    2015-01-01

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  1. SU-E-J-03: Characterization of the Precision and Accuracy of a New, Preclinical, MRI-Guided Focused Ultrasound System for Image-Guided Interventions in Small-Bore, High-Field Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ellens, N [Johns Hopkins University, Baltimore, Maryland (United States); Farahani, K [National Cancer Institute, Bethesda, MD (United States)

    2015-06-15

    Purpose: MRI-guided focused ultrasound (MRgFUS) has many potential and realized applications including controlled heating and localized drug delivery. The development of many of these applications requires extensive preclinical work, much of it in small animal models. The goal of this study is to characterize the spatial targeting accuracy and reproducibility of a preclinical high field MRgFUS system for thermal ablation and drug delivery applications. Methods: The RK300 (FUS Instruments, Toronto, Canada) is a motorized, 2-axis FUS positioning system suitable for small bore (72 mm), high-field MRI systems. The accuracy of the system was assessed in three ways. First, the precision of the system was assessed by sonicating regular grids of 5 mm squares on polystyrene plates and comparing the resulting focal dimples to the intended pattern, thereby assessing the reproducibility and precision of the motion control alone. Second, the targeting accuracy was assessed by imaging a polystyrene plate with randomly drilled holes and replicating the hole pattern by sonicating the observed hole locations on intact polystyrene plates and comparing the results. Third, the practicallyrealizable accuracy and precision were assessed by comparing the locations of transcranial, FUS-induced blood-brain-barrier disruption (BBBD) (observed through Gadolinium enhancement) to the intended targets in a retrospective analysis of animals sonicated for other experiments. Results: The evenly-spaced grids indicated that the precision was 0.11 +/− 0.05 mm. When image-guidance was included by targeting random locations, the accuracy was 0.5 +/− 0.2 mm. The effective accuracy in the four rodent brains assessed was 0.8 +/− 0.6 mm. In all cases, the error appeared normally distributed (p<0.05) in both orthogonal axes, though the left/right error was systematically greater than the superior/inferior error. Conclusions: The targeting accuracy of this device is sub-millimeter, suitable for many

  2. MRI-guided laser-induced thermotherapy (LITT) of liver metastases: clinical evaluation

    International Nuclear Information System (INIS)

    Vogl, T.J.; Weinhold, N.; Mueller, P.; Mack, M.; Scholz, W.; Philipp, C.; Roggan, A.; Felix, R.

    1996-01-01

    The goal was to perform an evaluation of MRI-guided laser-induced thermotherapy (LITT) of liver metastases as a clinical method. In a prospective study, 50 patients with liver metastases of colorectal carcinoma (35 patients), or other primary tumors (15 patients) were treated with LITT. For preparation and intermittent controls of therapy, standardized MRI examinations were made. Online monitoring during the the LITT was done with temperature-sensitive T1-weighted sequences (FLASH-2D, TurboFLASH). All in all, 83 metastases of a volume between 1 and 282 cubic centimeters (median = ± 10 cm 3 ) were treated.During performance of the LITT, a decrease of signal intensity in the thermosensitive sequences was measured for the application area, and was correlated with fluorine-optical temperature measurements. The MRI-guided LITT is a novel, potential modality for treatment of liver metastases, and poses only minimal clinical risks. (orig./VHE) [de

  3. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  4. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  5. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  6. MRI-Guided Percutaneous Biopsy of Mediastinal Masses Using a Large Bore Magnet: Technical Feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Garnon, J., E-mail: juliengarnon@gmail.com [Nouvel Hôpital Civil, Department of Interventional Radiology (France); Ramamurthy, N., E-mail: nitin-ramamurthy@hotmail.com [Norfolk and Norwich University Hospital, Department of Radiology (United Kingdom); Caudrelier J, J., E-mail: caudjean@yahoo.fr [Nouvel Hôpital Civil, Department of Interventional Radiology (France); Erceg, G., E-mail: erceggorislav@yahoo.com; Breton, E., E-mail: ebreton@unistra.fr [ICube, University of Strasbourg, CNRS (France); Tsoumakidou, G., E-mail: gtsoumakidou@yahoo.com; Rao, P., E-mail: pramodrao@me.com; Gangi, A., E-mail: gangi@unistra.fr [Nouvel Hôpital Civil, Department of Interventional Radiology (France)

    2016-05-15

    ObjectiveTo evaluate the diagnostic accuracy and safety of magnetic resonance imaging (MRI)-guided percutaneous biopsy of mediastinal masses performed using a wide-bore high-field scanner.Materials and MethodsThis is a retrospective study of 16 consecutive patients (8 male, 8 female; mean age 74 years) who underwent MRI-guided core needle biopsy of a mediastinal mass between February 2010 and January 2014. Size and location of lesion, approach taken, time for needle placement, overall duration of procedure, and post-procedural complications were evaluated. Technical success rates and correlation with surgical pathology (where available) were assessed.ResultsTarget lesions were located in the anterior (n = 13), middle (n = 2), and posterior mediastinum (n = 1), respectively. Mean size was 7.2 cm (range 3.6–11 cm). Average time for needle placement was 9.4 min (range 3–18 min); average duration of entire procedure was 42 min (range 27–62 min). 2–5 core samples were obtained from each lesion (mean 2.6). Technical success rate was 100 %, with specimens successfully obtained in all 16 patients. There were no immediate complications. Histopathology revealed malignancy in 12 cases (4 of which were surgically confirmed), benign lesions in 3 cases (1 of which was false negative following surgical resection), and one inconclusive specimen (treated as inaccurate since repeat CT-guided biopsy demonstrated thymic hyperplasia). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy in our study were 92.3, 100, 100, 66.7, and 87.5 %, respectively.ConclusionMRI-guided mediastinal biopsy is a safe procedure with high diagnostic accuracy, which may offer a non-ionizing alternative to CT guidance.

  7. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  8. Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review

    Science.gov (United States)

    Iordachita, Iulian I.; Tokuda, Junichi; Hata, Nobuhiko; Liu, Xuan; Seifabadi, Reza; Xu, Sheng; Wood, Bradford; Fischer, Gregory S.

    2017-01-01

    Magnetic Resonance Imaging (MRI) provides both anatomical imaging with excellent soft tissue contrast and functional MRI imaging (fMRI) of physiological parameters. The last two decades have witnessed the manifestation of increased interest in MRI-guided minimally invasive intervention procedures and fMRI for rehabilitation and neuroscience research. Accompanying the aspiration to utilize MRI to provide imaging feedback during interventions and brain activity for neuroscience study, there is an accumulated effort to utilize force sensors compatible with the MRI environment to meet the growing demand of these procedures, with the goal of enhanced interventional safety and accuracy, improved efficacy and rehabilitation outcome. This paper summarizes the fundamental principles, the state of the art development and challenges of fiber optic force sensors for MRI-guided interventions and rehabilitation. It provides an overview of MRI-compatible fiber optic force sensors based on different sensing principles, including light intensity modulation, wavelength modulation, and phase modulation. Extensive design prototypes are reviewed to illustrate the detailed implementation of these principles. Advantages and disadvantages of the sensor designs are compared and analyzed. A perspective on the future development of fiber optic sensors is also presented which may have additional broad clinical applications. Future surgical interventions or rehabilitation will rely on intelligent force sensors to provide situational awareness to augment or complement human perception in these procedures. PMID:28652857

  9. Fiber Optic Force Sensors for MRI-Guided Interventions and Rehabilitation: A Review.

    Science.gov (United States)

    Su, Hao; Iordachita, Iulian I; Tokuda, Junichi; Hata, Nobuhiko; Liu, Xuan; Seifabadi, Reza; Xu, Sheng; Wood, Bradford; Fischer, Gregory S

    2017-04-01

    Magnetic Resonance Imaging (MRI) provides both anatomical imaging with excellent soft tissue contrast and functional MRI imaging (fMRI) of physiological parameters. The last two decades have witnessed the manifestation of increased interest in MRI-guided minimally invasive intervention procedures and fMRI for rehabilitation and neuroscience research. Accompanying the aspiration to utilize MRI to provide imaging feedback during interventions and brain activity for neuroscience study, there is an accumulated effort to utilize force sensors compatible with the MRI environment to meet the growing demand of these procedures, with the goal of enhanced interventional safety and accuracy, improved efficacy and rehabilitation outcome. This paper summarizes the fundamental principles, the state of the art development and challenges of fiber optic force sensors for MRI-guided interventions and rehabilitation. It provides an overview of MRI-compatible fiber optic force sensors based on different sensing principles, including light intensity modulation, wavelength modulation, and phase modulation. Extensive design prototypes are reviewed to illustrate the detailed implementation of these principles. Advantages and disadvantages of the sensor designs are compared and analyzed. A perspective on the future development of fiber optic sensors is also presented which may have additional broad clinical applications. Future surgical interventions or rehabilitation will rely on intelligent force sensors to provide situational awareness to augment or complement human perception in these procedures.

  10. High-intensity focused ultrasound in the treatment of breast tumours.

    Science.gov (United States)

    Peek, Mirjam C L; Wu, Feng

    2018-01-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive technique that has been used for the treatment of both benign and malignant tumours. With HIFU, an ultrasound (US) beam propagates through soft tissue as a high-frequency pressure wave. The US beam is focused at a small target volume, and due to the energy building up at this site, the temperature rises, causing coagulative necrosis and protein denaturation within a few seconds. HIFU is capable of providing a completely non-invasive treatment without causing damage to the directly adjacent tissues. HIFU can be either guided by US or magnetic resonance imaging (MRI). Guided imaging is used to plan the treatment, detect any movement during the treatment and monitor response in real-time. This review describes the history of HIFU, the HIFU technique, available devices and gives an overview of the published literature in the treatment of benign and malignant breast tumours with HIFU.

  11. MRI-Guided High–Dose-Rate Intracavitary Brachytherapy for Treatment of Cervical Cancer: The University of Pittsburgh Experience

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Beant S.; Kim, Hayeon; Houser, Christopher J. [Department of Radiation Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Kelley, Joseph L.; Sukumvanich, Paniti; Edwards, Robert P.; Comerci, John T.; Olawaiye, Alexander B.; Huang, Marilyn; Courtney-Brooks, Madeleine [Department of Gynecologic Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

    2015-03-01

    Purpose: Image-based brachytherapy is increasingly used for gynecologic malignancies. We report early outcomes of magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Consecutive patient cases with FIGO stage IB1 to IVA cervical cancer treated at a single institution were retrospectively reviewed. All patients received concurrent cisplatin with external beam radiation therapy along with interdigitated high–dose-rate intracavitary brachytherapy. Computed tomography or MRI was completed after each application, the latter acquired for at least 1 fraction. High-risk clinical target volume (HRCTV) and organs at risk were identified by Groupe Européen de Curiethérapie and European SocieTy for Radiotherapy and Oncology guidelines. Doses were converted to equivalent 2-Gy doses (EQD{sub 2}) with planned HRCTV doses of 75 to 85 Gy. Results: From 2007 to 2013, 128 patients, median 52 years of age, were treated. Predominant characteristics included stage IIB disease (58.6%) with a median tumor size of 5 cm, squamous histology (82.8%), and no radiographic nodal involvement (53.1%). Most patients (67.2%) received intensity modulated radiation therapy (IMRT) at a median dose of 45 Gy, followed by a median brachytherapy dose of 27.5 Gy (range, 25-30 Gy) in 5 fractions. At a median follow up of 24.4 months (range, 2.1-77.2 months), estimated 2-year local control, disease-free survival, and cancer-specific survival rates were 91.6%, 81.8%, and 87.6%, respectively. Predictors of local failure included adenocarcinoma histology (P<.01) and clinical response at 3 months (P<.01). Among the adenocarcinoma subset, receiving HRCTV D{sub 90} EQD{sub 2} ≥84 Gy was associated with improved local control (2-year local control rate 100% vs 54.5%, P=.03). Grade 3 or greater gastrointestinal or genitourinary late toxicity occurred at a 2-year actuarial rate of 0.9%. Conclusions: This study constitutes one of the largest reported series of MRI-guided

  12. Multicentre treatment planning study of MRI-guided brachytherapy for cervical cancer: Comparison between tandem-ovoid applicator users

    International Nuclear Information System (INIS)

    Nomden, Christel N.; Leeuw, Astrid A.C. de; Van Limbergen, Erik; Brabandere, Marisol de; Nulens, An; Nout, Remi A.; Laman, Mirjam; Ketelaars, Martijn; Lutgens, Ludovicus; Reniers, Brigitte; Jürgenliemk-Schulz, Ina Maria

    2013-01-01

    Background and purpose: To compare MRI-guided treatment planning approaches between four centres that use tandem-ovoid applicators. Material and methods: Four centres generated three treatment plans for four patients: standard, optimised intracavitary, and optimised intracavitary/interstitial. Prescribed D90 High-Risk CTV (HR-CTV) was 85 Gy EQD2 (external-beam radiotherapy and brachytherapy), while the D 2cc OAR limit was 90 Gy EQD2 for bladder and 75 Gy EQD2 for rectum, sigmoid, and bowel, respectively. DVH-parameters, source loading patterns and spatial dose distributions of the three treatment plans were compared. Results: The standard plans of the different centres were comparable with respect to the D90 HR-CTV, but differed in OAR doses. MRI-guided intracavitary optimisation resulted in organ sparing and smaller variation in DVH parameters between the centres. Adding interstitial needles led to target dose escalation while respecting the OAR constraints. However, substantial differences in relative weights of the applicator parts resulted in an increased variation in DVH parameters and locations of high dose regions. Conclusions: MRI-guided brachytherapy treatment planning optimisation provides the possibility to increase the dose to the HR-CTV and spare the OARs. Depending on the degree of conformity the centres make different choices in relative weighting of applicator parts, leading to different dose distributions

  13. Development of a new apparatus for MRI guided stereotactic surgery

    International Nuclear Information System (INIS)

    Iwata, Yukiya; Amano, Keiichi; Kawamura, Hirotsune; Tanikawa, Tatsuya; Kawabatake, Hiroko; Iseki, Hiroshi; Kobayashi, Naotoshi; Ono, Yuko

    1990-01-01

    Since Leksell et al. reported the application of NMR imaging to stereotactic surgery, MRI has been used for determination of the coordinates of target in the brain. The image of the MRI, however, is significantly distorted due to non-uniformity of the magnetic field. The authors have devised a new marker system (the imaginary inner marker system) and have also modified the Iseki CT guided stereotactic frame for utilizing MRI. In this system, the imaginary markers were set up inside the brain. The image of the grid phantom, obtained immediately before the operation, is superimposed on the image of a patient's brain. The nearest image of grid phantom is used for MRI localization as an imaginary inner marker. To prevent distortion and resolution degradation on MRI, the localizing system is composed of acrylic resin and titanium. The head ring can be fixed on both the MRI localizing system and the Iseki CT guided stereotactic frame which allows the transformation of target coordinates from the MRI localizing system to the CT guided frame. MRI guided stereotactic surgery, therefore, can be performed while monitoring with the CT scan. The system was tested using a phantom and taking T 1 -weighted images before clinical application. Coordinates of target points were determined accurately to a 2 mm cube. A 47-year-old, right-handed woman underwent a MRI guided biopsy of the right thalamic mass lesion that was more accurately detected by MRI than CT scan. The histological diagnosis was a malignant lymphoma. No complications have occurred. MRI stereotaxy, at the present time, is expected to be most useful in the biopsy of deep-seated brain lesions which are not easily detected by CT scan. In the near future, It will take the place of other imaging techniques during functional neurosurgery, with sufficient accuracy. (author)

  14. High-intensity laser physics

    International Nuclear Information System (INIS)

    Mohideen, U.

    1993-01-01

    This thesis is a study of the effect of high intensity lasers on atoms, free electrons and the generation of X-rays from solid density plasmas. The laser produced 50 milli Joule 180 femto sec pulses at 5 Hz. This translates to a maximum intensity of 5 x 10 18 W/cm 2 . At such high fields the AC stark shifts of atoms placed at the focus is much greater than the ionization energy. The characteristics of multiphoton ionization of atoms in intense laser fields was studied by angle resolved photoelectron spectroscopy. Free electrons placed in high intensity laser fields lead to harmonic generation. This phenomenon of Nonlinear Compton Scattering was theoretically investigated. Also, when these high intensity pulses are focused on solids a hot plasma is created. This plasma is a bright source of a short X-ray pulse. The pulse-width of X-rays from these solid density plasmas was measured by time-resolved X-ray spectroscopy

  15. Intraoperative MRI-guided resection of focal cortical dysplasia in pediatric patients: technique and outcomes.

    Science.gov (United States)

    Sacino, Matthew F; Ho, Cheng-Ying; Murnick, Jonathan; Tsuchida, Tammy; Magge, Suresh N; Keating, Robert F; Gaillard, William D; Oluigbo, Chima O

    2016-06-01

    OBJECTIVE Previous meta-analysis has demonstrated that the most important factor in seizure freedom following surgery for focal cortical dysplasia (FCD) is completeness of resection. However, intraoperative detection of epileptogenic dysplastic cortical tissue remains a challenge, potentially leading to a partial resection and the need for reoperation. The objective of this study was to determine the role of intraoperative MRI (iMRI) in the intraoperative detection and localization of FCD as well as its impact on surgical decision making, completeness of resection, and seizure control outcomes. METHODS The authors retrospectively reviewed the medical records of pediatric patients who underwent iMRI-assisted resection of FCD at the Children's National Health System between January 2014 and April 2015. Data reviewed included demographics, length of surgery, details of iMRI acquisition, postoperative seizure freedom, and complications. Postsurgical seizure outcome was assessed utilizing the Engel Epilepsy Surgery Outcome Scale. RESULTS Twelve consecutive pediatric patients (8 females and 4 males) underwent iMRI-guided resection of FCD lesions. The mean age at the time of surgery was 8.8 years ± 1.6 years (range 0.7 to 18.8 years), and the mean duration of follow up was 3.5 months ± 1.0 month. The mean age at seizure onset was 2.8 years ± 1.0 year (range birth to 9.0 years). Two patients had Type 1 FCD, 5 patients had Type 2A FCD, 2 patients had Type 2B FCD, and 3 patients had FCD of undetermined classification. iMRI findings impacted intraoperative surgical decision making in 5 (42%) of the 12 patients, who then underwent further exploration of the resection cavity. At the time of the last postoperative follow-up, 11 (92%) of the 12 patients were seizure free (Engel Class I). No patients underwent reoperation following iMRI-guided surgery. CONCLUSIONS iMRI-guided resection of FCD in pediatric patients precluded the need for repeat surgery. Furthermore, it resulted

  16. MRI-guided robotic system for transperineal prostate interventions: proof of principle

    International Nuclear Information System (INIS)

    Van den Bosch, Michiel R; Moman, Maaike R; Van Vulpen, Marco; Battermann, Jan J; Lagendijk, Jan J W; Moerland, Marinus A; Duiveman, Ed; Van Schelven, Leonard J; De Leeuw, Hendrik

    2010-01-01

    In this study, we demonstrate the proof of principle of the University Medical Center Utrecht (UMCU) robot dedicated to magnetic resonance imaging (MRI)-guided interventions in patients. The UMCU robot consists of polymers and non-ferromagnetic materials. For transperineal prostate interventions, it can be placed between the patient's legs inside a closed bore 1.5T MR scanner. The robot can manually be translated and rotated resulting in five degrees of freedom. It contains a pneumatically driven tapping device to automatically insert a needle stepwise into the prostate using a controller unit outside the scanning room. To define the target positions and to verify the needle insertion point and the needle trajectory, a high-resolution 3D balanced steady state free precession (bSSFP) scan that provides a T2/T1-weighted contrast is acquired. During the needle insertion fast 2D bSSFP images are generated to track the needle on-line. When the target position is reached, the radiation oncologist manually places a fiducial gold marker (small seed) at this location. In total two needle trajectories are used to place all markers. Afterwards, a high-resolution 3D bSSFP scan is acquired to visualize the fiducial gold markers. Four fiducial gold markers were placed transperineally into the prostate of a patient with a clinical stage T3 prostate cancer. In the generated scans, it was possible to discriminate the patient's anatomy, the needle and the markers. All markers were delivered inside the prostate. The procedure time was 1.5 h. This study proves that MRI-guided needle placement and seed delivery in the prostate with the UMCU robot are feasible. (note)

  17. MRI-guided robotic system for transperineal prostate interventions: proof of principle

    Energy Technology Data Exchange (ETDEWEB)

    Van den Bosch, Michiel R; Moman, Maaike R; Van Vulpen, Marco; Battermann, Jan J; Lagendijk, Jan J W; Moerland, Marinus A [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands); Duiveman, Ed; Van Schelven, Leonard J [Medical Technology and Clinical Physics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands); De Leeuw, Hendrik [Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands)], E-mail: M.R.vandenBosch@umcutrecht.nl

    2010-03-07

    In this study, we demonstrate the proof of principle of the University Medical Center Utrecht (UMCU) robot dedicated to magnetic resonance imaging (MRI)-guided interventions in patients. The UMCU robot consists of polymers and non-ferromagnetic materials. For transperineal prostate interventions, it can be placed between the patient's legs inside a closed bore 1.5T MR scanner. The robot can manually be translated and rotated resulting in five degrees of freedom. It contains a pneumatically driven tapping device to automatically insert a needle stepwise into the prostate using a controller unit outside the scanning room. To define the target positions and to verify the needle insertion point and the needle trajectory, a high-resolution 3D balanced steady state free precession (bSSFP) scan that provides a T2/T1-weighted contrast is acquired. During the needle insertion fast 2D bSSFP images are generated to track the needle on-line. When the target position is reached, the radiation oncologist manually places a fiducial gold marker (small seed) at this location. In total two needle trajectories are used to place all markers. Afterwards, a high-resolution 3D bSSFP scan is acquired to visualize the fiducial gold markers. Four fiducial gold markers were placed transperineally into the prostate of a patient with a clinical stage T3 prostate cancer. In the generated scans, it was possible to discriminate the patient's anatomy, the needle and the markers. All markers were delivered inside the prostate. The procedure time was 1.5 h. This study proves that MRI-guided needle placement and seed delivery in the prostate with the UMCU robot are feasible. (note)

  18. Future of medical physics: Real-time MRI-guided proton therapy.

    Science.gov (United States)

    Oborn, Bradley M; Dowdell, Stephen; Metcalfe, Peter E; Crozier, Stuart; Mohan, Radhe; Keall, Paul J

    2017-08-01

    With the recent clinical implementation of real-time MRI-guided x-ray beam therapy (MRXT), attention is turning to the concept of combining real-time MRI guidance with proton beam therapy; MRI-guided proton beam therapy (MRPT). MRI guidance for proton beam therapy is expected to offer a compelling improvement to the current treatment workflow which is warranted arguably more than for x-ray beam therapy. This argument is born out of the fact that proton therapy toxicity outcomes are similar to that of the most advanced IMRT treatments, despite being a fundamentally superior particle for cancer treatment. In this Future of Medical Physics article, we describe the various software and hardware aspects of potential MRPT systems and the corresponding treatment workflow. Significant software developments, particularly focused around adaptive MRI-based planning will be required. The magnetic interaction between the MRI and the proton beamline components will be a key area of focus. For example, the modeling and potential redesign of a magnetically compatible gantry to allow for beam delivery from multiple angles towards a patient located within the bore of an MRI scanner. Further to this, the accuracy of pencil beam scanning and beam monitoring in the presence of an MRI fringe field will require modeling, testing, and potential further development to ensure that the highly targeted radiotherapy is maintained. Looking forward we envisage a clear and accelerated path for hardware development, leveraging from lessons learnt from MRXT development. Within few years, simple prototype systems will likely exist, and in a decade, we could envisage coupled systems with integrated gantries. Such milestones will be key in the development of a more efficient, more accurate, and more successful form of proton beam therapy for many common cancer sites. © 2017 American Association of Physicists in Medicine.

  19. Diagnostic Accuracy of MRI-guided Percutaneous Transthoracic Needle Biopsy of Solitary Pulmonary Nodules

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shangang, E-mail: 1198685580@qq.com [University of Jinan-Shandong Academy of Medical Science, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, School of Medicine and Life Sciences (China); Li, Chengli, E-mail: chenglilichina@yeah.net [Shandong University, Department of Interventional MRI, Shandong Medical Imaging Research Institute (China); Yu, Xuejuan, E-mail: yuxuejuan2011@126.com [University of Jinan-Shandong Academy of Medical Science, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, School of Medicine and Life Sciences (China); Liu, Ming, E-mail: mingliuyxs@163.com [Shandong University, Department of Interventional MRI, Shandong Medical Imaging Research Institute (China); Fan, Tingyong, E-mail: FTY681105@sohu.com; Chen, Dong, E-mail: 857984870@qq.com; Zhang, Pinliang, E-mail: zhangpinliang@163.com; Ren, Ruimei, E-mail: liusg708@qq.com [University of Jinan-Shandong Academy of Medical Science, Department of Radiation Oncology, Shandong Cancer Hospital and Institute, School of Medicine and Life Sciences (China)

    2015-04-15

    ObjectiveThe purpose of our study was to evaluate the diagnostic accuracy of MRI-guided percutaneous transthoracic needle biopsy (PTNB) of solitary pulmonary nodules (SPNs).MethodsRetrospective review of 69 patients who underwent MR-guided PTNB of SPNs was performed. Each case was reviewed for complications. The final diagnosis was established by surgical pathology of the nodule or clinical and imaging follow-up. Pneumothorax rate and diagnostic accuracy were compared between two groups according to nodule diameter (≤2 vs. >2 cm) using χ{sup 2} chest and Fisher’s exact test, respectively.ResultsThe success rate of single puncture was 95.6 %. Twelve (17.4 %) patients had pneumothorax, with 1 (1.4 %) requiring chest tube insertion. Mild hemoptysis occurred in 7 (7.2 %) patients. All of the sample material was sufficient for histological diagnostic evaluation. Pathological analysis of biopsy specimens showed 46 malignant, 22 benign, and 1 nondiagnostic nodule. The final diagnoses were 49 malignant nodules and 20 benign nodules basing on postoperative histopathology and clinical follow-up data. One nondiagnostic sample was excluded from calculating diagnostic performance. A sensitivity, specificity, accuracy, positive predictive value, and negative predictive value in diagnosing SPNs were 95.8, 100, 97.0, 100, and 90.9 %, respectively. Pneumothorax rate, diagnostic sensitivity, and accuracy were not significantly different between the two groups (P > 0.05).ConclusionsMRI-guided PTNB is safe, feasible, and high accurate diagnostic technique for pathologic diagnosis of pulmonary nodules.

  20. A novel approach of fMRI-guided tractography analysis within a group: construction of an fMRI-guided tractographic atlas.

    Science.gov (United States)

    Preti, Maria Giulia; Makris, Nikos; Laganà, Maria Marcella; Papadimitriou, George; Baglio, Francesca; Griffanti, Ludovica; Nemni, Raffaello; Cecconi, Pietro; Westin, Carl-Fredrik; Baselli, Giuseppe

    2012-01-01

    Diffusion Tensor Imaging (DTI) tractography and functional Magnetic Resonance Imaging (fMRI) investigate two complementary aspects of brain networks: white matter (WM) anatomical connectivity and gray matter (GM) function. However, integration standards have yet to be defined; namely, individual fMRI-driven tractography is usually applied and only few studies address group analysis. This work proposes an efficient method of fMRI-driven tractography at group level through the creation of a tractographic atlas starting from the GM areas activated by a verbal fluency task in 11 healthy subjects. The individual tracts were registered to the MNI space. Selection ROIs derived by GM masking and dilation of group activated areas were applied to obtain the fMRI-driven subsets within tracts. An atlas of the tracts recruited among the population was obtained by selecting for each subject the fMRI-guided tracts passing through the high probability voxels (the voxels recruited by the 90% of the subjects) and merging them together. The reliability of this approach was assessed by comparing it with the probabilistic atlas previously introduced in literature. The introduced method allowed to successfully reconstruct activated tracts, which comprehended corpus callosum, left cingulum and arcuate, a small portion of the right arcuate, both cortico-spinal tracts and inferior fronto-occipital fasciculi. Moreover, it proved to give results concordant with the previously introduced probabilistic approach, allowing in addition to reconstruct 3D trajectories of the activated fibers, which appear particularly helpful in the detection of WM connections.

  1. High Intensity Source Laboratory (HISL)

    International Nuclear Information System (INIS)

    1992-01-01

    The High Intensity Source Laboratory (HISL) is a laboratory facility operated for the US Department of Energy (DOE) by EG ampersand G, Energy Measurements (EG ampersand G/EM). This document is intended as an overview -- primarily for external users -- of the general purposes and capabilities of HISL; numerous technical details are beyond its scope. Moreover, systems at HISL are added, deleted, and modified to suit current needs, and upgraded with continuing development. Consequently, interested parties are invited to contact the HISL manager for detailed, current, technical, and administrative information. The HISL develops and operates pulsed radiation sources with energies, intensities, and pulse widths appropriate for several applications. Principal among these are development, characterization, and calibration of various high-bandwidth radiation detectors and diagnostic systems. Hardness/vulnerability of electronic or other sensitive components to radiation is also tested. In this connection, source development generally focuses on attending (1) the highest possible intensities with (2) reasonably short pulse widths and (3) comprehensive output characterization

  2. LHC Report: reaching high intensity

    CERN Multimedia

    Jan Uythoven

    2015-01-01

    After both beams having been ramped to their full energy of 6.5 TeV, the last two weeks saw the beam commissioning process advancing on many fronts. An important milestone was achieved when operators succeeded in circulating a nominal-intensity bunch. During the operation, some sudden beam losses resulted in beam dumps at top energy, a problem that needed to be understood and resolved.   In 2015 the LHC will be circulating around 2800 bunches in each beam and each bunch will contain just over 1 x 1011 protons. Until a few days ago commissioning was taking place with single bunches of 5 x 109 protons. The first nominal bunch with an intensity of 1 x 1011 protons was injected on Tuesday, 21 April. In order to circulate such a high-intensity bunch safely, the whole protection system must be working correctly: collimators, which protect the aperture, are set at preliminary values known as coarse settings; all kicker magnets for injecting and extracting the beams are commissioned with beam an...

  3. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    DEFF Research Database (Denmark)

    Arabi, H.; Koutsouvelis, N.; Rouzaud, M.

    2016-01-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial t......-CT images from conventional Dixon MRI sequences with improved bone extraction accuracy. The approach is promising for potential use in PET AC and MRI-only or hybrid PET/MRI-guided RT treatment planning. © 2016 Institute of Physics and Engineering in Medicine.......Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial...... the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas...

  4. Robotic System for MRI-Guided Stereotactic Neurosurgery

    Science.gov (United States)

    Li, Gang; Cole, Gregory A.; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Pilitsis, Julie G.; Fischer, Gregory S.

    2015-01-01

    Stereotaxy is a neurosurgical technique that can take several hours to reach a specific target, typically utilizing a mechanical frame and guided by preoperative imaging. An error in any one of the numerous steps or deviations of the target anatomy from the preoperative plan such as brain shift (up to 20 mm), may affect the targeting accuracy and thus the treatment effectiveness. Moreover, because the procedure is typically performed through a small burr hole opening in the skull that prevents tissue visualization, the intervention is basically “blind” for the operator with limited means of intraoperative confirmation that may result in reduced accuracy and safety. The presented system is intended to address the clinical needs for enhanced efficiency, accuracy, and safety of image-guided stereotactic neurosurgery for Deep Brain Stimulation (DBS) lead placement. The work describes a magnetic resonance imaging (MRI)-guided, robotically actuated stereotactic neural intervention system for deep brain stimulation procedure, which offers the potential of reducing procedure duration while improving targeting accuracy and enhancing safety. This is achieved through simultaneous robotic manipulation of the instrument and interactively updated in situ MRI guidance that enables visualization of the anatomy and interventional instrument. During simultaneous actuation and imaging, the system has demonstrated less than 15% signal-to-noise ratio (SNR) variation and less than 0.20% geometric distortion artifact without affecting the imaging usability to visualize and guide the procedure. Optical tracking and MRI phantom experiments streamline the clinical workflow of the prototype system, corroborating targeting accuracy with 3-axis root mean square error 1.38 ± 0.45 mm in tip position and 2.03 ± 0.58° in insertion angle. PMID:25376035

  5. Signal-inducing bone cements for MRI-guided spinal cementoplasty: evaluation of contrast-agent-based polymethylmethacrylate cements

    International Nuclear Information System (INIS)

    Bail, Hermann Josef; Tsitsilonis, Serafim; Wichlas, Florian; Sattig, Christoph; Papanikolaou, Ioannis; Teichgraeber, Ulf Karl Mart

    2012-01-01

    The purpose of this work is to evaluate two signal-inducing bone cements for MRI-guided spinal cementoplasty. The bone cements were made of polymethylmethacrylate (PMMA, 5 ml monomeric, 12 g polymeric) and gadoterate meglumine as a contrast agent (CA, 0-40 μl) with either saline solution (NaCl, 2-4 ml) or hydroxyapatite bone substitute (HA, 2-4 ml). The cement's signal was assessed in an open 1-Tesla MR scanner, with T1W TSE and fast interventional T1W TSE pulse sequences, and the ideal amount of each component was determined. The compressive and bending strength for different amounts of NaCl and HA were evaluated. The cement's MRI signal depended on the concentration of CA, the amount of NaCl or HA, and the pulse sequence. The signal peaks were recorded between 1 and 10 μl CA per ml NaCl or HA, and were higher in fast T1W TSE than in T1W TSE images. The NaCl-PMMA-CA cements had a greater MRI signal intensity and compressive strength; the HA-PMMA-CA cements had a superior bending strength. Concerning the MR signal and biomechanical properties, these cements would permit MRI-guided cementoplasty. Due to its higher signal and greater compressive strength, the NaCl-PMMA-CA compound appears to be superior to the HA-PMMA-CA compound. (orig.)

  6. Hybrid Approach for Biliary Interventions Employing MRI-Guided Bile Duct Puncture with Near-Real-Time Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wybranski, Christian, E-mail: Christian.Wybranski@uk-koeln.de [University Hospital of Cologne, Department of Diagnostic and Interventional Radiology (Germany); Pech, Maciej [Otto-von-Guericke University Medical School, Department of Radiology and Nuclear Medicine (Germany); Lux, Anke [Otto-von-Guericke University Medical School, Institute of Biometry and Medical Informatics (Germany); Ricke, Jens; Fischbach, Frank; Fischbach, Katharina [Otto-von-Guericke University Medical School, Department of Radiology and Nuclear Medicine (Germany)

    2017-06-15

    ObjectiveTo assess the feasibility of a hybrid approach employing MRI-guided bile duct (BD) puncture for subsequent fluoroscopy-guided biliary interventions in patients with non-dilated (≤3 mm) or dilated BD (≥3 mm) but unfavorable conditions for ultrasonography (US)-guided BD puncture.MethodsA total of 23 hybrid interventions were performed in 21 patients. Visualization of BD and puncture needles (PN) in the interventional MR images was rated on a 5-point Likert scale by two radiologists. Technical success, planning time, BD puncture time and positioning adjustments of the PN as well as technical success of the biliary intervention and complication rate were recorded.ResultsVisualization even of third-order non-dilated BD and PN was rated excellent by both radiologists with good to excellent interrater agreement. MRI-guided BD puncture was successful in all cases. Planning and BD puncture times were 1:36 ± 2.13 (0:16–11:07) min. and 3:58 ± 2:35 (1:11–9:32) min. Positioning adjustments of the PN was necessary in two patients. Repeated capsular puncture was not necessary in any case. All biliary interventions were completed successfully without major complications.ConclusionA hybrid approach which employs MRI-guided BD puncture for subsequent fluoroscopy-guided biliary intervention is feasible in clinical routine and yields high technical success in patients with non-dilated BD and/or unfavorable conditions for US-guided puncture. Excellent visualization of BD and PN in near-real-time interventional MRI allows successful cannulation of the BD.

  7. Increased signal intensity of prostate lesions on high b-value diffusion-weighted images as a predictive sign of malignancy

    International Nuclear Information System (INIS)

    Quentin, Michael; Schimmoeller, Lars; Antoch, Gerald; Blondin, Dirk; Arsov, Christian; Rabenalt, Robert; Albers, Peter

    2014-01-01

    The evaluation of lesions detected in prostate magnetic resonance imaging (MRI) with increased signal intensity (SI) on high b-value diffusion-weighted images as a sign of malignancy. One hundred and three consecutive patients with prostate MRI examination and MRI-guided in-bore biopsy were retrospectively included in the study. MRI-guided in-bore biopsy histologically confirmed prostate cancer in 50 patients (n = 92 lesions). The other 53 patients (n = 122 lesions) had negative bioptical results. In patients with histologically confirmed prostate cancer, 46 of the 92 lesions had visually increased SI on the high b-value images compared with the peripheral zone (SI = +27 ± 16%) or the central gland (SI = +37 ± 19%, P < 0.001 respectively). In patients with a negative biopsy, ten of the 122 lesions had visually increased SI (compared with the peripheral zone, SI = +29 ± 18%, and with the central gland, SI = +41 ± 15%, P < 0.001 respectively). Neither the apparent diffusion coefficient (ADC) values nor the Gleason Score of lesions with increased SI were significantly different from lesions without increased SI. Visually increased SI on the high b-value images of diffusion-weighted imaging using standard b-values is a sign of malignancy but can occasionally also be a feature of benign lesions. However, it does not indicate more aggressive tumours. (orig.)

  8. MRI-guided vacuum-assisted breast biopsy: comparison with stereotactically guided and ultrasound-guided techniques

    Energy Technology Data Exchange (ETDEWEB)

    Imschweiler, Thomas; Freiwald, Bianka; Kubik-Huch, Rahel A. [Kantonspital Baden AG, Institute for Radiology, Baden (Switzerland); Haueisen, Harald [Kantonspital Aarau AG, Institute for Radiology, Aarau (Switzerland); Kampmann, Gert [Clinica Sant' Anna, Lugano, Sorengo (Switzerland); Rageth, Luzi [Adjumed Services AG, Zurich (Switzerland); Seifert, Burkhardt [Institute for Social and Preventive Medicine, University of Zurich, Division of Biostatistics, Zuerich (Switzerland); Rageth, Christoph [Breast Centre, Zurich (Switzerland)

    2014-01-15

    To analyse the development of MRI-guided vacuum-assisted biopsy (VAB) in Switzerland and to compare the procedure with stereotactically guided and ultrasound-guided VAB. We performed a retrospective analysis of VABs between 2009 and 2011. A total of 9,113 VABs were performed. Of these, 557 were MRI guided. MRI-guided VAB showed the highest growth rate (97 %) of all three procedures. The technical success rates for MRI-guided, stereotactically guided and ultrasound-guided VAB were 98.4 % (548/557), 99.1 % (5,904/5,960) and 99.6 % (2,585/2,596), respectively. There were no significant differences (P = 0.12) between the MRI-guided and the stereotactically guided procedures. The technical success rate for ultrasound-guided VAB was significantly higher than that for MRI-guided VAB (P < 0.001). There were no complications using MRI-guided VAB requiring open surgery. The malignancy diagnosis rate for MRI-guided VAB was similar to that for stereotactically guided VAB (P = 0.35). MRI-guided VAB is a safe and accurate procedure that provides insight into clinical breast findings. (orig.)

  9. High-frequency, high-intensity photoionization

    Science.gov (United States)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  10. Distortion-free diffusion MRI using an MRI-guided Tri-Cobalt 60 radiotherapy system: Sequence verification and preliminary clinical experience.

    Science.gov (United States)

    Gao, Yu; Han, Fei; Zhou, Ziwu; Cao, Minsong; Kaprealian, Tania; Kamrava, Mitchell; Wang, Chenyang; Neylon, John; Low, Daniel A; Yang, Yingli; Hu, Peng

    2017-10-01

    ) under the three orthogonal orientations. The detected errors were 0.474 ± 0.355 mm, 0.475 ± 0.287 mm, and 0.546 ± 0.336 mm in the axial, coronal, and sagittal plane. DW-ssEPI, however, failed the tests due to severe distortion and low signal intensity. Noise correction must be performed for the DW-ssEPI to avoid ADC quantitation errors, whereas it is optional for DP-TSE. At 0 °C, the two sequences provided accurate quantitation with < 3% variation with the reference. In the room temperature study, discrepancies between ADCs from DP-TSE and the reference were within 4%, but could be as high as 8% for DW-ssEPI after the noise correction. Excellent ADC reproducibility with a coefficient of variation < 5% was observed among the 10 measurements of DP-TSE, indicating desirable robustness for ADC-based tumor response assessment. In vivo TRE in DP-TSE was less than 1.6 mm overall, whereas it could be greater than 12 mm in DW-ssEPI. For GBM patients, the CSF and brain tissue ADCs from DP-TSE were within the ranges found in literature. ADC differences between the two techniques were within 8% among the six sarcoma patients. For the reference tube that had a relatively low diffusivity, the two diffusion sequences provided matched measurements. A diffusion technique with excellent geometric fidelity, accurate, and reproducible ADC measurement was demonstrated for longitudinal tumor response assessment using a low-field MRI-guided radiotherapy system. © 2017 American Association of Physicists in Medicine.

  11. The Positive Outcome of MRI-Guided Vacuum Assisted Core Needle Breast Biopsies Is Not Influenced by a Prior Negative Targeted Second-Look Ultrasound.

    Science.gov (United States)

    Ferré, Romuald; AlSharif, Shaza; Aldis, Ann; Mesurolle, Benoît

    2017-11-01

    The study sought to investigate the outcome of breast magnetic resonance-guided biopsies as a function of the indication for magnetic resonance imaging (MRI), the MRI features of the lesions, and the performance or not of a targeted second-look ultrasound (SLUS) prior breast MRI-guided biopsy. We identified 158 women with MRI-detected breast lesions scheduled for MRI-guided biopsy (2007-2013). Patient demographics, performance of targeted SLUS, imaging characteristics, and subsequent pathology results were reviewed. Three biopsies were deferred, and 155 lesions were biopsied under MRI guidance (155 women; median age 55.14 years; range 27-80 years). Ninety-eight women underwent a SLUS prior to the MRI-guided biopsy (63%). Of the 155 biopsied lesions, 23 (15%) were malignant, 106 (68%) were benign, and 26 (17%) were high risk. Four of 15 surgically excised high-risk lesions were upgraded to malignancy (27%). Most of the biopsied lesions corresponded to non-mass-like enhancement (81%, 126 of 155) and most of the biopsies (52%, 81 of 155) were performed in a screening context. No demographic or MRI features were associated with malignancy. No differences were noted between the 2 subgroups (prior SLUS vs no prior SLUS) except for the presence of a synchronous carcinoma associated with a likelihood of targeted SLUS before MRI-guided biopsy (P = .001). A negative SLUS does not influence the pathology outcome of a suspicious lesion biopsied under MR guidance. Copyright © 2017 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Atlas-based deformable image registration for MRI-guided prostate radiation therapy

    International Nuclear Information System (INIS)

    Dowling, J.; Fripp, J.; Salvado, O.; Lambert, J.; Denham, J.W.; Capp, A.; Grer, P.B.; Parker, J.

    2010-01-01

    Full text: To develop atlas-based deformable image registration methods to automatically segment organs and map electron densities to pelvic MRI scans for MRI-guided radiation therapy. Methods An MRT pelvic atlas and corresponding CT atlas were developed based on whole pelvic T 2 MRI scans and CT scans for 39 patients. Expert manual segmentations on both MRI and CT scans were obtained. The atlas was deformably registered to the individual patient MRI scans for automatic prostate, rectum, bladder and bone segmentation. These were compared to the manual segmentations using the Dice overlap coefficient. The same deformation vectors were then applied to the CT-atlas to produce pseudo-CT scans that correspond to the patient MRI scan anatomy but are populated with Hounsfield units. The original patient plan was recalculated on the pseudo-CT and compared to the original CT plan and bulk density plans on the MRI scans. Results Dice coefficient results were high (>0.8) for bone and prostate but lower (<0.7) for bladder and rectum which exhibit greater changes in shape and volume. Doses calculated on pseudo-CT scans were within 3% of original patient plans. Two sources of discrepancy were found; MR anatomy differences from CT due to patient setup differences at the MR scanner. and Hounsfield unit differences for bone in the pseudo-CT from original CT. Patient setup will be adressed with a

  13. Feasibility of MRI-guided Focused Ultrasound as Organ-Sparing Treatment for Testicular Cancer

    Science.gov (United States)

    Staruch, Robert; Curiel, Laura; Chopra, Rajiv; Hynynen, Kullervo

    2009-04-01

    High cure rates for testicular cancer have prompted interest in organ-sparing surgery for patients with bilateral disease or single testis. Focused ultrasound (FUS) ablation could offer a noninvasive approach to organ-sparing surgery. The objective of this study was to determine the feasibility of using MR thermometry to guide organ-sparing focused ultrasound surgery in the testis. The testes of anesthetized rabbits were sonicated in several discrete locations using a single-element focused transducer operating at 2.787MHz. Focal heating was visualized with MR thermometry, using a measured PRF thermal coefficient of -0.0089±0.0003 ppm/° C. Sonications at 3.5-14 acoustic watts applied for 30 seconds produced maximum temperature elevations of 10-80° C, with coagulation verified by histology. Coagulation of precise volumes in the testicle is feasible with MRI-guided focused ultrasound. Variability in peak temperature for given sonication parameters suggests the need for online temperature feedback control.

  14. MRI-guided and CT-guided cervical nerve root infiltration therapy. A cost comparison

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, M.H.; Froeling, V.; Roettgen, R.; Bucourt, M. de; Hamm, B.; Streitparth, F. [Charite University Medicine Berlin (Germany). Dept. of Diagnostic and Interventional Radiology; Bretschneider, T. [Magdeburg Univ. (Germany). Dept. of Radiology and Nuclear Medicine; Hartwig, T.; Disch, A.C. [Charite University Medicine Berlin (Germany). Center for Musculoskeletal Surgery

    2014-06-15

    Purpose: To evaluate and compare the costs of MRI-guided and CT-guided cervical nerve root infiltration for the minimally invasive treatment of radicular neck pain. Materials and Methods: Between September 2009 and April 2012, 22 patients (9 men, 13 women; mean age: 48.2 years) underwent MRI-guided (1.0 Tesla, Panorama HFO, Philips) single-site periradicular cervical nerve root infiltration with 40 mg triamcinolone acetonide. A further 64 patients (34 men, 30 women; mean age: 50.3 years) were treated under CT fluoroscopic guidance (Somatom Definition 64, Siemens). The mean overall costs were calculated as the sum of the prorated costs of equipment use (purchase, depreciation, maintenance, and energy costs), personnel costs and expenditure for disposables that were identified for MRI- and CT-guided procedures. Additionally, the cost of ultrasound guidance was calculated. Results: The mean intervention time was 24.9 min. (range: 12-36 min.) for MRI-guided infiltration and 19.7 min. (range: 5-54 min.) for CT-guided infiltration. The average total costs per patient were EUR 240 for MRI-guided interventions and EUR 124 for CT-guided interventions. These were (MRI/CT guidance) EUR 150/60 for equipment use, EUR 46/40 for personnel, and EUR 44/25 for disposables. The mean overall cost of ultrasound guidance was EUR 76. Conclusion: Cervical nerve root infiltration using MRI guidance is still about twice as expensive as infiltration using CT guidance. However, since it does not involve radiation exposure for patients and personnel, MRI-guided nerve root infiltration may become a promising alternative to the CT-guided procedure, especially since a further price decrease is expected for MRI devices and MR-compatible disposables. In contrast, ultrasound remains the less expensive method for nerve root infiltration guidance. (orig.)

  15. MRI-guided and CT-guided cervical nerve root infiltration therapy. A cost comparison

    International Nuclear Information System (INIS)

    Maurer, M.H.; Froeling, V.; Roettgen, R.; Bucourt, M. de; Hamm, B.; Streitparth, F.; Bretschneider, T.; Hartwig, T.; Disch, A.C.

    2014-01-01

    Purpose: To evaluate and compare the costs of MRI-guided and CT-guided cervical nerve root infiltration for the minimally invasive treatment of radicular neck pain. Materials and Methods: Between September 2009 and April 2012, 22 patients (9 men, 13 women; mean age: 48.2 years) underwent MRI-guided (1.0 Tesla, Panorama HFO, Philips) single-site periradicular cervical nerve root infiltration with 40 mg triamcinolone acetonide. A further 64 patients (34 men, 30 women; mean age: 50.3 years) were treated under CT fluoroscopic guidance (Somatom Definition 64, Siemens). The mean overall costs were calculated as the sum of the prorated costs of equipment use (purchase, depreciation, maintenance, and energy costs), personnel costs and expenditure for disposables that were identified for MRI- and CT-guided procedures. Additionally, the cost of ultrasound guidance was calculated. Results: The mean intervention time was 24.9 min. (range: 12-36 min.) for MRI-guided infiltration and 19.7 min. (range: 5-54 min.) for CT-guided infiltration. The average total costs per patient were EUR 240 for MRI-guided interventions and EUR 124 for CT-guided interventions. These were (MRI/CT guidance) EUR 150/60 for equipment use, EUR 46/40 for personnel, and EUR 44/25 for disposables. The mean overall cost of ultrasound guidance was EUR 76. Conclusion: Cervical nerve root infiltration using MRI guidance is still about twice as expensive as infiltration using CT guidance. However, since it does not involve radiation exposure for patients and personnel, MRI-guided nerve root infiltration may become a promising alternative to the CT-guided procedure, especially since a further price decrease is expected for MRI devices and MR-compatible disposables. In contrast, ultrasound remains the less expensive method for nerve root infiltration guidance. (orig.)

  16. Extracting Visual Evoked Potentials from EEG Data Recorded During fMRI-guided Transcranial Magnetic Stimulation

    Science.gov (United States)

    Sadeh, Boaz; Yovel, Galit

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator's coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes. PMID:24893706

  17. Extracting visual evoked potentials from EEG data recorded during fMRI-guided transcranial magnetic stimulation.

    Science.gov (United States)

    Sadeh, Boaz; Yovel, Galit

    2014-05-12

    Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator's coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.

  18. Clinical outcome following a low-suspicion multiparametric prostate MRI or benign MRI-guided biopsy to detect prostate cancer

    DEFF Research Database (Denmark)

    Boesen, Lars; Nørgaard, Nis; Løgager, Vibeke

    2017-01-01

    follow-up [132/156 (85%)] had decreasing levels of prostate-specific-antigen and could be monitored in primary care. CONCLUSION: A low-suspicion MRI in men with prior negative systematic biopsies has a high negative predictive value in ruling out longer term significant cancer. Therefore, immediate...... repeated biopsies are of limited clinical value and could be avoided even if prostate-specific-antigen levels are persistently elevated.......PURPOSE: To assess the future risk of detecting significant prostate cancer following either a low-suspicion MRI or suspicious MRI with benign MRI-guided biopsies in men with prior negative systematic biopsies. MATERIALS AND METHODS: 289 prospectively enrolled men underwent MRI followed by repeated...

  19. Towards MRI-guided linear accelerator control: gating on an MRI accelerator.

    Science.gov (United States)

    Crijns, S P M; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2011-08-07

    , we will realize more intricate MRI-guided linear accelerator control in the near future.

  20. Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery.

    Science.gov (United States)

    Feshitan, Jameel A; Vlachos, Fotis; Sirsi, Shashank R; Konofagou, Elisa E; Borden, Mark A

    2012-01-01

    We have synthesized a biomaterial consisting of Gd(III) ions chelated to lipid-coated, size-selected microbubbles for utility in both magnetic resonance and ultrasound imaging. The macrocyclic ligand DOTA-NHS was bound to PE headgroups on the lipid shell of pre-synthesized microbubbles. Gd(III) was then chelated to DOTA on the microbubble shell. The reaction temperature was optimized to increase the rate of Gd(III) chelation while maintaining microbubble stability. ICP-OES analysis of the microbubbles determined a surface density of 7.5 × 10(5) ± 3.0 × 10(5) Gd(III)/μm(2) after chelation at 50 °C. The Gd(III)-bound microbubbles were found to be echogenic in vivo during high-frequency ultrasound imaging of the mouse kidney. The Gd(III)-bound microbubbles also were characterized by magnetic resonance imaging (MRI) at 9.4 T by a spin-echo technique and, surprisingly, both the longitudinal and transverse proton relaxation rates were found to be roughly equal to that of no-Gd(III) control microbubbles and saline. However, the relaxation rates increased significantly, and in a dose-dependent manner, after sonication was used to fragment the Gd(III)-bound microbubbles into non-gas-containing lipid bilayer remnants. The longitudinal (r(1)) and transverse (r(2)) molar relaxivities were 4.0 ± 0.4 and 120 ± 18 mM(-1)s(-1), respectively, based on Gd(III) content. The Gd(III)-bound microbubbles may find application in the measurement of cavitation events during MRI-guided focused ultrasound therapy and to track the biodistribution of shell remnants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. High intensity radiation imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.

    1976-01-01

    A nuclear imaging system is described for mapping a spatially distributed source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound in which the nuclear energy is spatially coded by a zone plate positioned between the source and a spatial detector, and a half tone screen is positioned between the source and the zone plate to increase the definition of the image

  2. High Intensity Exercise in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Wens, Inez; Dalgas, Ulrik; Vandenabeele, Frank

    2015-01-01

    Introduction Low-to-moderate intensity exercise improves muscle contractile properties and endurance capacity in multiple sclerosis (MS). The impact of high intensity exercise remains unknown. Methods Thirty-four MS patients were randomized into a sedentary control group (SED, n = 11) and 2...... exercise groups that performed 12 weeks of a high intensity interval (HITR, n = 12) or high intensity continuous cardiovascular training (HCTR, n = 11), both in combination with resistance training. M.vastus lateralis fiber cross sectional area (CSA) and proportion, knee-flexor/extensor strength, body...... composition, maximal endurance capacity and self-reported physical activity levels were assessed before and after 12 weeks. Results Compared to SED, 12 weeks of high intensity exercise increased mean fiber CSA (HITR: +21±7%, HCTR: +23±5%). Furthermore, fiber type I CSA increased in HCTR (+29±6%), whereas type...

  3. Full automatic fiducial marker detection on coil arrays for accurate instrumentation placement during MRI guided breast interventions

    Science.gov (United States)

    Filippatos, Konstantinos; Boehler, Tobias; Geisler, Benjamin; Zachmann, Harald; Twellmann, Thorsten

    2010-02-01

    With its high sensitivity, dynamic contrast-enhanced MR imaging (DCE-MRI) of the breast is today one of the first-line tools for early detection and diagnosis of breast cancer, particularly in the dense breast of young women. However, many relevant findings are very small or occult on targeted ultrasound images or mammography, so that MRI guided biopsy is the only option for a precise histological work-up [1]. State-of-the-art software tools for computer-aided diagnosis of breast cancer in DCE-MRI data offer also means for image-based planning of biopsy interventions. One step in the MRI guided biopsy workflow is the alignment of the patient position with the preoperative MR images. In these images, the location and orientation of the coil localization unit can be inferred from a number of fiducial markers, which for this purpose have to be manually or semi-automatically detected by the user. In this study, we propose a method for precise, full-automatic localization of fiducial markers, on which basis a virtual localization unit can be subsequently placed in the image volume for the purpose of determining the parameters for needle navigation. The method is based on adaptive thresholding for separating breast tissue from background followed by rigid registration of marker templates. In an evaluation of 25 clinical cases comprising 4 different commercial coil array models and 3 different MR imaging protocols, the method yielded a sensitivity of 0.96 at a false positive rate of 0.44 markers per case. The mean distance deviation between detected fiducial centers and ground truth information that was appointed from a radiologist was 0.94mm.

  4. High intensity proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Mizumoto, Motoharu; Nishida, Takahiko

    1991-06-01

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  5. High Intensity Polarized Electron Sources

    International Nuclear Information System (INIS)

    Poelker, Benard; Adderley, Philip; Brittian, Joshua; Clark, J.; Grames, Joseph; Hansknecht, John; McCarter, James; Stutzman, Marcy; Suleiman, Riad; Surles-law, Kenneth

    2008-01-01

    During the 1990s, at numerous facilities world wide, extensive RandD devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source RandD. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular?Q-weak, a parity violation experiment that will look for physics beyond the Standard Model?requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlate

  6. MRI-guided biopsies and minimally invasive therapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Sangeet Ghai

    2015-01-01

    Full Text Available Recent advances in multiparametric magnetic resonance imaging (mp-MRI have led to a paradigm shift in the diagnosis and management of prostate cancer (PCa. Its sensitivity in detecting clinically significant cancer and the ability to localize the tumor within the prostate gland has opened up discussion on targeted diagnosis and therapy in PCa. Use of mp-MRI in conjunction with prostate-specific antigen followed by targeted biopsy allows for a better diagnostic pathway than transrectal ultrasound (TRUS biopsy and improves the diagnosis of PCa. Improved detection of PCa by mp-MRI has also opened up opportunities for focal therapy within the organ while reducing the incidence of side-effects associated with the radical treatment methods for PCa. This review discusses the evidence and techniques for in-bore MRI-guided prostate biopsy and provides an update on the status of MRI-guided targeted focal therapy in PCa.

  7. MRI guided stereotactic ventrointermediate thalamotomy for writer's cramp: two cases report and literature review

    Directory of Open Access Journals (Sweden)

    Chao-shi NIU

    2015-10-01

    Full Text Available Objective To explore the methods and curative effect of stereotactic surgery for treating writer's cramp (WC. Methods and Results Two patients with writer's cramp (tremor type underwent MRI guided stereotactic ventrointermediate (Vim thalamotomy on the left side. The symptoms of one patient disappeared immediately after operation, and the patient could write legibly. The tremor of right upper extremity in another patient was improved significantly. Two patients did not present obvious complications, and the previous symptoms were not found to recur during follow-up period respectively. Conclusions Stereotactic surgery for treatment of writer's cramp has definite therapeutic effect. MRI guided stereotactic technique can effectively avoid the complications of Vim thalamotomy. However, the indications of two methods in surgical treatment [thalamotomy and deep brain stimulation (DBS] and the respective merits still need further study. DOI: 10.3969/j.issn.1672-6731.2015.10.009

  8. Development of a Pneumatic Robot for MRI-guided Transperineal Prostate Biopsy and Brachytherapy: New Approaches

    Science.gov (United States)

    Song, Sang-Eun; Cho, Nathan B.; Fischer, Gregory; Hata, Nobuhito; Tempany, Clare; Fichtinger, Gabor; Iordachita, Iulian

    2011-01-01

    Magnetic Resonance Imaging (MRI) guided prostate biopsy and brachytherapy has been introduced in order to enhance the cancer detection and treatment. For the accurate needle positioning, a number of robotic assistants have been developed. However, problems exist due to the strong magnetic field and limited workspace. Pneumatically actuated robots have shown the minimum distraction in the environment but the confined workspace limits optimal robot design and thus controllability is often poor. To overcome the problem, a simple external damping mechanism using timing belts was sought and a 1-DOF mechanism test result indicated sufficient positioning accuracy. Based on the damping mechanism and modular system design approach, a new workspace-optimized 4-DOF parallel robot was developed for the MRI-guided prostate biopsy and brachytherapy. A preliminary evaluation of the robot was conducted using previously developed pneumatic controller and satisfying results were obtained. PMID:21399734

  9. Fast MRI-guided vacuum-assisted breast biopsy: initial experience.

    Science.gov (United States)

    Liberman, Laura; Morris, Elizabeth A; Dershaw, D David; Thornton, Cynthia M; Van Zee, Kimberly J; Tan, Lee K

    2003-11-01

    The purpose of this study was to evaluate a new method for performing MRI-guided vacuum-assisted breast biopsy in a study of lesions that had subsequent surgical excision. SUBJECTS AND METHODS. Twenty women scheduled for MRI-guided needle localization and surgical biopsy were prospectively entered in the study. MRI-guided biopsy was performed with a vacuum-assisted probe, followed by placement of a localizing clip, and then needle localization for surgical excision. Vacuum-assisted biopsy and surgical histology were correlated. Vacuum-assisted biopsy was successfully performed in 19 (95%) of the 20 women. The median size of 27 MRI-detected lesions that had biopsy was 1.0 cm (range, 0.4-6.4 cm). Cancer was present in eight (30%) of 27 lesions and in six (32%) of 19 women; among these eight cancers, five were infiltrating and three were ductal carcinoma in situ (DCIS). Among these 27 lesions, histology was benign at vacuum-assisted biopsy and at surgery in 19 (70%), cancer at vacuum-assisted biopsy in six (22%), atypical ductal hyperplasia at vacuum-assisted biopsy and DCIS at surgery in one (4%), and benign at vacuum-assisted biopsy with surgery showing microscopic DCIS that was occult at MRI in one (4%). The median time to perform vacuum-assisted biopsy of a single lesion was 35 min (mean, 35 min; range, 24-48 min). Placement of a localizing clip, attempted in 26 lesions, was successful in 25 (96%) of 26, and the clip was retrieved on specimen radiography in 22 (96%) of 23. One complication occurred: a hematoma that resolved with compression. MRI-guided vacuum-assisted biopsy is a fast, safe, and accurate alternative to surgical biopsy for breast lesions detected on MRI.

  10. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    OpenAIRE

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian...

  11. A Concentric Tube Continuum Robot with Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting

    OpenAIRE

    Su, Hao; Li, Gang; Rucker, D. Caleb; Webster, Robert J.; Fischer, Gregory S.

    2016-01-01

    This paper presents the design, modeling and experimental evaluation of a magnetic resonance imaging (MRI)-compatible concentric tube continuum robotic system. This system enables MRI-guided deployment of a precurved and steerable concentric tube continuum mechanism, and is suitable for clinical applications where a curved trajectory is needed. This compact 6 degree-of-freedom (DOF) robotic system is piezoelectrically-actuated, and allows simultaneous robot motion and imaging with no visually...

  12. Development of a Pneumatic Robot for MRI-guided Transperineal Prostate Biopsy and Brachytherapy: New Approaches

    OpenAIRE

    Song, Sang-Eun; Cho, Nathan B.; Fischer, Gregory; Hata, Nobuhito; Tempany, Clare; Fichtinger, Gabor; Iordachita, Iulian

    2010-01-01

    Magnetic Resonance Imaging (MRI) guided prostate biopsy and brachytherapy has been introduced in order to enhance the cancer detection and treatment. For the accurate needle positioning, a number of robotic assistants have been developed. However, problems exist due to the strong magnetic field and limited workspace. Pneumatically actuated robots have shown the minimum distraction in the environment but the confined workspace limits optimal robot design and thus controllability is often poor....

  13. MRI-guided stereotactic neurosurgical procedures in a diagnostic MRI suite: Background and safe practice recommendations.

    Science.gov (United States)

    Larson, Paul S; Willie, Jon T; Vadivelu, Sudhakar; Azmi-Ghadimi, Hooman; Nichols, Amy; Fauerbach, Loretta Litz; Johnson, Helen Boehm; Graham, Denise

    2017-07-01

    The development of navigation technology facilitating MRI-guided stereotactic neurosurgery has enabled neurosurgeons to perform a variety of procedures ranging from deep brain stimulation to laser ablation entirely within an intraoperative or diagnostic MRI suite while having real-time visualization of brain anatomy. Prior to this technology, some of these procedures required multisite workflow patterns that presented significant risk to the patient during transport. For those facilities with access to this technology, safe practice guidelines exist only for procedures performed within an intraoperative MRI. There are currently no safe practice guidelines or parameters available for facilities looking to integrate this technology into practice in conventional MRI suites. Performing neurosurgical procedures in a diagnostic MRI suite does require precautionary measures. The relative novelty of technology and workflows for direct MRI-guided procedures requires consideration of safe practice recommendations, including those pertaining to infection control and magnet safety issues. This article proposes a framework of safe practice recommendations designed for assessing readiness and optimization of MRI-guided neurosurgical interventions in the diagnostic MRI suite in an effort to mitigate patient risk. The framework is based on existing clinical evidence, recommendations, and guidelines related to infection control and prevention, health care-associated infections, and magnet safety, as well as the clinical and practical experience of neurosurgeons utilizing this technology. © 2017 American Society for Healthcare Risk Management of the American Hospital Association.

  14. A Concentric Tube Continuum Robot with Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting

    Science.gov (United States)

    Su, Hao; Li, Gang; Rucker, D. Caleb; Webster, Robert J.; Fischer, Gregory S.

    2017-01-01

    This paper presents the design, modeling and experimental evaluation of a magnetic resonance imaging (MRI)-compatible concentric tube continuum robotic system. This system enables MRI-guided deployment of a precurved and steerable concentric tube continuum mechanism, and is suitable for clinical applications where a curved trajectory is needed. This compact 6 degree-of-freedom (DOF) robotic system is piezoelectrically-actuated, and allows simultaneous robot motion and imaging with no visually observable image artifact. The targeting accuracy is evaluated with optical tracking system and gelatin phantom under live MRI-guidance with Root Mean Square (RMS) errors of 1.94 and 2.17 mm respectively. Furthermore, we demonstrate that the robot has kinematic redundancy to reach the same target through different paths. This was evaluated in both free space and MRI-guided gelatin phantom trails, with RMS errors of 0.48 and 0.59 mm respectively. As the first of its kind, MRI-guided targeted concentric tube needle placements with ex vivo porcine liver are demonstrated with 4.64 mm RMS error through closed-loop control of the piezoelectrically-actuated robot. PMID:26983842

  15. A robotic device for MRI-guided prostate brachytherapy

    NARCIS (Netherlands)

    Lagerburg, V.

    2008-01-01

    One of the treatment options for prostate cancer is brachytherapy with iodine-125 sources. In prostate brachytherapy a high radiation dose is delivered to the prostate with a steep dose fall off to critical surrounding organs. The implantation of the iodine sources is currently performed under

  16. Photoproduction at high energy and high intensity

    CERN Multimedia

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  17. MRI-guided tumor tracking in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Laura I; Jiang, Steve B [Center for Advanced Radiotherapy Technology and Department of Radiation Oncology, University of California San Diego, 3960 Health Sciences Dr., La Jolla, CA 92093-0865 (United States); Du, Jiang, E-mail: lcervino@ucsd.edu [Department of Radiology, University of California San Diego, 200 West Arbor Dr., San Diego, CA 92103-8226 (United States)

    2011-07-07

    Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error e and the error at 95% confidence level e{sub 95} were evaluated for each model. The ANN model led to e = 1.5 mm and e{sub 95} = 4.2 mm, while TM led to e = 0.6 mm and e{sub 95} = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.

  18. Stimulated Raman backscattering at high laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M M [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Tajima, Toshiki; Sasaki, Akira; Maluckov, A; Jovanovic, M

    1998-03-01

    Signatures of Stimulated Raman backscattering of a short-pulse high-intensity laser interacting with an underdense plasma are discussed. We introduce a nonlinear three-wave interaction model that accounts for laser pump depletion and relativistic detuning. A mechanism is revealed based on a generic route to chaos, that predicts a progressive increase of the backscatter complexity with a growing laser intensity. Importance of kinetic effects is outlined and demonstrated in fluid-hybrid and particle simulations. As an application, we show that spectral anomalies of the backscatter, predicted by the above model, are consistent with recent sub-picosecond, high-intensity laser gas-target measurements at Livermore and elsewhere. Finally, a recently proposed scheme for generation of ultra-short, low-prepulse laser pulses by Raman backscattering in a thin foil target, is shown. (author)

  19. Improved operative efficiency using a real-time MRI-guided stereotactic platform for laser amygdalohippocampotomy.

    Science.gov (United States)

    Ho, Allen L; Sussman, Eric S; Pendharkar, Arjun V; Le, Scheherazade; Mantovani, Alessandra; Keebaugh, Alaine C; Drover, David R; Grant, Gerald A; Wintermark, Max; Halpern, Casey H

    2018-04-01

    OBJECTIVE MR-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive method for thermal destruction of benign or malignant tissue that has been used for selective amygdalohippocampal ablation for the treatment of temporal lobe epilepsy. The authors report their initial experience adopting a real-time MRI-guided stereotactic platform that allows for completion of the entire procedure in the MRI suite. METHODS Between October 2014 and May 2016, 17 patients with mesial temporal sclerosis were selected by a multidisciplinary epilepsy board to undergo a selective amygdalohippocampal ablation for temporal lobe epilepsy using MRgLITT. The first 9 patients underwent standard laser ablation in 2 phases (operating room [OR] and MRI suite), whereas the next 8 patients underwent laser ablation entirely in the MRI suite with the ClearPoint platform. A checklist specific to the real-time MRI-guided laser amydalohippocampal ablation was developed and used for each case. For both cohorts, clinical and operative information, including average case times and accuracy data, was collected and analyzed. RESULTS There was a learning curve associated with using this real-time MRI-guided system. However, operative times decreased in a linear fashion, as did total anesthesia time. In fact, the total mean patient procedure time was less in the MRI cohort (362.8 ± 86.6 minutes) than in the OR cohort (456.9 ± 80.7 minutes). The mean anesthesia time was significantly shorter in the MRI cohort (327.2 ± 79.9 minutes) than in the OR cohort (435.8 ± 78.4 minutes, p = 0.02). CONCLUSIONS The real-time MRI platform for MRgLITT can be adopted in an expedient manner. Completion of MRgLITT entirely in the MRI suite may lead to significant advantages in procedural times.

  20. In-bore setup and software for 3T MRI-guided transperineal prostate biopsy

    International Nuclear Information System (INIS)

    Tokuda, Junichi; Tuncali, Kemal; Song, Sang-Eun; Fedorov, Andriy; Oguro, Sota; Fennessy, Fiona M; Tempany, Clare M; Hata, Nobuhiko; Iordachita, Iulian; Lasso, Andras

    2012-01-01

    MRI-guided prostate biopsy in conventional closed-bore scanners requires transferring the patient outside the bore during needle insertion due to the constrained in-bore space, causing a safety hazard and limiting image feedback. To address this issue, we present our custom-made in-bore setup and software to support MRI-guided transperineal prostate biopsy in a wide-bore 3 T MRI scanner. The setup consists of a specially designed tabletop and a needle-guiding template with a Z-frame that gives a physician access to the perineum of the patient at the imaging position and allows the physician to perform MRI-guided transperineal biopsy without moving the patient out of the scanner. The software and Z-frame allow registration of the template, target planning and biopsy guidance. Initially, we performed phantom experiments to assess the accuracy of template registration and needle placement in a controlled environment. Subsequently, we embarked on our clinical trial (N = 10). The phantom experiments showed that the translational errors of the template registration along the right–left (RP) and anterior–posterior (AP) axes were 1.1 ± 0.8 and 1.4 ± 1.1 mm, respectively, while the rotational errors around the RL, AP and superior–inferior axes were (0.8 ± 1.0)°, (1.7 ± 1.6)° and (0.0 ± 0.0)°, respectively. The 2D root-mean-square (RMS) needle-placement error was 3 mm. The clinical biopsy procedures were safely carried out in all ten clinical cases with a needle-placement error of 5.4 mm (2D RMS). In conclusion, transperineal prostate biopsy in a wide-bore 3T scanner is feasible using our custom-made tabletop setup and software, which supports manual needle placement without moving the patient out of the magnet. (paper)

  1. MRI guided needle localization in a patient with recurrence pleomorphic sarcoma and post-operative scarring

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ching-Di [Chang Gung University College of Medicine, Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung (China); Harvard Medical School, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA (United States); Wei, Jesse; Wu, Jim S. [Harvard Medical School, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA (United States); Goldsmith, Jeffrey D. [Harvard Medical School, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA (United States); Gebhardt, Mark C. [Harvard Medical School, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA (United States)

    2017-07-15

    MRI-guided wire localization is commonly used for surgical localization of breast lesions. Here we introduce an alternative use of this technique to help with surgical resection of a recurrent pleomorphic sarcoma embedded in extensive post-treatment scar tissue. We describe a case of recurrent pleomorphic soft tissue sarcoma in the thigh after treatment with neoadjuvant therapy, surgery, and radiation. Due to the distortion of the normal tissue architecture and formation of extensive scar tissue from prior treatment, wire localization under MRI was successfully used to assist the surgeon in identifying the recurrent tumor for removal. (orig.)

  2. Cryogenic semiconductor high-intensity radiation monitors

    International Nuclear Information System (INIS)

    Palmieri, V.G.; Bell, W.H.; Borer, K.; Casagrande, L.; Da Via, C.; Devine, S.R.H.; Dezillie, B.; Esposito, A.; Granata, V.; Hauler, F.; Jungermann, L.; Li, Z.; Lourenco, C.; Niinikoski, T.O.; Shea, V. O'; Ruggiero, G.; Sonderegger, P.

    2003-01-01

    This paper describes a novel technique to monitor high-intensity particle beams by means of a semiconductor detector. It consists of cooling a semiconductor detector down to cryogenic temperature to suppress the thermally generated leakage current and to precisely measure the integrated ionization signal. It will be shown that such a device provides very good linearity and a dynamic range wider than is possible with existing techniques. Moreover, thanks to the Lazarus effect, extreme radiation hardness can be achieved providing in turn absolute intensity measurements against precise calibration of the device at low beam flux

  3. Safety and tolerability of MRI-guided infusion of AAV2-hAADC into the mid-brain of nonhuman primate

    Directory of Open Access Journals (Sweden)

    Waldy San Sebastian

    2014-01-01

    Full Text Available Aromatic L-amino acid decarboxylase (AADC deficiency is a rare, autosomal-recessive neurological disorder caused by mutations in the DDC gene that leads to an inability to synthesize catecholamines and serotonin. As a result, patients suffer compromised development, particularly in motor function. A recent gene replacement clinical trial explored putaminal delivery of recombinant adeno-associated virus serotype 2 vector encoding human AADC (AAV2-hAADC in AADC-deficient children. Unfortunately, patients presented only modest amelioration of motor symptoms, which authors acknowledged could be due to insufficient transduction of putamen. We hypothesize that, with the development of a highly accurate MRI-guided cannula placement technology, a more effective approach might be to target the affected mid-brain neurons directly. Transduction of AADC-deficient dopaminergic neurons in the substantia nigra and ventral tegmental area with locally infused AAV2-hAADC would be expected to lead to restoration of normal dopamine levels in affected children. The objective of this study was to assess the long-term safety and tolerability of bilateral AAV2-hAADC MRI-guided pressurized infusion into the mid-brain of nonhuman primates. Animals received either vehicle, low or high AAV2-hAADC vector dose and were euthanized 1, 3, or 9 months after surgery. Our data indicate that effective mid-brain transduction was achieved without untoward effects.

  4. Very high intensity reaction chamber design

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1975-09-01

    The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the 3 / 2 power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given

  5. Development of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, M.; Kusano, J.; Hasegawa, K.; Ouchi, N.; Oguri, H.; Kinsho, M.; Touchi, Y.; Honda, Y.; Mukugi, K.; Ino, H.; Noda, F.; Akaoka, N.; Kaneko, H.; Chishiro, E.; Fechner, B.

    1997-01-01

    The high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 5.33mA has been proposed for the Neutron Science Project (NSP) at JAERI. the NSP is aiming at exploring nuclear technologies for nuclear waste transmutation based on a proton induced spallation neutrons. The proposed accelerators facilities will be also used in the various basic research fields such as condensed matter physics in combination with a high intensity proton storage ring. The R and D work has been carried out for the components of the front-end of the proton accelerator. For the high energy portion above 100 MeV, superconducting (SC) accelerator linac has been designed and developed as a major option. (Author) 7 refs

  6. Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, Martijn G. [Radboud University Nijmegen Medical Centre, Department of Radiology, Nijmegen (Netherlands); University Medical Centre Nijmegen, Department of Radiology, Nijmegen (Netherlands); Bomers, Joyce G.R.; Yakar, Derya; Huisman, Henkjan; Bosboom, Dennis; Scheenen, Tom W.J.; Fuetterer, Jurgen J. [Radboud University Nijmegen Medical Centre, Department of Radiology, Nijmegen (Netherlands); Rothgang, Eva [Pattern Recognition Lab, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); Center for Applied Medical Imaging, Siemens Corporate Research (Germany); Center for Applied Medical Imaging, Siemens Corporate Research, Baltimore, MD (United States); Misra, Sarthak [University of Twente, MIRA-Institute of Biomedical Technology and Technical Medicine, Enschede (Netherlands)

    2012-02-15

    To evaluate the accuracy and speed of a novel robotic technique as an aid to perform magnetic resonance image (MRI)-guided prostate biopsies on patients with cancer suspicious regions. A pneumatic controlled MR-compatible manipulator with 5 degrees of freedom was developed in-house to guide biopsies under real-time imaging. From 13 consecutive biopsy procedures, the targeting error, biopsy error and target displacement were calculated to evaluate the accuracy. The time was recorded to evaluate manipulation and procedure time. The robotic and manual techniques demonstrated comparable results regarding mean targeting error (5.7 vs 5.8 mm, respectively) and mean target displacement (6.6 vs 6.0 mm, respectively). The mean biopsy error was larger (6.5 vs 4.4 mm) when using the robotic technique, although not significant. Mean procedure and manipulation time were 76 min and 6 min, respectively using the robotic technique and 61 and 8 min with the manual technique. Although comparable results regarding accuracy and speed were found, the extended technical effort of the robotic technique make the manual technique - currently - more suitable to perform MRI-guided biopsies. Furthermore, this study provided a better insight in displacement of the target during in vivo biopsy procedures. (orig.)

  7. Evaluation of a robotic technique for transrectal MRI-guided prostate biopsies

    International Nuclear Information System (INIS)

    Schouten, Martijn G.; Bomers, Joyce G.R.; Yakar, Derya; Huisman, Henkjan; Bosboom, Dennis; Scheenen, Tom W.J.; Fuetterer, Jurgen J.; Rothgang, Eva; Misra, Sarthak

    2012-01-01

    To evaluate the accuracy and speed of a novel robotic technique as an aid to perform magnetic resonance image (MRI)-guided prostate biopsies on patients with cancer suspicious regions. A pneumatic controlled MR-compatible manipulator with 5 degrees of freedom was developed in-house to guide biopsies under real-time imaging. From 13 consecutive biopsy procedures, the targeting error, biopsy error and target displacement were calculated to evaluate the accuracy. The time was recorded to evaluate manipulation and procedure time. The robotic and manual techniques demonstrated comparable results regarding mean targeting error (5.7 vs 5.8 mm, respectively) and mean target displacement (6.6 vs 6.0 mm, respectively). The mean biopsy error was larger (6.5 vs 4.4 mm) when using the robotic technique, although not significant. Mean procedure and manipulation time were 76 min and 6 min, respectively using the robotic technique and 61 and 8 min with the manual technique. Although comparable results regarding accuracy and speed were found, the extended technical effort of the robotic technique make the manual technique - currently - more suitable to perform MRI-guided biopsies. Furthermore, this study provided a better insight in displacement of the target during in vivo biopsy procedures. (orig.)

  8. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  9. Development of a high intensity proton accelerator

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu; Kusano, Joichi; Hasegawa, Kazuo; Ito, Nobuo; Oguri, Hidetomo; Touchi, Yutaka; Mukugi, Ken; Ino, Hiroshi

    1997-01-01

    The high-intensity proton linear accelerator with a beam power of 15 MW has been proposed for various engineering tests for the nuclear waste transmutation system as one of the research plans in the Neutron Science Research Program (NSRP) in JAERI. High intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beam generated from the proton spallation reaction will be utilized at these facilities in each research field. The R and D work has been carried out for the components of the front-end part of the proton accelerator; ion source, RFQ, DTL and RF source. In the beam test, the current of 70 mA with a duty factor of 7% has been accelerated from the RFQ at the energy of 2 MeV. A hot test model of the DTL for the high power and high duty operation was fabricated and tested. For the high energy portion above 100 MeV, superconducting accelerating cavity is studied as a main option. The superconducting linac is expected to have several favourable characteristics for high intensity accelerator such as short accelerator length, large bore radius resulting in low beam losses and cost effectiveness for construction and operation. A test stand with equipment of cryogenics system, vacuum system, RF system and cavity processing and cleaning is prepared to test the physics issues and fabrication process. The proposed plan for accelerator design and construction will compose of two consecutive stages. The first stage will be completed in about 7 years with the beam power of 1.5 MW. As the second stage gradual upgrading of the beam power will be made up to 15 MW. 7 refs., 3 figs., 4 tabs

  10. The utilization of high-intensity lasers

    International Nuclear Information System (INIS)

    Fabre, E.

    1988-01-01

    The 1988 progress report of the laboratory for the Utilization of High-Intensity Lasers (Polytechnic School, France), is presented. The research program is focused on the laser-plasma physics, on the generation of high pressures by means of laser shock heating, on the laser spectroscopy and on the laser implosions. Numerical simulation codes are developed. Concerning the atomic physics, the investigations on dense plasmas and the x-laser research developments are carried out. The research activities of the laboratory teams, the published papers, the national and international cooperations, are given [fr

  11. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  12. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  13. Physics of high intensity nanosecond electron source

    International Nuclear Information System (INIS)

    Herrera-Gomez, A.; Spicer, W.E.

    1993-08-01

    A new high-intensity, short-time electron source is now being used at the Stanford Linear Accelerator Center (SLAC). Using a GaAs negative affinity semiconductor in the construction of the cathode, it is possible to fulfill operation requirements such as peak currents of tens of amperes, peak widths of the order of nanoseconds, hundreds of hours of operation stability, and electron spin polarization. The cathode is illuminated with high intensity laser pulses, and photoemitted electrons constitute the yield. Because of the high currents, some nonlinear effects are present. Very noticeable is the so-called Charge Limit (CL) effect, which consists of a limit on the total charge in each pulse-that is, the total bunch charge stops increasing as the light pulse total energy increases. In this paper, we explain the mechanism of the CL and how it is caused by the photovoltaic effect. Our treatment is based on the Three-Step model of photoemission. We relate the CL to the characteristics of the surface and bulk of the semiconductor, such as doping, band bending, surface vacuum level, and density of surface states. We also discuss possible ways to prevent the Char's Level effect

  14. Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.

    Science.gov (United States)

    Monfaredi, R; Wilson, E; Sze, R; Sharma, K; Azizi, B; Iordachita, I; Cleary, K

    2015-08-01

    A new version of our compact and lightweight patient-mounted MRI-compatible 4 degree-of-freedom (DOF) robot for MRI-guided arthrography procedures is introduced. This robot could convert the traditional two-stage arthrography procedure (fluoroscopy-guided needle insertion followed by a diagnostic MRI scan) to a one-stage procedure, all in the MRI suite. The results of a recent accuracy study are reported. A new mounting technique is proposed and the mounting stability is investigated using optical and electromagnetic tracking on an anthropomorphic phantom. Five volunteer subjects including 2 radiologists were asked to conduct needle insertion in 4 different random positions and orientations within the robot's workspace and the displacement of the base of the robot was investigated during robot motion and needle insertion. Experimental results show that the proposed mounting method is stable and promising for clinical application.

  15. Towards Clinically Optimized MRI-guided Surgical Manipulator for Minimally Invasive Prostate Percutaneous Interventions: Constructive Design*

    Science.gov (United States)

    Eslami, Sohrab; Fischer, Gregory S.; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Iordachita, Iulian

    2013-01-01

    This paper undertakes the modular design and development of a minimally invasive surgical manipulator for MRI-guided transperineal prostate interventions. Severe constraints for the MRI-compatibility to hold the minimum artifact on the image quality and dimensions restraint of the bore scanner shadow the design procedure. Regarding the constructive design, the manipulator kinematics has been optimized and the effective analytical needle workspace is developed and followed by proposing the workflow for the manual needle insertion. A study of the finite element analysis is established and utilized to improve the mechanism weaknesses under some inevitable external forces to ensure the minimum structure deformation. The procedure for attaching a sterile plastic drape on the robot manipulator is discussed. The introduced robotic manipulator herein is aimed for the clinically prostate biopsy and brachytherapy applications. PMID:24683502

  16. TU-AB-BRA-07: Distortion-Free 3D Diffusion MRI On An MRI-Guided Radiotherapy System for Longitudinal Tumor Response Assessment

    International Nuclear Information System (INIS)

    Gao, Y; Yang, Y; Rangwala, N; Cao, M; Low, D; Hu, P

    2016-01-01

    Purpose: To develop a reliable, 3D distortion-free diffusion MRI technique for longitudinal tumor response assessment and MRI-guided adaptive radiotherapy(RT). Methods: A diffusion prepared 3D turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) sequence in a commercially available diffusion phantom, and one head-and-neck and one brain cancer patient on an MRI-guided RT system (ViewRay). In phantom study, the geometric fidelity was quantified as the ratio between the left-right (RL) and anterior-posterior (AP) dimension. Ten slices were measured on DP-TSE, DW-ssEPI and standard TSE images where the later was used as the geometric reference. ADC accuracy was verified at both 0°C (reference ADC available) and room temperature with a range of diffusivity between 0.35 and 2.0*10"−"3mm"2/s. The ADC reproducibility was assessed based on 8 room-temperature measurements on 6 different days. In the pilot single-slice in-vivo study, CT images were used as the geometric reference, and ADC maps from both diffusion sequences were compared. Results: Distortion and susceptive-related artifact were severe in DW-ssEPI, with significantly lower RL/AP ratio (0.9579±0.0163) than DP-TSE (0.9990±0.0031) and TSE (0.9995±0.0031). ADCs from the two diffusion sequences both matched well with the vendor-provided values at 0°C; however DW-ssEPI fails to provide accurate ADC for high diffusivity vials at room temperature due to high noise level (10 times higher than DP-TSE). The DP-TSE sequence had excellent ADC reproducibility with <4% ADC variation among 8 separate measurements. In patient study, DP-TSE exhibited substantially improved geometric reliability. ROI analysis in ADC maps generated from DP-TSE and DW-ssEPI showed <5% difference where high b-value images were excluded from the latter approach due to excessive noise level. Conclusion: A diffusion MRI sequence with excellent

  17. TU-AB-BRA-07: Distortion-Free 3D Diffusion MRI On An MRI-Guided Radiotherapy System for Longitudinal Tumor Response Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y; Yang, Y; Rangwala, N; Cao, M; Low, D; Hu, P [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To develop a reliable, 3D distortion-free diffusion MRI technique for longitudinal tumor response assessment and MRI-guided adaptive radiotherapy(RT). Methods: A diffusion prepared 3D turbo spin echo readout (DP-TSE) sequence was developed and compared with the conventional diffusion-weighted single-shot echo-planar-imaging (DW-ssEPI) sequence in a commercially available diffusion phantom, and one head-and-neck and one brain cancer patient on an MRI-guided RT system (ViewRay). In phantom study, the geometric fidelity was quantified as the ratio between the left-right (RL) and anterior-posterior (AP) dimension. Ten slices were measured on DP-TSE, DW-ssEPI and standard TSE images where the later was used as the geometric reference. ADC accuracy was verified at both 0°C (reference ADC available) and room temperature with a range of diffusivity between 0.35 and 2.0*10{sup −3}mm{sup 2}/s. The ADC reproducibility was assessed based on 8 room-temperature measurements on 6 different days. In the pilot single-slice in-vivo study, CT images were used as the geometric reference, and ADC maps from both diffusion sequences were compared. Results: Distortion and susceptive-related artifact were severe in DW-ssEPI, with significantly lower RL/AP ratio (0.9579±0.0163) than DP-TSE (0.9990±0.0031) and TSE (0.9995±0.0031). ADCs from the two diffusion sequences both matched well with the vendor-provided values at 0°C; however DW-ssEPI fails to provide accurate ADC for high diffusivity vials at room temperature due to high noise level (10 times higher than DP-TSE). The DP-TSE sequence had excellent ADC reproducibility with <4% ADC variation among 8 separate measurements. In patient study, DP-TSE exhibited substantially improved geometric reliability. ROI analysis in ADC maps generated from DP-TSE and DW-ssEPI showed <5% difference where high b-value images were excluded from the latter approach due to excessive noise level. Conclusion: A diffusion MRI sequence with

  18. WE-EF-BRD-01: Past, Present and Future: MRI-Guided Radiotherapy From 2005 to 2025

    Energy Technology Data Exchange (ETDEWEB)

    Lagendijk, J. [University Medical Center Utrecht (Netherlands)

    2015-06-15

    MRI-guided treatment is a growing area of medicine, particularly in radiotherapy and surgery. The exquisite soft tissue anatomic contrast offered by MRI, along with functional imaging, makes the use of MRI during therapeutic procedures very attractive. Challenging the utility of MRI in the therapy room are many issues including the physics of MRI and the impact on the environment and therapeutic instruments, the impact of the room and instruments on the MRI; safety, space, design and cost. In this session, the applications and challenges of MRI-guided treatment will be described. The session format is: Past, present and future: MRI-guided radiotherapy from 2005 to 2025: Jan Lagendijk Battling Maxwell’s equations: Physics challenges and solutions for hybrid MRI systems: Paul Keall I want it now!: Advances in MRI acquisition, reconstruction and the use of priors to enable fast anatomic and physiologic imaging to inform guidance and adaptation decisions: Yanle Hu MR in the OR: The growth and applications of MRI for interventional radiology and surgery: Rebecca Fahrig Learning Objectives: To understand the history and trajectory of MRI-guided radiotherapy To understand the challenges of integrating MR imaging systems with linear accelerators To understand the latest in fast MRI methods to enable the visualisation of anatomy and physiology on radiotherapy treatment timescales To understand the growing role and challenges of MRI for image-guided surgical procedures My disclosures are publicly available and updated at: http://sydney.edu.au/medicine/radiation-physics/about-us/disclosures.php.

  19. High intensity discharge device containing oxytrihalides

    Science.gov (United States)

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  20. In-bore transrectal MRI-guided prostate biopsies: Are there risk factors for complications?

    Energy Technology Data Exchange (ETDEWEB)

    Meier-Schroers, Michael, E-mail: michael.meier@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Homsi, Rami, E-mail: rami.homsi@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Kukuk, Guido, E-mail: guido.kukuk@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Wolter, Karsten, E-mail: karsten.wolter@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Decker, Georges, E-mail: georges.decker@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Fischer, Stefan, E-mail: stefan.fischer@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Marx, Christian, E-mail: christian.marx@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Schmeel, Frederic Carsten, E-mail: carsten.schmeel@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Block, Wolfgang, E-mail: wolfgang.block@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Sprinkart, Alois Martin, E-mail: sprinkart@uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Traeber, Frank, E-mail: frank.traeber@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Schild, Hans Heinz, E-mail: hans.schild@ukb.uni-bonn.de [Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, 53127 Bonn (Germany); Willinek, Winfried, E-mail: w.willinek@bk-trier.de [Department of Radiology, Neuroradiology, Sonography and Nuclear Medicine, Hospital of the Barmherzige Brüder Trier, Nordallee 1, 54292 Trier (Germany)

    2016-12-15

    Purpose: To systematically analyze risk factors for complications of in-bore transrectal MRI-guided prostate biopsies (MRGB). Materials and methods: 90 patients, who were scheduled for MRGB were included for this study. Exclusion criteria were coagulation disorders, therapy with anticoagulant drugs, and acute infections of the urinary and the lower gastrointestinal tract. Directly after, one week and one year after the biopsy, we assessed biopsy related complications (e.g. hemorrhages or signs of prostatitis). Differences between patients with and without complications were analyzed regarding possible risk factors: age, prostate volume, number of taken samples, biopsy duration, biopsy of more than one lesion, diabetes, arterial hypertension, hemorrhoids, benign prostate hyperplasia, carcinoma or prostatitis (according to histopathological analysis), and lesion localization. Complications were classified according to the Clavien-Dindo classification. Results: We observed 15 grade I complications in 90 biopsies (16.7%) with slight hematuria in 9 cases (10%), minor vasovagal reactions in 4 cases (4.4%), and urinary retention and positioning-related facial dysesthesia in 1 case each (1.1%). One patient showed acute prostatitis requiring antibiotics as the only grade II complication (1.1%). There were no adverse events that occurred later than one week. Complications grade III or higher such as pelvic abscesses, urosepsis or severe hemorrhages were not seen. There were no significant associations between the assessed risk factors and biopsy-related complications. Conclusion: In-bore transrectal MRI-guided prostate biopsies can be considered safe procedures in the diagnosis of prostate cancer with very low complication rates. There seem to be no risk factors for complications.

  1. MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system

    Science.gov (United States)

    Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.

  2. In-bore transrectal MRI-guided prostate biopsies: Are there risk factors for complications?

    International Nuclear Information System (INIS)

    Meier-Schroers, Michael; Homsi, Rami; Kukuk, Guido; Wolter, Karsten; Decker, Georges; Fischer, Stefan; Marx, Christian; Schmeel, Frederic Carsten; Block, Wolfgang; Sprinkart, Alois Martin; Traeber, Frank; Schild, Hans Heinz; Willinek, Winfried

    2016-01-01

    Purpose: To systematically analyze risk factors for complications of in-bore transrectal MRI-guided prostate biopsies (MRGB). Materials and methods: 90 patients, who were scheduled for MRGB were included for this study. Exclusion criteria were coagulation disorders, therapy with anticoagulant drugs, and acute infections of the urinary and the lower gastrointestinal tract. Directly after, one week and one year after the biopsy, we assessed biopsy related complications (e.g. hemorrhages or signs of prostatitis). Differences between patients with and without complications were analyzed regarding possible risk factors: age, prostate volume, number of taken samples, biopsy duration, biopsy of more than one lesion, diabetes, arterial hypertension, hemorrhoids, benign prostate hyperplasia, carcinoma or prostatitis (according to histopathological analysis), and lesion localization. Complications were classified according to the Clavien-Dindo classification. Results: We observed 15 grade I complications in 90 biopsies (16.7%) with slight hematuria in 9 cases (10%), minor vasovagal reactions in 4 cases (4.4%), and urinary retention and positioning-related facial dysesthesia in 1 case each (1.1%). One patient showed acute prostatitis requiring antibiotics as the only grade II complication (1.1%). There were no adverse events that occurred later than one week. Complications grade III or higher such as pelvic abscesses, urosepsis or severe hemorrhages were not seen. There were no significant associations between the assessed risk factors and biopsy-related complications. Conclusion: In-bore transrectal MRI-guided prostate biopsies can be considered safe procedures in the diagnosis of prostate cancer with very low complication rates. There seem to be no risk factors for complications.

  3. High-intensity deuteron linear accelerator (FMIT)

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1979-01-01

    For fusion reactors to become operational, one of the many problems to be solved is to find materials able to withstand the intense bombardment of 14-MeV neutrons released by the fusion process. The development of alloys less likely to become damaged by this neutron bombardment will require years of work, making it desirable to begin studies in parallel with other aspects of fusion power generators. The Fusion Materials Irradiation Test (FMIT) Facility, to be built at the Hanford Engineering Development Laboratory (HEDL), Richland, Washington, will provide a high neutron flux and a neutron energy spectrum representative of fusion reactor conditions in volumes adequate to screen and qualify samples of candidate fusion reactor materials. FMIT's design goal is to provide an irradiation test volume of 10 cm 3 at a neutron flux of 10 15 n/cm 2 -s, and 500 cm 3 at a flux of 10 14 n/cm 2 -s. This will not allow testing of actual components, but samples in the most intense flux region can be subjected to accelerated life testing, accumulating in one year the total number of neutrons seen by a fusion reactor in 10 to 20 years of operation

  4. Production of high intensity radioactive beams

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1990-04-01

    The production of radioactive nuclear beams world-wide is reviewed. The projectile fragmentation and the ISOL approaches are discussed in detail, and the luminosity parameter is used throughout to compare different production methods. In the ISOL approach a thin and a thick target option are distinguished. The role of storage rings in radioactive beam research is evaluated. It is concluded that radioactive beams produced by the projectile fragmentation and the ISOL methods have complementary characteristics and can serve to answer different scientific questions. The decision which kind of facility to build has to depend on the significance and breadth of these questions. Finally a facility for producing a high intensity radioactive beams near the Coulomb barrier is proposed, with an expected luminosity of ∼10 39 cm -2 s -1 , which would yield radioactive beams in excess of 10 11 s -1 . 9 refs., 3 figs., 7 tabs

  5. A High Intensity Hadron Facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1988-01-01

    We have present one of several possibilities for the evolution of the AGS complex into a high intensity hadron facility. One could consider other alternatives, such as using the AGS as the Collector and constructing a new 9-30 GeV machine. We believe the most responsible scenario must minimize the cost and downtime to the ongoing physics program. With a stepwise approach, starting with the Booster, the physics program can evolve without a single major commitment in funds. At each step an evaluation of the funds versus physics merit can be made. As a final aside, each upgrade at the AGS and Booster is presently being implemented to support an interleaved operation of both protons and ions. 1 fig., 6 tabs

  6. High intensity proton accelerator controls network upgrade

    International Nuclear Information System (INIS)

    Krempaska, R.; Bertrand, A.; Lendzian, F.; Lutz, H.

    2012-01-01

    The High Intensity Proton Accelerator (HIPA) control system network is spread through a vast area in PSI and it was grown historically in an unorganized way. The miscellaneous network hardware infrastructure and the lack of the documentation and components overview could no longer guarantee the reliability of the control system and the facility operation. Therefore, a new network, based on modern network topology, PSI standard hardware with monitoring and detailed documentation and overview was needed. The number of active components has been reduced from 25 to 9 Cisco Catalyst 24- or 48-port switches. They are the same type as other PSI switches, thus a replacement emergency stock is not an issue anymore. We would like to present how we successfully achieved this goal and the advantages of the clean and well documented network infrastructure. (authors)

  7. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  8. Applications of High Intensity Proton Accelerators

    Science.gov (United States)

    Raja, Rajendran; Mishra, Shekhar

    2010-06-01

    Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon

  9. ''High intensity per bunch'' working group

    International Nuclear Information System (INIS)

    2001-01-01

    Third Generation Light Sources are supposed to store high intensity beams not only in many tightly spaced bunches (multibunch operation), but also in few bunch or even single lunch modes of operation, required for example for time structure experiments. Single bunch instabilities, driven by short-range wake fields, however spoil the beam quality, both longitudinally and transversely. Straightforward ways of handling them, by pushing up the chromaticity (ζ = ΔQ/(Δp/p)) for example, enabled to raise the charge per bunch, but to the detriment of beam lifetime. In addition, since the impedance of the vacuum chamber deteriorates with the installation of new insertion devices, the current thresholds tend to dope down continuously. The goal of this Working Group was then to review these limitations in the existing storage rings, where a large number of beam measurements have been performed to characterise them, and to discuss different strategies which are used against them. About 15 different laboratories reported on the present performance of storage rings, experiences gained in high charge per bunch, and on simulation results and theoretical studies. More than 25 presentations addressed the critical issues and stimulated the discussion. Four main topics came out: - Observation and experimental data; - Impedance studies and tracking codes; - Theoretical investigations; - Cures and feedback. (author)

  10. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T.R.; Davenne, T.; Densham, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo-Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrzycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A.C.; Kravchuk, V.L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T.Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S.K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J.J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López-Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L.J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J.J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J.S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  11. High repetition rate intense ion beam source

    International Nuclear Information System (INIS)

    Hammer, D.A.; Glidden, S.C.; Noonan, B.

    1992-01-01

    This final report describes a ≤ 150kV, 40kA, 100ns high repetition rate pulsed power system and intense ion beam source which is now in operation at Cornell University. Operation of the Magnetically-controlled Anode Plasma (MAP) ion diode at > 100Hz (burst mode for up to 10 pulse bursts) provides an initial look at repetition rate limitations of both the ion diode and beam diagnostics. The pulsed power systems are capable of ≥ 1kHz operation (up to 10 pulse bursts), but ion diode operation was limited to ∼100Hz because of diagnostic limitations. By varying MAP diode operating parameters, ion beams can be extracted at a few 10s of keV or at up to 150keV, the corresponding accelerating gap impedance ranging from about 1Ω to about 10Ω. The ability to make hundreds of test pulses per day at an average repetition rate of about 2 pulses per minute permits statistical analysis of diode operation as a function of various parameters. Most diode components have now survived more than 10 4 pulses, and the design and construction of the various pulsed power components of the MAP diode which have enabled us to reach this point are discussed. A high speed data acquisition system and companion analysis software capable of acquiring pulse data at 1ms intervals (in bursts of up to 10 pulses) and processing it in ≤ min is described

  12. High Intensity Organic Light-emitting Diodes

    Science.gov (United States)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  13. 'J-KAREN' - high intensity, high contrast laser

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Okada, Hajime; Sasao, Hajime; Sagisaka, Akito; Ochi, Yoshihiro; Tanaka, Momoko; Kondo, Kiminori; Tateno, Ryo; Sugiyama, Akira; Daido, Hiroyuki; Koike, Masato; Kawanishi, Syunichi; Shimomura, Takuya; Tanoue, Manabu; Wakai, Daisuke; Kondo, Shuji; Kanazawa, Shuhei

    2010-01-01

    We report on the high intensity, high contrast double chirped-pulse amplification (CPA) Ti:sapphire laser system (named J-KAREN). By use of an optical parametric chirped-pulse amplification (OPCPA) preamplifier that is seeded by a cleaned high-energy pulse, a background amplified spontaneous emission (ASE) level of 10 -10 relative to the peak main femtosecond pulse on the picosecond timescales demonstrated with an output energy of 1.7 J and a pulse duration of 30 fs, corresponding to a peak power of 60TW at a 10 Hz repetition rate. This system which uses a cryogenically-cooled Ti:sapphire final amplifier generates focused peak intensity in excess of 10 20 W/cm 2 at a 10 Hz repetition rate. (author)

  14. Real-time MRI-guided percutaneous sclerotherapy of low-flow head and neck lymphatic malformations in the pediatric population - a stepwise approach

    Energy Technology Data Exchange (ETDEWEB)

    Partovi, Sasan; Vidal, Lorenna; Lu, Ziang; Nakamoto, Dean A.; Buethe, Ji; Clampitt, Mark; Coffey, Michael; Patel, Indravadan J. [University Hospitals Cleveland Medical Center, Case Western Reserve University, Department of Radiology, Section of Vascular and Interventional Radiology, Cleveland, OH (United States)

    2017-05-15

    Real-time MRI-guided percutaneous sclerotherapy is a novel and evolving treatment for congenital lymphatic malformations in the head and neck. We elaborate on the specific steps necessary to perform an MRI-guided percutaneous sclerotherapy of lymphatic malformations including pre-procedure patient work-up and preparation, stepwise intraprocedural interventional techniques and post-procedure management. Based on our institutional experience, MRI-guided sclerotherapy with a doxycycline-gadolinium-based mixture as a sclerosant for lymphatic malformations of the head and neck region in children is well tolerated and effective. (orig.)

  15. High-intensity laser application in Orthodontics

    Directory of Open Access Journals (Sweden)

    Eduardo Franzotti Sant’Anna

    Full Text Available ABSTRACT Introduction: In dental practice, low-level laser therapy (LLLT and high-intensity laser therapy (HILT are mainly used for dental surgery and biostimulation therapy. Within the Orthodontic specialty, while LLLT has been widely used to treat pain associated with orthodontic movement, accelerate bone regeneration after rapid maxillary expansion, and enhance orthodontic tooth movement, HILT, in turn, has been seen as an alternative for addressing soft tissue complications associated to orthodontic treatment. Objective: The aim of this study is to discuss HILT applications in orthodontic treatment. Methods: This study describes the use of HILT in surgical treatments such as gingivectomy, ulotomy, ulectomy, fiberotomy, labial and lingual frenectomies, as well as hard tissue and other dental restorative materials applications. Conclusion: Despite the many applications for lasers in Orthodontics, they are still underused by Brazilian practitioners. However, it is quite likely that this demand will increase over the next years - following the trend in the USA, where laser therapies are more widely used.

  16. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  17. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  18. High intensity neutrino oscillation facilities in Europe

    Directory of Open Access Journals (Sweden)

    T. R. Edgecock

    2013-02-01

    Full Text Available The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ^{+} and μ^{-} beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular ^{6}He and ^{18}Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  19. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the talus: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Kerimaa, Pekka; Ojala, Risto; Markkanen, Paula; Tervonen, Osmo; Blanco Sequeiros, Roberto [Oulu University Hospital, Department of Radiology, Oulu (Finland); Sinikumpu, Juha-Jaakko; Korhonen, Jussi [Oulu University Hospital, Department of Paediatric Surgery, Oulu (Finland); Hyvoenen, Pekka [Oulu University Hospital, Department of Surgery, Oulu (Finland)

    2014-07-15

    The purpose of this study was to evaluate the feasibility of MRI guidance for percutaneous retrograde drilling in the treatment of osteochondritis dissecans of the talus (OCDT). Four patients, one juvenile and three adults, with one OCDT lesion each and persisting ankle pain after conservative treatment, were treated with MRI-guided retrograde drilling. All lesions were stable and located in the middle or posterior medial third of the talar dome. Pain relief and the ability to return to normal activities were assessed during clinical follow-up. MRI and plain film radiographs were used for imaging follow-up. Technical success was 100 % with no complications and with no damage to the overlying cartilage. All patients experienced some clinical benefit, although only one had complete resolution of pain and one had a relapse leading to surgical treatment. Changes in the pathological imaging findings were mostly very slight during the follow-up period. MRI guidance seems accurate, safe and technically feasible for retrograde drilling of OCDT. Larger series are needed to reliably assess its clinical value. (orig.)

  20. Integrated navigation and control software system for MRI-guided robotic prostate interventions.

    Science.gov (United States)

    Tokuda, Junichi; Fischer, Gregory S; DiMaio, Simon P; Gobbi, David G; Csoma, Csaba; Mewes, Philip W; Fichtinger, Gabor; Tempany, Clare M; Hata, Nobuhiko

    2010-01-01

    A software system to provide intuitive navigation for MRI-guided robotic transperineal prostate therapy is presented. In the system, the robot control unit, the MRI scanner, and the open-source navigation software are connected together via Ethernet to exchange commands, coordinates, and images using an open network communication protocol, OpenIGTLink. The system has six states called "workphases" that provide the necessary synchronization of all components during each stage of the clinical workflow, and the user interface guides the operator linearly through these workphases. On top of this framework, the software provides the following features for needle guidance: interactive target planning; 3D image visualization with current needle position; treatment monitoring through real-time MR images of needle trajectories in the prostate. These features are supported by calibration of robot and image coordinates by fiducial-based registration. Performance tests show that the registration error of the system was 2.6mm within the prostate volume. Registered real-time 2D images were displayed 1.97 s after the image location is specified. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy

    Science.gov (United States)

    Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael

    2009-04-01

    MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.

  2. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the talus: a feasibility study

    International Nuclear Information System (INIS)

    Kerimaa, Pekka; Ojala, Risto; Markkanen, Paula; Tervonen, Osmo; Blanco Sequeiros, Roberto; Sinikumpu, Juha-Jaakko; Korhonen, Jussi; Hyvoenen, Pekka

    2014-01-01

    The purpose of this study was to evaluate the feasibility of MRI guidance for percutaneous retrograde drilling in the treatment of osteochondritis dissecans of the talus (OCDT). Four patients, one juvenile and three adults, with one OCDT lesion each and persisting ankle pain after conservative treatment, were treated with MRI-guided retrograde drilling. All lesions were stable and located in the middle or posterior medial third of the talar dome. Pain relief and the ability to return to normal activities were assessed during clinical follow-up. MRI and plain film radiographs were used for imaging follow-up. Technical success was 100 % with no complications and with no damage to the overlying cartilage. All patients experienced some clinical benefit, although only one had complete resolution of pain and one had a relapse leading to surgical treatment. Changes in the pathological imaging findings were mostly very slight during the follow-up period. MRI guidance seems accurate, safe and technically feasible for retrograde drilling of OCDT. Larger series are needed to reliably assess its clinical value. (orig.)

  3. MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes.

    Science.gov (United States)

    Fasano, Alfonso; Llinas, Maheleth; Munhoz, Renato P; Hlasny, Eugen; Kucharczyk, Walter; Lozano, Andres M

    2017-08-22

    To report the 6-month single-blinded results of unilateral thalamotomy with MRI-guided focused ultrasound (MRgFUS) in patients with tremors other than essential tremor. Three patients with tremor due to Parkinson disease, 2 with dystonic tremor in the context of cervicobrachial dystonia and writer's cramp, and 1 with dystonia gene-associated tremor underwent MRgFUS targeting the ventro-intermedius nucleus (Vim) of the dominant hemisphere. The primary endpoint was the reduction of lateralized items of the Tremor Rating Scale of contralateral hemibody assessed by a blinded rater. All patients achieved a statistically significant, immediate, and sustained improvement of the contralateral tremor score by 42.2%, 52.0%, 55.9%, and 52.9% at 1 week and 1, 3, and 6 months after the procedure, respectively. All patients experienced transient side effects and 2 patients experienced persistent side effects at the time of last evaluation: hemitongue numbness and hemiparesis with hemihypoesthesia. Vim MRgFUS is a promising, incision-free, but nevertheless invasive technique to effectively treat tremors other than essential tremor. Future studies on larger samples and longer follow-up will further define its effectiveness and safety. NCT02252380. This study provides Class IV evidence that for patients with tremor not caused by essential tremor, MRgFUS of the Vim improves the tremor of the contralateral hemibody at 6 months. © 2017 American Academy of Neurology.

  4. Integrated navigation and control software system for MRI-guided robotic prostate interventions

    Science.gov (United States)

    Tokuda, Junichi; Fischer, Gregory S.; DiMaio, Simon P.; Gobbi, David G.; Csoma, Csaba; Mewes, Philip W.; Fichtinger, Gabor; Tempany, Clare M.; Hata, Nobuhiko

    2010-01-01

    A software system to provide intuitive navigation for MRI-guided robotic transperineal prostate therapy is presented. In the system, the robot control unit, the MRI scanner, and the open-source navigation software are connected together via Ethernet to exchange commands, coordinates, and images using an open network communication protocol, OpenIGTLink. The system has six states called “workphases” that provide the necessary synchronization of all components during each stage of the clinical workflow, and the user interface guides the operator linearly through these workphases. On top of this framework, the software provides the following features for needle guidance: interactive target planning; 3D image visualization with current needle position; treatment monitoring through real-time MR images of needle trajectories in the prostate. These features are supported by calibration of robot and image coordinates by fiducial-based registration. Performance tests show that the registration error of the system was 2.6 mm within the prostate volume. Registered real-time 2D images were displayed 1.97 s after the image location is specified. PMID:19699057

  5. Piezoelectrically Actuated Robotic System for MRI-Guided Prostate Percutaneous Therapy

    Science.gov (United States)

    Su, Hao; Shang, Weijian; Cole, Gregory; Li, Gang; Harrington, Kevin; Camilo, Alexander; Tokuda, Junichi; Tempany, Clare M.; Hata, Nobuhiko; Fischer, Gregory S.

    2014-01-01

    This paper presents a fully-actuated robotic system for percutaneous prostate therapy under continuously acquired live magnetic resonance imaging (MRI) guidance. The system is composed of modular hardware and software to support the surgical workflow of intra-operative MRI-guided surgical procedures. We present the development of a 6-degree-of-freedom (DOF) needle placement robot for transperineal prostate interventions. The robot consists of a 3-DOF needle driver module and a 3-DOF Cartesian motion module. The needle driver provides needle cannula translation and rotation (2-DOF) and stylet translation (1-DOF). A custom robot controller consisting of multiple piezoelectric motor drivers provides precision closed-loop control of piezoelectric motors and enables simultaneous robot motion and MR imaging. The developed modular robot control interface software performs image-based registration, kinematics calculation, and exchanges robot commands and coordinates between the navigation software and the robot controller with a new implementation of the open network communication protocol OpenIGTLink. Comprehensive compatibility of the robot is evaluated inside a 3-Tesla MRI scanner using standard imaging sequences and the signal-to-noise ratio (SNR) loss is limited to 15%. The image deterioration due to the present and motion of robot demonstrates unobservable image interference. Twenty-five targeted needle placements inside gelatin phantoms utilizing an 18-gauge ceramic needle demonstrated 0.87 mm root mean square (RMS) error in 3D Euclidean distance based on MRI volume segmentation of the image-guided robotic needle placement procedure. PMID:26412962

  6. MRI-Guided Focused Ultrasound as a New Method of Drug Delivery

    Directory of Open Access Journals (Sweden)

    M. Thanou

    2013-01-01

    Full Text Available Ultrasound-mediated drug delivery under the guidance of an imaging modality can improve drug disposition and achieve site-specific drug delivery. The term focal drug delivery has been introduced to describe the focal targeting of drugs in tissues with the help of imaging and focused ultrasound. Focal drug delivery aims to improve the therapeutic profile of drugs by improving their specificity and their permeation in defined areas. Focused-ultrasound- (FUS- mediated drug delivery has been applied with various molecules to improve their local distribution in tissues. FUS is applied with the aid of microbubbles to enhance the permeability of bioactive molecules across BBB and improve drug distribution in the brain. Recently, FUS has been utilised in combination with MRI-labelled liposomes that respond to temperature increase. This strategy aims to “activate” nanoparticles to release their cargo locally when triggered by hyperthermia induced by FUS. MRI-guided FUS drug delivery provides the opportunity to improve drug bioavailability locally and therefore improve the therapeutic profiles of drugs. This drug delivery strategy can be directly translated to clinic as MRg FUS is a promising clinically therapeutic approach. However, more basic research is required to understand the physiological mechanism of FUS-enhanced drug delivery.

  7. Wet high-intensity magnetic separation

    International Nuclear Information System (INIS)

    Levin, J.; Shanks, R.I.

    1980-01-01

    Miscellaneous laboratory tests (most of them on cyanide residues) were undertaken to supplement on-site pilot-plant work on wet high intensity magnetic separation (WHIMS). Initially, the main concern was with blockage of the matrix, and consideration was given to the use of a reverse-flushing system. The laboratory tests on this system were encouraging, but they were not of sufficiently long duration to be conclusive. The velocity of the pulp through the matrix is important, because it determines the capacity of the separator and the recovery obtainable. Of almost equal importance is the magnetic load, which affects the velocity of the pulp and the recovery. Typically, a recovery of 51 per cent of the uranium was reduced to one of 40 per cent as the magnetic load was increased from 25 to 100 g/l, while the pulp velocity decreased from 62 to 36 mm/s. There was some indication that, for the same pulp velocity, lower recoveries are obtained when free-fall feeding is used. Some benefit was observed in the application of WHIMS to coarsely ground ore; from a Blyvooruitzicht rod-mill product, 25 per cent of the total uranium was recovered when only 29 per cent of the rod-mill product (the finest portion) was treated. A similar recovery was made from 43 per cent of the rod-mill product from Stilfontein; a second stage of treatment after regrinding raised the overall recovery of uranium to 76,4 per cent. Recoveries of 55 and 42 per cent of the uranium were obtained in tests on two flotation tailings from Free State Geduld. In a determination of the mass magnetic susceptibilities of the constituents in a typical concentrate obtained by WHIMS, it was found that some 20 per cent of the magnetic product had a susceptibility of less than 5,4 X 10 -6 e.m.u. but contained 38 per cent of the uranium recovered by WHIMS. A few tests were conducted on different types of matrix. A matrix of spaced horizontal rods is recommended for possible future consideration [af

  8. Performances of BNL high-intensity synchrotrons

    International Nuclear Information System (INIS)

    Weng, W.T.

    1998-03-01

    The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 x 10 13 ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 x 10 13 ppp surpassing the design goal of 1.5 x 10 13 ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented

  9. High intensity hadron facility, AGS II

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Lowenstein, D.I.

    1989-01-01

    There is a large and growing community of particle and nuclear physicists around the world who are actively lobbying for the construction of an accelerator that could provide 1-2 orders of magnitude increase in proton intensity above that of the present AGS. There have been a series of proposals from Canada, Europe, Japan, and the USA. They can all be characterized as machines varying in energy from 12-60 GeV and intensities of 30-100 μA. The community of physicists using the AGS are in a unique position however. The AGS is the only machine available that can provide the beams to execute the physics program that this large international community is interested in. The BNL approach to the communities interests involves a stepwise intensity upgrade program. At present the AGS slow extracted beam current is 1 μA. With the completion of the Booster in 1990 and the associated AGS modifications, the current will rise to 4-5 μA. With the subsequent addition of the Stretcher which is under design, the current will rise to 8-10 μA and approximately 100% duty factor. The possibility of a further enhancement to a current level of 40-50 μA CW is now being examined. 2 figures, 6 tables

  10. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy

    Science.gov (United States)

    Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-01-01

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  11. Corrigendum to "Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy".

    Science.gov (United States)

    Zelyak, Oleksandr; Fallone, B Gino; St-Aubin, Joel

    2018-03-12

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  12. Stability analysis of a deterministic dose calculation for MRI-guided radiotherapy.

    Science.gov (United States)

    Zelyak, O; Fallone, B G; St-Aubin, J

    2017-12-14

    Modern effort in radiotherapy to address the challenges of tumor localization and motion has led to the development of MRI guided radiotherapy technologies. Accurate dose calculations must properly account for the effects of the MRI magnetic fields. Previous work has investigated the accuracy of a deterministic linear Boltzmann transport equation (LBTE) solver that includes magnetic field, but not the stability of the iterative solution method. In this work, we perform a stability analysis of this deterministic algorithm including an investigation of the convergence rate dependencies on the magnetic field, material density, energy, and anisotropy expansion. The iterative convergence rate of the continuous and discretized LBTE including magnetic fields is determined by analyzing the spectral radius using Fourier analysis for the stationary source iteration (SI) scheme. The spectral radius is calculated when the magnetic field is included (1) as a part of the iteration source, and (2) inside the streaming-collision operator. The non-stationary Krylov subspace solver GMRES is also investigated as a potential method to accelerate the iterative convergence, and an angular parallel computing methodology is investigated as a method to enhance the efficiency of the calculation. SI is found to be unstable when the magnetic field is part of the iteration source, but unconditionally stable when the magnetic field is included in the streaming-collision operator. The discretized LBTE with magnetic fields using a space-angle upwind stabilized discontinuous finite element method (DFEM) was also found to be unconditionally stable, but the spectral radius rapidly reaches unity for very low-density media and increasing magnetic field strengths indicating arbitrarily slow convergence rates. However, GMRES is shown to significantly accelerate the DFEM convergence rate showing only a weak dependence on the magnetic field. In addition, the use of an angular parallel computing strategy

  13. Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy

    International Nuclear Information System (INIS)

    Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J.; Horvat, Joseph

    2014-01-01

    Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and 0 and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys

  14. Navigated MRI-guided liver biopsies in a closed-bore scanner: experience in 52 patients.

    Science.gov (United States)

    Moche, Michael; Heinig, Susann; Garnov, Nikita; Fuchs, Jochen; Petersen, Tim-Ole; Seider, Daniel; Brandmaier, Philipp; Kahn, Thomas; Busse, Harald

    2016-08-01

    To evaluate clinical effectiveness and diagnostic efficiency of a navigation device for MR-guided biopsies of focal liver lesions in a closed-bore scanner. In 52 patients, 55 biopsies were performed. An add-on MR navigation system with optical instrument tracking was used for image guidance and biopsy device insertion outside the bore. Fast control imaging allowed visualization of the true needle position at any time. The biopsy workflow and procedure duration were recorded. Histological analysis and clinical course/outcome were used to calculate sensitivity, specificity and diagnostic accuracy. Fifty-four of 55 liver biopsies were performed successfully with the system. No major and four minor complications occurred. Mean tumour size was 23 ± 14 mm and the skin-to-target length ranged from 22 to 177 mm. In 39 cases, access path was double oblique. Sensitivity, specificity and diagnostic accuracy were 88 %, 100 % and 92 %, respectively. The mean procedure time was 51 ± 12 min, whereas the puncture itself lasted 16 ± 6 min. On average, four control scans were taken. Using this navigation device, biopsies of poorly visible and difficult accessible liver lesions could be performed safely and reliably in a closed-bore MRI scanner. The system can be easily implemented in clinical routine workflow. • Targeted liver biopsies could be reliably performed in a closed-bore MRI. • The navigation system allows for image guidance outside of the scanner bore. • Assisted MRI-guided biopsies are helpful for focal lesions with a difficult access. • Successful integration of the method in clinical workflow was shown. • Subsequent system installation in an existing MRI environment is feasible.

  15. SU-F-J-110: MRI-Guided Single-Session Simulation, Online Adaptation, and Treatment

    International Nuclear Information System (INIS)

    Hill, P; Geurts, M; Mittauer, K; Bayouth, J

    2016-01-01

    Purpose: To develop a combined simulation and treatment workflow for MRI-guided radiation therapy using the ViewRay treatment planning and delivery system. Methods: Several features of the ViewRay MRIdian planning and treatment workflows are used to simulate and treat patients that require emergent radiotherapy. A simple “pre-plan” is created on diagnostic imaging retrieved from radiology PACS, where conformal fields are created to target a volume defined by a physician based on review of the diagnostic images and chart notes. After initial consult in radiation oncology, the patient is brought to the treatment room, immobilized, and imaged in treatment position with a volumetric MR. While the patient rests on the table, the pre-plan is applied to the treatment planning MR and dose is calculated in the treatment geometry. After physician review, modification of the plan may include updating the target definition, redefining fields, or re-balancing beam weights. Once an acceptable treatment plan is finalized and approved, the patient is treated. Results: Careful preparation and judicious choices in the online planning process allow conformal treatment plans to be created and delivered in a single, thirty-minute session. Several advantages have been identified using this process as compared to conventional urgent CT simulation and delivery. Efficiency gains are notable, as physicians appreciate the predictable time commitment and patient waiting time for treatment is decreased. MR guidance in a treatment position offers both enhanced contrast for target delineation and reduction of setup uncertainties. The MRIdian system tools designed for adaptive radiotherapy are particularly useful, enabling plan changes to be made in minutes. Finally, the resulting plans, typically 6 conformal beams, are delivered as quickly as more conventional AP/PA beam arrangements with comparatively superior dose distributions. Conclusion: The ViewRay treatment planning software and

  16. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, Risto; Kerimaa, Pekka; Tervonen, Osmo; Blanco-Sequeiros, Roberto [Oulu University Hospital, Department of Radiology, Oulu (Finland); Lakovaara, Martti [Oulu Deaconess Institute, Department of Surgery, Oulu (Finland); Hyvoenen, Pekka; Lehenkari, Petri [Oulu University Hospital, Department of Surgery, Oulu (Finland)

    2011-06-15

    The purpose of this study was to evaluate the feasibility of a new method for osteochondritis dissecans (OCD) treatment. Ten OCD lesions of the knee unresponsive to conservative management were treated with MRI-guided percutaneous retrograde drilling to reduce symptoms and promote ossification of the lesion. All lesions were located in distal femoral condyles. Only stable OCD lesions were included (preprocedural MRI grade I or II). Five lesions were of juvenile type and five lesions were of adult type OCD. All the patients had severe limitation of activity due to the OCD-related pain. By using a 0.23 T open MRI scanner and spinal anesthesia, percutaneous retrograde drilling of the OCD lesions was performed (3 mm cylindrical drill, one to three channels). Optical tracking and MRI imaging were used to guide instruments during the procedure. Mean postprocedural clinical follow-up time was 3 years. Eight patients had a post-procedural follow-up MRI within 1 year. All the OCD lesions were located and drilled using the 0.23 T open MRI scanner without procedural complications. All the patients had pain relief, mean visual analog score (VAS) declined from 6 to 2. Follow-up MRI showed ossification in all lesions. Eight patients could return to normal physical activity with no or minor effect on function (Hughston score 3-4). Treatment failed in two cases where the continuation of symptoms led to arthroscopy and transchondral fixation. MR-guided retrograde OCD lesion drilling is an accurate, feasible, and effective cartilage-sparing techique in OCD management. (orig.)

  17. SU-E-J-201: Investigation of MRI Guided Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, JS [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Image-guided radiation therapy has been employed for cancer treatment to improve the tumor localization accuracy. Radiation therapy with proton beams requires more on this accuracy because the proton beam has larger uncertainty and dramatic dose variation along the beam direction. Among all the image modalities, magnetic-resonance image (MRI) is the best for soft tissue delineation and real time motion monitoring. In this work, we investigated the behavior of the proton beam in magnetic field with Monte Carlo simulations. Methods: A proton Monte Carlo platform, TOPAS, was used for this investigation. Dose calculations were performed with this platform in a 30cmx30cmx30cm water phantom for both pencil and broad proton beams with different energies (120, 150 and 180MeV) in different magnetic fields (0.5T, 1T and 3T). The isodose distributions, dose profiles in lateral and beam direction were evaluated. The shifts of the Bragg peak in different magnetic fields for different proton energies were compared and the magnetic field effects on the characters of the dose distribution were analyzed. Results: Significant effects of magnetic field have been observed on the proton beam dose distributions, especially for magnetic field of 1T and up. The effects are more significant for higher energy proton beam because higher energy protons travel longer distance in the magnetic field. The Bragg peak shift in the lateral direction is about 38mm for 180MeV and 11mm for 120MeV proton beams in 3T magnetic field. The peak positions are retracted back for 6mm and 2mm, respectively. The effect on the beam penumbra and dose falloff at the distal edge of the Bragg peak is negligible. Conclusion: Though significant magnetic effects on dose distribution have been observed for proton beams, MRI guided proton therapy is feasible because the magnetic effects on dose is predictable and can be considered in patient dose calculation.

  18. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the knee

    International Nuclear Information System (INIS)

    Ojala, Risto; Kerimaa, Pekka; Tervonen, Osmo; Blanco-Sequeiros, Roberto; Lakovaara, Martti; Hyvoenen, Pekka; Lehenkari, Petri

    2011-01-01

    The purpose of this study was to evaluate the feasibility of a new method for osteochondritis dissecans (OCD) treatment. Ten OCD lesions of the knee unresponsive to conservative management were treated with MRI-guided percutaneous retrograde drilling to reduce symptoms and promote ossification of the lesion. All lesions were located in distal femoral condyles. Only stable OCD lesions were included (preprocedural MRI grade I or II). Five lesions were of juvenile type and five lesions were of adult type OCD. All the patients had severe limitation of activity due to the OCD-related pain. By using a 0.23 T open MRI scanner and spinal anesthesia, percutaneous retrograde drilling of the OCD lesions was performed (3 mm cylindrical drill, one to three channels). Optical tracking and MRI imaging were used to guide instruments during the procedure. Mean postprocedural clinical follow-up time was 3 years. Eight patients had a post-procedural follow-up MRI within 1 year. All the OCD lesions were located and drilled using the 0.23 T open MRI scanner without procedural complications. All the patients had pain relief, mean visual analog score (VAS) declined from 6 to 2. Follow-up MRI showed ossification in all lesions. Eight patients could return to normal physical activity with no or minor effect on function (Hughston score 3-4). Treatment failed in two cases where the continuation of symptoms led to arthroscopy and transchondral fixation. MR-guided retrograde OCD lesion drilling is an accurate, feasible, and effective cartilage-sparing techique in OCD management. (orig.)

  19. Exploring high-intensity QED at ELI

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, T. [Plymouth Univ., School of Mathematics and Statistics, Drake Circus, PL4 8AA (United Kingdom); Ilderton, A. [School of Mathematics, Hamilton Building, Trinity College, Dublin (Ireland)

    2009-11-15

    We give a non-technical overview of quantum electrodynamics (QED) effects arising in the presence of ultra-strong electromagnetic fields highlighting the new prospects provided by a realisation of the ELI laser facility. Vacuum polarization is a genuine QED process describing the probability amplitude of a propagating photon fluctuating into a virtual electron-positron pair. It has measurable effects such as the Lamb shift and charge screening at short distances. Nonlinear Compton scattering that consists of processes of the type: e + ngamma{sub L} -> e' + gamma (where n counting the number of laser photons involved) is an intensity dependent effect that is accessible to experimental observation

  20. High-intensity-laser-electron scattering

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.

    1997-01-01

    In the field of an intense laser, photon-electron scattering becomes nonlinear when the oscillatory energy of the electron approaches its rest mass. The electron wave function is dressed by the field with a concomitant increase in the effective electron mass. When the photon energy in the electron rest frame is comparable to the electron rest mass, multiphoton Compton scattering occurs. When the photon energy is significantly lower than the electron rest mass, the electron acquires momentum from the photon field and emits harmonics. This paper reviews nonlinear photon-electron scattering processes and results from two recent experiments where they have been observed

  1. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain--a primate study.

    Science.gov (United States)

    Hynynen, Kullervo; McDannold, Nathan; Clement, Greg; Jolesz, Ferenc A; Zadicario, Eyal; Killiany, Ron; Moore, Tara; Rosen, Douglas

    2006-08-01

    MRI-guided and monitored focused ultrasound thermal surgery of brain through intact skull was tested in three rhesus monkeys. The aim of this study was to determine the amount of skull heating in an animal model with a head shape similar to that of a human. The ultrasound beam was generated by a 512 channel phased array system (Exablate 3000, InSightec, Haifa, Israel) that was integrated within a 1.5-T MR-scanner. The skin was pre-cooled by degassed temperature controlled water circulating between the array surface and the skin. Skull surface temperature was measured with invasive thermocouple probes. The results showed that by applying surface cooling the skin and skull surface can be protected, and that the brain surface temperature becomes the limiting factor. The MRI thermometry was shown to be useful in detecting the tissue temperature distribution next to the bone, and it should be used to monitor the brain surface temperature. The acoustic intensity values during the 20 s sonications were adequate for thermal ablation in the human brain provided that surface cooling is used.

  2. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  3. Development of high intensity beam handling system, 4

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    We have constructed the new counter experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS) in order to handle high intensity primary proton beams of up to 1x10 3 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1x10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the construction of the new hall. A part of our R/D work on handling high intensity beams will be reported. (author)

  4. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation.

    Science.gov (United States)

    Xu, Zhiyuan; Carlson, Carissa; Snell, John; Eames, Matt; Hananel, Arik; Lopes, M Beatriz; Raghavan, Prashant; Lee, Cheng-Chia; Yen, Chun-Po; Schlesinger, David; Kassell, Neal F; Aubry, Jean-Francois; Sheehan, Jason

    2015-01-01

    In biological tissues, it is known that the creation of gas bubbles (cavitation) during ultrasound exposure is more likely to occur at lower rather than higher frequencies. Upon collapsing, such bubbles can induce hemorrhage. Thus, acoustic inertial cavitation secondary to a 220-kHz MRI-guided focused ultrasound (MRgFUS) surgery is a serious safety issue, and animal studies are mandatory for laying the groundwork for the use of low-frequency systems in future clinical trials. The authors investigate here the in vivo potential thresholds of MRgFUS-induced inertial cavitation and MRgFUS-induced thermal coagulation using MRI, acoustic spectroscopy, and histology. Ten female piglets that had undergone a craniectomy were sonicated using a 220-kHz transcranial MRgFUS system over an acoustic energy range of 5600-14,000 J. For each piglet, a long-duration sonication (40-second duration) was performed on the right thalamus, and a short sonication (20-second duration) was performed on the left thalamus. An acoustic power range of 140-300 W was used for long-duration sonications and 300-700 W for short-duration sonications. Signals collected by 2 passive cavitation detectors were stored in memory during each sonication, and any subsequent cavitation activity was integrated within the bandwidth of the detectors. Real-time 2D MR thermometry was performed during the sonications. T1-weighted, T2-weighted, gradient-recalled echo, and diffusion-weighted imaging MRI was performed after treatment to assess the lesions. The piglets were killed immediately after the last series of posttreatment MR images were obtained. Their brains were harvested, and histological examinations were then performed to further evaluate the lesions. Two types of lesions were induced: thermal ablation lesions, as evidenced by an acute ischemic infarction on MRI and histology, and hemorrhagic lesions, associated with inertial cavitation. Passive cavitation signals exhibited 3 main patterns identified as

  5. MRI-guided percutaneous cryoablation of renal tumors: Use of external manual displacement of adjacent bowel loops

    International Nuclear Information System (INIS)

    Tuncali, Kemal; Morrison, Paul R.; Tatli, Servet; Silverman, Stuart G.

    2006-01-01

    Purpose: We sought to investigate retrospectively the safety and effectiveness of using external hand compression to displace adjacent bowel loops during MRI-guided percutaneous cryoablation of renal tumors. Materials and methods: Fourteen patients (six women, eight men; mean age: 72 years) with 15 renal tumors (mean diameter: 2.4 cm; range: 1.4-4.6 cm) adjacent to bowel were treated with MRI-guided percutaneous cryoablation during which bowel was displaced manually. Bowel loop of concern was ascending colon (n 5), descending colon (n = 8), descending colon and small bowel (n = 1), ascending colon and small bowel (n = 1). To analyze effectiveness of the maneuver, mean distance between tumor margin and bowel before and after the maneuver were compared and analyzed using paired Student's t-test. Minimum distance between iceball edge and adjacent bowel with external manual displacement during freezing was also measured. Safety was assessed by analyzing post-procedural MR imaging for adjacent bowel wall thickening and focal fluid collections as well as patients' clinical and imaging follow-up. Results: Mean distance between tumor margin and closest adjacent bowel increased from 0.8 cm (range: 0-2 cm) before external manual compression to 2.6 cm (range: 1.6-4.1 cm) with manual displacement (p < 0.01). Mean minimum distance between iceball edge and closest adjacent bowel during the procedures was 1.6 cm (range: 0.5-3.5 cm). No evidence of bowel injury was encountered. Twelve of 15 tumors had follow-up (mean: 10 months) that showed no tumor recurrence. Conclusion: MRI-guided percutaneous cryoablation of renal tumors adjacent to bowel can be done safely and effectively using external hand compression to displace bowel loops

  6. MRI-guided Wire Localization Surgical Biopsy in an Adolescent Patient with a Difficult to Diagnose Case of Lymphoma

    International Nuclear Information System (INIS)

    Thompson, Scott M.; Gorny, Krzysztof R.; Jondal, Danielle E.; Rech, Karen L.; Mardini, Samir; Woodrum, David A.

    2017-01-01

    A 17-year-old previously healthy female presented with a progressive soft tissue infiltrative process involving the neck and thorax. Extensive diagnostic evaluation including multiple imaging, laboratory, and biopsy studies was nondiagnostic. Due to an urgent need to establish a diagnosis and several previous nondiagnostic biopsies, she was referred to interventional radiology for MRI-guided wire localization immediately prior to open surgical biopsy. Under general anesthesia, wires were placed in the areas of increased T2 signal within the bilateral splenius capitis muscles using intermittent MRI-guidance followed by immediate surgical biopsy down to the wires. Pathology confirmed the diagnosis of diffuse large B-cell lymphoma.

  7. MRI-guided Wire Localization Surgical Biopsy in an Adolescent Patient with a Difficult to Diagnose Case of Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Scott M., E-mail: Thompson.scott@mayo.edu; Gorny, Krzysztof R.; Jondal, Danielle E. [Mayo Clinic College of Medicine, Department of Radiology (United States); Rech, Karen L. [Mayo Clinic College of Medicine, Department of Laboratory Medicine and Pathology (United States); Mardini, Samir [Mayo Clinic College of Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery (United States); Woodrum, David A. [Mayo Clinic College of Medicine, Division of Vascular and Interventional Radiology, Department of Radiology (United States)

    2017-01-15

    A 17-year-old previously healthy female presented with a progressive soft tissue infiltrative process involving the neck and thorax. Extensive diagnostic evaluation including multiple imaging, laboratory, and biopsy studies was nondiagnostic. Due to an urgent need to establish a diagnosis and several previous nondiagnostic biopsies, she was referred to interventional radiology for MRI-guided wire localization immediately prior to open surgical biopsy. Under general anesthesia, wires were placed in the areas of increased T2 signal within the bilateral splenius capitis muscles using intermittent MRI-guidance followed by immediate surgical biopsy down to the wires. Pathology confirmed the diagnosis of diffuse large B-cell lymphoma.

  8. High-intensity sources for light ions

    International Nuclear Information System (INIS)

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H + and H - beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented

  9. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy

  10. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.H.; Stoeffl, W.

    1998-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world's highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectra

  11. High intensity TOF spectrometer for cold neutrons

    International Nuclear Information System (INIS)

    Maayouf, R.M.; Abd El-Kawy, A.; Habib, N.; Adib, M.; Hamouda, I.

    1984-01-01

    This work presents a neutron time-of-flight (TOF) spectrometer developed specially for total neutron cross-section measurements at neutron energies below 5 MeV and sample's temperature varying from the liquid nitrogen one and up to 500 0 K. The spectrometer is equipped by remote control unit, designed especially, in order to move the sample in and out of the beam during the experimental measurements. The spectrometer has proved to be useful for transmission measurements at neutron energies below 5 MeV. It has a reasonable energy resolution (4.4%) and high effect to background ratio (11.1) at 5 MeV

  12. High intensity positron program at LLNL

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Howell, R.; Stoeffl, W.; Carter, D.

    1999-01-01

    Lawrence Livermore National Laboratory (LLNL) is the home of the world close-quote s highest current beam of keV positrons. The potential for establishing a national center for materials analysis using positron annihilation techniques around this capability is being actively pursued. The high LLNL beam current will enable investigations in several new areas. We are developing a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with submicron resolution. Below we summarize the important design features of this microprobe. Several experimental end stations will be available that can utilize the high current beam with a time distribution determined by the electron linac pulse structure, quasi-continuous, or bunched at 20 MHz, and can operate in an electrostatic or (and) magnetostatic environment. Some of the planned early experiments are: two-dimensional angular correlation of annihilation radiation of thin films and buried interfaces, positron diffraction holography, positron induced desorption, and positron induced Auger spectroscopy. copyright 1999 American Institute of Physics

  13. SALIVARY CORTISOL RESPONSES AND PERCEIVED EXERTION DURING HIGH INTENSITY AND LOW INTENSITY BOUTS OF RESISTANCE EXERCISE

    Directory of Open Access Journals (Sweden)

    Alison D. Egan

    2004-03-01

    Full Text Available The purpose of this study was to measure the salivary cortisol response to different intensities of resistance exercise. In addition, we wanted to determine the reliability of the session rating of perceived exertion (RPE scale to monitor resistance exercise intensity. Subjects (8 men, 9 women completed 2 trials of acute resistance training bouts in a counterbalanced design. The high intensity resistance exercise protocol consisted of six, ten-repetition sets using 75% of one repetition maximum (RM on a Smith machine squat and bench press exercise (12 sets total. The low intensity resistance exercise protocol consisted of three, ten-repetition sets at 30% of 1RM of the same exercises as the high intensity protocol. Both exercise bouts were performed with 2 minutes of rest between each exercise and sessions were repeated to test reliability of the measures. The order of the exercise bouts was randomized with least 72 hours between each session. Saliva samples were obtained immediately before, immediately after and 30 mins following each resistance exercise bout. RPE measures were obtained using Borg's CR-10 scale following each set. Also, the session RPE for the entire exercise session was obtained 30 minutes following completion of the session. There was a significant 97% increase in the level of salivary cortisol immediately following the high intensity exercise session (P<0.05. There was also a significant difference in salivary cortisol of 145% between the low intensity and high intensity exercise session immediately post-exercise (P<0.05. The low intensity exercise did not result in any significant changes in cortisol levels. There was also a significant difference between the session RPE values for the different intensity levels (high intensity 7.1 vs. low intensity 1.9 (P<0.05. The intraclass correlation coefficient for the session RPE measure was 0.95. It was concluded that the session RPE method is a valid and reliable method of

  14. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS

    International Nuclear Information System (INIS)

    Wei, J.; Macek, R.J.

    2002-01-01

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures

  15. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  16. Apparatus for controlled mixing in a high intensity mixer

    International Nuclear Information System (INIS)

    Crocker, Z.; Gupta, V.P.

    1982-01-01

    An apparatus and a process is disclosed for controlled mixing of a mixable material in a high intensity mixer. The system enables instantaneous, precise and continual monitoring of a batch in a high intensity mixer which heretofore could not be achieved. The process comprises the steps of feeding a batch of material into a high intensity mixer, agitating the batch in the mixer, monitoring batch temperature separately from mixer temperature and discharging the batch from the mixer when the batch temperature reaches a final predetermined level. The apparatus includes means for monitoring batch temperature in a high intensity mixer separately from mixer temperature, and means responsive to the batch temperature to discharge the batch when the batch temperature reaches a final predetermined level

  17. Feasibility of high-intensity training in asthma

    DEFF Research Database (Denmark)

    Tønnesen, Louise Lindhardt; Sørensen, E D; Hostrup, Morten

    2018-01-01

    Background: High-intensity interval training is an effective and popular training regime but its feasibility in untrained adults with asthma is insufficiently described. Objective: The randomized controlled trial 'EFFORT Asthma' explored the effects of behavioural interventions including high......-intensity interval training on clinical outcomes in nonobese sedentary adults with asthma. In this article we present a sub analysis of data aiming to evaluate if patients' pre-intervention levels of asthma control, FEV1, airway inflammation and airway hyperresponsiveness (AHR) predicted their training response...... to the high-intensity interval training program, measured as increase in maximal oxygen consumption (VO2max). Design: We used data from the EFFORT Asthma Study. Of the 36 patients randomized to the 8-week exercise intervention consisting of high-intensity training three times per week, 29 patients (45...

  18. Less invasive causal treatment of ejaculatory duct obstruction by balloon dilation: a case report, literature review and suggestion of a CT- or MRI-guided intervention

    Directory of Open Access Journals (Sweden)

    Ole Kayser

    2012-03-01

    Full Text Available Uni- or bilateral ejaculatory duct obstruction (EDO is a rare but correctable cause of infertility, chronic pelvic pain and postejaculatory pain. EDO is a congenital or acquired condition, it is the underlying cause of infertility in approximately 5% of infertile men. If acquired, the etiology often remains unresolved, but prostatitis or urethritis with post-inflammatory adhesion of the duct walls seems to be a common underlying pathomechanism. Although a certain constellation of physicochemical semen parameters may lead to correct diagnosis, EDO often resembles a diagnosis by exclusion. Imaging of acquired EDO remains a challenge and the established surgical therapy, transurethral resection of the ejaculatory ducts (TURED, leads to a low rate of natural conception and a high rate of complications such as reflux of urine and epididymitis. We present a case of a male with suspected EDO who underwent a combined approach to both, semi-invasive diagnosis and therapy by transrectal puncture of the seminal vesicles and antegrade balloon-dilation of the ejaculatory ducts. Possibilities and pitfalls of this procedure are described and the literature is reviewed. Furthermore, we suggest a CT- or MRI-guided, percutaneous intervention for treatment of ejaculatory duct obstruction by balloon dilation and demonstrate initial steps of this procedure with a body donor. We call this new procedure PTED (percutaneous transgluteal ejaculatory ductoplasty.

  19. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise.

    Science.gov (United States)

    Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole

    2015-12-15

    Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health. Copyright © 2015 the American Physiological Society.

  20. Case Study on Justification: High Intensity Discharge Lamps. Annex II

    International Nuclear Information System (INIS)

    2016-01-01

    High intensity discharge lamps produce bright white light of a high intensity in an energy efficient manner. These lamps are typically used in large numbers in public and professional settings such as shops, warehouses, hotels and offices. They are also used in outdoor applications to illuminate streets, buildings, statues, flags and gardens and further as architectural lighting. They also have applications associated with film projection in cinemas, manufacture of semiconductors, fluorescence endoscopy and microscopy, schlieren photography, hologram projection, ultraviolet curing, sky beamers and car headlights. Some types of high intensity discharge lamp, as well as certain other consumer products for lighting, contain radioactive substances for functional reasons. The radionuclides that are typically incorporated into high intensity discharge lamps are 85 Kr and 232 Th. Given the wide range of uses, specific decisions on justification may be required for different applications. A small number of safety assessments for high intensity discharge lamps have been carried out and published. No published decisions at the national level specifically addressing the justification of the use of high intensity discharge lamps have been identified

  1. Generation of intense high-order vortex harmonics.

    Science.gov (United States)

    Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan

    2015-05-01

    This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.

  2. Extended Remediation of Sleep Deprived-Induced Working Memory Deficits Using fMRI-guided Transcranial Magnetic Stimulation

    Science.gov (United States)

    Luber, Bruce; Steffener, Jason; Tucker, Adrienne; Habeck, Christian; Peterchev, Angel V.; Deng, Zhi-De; Basner, Robert C.; Stern, Yaakov; Lisanby, Sarah H.

    2013-01-01

    Study Objectives: We attempted to prevent the development of working memory (WM) impairments caused by sleep deprivation using fMRI-guided repetitive transcranial magnetic stimulation (rTMS). Novel aspects of our fMRI-guided rTMS paradigm included the use of sophisticated covariance methods to identify functional networks in imaging data, and the use of fMRI-targeted rTMS concurrent with task performance to modulate plasticity effects over a longer term. Design: Between-groups mixed model. Setting: TMS, MRI, and sleep laboratory study. Participants: 27 subjects (13 receiving Active rTMS, and 14 Sham) completed the sleep deprivation protocol, with another 21 (10 Active, 11 Sham) non-sleep deprived subjects run in a second experiment. Interventions: Our previous covariance analysis had identified a network, including occipital cortex, which demonstrated individual differences in resilience to the deleterious effects of sleep deprivation on WM performance. Five Hz rTMS was applied to left lateral occipital cortex while subjects performed a WM task during 4 sessions over the course of 2 days of total sleep deprivation. Measurements and Results: At the end of the sleep deprivation period, Sham sleep deprived subjects exhibited degraded performance in the WM task. In contrast, those receiving Active rTMS did not show the slowing and lapsing typical in sleep deprivation, and instead performed similarly to non- sleep deprived subjects. Importantly, the Active sleep deprivation group showed rTMS-induced facilitation of WM performance a full 18 hours after the last rTMS session. Conclusions: Over the course of sleep deprivation, these results indicate that rTMS applied concurrently with WM task performance affected neural circuitry involved in WM to prevent its full impact. Citation: Luber B; Steffener J; Tucker A; Habeck C; Peterchev AV; Deng ZD; Basner RC; Stern Y; Lisanby SH. Extended remediation of sleep deprived-induced working memory deficits using fMRI-guided

  3. Pulsed system for obtaining microdosimetric data with high intensity beams

    International Nuclear Information System (INIS)

    Zaider, M.; Dicello, J.F.; Hiebert, R.D.

    1977-01-01

    The use of heavy particle accelerators for radiation therapy requires high intensity beams in order to produce useful dose rates. The 800-MeV proton beam at LAMPF passes through different production targets to generate secondary pion beams. Conventional microdosimetric techniques are not applicable under these conditions because exceedingly high count rates result in detector damage, gas breakdown, and saturation effects in the electronics. We describe a new microdosimetric system developed at the Pion Biomedical Channel of LAMPF. The accelerator provides a variable low intensity pulse once every ten high intensity macropulses. The voltage on the detector is pulsed in coincidence with the low intensity pulse so that we were able to operate the detector under optimum data-taking conditions. A low noise two-stage preamplifier was built in connection with the pulsed mode operation. A comparison is made between data obtained in pulsed (high intensity beam) and unpulsed (low intensity beam) modes. The spectra obtained by the two methods agree within the experimental uncertainties

  4. High-Power, High-Intensity Laser Propagation and Interactions

    Science.gov (United States)

    2014-03-10

    intensity as the weighting function. The full refractive index associated with the laser plasma interaction having a parabolic density variation ...radiation in turn enhances the electron density wave further amplifying the radiation. Considering spatial variations in the z direction only the FEL...effL/ at the entrance to the wiggler where effL is the effective interaction length. This requirement can be expressed by the following inequality

  5. Light-intensity and high-intensity interval training improve cardiometabolic health in rats.

    Science.gov (United States)

    Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S

    2016-09-01

    Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.

  6. P-West High Intensity Secondary Beam Area Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.; Currier, R.; Eartly, D.; Guthke, A.; Johnson, G.; Lee, D.; Dram, R.; Villegas, E.; Rest, J.; Tilles, E.; Vander Arend, P.

    1977-03-01

    This report gives the initial design parameters of a 1000 GeV High Intensity Superconducting Secondary Beam Laboratory to be situated in the Proton Area downstream of the existing Proton West experimental station. The area will provide Fermilab with a major capability for experimentation with pion and antiproton beams of intensities and of energies available at no other laboratory and with an electron beam with excellent spot size, intensity, and purity at energies far above that available at electron machines. Detailed beam design, area layouts, and cost estimates are presented, along with the design considerations.

  7. Ultra-High Intensity Proton Accelerators and their Applications

    International Nuclear Information System (INIS)

    Weng, W. T.

    1997-01-01

    The science and technology of proton accelerators have progressed considerably in the past three decades. Three to four orders of magnitude increase in both peak intensity and average flux have made it possible to construct high intensity proton accelerators for modern applications, such as: spallation neutron sources, kaon factory, accelerator production of tritium, energy amplifier and muon collider drivers. The accelerator design focus switched over from intensity for synchrotrons, to brightness for colliders to halos for spallation sources. An overview of this tremendous progress in both accelerator science and technology is presented, with special emphasis on the new challenges of accelerator physics issues such as: H(-) injection, halo formation and reduction of losses

  8. Measurements of acoustic pressure at high amplitudes and intensities

    International Nuclear Information System (INIS)

    Crum, L A; Bailey, M R; Kaczkowski, P; McAteer, J A; Pishchalnikov, Y A; Sapozhnikov, O A

    2004-01-01

    In our research group, we desire measurements of the large pressure amplitudes generated by the shock waves used in shock wave lithotripsy (SWL) and the large acoustic intensities used in High Intensity Focused Ultrasound (HIFU). Conventional piezoelectric or PVDF hydrophones can not be used for such measurements as they are damaged either by cavitation, in SWL applications, or heat, in HIFU applications. In order to circumvent these difficulties, we have utilized optical fiber hydrophones in SWL that do not cavitate, and small glass probes and a scattering technique for measurements of large HIFU intensities. Descriptions of these techniques will be given as well as some typical data

  9. Photon-photon scattering at the high-intensity frontier

    Science.gov (United States)

    Gies, Holger; Karbstein, Felix; Kohlfürst, Christian; Seegert, Nico

    2018-04-01

    The tremendous progress in high-intensity laser technology and the establishment of dedicated high-field laboratories in recent years have paved the way towards a first observation of quantum vacuum nonlinearities at the high-intensity frontier. We advocate a particularly prospective scenario, where three synchronized high-intensity laser pulses are brought into collision, giving rise to signal photons, whose frequency and propagation direction differ from the driving laser pulses, thus providing various means to achieve an excellent signal to background separation. Based on the theoretical concept of vacuum emission, we employ an efficient numerical algorithm which allows us to model the collision of focused high-intensity laser pulses in unprecedented detail. We provide accurate predictions for the numbers of signal photons accessible in experiment. Our study is the first to predict the precise angular spread of the signal photons, and paves the way for a first verification of quantum vacuum nonlinearity in a well-controlled laboratory experiment at one of the many high-intensity laser facilities currently coming online.

  10. Benefits of High-Intensity Intensive Care Unit Physician Staffing under the Affordable Care Act

    Directory of Open Access Journals (Sweden)

    Sachin Logani

    2011-01-01

    Full Text Available The Affordable Care Act signed into law by President Obama, with its value-based purchasing program, is designed to link payment to quality processes and outcomes. Treatment of critically ill patients represents nearly 1% of the gross domestic product and 25% of a typical hospital budget. Data suggest that high-intensity staffing patterns in the intensive care unit (ICU are associated with cost savings and improved outcomes. We evaluate the literature investigating the cost-effectiveness and clinical outcomes of high-intensity ICU physician staffing as recommended by The Leapfrog Group (a consortium of companies that purchase health care for their employees and identify ways to overcome barriers to nationwide implementation of these standards. Hospitals that have implemented the Leapfrog initiative have demonstrated reductions in mortality and length of stay and increased cost savings. High-intensity staffing models appear to be an immediate cost-effective way for hospitals to meet the challenges of health care reform.

  11. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    Abstract. KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator. (VIRCATOR) device. HPM power measurements were carried out using a transmitting– receiving system in the presence of intense high frequency (a few ...

  12. Simulation study of the high intensity S-Band photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiongwei; Nakajima, Kazuhisa [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-10-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 {pi} mm mrad can be outputted at the exit of photoinjector. (author)

  13. Simulation study of the high intensity S-Band photoinjector

    International Nuclear Information System (INIS)

    Zhu, Xiongwei; Nakajima, Kazuhisa

    2001-01-01

    In this paper, we report the results of simulation study of the high intensity S-Band photoinjector. The aim of the simulation study is to transport high bunch charge with low emittance evolution. The simulation result shows that 7nC bunch with rms emittance 22.3 π mm mrad can be outputted at the exit of photoinjector. (author)

  14. MRI follow-up after concordant, histologically benign diagnosis of breast lesions sampled by MRI-guided biopsy.

    Science.gov (United States)

    Li, Jie; Dershaw, D David; Lee, Carol H; Kaplan, Jennifer; Morris, Elizabeth A

    2009-09-01

    Follow-up MRI can be useful to confirm a benign diagnosis after MRI-guided breast biopsy. This retrospective study was undertaken to evaluate appropriate timing and imaging interpretation for the initial follow-up MRI when a benign, concordant histology is obtained using MRI-guided breast biopsy. Retrospective review was performed of 177 lesions visualized only by MRI in 172 women who underwent 9-gauge, vacuum-assisted core biopsy and marker placement with imaging-concordant benign histology. All underwent follow-up MRI within 12 months. Timing of the follow-up study, change in size, results of second biopsy if performed, and distance of localizing marker to the lesion on the follow-up study were recorded. At initial follow-up, 155 lesions were decreased or gone, 14 lesions were stable, and eight were enlarged. Seventeen (9.6%, 17/177) lesions underwent a second biopsy, including six enlarging, 10 stable, and one decreasing. Of these, four were malignant. Enlargement was seen in two carcinomas at 6 and 12 months. Two carcinomas, one stable at 2 months and another stable at 3 and 11 months, were rebiopsied because of suspicion of a missed lesion in the former and worrisome mammographic and sonographic changes in the latter. The distance of the marker from the lesion on follow-up did not correlate with biopsy accuracy. Follow-up MRI did not detect missed cancers because of lesion enlargement before 6 months after biopsy; two of four missed cancers were stable. The localizing marker can deploy away from the target despite successful sampling.

  15. Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy.

    Science.gov (United States)

    Paganelli, Chiara; Lee, Danny; Kipritidis, John; Whelan, Brendan; Greer, Peter B; Baroni, Guido; Riboldi, Marco; Keall, Paul

    2018-02-11

    In-room MRI is a promising image guidance strategy in external beam radiotherapy to acquire volumetric information for moving targets. However, limitations in spatio-temporal resolution led several authors to use 2D orthogonal images for guidance. The aim of this work is to present a method to concurrently compensate for non-rigid tumour motion and provide an approach for 3D reconstruction from 2D orthogonal cine-MRI slices for MRI-guided treatments. Free-breathing sagittal/coronal interleaved 2D cine-MRI were acquired in addition to a pre-treatment 3D volume in two patients. We performed deformable image registration (DIR) between cine-MRI slices and corresponding slices in the pre-treatment 3D volume. Based on an extrapolation of the interleaved 2D motion fields, the 3D motion field was estimated and used to warp the pre-treatment volume. Due to the lack of a ground truth for patients, the method was validated on a digital 4D lung phantom. On the phantom, the 3D reconstruction method was able to compensate for tumour motion and compared favourably to the results of previously adopted strategies. The difference in the 3D motion fields between the phantom and the extrapolated motion was 0.4 ± 0.3 mm for tumour and 0.8 ± 1.5 mm for whole anatomy, demonstrating feasibility of performing a 3D volumetric reconstruction directly from 2D orthogonal cine-MRI slices. Application of the method to patient data confirmed the feasibility of utilizing this method in real world scenarios. Preliminary results on phantom and patient cases confirm the feasibility of the proposed approach in an MRI-guided scenario, especially for non-rigid tumour motion compensation. © 2018 The Royal Australian and New Zealand College of Radiologists.

  16. Feasibility Study on MR-Guided High-Intensity Focused Ultrasound Ablation of Sciatic Nerve in a Swine Model: Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, Elena A., E-mail: kayee@mskcc.org [Memorial Sloan Kettering Cancer Center, Department of Medical Physics (United States); Gutta, Narendra Babu, E-mail: gnbabu.aiims@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Radiology (United States); Monette, Sebastien, E-mail: monettes@mskcc.org [The Rockefeller University, Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College (United States); Gulati, Amitabh, E-mail: gulatia@mskcc.org; Loh, Jeffrey, E-mail: jeffreyloh@gmail.com [Memorial Sloan Kettering Cancer Center, Department of Anesthesiology-Critical Care (United States); Srimathveeravalli, Govindarajan, E-mail: srimaths@mskcc.org [Memorial Sloan Kettering Cancer Center, Department of Radiology (United States); Ezell, Paula C., E-mail: paula.ezell@intusurg.com [The Rockefeller University, Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College (United States); Erinjeri, Joseph P., E-mail: erinjerj@mskcc.org; Solomon, Stephen B., E-mail: solomons@mskcc.org; Maybody, Majid, E-mail: maybodym@mskcc.org [Memorial Sloan Kettering Cancer Center, Department of Radiology (United States)

    2015-08-15

    IntroductionSpastic patients often seek neurolysis, the permanent destruction of the sciatic nerve, for better pain management. MRI-guided high-intensity focused ultrasound (MRgHIFU) may serve as a noninvasive alternative to the prevailing, more intrusive techniques. This in vivo acute study is aimed at performing sciatic nerve neurolysis using a clinical MRgHIFU system.MethodsThe HIFU ablation of sciatic nerves was performed in swine (n = 5) using a HIFU system integrated with a 3 T MRI scanner. Acute lesions were confirmed using T1-weighted contrast-enhanced (CE) MRI and histopathology using hematoxylin and eosin staining. The animals were euthanized immediately following post-ablation imaging.ResultsReddening and mild thickening of the nerve and pallor of the adjacent muscle were seen in all animals. The HIFU-treated sections of the nerves displayed nuclear pyknosis of Schwann cells, vascular hyperemia, perineural edema, hyalinization of the collagenous stroma of the nerve, myelin sheet swelling, and loss of axons. Ablations were visible on CE MRI. Non-perfused volume of the lesions (5.8–64.6 cc) linearly correlated with estimated lethal thermal dose volume (4.7–34.2 cc). Skin burn adjacent to the largest ablated zone was observed in the first animal. Bilateral treatment time ranged from 55 to 138 min, and preparation time required 2 h on average.ConclusionThe acute pilot study in swine demonstrated the feasibility of a noninvasive neurolysis of the sciatic nerve using a clinical MRgHIFU system. Results revealed that acute HIFU nerve lesions were detectable on CE MRI, gross pathology, and histology.

  17. High Intensity Interval Training for Maximizing Health Outcomes.

    Science.gov (United States)

    Karlsen, Trine; Aamot, Inger-Lise; Haykowsky, Mark; Rognmo, Øivind

    Regular physical activity and exercise training are important actions to improve cardiorespiratory fitness and maintain health throughout life. There is solid evidence that exercise is an effective preventative strategy against at least 25 medical conditions, including cardiovascular disease, stroke, hypertension, colon and breast cancer, and type 2 diabetes. Traditionally, endurance exercise training (ET) to improve health related outcomes has consisted of low- to moderate ET intensity. However, a growing body of evidence suggests that higher exercise intensities may be superior to moderate intensity for maximizing health outcomes. The primary objective of this review is to discuss how aerobic high-intensity interval training (HIIT) as compared to moderate continuous training may maximize outcomes, and to provide practical advices for successful clinical and home-based HIIT. Copyright © 2017. Published by Elsevier Inc.

  18. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    Science.gov (United States)

    Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib

    2016-09-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of  -1.5  ±  5.0% (mean  ±  SD) in bony structures compared to  -19.9  ±  11.8% and  -8.1  ±  8.2% achieved by MRI segmentation-based (water

  19. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  20. MRI-Guided Intervention for Breast Lesions Using the Freehand Technique in a 3.0-T Closed-Bore MRI Scanner: Feasibility and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Young [Department of Radiology, Gyeongsang National University Hospital, Jinju 660-702 (Korea, Republic of); Kim, Sun Mi; Jang, Mijung; Yun, Bo La [Department of Radiology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Kim, Sung-Won; Kang, Eunyoung [Department of Surgery, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Park, So Yeon [Department of Pathology, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of); Moon, Woo Kyung [Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Ko, Eun Sook [Department of Radiology, Samsung Medical Center, Seoul 135-710 (Korea, Republic of)

    2013-07-01

    To report the feasibility of magnetic resonance imaging (MRI)-guided intervention for diagnosing suspicious breast lesions detectable by MRI only, using the freehand technique with a 3.0-T closed-bore MRI scanner. Five women with 5 consecutive MRI-only breast lesions underwent MRI-guided intervention: 3 underwent MRI-guided needle localization and 2, MRI-guided vacuum-assisted biopsy. The interventions were performed in a 3.0-T closed-bore MRI system using a dedicated phased-array breast coil with the patients in the prone position; the freehand technique was used. Technical success and histopathologic outcome were analyzed. MRI showed that four lesions were masses (mean size, 11.5 mm; range, 7-18 mm); and 1, a nonmass-like enhancement (maximum diameter, 21 mm). The locations of the lesions with respect to the breast with index cancer were as follows: different quadrant, same breast - 3 cases; same quadrant, same breast - 1 case; and contralateral breast - 1 case. Histopathologic evaluation of the lesions treated with needle localization disclosed perilobular hemangioma, fibrocystic change, and fibroadenomatous change. The lesions treated with vacuum-assisted biopsy demonstrated a radial scar and atypical apocrine hyperplasia. Follow-up MRI after 2-7 months (mean, 4.6 months) confirmed complete lesion removal in all cases. MRI-guided intervention for breast lesions using the freehand technique with a 3.0-T closed-bore MRI scanner is feasible and accurate for diagnosing MRI-only lesions.

  1. MRI-Guided Intervention for Breast Lesions Using the Freehand Technique in a 3.0-T Closed-Bore MRI Scanner: Feasibility and Initial Results

    International Nuclear Information System (INIS)

    Choi, Hye Young; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Kim, Sung-Won; Kang, Eunyoung; Park, So Yeon; Moon, Woo Kyung; Ko, Eun Sook

    2013-01-01

    To report the feasibility of magnetic resonance imaging (MRI)-guided intervention for diagnosing suspicious breast lesions detectable by MRI only, using the freehand technique with a 3.0-T closed-bore MRI scanner. Five women with 5 consecutive MRI-only breast lesions underwent MRI-guided intervention: 3 underwent MRI-guided needle localization and 2, MRI-guided vacuum-assisted biopsy. The interventions were performed in a 3.0-T closed-bore MRI system using a dedicated phased-array breast coil with the patients in the prone position; the freehand technique was used. Technical success and histopathologic outcome were analyzed. MRI showed that four lesions were masses (mean size, 11.5 mm; range, 7-18 mm); and 1, a nonmass-like enhancement (maximum diameter, 21 mm). The locations of the lesions with respect to the breast with index cancer were as follows: different quadrant, same breast - 3 cases; same quadrant, same breast - 1 case; and contralateral breast - 1 case. Histopathologic evaluation of the lesions treated with needle localization disclosed perilobular hemangioma, fibrocystic change, and fibroadenomatous change. The lesions treated with vacuum-assisted biopsy demonstrated a radial scar and atypical apocrine hyperplasia. Follow-up MRI after 2-7 months (mean, 4.6 months) confirmed complete lesion removal in all cases. MRI-guided intervention for breast lesions using the freehand technique with a 3.0-T closed-bore MRI scanner is feasible and accurate for diagnosing MRI-only lesions

  2. Ion source and injection line for high intensity medical cyclotron

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  3. Half-integer resonance crossing in high-intensity rings

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    2002-02-01

    Full Text Available A detailed study of the influence of space charge on the crossing of second-order resonances is presented and associated with the space-charge limit of high-intensity rings. Two-dimensional simulation studies are compared with envelope models, which agree in the finding of an increased intensity limit due to the coherent frequency shift. This result is also found for realistic bunched beams with multiturn injection painting. Characteristic features such as the influence of tune splitting, structure resonances, and the role of envelope instabilities are discussed in detail. The theoretical limits are found to be in good agreement with the performance of high-intensity proton machines.

  4. High signal intensity of fat on fast spin echo imaging

    International Nuclear Information System (INIS)

    Ogura, Akio; Yamazaki, Masaru; Hongoh, Takaharu; Inoue, Hiroshi; Ishikuro, Akihiro

    2000-01-01

    The fast spin echo (FSE) technique of producing T 2 -weighted images in greatly reduced imaging times has recently been used for routine clinical study. FSE images show contrast that is very similar in most tissues to that of conventional SE images. However, fat shows a high signal intensity that is influenced by j-coupling and the magnetization transfer effect. The purpose of this study was to assess whether the higher signal intensity of fat is different among MRI systems and to examine the effects of j-coupling and magnetization transfer on the high signal intensity of fat on FSE. The contrast in signal intensity between fat and water was measured for various echo train lengths (ETL) with and without multislicing on FSE using a contrast phantom. Measurements were obtained with four different MRI systems. In addition, the effective T 2 values of fat were calculated for the above conditions. Results indicated that contrast for fat and water was reduced with increased ETL and by using multislicing and was different among the four MRI systems. The effective T 2 values of fat were extended for increased ETL and were not dependent on multislicing. They also differed among the four MRI systems. The extent of effective T 2 values was affected by j-coupling. In this study, it was indicated that the degree of the high signal intensity of fat on FSE differed for different MRI systems. In addition, the reasons for the high signal intensity of fat on FSE were related to the effects of j-coupling and magnetization transfer. (author)

  5. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  6. Nonlinear behavior in high-intensity discharge lamps

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-06-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the simulations and in the experiments.

  7. Influence of high intensity ultrasound with different probe diameter ...

    African Journals Online (AJOL)

    The main goal of this research is to analyze the influence of ultrasonic probe diameters (7 and 10 mm) of high-intensity ultrasound with constant frequency (30 kHz) on the degree of homogenization (variance) of cow milk. Influence of different probe diameters on the physical properties of cow milk was also tested. Changes ...

  8. Intense neutron source: high-voltage power supply specifications

    International Nuclear Information System (INIS)

    Riedel, A.A.

    1980-08-01

    This report explains the need for and sets forth the electrical, mechanical and safety specifications for a high-voltage power supply to be used with the intense neutron source. It contains sufficient information for a supplier to bid on such a power supply

  9. Evidence based exercise - clinical benefits of high intensity interval training.

    Science.gov (United States)

    Shiraev, Tim; Barclay, Gabriella

    2012-12-01

    Aerobic exercise has a marked impact on cardiovascular disease risk. Benefits include improved serum lipid profiles, blood pressure and inflammatory markers as well as reduced risk of stroke, acute coronary syndrome and overall cardiovascular mortality. Most exercise programs prescribed for fat reduction involve continuous, moderate aerobic exercise, as per Australian Heart Foundation clinical guidelines. This article describes the benefits of exercise for patients with cardiovascular and metabolic disease and details the numerous benefits of high intensity interval training (HIIT) in particular. Aerobic exercise has numerous benefits for high-risk populations and such benefits, especially weight loss, are amplified with HIIT. High intensity interval training involves repeatedly exercising at a high intensity for 30 seconds to several minutes, separated by 1-5 minutes of recovery (either no or low intensity exercise). HIT is associated with increased patient compliance and improved cardiovascular and metabolic outcomes and is suitable for implementation in both healthy and 'at risk' populations. Importantly, as some types of exercise are contraindicated in certain patient populations and HIIT is a complex concept for those unfamiliar to exercise, some patients may require specific assessment or instruction before commencing a HIIT program.

  10. Reuse Recycler: High Intensity Proton Stacking at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P. [Fermilab

    2016-07-17

    After a successful career as an antiproton storage and cooling ring, Recycler has been converted to a high intensity proton stacker for the Main Injector. We discuss the commissioning and operation of the Recycler in this new role, and the progress towards the 700 kW design goal.

  11. The high intensity approximation applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1980-08-01

    It is shown that the most commonly used high intensity approximations as applied to ionization by strong electromagnetic fields are related. The applicability of the steepest descent method in these approximations, and the relation between them and first-order perturbation theory, are also discussed. (Author) [pt

  12. Drift tube suspension for high intensity linear accelerators

    International Nuclear Information System (INIS)

    Clark, D.C.; Frank, J.A.; Liska, D.J.; Potter, R.C.; Schamaun, R.G.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder

  13. Annotated bibliography on high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases

  14. High-intensity exercise and recovery during short-term ...

    African Journals Online (AJOL)

    to power athletes and other individuals wishing to improve performance in ... effect of creatine supplementation on physical performance. It has been reported that ... high-intensity work performance.1,2,5,16,31,36 Such activities as resistance ...

  15. High-Intensity Interval Training for Improving Postprandial Hyperglycemia

    Science.gov (United States)

    Little, Jonathan P.; Francois, Monique E.

    2014-01-01

    High-intensity interval training (HIIT) has garnered attention in recent years as a time-efficient exercise option for improving cardiovascular and metabolic health. New research demonstrates that HIIT may be particularly effective for improving postprandial hyperglycemia in individuals with, or at risk for, type 2 diabetes (T2D). These findings…

  16. Annotated bibliography on high-intensity linear accelerators. [240 citations

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.; Roybal, E.U.

    1978-01-01

    A technical bibliography covering subjects important to the design of high-intensity beam transport systems and linear accelerators is presented. Space charge and emittance growth are stressed. Subject and author concordances provide cross-reference to detailed citations, which include an abstract and notes on the material. The bibliography resides in a computer database that can be searched for key words and phrases.

  17. Nonlinear behavior in high-intensity discharge lamps

    NARCIS (Netherlands)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-01-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the

  18. Tolerable Beam Loss at High-Intensity Machines

    International Nuclear Information System (INIS)

    Krivosheev, Oleg E.; Mokhov, Nikolai V.

    2000-01-01

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields

  19. Drift tube suspension for high intensity linear accelerators

    Science.gov (United States)

    Liska, Donald J.; Schamaun, Roger G.; Clark, Donald C.; Potter, R. Christopher; Frank, Joseph A.

    1982-01-01

    The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

  20. High-intensity exercise and recovery during short-term ...

    African Journals Online (AJOL)

    Objective. To determine the effect of short-term creatine supplementation plus a protein-carbohydrate formula on high-intensity exercise performance and recovery. Design. A repeated-measures, experimental study, employing a randomised, double-blind, placebo-controlled, group comparison design was used.

  1. TU-H-BRA-08: The Design and Characteristics of a Novel Compact Linac-Based MRI Guided Radiation Therapy (MR-IGRT) System

    International Nuclear Information System (INIS)

    Mutic, S; Low, D; Chmielewski, T; Fought, G; Hernandez, M; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J

    2016-01-01

    Purpose: To describe the design and characteristics of a novel linac-based MRI guided radiation therapy system that addresses RF and magnetic field interference and that can be housed in conventional radiotherapy vaults. Methods: The MR-IGRT system will provide simultaneous MR imaging combined with both simple (3D) and complex (IMRT, SBRT, SRS) techniques. The system is a combination of a) double-donut split solenoidal superconducting 0.345T MRI; and b) a 90 cm isocenter ring-gantry mounted 6MV, flattening filter-free linac coupled with a stacked doubly-focused multileaf collimator with 4 mm resolution. A novel RF shielding and absorption technology was developed to isolate the beam generating RF emissions from the MR, while a novel magnetic shielding sleeve system was developed to place the magnetic field-sensitive components in low-magnetic field regions. The system design produces high spatial resolution radiation beams with state-of-the art radiation dose characteristics and simultaneous MR imaging. Results: Prototype testing with a spectrum analyzer has demonstrated complete elimination of linac RF inside the treatment room. The magnetic field inside of the magnetic shielding was well below the specification, allowing the linear accelerator to operate normally. A novel on-gantry shimming system maintained < 25 ppm magnetic field homogeneity over a 45 cm spherical field of view for all gantry angles. Conclusion: The system design demonstrates the feasibility coupling a state-of-the art linac system with a 0.345T MRI, enabling highly conformal radiation therapy with simultaneous MR image guidance. S. Mutic’s employer (Washington University) has grant with ViewRay; D. Low is former ViewRay scientific advisory board member (ended October 2015); T. Chmielewski, G. Fought, M. Hernandez, I. Kawrakow, A. Sharma, S. Shvartsman, J. Dempsey are employees of ViewRay with stock options (Dempsey has leadership role and Dempsey/Kawrakow have stock).

  2. TU-H-BRA-08: The Design and Characteristics of a Novel Compact Linac-Based MRI Guided Radiation Therapy (MR-IGRT) System

    Energy Technology Data Exchange (ETDEWEB)

    Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Low, D [UCLA, Los Angeles, CA (United States); Chmielewski, T; Fought, G; Hernandez, M; Kawrakow, I; Sharma, A; Shvartsman, S; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To describe the design and characteristics of a novel linac-based MRI guided radiation therapy system that addresses RF and magnetic field interference and that can be housed in conventional radiotherapy vaults. Methods: The MR-IGRT system will provide simultaneous MR imaging combined with both simple (3D) and complex (IMRT, SBRT, SRS) techniques. The system is a combination of a) double-donut split solenoidal superconducting 0.345T MRI; and b) a 90 cm isocenter ring-gantry mounted 6MV, flattening filter-free linac coupled with a stacked doubly-focused multileaf collimator with 4 mm resolution. A novel RF shielding and absorption technology was developed to isolate the beam generating RF emissions from the MR, while a novel magnetic shielding sleeve system was developed to place the magnetic field-sensitive components in low-magnetic field regions. The system design produces high spatial resolution radiation beams with state-of-the art radiation dose characteristics and simultaneous MR imaging. Results: Prototype testing with a spectrum analyzer has demonstrated complete elimination of linac RF inside the treatment room. The magnetic field inside of the magnetic shielding was well below the specification, allowing the linear accelerator to operate normally. A novel on-gantry shimming system maintained < 25 ppm magnetic field homogeneity over a 45 cm spherical field of view for all gantry angles. Conclusion: The system design demonstrates the feasibility coupling a state-of-the art linac system with a 0.345T MRI, enabling highly conformal radiation therapy with simultaneous MR image guidance. S. Mutic’s employer (Washington University) has grant with ViewRay; D. Low is former ViewRay scientific advisory board member (ended October 2015); T. Chmielewski, G. Fought, M. Hernandez, I. Kawrakow, A. Sharma, S. Shvartsman, J. Dempsey are employees of ViewRay with stock options (Dempsey has leadership role and Dempsey/Kawrakow have stock).

  3. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  4. Nuclear diagnostics of high intensity laser plasma interactions

    International Nuclear Information System (INIS)

    Krushelnick, K.; Santala, M.I.K.; Beg, F.N.; Clark, E.L.; Dangor, A.E.; Tatarakis, M.; Watts, I.; Wei, M.S.; Zepf, M.; Ledingham, K.W.D.; McCanny, T.; Spencer, I.; Clarke, R.J.; Norreys, P.A.

    2002-01-01

    Nuclear activation has been observed in materials exposed to energetic protons and heavy ions generated from high intensity laser-solid interactions (at focused intensities up to 5x10 19 W/cm 2 ). The energy spectrum of the protons is determined through the use of these nuclear activation techniques and is found to be consistent with other ion diagnostics. Heavy ion fusion reactions and large neutron fluxes from the (p, n) reactions were also observed. The reduction of proton emission and increase in heavy ion energy using heated targets was also observed

  5. High intensity proton operation at the Brookhaven AGS accelerator complex

    International Nuclear Information System (INIS)

    Ahrens, L.A.; Blaskiewicz, M.; Bleser, E.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Onillon, E.; Reece, R.K.; Roser, T.; Soukas, A.

    1994-01-01

    With the completion of the AGS rf upgrade, and the implementation of a transition open-quotes jumpclose quotes, all of accelerator systems were in place in 1994 to allow acceleration of the proton intensity available from the AGS Booster injector to AGS extraction energy and delivery to the high energy users. Beam commissioning results with these new systems are presented. Progress in identifying and overcoming other obstacles to higher intensity are given. These include a careful exploration of the stopband strengths present on the AGS injection magnetic porch, and implementation of the AGS single bunch transverse dampers throughout the acceleration cycle

  6. Applications of super - high intensity lasers in nuclear engineering

    International Nuclear Information System (INIS)

    Salomaa, R.; Hakola, A.; Santala, M.

    2007-01-01

    Laser-plasma interactions arising when a super intense ultrashort laser pulse impinges a solid target creates intense partly collimated and energy resolved photons, high energy electron and protons and neutrons. In addition the plasma plume can generate huge magnetic and electric fields. Also ultra short X-ray pulses are created. We have participated in some of such experiments at Rutherford and Max-Planck Institute and assessed the applications of such kind as laser-driven accelerators. This paper discusses applications in nuclear engineering (neutron sources, isotope separation, fast ignition and transmutation, etc). In particular the potential for extreme time resolution and to partial energy resolution are assessed

  7. rf coaxial couplers for high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Manca, J.J.; Knapp, E.A.

    1980-02-01

    Two rf coaxial couplers that are particularly suitable for intertank connection of the disk-and-washer accelerating structure for use in high-intensity linear accelerators have been developed. These devices have very high coupling to the accelerating structure and very low rf power loss at the operating frequency, and they can be designed for any relative particle velocity β > 0.4. Focusing and monitoring devices can be located inside these couplers

  8. High intensity proton linear accelerator development for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Mizumoto, M.; Hasegawa, K.; Oguri, H.; Ito, N.; Kusano, J.; Okumura, Y.; Murata, H.; Sakogawa, K.

    1997-01-01

    A high-intensity proton linear accelerator with an energy of 1.5 GeV and an average current of 10 mA has been proposed for various engineering tests for the transmutation system of nuclear waste by JAERI. The conceptual and optimization studies for this accelerator performed for a proper choice of operating frequency, high b structure, mechanical engineering considerations and RF source aspects are briefly described

  9. CW high intensity non-scaling FFAG proton drivers

    OpenAIRE

    Johnstone, C.; Berz, M.; Makino, K.; Snopok, P.

    2012-01-01

    Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS)...

  10. High intensity surface plasma waves, theory and PIC simulations

    Science.gov (United States)

    Raynaud, M.; Héron, A.; Adam, J.-C.

    2018-01-01

    With the development of intense (>1019 W cm-2) short pulses (≤25 fs) laser with very high contrast, surface plasma wave (SPW) can be explored in the relativistic regime. As the SPW propagates with a phase velocity close to the speed of light it may results in a strong acceleration of electron bunches along the surface permitting them to reach relativistic energies. This may be important e.g. for applications in the field of plasma-based accelerators. We investigate in this work the excitation of SPWs on grating preformed over-dense plasmas for laser intensities ranging from 1019 up to 1021 W cm-2. We discuss the nature of the interaction with respect to the solid case in which surface plasmon can be resonantly excited with weak laser intensity. In particular, we show the importance of the pulse duration and focalization of the laser beam on the amplitude of the SPW.

  11. Using surface markers for MRI guided breast conserving surgery: a feasibility survey

    Science.gov (United States)

    Ebrahimi, Mehran; Siegler, Peter; Modhafar, Amen; Holloway, Claire M. B.; Plewes, Donald B.; Martel, Anne L.

    2014-04-01

    Breast MRI is frequently performed prior to breast conserving surgery in order to assess the location and extent of the lesion. Ideally, the surgeon should also be able to use the image information during surgery to guide the excision and this requires that the MR image is co-registered to conform to the patient’s position on the operating table. Recent progress in MR imaging techniques has made it possible to obtain high quality images of the patient in the supine position which significantly reduces the complexity of the registration task. Surface markers placed on the breast during imaging can be located during surgery using an external tracking device and this information can be used to co-register the images to the patient. There remains the problem that in most clinical MR scanners the arm of the patient has to be placed parallel to the body whereas the arm is placed perpendicular to the patient during surgery. The aim of this study is to determine the accuracy of co-registration based on a surface marker approach and, in particular, to determine what effect the difference in a patient’s arm position makes on the accuracy of tumour localization. Obtaining a second MRI of the patient where the patient’s arm is perpendicular to body axes (operating room position) is not possible. Instead we obtain a secondary MRI scan where the patient’s arm is above the patient’s head to validate the registration. Five patients with enhancing lesions ranging from 1.5 to 80 cm3 in size were imaged using contrast enhanced MRI with their arms in two positions. A thin-plate spline registration scheme was used to match these two configurations. The registration algorithm uses the surface markers only and does not employ the image intensities. Tumour outlines were segmented and centre of mass (COM) displacement and Dice measures of lesion overlap were calculated. The relationship between the number of markers used and the COM-displacement was also studied. The lesion COM

  12. Using surface markers for MRI guided breast conserving surgery: a feasibility survey

    International Nuclear Information System (INIS)

    Ebrahimi, Mehran; Siegler, Peter; Modhafar, Amen; Martel, Anne L; Holloway, Claire M B; Plewes, Donald B

    2014-01-01

    Breast MRI is frequently performed prior to breast conserving surgery in order to assess the location and extent of the lesion. Ideally, the surgeon should also be able to use the image information during surgery to guide the excision and this requires that the MR image is co-registered to conform to the patient’s position on the operating table. Recent progress in MR imaging techniques has made it possible to obtain high quality images of the patient in the supine position which significantly reduces the complexity of the registration task. Surface markers placed on the breast during imaging can be located during surgery using an external tracking device and this information can be used to co-register the images to the patient. There remains the problem that in most clinical MR scanners the arm of the patient has to be placed parallel to the body whereas the arm is placed perpendicular to the patient during surgery. The aim of this study is to determine the accuracy of co-registration based on a surface marker approach and, in particular, to determine what effect the difference in a patient’s arm position makes on the accuracy of tumour localization. Obtaining a second MRI of the patient where the patient’s arm is perpendicular to body axes (operating room position) is not possible. Instead we obtain a secondary MRI scan where the patient’s arm is above the patient’s head to validate the registration. Five patients with enhancing lesions ranging from 1.5 to 80 cm 3 in size were imaged using contrast enhanced MRI with their arms in two positions. A thin-plate spline registration scheme was used to match these two configurations. The registration algorithm uses the surface markers only and does not employ the image intensities. Tumour outlines were segmented and centre of mass (COM) displacement and Dice measures of lesion overlap were calculated. The relationship between the number of markers used and the COM-displacement was also studied. The lesion

  13. High energy high intensity coherent photon beam for the SSC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of π 0 in the neutral beam, are converted to e + e - pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator

  14. Radiation control in the intensive care unit for high intensity iridium-192 brain implants

    International Nuclear Information System (INIS)

    Sewchand, W.; Drzymala, R.E.; Amin, P.P.; Salcman, M.; Salazar, O.M.

    1987-01-01

    A bedside lead cubicle was designed to minimize the radiation exposure of intensive care unit staff during routine interstitial brain irradiation by removable, high intensity iridium-192. The cubicle shields the patient without restricting intensive care routines. The design specifications were confirmed by exposure measurements around the shield with an implanted anthropomorphic phantom simulating the patient situation. The cubicle reduces the exposure rate around an implant patient by as much as 90%, with the exposure level not exceeding 0.1 mR/hour/mg of radium-equivalent 192 Ir. Evaluation of data accumulated for the past 3 years has shown that the exposure levels of individual attending nurses are 0.12 to 0.36 mR/mg of radium-equivalent 192 Ir per 12-hour shift. The corresponding range for entire nursing teams varies between 0.18 and 0.26. A radiation control index (exposure per mg of radium-equivalent 192 Ir per nurse-hour) is thus defined for individual nurses and nursing teams; this index is a significant guide to the planning of nurse rotations for brain implant patients with various 192 Ir loads. The bedside shield reduces exposure from 192 Ir implants by a factor of about 20, as expected, and the exposure from the lower energy radioisotope iodine-125 is barely detectable

  15. TH-AB-BRA-02: Automated Triplet Beam Orientation Optimization for MRI-Guided Co-60 Radiotherapy

    International Nuclear Information System (INIS)

    Nguyen, D; Thomas, D; Cao, M; O’Connor, D; Lamb, J; Sheng, K

    2016-01-01

    Purpose: MRI guided Co-60 provides daily and intrafractional MRI soft tissue imaging for improved target tracking and adaptive radiotherapy. To remedy the low output limitation, the system uses three Co-60 sources at 120° apart, but using all three sources in planning is considerably unintuitive. We automate the beam orientation optimization using column generation, and then solve a novel fluence map optimization (FMO) problem while regularizing the number of MLC segments. Methods: Three patients—1 prostate (PRT), 1 lung (LNG), and 1 head-and-neck boost plan (H&NBoost)—were evaluated. The beamlet dose for 180 equally spaced coplanar beams under 0.35 T magnetic field was calculated using Monte Carlo. The 60 triplets were selected utilizing the column generation algorithm. The FMO problem was formulated using an L2-norm minimization with anisotropic total variation (TV) regularization term, which allows for control over the number of MLC segments. Our Fluence Regularized and Optimized Selection of Triplets (FROST) plans were compared against the clinical treatment plans (CLN) produced by an experienced dosimetrist. Results: The mean PTV D95, D98, and D99 differ by −0.02%, +0.12%, and +0.44% of the prescription dose between planning methods, showing same PTV dose coverage. The mean PTV homogeneity (D95/D5) was at 0.9360 (FROST) and 0.9356 (CLN). R50 decreased by 0.07 with FROST. On average, FROST reduced Dmax and Dmean of OARs by 6.56% and 5.86% of the prescription dose. The manual CLN planning required iterative trial and error runs which is very time consuming, while FROST required minimal human intervention. Conclusions: MRI guided Co-60 therapy needs the output of all sources yet suffers from unintuitive and laborious manual beam selection processes. Automated triplet orientation optimization is shown essential to overcome the difficulty and improves the dosimetry. A novel FMO with regularization provides additional controls over the number of MLC segments

  16. TH-AB-BRA-02: Automated Triplet Beam Orientation Optimization for MRI-Guided Co-60 Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, D; Thomas, D; Cao, M; O’Connor, D; Lamb, J; Sheng, K [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA (United States)

    2016-06-15

    Purpose: MRI guided Co-60 provides daily and intrafractional MRI soft tissue imaging for improved target tracking and adaptive radiotherapy. To remedy the low output limitation, the system uses three Co-60 sources at 120° apart, but using all three sources in planning is considerably unintuitive. We automate the beam orientation optimization using column generation, and then solve a novel fluence map optimization (FMO) problem while regularizing the number of MLC segments. Methods: Three patients—1 prostate (PRT), 1 lung (LNG), and 1 head-and-neck boost plan (H&NBoost)—were evaluated. The beamlet dose for 180 equally spaced coplanar beams under 0.35 T magnetic field was calculated using Monte Carlo. The 60 triplets were selected utilizing the column generation algorithm. The FMO problem was formulated using an L2-norm minimization with anisotropic total variation (TV) regularization term, which allows for control over the number of MLC segments. Our Fluence Regularized and Optimized Selection of Triplets (FROST) plans were compared against the clinical treatment plans (CLN) produced by an experienced dosimetrist. Results: The mean PTV D95, D98, and D99 differ by −0.02%, +0.12%, and +0.44% of the prescription dose between planning methods, showing same PTV dose coverage. The mean PTV homogeneity (D95/D5) was at 0.9360 (FROST) and 0.9356 (CLN). R50 decreased by 0.07 with FROST. On average, FROST reduced Dmax and Dmean of OARs by 6.56% and 5.86% of the prescription dose. The manual CLN planning required iterative trial and error runs which is very time consuming, while FROST required minimal human intervention. Conclusions: MRI guided Co-60 therapy needs the output of all sources yet suffers from unintuitive and laborious manual beam selection processes. Automated triplet orientation optimization is shown essential to overcome the difficulty and improves the dosimetry. A novel FMO with regularization provides additional controls over the number of MLC segments

  17. A transparent vacuum window for high-intensity pulsed beams

    CERN Document Server

    Monteil, M; Veness, R

    2011-01-01

    The HiRadMat (High-Radiation to Materials) facility Ill will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will be focused on a focal point where the target to be tested is located. A 60 mm aperture vacuum window will separate the vacuum of the beam line which is kept under high vacuum 10(-8) mbar, from the test area which is at atmospheric pressure. This window has to resist collapse due to beam passage. The high-intensity of the beam means that typical materials used for standard vacuum windows (such as stainless steel, aluminium and titanium alloy) cannot endure the energy deposition induced by the beam passage. Therefore, a vacuum window has been designed to maintain the differential pressure whilst resisting collapse due to the beam impact on the window. In this paper, we will present calculations of the energy transfer from beam to window, the design of the ...

  18. Generation of Ultra-high Intensity Laser Pulses

    International Nuclear Information System (INIS)

    Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10 25 W/cm 2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers

  19. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  20. High intensity proton linac activities at Los Alamos

    International Nuclear Information System (INIS)

    Rusnak, B.; Chan, K.C.; Campbell, B.

    1998-01-01

    High-current proton linear accelerators offer an attractive alternative for generating the intense neutron fluxes needed for transmutations technologies, tritium production and neutron science. To achieve the fluxes required for tritium production, a 100-mA, 1700-MeV cw proton accelerator is being designed that uses superconducting cavities for the high-energy portion of the linac, from 211 to 1,700 MeV. The development work supporting the linac design effort is focused on three areas: superconducting cavity performance for medium-beta cavities at 700 MHz, high power rf coupler development, and cryomodule design. An overview of the progress in these three areas is presented

  1. A high intensity positron beam at the Brookhaven reactor

    International Nuclear Information System (INIS)

    Weber, M.; Lynn, K.G.; Roellig, L.O.; Mills, A.P. Jr.; Moodenbaugh, A.R.

    1987-01-01

    We describe a high intensity, low energy positron beam utilizing high specific activity /sup 64/Cu sources (870 Ci/g) produced in a reactor with high thermal neutron flux. Fast-to-slow moderation can be performed in a self moderation mode or with a transmission moderator. Slow positron rates up to 1.6 x 10/sup 8/ e/sup +//s with a half life of 12.8 h are calculated. Up to 1.0 x 10/sup 8/ e/sup +//s have been observed. New developments including a Ne moderator and an on-line isotope separation process are discussed. 21 refs., 9 figs

  2. HELIOS: A high intensity chopper spectrometer at LANSCE

    International Nuclear Information System (INIS)

    Mason, T.E.; Broholm, C.; Fultz, B.

    1998-01-01

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,ω). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating

  3. HELIOS: A high intensity chopper spectrometer at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Mason, T.E. [Oak Ridge National Lab., TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy; Fultz, B. [California Inst. of Tech., Pasadena, CA (United States). Dept. of Materials Science] [and others

    1998-12-31

    A proposal to construct a high intensity chopper spectrometer at LANSCE as part of the SPSS upgrade project is discussed. HELIOS will be optimized for science requiring high sensitivity neutron spectroscopy. This includes studies of phonon density of states in small polycrystalline samples, magnetic excitations in quantum magnets and highly correlated electron systems, as well as parametric studies (as a function of pressure, temperature, or magnetic field) of S(Q,{omega}). By employing a compact design together with the use of supermirror guide in the incident flight path the neutron flux at HELIOS will be significantly higher than any other comparable instrument now operating.

  4. High Intensity Beam Issues in the CERN Proton Synchrotron

    CERN Document Server

    Aumon, Sandra; Rivkin, Leonid

    This PhD work is about limitations of high intensity proton beams observed in the CERN Proton Synchrotron (PS) and, in particular, about issues at injection and transition energies. With its 53 years, the CERN PS would have to operate beyond the limit of its performance to match the future requirements. Beam instabilities driven by transverse impedance and aperture restrictions are important issues for the operation and for the High-Luminosity LHC upgrade which foresees an intensity increase delivered by the injectors. The main subject of the thesis concerns the study of a fast transverse instability occurring at transition energy. The proton beams crossing this energy range are particularly sensitive to wake forces because of the slow synchrotron motion. This instability can cause a strong vertical emittance blow-up and severe losses in less than a synchrotron period. Experimental observations show that the particles at the peak density of the beam longitudinal distribution oscillate in the vertical plane du...

  5. Chrome tannage using high-intensity ultrasonic field.

    Science.gov (United States)

    Mäntysalo, E; Marjoniemi, M; Kilpeläinen, M

    1997-04-01

    The process time in chrome tannage in leather making, using an elastic compression cycle followed by irradiation by high-intensity ultrasound, is quite short lasting only a few minutes, compared with a process time of several hours in modern chrome tannage. After ultrasonic irradiation, samples were basified in 17 h in chrome liquor at a pH of 4.0 and the shrinkage temperature was measured. The determination of the efficiency for the chrome liquor penetrating into the hides can be based on the steepness of the shrinkage temperature-processing time curve. An approximate value of 20 degrees C min(-1) can be evaluated for the initial slope of the curve when elastic compression and high-intensity ultrasonic irradiation is used, and a processing time of 2 min is required in chrome liquor (plus 17 h basification and 24 h storage time) to obtain leather stable to boiling. Usually, hides are kept in chrome liquor for 2 h.

  6. Entrepreneurship in high-tech and knowledge-intensive sectors

    DEFF Research Database (Denmark)

    Christensen, Patrizia V.; Madsen, Henning; Neergaard, Helle

    development of new enterprises in high-tech and knowledge-intensive sectors are analysed in relation to the educational and professional background of the entrepreneur/entrepreneurial team, as well as the personal and professional social networks of the entrepreneurs. The analysis is based on a theoretical...... framework combining theories of human and social capital. Secondary aspects addressed in the research project are questions of male vs. female entrepreneurship, internationalisation-globalisation, and business success/failure.......The paper investigates key factors influencing the establishment and early growth of high-tech and knowledge-intensive new firms in Denmark. Particular attention is paid to the human and social variables affecting the creation, survival, and growth of such firms. The establishment and subsequent...

  7. High-intensity, subkilovolt x-ray calibration facility

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    A high-intensity subkilovolt x-ray calibration source utilizing proton-induced inner-shell atomic fluorescence of low-Z elements is described. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide intense, nearly monoenergetic x-ray beams. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. Methods of reducing spectral contamination due to hydrocarbon build-up on the target are discussed. Typical x-ray spectra (Cu-L, C-K and B-K) are shown

  8. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  9. Silicone rubber curing by high intensity infrared radiation

    International Nuclear Information System (INIS)

    Huang, T.; Tsai, J.; Cherng, C.; Chen, J.

    1994-01-01

    A high-intensity (12 kW) and compact (80 cm) infrared heating oven for fast curing (12 seconds) of tube-like silicone rubber curing studies is reported. Quality inspection by DSC and DMA and results from pilot-scale curing oven all suggest that infrared heating provides a better way of vulcanization regarding to curing time, quality, cost, and spacing over conventional hot air heating. copyright 1995 American Institute of Physics

  10. NUMERICAL METHODS FOR THE SIMULATION OF HIGH INTENSITY HADRON SYNCHROTRONS.

    Energy Technology Data Exchange (ETDEWEB)

    LUCCIO, A.; D' IMPERIO, N.; MALITSKY, N.

    2005-09-12

    Numerical algorithms for PIC simulation of beam dynamics in a high intensity synchrotron on a parallel computer are presented. We introduce numerical solvers of the Laplace-Poisson equation in the presence of walls, and algorithms to compute tunes and twiss functions in the presence of space charge forces. The working code for the simulation here presented is SIMBAD, that can be run as stand alone or as part of the UAL (Unified Accelerator Libraries) package.

  11. Pulsed Power Applications in High Intensity Proton Rings

    CERN Document Server

    Zhang, Wu; Ducimetière, Laurent; Fowler, Tony; Kawakubo, Tadamichi; Mertens, Volker; Sandberg, Jon; Shirakabe, Yoshihisa

    2005-01-01

    The pulsed power technology has been applied in particle accelerators and storage rings for over four decades. It is most commonly used in injection, extraction, beam manipulation, source, and focusing systems. These systems belong to the class of repetitive pulsed power. In this presentation, we review and discuss the history, present status, and future challenge of pulsed power applications in high intensity proton accelerators and storage rings.

  12. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  13. Gaussian representation of high-intensity focused ultrasound beams.

    Science.gov (United States)

    Soneson, Joshua E; Myers, Matthew R

    2007-11-01

    A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.

  14. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  15. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  16. Longitudinal diffusion MRI for treatment response assessment: Preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system.

    Science.gov (United States)

    Yang, Yingli; Cao, Minsong; Sheng, Ke; Gao, Yu; Chen, Allen; Kamrava, Mitch; Lee, Percy; Agazaryan, Nzhde; Lamb, James; Thomas, David; Low, Daniel; Hu, Peng

    2016-03-01

    To demonstrate the preliminary feasibility of a longitudinal diffusion magnetic resonance imaging (MRI) strategy for assessing patient response to radiotherapy at 0.35 T using an MRI-guided radiotherapy system (ViewRay). Six patients (three head and neck cancer, three sarcoma) who underwent fractionated radiotherapy were enrolled in this study. A 2D multislice spin echo single-shot echo planar imaging diffusion pulse sequence was implemented on the ViewRay system and tested in phantom studies. The same pulse sequence was used to acquire longitudinal diffusion data (every 2-5 fractions) on the six patients throughout the entire course of radiotherapy. The reproducibility of the apparent diffusion coefficient (ADC) measurements was assessed using reference regions and the temporal variations of the tumor ADC values were evaluated. In diffusion phantom studies, the ADC values measured on the ViewRay system matched well with reference ADC values with ViewRay MRI. Larger patient cohort studies are warranted to correlate the longitudinal diffusion measurements to patient outcomes. Such an approach may enable response-guided adaptive radiotherapy.

  17. Daily Tracking of Glioblastoma Resection Cavity, Cerebral Edema, and Tumor Volume with MRI-Guided Radiation Therapy.

    Science.gov (United States)

    Mehta, Shahil; Gajjar, Shefali R; Padgett, Kyle R; Asher, David; Stoyanova, Radka; Ford, John C; Mellon, Eric A

    2018-03-19

    Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue.

  18. The joint project for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) agreed to promote the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This document describes the joint proposal prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  19. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1994-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  20. JAERI-KEK joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Organization (KEK) are promoting the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This paper describes the joint project prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  1. Performance of GEM detectors in high intensity particle beams

    CERN Document Server

    Bachmann, S; Ketzer, B; Deutel, M; Ropelewski, Leszek; Sauli, Fabio; Bondar, A E; Buzulutskov, A F; Shekhtman, L I; Sokolov, A; Tatarinov, A A; Vasilev, A; Kappler, S; Schulte, E C

    2001-01-01

    We describe extensive tests of Double GEM and Triple GEM detectors, including full size prototypes for the COMPASS experiment, exposed to high intensity muon, proton and pion beams at the Paul~Scherrer Institute and at CERN. The measurements aim at detecting problems possible under these operation conditions, the main concern being the occurrence of discharges induced by beam particles. Results on the dependence of the probability for induced discharges on the experimental environment are presented and discussed. Implications for the application of GEM~detectors in experiments at high luminosity colliders are illustrated.

  2. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  3. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J. [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1993-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  4. Removing Known SPS Intensity Limitations for High Luminosity LHC Goals

    CERN Document Server

    Shaposhnikova, Elena; Bohl, Thomas; Cruikshank, Paul; Goddard, Brennan; Kaltenbacher, Thomas; Lasheen, Alexandre; Perez Espinos, Jaime; Repond, Joël; Salvant, Benoit; Vollinger, Christine

    2016-01-01

    In preparation of the SPS as an LHC injector its impedance was significantly reduced in 1999 - 2000. A new SPS impedance reduction campaign is planned now for the High Luminosity (HL)-LHC project, which requires bunch intensities twice as high as the nominal one. One of the known intensity limitations is a longitudinal multi-bunch instability with a threshold 3 times below this operational intensity. The instability is presently cured using the 4th harmonic RF system and controlled emittance blow-up, but reaching the HL-LHC parameters cannot be assured without improving the machine impedance. Recently the impedance sources responsible for this instability were identified and implementation of their shielding and damping is foreseen during the next long shutdown (2019 - 2020) in synergy with two other important upgrades: amorphous carbon coating of (part of) the vacuum chamber against the e-cloud effect and rearrangement of the 200 MHz RF system. In this paper the strategy of impedance reduction is presented t...

  5. High intensity accelerator for a wide range of applications

    International Nuclear Information System (INIS)

    Conard, E.M.

    1994-01-01

    When looking at commercial applications of accelerators from a market point of view, it appears that a common accelerator design could meet different users' needs. This would benefit both the manufacturer and the user by multiplying the number of machines sold, thus lowering their cost and improving their quality. These applications include: radioisotope production for medical imaging (positron emission tomography), industrial imaging and non-destructive testing (e.g. neutron radiography, explosive and drug detection in luggage or freight). This paper investigates the needs of the various applications and defines their common denominator to establish suitable specifications (type of particles, energy, intensity). Different accelerator types (cyclotrons, linear accelerators and electrostatic machines) are reviewed and compared on performance and estimated costs. A high intensity tandem accelerator design is studied in more detail as it seems the most appropriate candidate. ((orig.))

  6. The different effects of high intensity interval training and moderate intensity interval training for weightlessness countermeasures

    Science.gov (United States)

    Wang, Lin-Jie; Cheng, Tan; Zhi-Li, Li; Hui-juan, Wang; Wen-juan, Chen; Jianfeng, Zhang; Desheng, Wang; Dongbin, Niu; Qi, Zhao; Chengjia, Yang; Yanqing, Wang

    High intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. But the difference between high intensity interval training and moderate intensity interval training (MIIT) in simulated weightlessness still has not been well studied. This study sought to characterize the difference between 6 weeks high intensity interval training and moderate intensity interval training under reduced weight (RW) gait training device and zero-gravity locomotion system (ZLS). Twenty-three subjects (14M/4F, 32.5±4.5 years) volunteered to participate. They were divided into three groups, that were MITT (alternating 2 min at 40% VO _{2} peak and 2 min at 60% VO _{2} peak for 30min, five days per week) RW group (n=8), HITT (alternating 2 min at 40% VO _{2} peak and 2 min at 90% VO _{2} peak for 30min, three days per week) RW group (n=8) and HITT ZLS group (n=7). The Z-axis load used in RW group was 80% body weight (BW) and in ZLS was 100% BW. Cardiopulmonary function was measured before, after 4-week training and after 6-week training. Isokinetic knee extension-flexion test at 60(°) deg/s and 180(°) deg/s were performed before and after the 6-week training, and isometric knee extension-flexion test at 180(°) deg/s was also examined at the same time. It was found that the VO _{2} peaks, metabolic equivalent (MET), Speedmax and respiratory exchange ratio (RER) were significantly increased after 4 and 6-week training in all three groups and no significant group difference were detected. The peak torque at 60(°) deg/s for right knee flexion were significantly increased after 6 week-training in all three groups, and only in HITT RW group the total power at 60(°) deg/s for right knee flexion enhanced. The total power and average power at 60(°) deg/s for right knee extension decreased significantly after 6-week training in all three groups. The peak torque at 60(°) deg/s for right knee extension in MIIT RW group was

  7. Treatment of hepatocellular carcinoma adjacent to large blood vessels using 1.5T MRI-guided percutaneous radiofrequency ablation combined with iodine-125 radioactive seed implantation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zheng-Yu, E-mail: linsinlan@yahoo.com.cn [The Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350005 (China); Chen, Jin, E-mail: snow8968851@163.com [The Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350005 (China); Deng, Xiu-Fen, E-mail: dxf197286@yahoo.com.cn [The Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou 350005 (China)

    2012-11-15

    Objective: The objective is to study the technology associated with and feasibility of the treatment of hepatocellular carcinoma (HCC) adjacent to large blood vessels using 1.5T MRI-guided radiofrequency ablation combined with iodine-125 (I-125) radioactive seed implantation. Methods: Sixteen patients with a total of 24 HCC lesions (average maximum diameter: 2.35 {+-} 1.03 cm) were pathologically confirmed by biopsy or clinically diagnosed received 1.5T MRI-guided percutaneous radiofrequency ablation (RFA) treatment. Each patient had one lesion adjacent to large blood vessels ({>=}3 mm); after the ablation, I-125 radioactive seeds were implanted in the portions of the lesions that were adjacent to the blood vessels. Results: All the ablations and I-125 radioactive seed implantations were successful; a total of 118 seeds were implanted. The ablated lesions exhibited hypointense signals on the T2WI sequence with a thin rim of hyperintense signals; they also exhibited significant hyperintense signals on the T1WI sequence with clear boundaries. The average follow-up period was 11.1 {+-} 6.2 months. There were 23 complete responses and one partial response in the 24 lesions. The alpha-fetoprotein (AFP) levels of the patients significantly decreased. Conclusion: The 1.5T MRI-guided RFA combined with I-125 radioactive seed implantation for the treatment of HCC adjacent to large blood vessels is an effective technology.

  8. High intensity region segmentation in MR imaging of multiple sclerosis

    International Nuclear Information System (INIS)

    Rodrigo, F; Filipuzzi, M; Graffigna, J P; Isoardi, R; Noceti, M

    2013-01-01

    Numerous pathologies are often manifest in Magnetic Resonance Imaging (MRI) as hyperintense or bright regions as compared to normal tissue. It is of particular interest to develop an algorithm to detect, identify and define those Regions of Interest (ROI) when analyzing MRI studies, particularly for lesions of Multiple Sclerosis (MS). The objective of this study is to analyze those parameters which optimize segmentation of the areas of interest. To establish which areas should be considered as hyperintense regions, we developed a database (DB), with studies of patients diagnosed with MS. This disease causes axonal demyelination and it is expressed as bright regions in PD, T2 and FLAIR MRI sequences. Thus, with more than 4300 hyperintense regions validated by an expert physician, an algorithm was developed to detect such spots, approximating the results the expert obtained. Alongside these hyperintense lesion regions, it also detected bone regions with high intensity levels, similar to the intensity of the lesions, but with other features that allow a good differentiation.The algorithm will then detect ROIs with similar intensity levels and performs classification through data mining techniques

  9. High intensity interval exercise training in overweight young women.

    Science.gov (United States)

    Sijie, T; Hainai, Y; Fengying, Y; Jianxiong, W

    2012-06-01

    The purpose of this study was intended to evaluate the effects of a high intensity interval training (HIIT) program on the body composition, cardiac function and aerobic capacity in overweight young women. Sixty female university students (aged 19-20, BMI≥25kg/m2 and percentage body fat ≥ 30%) were chosen and then randomly assigned to each of the HIIT group, the moderate intensity continuous training (MICT) group and the non-training control group. The subjects in both the HIIT and MICT groups underwent exercise training five times per week for 12 weeks. In each of the training sessions, the HIIT group performed interval exercises at the individualized heart rate (HR) of 85% of VO2max and separated by brief periods of low intensity activity (HR at 50% of VO2max), while the MICT group did continuous walking and/or jogging at the individualized HR of 50% of VO2max. Both of these exercise training programs produced significant improvements in the subjects' body composition, left ventricular ejection fraction, heart rate at rest, maximal oxygen uptake and ventilatory threshold. However, the HIIT group achieved better results than those in the MICT group, as it was evaluated by the amount of the effect size. The control group did not achieve any change in all of the measured variables. The tangible results achieved by our relatively large groups of homogeneous subjects have demonstrated that the HIIT program is an effective measure for the treatment of young women who are overweight.

  10. Summary for the WG4: physics with high intensity lasers

    International Nuclear Information System (INIS)

    Takahashi, T.

    2006-01-01

    There are many physics opportunities in laser-beam interactions and innovations in the laser- and the beam technologies expand them or even open new window in the field. Therefore, physics with high intense lasers is an attractive application of nanobeam technologies. The topics in the working group 4 covers fundamental physics based on technique related with nanobeam development aiming to encourage communication between physics and accelerator communities. Due to the limited time for the preparation, we did not try comprehensive coverage of the field but invited topics which are planed near future or can be studied at the ILC test facilities. (author)

  11. KEK/JAERI joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2002-01-01

    From JFY01, which started on April 1, 2001, a new accelerator project to provide high-intensity proton beams proceeded into a construction phase. This project is conducted under a cooperation of two institutions, KEK and JAERI. The accelerator complex will provide 1 MW proton beams at 3 GeV and 0.75 MW beams at 50 GeV. The project will be completed within six years. In this article I will describe a) the project itself, b) sciences to be pursued at this new accelerator complex and c) the present status and future plans of the project. (author)

  12. Multi-energy ion implantation from high-intensity laser

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Torrisi, L.; Ullschmied, Jiří; Dudžák, Roman

    2016-01-01

    Roč. 61, č. 2 (2016), s. 109-113 ISSN 0029-5922. [PLASMA 2015 : International Conference on Research and Applications of Plasmas. Warsaw, 07.09.2015-11.09.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : high-intensity laser * implantation * material modification Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BL - Plasma and Gas Discharge Physics (UFP-V) Impact factor: 0.760, year: 2016

  13. Overview of high intensity proton accelerator facility, J-PARC

    International Nuclear Information System (INIS)

    Ikeda, Y.

    2010-01-01

    The J-PARC project of high intensity proton accelerator research complex, conducted jointly by JAERI and KEK, has been completed with demonstration of all beam productions in 2009 as the facility construction phase, and the operation started to offer the secondary beams of neutron, muon, kaon, and neutrino, to the advanced scientific experimental research aiming at making breakthroughs in materials and life science, nuclear and elementary physics, etc. This text describes the overview of the J-PARC present status with emphasis of a performance toward to 1MW power as user facilities. (author)

  14. Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty (TKA) by Bade et al

    DEFF Research Database (Denmark)

    Mechlenburg, Inger; Skoffer, Birgit; Dalgas, Ulrik

    2017-01-01

    Recently, a paper entitled "Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial" was published in Arthritis Care Res by Bade et al. (1). We have read the paper with great interest and noted that the study shows essentially no diffe......Recently, a paper entitled "Early High-Intensity Versus Low-Intensity Rehabilitation After Total Knee Arthroplasty: A Randomized Controlled Trial" was published in Arthritis Care Res by Bade et al. (1). We have read the paper with great interest and noted that the study shows essentially...

  15. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise

    Science.gov (United States)

    Thum, Jacob S.; Parsons, Gregory; Whittle, Taylor

    2017-01-01

    Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (pHIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. Trial Registration: NCT:02981667. PMID:28076352

  16. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise.

    Directory of Open Access Journals (Sweden)

    Jacob S Thum

    Full Text Available Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT may provide an alternative to moderate intensity continuous exercise (MICT to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2 initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax with 1 min of active recovery between bouts or MICT (20 min of cycling at 45% Wmax in randomized order. During exercise, rating of perceived exertion (RPE, affect, and blood lactate concentration (BLa were measured. Additionally, the Physical Activity Enjoyment Scale (PACES was completed after exercise. Results showed higher enjoyment (p = 0.013 in response to HIIT (103.8 ± 9.4 versus MICT (84.2 ± 19.1. Eleven of 12 participants (92% preferred HIIT to MICT. However, affect was lower (p<0.05 and HR, RPE, and BLa were higher (p<0.05 in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus.NCT:02981667.

  17. Multifunctional pulse generator for high-intensity focused ultrasound system

    Science.gov (United States)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  18. Longitudinal tracking studies for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Lessner, E.; Cho, Y.; Harkay, K.; Symon, K.

    1995-01-01

    Results from longitudinal tracking studies for a high intensity proton synchrotron designed for a 1-MW spallation source are presented. The machine delivers a proton beam of 0.5 mA time-averaged current at a repetition rate of 30 Hz. The accelerator is designed to have radiation levels that allow hands-on-maintenance. However, the high beam intensity causes strong space charge fields whose effects may lead to particle loss and longitudinal instabilities. The space charge fields modify the particle distribution, distort the stable bucket area and reduce the rf linear restoring force. Tracking simulations were conducted to analyze the space charge effects on the dynamics of the injection and acceleration processes and means to circumvent them. The tracking studies led to the establishment of the injected beam parameters and rf voltage program that minimized beam loss and longitudinal instabilities. Similar studies for a 10-GeV synchrotron that uses the 2-GeV synchrotron as its injector are also discussed

  19. Formation of a high intensity low energy positron string

    Science.gov (United States)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  20. Formation of a high intensity low energy positron string

    International Nuclear Information System (INIS)

    Donets, E.D.; Donets, E.E.; Syresin, E.M.; Itahashi, T.; Dubinov, A.E.

    2004-01-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5x10 9 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production

  1. ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS

    International Nuclear Information System (INIS)

    HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, F.; WEI, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  2. Injection and capture simulations for a high intensity proton synchrotron

    International Nuclear Information System (INIS)

    Cho, Y.; Lessner, E.; Symon, K.; Univ. of Wisconsin, Madison, WI

    1994-01-01

    The injection and capture processes in a high intensity, rapid cycling, proton synchrotron are simulated by numerical integration. The equations of motion suitable for rapid numerical simulation are derived so as to maintain symplecticity and second-order accuracy. By careful bookkeeping, the authors can, for each particle that is lost, determine its initial phase space coordinates. They use this information as a guide for different injection schemes and rf voltage programming, so that a minimum of particle losses and dilution are attained. A fairly accurate estimate of the space charge fields is required, as they influence considerably the particle distribution and reduce the capture efficiency. Since the beam is represented by a relatively coarse ensemble of macro particles, the authors study several methods of reducing the statistical fluctuations while retaining the fine structure (high intensity modulations) of the beam distribution. A pre-smoothing of the data is accomplished by the cloud-in-cell method. The program is checked by making sure that it gives correct answers in the absence of space charge, and that it reproduces the negative mass instability properly. Results of simulations for stationary distributions are compared to their analytical predictions. The capture efficiency for the rapid-cycling synchrotron is analyzed with respect to variations in the injected beam energy spread, bunch length, and rf programming

  3. Analysis of technology and seminar on economic trends about High-intensity LED

    International Nuclear Information System (INIS)

    2003-09-01

    This is divided into two parts. Contents of this report in the first part are technical trends on high-intensity LED which reports introduction of LED as compound semiconductor, white LED? patent issues, review on technology of High-intensity LED and Reliability of High-intensity LED. The second part deals with economic tends about High-intensity LED. This seminar was held to report analysis and economical trends about High-intensity LED by Korea Industrial Education Institute in 2003.

  4. MO-FG-BRA-07: Theranostic Gadolinium-Based AGuIX Nanoparticles for MRI-Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Detappe, A; Rottmann, J; Kunjachan, S; Berbeco, R; Tillement, O

    2015-01-01

    Purpose: AGuIX are gadolinium-based nanoparticles, initially developed for MRI, that have a potential role in radiation therapy as a radiosensitizer. Our goal is to demonstrate that these nanoparticles can both be used as an MRI contrast agent, as well as to obtain local dose enhancement in a pancreatic tumor when delivered in combination with an external beam irradiation. Methods: We performed in vitro cell uptake and radiosensitization studies of a pancreatic cancer cell line in a low energy (220kVp) beam, a standard clinical 6MV beam (STD) and a flattening filter free clinical 6MV beam (FFF). After injection of 40mM of nanoparticles, a biodistribution study was performed in vivo on mice with subcutaneous xenograft pancreatic tumors. In vivo radiation therapy studies were performed at the time point of maximum tumor uptake. Results: The concentration of AGuIX nanoparticles in Panc-1 pancreatic cancer cells, determined in vitro by MRI and ICPMS, peaks after 30 minutes with 0.3% of the initial concentration (5mg/g). Clonogenic assays show a significant effect (p<0.05) when the AGuIX are coupled with MV photon irradiation (DEF20%=1.31). Similar AGuIX tumor uptake is found in vivo by both MRI and ICPMS 30 minutes after intravenous injection. For long term survival studies, the choice of the radiation dose is determined with 5 control groups (3mice/group) irradiated with 0, 5, 10, 15, and 20Gy. Afterwards, 4 groups (8mice/group) are used to evaluate the effect of the nanoparticles. A Logrank test is performed as a statistical test to evaluate the effect of the nanoparticles. Conclusion: The combination of the MRI contrast and radiosensitization properties of gadolinium nanoparticles reveals a strong potential for usage with MRI-guided radiation therapy

  5. Time course of late rectal- and urinary bladder side effects after MRI-guided adaptive brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Georg, P.; Georg, D.; Poetter, R.; Doerr, W. [Medical University Vienna/ AKH Wien (Austria). Dept. of Radiooncology; Medical University Vienna (Austria). Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology; Medical University Vienna/ AKH Wien (Austria). Comprehensive Cancer Centre; Boni, A.; Ghabuous, A. [Medical University Vienna/ AKH Wien (Austria). Dept. of Radiooncology; Goldner, G.; Schmid, M.P. [Medical University Vienna/ AKH Wien (Austria). Dept. of Radiooncology; Medical University Vienna/ AKH Wien (Austria). Comprehensive Cancer Centre

    2013-07-15

    Background and purpose: To analyze the time course of late rectal- and urinary bladder complications after brachytherapy for cervical cancer and to compare the incidence- and prevalence rates thereof. Patients and methods: A total of 225 patients were treated with external-beam radiotherapy (EBRT) and magnetic resonance imaging (MRI)-guided brachytherapy with or without chemotherapy. Late side effects were assessed prospectively using the Late Effects in Normal Tissue - Subjective, Objective, Management and Analytic (LENT/SOMA) scale. The parameters analyzed were time to onset, duration, actuarial incidence- (occurrence of new side effects during a defined time period) and prevalence rates (side effects existing at a defined time point). Results: Median follow-up was 44 months. Side effects (grade 1-4) in rectum and bladder were present in 31 and 49 patients, 14 and 27 months (mean time to onset) after treatment, respectively. All rectal and 76 % of bladder side effects occurred within 3 years after radiotherapy. Mean duration of rectal events was 19 months; 81 % resolved within 3 years of their initial diagnosis. Mean duration of bladder side effects was 20 months; 61 % resolved within 3 years. The 3- and 5-year actuarial complication rates were 16 and 19 % in rectum and 18 and 28 % in bladder, respectively. The corresponding prevalence rates were 9 and 2 % (rectum) and 18 and 21 % (bladder), respectively. Conclusion: Late side effects after cervical cancer radiotherapy are partially reversible, but their time course is organ-dependent. The combined presentation of incidence- and prevalence rates provides the most comprehensive information. (orig.)

  6. Time course of late rectal- and urinary bladder side effects after MRI-guided adaptive brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Georg, P.; Georg, D.; Poetter, R.; Doerr, W.; Medical University Vienna; Medical University Vienna/ AKH Wien; Boni, A.; Ghabuous, A.; Goldner, G.; Schmid, M.P.; Medical University Vienna/ AKH Wien

    2013-01-01

    Background and purpose: To analyze the time course of late rectal- and urinary bladder complications after brachytherapy for cervical cancer and to compare the incidence- and prevalence rates thereof. Patients and methods: A total of 225 patients were treated with external-beam radiotherapy (EBRT) and magnetic resonance imaging (MRI)-guided brachytherapy with or without chemotherapy. Late side effects were assessed prospectively using the Late Effects in Normal Tissue - Subjective, Objective, Management and Analytic (LENT/SOMA) scale. The parameters analyzed were time to onset, duration, actuarial incidence- (occurrence of new side effects during a defined time period) and prevalence rates (side effects existing at a defined time point). Results: Median follow-up was 44 months. Side effects (grade 1-4) in rectum and bladder were present in 31 and 49 patients, 14 and 27 months (mean time to onset) after treatment, respectively. All rectal and 76 % of bladder side effects occurred within 3 years after radiotherapy. Mean duration of rectal events was 19 months; 81 % resolved within 3 years of their initial diagnosis. Mean duration of bladder side effects was 20 months; 61 % resolved within 3 years. The 3- and 5-year actuarial complication rates were 16 and 19 % in rectum and 18 and 28 % in bladder, respectively. The corresponding prevalence rates were 9 and 2 % (rectum) and 18 and 21 % (bladder), respectively. Conclusion: Late side effects after cervical cancer radiotherapy are partially reversible, but their time course is organ-dependent. The combined presentation of incidence- and prevalence rates provides the most comprehensive information. (orig.)

  7. Overview of High Intensity Linac Programs in Europe

    CERN Document Server

    Garoby, R

    2004-01-01

    Recent years have seen a boost in the support by the European Union (EU) of accelerator research in Europe. Provided they coordinate their efforts and define common goals and strategies, laboratories and institutions from the member states can receive a financial support reaching 50% of the total project cost. In the field of High Intensity Linacs, the EU has already supported the EURISOL initiative for nuclear physics, which this year is applying for funding of a Design Study, and the development of linacs for Waste Transmutation. More recently, an initiative for high-energy physics has been approved, which includes a programme for the development of pulsed linac technologies. The coordination and synergy imposed by the EU rules increase the benefit of the allocated resources. Combined with the ongoing internal projects in the partner laboratories, these European initiatives represent a strong effort focussed towards the development of linac technologies. This paper summarises the requests from the various E...

  8. High-Intensity Focused Ultrasound Treatment for Advanced Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Pancreatic cancer is under high mortality but has few effective treatment modalities. High-intensity focused ultrasound (HIFU is becoming an emerging approach of noninvasively ablating solid tumor in clinics. A variety of solid tumors have been tried on thousands of patients in the last fifteen years with great success. The principle, mechanism, and clinical outcome of HIFU were introduced first. All 3022 clinical cases of HIFU treatment for the advanced pancreatic cancer alone or in combination with chemotherapy or radiotherapy in 241 published papers were reviewed and summarized for its efficacy, pain relief, clinical benefit rate, survival, Karnofsky performance scale (KPS score, changes in tumor size, occurrence of echogenicity, serum level, diagnostic assessment of outcome, and associated complications. Immune response induced by HIFU ablation may become an effective way of cancer treatment. Comments for a better outcome and current challenges of HIFU technology are also covered.

  9. A Fully Actuated Robotic Assistant for MRI-Guided Prostate Biopsy and Brachytherapy

    Science.gov (United States)

    Li, Gang; Su, Hao; Shang, Weijian; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fischer, Gregory S.

    2014-01-01

    Intra-operative medical imaging enables incorporation of human experience and intelligence in a controlled, closed-loop fashion. Magnetic resonance imaging (MRI) is an ideal modality for surgical guidance of diagnostic and therapeutic procedures, with its ability to perform high resolution, real-time, high soft tissue contrast imaging without ionizing radiation. However, for most current image-guided approaches only static pre-operative images are accessible for guidance, which are unable to provide updated information during a surgical procedure. The high magnetic field, electrical interference, and limited access of closed-bore MRI render great challenges to developing robotic systems that can perform inside a diagnostic high-field MRI while obtaining interactively updated MR images. To overcome these limitations, we are developing a piezoelectrically actuated robotic assistant for actuated percutaneous prostate interventions under real-time MRI guidance. Utilizing a modular design, the system enables coherent and straight forward workflow for various percutaneous interventions, including prostate biopsy sampling and brachytherapy seed placement, using various needle driver configurations. The unified workflow compromises: 1) system hardware and software initialization, 2) fiducial frame registration, 3) target selection and motion planning, 4) moving to the target and performing the intervention (e.g. taking a biopsy sample) under live imaging, and 5) visualization and verification. Phantom experiments of prostate biopsy and brachytherapy were executed under MRI-guidance to evaluate the feasibility of the workflow. The robot successfully performed fully actuated biopsy sampling and delivery of simulated brachytherapy seeds under live MR imaging, as well as precise delivery of a prostate brachytherapy seed distribution with an RMS accuracy of 0.98mm. PMID:25076821

  10. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  11. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  12. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  13. High intensive short laser pulse interaction with submicron clusters media

    International Nuclear Information System (INIS)

    Faenov, A. Ya

    2008-01-01

    The interaction of short intense laser pulses with structured targets, such as clusters, exhibits unique features, stemming from the enhanced absorption of the incident laser light compared to solid targets. Due to the increased absorption, these targets are heated significantly, leading to enhanced emission of x rays in the keV range and generation of electrons and multiple charged ions with kinetic energies from tens of keV to tens of MeV. Possible applications of these targets can be an electron/ion source for a table top accelerator, a neutron source for a material damage study, or an x ray source for microscopy or lithography. The overview of recent results, obtained by the high intensive short laser pulse interaction with different submicron clusters media will be presented. High resolution K and L shell spectra of plasma generated by superintense laser irradiation of micron sized Ar, Kr and Xe clusters have been measured with intensity 10"17"-10"19"W/cm"2"and a pulse duration of 30-1000fs. It is found that hot electrons produced by high contrast laser pulses allow the isochoric heating of clusters and shift the ion balance toward the higher charge states, which enhances both the X ray line yield and the ion kinetic energy. Irradiation of clusters, produced from such gas mixture, by a fs Ti:Sa laser pulses allows to enhance the soft X ray radiation of Heβ(665.7eV)and Lyα(653.7eV)of Oxygen in 2-8 times compare with the case of using as targets pure CO"2"or N"2"O clusters and reach values 2.8x10"10"(∼3μJ)and 2.7x10"10"(∼2.9μJ)ph/(sr·pulse), respectively. Nanostructure conventional soft X ray images of 100nm thick Mo and Zr foils in a wide field of view (cm"2"scale)with high spatial resolution (700nm)are obtained using the LiF crystals as soft X ray imaging detectors. When the target used for the ion acceleration studies consists of solid density clusters embedded into the background gas, its irradiation by high intensity laser light makes the target

  14. High-Intensity Events in International Women's Team Handball Matches.

    Science.gov (United States)

    Luteberget, Live S; Spencer, Matt

    2017-01-01

    International women's team handball is a physically demanding sport and is intermittent in nature. The aim of the study was to profile high-intensity events (HIEs) in international women's team handball matches with regard to playing positions. Twenty female national-team handball players were equipped with inertial movement units (OptimEye S5, Catapult Sports, Australia) in 9 official international matches. Players were categorized in 4 different playing positions: backs, wings, pivots, and goalkeepers (GKs). PlayerLoad™, accelerations (Acc), changes of direction (CoD), decelerations (Dec), and the sum of the latter 3, HIEs, were extracted from raw-data files using the manufacturer's software. All Acc, Dec, CoD, and HIEs >2.5 m/s were included. Data were log-transformed and differences were standardized for interpretation of magnitudes and reported with effect-size statistics. Mean numbers of events were 0.7 ± 0.4 Acc/min, 2.3 ± 0.9 Dec/min, and 1.0 ± 0.4 CoD/min. Substantial differences between playing positions, ranging from small to very large, were found in the 3 parameters. Backs showed a most likely greater frequency for HIE/min (5.0 ± 1.1 HIE/min) than all other playing positions. Differences between playing positions were also apparent in PlayerLoad/min. HIEs in international women's team handball are position specific, and the overall intensity depends on the positional role within a team. Specific HIE and intensity profiles from match play provide useful information for a better understanding of the overall game demands and for each playing position.

  15. Outcomes of exertional rhabdomyolysis following high-intensity resistance training.

    Science.gov (United States)

    Huynh, A; Leong, K; Jones, N; Crump, N; Russell, D; Anderson, M; Steinfort, D; Johnson, D F

    2016-05-01

    High-intensity resistance training (HIRT) programmes are increasingly popular amongst personal trainers and those attending gymnasiums. We report the experience of exertional rhabdomyolysis (ER) at two tertiary hospitals in Melbourne, Australia. To compare the clinical outcomes of ER with other causes of rhabdomyolysis. Retrospective cross-sectional study of patients presenting with a serum creatine kinase (CK) of greater than 25 000 units/L from 1 September 2013 to 31 August 2014 at two tertiary referral hospitals in Melbourne, Australia. Records were examined to identify care measures implemented during hospital stay, clinical outcomes during admission and on subsequent follow up. Thirty four cases of rhabdomyolysis with a CK of greater than 25 000 units/L (normal range: 20-180 units/L) were identified during the 12-month study period. Twelve of the 34 cases (35%) had ER with 10 of 12 related to HIRT. No acute kidney injury, intensive care admission or death were seen among those with ER. All cases were managed conservatively, with 11 admitted and 9 receiving intravenous fluids only. In contrast, patients with rhabdomyolysis from other causes experienced significantly higher rates of intensive care admission (64%, P = 0.0002), acute kidney injury (82%, P = 0.0001) and death (27%, P = 0.069). ER resulting from HIRT appears to have a benign course compared with rhabdomyolysis of other aetiologies in patients with a serum CK greater than 25 000 units/L. Conservative management of ER appears to be adequate, although this requires confirmation in future prospective studies. © 2016 Royal Australasian College of Physicians.

  16. Proceedings of the third ICFA mini-workshop on high intensity, high brightness hadron accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1997-01-01

    The third mini-workshop on high intensity, high brightness hadron accelerators was held at Brookhaven National Laboratory on May 7-9, 1997 and had about 30 participants. The workshop focussed on rf and longitudinal dynamics issues relevant to intense and/or bright hadron synchrotrons. A plenary session was followed by four sessions on particular topics. This document contains copies of the viewgraphs used as well as summaries written by the session chairs

  17. TU-CD-BRB-12: Radiogenomics of MRI-Guided Prostate Cancer Biopsy Habitats

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanova, R; Lynne, C; Abraham, S; Patel, M; Jorda, M; Kryvenko, O; Ishkanian, A; Abramowitz, M; Pollack, A [University of Miami, Miami, FL (United States); Tachar, M; Erho, N; Buerki, C; Lam, L; Davicioni, E [GenomeDx Biosciences Inc., Vancouver, British Columbia (Canada)

    2015-06-15

    Purpose: Diagnostic prostate biopsies are subject to sampling bias. We hypothesize that quantitative imaging with multiparametric (MP)-MRI can more accurately direct targeted biopsies to index lesions associated with highest risk clinical and genomic features. Methods: Regionally distinct prostate habitats were delineated on MP-MRI (T2-weighted, perfusion and diffusion imaging). Directed biopsies were performed on 17 habitats from 6 patients using MRI-ultrasound fusion. Biopsy location was characterized with 52 radiographic features. Transcriptome-wide analysis of 1.4 million RNA probes was performed on RNA from each habitat. Genomics features with insignificant expression values (<0.25) and interquartile range <0.5 were filtered, leaving total of 212 genes. Correlation between imaging features, genes and a 22 feature genomic classifier (GC), developed as a prognostic assay for metastasis after radical prostatectomy was investigated. Results: High quality genomic data was derived from 17 (100%) biopsies. Using the 212 ‘unbiased’ genes, the samples clustered by patient origin in unsupervised analysis. When only prostate cancer related genomic features were used, hierarchical clustering revealed samples clustered by needle-biopsy Gleason score (GS). Similarly, principal component analysis of the imaging features, found the primary source of variance segregated the samples into high (≥7) and low (6) GS. Pearson’s correlation analysis of genes with significant expression showed two main patterns of gene expression clustering prostate peripheral and transitional zone MRI features. Two-way hierarchical clustering of GC with radiomics features resulted in the expected groupings of high and low expressed genes in this metastasis signature. Conclusions: MP-MRI-targeted diagnostic biopsies can potentially improve risk stratification by directing pathological and genomic analysis to clinically significant index lesions. As determinant lesions are more reliably

  18. MO-B-201-03: MRI-Guided Tracking and Gating

    Energy Technology Data Exchange (ETDEWEB)

    Green, O. [Washington University School of Medicine (United States)

    2016-06-15

    The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanics of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and

  19. High Intensity Effects in the SNS Accumulator Ring

    International Nuclear Information System (INIS)

    Holmes, Jeffrey A.; Cousineau, Sarah M.; Danilov, Viatcheslav; Plum, Michael A.; Shishlo, Andrei P.

    2008-01-01

    Currently operating at 0.5 MW beam power on target, the Spallation Neutron Source (SNS) is already the world's most powerful pulsed neutron source. However, we are only one third of the way to full power. As we ramp toward full power, the control of the beam and beam loss in the ring will be critical. In addition to practical considerations, such as choice of operating point, painting scheme, RF bunching, and beam scattering, it may be necessary to understand and mitigate collective effects due to space charge, impedances, and electron clouds. At each stage of the power ramp-up, we use all available resources to understand and to minimize beam losses. From the standpoint of beam dynamics, the losses observed so far under normal operating conditions have not involved collective phenomena. We are now entering the intensity regime in which this may change. In dedicated high intensity beam studies, we have already observed resistive wall, extraction kicker impedance-driven, and electron cloud activities. The analysis and simulation of this data are important ongoing activities at SNS. This paper discusses the status of this work, as well as other considerations necessary to the successful full power operation of SNS.

  20. Muscular soreness following prolonged intermittent high-intensity shuttle running.

    Science.gov (United States)

    Thompson, D; Nicholas, C W; Williams, C

    1999-05-01

    The aim of this study was to examine the impact of prolonged intermittent high-intensity shuttle running on soreness and markers of muscle damage. Sixteen males took part in the study, half of whom were assigned to a running group and half to a resting control group. The exercise protocol involved 90 min of intermittent shuttle running and walking (Loughborough Intermittent Shuttle Test: LIST), reflecting the activity pattern found in multiple-sprint sports such as soccer. Immediately after exercise, there was a significant increase (P < 0.05) in serum activities of creatine kinase and aspartate aminotransferase, and values remained above baseline for 48 h (P < 0.05). Median peak activities of creatine kinase and aspartate aminotransferase occurred 24 h post-exercise and were 774 and 43 U x l(-1), respectively. The intensity of general muscle soreness, and in the specific muscles investigated, was greater than baseline for 72 h after the shuttle test (P < 0.05), peaking 24-48 h post-exercise (P < 0.05). Muscle soreness was not correlated with either creatine kinase or aspartate aminotransferase activity. Soreness was most frequently reported in the hamstrings. Neither soreness nor serum enzyme activity changed in the controls over the 4 day observation period. It appears that unaccustomed performance of prolonged intermittent shuttle running produces a significant increase in both soreness and markers of muscle damage.

  1. High-intensity lower limb endurance training in chronic respiratory disease

    OpenAIRE

    Tanaka, Takako; Arizono, Shinichi; Hanada, Masatoshi; Senjyu, Hideaki

    2015-01-01

    High-intensity endurance training is mainly undertaken during pulmonary rehabilitation for patients with chronic respiratory disease. High-intensity endurance training is recommended in many clinical management guidelines. High-intensity endurance training involves training generally at an intensity of at 60-80% of the patient’s peak work capacity or higher. The effects of high-intensity lower limb endurance training have mostly been investigated in chronic obstructive pulmonary disease (COPD...

  2. High intensity laser interactions with sub-micron droplets

    International Nuclear Information System (INIS)

    Mountford, L.C.

    1999-01-01

    A high-density source of liquid ethanol droplets has been developed, characterised and used in laser interaction studies for the first time. Mie Scattering and attenuation measurements show that droplets with a radius of (0.5 ± 0.1) μm and atomic densities of 10 19 atoms/cm 3 can be produced, bridging the gap between clusters and macroscopic solids. Lower density (10 16 cm -3 ) sprays can also be produced and these are electrostatically split into smaller droplets with a radius of (0.3 ± 0.1) μm. This work has been accepted for publication in Review of Scientific Instruments. A range of high intensity interaction experiments have been carried out with this unique sub-micron source. The absolute yield of keV x-rays, generated using 527 nm, 2 ps pulses focused to ∼10 17 W/cm 2 , was measured for the first time. ∼7 μJ of x-rays with photon energies above 1 keV were produced, comparable to yields obtained from much higher Z Xenon clusters. At intensities ≤10 16 W/cm 2 the yield from droplets exceeds that from solid targets of similar Z. The droplet medium is debris free and self-renewing, providing a suitable x-ray source for lithographic techniques. Due to the spacing between the droplets, it was expected that the droplet plasma temperature would exceed that of a solid target plasma, which is typically limited by rapid heat conduction to <1 keV. Analysis of the x-ray data shows this to be true with a mean droplet plasma temperature of (2 ± 0.8) keV, and a number of measurements exceeding 5 keV (to appear in Applied Physics Letters). The absorption of high intensity laser pulses in the dense spray has been measured for the first time and this was found to be wavelength and polarisation independent and in excess of 60%. These first interaction measurements clearly indicate that there are significant differences between the laser heating of droplet, solid and cluster targets. (author)

  3. TH-CD-BRA-11: Implementation and Evaluation of a New 3D Dosimetry Protocol for Validating MRI Guided Radiation Therapy Treatments

    International Nuclear Information System (INIS)

    Mein, S; Rankine, L; Adamovics, J; Li, H; Oldham, M

    2016-01-01

    Purpose: To develop, evaluate and apply a novel high-resolution 3D remote dosimetry protocol for validation of MRI guided radiation therapy treatments (MRIdian by ViewRay™). We demonstrate the first application of the protocol (including two small but required new correction terms) utilizing radiochromic 3D plastic PRESAGE™ with optical-CT readout. Methods: A detailed study of PRESAGE™ dosimeters (2kg) was conducted to investigate the temporal and spatial stability of radiation induced optical density change (ΔOD) over 8 days. Temporal stability was investigated on 3 dosimeters irradiated with four equally-spaced square 6MV fields delivering doses between 10cGy and 300cGy. Doses were imaged (read-out) by optical-CT at multiple intervals. Spatial stability of ΔOD response was investigated on 3 other dosimeters irradiated uniformly with 15MV extended-SSD fields with doses of 15cGy, 30cGy and 60cGy. Temporal and spatial (radial) changes were investigated using CERR and MATLAB’s Curve Fitting Tool-box. A protocol was developed to extrapolate measured ΔOD readings at t=48hr (the typical shipment time in remote dosimetry) to time t=1hr. Results: All dosimeters were observed to gradually darken with time (<5% per day). Consistent intra-batch sensitivity (0.0930±0.002 ΔOD/cm/Gy) and linearity (R2=0.9996) was observed at t=1hr. A small radial effect (<3%) was observed, attributed to curing thermodynamics during manufacture. The refined remote dosimetry protocol (including polynomial correction terms for temporal and spatial effects, CT and CR) was then applied to independent dosimeters irradiated with MR-IGRT treatments. Excellent line profile agreement and 3D-gamma results for 3%/3mm, 10% threshold were observed, with an average passing rate 96.5%± 3.43%. Conclusion: A novel 3D remote dosimetry protocol is presented capable of validation of advanced radiation treatments (including MR-IGRT). The protocol uses 2kg radiochromic plastic dosimeters read-out by

  4. Respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK): Initial clinical experience on an MRI-guided radiotherapy system.

    Science.gov (United States)

    Han, Fei; Zhou, Ziwu; Du, Dongsu; Gao, Yu; Rashid, Shams; Cao, Minsong; Shaverdian, Narek; Hegde, John V; Steinberg, Michael; Lee, Percy; Raldow, Ann; Low, Daniel A; Sheng, Ke; Yang, Yingli; Hu, Peng

    2018-06-01

    To optimize and evaluate the respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK-4D-MRI) method in a 0.35 T MRI-guided radiotherapy (MRgRT) system. The study included seven patients with abdominal tumors treated on the MRgRT system. ROCK-4D-MRI and 2D-CINE, was performed immediately after one of the treatment fractions. Motion quantification based on 4D-MRI was compared with those based on 2D-CINE. The image quality of 4D-MRI was evaluated against 4D-CT. The gross tumor volumes (GTV) were defined based on individual respiratory phases of both 4D-MRI and 4D-CT and compared for their variability over the respiratory cycle. The motion measurements based on 4D-MRI matched well with 2D-CINE, with differences of 1.04 ± 0.52 mm in the superior-inferior and 0.54 ± 0.21 mm in the anterior-posterior directions. The image quality scores of 4D-MRI were significantly higher than 4D-CT, with better tumor contrast (3.29 ± 0.76 vs. 1.86 ± 0.90) and less motion artifacts (3.57 ± 0.53 vs. 2.29 ± 0.95). The GTVs were more consistent in 4D-MRI than in 4D-CT, with significantly smaller GTV variability (9.31 ± 4.58% vs. 34.27 ± 23.33%). Our study demonstrated the clinical feasibility of using the ROCK-4D-MRI to acquire high quality, respiratory motion-resolved 4D-MRI in a low-field MRgRT system. The 4D-MRI image could provide accurate dynamic information for radiotherapy treatment planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. TH-CD-BRA-11: Implementation and Evaluation of a New 3D Dosimetry Protocol for Validating MRI Guided Radiation Therapy Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mein, S [Duke University Medical Physics Graduate Program (United States); Rankine, L [Department of Radiation Oncology, University of North Carolina in Chapel Hill (United States); Department of Radiation Oncology, Washington University School of Medicine (United States); Adamovics, J [Department of Chemistry and Biology, Rider University, Lawrenceville, NJ (United States); Li, H [Department of Radiation Oncology, Washington University School of Medicine (United States); Oldham, M [Department of Radiation Oncology, Duke University Medical Center (United States)

    2016-06-15

    Purpose: To develop, evaluate and apply a novel high-resolution 3D remote dosimetry protocol for validation of MRI guided radiation therapy treatments (MRIdian by ViewRay™). We demonstrate the first application of the protocol (including two small but required new correction terms) utilizing radiochromic 3D plastic PRESAGE™ with optical-CT readout. Methods: A detailed study of PRESAGE™ dosimeters (2kg) was conducted to investigate the temporal and spatial stability of radiation induced optical density change (ΔOD) over 8 days. Temporal stability was investigated on 3 dosimeters irradiated with four equally-spaced square 6MV fields delivering doses between 10cGy and 300cGy. Doses were imaged (read-out) by optical-CT at multiple intervals. Spatial stability of ΔOD response was investigated on 3 other dosimeters irradiated uniformly with 15MV extended-SSD fields with doses of 15cGy, 30cGy and 60cGy. Temporal and spatial (radial) changes were investigated using CERR and MATLAB’s Curve Fitting Tool-box. A protocol was developed to extrapolate measured ΔOD readings at t=48hr (the typical shipment time in remote dosimetry) to time t=1hr. Results: All dosimeters were observed to gradually darken with time (<5% per day). Consistent intra-batch sensitivity (0.0930±0.002 ΔOD/cm/Gy) and linearity (R2=0.9996) was observed at t=1hr. A small radial effect (<3%) was observed, attributed to curing thermodynamics during manufacture. The refined remote dosimetry protocol (including polynomial correction terms for temporal and spatial effects, CT and CR) was then applied to independent dosimeters irradiated with MR-IGRT treatments. Excellent line profile agreement and 3D-gamma results for 3%/3mm, 10% threshold were observed, with an average passing rate 96.5%± 3.43%. Conclusion: A novel 3D remote dosimetry protocol is presented capable of validation of advanced radiation treatments (including MR-IGRT). The protocol uses 2kg radiochromic plastic dosimeters read-out by

  6. MRI-Guided Diffuse Optical Spectroscopy of Malignant and Benign Breast Lesions

    Directory of Open Access Journals (Sweden)

    Vasilis Ntziachristos

    2002-01-01

    Full Text Available We present the clinical implementation of a novel hybrid system that combines magnetic resonance imaging (MRI and near-infrared (NIR optical measurements for the noninvasive study of breast cancer in vivo. Fourteen patients were studied with a MR-NIR prototype imager and spectrometer. A diffuse optical tomographic scheme employed the MR images as a priori information to implement an image-guided NIR localized spectroscopic scheme. All patients who entered the study also underwent gadolinium-enhanced MRI and biopsy so that the optical findings were crossvalidated with MR readings and histopathology. The technique quantified the oxy-and deoxyhemoglobin of five malignant and nine benign breast lesions in vivo. Breast cancers were found with decreased oxygen saturation and higher blood concentration than most benign lesions. The average hemoglobin concentration ([H] of cancers was 0.130±0.100 mM, and the average hemoglobin saturation (Y was 60±9% compared to [H]=0.018±0.005 mM and Y=69±6% of background tissue. Fibroadenomas exhibited high hemoglobin concentration [H]=0.060±0.010 mM and mild decrease in oxygen saturation Y=67±2%. Cysts and other normal lesions were easily differentiated based on intrinsic contrast information. This novel optical technology can be a significant add-on in MR examinations and can be used to characterize functional parameters of cancers with diagnostic and treatment prognosis potential. It is foreseen that the technique can play a major role in functional activation studies of brain and muscle as well.

  7. High-Intensity Intermittent Exercise and Fat Loss

    Directory of Open Access Journals (Sweden)

    Stephen H. Boutcher

    2011-01-01

    Full Text Available The effect of regular aerobic exercise on body fat is negligible; however, other forms of exercise may have a greater impact on body composition. For example, emerging research examining high-intensity intermittent exercise (HIIE indicates that it may be more effective at reducing subcutaneous and abdominal body fat than other types of exercise. The mechanisms underlying the fat reduction induced by HIIE, however, are undetermined. Regular HIIE has been shown to significantly increase both aerobic and anaerobic fitness. HIIE also significantly lowers insulin resistance and results in a number of skeletal muscle adaptations that result in enhanced skeletal muscle fat oxidation and improved glucose tolerance. This review summarizes the results of HIIE studies on fat loss, fitness, insulin resistance, and skeletal muscle. Possible mechanisms underlying HIIE-induced fat loss and implications for the use of HIIE in the treatment and prevention of obesity are also discussed.

  8. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  9. An outline of research facilities of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  10. High intensity proton accelerator and its application (Proton Engineering Center)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, Spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  11. Simplified shielding calculation system for high-intensity proton accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Masumura, Tomomi; Nakashima, Hiroshi; Nakane, Yoshihiro; Sasamoto, Nobuo [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-06-01

    A simplified shielding calculation system is developed for applying conceptual shielding design of facilities in the joint project for high-intensity proton accelerators. The system is composed of neutron transmission calculation part for bulk shielding using simplified formulas: Moyer model and Tesch's formula, and neutron skyshine calculation part using an empirical formula: Stapleton's formula. The system is made with the Microsoft Excel software for user's convenience. This report provides a manual for the system as well as calculation conditions used in the calculation such as Moyer model's parameters. In this report preliminary results based on data at December 8, 1999, are also shown as an example. (author)

  12. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  13. Pedalling rate affects endurance performance during high-intensity cycling

    DEFF Research Database (Denmark)

    Nielsen, Jens Steen; Hansen, Ernst Albin; Sjøgaard, Gisela

    2004-01-01

    The purpose of this study into high-intensity cycling was to: (1) test the hypothesis that endurance time is longest at a freely chosen pedalling rate (FCPR), compared to pedalling rates 25% lower (FCPR-25) and higher (FCPR+25) than FCPR, and (2) investigate how physiological variables......, and endurance time at W90 with FCPR-25, FCPR, and FCPR+25. Power reserve was calculated as the difference between applied power output at a given pedalling rate and peak crank power at this same pedalling rate. W90 was 325 (47) W. FCPR at W90 was 78 (11) rpm, resulting in FCPR-25 being 59 (8) rpm and FCPR+25...... time was negatively related to VO(2max), W90 and % MHC I, while positively related to power reserve. In conclusion, at group level, endurance time was longer at FCPR and at a pedalling rate 25% lower compared to a pedalling rate 25% higher than FCPR. Further, inter-individual physiological variables...

  14. Fast damping in mismatched high intensity beam transportation

    Directory of Open Access Journals (Sweden)

    V. Variale

    2001-08-01

    Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.

  15. High Intensity, Pulsed, D-D Neutron Generator

    International Nuclear Information System (INIS)

    Williams, D.L.; Vainionpaa, J.H.; Jones, G.; Piestrup, M.A.; Gary, C.K.; Harris, J.L.; Fuller, M.J.; Cremer, J.T.; Ludewigt, Bernhard A.; Kwan, J.W.; Reijonen, J.; Leung, K.-N.; Gough, R.A.

    2008-01-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  16. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh

    International Nuclear Information System (INIS)

    Sokka, S D; King, R; Hynynen, K

    2003-01-01

    In this study, we propose a focused ultrasound surgery protocol that induces and then uses gas bubbles at the focus to enhance the ultrasound absorption and ultimately create larger lesions in vivo. MRI and ultrasound visualization and monitoring methods for this heating method are also investigated. Larger lesions created with a carefully monitored single ultrasound exposure could greatly improve the speed of tumour coagulation with focused ultrasound. All experiments were performed under MRI (clinical, 1.5 T) guidance with one of two eight-sector, spherically curved piezoelectric transducers. The transducer, either a 1.1 or 1.7 MHz array, was driven by a multi-channel RF driving system. The transducer was mounted in an MRI-compatible manual positioning system and the rabbit was situated on top of the system. An ultrasound detector ring was fixed with the therapy transducer to monitor gas bubble activity during treatment. Focused ultrasound surgery exposures were delivered to the thighs of seven New Zealand white rabbits. The experimental, gas-bubble-enhanced heating exposures consisted of a high amplitude 300 acoustic watt, half second pulse followed by a 7 W, 14 W or 21 W continuous wave exposure for 19.5 s. The respective control sonications were 20 s exposures of 14 W, 21 W and 28 W. During the exposures, MR thermometry was obtained from the temperature dependency of the proton resonance frequency shift. MR T2-enhanced imaging was used to evaluate the resulting lesions. Specific metrics were used to evaluate the differences between the gas-bubble-enhanced exposures and their respective control sonications: temperatures with respect to time and space, lesion size and shape, and their agreement with thermal dose predictions. The bubble-enhanced exposures showed a faster temperature rise within the first 4 s and higher overall temperatures than the sonications without bubble formation. The spatial temperature maps and the thermal dose maps derived from the MRI

  17. Clinical utility of an endorectal MRI-guided prostate probe: preliminary examinations

    Directory of Open Access Journals (Sweden)

    Tödter Julia

    2017-09-01

    Full Text Available Prostate cancer (PCa is one of the most common cancer diseases in men in the western countries [1]. Besides the palpation, and the amount of prostate-specific-antigen’s (PSA inside the blood, the current diagnostic imaging technologies are not appropriate. Early diagnosis defining the exact tumor location, spread and margins could make efficient targeted biopsies and image-guided surgery. A multimodal imaging technique containing a transmit-receive surface coil for anatomical MR imaging, a (SPET detector module, consisting of silicon photomultipliers (SiPM, for functional imaging and an ultrasound (US probe are placed as close as possible to the prostate designed as an endorectal tube to increase sensitivity and spatial resolution. All materials that are used are non-magnetic. Advantages of the SiPM are diversified, like non-sensitive to magnetic fields, higher gain (105–106 than standard avalanche photodiodes (APD, good timing properties and compactness. The PET detector should reach approximately 1mm3 spatial resolution together with 60ps FWHM Time-of-Flight resolution and a high efficiency to reduce scanning time and injected dose. A home-made transmit-receive coil surrounding the PET module improves signal-to-noise-ratio (SNR with respect to standard coils will be present. The system will be used as a MRI-insert and be able to visualize anatomic and metabolic information together. The US-probe is guiding examination for correct overlapping of the multimodal images. This procedure will save time, costs and the need of co-registration. By combining all advantages of each system, it will necessarily update the non-invasive treatment of PCa. The system is adapted and tested to a 3 Tesla MR scanner called Trio A Tim system and Allegra system from the company Siemens healthcare with a larmor frequency of 123.2 MHz and an input of 50 Ω free from artifacts. First results on homogeneity of the transmit-receive coil will be presented. Preliminary

  18. What IAPT CBT High-Intensity Trainees Do After Training.

    Science.gov (United States)

    Liness, Sheena; Lea, Susan; Nestler, Steffen; Parker, Hannah; Clark, David M

    2017-01-01

    The UK Department of Health Improving Access to Psychological Therapies (IAPT) initiative set out to train a large number of therapists in cognitive behaviour therapies (CBT) for depression and anxiety disorders. Little is currently known about the retention of IAPT CBT trainees, or the use of CBT skills acquired on the course in the workplace after training has finished. This study set out to conduct a follow-up survey of past CBT trainees on the IAPT High Intensity CBT Course at the Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), one of the largest IAPT High Intensity courses in the UK. Past trainees (n = 212) across 6 cohorts (2008-2014 intakes) were contacted and invited to participate in a follow-up survey. A response rate of 92.5% (n = 196) was achieved. The vast majority of IAPT trainees continue to work in IAPT services posttraining (79%) and to practise CBT as their main therapy modality (94%); 61% have become CBT supervisors. A minority (23%) have progressed to other senior roles in the services. Shortcomings are reported in the use of out-of-office CBT interventions, the use of disorder-specific outcome measures and therapy recordings to inform therapy and supervision. Past trainees stay working in IAPT services and continue to use CBT methods taught on the course. Some NICE recommended treatment procedures that are likely to facilitate patients' recovery are not being routinely implemented across IAPT services. The results have implications for the continued roll out of the IAPT programme, and other future large scale training initiatives.

  19. Material studies for pulsed high-intensity proton beam targets

    International Nuclear Information System (INIS)

    Simos, N.; Kirk, H.; Ludewig, H.; Thieberger, P.; Weng, W-T.; McDonald, K.; Yoshimura, K.

    2004-01-01

    Intense beams for muon colliders and neutrino facilities require high-performance target stations of 1-4 MW proton beams. The physics requirements for such a system push the envelope of our current knowledge as to how materials behave under high-power beams for both short and long exposure. The success of an adopted scheme that generates, captures and guides secondary particles depends on the useful life expectancy of this critical system. This paper presents an overview of what has been achieved during the various phases of the experimental effort including a tentative plan to continue the effort by expanding the material matrix. The first phase of the project was to study the changes after irradiation in mechanical properties and specially in thermal expansion coefficient of various materials. During phase-I the study attention was primarily focused on Super-invar and in a lesser degree on Inconel-718. Invar is a metal alloy which predominantly consists of 62% Fe, 32% Ni and 5% Co. It is showed that this metal, whose non-irradiated properties held such promise, can only be considered a serious target candidate for an intense proton beam only if one can anneal the atomic displacements followed by the appropriate heat treatment to restore its favorable expansion coefficient. New materials that have been developed for various industrial needs by optimizing key properties, might be of value for the accelerator community. These materials like carbon-carbon composites, titanium alloys, the Toyota 'gum metal', the Vascomax material and the AlBeMet alloy will be explored and tested in the second phase of the project. (A.C.)

  20. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  1. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...

  2. High intensity proton linear accelerator for Neutron Science Project

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1999-01-01

    JAERI has been proposing the Neutron Science Project (NSP) which will be composed of a high intensity proton accelerator and various research facilities. With an energy of 1.5 GeV and a beam power of 8 MW, the accelerator is required for basic research fields and nuclear waste transmutation studies. The R and D work has been carried out for the components of the accelerator. In the low energy accelerator part, a beam test with an ion source and an RFQ has been performed with a current of 80 mA and a duty factor of 10% at an energy of 2 MeV. A 1 m long high power test model of DTL has been fabricated and tested with a duty factor of 20%. In the high energy accelerator part, a superconducting (SC) linac has been selected as a main option from 100 MeV to 1.5 GeV. A test stand for SC linac cavity with equipment of cryogenics, vacuum, RF source and cavity processing and cleaning system has been prepared to test the fabrication process and physics issues. The vertical tests of β = 0.5 (145 MeV) and β = 0.89 (1.1 GeV) single cell SC cavities have been made resulting in a maximum electric field strength of 44 MV/m and 47 MV/m at 2 K, respectively. (author)

  3. Investigations on transport and storage of high ion beam intensities

    International Nuclear Information System (INIS)

    Joshi, Ninad Shrikrishna

    2009-01-01

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He + and mixed p, H 2+ , H 3+ beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was designed to perform

  4. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  5. TU-AB-202-06: Quantitative Evaluation of Deformable Image Registration in MRI-Guided Adaptive Radiation Therapy

    International Nuclear Information System (INIS)

    Mooney, K; Zhao, T; Green, O; Mutic, S; Yang, D; Duan, Y; Zhang, M

    2016-01-01

    Purpose: To assess the performance of the deformable image registration algorithm used for MRI-guided adaptive radiation therapy using image feature analysis. Methods: MR images were collected from five patients treated on the MRIdian (ViewRay, Inc., Oakwood Village, OH), a three head Cobalt-60 therapy machine with an 0.35 T MR system. The images were acquired immediately prior to treatment with a uniform 1.5 mm resolution. Treatment sites were as follows: head/neck, lung, breast, stomach, and bladder. Deformable image registration was performed using the ViewRay software between the first fraction MRI and the final fraction MRI, and the DICE similarity coefficient (DSC) for the skin contours was reported. The SIFT and Harris feature detection and matching algorithms identified point features in each image separately, then found matching features in the other image. The target registration error (TRE) was defined as the vector distance between matched features on the two image sets. Each deformation was evaluated based on comparison of average TRE and DSC. Results: Image feature analysis produced between 2000–9500 points for evaluation on the patient images. The average (± standard deviation) TRE for all patients was 3.3 mm (±3.1 mm), and the passing rate of TRE<3 mm was 60% on the images. The head/neck patient had the best average TRE (1.9 mm±2.3 mm) and the best passing rate (80%). The lung patient had the worst average TRE (4.8 mm±3.3 mm) and the worst passing rate (37.2%). DSC was not significantly correlated with either TRE (p=0.63) or passing rate (p=0.55). Conclusions: Feature matching provides a quantitative assessment of deformable image registration, with a large number of data points for analysis. The TRE of matched features can be used to evaluate the registration of many objects throughout the volume, whereas DSC mainly provides a measure of gross overlap. We have a research agreement with ViewRay Inc.

  6. SU-G-JeP2-03: Automatic Quantification of MLC Positional Accuracy in An MRI Guided Radiotherapy System

    International Nuclear Information System (INIS)

    Li, X; Studenski, M; Yang, F; Dogan, N; Lamichhane, N; Padgett, K

    2016-01-01

    Purpose: MRI-guided-radiotherapy (MRIGRT) systems lack many features of traditional Linac based RT systems and specialized tests need to be developed to evaluate MLC performance. This work describes automatic tools for the analysis of positional accuracy of an MLC equipped MRIGRT system. Methods: This MLC analysis tool was developed for the MRIdian™ RT system which has three Co-60 equipped treatment heads each with a double focused MLC containing 30 leaf pairs, leaf thickness is 1.05cm defined at isocenter (SAD 105 cm). For MLC positional analysis a picket fence test was performed using a 25.4cm × 25.4cm Gafchromic™ RTQA2 film placed between 5cm solidwater and a 30cm × 30cm × 1cm jigwire phantom with seven embedded parallel metal strips 4cm apart. A plan was generated to deliver 2Gy per field and seven 23.1cm × 2cm fields centered over each wire in the phantom. For each leaf pair the center of the radiation profile was determined by fitting the horizontal profile with a Gaussian model and determining the center of the FWHM. This was compared with the metal strip location to determine any deviation. The following metrics were used to evaluate the deviations per gantry angle including maximum, minimum, mean, Kurtosis, and skewness. Results: The identified maximum/mean leaf deviations are, 1.32/0.55 mm for gantry 0°, 1.59/0.76 mm for gantry 90°, and 1.19/0.39 mm for gantry 270°. The percentage of leaf deviation less than 1mm are 90.0% at 0°, 74.6% at 90°, and 97.0% at 270°. Kurtosis/skewness of the leaf deviation are 2.41/0.14 at 0°, 2.53/0.23 at 90°, 3.33/0.83 at 270°, respectively. Conclusion: This work presents an automatic tool for evaluation of the MLC position accuracy of the MRIdian™ radiotherapy system which can be used to benchmark the performance of the MLC system for each treatment head and track the results longitudinally.

  7. TU-AB-202-06: Quantitative Evaluation of Deformable Image Registration in MRI-Guided Adaptive Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, K; Zhao, T; Green, O; Mutic, S; Yang, D [Washington University School of Medicine, Saint Louis, MO (United States); Duan, Y [University of Missouri, Columbia, Missouri (United States); Zhang, M [Oregon Health and Science University, Portland, Oregon (United States)

    2016-06-15

    Purpose: To assess the performance of the deformable image registration algorithm used for MRI-guided adaptive radiation therapy using image feature analysis. Methods: MR images were collected from five patients treated on the MRIdian (ViewRay, Inc., Oakwood Village, OH), a three head Cobalt-60 therapy machine with an 0.35 T MR system. The images were acquired immediately prior to treatment with a uniform 1.5 mm resolution. Treatment sites were as follows: head/neck, lung, breast, stomach, and bladder. Deformable image registration was performed using the ViewRay software between the first fraction MRI and the final fraction MRI, and the DICE similarity coefficient (DSC) for the skin contours was reported. The SIFT and Harris feature detection and matching algorithms identified point features in each image separately, then found matching features in the other image. The target registration error (TRE) was defined as the vector distance between matched features on the two image sets. Each deformation was evaluated based on comparison of average TRE and DSC. Results: Image feature analysis produced between 2000–9500 points for evaluation on the patient images. The average (± standard deviation) TRE for all patients was 3.3 mm (±3.1 mm), and the passing rate of TRE<3 mm was 60% on the images. The head/neck patient had the best average TRE (1.9 mm±2.3 mm) and the best passing rate (80%). The lung patient had the worst average TRE (4.8 mm±3.3 mm) and the worst passing rate (37.2%). DSC was not significantly correlated with either TRE (p=0.63) or passing rate (p=0.55). Conclusions: Feature matching provides a quantitative assessment of deformable image registration, with a large number of data points for analysis. The TRE of matched features can be used to evaluate the registration of many objects throughout the volume, whereas DSC mainly provides a measure of gross overlap. We have a research agreement with ViewRay Inc.

  8. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1993-02-01

    The QUEGS facility at MURR has produced a number of new results and demonstrated the range of potential applications of high resolution, high intensity Moessbauer scattering. This work has been carried out by both MU and Purdue researchers and includes published results on Na, W, pentadecane, polydimethylsiloxane and other systems, manuscripts submitted on alkali halides (Phys. Rev. B) and accurate Moessbauer lineshape measurements (Phys. Rev. C), and manuscripts in preparation on glycerol, NiAl and Moessbauer spectra obtained by modulating a scattering crystal. Recently, new collaborations have been initiated which will substantially enhance our efforts. These are with W. Steiner (Vienna), G. Coddens (Saclay), and R. D. Taylor (Los Alamos). Steiner is experienced with Fe-57 Moessbauer scattering, while Coddens specializes in quasielastic neutron scattering; both of these areas naturally complement our work. R. D. Taylor has pioneered Moessbauer spectroscopy from the time of its discovery and has already made important contributions to our study of lattice dynamics and superconductivity for lead alloyed with small quantities of tin. At the same time, a significant instrument upgrade is underway, funded in part by the DOE-URIP program

  9. Interaction of High Intensity Electromagnetic Waves with Plasmas: Final Report

    International Nuclear Information System (INIS)

    Shvets, G.

    2008-01-01

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  10. Pulmonary Vein Isolation by High Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Matthias Antz

    2007-04-01

    Full Text Available Pulmonary vein isolation (PVI using radiofrequency current (RFC ablation is a potentially curative treatment option for patients with atrial fibrillation (AF. The shortcomings of the RFC technology (technically challenging, long procedure times, complications steadily kindle the interest in new energy sources and catheter designs. High intensity focused ultrasound (HIFU has the ability to precisely focus ultrasound waves in a defined area with a high energy density. HIFU balloon catheters (BC positioned at the PV ostia appear to be an ideal tool to transmit the ablation energy in a circumferential manner to the PV ostia and may therefore bear substantial advantage over conventional ablation catheters in PVI procedures. In clinical trials the HIFU BC has shown promising success rates similar to RFC catheter ablation for PVI in patients with AF. However, procedure times are still long and serious complications have been observed. Therefore, it may be a valuable alternative to the conventional techniques in selected patients but further clinical trials have to be initiated.

  11. Production and Studies of Photocathodes for High Intensity Electron Beams

    CERN Document Server

    Chevallay, E; Legros, P; Suberlucq, Guy; Trautner, H

    2000-01-01

    For short, high-intensity electron bunches, alkali-tellurides have proved to be a reliable photo-cathode material. Measurements of lifetimes in an rf gun of the CLIC Test Facility II at field strengths greater than 100 MV/m are presented. Before and after using them in this gun, the spectral response of the CS-Te and Rb-Te cathodes were determined with the help of an optical parametric oscillator. The behaviour of both materials can be described by Spicer's 3-step model. Whereas during the use the threshold for photo-emission in Cs-Te was shifted to higher proton energies, that of Rb-Te did not change. Our latest investigations on the stoichiometric ratio of the components are shown. The preparation of the photo-cathodes was monitored with 320 nm wavelength light , with the aim of improving the measurement sensitivity. The latest results on the protection of Cs-Te cathode surfaces with CsBr against pollution are summarized. New investigations on high mean current production are presented.,

  12. High-intensity focused ultrasound ablation around the tubing.

    Science.gov (United States)

    Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng

    2017-01-01

    High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.

  13. Rainfall intensity characteristics at coastal and high altitude stations ...

    Indian Academy of Sciences (India)

    a given amount of rain occurs is important because heavier rainfall leads to greater runoff, greater soil erosion and less infiltration into the water table. A knowledge of rainfall intensity therefore becomes. Keywords. Rainfall intensity; Kerala; cumulative distribution. J. Earth Syst. Sci. 116, No. 5, October 2007, pp. 451–463.

  14. Energy compensation after sprint- and high-intensity interval training.

    Science.gov (United States)

    Schubert, Matthew M; Palumbo, Elyse; Seay, Rebekah F; Spain, Katie K; Clarke, Holly E

    2017-01-01

    Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE). This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI) and decreases in non-exercise physical activity (NEPA). We examined the degree of energy compensation in healthy young men and women in response to interval training. Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1) completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography) and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100%) and low (high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  15. Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy

    DEFF Research Database (Denmark)

    Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S

    2013-01-01

    We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies.......We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies....

  16. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand

  17. High-intensity interval training improves obstructive sleep apnoea.

    Science.gov (United States)

    Karlsen, Trine; Nes, Bjarne Martens; Tjønna, Arnt Erik; Engstrøm, Morten; Støylen, Asbjørn; Steinshamn, Sigurd

    2016-01-01

    Three hours per week of vigorous physical activity is found to be associated with reduced odds of sleep-disordered breathing. To investigate whether 12 weeks of high-intensity interval training (HIIT) reduced the apnoea-hypopnea index (AHI) in obese subjects with moderate-to-severe obstructive sleep apnoea. In a prospective randomised controlled exercise study, 30 (body mass index 37±6 kg/m 2 , age 51±9 years) patients with sleep apnoea (AHI 41.5±25.3 events/hour) were randomised 1:1 to control or 12 weeks of supervised HIIT (4×4 min of treadmill running or walking at 90%-95% of maximal heart rate two times per week). In the HIIT group, the AHI was reduced by 7.5±11.6 events/hour (within-group pHIIT improved the AHI and self-reported daytime sleepiness in subjects with obese sleep apnoea without any change in the desaturation index and body weight.

  18. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP( ) summary.html

  19. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    In 1991 a space charge calculation for bunched beam with a three-dimensional ellipsoid was proposed, replacing the usual SCHEFF routines. It removes the cylindrical symmetry required in SCHEFF and avoids the point to point interaction computation, whose number of simulation points is limited. This routine has now been improved with the introduction of two or three ellipsoids giving a good representation of the complex non-symmetrical form of the bunch (unlike the 3-d ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty encountered near the centre (the axis in 2-d problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Comparisons with other space charge routines have been made, particularly with the ones applying other techniques such as SCHEFF. Introduced in the versatile beam dynamics code DYNAC, it should provide a good tool for the study of the various parameters responsible for the halo formation in high intensity linacs. (orig.)

  20. A review of adolescent high-intensity interval training.

    Science.gov (United States)

    Logan, Greig R M; Harris, Nigel; Duncan, Scott; Schofield, Grant

    2014-08-01

    Despite the promising evidence supporting positive effects of high-intensity interval training (HIIT) on the metabolic profile in adults, there is limited research targeting adolescents. Given the rising burden of chronic disease, it is essential to implement strategies to improve the cardiometabolic health in adolescence, as this is a key stage in the development of healthy lifestyle behaviours. This narrative review summarises evidence of the relative efficacy of HIIT regarding the metabolic health of adolescents. Methodological inconsistencies confound our ability to draw conclusions; however, there is meaningful evidence supporting HIIT as a potentially efficacious exercise modality for use in the adolescent cohort. Future research must examine the effects of various HIIT protocols to determine the optimum strategy to deliver cardiometabolic health benefits. Researchers should explicitly show between-group differences for HIIT intervention and steady-state exercise or control groups, as the magnitude of difference between HIIT and other exercise modalities is of key interest to public health. There is scope for research to examine the palatability of HIIT as an exercise modality for adolescents through investigating perceived enjoyment during and after HIIT, and consequent long-term exercise adherence.

  1. Robotic Assisted Laparoscopic Prostatectomy after High Intensity Focused Ultrasound Failure

    Directory of Open Access Journals (Sweden)

    Leon Telis

    2017-01-01

    Full Text Available Background. Prostate cancer is the most common cancer diagnosed in men. As new focal therapies become more popular in treatment of prostate cancer, failure cases requiring salvage therapy with either surgical or other techniques are being reported. Objective. To report the options in treatment of prostate cancer after recurrence or failure of the primary treatment modality. Methods. We report a salvage robotic assisted laparoscopic radical prostatectomy (RALP for prostate cancer recurrence following high intensity focused ultrasound treatment (HIFU in the United States. Results. A 67-year-old man who underwent HIFU treatment for prostate adenocarcinoma 2 years prior was presented with a rising prostate specific antigen of 6.1 ng/mL to our clinic. A biopsy proven recurrent disease in the area of previous treatment documented the failure of treatment. The patient elected to undergo a salvage RALP. The operation time was 159 minutes. The patient was discharged from the hospital on postoperative day 1 with no complications. The catheter was removed on post-op day 10. The patient reserved sexual function and urinary continence. The PSA levels on 6 months’ follow-up are undetectable. Conclusions. Salvage RALP is an effective and safe treatment choice for recurrent prostate adenocarcinoma following failed HIFU treatment if operated by an experienced surgeon.

  2. High-intensity interval training vs. moderate-intensity continuous training in the prevention/management of cardiovascular disease

    OpenAIRE

    Hussain, S; Macaluso, A; Pearson, S

    2016-01-01

    Moderate-intensity continuous training (MICT) has long been considered the most effective exercise treatment modality for the prevention and management of cardiovascular disease, but more recently high-intensity interval training (HIIT) has emerged into the clinical environment has been viewed as a potential alternative to MICT in accruing such benefits. HIIT was initially found to induce significant improvements in numerous physiological and health-related indices, to a similar if not superi...

  3. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  4. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1990-10-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  5. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1990-01-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support

  6. Inelastic scattering in condensed matter with high intensity moessbauer radiation

    International Nuclear Information System (INIS)

    Yelon, W.B.; Schupp, G.

    1991-05-01

    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is not fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using Bragg scattering filters to suppress unwanted radiation. These have led to a Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to make a novel independent determination of interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na metal and the charge density wave satellite reflection Debye-Waller factor in TaS 2 , which indicate phason rather than phonon behavior. Using a specially constructed sample cell which enables us to vary temperatures from -10 C to 110 C, we have begun quasielastic diffusion studies in viscous liquids and current results are summarized. Included are the temperature and Q dependence of the scattering in pentadecane and diffusion in glycerol

  7. Energy compensation after sprint- and high-intensity interval training.

    Directory of Open Access Journals (Sweden)

    Matthew M Schubert

    Full Text Available Many individuals lose less weight than expected in response to exercise interventions when considering the increased energy expenditure of exercise (ExEE. This is due to energy compensation in response to ExEE, which may include increases in energy intake (EI and decreases in non-exercise physical activity (NEPA. We examined the degree of energy compensation in healthy young men and women in response to interval training.Data were examined from a prior study in which 24 participants (mean age, BMI, & VO2max = 28 yrs, 27.7 kg•m-2, and 32 mL∙kg-1∙min-1 completed either 4 weeks of sprint-interval training or high-intensity interval training. Energy compensation was calculated from changes in body composition (air displacement plethysmography and exercise energy expenditure was calculated from mean heart rate based on the heart rate-VO2 relationship. Differences between high (≥ 100% and low (< 100% levels of energy compensation were assessed. Linear regressions were utilized to determine associations between energy compensation and ΔVO2max, ΔEI, ΔNEPA, and Δresting metabolic rate.Very large individual differences in energy compensation were noted. In comparison to individuals with low levels of compensation, individuals with high levels of energy compensation gained fat mass, lost fat-free mass, and had lower change scores for VO2max and NEPA. Linear regression results indicated that lower levels of energy compensation were associated with increases in ΔVO2max (p < 0.001 and ΔNEPA (p < 0.001.Considerable variation exists in response to short-term, low dose interval training. In agreement with prior work, increases in ΔVO2max and ΔNEPA were associated with lower energy compensation. Future studies should focus on identifying if a dose-response relationship for energy compensation exists in response to interval training, and what underlying mechanisms and participant traits contribute to the large variation between individuals.

  8. Development of a High Intensity Focused Ultrasound (HIFU) Hydrophone System

    International Nuclear Information System (INIS)

    Schafer, Mark E.; Gessert, James

    2009-01-01

    The growing clinical use of High Intensity Focused Ultrasound (HIFU) has driven a need for reliable, reproducible measurements of HIFU acoustic fields. We have previously presented data on a reflective scatterer approach, incorporating several novel features for improved bandwidth, reliability, and reproducibility [Proc. 2005 IEEE Ultrasonics Symposium, 1739-1742]. We now report on several design improvements which have increase the signal to noise ratio of the system, and potentially reduced the cost of implementation. For the scattering element, we now use an artificial sapphire material to provide a more uniform radiating surface. The receiver is a segmented, truncated spherical structure with a 10 cm radius; the scattering element is positioned at the center of the sphere. The receiver is made from 25 micron thick, biaxially stretched PVDF, with a Pt-Au electrode on the front surface. In the new design, a specialized backing material provides the stiffness required to maintain structural stability, while at the same time providing both electrical shielding and ultrasonic absorption. Compared with the previous version, the new receiver design has improved the noise performance by 8-12 dB; the new scattering sphere has reduced the scattering loss by another 14 dB, producing an effective sensitivity of -298 dB re 1 microVolt/Pa. The design trade-off still involves receiver sensitivity with effective spot size, and signal distortion from the scatter structure. However, the reduced cost and improved repeatability of the new scatter approach makes the overall design more robust for routine waveform measurements of HIFU systems.

  9. Topics in high-intensity laser plasma interaction

    International Nuclear Information System (INIS)

    Leemans, W.P.

    1991-01-01

    The interaction of high intensity laser pulses with pre-formed and laser-produced plasmas is studied. Through experiments and simulations we have investigated stimulated Compton scattering in preformed plasmas and the plasma physics aspects of tunnel-ionized gases. A theoretical study is presented on the nonlinear dynamics of relativistic plasma waves driven by colinear optical mixing. The electron density-fluctuation spectra induced by stimulated Compton scattering have been directly observed for the first time. A CO2 laser was focused into pre-formed plasmas with densities n(e) varied from 0.4-6 x 10(exp 16) cu cm. The fluctuations corresponding to backscatter were probed using Thomson scattering. At low n(e), the scattered spectra peak at a frequency shift Delta omega is approximately kv e and appears to be in a linear regime. At the highest n(e), a nonlinear saturation of the SCS instability is observed due to a self-induced perturbation of the electron distribution function. Tunnel-ionized plasmas have been studied through experiments and particle simulations. Experimentally, qualitative evidence for plasma temperature control by varying the laser polarization was obtained by the measurement of stimulated Compton scattering fluctuation spectra and x-ray emission from such plasmas. A higher parallel temperature than expected from the single-particle tunneling model was observed. Simulations indicate that stochastic heating and the Weibel instability play an important role in plasma heating in all directions and isotropization. The non-linear dynamics associated with beatwave (Delta omega, Delta k) excited long wavelength plasma waves in the presence of strong, short wavelength density ripple have been examined, using the relativistic Lagrangian oscillator model. This model shows period doubling that roughly follows Feigenbaum scaling, and a transition to chaos

  10. Advanced approaches to high intensity laser-driven ion acceleration

    International Nuclear Information System (INIS)

    Henig, Andreas

    2010-01-01

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C 6+ and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C 6+ spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times increase in

  11. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  12. The High Luminosity Challenge: potential and limitations of High Intensity High Brightness in the LHC and its injectors

    CERN Document Server

    De Maria, R; Banfi, D; Barranco, J; Bartosik, H; Benedetto, E; Bruce, R; Brüning, O; Calaga, R; Cerutti, F; Damerau, H; Esposito, L; Fartoukh, S; Fitterer, M; Garoby, R; Gilardoni, S; Giovannozzi, M; Goddard, B; Gorini, B; Hanke, K; Iadarola, G; Lamont, M; Meddahi, M; Métral, E; Mikulec, B; Mounet, N; Papaphilippou, Y; Pieloni, T; Redaelli, S; Rossi, L; Rumolo, G; Shaposhnikova, E; Sterbini, G; Todesco, E; Tomás, R; Zimmermann, F; Valishev, A

    2014-01-01

    High-intensity and high-brightness beams are key ingredients to maximize the LHC integrated luminosity and to exploit its full potential. This contribution describes the optimization of beam and machine parameters to maximize the integrated luminosity as seen by the LHC experiments, by taking into account the expected intensity and brightness reach of LHC itself and its injector chain as well as the capabilities of the detectors for next run and foreseen upgrade scenarios.

  13. High-Intensity Femtosecond Laser Interaction with Rare Gas Clusters

    Institute of Scientific and Technical Information of China (English)

    林亚风; 钟钦; 曾淳; 陈哲

    2001-01-01

    With a 45 fs multiterawatt 790 nm laser system and jets of argon and krypton atomic clusters, a study of the interaction of fs intense laser pulses with large size rare gas dusters was conducted. The maximum laser intensity of about 7 × 1016 W/cm2 and dusters composed of thousands of atoms which were determined through Rayleigh scattering measurements were involved inthe experiments. On the one hand, the results indicate that the interaction is strongly cluster size dependent. The stronger the interaction, the larger the clusters are. On the other hand, a saturation followed by a drop of the energy of ions ejected from the interaction will occur when the laser intensity exceeds a definite value for clusters of a certain size.

  14. High-intensity intermittent swimming improves cardiovascular health status for women with mild hypertension

    DEFF Research Database (Denmark)

    Mohr, Magni; Nordsborg, Nikolai Baastrup; Lindenskov, Annika

    2014-01-01

    To test the hypothesis that high-intensity swim training improves cardiovascular health status in sedentary premenopausal women with mild hypertension, sixty-two women were randomized into high-intensity (n = 21; HIT), moderate-intensity (n = 21; MOD), and control groups (n = 20; CON). HIT perfor...

  15. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  16. Experimental Research at the Intensity Frontier in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, Marvin L. [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-06-30

    This Final Report describes DOE-supported Intensity Frontier research by the University of Minnesota during the interval April 1, 2011 to March 31, 2014. Primary activities included the MINOS, NOvA and LBNE Experiments and Heavy Quark studies at BES III.

  17. High energy bremsstrahlung in an intense laser field

    International Nuclear Information System (INIS)

    Schlessinger, L.; Wright, J.A.

    1980-02-01

    The cross section for bremsstrahlung emission and absorption by electrons in an intense laser field has been calculated in the Born approximation for the electron-ion potential. Typical numerical results are presented as a function of the ratio of the electron guiver energy to its energy and the ratio of the bremsstrahlung energy to the electron energy. The intense field correction factor for the rate of bremsstrahlung emission and absorption for electrons with a Boltzmann distribution of energies has been calculated. Numerical results for the correction factor are presented for the Boltzmann case as a function of the ratio of the electron quiver energy to its thermal energy and the ratio of the bremsstrahlung energy to the thermal energy. For typical laser fusion parameters, this correction factor which is the ratio of the thermal bremsstrahlung emission rate in the intense laser field to the rate at zero field can be quite significant. For a laser of wavelength 1.06 μm at an intensity of 3 x 10 15 w/cm 2 and an electron temperature of 1 keV, the correction factor varies from 0.98 at a bremsstrahlung energy of 100 V to greater than 5 at a bremsstrahlung energy of 10 keV

  18. Underutilization of high-intensity statin therapy after hospitalization for coronary heart disease.

    Science.gov (United States)

    Rosenson, Robert S; Kent, Shia T; Brown, Todd M; Farkouh, Michael E; Levitan, Emily B; Yun, Huifeng; Sharma, Pradeep; Safford, Monika M; Kilgore, Meredith; Muntner, Paul; Bittner, Vera

    2015-01-27

    National guidelines recommend use of high-intensity statins after hospitalization for coronary heart disease (CHD) events. This study sought to estimate the proportion of Medicare beneficiaries filling prescriptions for high-intensity statins after hospital discharge for a CHD event and to analyze whether statin intensity before hospitalization is associated with statin intensity after discharge. We conducted a retrospective cohort study using a 5% random sample of Medicare beneficiaries between 65 and 74 years old. Beneficiaries were included in the analysis if they filled a statin prescription after a CHD event (myocardial infarction or coronary revascularization) in 2007, 2008, or 2009. High-intensity statins included atorvastatin 40 to 80 mg, rosuvastatin 20 to 40 mg, and simvastatin 80 mg. Among 8,762 Medicare beneficiaries filling a statin prescription after a CHD event, 27% of first post-discharge fills were for a high-intensity statin. The percent filling a high-intensity statin post-discharge was 23.1%, 9.4%, and 80.7%, for beneficiaries not taking statins pre-hospitalization, taking low/moderate-intensity statins, and taking high-intensity statins before their CHD event, respectively. Compared with beneficiaries not on statin therapy pre-hospitalization, multivariable adjusted risk ratios for filling a high-intensity statin were 4.01 (3.58-4.49) and 0.45 (0.40-0.52) for participants taking high-intensity and low/moderate-intensity statins before their CHD event, respectively. Only 11.5% of beneficiaries whose first post-discharge statin fill was for a low/moderate-intensity statin filled a high-intensity statin within 365 days of discharge. The majority of Medicare beneficiaries do not fill high-intensity statins after hospitalization for CHD. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. Intensity Modulated Proton Beam Radiation for Brachytherapy in Patients With Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Clivio, Alessandro [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Kluge, Anne [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Cozzi, Luca, E-mail: lucozzi@iosi.ch [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Köhler, Christhardt [Department of Gynecology, Charité University Hospital, Berlin (Germany); Neumann, Oliver [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany); Vanetti, Eugenio [Oncology Institute of Southern Switzerland, Bellinzona (Switzerland); Wlodarczyk, Waldemar; Marnitz, Simone [Department of Radiation Oncology, Charité University Hospital, Berlin (Germany)

    2013-12-01

    Purpose: To evaluate intensity modulated proton therapy (IMPT) in patients with cervical cancer in terms of coverage, conformity, and dose–volume histogram (DVH) parameters correlated with recommendations from magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Eleven patients with histologically proven cervical cancer underwent primary chemoradiation for the pelvic lymph nodes, the uterus, the cervix, and the parametric region, with a symmetric margin of 1 cm. The prescription was for 50.4 Gy, with 1.8 Gy per fraction. The prescribed dose to the parametria was 2.12 Gy up to 59.36 Gy in 28 fractions as a simultaneous boost. For several reasons, the patients were unable to undergo brachytherapy. As an alternative, IMPT was planned with 5 fractions of 6 Gy to the cervix, including the macroscopic tumor with an MRI-guided target definition, with an isotropic margin of 5 mm for planning target volume (PTV) definition. Groupe-Europeen de Curietherapie and European society for Radiotherapy and Oncology (GEC-ESTRO) criteria were used for DVH evaluation. Reference comparison plans were optimized for volumetric modulated rapid arc (VMAT) therapy with the RapidArc (RA). Results: The dose to the high-risk volume was calculated with α/β = 10 with 89.6 Gy. For IMPT, the clinical target volume showed a mean dose of 38.2 ± 5.0 Gy (35.0 ±1.8 Gy for RA). The D{sub 98%} was 31.9 ± 2.6 Gy (RA: 30.8 ± 1.0 Gy). With regard to the organs at risk, the 2Gy Equivalent Dose (EQD2) (α/β = 3) to 2 cm{sup 3} of the rectal wall, sigmoid wall, and bladder wall was 62.2 ± 6.4 Gy, 57.8 ± 6.1 Gy, and 80.6 ± 8.7 Gy (for RA: 75.3 ± 6.1 Gy, 66.9 ± 6.9 Gy, and 89.0 ± 7.2 Gy, respectively). For the IMPT boost plans in combination with external beam radiation therapy, all DVH parameters correlated with <5% risk for grades 2 to 4 late gastrointestinal and genitourinary toxicity. Conclusion: In patients who are not eligible for brachytherapy, IMPT as a boost

  20. SU-C-BRA-01: Interactive Auto-Segmentation for Bowel in Online Adaptive MRI-Guided Radiation Therapy by Using a Multi-Region Labeling Algorithm

    International Nuclear Information System (INIS)

    Lu, Y; Chen, I; Kashani, R; Wan, H; Maughan, N; Muccigrosso, D; Parikh, P

    2016-01-01

    Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graph cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.

  1. SU-C-BRA-01: Interactive Auto-Segmentation for Bowel in Online Adaptive MRI-Guided Radiation Therapy by Using a Multi-Region Labeling Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y; Chen, I; Kashani, R; Wan, H; Maughan, N; Muccigrosso, D; Parikh, P [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graph cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.

  2. Status of the new high intensity H- injector at LAMPF

    International Nuclear Information System (INIS)

    Stevens, R.R. Jr.; York, R.L.; McConnell, J.R.; Kandarian, R.

    1984-04-01

    The requirement for higher intensity H - ion beams for the proton storage ring now being constructed at LAMPF necessitated the development of a new H - ion source and the rebuilding of the original H - injector and its associated beam transport lines. The goal of the ion source development program was to produce an H - beam with a peak intensity of 20 mA at 10% duty factor and with a beam emittance of less than 0.08 cm-mrad normalized at 95% beam fraction. The ion source concept which was best suited to our requirements was the multicusp, surface-production source developed for neutral beam injectors at Berkeley by Ehlers and Leung. An accelerator version of this source has been subsequently developed at Los Alamos to meet these storage ring requirements. The use of these higher intensity H - beams, together with the more stringent chopping and bunching requirements entailed in the operation of the storage ring, now requires rebuilding the entire H - injector at LAMPF. This construction is in progress. It is anticipated that the new injector will be fully operational by the end of 1984 and that the required H - beams will be available for the operation of the storage ring in early 1985

  3. Development of a cryogenic hydrogen microjet for high-intensity, high-repetition rate experiments

    Science.gov (United States)

    Kim, J. B.; Göde, S.; Glenzer, S. H.

    2016-11-01

    The advent of high-intensity, high-repetition-rate lasers has led to the need for replenishing targets of interest for high energy density sciences. We describe the design and characterization of a cryogenic microjet source, which can deliver a continuous stream of liquid hydrogen with a diameter of a few microns. The jet has been imaged at 1 μm resolution by shadowgraphy with a short pulse laser. The pointing stability has been measured at well below a mrad, for a stable free-standing filament of solid-density hydrogen.

  4. Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus.

    Science.gov (United States)

    Robson, Lynne; Ledingham, Kenneth W D; McKenna, Paul; McCanny, Thomas; Shimizu, Seiji; Yang, Jiamin M; Wahlström, Claes-Göran; Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan

    2005-01-01

    The mechanism of atomic and molecular ionization in intense, ultra-short laser fields is a subject which continues to receive considerable attention. An inherent difficulty with techniques involving the tight focus of a laser beam is the continuous distribution of intensities contained within the focus, which can vary over several orders of magnitude. The present study adopts time of flight mass spectrometry coupled with a high intensity (8 x 10(15) Wcm(-2)), ultra-short (20 fs) pulse laser in order to investigate the ionization and dissociation of the aromatic molecule benzene-d1 (C(6)H(5)D) as a function of intensity within a focused laser beam, by scanning the laser focus in the direction of propagation, while detecting ions produced only in a "thin" slice (400 and 800 microm) of the focus. The resultant TOF mass spectra varies significantly, highlighting the dependence on the range of specific intensities accessed and their volumetric weightings on the ionization/dissociation pathways accessed.

  5. Laser-matter interaction at high intensity and high temporal contrast

    International Nuclear Information System (INIS)

    Doumy, G.

    2006-01-01

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10 18 W/cm 2 ). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  6. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  7. Application of the Speed-Duration Relationship to Normalize the Intensity of High-Intensity Interval Training

    Science.gov (United States)

    Ferguson, Carrie; Wilson, John; Birch, Karen M.; Kemi, Ole J.

    2013-01-01

    The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (PHIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols. PMID:24244266

  8. Clinical Study Pathologic Findings in MRI-Guided Needle Core Biopsies of the Breast in Patients with Newly Diagnosed Breast Cancer

    International Nuclear Information System (INIS)

    Siziopikou, K.P.; Jokich, P.; Cobleigh, M.

    2011-01-01

    The role of MRI in the management of breast carcinoma is rapidly evolving from its initial use for specific indications only to a more widespread use on all women with newly diagnosed early stage breast cancer. However, there are many concerns that such widespread use is premature since detailed correlation of MRI findings with the underlying histopathology of the breast lesions is still evolving and clear evidence for improvements in management and overall prognosis of breast cancer patients evaluated by breast MRI after their initial cancer diagnosis is lacking. In this paper, we would like to bring attention to a benign lesion that is frequently present on MRI-guided breast biopsies performed on suspicious MRI findings in the affected breast of patients with a new diagnosis of breast carcinoma

  9. ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

    International Nuclear Information System (INIS)

    Haddad, Ferid; Guertin, Arnaud; Michel, Nathalie; Ferrer, Ludovic; Carlier, Thomas; Barbet, Jacques; Chatal, Jean-Francois

    2008-01-01

    This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron. We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections. Three radionuclides appear well suited to targeted radionuclide therapy using beta ( 67 Cu, 47 Sc) or alpha ( 211 At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy ( 64 Cu, 124 I, 44 Sc), or that can be generator-produced ( 82 Rb, 68 Ga) or providing the opportunity of a new imaging modality ( 44 Sc) are considered to have a great interest at short term whereas 86 Y, 52 Fe, 55 Co, 76 Br or 89 Zr are considered to have a potential interest at middle term. Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs. (orig.) 5

  10. Dose-volume effect relationships for late rectal morbidity in patients treated with chemoradiation and MRI-guided adaptive brachytherapy for locally advanced cervical cancer: Results from the prospective multicenter EMBRACE study

    DEFF Research Database (Denmark)

    Mazeron, Renaud; Fokdal, Lars U; Kirchheiner, Kathrin

    2016-01-01

    Purpose To establish dose volume–effect relationships predicting late rectal morbidity in cervix cancer patients treated with concomitant chemoradiation and MRI-guided adaptive brachytherapy (IBABT) within the prospective EMBRACE study. Material and method All patients were treated with curative ...

  11. SU-E-J-198: Out-Of-Field Dose and Surface Dose Measurements of MRI-Guided Cobalt-60 Radiotherapy

    International Nuclear Information System (INIS)

    Lamb, J; Agazaryan, N; Cao, M; Low, D; Thomas, D; Yang, Y

    2015-01-01

    Purpose: To measure quantities of dosimetric interest in an MRI-guided cobalt radiotherapy machine that was recently introduced to clinical use. Methods: Out-of-field dose due to photon scatter and leakage was measured using an ion chamber and solid water slabs mimicking a human body. Surface dose was measured by irradiating stacks of radiochromic film and extrapolating to zero thickness. Electron out-of-field dose was characterized using solid water slabs and radiochromic film. Results: For some phantom geometries, up to 50% of Dmax was observed up to 10 cm laterally from the edge of the beam. The maximum penetration was between 1 and 2 mm in solid water, indicating an electron energy not greater than approximately 0.4 MeV. Out-of-field dose from photon scatter measured at 1 cm depth in solid water was found to fall to less than 10% of Dmax at a distance of 1.2 cm from the edge of a 10.5 × 10.5 cm field, and less that 1% of Dmax at a distance of 10 cm from field edge. Surface dose was measured to be 8% of Dmax. Conclusion: Surface dose and out-of-field dose from the MRIguided cobalt radiotherapy machine was measured and found to be within acceptable limits. Electron out-of-field dose, an effect unique to MRI-guided radiotherapy and presumed to arise from low-energy electrons trapped by the Lorentz force, was quantified. Dr. Low is a member of the scientific advisory board of ViewRay, Inc

  12. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    International Nuclear Information System (INIS)

    Low, D; Mutic, S; Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J

    2016-01-01

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placed in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.

  13. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Low, D [UCLA, Los Angeles, CA (United States); Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States); Shvartsman, S; Chmielewski, T; Fought, G; Sharma, A; Dempsey, J [ViewRay, Inc., Oakwood Village, OH (United States)

    2016-06-15

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placed in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.

  14. MRI-guided periradicular nerve root infiltration therapy in low-field (0.23-T) MRI system using optical instrument tracking

    International Nuclear Information System (INIS)

    Sequeiros, Roberto Blanco; Ojala, Risto O.; Klemola, Rauli; Jyrkinen, Lasse; Tervonen, Osmo A.; Vaara, Teuvo J.

    2002-01-01

    The purpose of this study was to evaluate the feasibility of the MRI-guided periradicular nerve root infiltration therapy. Sixty-seven nerve root infiltrations under MRI guidance were done for 61 patients suffering from lumbosacral radicular pain. Informed consent was acquired from all patients. A 0.23-T open-MRI scanner with interventional tools (Outlook Proview, Philips Medical Systems, MR Technologies, Finland) was used. A surface coil was used in all cases. Nerve root infiltration was performed with MRI-compatible 20-G needle (Chiba type MReye, Cook, Bloomington, Ind.; or Manan type, MD Tech, Florida). The evaluation of clinical outcome was achieved with 6 months of clinical follow-up and questionnaire. The effect of nerve root infiltration to the radicular pain was graded: 1=good to excellent, i.e., no pain or not disturbing pain allowing normal physical activity at 3 months from the procedure; 2=temporary, i.e., temporary relief of pain; 3=no relief of pain; and 4=worsening of pain. As an adjunct to MRI-guided positioning of the needle the correct needle localization by the nerve root was confirmed with saline injection to nerve root channel and single-shot fast spin echo (SSFSE) imaging. The MRI guidance allowed adequate needle positioning in all but 1 case (98.5%). This failure was caused by degeneration-induced changes in anatomy. Of patients, 51.5% had good to excellent effect with regard to radicular pain from the procedure, 22.7% had temporary relief, 21.2% had no effect, and in 4.5% the pain worsened. Our results show that MRI guidance is accurate and safe in performing nerve root infiltration at lumbosacral area. The results of radicular pain relief from nerve root infiltration are comparable to CT or fluoroscopy studies on the subject. (orig.)

  15. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    Evans, C.R.; Hollander, M.G.

    1991-01-01

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  16. Towards phasing using high X-ray intensity

    Directory of Open Access Journals (Sweden)

    Lorenzo Galli

    2015-11-01

    Full Text Available X-ray free-electron lasers (XFELs show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. A pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  17. A deuteron linac for a high-intensity neutron source

    International Nuclear Information System (INIS)

    Staples, J.; Clark, D.; Grunder, H.; Lancaster, H.; Main, R.; Selph, F.; Smith, L.; Voelker, F.; Yourd, R.

    1976-01-01

    The preliminary design of an accelerator suitable to meet the flux and neutron energy requirements of a CTR materials test facility is presented. The specifications of such a facility call for a neutron flux of 10 14 n/cm 2 -sec distributed over an area of about 10 2 cm 2 with a neutron spectrum similar to that anticipated from a fusion reactor. A 30 MeV deuteron linac producing a CW beam of 125 mA, upgradable to 40 MeV at 250 mA at a later date, would produce the relatively broad spectrum of neutrons at the required intensity. Attention to the low-energy beam intercept on the drift tubes and diffusive losses producing neutrons and attendant activation problems are discussed

  18. High intensity proton acceleration at the Brookhaven AGS -- An update

    International Nuclear Information System (INIS)

    Ahrens, L.; Alessi, J.; Blaskiewicz, M.

    1997-01-01

    The AGS accelerator complex is into its third year of 60+ x 10 12 (teraproton = Tp) per cycle operation. The hardware making up the complex as configured in 1997 is briefly mentioned. The present level of accelerator performance is discussed. This includes beam transfer efficiencies at each step in the acceleration process, i.e. losses; which are a serious issue at this intensity level. Progress made in understanding beam behavior at the Linac-to-Booster (LtB) injection, at the Booster-to-AGS (BtA) transfer as well as across the 450 ms AGS accumulation porch is presented. The state of transition crossing, with the gamma-tr jump is described. Coherent effects including those driven by space charge are important at all of these steps

  19. Transverse feedback: high intensity operation, AGC, IGC, lessons for 2012

    CERN Document Server

    Höfle, W

    2012-01-01

    The transverse damper system (ADT) plays an important role in the preservation of the beam transverse emittance and for damping of oscillations driven by the coupled bunch instability. An overview of the ADT system will be presented with an emphasis on the important feedback loop parameters as they change from injection through the ramp into collision. The dedicated setting - up procedure required for the different bunch intensities and bunch spacings will be explained. During the 2011 run the injection and abort gap cleaning became operational at injection energy. Preparations for cleaning at 3.5 TeV as well as batch selective transverse blow - up were completed and preliminarily tested. Plans for 2012 include study and potential improvement of the system impulse response to improve the 'selectivity' of the cleaning and blow - up facility. The ADT also provides bunch - by - bunch observation, which was extensively used during the run and MDs, and will be further upgraded during the next year.

  20. Two-dimensional computer simulation of high intensity proton beams

    CERN Document Server

    Lapostolle, Pierre M

    1972-01-01

    A computer program has been developed which simulates the two- dimensional transverse behaviour of a proton beam in a focusing channel. The model is represented by an assembly of a few thousand 'superparticles' acted upon by their own self-consistent electric field and an external focusing force. The evolution of the system is computed stepwise in time by successively solving Poisson's equation and Newton's law of motion. Fast Fourier transform techniques are used for speed in the solution of Poisson's equation, while extensive area weighting is utilized for the accurate evaluation of electric field components. A computer experiment has been performed on the CERN CDC 6600 computer to study the nonlinear behaviour of an intense beam in phase space, showing under certain circumstances a filamentation due to space charge and an apparent emittance growth. (14 refs).

  1. Towards phasing using high X-ray intensity

    International Nuclear Information System (INIS)

    Galli, Lorenzo; Son, Sang-Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sebastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-01-01

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential 'bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed

  2. Neurovascular Saturation Thresholds Under High Intensity Auditory Stimulation During Wake

    Science.gov (United States)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2012-01-01

    Coupling between neural activity and hemodynamic responses is important in understanding brain function, interpreting brain imaging signals, and assessing pathological conditions. Tissue state is a major factor in neurovascular coupling and may alter the relationship between neural and hemodynamic activity. However, most neurovascular coupling studies are performed under anesthetized or sedated states which may have severe consequences on coupling mechanisms. Our previous studies showed that following prolonged periods of sleep deprivation, evoked hemodynamic responses were muted despite consistent electrical responses, suggesting that sustained neural activity may decrease vascular compliance and limit blood perfusion. To investigate potential perfusion limitations during natural waking conditions, we simultaneously measured evoked response potentials (ERPs) and evoked hemodynamic responses using optical imaging techniques to increasing intensity auditory stimulation. The relationship between evoked hemodynamic responses and integrated ERPs followed a sigmoid relationship where the hemodynamic response approached saturation at lower stimulus intensities than the ERP. If limits in blood perfusion are caused by stretching of the vessel wall, then these results suggest there may be decreased vascular compliance due to sustained neural activity during wake, which could limit vascular responsiveness and local blood perfusion. Conditions that stress cerebral vasculature, such as sleep deprivation and some pathologies (e.g., epilepsy), may further decrease vascular compliance, limit metabolic delivery, and cause tissue trauma. While ERPs and evoked hemodynamic responses provide an indication of the correlated neural activity and metabolic demand, the relationship between these two responses is complex and the different measurement techniques are not directly correlated. Future studies are required to verify these findings and further explore neurovascular coupling during

  3. Development and application of high power and high intensity ion beam sources at NPI, Tomsk, Russia

    International Nuclear Information System (INIS)

    Ryabchikov, A.I.

    2007-01-01

    High - current ion beams have become a powerful tool for improving the surface properties of different materials. The prospects of wide commercial use of such beams for material treatment is not only due to the possibility of improving their properties, but, also for economic expediency. To achieve a high throughput and reduce the cost on ion beam material treatment, ion beams of high average and pulsed power are necessary. This paper gives an overview of work on generation of pulsed and repetitively pulsed beams of ion beams with currents ranging from fractions of an ampere to several tens of kA and with pulse duration from several tens of nanoseconds to several hundreds of microseconds. A number of different methods of materials surface properties modification using high power and intense ion beam and plasma are considered. (author)

  4. Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600).

    Science.gov (United States)

    Buchheit, Martin; Hammond, Kristal; Bourdon, Pitre C; Simpson, Ben M; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J; Aughey, Robert J

    2015-03-01

    To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS) and 6 high-altitude (a Bolivian U18 team, BOL) native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1) was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h(-1) (D>14.4 km·h(-1)) and >80% of vYo-YoIR1 (D>80%vYo-YoIR1) were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen's d +1.0, 90%CL ± 0.8) and D>14.4 km·h(-1) (+0.5 ± 0.8) in AUS. D>14.4 km.h(-1) was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8). Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h(-1) increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7); conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2). In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in 'fitness' do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity. Key pointsWhen playing at high-altitude, players may alter their activities during matches in relation to their transient maximal physical capacities, possibly to maintain a 'tolerable' relative exercise intensity.While there is no doubt that running performance per se in not the main determinant of match outcomes (Carling, 2013), fitness levels influence relative match intensity (Buchheit et al., 2012, Mendez-Villanueva et al., 2013), which in-turn may impact on decision making and skill performance (Rampinini et al., 2008).In the context of

  5. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  6. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    Science.gov (United States)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  7. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  8. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  9. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  10. 76 FR 44613 - Designation of Eight Counties as High Intensity Drug Trafficking Areas

    Science.gov (United States)

    2011-07-26

    ... OFFICE OF NATIONAL DRUG CONTROL POLICY Designation of Eight Counties as High Intensity Drug Trafficking Areas AGENCY: Office of National Drug Control Policy. ACTION: Notice. SUMMARY: The Director of the Office of National Drug Control Policy has designated eight additional counties as High Intensity Drug...

  11. High concordance of findings obtained from transgluteal magnetic resonance imaging - and transrectal ultrasonography-guided biopsy as compared with prostatectomy specimens.

    Science.gov (United States)

    Steurer, Stefan; Rico, Sebastian Dwertmann; Simon, Ronald; Minner, Sarah; Tsourlakis, Maria Christina; Krech, Till; Koop, Christina; Graefen, Markus; Heinzer, Hans; Adam, Meike; Huland, Hartwig; Schlomm, Thorsten; Sauter, Guido; Lumiani, Agron

    2017-09-01

    To determine the utility of our transgluteal magnetic resonance imaging (MRI)-guided prostate biopsy approach. A total of 960 biopsy series, taken within the period of 1 year, were evaluated, including 301 MRI-guided and 659 transrectal ultrasonography (TRUS)-guided biopsies. The positivity rate and proportion of high grade cancers were significantly higher in MRI-guided than in TRUS-guided biopsies. Of 301 MRI-guided biopsies, 65.4% contained cancer while 57.2% of 659 TRUS biopsies contained cancer (P = 0.016). Gleason grade 3 + 3 = 6 disease was observed in 16.8% of 197 MRI-guided and in 36.1% of 377 TRUS-guided biopsies (P guided biopsies. In all cancers, the mean cancer surface area was 64.8 ± 51.6 mm 2 in MRI-guided biopsies as compared with 23.0 ± 31.4 mm 2 in non-MRI-guided biopsies (P guided biopsy was highest in Gleason grade 3 + 3 = 6 cancers (20.9 ± 27.9 vs 5.1 ± 10.2 mm 2 ; P guided and in 170 patients with non-MRI-guided biopsies. This comparison showed a very high but almost identical concordance of TRUS- and MRI-guided biopsies with the prostatectomy specimen findings. With both approaches, undetected high-risk cancers were present in ~10% of patients with low-risk biopsy results. A significant difference was observed, however, in the proportion of patients who had clinically insignificant cancers and who underwent surgery. The proportion of patients with Gleason grade 3 + 3 = 6 carcinoma in their prostatectomy specimen was 11.2% in the post-TRUS biopsy cohort, but only 2.5% in the post-MRI biopsy cohort (P = 0.021). MRI-guided transgluteal prostate biopsy has a high detection rate for high-risk carcinomas, while the risk of detecting clinically insignificant carcinomas appears to be reduced. This may by itself lead to a reduction of unnecessary prostatectomies. Overtreatment may be further avoided by better applicability of molecular testing to MRI-guided biopsies because of the excessive amount of tissue available for analysis, especially in

  12. Ignition of mercury-free high intensity discharge lamps

    International Nuclear Information System (INIS)

    Czichy, M; Mentel, J; Awakowicz, P; Hartmann, T

    2008-01-01

    To achieve a better understanding of the ignition behaviour of D4 lamps for automotive headlights the ignition of mercury-free metal iodide test lamps characterized by a high xenon pressure, a small electrode distance and small electrode-wall distances is investigated. The ignition of these lamps is dominated by a high voltage requirement. Nevertheless lamps are found that show a surprisingly low ignition voltage. Electrical measurements and simultaneous optical observations of the ultra-fast streamer processes show that the breakdown takes place in two different modes. One of the ignition modes which requires a high ignition voltage is characterized by a breakdown in the volume between the electrode tips. The other mode is characterized by streamer discharges along the wall. In this case the cathode, its base and the wall around is involved in the ignition process and the lamp breaks down at low voltages

  13. COLLIMATORS AND MATERIALS FOR HIGH INTENSITY HEAVY ION SYNCHROTRONS

    CERN Document Server

    Stadlmann, J; Kollmus, H; Spiller, P; Strasik, I; Tahir, N A; Tomut, M; Trautmann, C

    2012-01-01

    The operation of high power high brightness accelerators requires huge efforts for beam cleaning and machine protection. Within the WP 8 (ColMat) of the EU research framework EuCARD[1] we investigate new materials and methods for beam collimation and machine protection. We present an overview of these activities at the GSI Helmholtzzentrum f¨ur Schwerionenforschung, Darmstadt. Simulations of accidental beam losses in LHC and SIS100 have been performed. Scenarios for halo collimation of heavy ions and protons in SIS100 routine operation have been investigated. A prototype of a cryogenic collimator for charge exchange losses during intermediate charge state heavy ion operation in SIS100 has been build and tested with beam. Several candidates of advanced composite materials for collimation system upgrades of present and future high power accelerators have been irradiated and their properties are being characterized. Most deliverables and milestones of the R&D programme were already reached before the end of...

  14. High harmonic generation in H and HD by intense femtosecond ...

    Indian Academy of Sciences (India)

    2013-04-24

    Apr 24, 2013 ... We have argued that for these conditions the harmonic generation due to the transitions in the electronic ... (XUV) or soft X-ray range and generation of very high-energy attosecond (as) pulses have been widely ..... [3] Y Liang, S Augst, S L Chin, Y Beaudoin and M Chaker, J. Phys. B 27, 5119 (1994).

  15. Impedance-match experiments using high intensity lasers

    International Nuclear Information System (INIS)

    Holmes, N.C.; Trainor, R.J.; Anderson, R.A.; Veeser, L.R.; Reeves, G.A.

    1981-01-01

    The results of a series of impedance-match experiments using copper-aluminum targets irradiated using the Janus Laser Facility are discussed. The results are compared to extrapolations of data obtained at lower pressures using impact techniques. The sources of errors are described and evaluated. The potential of lasers for high accuracy equation of state investigations are discussed

  16. The Energy Efficiency of High Intensity Proton Driver Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Vyacheslav [Fermilab; Grillenberger, Joachim [PSI, Villigen; Kim, Sang-Ho [ORNL, Oak Ridge (main); Seidel, Mike [PSI, Villigen; Yoshii, Masahito [JAEA, Ibaraki

    2017-05-01

    For MW class proton driver accelerators the energy efficiency is an important aspect; the talk reviews the efficiency of different accelerator concepts including s.c./n.c. linac, rapid cycling synchrotron, cyclotron; the potential of these concepts for very high beam power is discussed.

  17. [Gamma scattering in condensed matter with high intensity Moessbauer radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high T c superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect

  18. STATUS REPORT ON DEVELOPMENT OF A HIGH-SPEED HIGH-INTENSITY MOLECULAR BEAM

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, Eldon L.

    1963-07-15

    Status of a high-speed high-intensity molecular beam under development is described. Bases for designs of the several components are presented. Using an arc-heated source and a hypersonic jet, molecular energies exceeding 1 ev and beam intensities of the order of 10/sup 16/ molecules/ cm/sup 2/ sec are anticipated. A two-disk beam chopper and speed selector provides a means for analyzing the speed distribution in the generated beam, for chopping the beam into bursts of nearly monoenergetic molecules suitable for scattering studies using the time-of-flight technique, and for modulating the beam in order to facilitate detection. A through-flow ionization detector possesses the versatility required for scattering studies using the time-of-flight technique. A sorption pump and a turbo pump serve as central components of alternative pumping systems for the collimating chamber. Using the arc-heated source, the converging nozzle, the conduction-radiation-cooled skimmer, the turbo pump (turning at 3400 rpm), the chopperselector (acting only as a chopper), and the detector, an arc-heated beam is generated and detected. (auth)

  19. High-Intensity High-order Harmonics Generated from Low-Density Plasma

    International Nuclear Information System (INIS)

    Ozaki, T.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ganeev, R. A.; Haessler, S.; Salieres, P.

    2009-01-01

    We study the generation of high-order harmonics from lowly ionized plasma, using the 10 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on the enhancement of a single order of the high-order harmonic spectrum generated in plasma using the fundamental and second harmonic of the ALLS beam line. We observe quasi-monochromatic harmonics for various targets, including Mn, Cr, Sn, and In. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. We demonstrate intensity enhancements of the 13th, 17th, 29th, and 33rd harmonics from these targets using the 800 nm pump laser and varying its chirp. We also characterized the attosecond nature of such plasma harmonics, measuring attosecond pulse trains with 360 as duration for chromium plasma, using the technique of ''Reconstruction of Attosecond Beating by Interference of Two-photon Transitions''(RABBIT). These results show that plasma harmonics are intense source of ultrashort coherent soft x-rays.

  20. High-Intensity Laser Diagnostics for OMEGA EP

    International Nuclear Information System (INIS)

    Bromage, J.; Zuegel, J.D.; Bahk, S.-W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Junquist, R.; Stoeckl, C.

    2006-01-01

    OMEGA EP is a new high-energy petawatt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from <1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy petawatt laser at full energy

  1. High-intensity laser diagnostics for OMEGA EP

    Energy Technology Data Exchange (ETDEWEB)

    Bromage, J.; Zuegel, J.D.; Bahk, S.W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Jungquist, R.; Stoeckl, C. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    OMEGA EP (Extended Performance) is a new high-energy peta-watt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from < 1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy peta-watt laser at full energy. (authors)

  2. High-intensity laser diagnostics for OMEGA EP

    International Nuclear Information System (INIS)

    Bromage, J.; Zuegel, J.D.; Bahk, S.W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Jungquist, R.; Stoeckl, C.

    2006-01-01

    OMEGA EP (Extended Performance) is a new high-energy peta-watt laser system under construction at the University of Rochester's Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP's mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP's off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from < 1 to 100 ps as well as setting the desired pulse width before the shot. These diagnostics will enable, for the first time, complete spatial and temporal characterization of the focus of a high-energy peta-watt laser at full energy. (authors)

  3. High-intensity pulsed beam source with tunable operation mode

    Science.gov (United States)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  4. High-order harmonics from bow wave caustics driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.

    2012-01-01

    We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

  5. High-intensity interval training and athletic performance in Taekwondo athletes.

    Science.gov (United States)

    Monks, Lynne; Seo, Myong-Won; Kim, Hyun-Bae; Jung, Hyun C; Song, Jong K

    2017-10-01

    The purpose of this study was to determine the effects of high-intensity interval training (HIIT) on athletic performance in Taekwondo athletes. Thirty-three male and female collegiate Taekwondo athletes were randomly divided into a HIIT group (N.=16) or a high-intensity continuous running (HICR) group (N.=17). The HIIT group undertook training of high-intensity sprints interspersed with active rest periods whilst the HICR group participated in high-intensity running for a continuous period. Both groups completed 11 sessions over 4 weeks. Physique, body composition, Wingate anaerobic test and VO2max test were measured. The vertical jump test, agility T-test and sit-ups were used to assess physical fitness. Repeated measures ANCOVAs with sex as a covariate were applied and significant level was set at 0.05. Following 11 sessions of training, significant improvements in anaerobic peak power (Ptraining, specifically the influence of training intensity on anaerobic capacity.

  6. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  7. Future of high intensity accelerators in nuclear energy

    International Nuclear Information System (INIS)

    Schriber, S.O.; Fraser, J.S.; Tunnicliffe, P.R.

    1977-08-01

    A possible application for a high mean current, intermediate-energy proton linear accelerator is the ''electrical breeding'' of fuel for nuclear electrical power stations. The possible role of the spallation breeder in the context of a Canadian nuclear power economy and its relationship to nuclear fuel resources are discussed. The production of fissile material using the spallation process in a target containing actinide elements appears desirable and feasible from engineering and economic considerations. Current development work in Canada and some of the outstanding problems are discussed. (author)

  8. Highly charged ions generated with intense laser beams

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Jungwirth, Karel; Králiková, Božena; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Hnatowicz, Vladimír; Peřina, Vratislav; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Szydlowski, A.

    2003-01-01

    Roč. 205, - (2003), s. 355-359 ISSN 0168-583X. [International Symposium on Swift Heavy Ions in Matter /5./. Taormina-Giardini Naxos, 22.05.2002-25.05.2002] R&D Projects: GA MŠk LN00A100 Grant - others:HPRI(XE) CT-1999-00053; IAEA(XE) 11535/RO Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Keywords : laser-produced plasma * highly charged ions * ion implantation * windowless electron multiplier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.041, year: 2003

  9. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  10. A Highly intense DC muon source, MuSIC and muon CLFV search

    International Nuclear Information System (INIS)

    Hino, Y.; Kuno, Y.; Sato, A.; Sakamoto, H.; Matsumoto, Y.; Tran, N.H.; Hashim, I.H.; Fukuda, M.; Hayashida, Y.; Ogitsu, T.; Yamamoto, A.; Yoshida, M.

    2014-01-01

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10 8 muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion

  11. Negative beliefs about low back pain are associated with persistent high intensity low back pain.

    Science.gov (United States)

    Ng, Sin Ki; Cicuttini, Flavia M; Wang, Yuanyuan; Wluka, Anita E; Fitzgibbon, Bernadette; Urquhart, Donna M

    2017-08-01

    While previous cross-sectional studies have found that negative beliefs about low back pain are associated with pain intensity, the relationship between back beliefs and persistent low back pain is not well understood. This cohort study aimed to examine the role of back beliefs in persistent low back pain in community-based individuals. A hundred and ninety-two participants from a previous musculoskeletal health study were invited to take part in a two-year follow-up study. Beliefs about back pain were assessed by the Back Beliefs Questionnaire (BBQ) at baseline and low back pain intensity was measured by the Chronic Pain Grade Questionnaire at baseline and follow-up. Of the 150 respondents (78.1%), 16 (10.7%) reported persistent high intensity low back pain, 12 (8.0%) developed high intensity low back pain, in 16 (10.7%) their high intensity low back pain resolved and 106 (70.7%) experienced no high intensity low back pain. While participants were generally positive about low back pain (BBQ mean (SD) = 30.2 (6.4)), those with persistent high intensity pain reported greater negativity (BBQ mean (SD) = 22.6 (4.9)). Negative beliefs about back pain were associated with persistent high intensity low back pain after adjusting for confounders (M (SE) = 23.5 (1.6) vs. >30.1 (1.7), p back beliefs were associated with persistent high intensity low back pain over 2 years in community-based individuals. While further longitudinal studies are required, these findings suggest that targeting beliefs in programs designed to treat and prevent persistent high intensity low back pain may be important.

  12. Technical Note: Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xinfeng; Prior, Phil; Chen, Guang-Pei; Schultz, Christopher J.; Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226 (United States)

    2016-08-15

    Purpose: The integration of MRI with a linear accelerator (MR-linac) offers great potential for high-precision delivery of radiation therapy (RT). However, the electron deflection resulting from the presence of a transverse magnetic field (TMF) can affect the dose distribution, particularly the electron return effect (ERE) at tissue interfaces. The purpose of the study is to investigate the dose effects of ERE at air-tissue and lung-tissue interfaces during intensity-modulated radiation therapy (IMRT) planning. Methods: IMRT and volumetric modulated arc therapy (VMAT) plans for representative pancreas, lung, breast, and head and neck (HN) cases were generated following commonly used clinical dose volume (DV) criteria. In each case, three types of plans were generated: (1) the original plan generated without a TMF; (2) the reconstructed plan generated by recalculating the original plan with the presence of a TMF of 1.5 T (no optimization); and (3) the optimized plan generated by a full optimization with TMF = 1.5 T. These plans were compared using a variety of DV parameters, including V{sub 100%}, D{sub 95%}, DHI [dose heterogeneity index: (D{sub 20%}–D{sub 80%})/D{sub prescription}], D{sub max}, and D{sub 1cc} in OARs (organs at risk) and tissue interface. All the optimizations and calculations in this work were performed on static data. Results: The dose recalculation under TMF showed the presence of the 1.5 T TMF can slightly reduce V{sub 100%} and D{sub 95%} for PTV, with the differences being less than 4% for all but one lung case studied. The TMF results in considerable increases in D{sub max} and D{sub 1cc} on the skin in all cases, mostly between 10% and 35%. The changes in D{sub max} and D{sub 1cc} on air cavity walls are dependent upon site, geometry, and size, with changes ranging up to 15%. The VMAT plans lead to much smaller dose effects from ERE compared to fixed-beam IMRT in pancreas case. When the TMF is considered in the plan optimization, the

  13. Data intensive high energy physics analysis in a distributed cloud

    Science.gov (United States)

    Charbonneau, A.; Agarwal, A.; Anderson, M.; Armstrong, P.; Fransham, K.; Gable, I.; Harris, D.; Impey, R.; Leavett-Brown, C.; Paterson, M.; Podaima, W.; Sobie, R. J.; Vliet, M.

    2012-02-01

    We show that distributed Infrastructure-as-a-Service (IaaS) compute clouds can be effectively used for the analysis of high energy physics data. We have designed a distributed cloud system that works with any application using large input data sets requiring a high throughput computing environment. The system uses IaaS-enabled science and commercial clusters in Canada and the United States. We describe the process in which a user prepares an analysis virtual machine (VM) and submits batch jobs to a central scheduler. The system boots the user-specific VM on one of the IaaS clouds, runs the jobs and returns the output to the user. The user application accesses a central database for calibration data during the execution of the application. Similarly, the data is located in a central location and streamed by the running application. The system can easily run one hundred simultaneous jobs in an efficient manner and should scale to many hundreds and possibly thousands of user jobs.

  14. High efficiency inductive output tubes with intense annular electron beams

    Science.gov (United States)

    Appanam Karakkad, J.; Matthew, D.; Ray, R.; Beaudoin, B. L.; Narayan, A.; Nusinovich, G. S.; Ting, A.; Antonsen, T. M.

    2017-10-01

    For mobile ionospheric heaters, it is necessary to develop highly efficient RF sources capable of delivering radiation in the frequency range from 3 to 10 MHz with an average power at a megawatt level. A promising source, which is capable of offering these parameters, is a grid-less version of the inductive output tube (IOT), also known as a klystrode. In this paper, studies analyzing the efficiency of grid-less IOTs are described. The basic trade-offs needed to reach high efficiency are investigated. In particular, the trade-off between the peak current and the duration of the current micro-pulse is analyzed. A particle in the cell code is used to self-consistently calculate the distribution in axial and transverse momentum and in total electron energy from the cathode to the collector. The efficiency of IOTs with collectors of various configurations is examined. It is shown that the efficiency of IOTs can be in the 90% range even without using depressed collectors.

  15. Data intensive high energy physics analysis in a distributed cloud

    International Nuclear Information System (INIS)

    Charbonneau, A; Impey, R; Podaima, W; Agarwal, A; Anderson, M; Armstrong, P; Fransham, K; Gable, I; Harris, D; Leavett-Brown, C; Paterson, M; Sobie, R J; Vliet, M

    2012-01-01

    We show that distributed Infrastructure-as-a-Service (IaaS) compute clouds can be effectively used for the analysis of high energy physics data. We have designed a distributed cloud system that works with any application using large input data sets requiring a high throughput computing environment. The system uses IaaS-enabled science and commercial clusters in Canada and the United States. We describe the process in which a user prepares an analysis virtual machine (VM) and submits batch jobs to a central scheduler. The system boots the user-specific VM on one of the IaaS clouds, runs the jobs and returns the output to the user. The user application accesses a central database for calibration data during the execution of the application. Similarly, the data is located in a central location and streamed by the running application. The system can easily run one hundred simultaneous jobs in an efficient manner and should scale to many hundreds and possibly thousands of user jobs.

  16. EFFECT OF HIGH & LOW INTENSITIES OF AEROBIC EXERCISE ON PHYSICAL FITNESS INDEX

    Directory of Open Access Journals (Sweden)

    Madhusudhan

    2015-06-01

    Full Text Available BACKGROUND: Aerobic exercise reduces body fat and improves weight control, increases HDL&Vo2 max. Also improves PFI (physical fitness index which is defined as ability to carry out daily tasks with vigour and alertness without undue fatigue. Though aerobic exercise is found to improve physical fitness, the relative merits of different intensities of aerobi c exercise in improving physical fitness is still uncertain. AIM: The present study was conducted to know the Effect of High & low intensity aerobic training on physical fitness index. MATERIALS & METHODS : 80 sedentary men (18 - 40 years were randomized in to 2 equal groups (High Intensity & low intensity group . The High [80% HR max] & Low intensity [50 % HR max] groups underwent aerobic exercise training using Bicycle ergo meter (COSCO at 900kpm & 540kpm, for 15mins/day & 30mins/day respectively, 5days a week, for a period of 14weeks. Physical fitness index of each subject was recorded by Modified Harvard step test before & after intervention. RESULTS : After 14 weeks of aerobic training both the exercise groups had improvement in PFI, but high intensity gr oup had a significant (p<0.05 improvement in PFI (97.18 - 101.14 than low intensity group (98.12 - 100.6. CONCLUSION : High intensity aerobic exercise is effective in improving physical fitness.

  17. Experimental study of a high intensity radio-frequency cooler

    Directory of Open Access Journals (Sweden)

    Ramzi Boussaid

    2015-07-01

    Full Text Available Within the framework of the DESIR/SPIRAL-2 project, a radio-frequency quadrupole cooler named SHIRaC has been studied. SHIRaC is a key device of SPIRAL-2, designed to enhance the beam quality required by DESIR. The preliminary study and development of this device has been carried out at Laboratoire de Physique Corpusculaire de CAEN (LPC Caen, France. The goal of this paper is to present the experimental studies conducted on a SHIRaC prototype. The main peculiarity of this cooler is its efficient handling and cooling of ion beams with currents going up as high as 1  μA which has never before been achieved in any of the previous coolers. Much effort has been made lately into these studies for development of appropriate optics, vacuum and rf systems which allow cooling of beams of large emittance (∼80π  mm mrad and high current. The dependencies of SHIRaC’s transmission and the cooled beam parameters in terms of geometrical transverse emittance and the longitudinal energy spread have also been discussed. Investigation of beam purity at optimum cooling condition has also been done. Results from the experiments indicate that an emittance reduction of less than 2.5π  mm mrad and a longitudinal energy spread reduction of less than 4 eV are obtained with more than 70% of ion transmission. The emittance is at expected values whereas the energy spread is not.

  18. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...

  19. High-intensity light-ion beam research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Colombant, D.G.; Barker, R.J.

    1982-01-01

    High-brightness proton beams (.4 MA, 1 MV) have recently been extracted from 20 cm 2 axial pinch-reflex diodes (PRDs) mounted on the NRL Gamble II generator. A source power brightness of GT 10 TW/cm 2 rad 2 was achieved in these experiments. A new barrel-shaped equitorial PRD that can be coupled to PBFA-II has also been operated on Gamble II and has demonstrated 50% proton efficiency with predominately azimuthally-symmetric charged-particle flow. In other experiments the stopping power of deuterons in hot plasmas was measured using a PRD on Gamble II. Results show about 40% enhancement in stopping power over that in cold targets when the beam was focused to about .25 MA/cm 2 . Research is also being performed on transporting ion beams in large-diameter channels (>= 2.5 cm) and on a post-transport, plasma-filled, magnetic-focusing section to bring the beam to pellet dimensions. (author)

  20. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  1. A 3 GHz photoelectron gun for high beam intensity

    CERN Document Server

    Bossart, Rudolf; Dehler, M; Godot, J C

    1996-01-01

    For the Compact Linear Collider Test Facility (CTF) at CERN a new rf gun with a laser driven photocathode is under construction. The new rf gun will replace the present 11/2 cell gun and will consist of 21/2 cells accelerating the beam to a momentum of 7.0 MeV/c with an electric field strength of 100 MV/m. The strong space-charge forces at low beam energy caused by the high charge density of the electron bunches are contained by radial and longitudinal rf focusing in the gun. The rf gun under construction has been optimized by MAFIA beam simulations for an injector assembly comprising a second accelerating rf structure and an intermediate solenoid magnet correcting the beam divergence of the 21/2 cell gun. The beam loading of the rf gun, by a train of 48 bunches with 21 nC charge each, causes a strong energy decay accompanied by an increase of the flight time for the bunches with lower energy. These effects can be corrected by slightly shifting the acceleration frequency of the gun. The experimental results...

  2. High Performance Data Transfer for Distributed Data Intensive Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chin [Zettar Inc., Mountain View, CA (United States); Cottrell, R ' Les' A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hanushevsky, Andrew B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kroeger, Wilko [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yang, Wei [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    We report on the development of ZX software providing high performance data transfer and encryption. The design scales in: computation power, network interfaces, and IOPS while carefully balancing the available resources. Two U.S. patent-pending algorithms help tackle data sets containing lots of small files and very large files, and provide insensitivity to network latency. It has a cluster-oriented architecture, using peer-to-peer technologies to ease deployment, operation, usage, and resource discovery. Its unique optimizations enable effective use of flash memory. Using a pair of existing data transfer nodes at SLAC and NERSC, we compared its performance to that of bbcp and GridFTP and determined that they were comparable. With a proof of concept created using two four-node clusters with multiple distributed multi-core CPUs, network interfaces and flash memory, we achieved 155Gbps memory-to-memory over a 2x100Gbps link aggregated channel and 70Gbps file-to-file with encryption over a 5000 mile 100Gbps link.

  3. Computational aspects in high intensity ultrasonic surgery planning.

    Science.gov (United States)

    Pulkkinen, A; Hynynen, K

    2010-01-01

    Therapeutic ultrasound treatment planning is discussed and computational aspects regarding it are reviewed. Nonlinear ultrasound simulations were solved with a combined frequency domain Rayleigh and KZK model. Ultrasonic simulations were combined with thermal simulations and were used to compute heating of muscle tissue in vivo for four different focused ultrasound transducers. The simulations were compared with measurements and good agreement was found for large F-number transducers. However, at F# 1.9 the simulated rate of temperature rise was approximately a factor of 2 higher than the measured ones. The power levels used with the F# 1 transducer were too low to show any nonlinearity. The simulations were used to investigate the importance of nonlinarities generated in the coupling water, and also the importance of including skin in the simulations. Ignoring either of these in the model would lead to larger errors. Most notably, the nonlinearities generated in the water can enhance the focal temperature by more than 100%. The simulations also demonstrated that pulsed high power sonications may provide an opportunity to significantly (up to a factor of 3) reduce the treatment time. In conclusion, nonlinear propagation can play an important role in shaping the energy distribution during a focused ultrasound treatment and it should not be ignored in planning. However, the current simulation methods are accurate only with relatively large F-numbers and better models need to be developed for sharply focused transducers. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Dynamics of Cavitation Clouds within a High-Intensity Focused Ultrasonic Beam

    Science.gov (United States)

    2012-03-01

    the cloud size. I. INTRODUCTION High-intensity focused ultrasound (HIFU), along with the associated cavitation , is used in a variety of fields. The...Article 3. DATES COVERED (From - To) March 2012- May 2012 4. TITLE AND SUBTITLE Dynamics of Cavitation Clouds within a High-Intensity Focused...in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line

  5. Remote Sensing Tertiary Education Meets High Intensity Interval Training

    Science.gov (United States)

    Joyce, K. E.; White, B.

    2015-04-01

    Enduring a traditional lecture is the tertiary education equivalent of a long, slow, jog. There are certainly some educational benefits if the student is able to maintain concentration, but they are just as likely to get caught napping and fall off the back end of the treadmill. Alternatively, a pre-choreographed interactive workshop style class requires students to continually engage with the materials. Appropriately timed breaks or intervals allow students to recover briefly before being increasingly challenged throughout the class. Using an introductory remote sensing class at Charles Darwin University, this case study presents a transition from the traditional stand and deliver style lecture to an active student-led learning experience. The class is taught at undergraduate and postgraduate levels, with both on-campus as well as online distance learning students. Based on the concept that active engagement in learning materials promotes 'stickiness' of subject matter, the remote sensing class was re-designed to encourage an active style of learning. Critically, class content was reviewed to identify the key learning outcomes for the students. This resulted in a necessary sacrifice of topic range for depth of understanding. Graduates of the class reported high levels of enthusiasm for the materials, and the style in which the class was taught. This paper details a number of techniques that were used to engage students in active and problem based learning throughout the semester. It suggests a number of freely available tools that academics in remote sensing and related fields can readily incorporate into their teaching portfolios. Moreover, it shows how simple it can be to provide a far more enjoyable and effective learning experience for students than the one dimensional lecture.

  6. Optimisation of intense X-ray sources of Z-pinch type connected to the high intensity current generator SPHINX

    International Nuclear Information System (INIS)

    Calamy, H.; Lassalle, F.; Grunenwald, J.; Zucchini, F.

    2010-01-01

    A new source of intense X-rays in the spectral range of the keV has been designed in the CEA facilities at Gramat (France). This Z-pinch source is based on the implosion of a cylinder of matter that has been ionized by the Lorentz force generated by the injection in the cylinder of an intense current pulse delivered by a HPP (High Pulsed Powers) generator named SPHINX. The cylinder of matter is made up of a few hundreds of thin metal wires (tungsten or aluminium) whose diameter is less than a few tenths of μm. The SPHINX generator is based on the LTD (Linear Transformer Driver) technology. SPHINX stores an energy of 2.2 MJ and delivers a current of 8 MA over a time of 1 μs. SPHINX does not use any technology of time compression, it is a robust, compact machine with reduced maintenance but the price to pay for this simplification is to maintain a high axial homogeneity of the implosion during the initiation phase, it means the pulse time of 1μs. The preliminary experiments that have been performed give the following results: -) for a tungsten cylinder (X ray 1 keV): 28 kJ, 0.6 TW and 25 ns

  7. Warm-up strategy and high-intensity endurance performance in trained cyclists

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Bangsbo, Jens

    2015-01-01

    ; means±SD) performed three warm-up strategies lasting 20 min before a 4-min maximal performance test (PT). Strategies consisted of moderate intensity exercise (50%iPPO) followed by 6 min of recovery (MOD6) or progressive-high intensity exercise (10-100%iPPO and 2x20-s sprints) followed by recovery for 6...

  8. Bremsstrahlung production with high-intensity laser matter interactions and applications

    NARCIS (Netherlands)

    Galy, J.; Maucec, M.; Hamilton, D. J.; Edwards, R.; Magill, J.

    2007-01-01

    In the last decade an evolution of experimental relativistic laser-plasma physics has led to highly sophisticated lasers, which are now able to generate ultra short pulses and can be focused to intensities in excess of 10(21) W cm(-2), with more than 500 J on target. In the intense electric field of

  9. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence

    OpenAIRE

    Lucas, Samuel J E; Cotter, James D; Brassard, Patrice; Bailey, Damian M

    2015-01-01

    Exercise is a uniquely effective and pluripotent medicine against several noncommunicable diseases of westernised lifestyles, including protection against neurodegenerative disorders. High-intensity interval exercise training (HIT) is emerging as an effective alternative to current health-related exercise guidelines. Compared with traditional moderate-intensity continuous exercise training, HIT confers equivalent if not indeed superior metabolic, cardiac, and systemic vascular adaptation. Con...

  10. High or low intensity aerobic fitness training in fibromyalgia: does it matter?

    NARCIS (Netherlands)

    van Santen, Marijke; Bolwijn, Paulien; Landewé, Robert; Verstappen, Frans; Bakker, Carla; Hidding, Alita; van der Kemp, Désirée; Houben, Harry; van der Linden, Sjef

    2002-01-01

    To determine the efficacy of training in fibromyalgia (FM), we compared the effects of high intensity fitness training (HIF) and low intensity fitness training (LIF). Thirty-seven female patients with FM were randomly allocated to either a HIF group (n = 19) or a LIF group (n = 18). Four patients (1

  11. WE-FG-202-08: Assessment of Treatment Response Via Longitudinal Diffusion MRI On A MRI-Guided System: Initial Experience of Quantitative Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Qi, X; Yang, Y; Yang, L; Low, D; Sheng, K [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To report our initial experience of systematic monitoring treatment response using longitudinal diffusion MR images on a Co-60 MRI-guided radiotherapy system. Methods: Four patients, including 2 head-and-necks, 1 sarcoma and 1 GBM treated on a 0.35 Tesla MRI-guided treatment system, were analyzed. For each patient, 3D TrueFISP MRIs were acquired during CT simulation and before each treatment for treatment planning and patient setup purposes respectively. Additionally, 2D diffusion-weighted MR images (DWI) were acquired weekly throughout the treatment course. The gross target volume (GTV) and brainstem (as a reference structure) were delineated on weekly 3D TrueFISP MRIs to monitor anatomy changes, the contours were then transferred onto the corresponding DWI images after fusing with the weekly TrueFISP images. The patient-specific temporal and spatial variations during the entire treatment course, such as anatomic changes, target apparent diffusion coefficient (ADC) distribution were evaluated in a longitudinal pattern. Results: Routine MRI revealed progressive soft-tissue GTV volume changes (up to 53%) for the H&N cases during the treatment course of 5–7 weeks. Within the GTV, the mean ADC values varied from −44% (ADC decrease) to +26% (ADC increase) in a week. The gradual increase of ADC value was inversely associated with target volume variation for one H&N case. The maximal changes of mean ADC values within the brainstem were 5.3% for the H&N cases. For the large size sarcoma and GBM tumors, spatial heterogeneity and temporal variations were observed through longitudinal ADC analysis. Conclusion: In addition to the superior soft-tissue visualization, the 0.35T MR system on ViewRay showed the potential to quantitatively measure the ADC values for both tumor and normal tissues. For normal tissue that is minimally affected by radiation, its ADC values are reproducible. Tumor ADC values show temporal and spatial fluctuation that can be exploited for

  12. Effects of high-intensity training on cardiovascular risk factors in pre- and postmenopausal women

    DEFF Research Database (Denmark)

    Mandrup Jensen, Camilla Maria; Egelund, Jon; Nyberg, Michael Permin

    2017-01-01

    and cardiovascular disease in late pre- and early postmenopausal women, matched by age and body composition, and investigate the effect of high-intensity training. METHODS: A 3-month high-intensity aerobic training intervention, involving healthy, non-obese, late pre- (n=40) and early postmenopausal (n=39) women....... A three month intervention of high-intensity aerobic training reduces risk factors for type 2 diabetes and cardiovascular disease to a similar extent in late pre- and early postmenopausal women....... the postmenopausal women had higher total cholesterol (ptraining intervention reduced body weight (p

  13. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  14. In vivo photoacoustics and high frequency ultrasound imaging of mechanical high intensity focused ultrasound (HIFU) ablation.

    Science.gov (United States)

    Daoudi, Khalid; Hoogenboom, Martijn; den Brok, Martijn; Eikelenboom, Dylan; Adema, Gosse J; Fütterer, Jürgen J; de Korte, Chris L

    2017-04-01

    The thermal effect of high intensity focused ultrasound (HIFU) has been clinically exploited over a decade, while the mechanical HIFU is still largely confined to laboratory investigations. This is in part due to the lack of adequate imaging techniques to better understand the in-vivo pathological and immunological effects caused by the mechanical treatment. In this work, we explore the use of high frequency ultrasound (US) and photoacoustics (PA) as a potential tool to evaluate the effect of mechanical ablation in-vivo , e.g. boiling histotripsy. Two mice bearing a neuroblastoma tumor in the right leg were ablated using an MRI-HIFU system conceived for small animals and monitored using MRI thermometry. High frequency US and PA imaging were performed before and after the HIFU treatment. Afterwards, the tumor was resected for further assessment and evaluation of the ablated region using histopathology. High frequency US imaging revealed the presence of liquefied regions in the treated area together with fragmentized tissue which appeared with different reflecting proprieties compared to the surrounding tissue. Photoacoustic imaging on the other hand revealed the presence of deoxygenated blood within the tumor after the ablation due to the destruction of blood vessel network while color Doppler imaging confirmed the blood vessel network destruction within the tumor. The treated area and the presence of red blood cells detected by photoacoustics were further confirmed by the histopathology. This feasibility study demonstrates the potential of high frequency US and PA approach for assessing in-vivo the effect of mechanical HIFU tumor ablation.

  15. High-Intensity Interval Training Versus Moderate-Intensity Continuous Training in the Prevention/Management of Cardiovascular Disease.

    Science.gov (United States)

    Hussain, Syed R; Macaluso, Andrea; Pearson, Stephen J

    Moderate-intensity continuous training (MICT) has long been considered the most effective exercise treatment modality for the prevention and management of cardiovascular disease (CVD), but more recently high-intensity interval training (HIIT) has been viewed as a potential alternative to MICT in accruing such benefits. HIIT was initially found to induce significant improvements in numerous physiological and health-related indices, to a similar if not superior extent to MICT. Since then, many studies have attempted to explore the potential clinical utility of HIIT, relative to MICT, with respect to treating numerous cardiovascular conditions, such as coronary artery disease, heart failure, stroke, and hypertension. Despite this, however, the efficacy of HIIT in reversing the specific symptoms and risk factors of these cardiovascular pathologies is not well understood. HIIT is often perceived as very strenuous, which could render it unsafe for those at risk of or afflicted with CVD, but these issues are also yet to be reviewed. Furthermore, the optimal HIIT protocol for each of the CVD cohorts has not been established. Thus, the purpose of this review article is to (1) evaluate the efficacy of HIIT relative to MICT in the prevention and management of cardiovascular conditions, and (2) explore any potential safety issues surrounding the suitability and/or tolerability of HIIT for patients with CVD, and the potential optimal prescriptive variables of HIIT for application in the clinical environment.

  16. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1978-01-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described

  17. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    Science.gov (United States)

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  18. Photocathode fatigue of L-24 PM head due to high intensity light pulses

    International Nuclear Information System (INIS)

    Bailey, K.F.

    1980-01-01

    The sensitivity of radiation detectors which utilizes photomultipliers was determined after exposing the multiplier phototubes to high intensity light pulses. Test results found that generally less than a 5% change was found

  19. Analog measurement of delayed antiproton annihilation time spectra in a high intensity pulsed antiproton beam

    International Nuclear Information System (INIS)

    Niestroj, A.; Hayano, R.S.; Ishikawa, T.; Tamura, H.; Torii, H.A.; Morita, N.; Yamazaki, T.; Sugai, I.; Nakayoshi, K.; Horvath, D.; Eades, J.; Widmann, E.

    1996-01-01

    An analog detection system has been developed to measure delayed antiproton annihilation time spectra for laser resonance spectroscopy of metastable antiprotonic helium atoms using the high-intensity pulsed beam of antiprotons from LEAR at CERN. (orig.)

  20. Short-term effects of implemented high intensity shoulder elevation during computer work

    DEFF Research Database (Denmark)

    Larsen, Mette K.; Samani, Afshin; Madeleine, Pascal

    2009-01-01

    computer work to prevent neck-shoulder pain may be possible without affecting the working routines. However, the unexpected reduction in clavicular trapezius rest during a pause with preceding high intensity contraction requires further investigation before high intensity shoulder elevations can......BACKGROUND: Work-site strength training sessions are shown effective to prevent and reduce neck-shoulder pain in computer workers, but difficult to integrate in normal working routines. A solution for avoiding neck-shoulder pain during computer work may be to implement high intensity voluntary...... contractions during the computer work. However, it is unknown how this may influence productivity, rate of perceived exertion (RPE) as well as activity and rest of neck-shoulder muscles during computer work. The aim of this study was to investigate short-term effects of a high intensity contraction...

  1. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  2. A high intensity beam handling system at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Tanaka, K.H.; Minakawa, M.; Yamanoi, Y.

    1991-01-01

    We would like to summarize newly developed technology for handling high-intensity beams. This was practically employed in the beam-handling system of primary protons at the KEK-PS new experimental hall. (author)

  3. Influence of mature men way of life on highly intensive physical activity

    Directory of Open Access Journals (Sweden)

    O.B. Pryshva

    2017-04-01

    Full Text Available Highly intensive physical activity is the most effective for men’s health protection. In modern life conditions its level is insufficient. It requires organism’s appropriate physical activity, which is determined by way of life. Especially important it is before trainings. Purpose: to study special aspects of different intensity’s physical activity; of eating special food and sleeping regime of mature men before their highly intensive physical trainings. Material: in experiment men (n=26, age - 35-53years, who practice healthy life style and independent physical activity of high intensity, participated. We used bio-register Basis B1. Every day we registered: Peak - physical activity of different intensity; duration and quality of sleep; relative weight of consumed food. Besides, we calculated body mass index and physical condition. The study was conducted during 30 days in winter period. The following results were compared: indicators before not planned physical activity and average-monthly indicators. Results: Before arbitrary physical functioning we found in men: confident weakening of average intensity (by 9-11% and low intensity (by 10% physical activity; confident increase of consumed food’s relative weight (by 6.82%, vegetarian food (by 10.64% and raw food (by 7.61%; confident reduction of animal origin food (by 8.7%. No changes were found in duration and quality of sleep before highly intensive physical functioning. Conclusions: specific features of mature men’s way of life before their not planned highly intensive physical functioning are as follows: reduction of general physical activity; increase of consumed food. These factors facilitate energy accumulation in organism for its realization in highly intensive physical functioning the next day.

  4. Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam

    International Nuclear Information System (INIS)

    Flacco, A.

    2008-07-01

    This thesis reports experimental work in the domain of laser-matter interaction to study the production of energetic proton beams. The ion beams accelerated by laser have been increasing in quality, in energy and in repeatability as laser technology keeps improving. The presence of the pedestal before the high peak laser pulse introduces many unknowns in the accelerating conditions that are created on the front and on the rear surface of the target. The first part of the experimental activities is focused to a better comprehension and the experimental validation of the interaction of a 'pedestal-like', moderate intensity, laser pulse on Aluminum targets. The developed interferometric technique proved to be reliable and produced a complete set of maps of the early stages of the plasma expansion. The reflectometry experiment stresses the importance of the quality of the metallic targets and underlines some obscure points on the behaviour of the rear surface of the illuminated foil. For instance the reflectometry measurements on the thicker targets are significantly different from what is foreseen by the simulations about the timescale of the shock break out. In the second part, the XPW laser pulse is used in ion acceleration from thin metal foils. The laser and target parameters are varied to put in evidence the dependence of the ion beam to the experimental condition. In conclusion I can say that first, during the variation of the target thickness, an optimum is put in evidence. Secondly, the correlation between the laser pulse duration and the proton cutoff energy is qualitatively different between thicker (15 μm) and thinner (1.5 μm, 3 μm) targets. For the first, an optimal pulse duration exists while for the seconds, no variation is found - in the searched space - from the monotonic decreasing of the cutoff energy with the peak intensity. The experimental results put however in evidence some points that are not completely understood. (A.C.)

  5. The Effects of Electrostimulation and Core Exercises on Recovery After High-Intensity Exercise

    OpenAIRE

    Ahmet Mor; Gökhan İpekoğlu; Cansel Arslanoglu; Kursat Acar; Erkal Arslanoglu

    2017-01-01

    Introduction and objectives: The purpose of this study was to determine the effects of electrostimulation and core exercises on recovery after high-intensity exercise. Methods: The participants of this study consists of 12 male bodybuilders who regularly train and between the ages 18-30. Tabata high intensity interval training (HIIT) was applied with different recovery methods to the athletes on three different days and the recovery levels of athletes were analysed. Heart rate and blood lacta...

  6. High Intensity Laser Therapy (HILT) versus TENS and NSAIDs in low back pain: clinical study

    Science.gov (United States)

    Zati, Allesandro; Fortuna, Damiano; Valent, A.; Filippi, M. V.; Bilotta, Teresa W.

    2004-09-01

    Low back pain, caused by lumbar disc herniation, is prevalently treated with a conservative approach. In this study we valued the efficacy of High Intensity Laser Therapy (HILT), compared with accepted therapies such as TENS and NSAIDs. Laser therapy obtained similar results in the short term, but better clinical effect over time than TENS and NSAIDs. In conclusion high intensity laser therapy appears to be a interesting new treatment, worthy of further research.

  7. Impact of a high intensity training program on glucose tolerance in people with multiple sclerosis

    OpenAIRE

    Patyn, Cédric

    2014-01-01

    Abstract Background: Recent research reported a higher prevalence of impaired glucose tolerance (IGT) in MS patients than in healthy people. The influence of high intensity exercise on IGT in MS was never investigated before. Objective: To investigate the effect of high intensity aerobic interval (HIIT) or continuous endurance (CT) training, both in combination with resistance training, on glucose tolerance muscle strength and body composition. Methods: 34 subjects were randomly as...

  8. Improved survival in rats with glioma using MRI-guided focused ultrasound and microbubbles to disrupt the blood-brain barrier and deliver Doxil

    Science.gov (United States)

    Aryal, Muna; Zhi Zhang, Yong; Vykhodtseva, Natalia; Park, Juyoung; Power, Chanikarn; McDannold, Nathan

    2012-02-01

    Blood-brain-barrier (BBB) limits the transportation of most neuropeptides, proteins (enzymes, antibodies), chemotherapeutic agents, and genes that have therapeutic potential for the treatment of brain diseases. Different methods have been used to overcome this limitation, but they are invasive, non-targeted, or require the development of new drugs. We have developed a method that uses MRI-guided focused ultrasound (FUS) combined with circulating microbubbles to temporarily open BBB in and around brain tumors to deliver chemotherapy agents. Here, we tested whether this noninvasive technique could enhance the effectiveness of a chemotherapy agent (Doxil). Using 690 kHz FUS transducer and microbubble (Definity), we induced BBB disruption in intracranially-implanted 9L glioma tumors in rat's brain in three weekly sessions. Animals who received BBB disruption and Doxil had a median survival time of 34.5 days, which was significantly longer than that found in control animals which is 16, 18.5, 21 days who received no treatment, BBB disruption only and Doxil only respectively This work demonstrates that FUS technique has promise in overcoming barriers to drug delivery, which are particularly stark in the brain due to the BBB.

  9. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    Science.gov (United States)

    Stöggl, Thomas L.; Björklund, Glenn

    2017-01-01

    The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes. Methods: Thirty-six male (n = 33) and female (n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak): 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT). A maximal anaerobic running/cycling test (MART/MACT) was performed prior to and following a 9-week training period. Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P 0.05). Acute HRR was improved in HIIT (11.2%, P = 0.002) and POL (7.9%, P = 0.023) with no change in the HVLIT oriented control group. Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT) had no effect on any performance or HRR outcomes. PMID:28824457

  10. EFFECT OF HIGH INTENSITY INTERVAL TRAINING ON ENDOTHELIAL FUNCTION IN POSTMENOPAUSAL HYPERTENSIVE PATIENTS RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Mona Mohamed Taha

    2016-02-01

    Full Text Available Background: Postmenopausal hypertension is the most common risk factor of cardiovascular morbidity and mortality. As the exercises training conveys benefits of the setting of secondary prevention of hypertension. High intensity interval training (HIIT emerged as a new form of physical training and presents as therapeutic alternative to patients and health care professionals. This study aimed to investigate the effect of high intensity interval training on endothelial function in postmenopausal hypertension. Methods: Forty six mildly hypertensive postmenopausal women, their ages ranged from (45-55 years old, were randomly allocated to two groups: HIIT group (group-I; n=23 performed a high intensity interval training 3 times a week for 10 weeks at an intensity of (80-85% HR max for 40 minutes and control group (group-II; n=23 remains sedentary during this period. Serum nitric oxide (NO, vascular endothelial growth factor levels (VEGF and blood pressures were measured before and after intervention. Results: A significant reduction in both systolic and diastolic blood pressure values by 9.5% and 7 % respectively, was seen after high intensity interval training which was accompanied by increase in NO and VEGF levels by 43.3% and 15.2 % respectively, while no significant change observed in the control group. Conclusion: High intensity interval training had obvious benefits in improving plasma No, VEGF concentrations and controlling hypertension in postmenopausal women.

  11. High-intensity erotic visual stimuli de-activate the primary visual cortex in women.

    Science.gov (United States)

    Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert

    2012-06-01

    The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.

  12. High contrast high intensity petawatt J-KAREN-P laser facility at QST

    Science.gov (United States)

    Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Pirozhkov, Alexander S.; Sagisaka, Akito; Fukuda, Yuji; Nishitani, Keita; Miyahara, Takumi; Ogura, Koichi; Alkhimova, Mariya A.; Pikuz, Tatiana A.; Faenov, Anatoly Y.; Watanabe, Yukinobu; Koga, James; Bulanov, Sergei V.; Kando, Masaki; Kondo, Kiminori

    2017-05-01

    We report on the J-KAREN-P laser facility at QST, which can provide PW peak power at 0.1 Hz on target. The system can deliver short pulses with an energy of 30 J and pulse duration of 30 fs after compression with a contrast level of better than 1012. Such performance in high field science will give rise to the birth of new applications and breakthroughs, which include relativistic particle acceleration, bright x-ray source generation, and nuclear activation. The current achieved laser intensity on target is up to > 9x1021 Wcm-2 with an energy of 9 J on target. The interaction with a 3 to 5- μm stainless steel tape target provides us electrons with a typical temperature of more than 10 MeV and energetic proton beams with typical maximum energies of > 40 MeV with good reproducibility. The protons are accelerated in the Target Normal Sheath Acceleration regime, which is suitable for many applications including as an injector into a beamline for medical use, which is one of our objectives.

  13. High-Intensity Interval Training as an Efficacious Alternative to Moderate-Intensity Continuous Training for Adults with Prediabetes

    Directory of Open Access Journals (Sweden)

    Mary E. Jung

    2015-01-01

    Full Text Available Aims. High-intensity interval training (HIIT leads to improvements in various markers of cardiometabolic health but adherence to HIIT following a supervised laboratory intervention has yet to be tested. We compared self-report and objective measures of physical activity after one month of independent exercise in individuals with prediabetes who were randomized to HIIT (n=15 or traditional moderate-intensity continuous training (MICT, n=17. Method. After completing 10 sessions of supervised training participants were asked to perform HIIT or MICT three times per week for four weeks. Results. Individuals in HIIT (89 ± 11% adhered to their prescribed protocol to a greater extent than individuals in MICT (71 ± 31% as determined by training logs completed over one-month follow-up (P = 0.05, Cohen’s d = 0.75. Minutes spent in vigorous physical activity per week measured by accelerometer were higher in HIIT (24 ± 18 as compared to MICT (11 ± 10 at one-month follow-up (P = 0.049, Cohen’s d = 0.92. Cardiorespiratory fitness and systolic blood pressure assessed at one-month follow-up were equally improved (P’s < 0.05. Conclusions. This study provides preliminary evidence that individuals with prediabetes can adhere to HIIT over the short-term and do so at a level that is greater than MICT.

  14. Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility

    Science.gov (United States)

    Fajrin, F.; Kusnanik, N. W.; Wijono

    2018-01-01

    High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.

  15. Effect of moderate- and high-intensity acute exercise on appetite in obese individuals

    DEFF Research Database (Denmark)

    Martins, Catia; Stensvold, Dorthe; Finlayson, Graham

    2015-01-01

    PURPOSE: The effect of acute exercise, and exercise intensity, on appetite control in obese individuals requires further study. The aim of this study was to compare the effects of acute isocaloric bouts (250 kcal) of high-intensity intermittent cycling (HIIC) and moderate-intensity continuous....../obese volunteers. Participants were assigned to the control, MICC, HIIC, and S-HIIC conditions, 1 wk apart, in a counterbalanced order. Exercise was performed 1 h after a standard breakfast. An ad libitum test lunch was served 3 h after breakfast. Fasting/postprandial plasma samples of insulin, acylated ghrelin...

  16. Generation of high intensity rf pulses in the ionosphere by means of in situ compression

    International Nuclear Information System (INIS)

    Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

    1993-04-01

    We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence

  17. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  18. Dependence of high order harmonics intensity on laser focal spot position in preformed plasma plumes

    International Nuclear Information System (INIS)

    Singhal, H.; Ganeev, R.; Naik, P. A.; Arora, V.; Chakravarty, U.; Gupta, P. D.

    2008-01-01

    The dependence of the high-order harmonic intensity on the laser focal spot position in laser produced plasma plumes is experimentally studied. High order harmonics up to the 59th order (λ∼13.5 nm) were generated by focusing 48 fs laser pulses from a Ti:sapphire laser system in silver plasma plume produced using 300 ps uncompressed laser radiation as the prepulse. The intensity of harmonics nearly vanished when the best focus was located in the plume center, whereas it peaked on either side with unequal intensity. The focal spot position corresponding to the peak harmonic intensity moved away from the plume center for higher order harmonics. The results are explained in terms of the variation of phase mismatch between the driving laser beam and harmonics radiation produced, relativistic drift of electrons, and defocusing effect due to radial ionization gradient in the plasma for different focal spot positions

  19. High-intensity interval training (HIIT) for patients with chronic diseases

    OpenAIRE

    Ross, Leanna M.; Porter, Ryan R.; Durstine, J. Larry

    2016-01-01

    Exercise training provides physiological benefits for both improving athletic performance and maintaining good health. Different exercise training modalities and strategies exist. Two common exercise strategies are high-intensity interval training (HIIT) and moderate-intensity continuous exercise training (MCT). HIIT was first used early in the 20th century and popularized later that century for improving performance of Olympic athletes. The primary premise underlying HIIT is that, compared t...

  20. Effect of Eight Weeks High Intensity Interval Training and Medium Intensity Interval Training and Aloe vera Intake on Serum Vaspin and Insulin Resistance in Diabetic Male Rats

    Directory of Open Access Journals (Sweden)

    Darya Asgari Hazaveh

    2018-02-01

    Full Text Available Abstract Background: The use of herbal supplements and exercise training for the treatment of diabetic has increased.The purpose of this study was to investigate the effect of eight weeks high intensity interval training and moderate intensity interval training and Aloe vera intake on serum vaspin and insulin resistance in diabetic male rats. Materials and Methods: During this experimental study, 32 diabetic rats with STZ Wistar were randomly divided into four groups including the control, high intensity interval training +supplement, moderate intensity interval training + supplement and supplement. Training program was planned for 8 weeks and 3 sessions per week. Each session consisted of 6 to 12 periods of 2-minute activity with the intensity of 90% and 60% with one minute rest (speed: 10m/min. In the supplement groups, 300milligrams Aloe vera solution per kilogram of body weight Gavage was given 5 sessions per week for 8 weeks. The data were analyzed using one-way analysis of variance (ANOVA. Results: The results showed that high and moderate intensity interval training with supplement has no significant effect on the of serum vaspin (p=0.112. High intensity interval training with supplement had significant effects on insulin in diabetic male rats (0.000. Conclusion: .Based on the findings of this study, it seems that supplementation of Aloe vera with high intensity interval training can have better effects on serum insulin in diabetic rats.

  1. Carbon fibre and nitinol needles for MRI-guided interventions: First in vitro and in vivo application

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christoph, E-mail: Christoph.thomas@med.uni-tuebingen.de [Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Wojtczyk, Hanne [Section of Experimental Radiology, University of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Rempp, Hansjoerg; Clasen, Stephan; Horger, Marius [Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Lassberg, Christoph von [Department of Sports Medicine, University of Tuebingen, Silcherstrasse 5, 72076 Tuebingen (Germany); Fritz, Jan [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287 (United States); Claussen, Claus D. [Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen (Germany); Pereira, Philippe L. [Department of Radiology, Minimally Invasive Therapies and Nuclearmedicine, SLK-Kliniken Heilbronn GmbH, Am Gesundbrunnen 20-26, 74078 Heilbronn (Germany)

    2011-09-15

    Objective: To assess the artefact properties of a MR-compatible carbon fibre needle with a nitinol mandrin in vitro and to report first clinical experiences. Materials and methods: In vitro, the carbon fibre/nitinol needle was imaged at different angles against the main magnetic field (1.5 T open bore magnet). A gradient echo MR fluoroscopy sequence (GRE: TR 9.3 ms, TE 3.12 ms, bandwidth 200 Hz/pixel, flip-angle 12{sup o}) and a fast turbo spin echo sequence (FSE: TR 412 ms, TE 9.7 ms, bandwidth 200 Hz/pixel, flip-angle 150{sup o}) were used. Artefact width, needle intensity contrast and needle tip location errors were assessed. In vivo, lumbar periradicular corticosteroid injections and one sclerotherapy were performed with carbon fibre needles (10 procedures) and with titanium alloy needles (2 procedures). The artefact sizes and contrasts were measured. Results: In vitro, artefact diameters of the carbon fibre needle ranged from 3.3 to 4.6 mm, contrasts from 0.11 to 0.52, with larger artefact contrasts and widths with the GRE sequence. Needle tip location errors of -2.1 to -2.8 mm were observed. Decreasing angles to the main field lead to smaller artefacts. In vivo, the carbon fibre/nitinol needle produced smaller artefacts (mean width FSE/GRE: 2.8 mm/4.6 mm) with lower contrast (0.30-0.42) than the titanium alloy needle (mean width FSE/GRE: 4.1 mm/7.5 mm, contrast 0.60-0.73). Conclusions: The carbon fibre/nitinol needle is useful for performing MR-guided interventions at 1.5 T, producing more subtle artefacts than a titanium alloy needle, but with an incomplete depiction and thus inaccurate localization of the needle tip.

  2. Enhanced high harmonic generation driven by high-intensity laser in argon gas-filled hollow core waveguide

    International Nuclear Information System (INIS)

    Cassou, Kevin; Daboussi, Sameh; Hort, Ondrej; Descamps, Dominique; Petit, Stephane; Mevel, Eric; Constant, Eric; Guilbaud, Oilvier; Kazamias, Sophie

    2014-01-01

    We show that a significant enhancement of the photon flux produced by high harmonic generation can be obtained through guided configuration at high laser intensity largely above the saturation intensity. We identify two regimes. At low pressure, we observe an intense second plateau in the high harmonic spectrum in argon. At relatively high pressure, complex interplay between strongly time-dependent ionization processes and propagation effects leads to important spectral broadening without loss of spectral brightness. We show that the relevant parameter for this physical process is the product of laser peak power by gas pressure. We compare source performances with high harmonic generation using a gas jet in loose focusing geometry and conclude that the source developed is a good candidate for injection devices such as seeded soft x-ray lasers or free electron lasers in the soft x-ray range. (authors)

  3. High-intensity discharge lamp and Duffing oscillator—Similarities and differences

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Stein, Ulrich; Hallerberg, Sarah; Wolff, Marcus

    2017-12-01

    The processes inside the arc tube of high-intensity discharge lamps are investigated using finite element simulations. The behavior of the gas mixture inside the arc tube is governed by differential equations describing mass, energy, and charge conservation, as well as the Helmholtz equation for the acoustic pressure and the Reynolds equations for the flow driven by buoyancy and Reynolds stresses. The model is highly nonlinear and requires a recursion procedure to account for the impact of acoustic streaming on the temperature and other fields. The investigations reveal the presence of a hysteresis and the corresponding jump phenomenon, quite similar to a Duffing oscillator. The similarities and, in particular, the differences of the nonlinear behavior of the high-intensity discharge lamp to that of a Duffing oscillator are discussed. For large amplitudes, the high-intensity discharge lamp exhibits a stiffening effect in contrast to the Duffing oscillator. It is speculated on how the stiffening might affect hysteresis suppression.

  4. The high intensity {gamma}-ray source (HI{gamma}S) and recent results

    Energy Technology Data Exchange (ETDEWEB)

    Tonchev, A.P. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States)]. E-mail: tonchev@tunl.duke.edu; Boswell, M. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Howell, C.R. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Karwowski, H.J. [University of North Carolina at Chapel Hill and TUNL, Chapel Hill, NC 27599 (United States); Kelley, J.H. [North Carolina State University and TUNL, Raleigh, NC 27695 (United States); Tornow, W. [Duke University and TUNL, Triangle University Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 0308 (United States); Wu, Y.K. [Duke University and Duke Free Electron Laser Laboratory, Durham, NC 27708-0319 (United States)

    2005-12-15

    The high intensity {gamma}-ray source (HI{gamma}S) utilizes intra-cavity backscattering of free electron laser photons from the Duke electron storage ring to produce a unique monoenergetic beam of high-flux {gamma}-rays with high polarization and selectable energy resolution. At present, {gamma}-ray beams with energies from 2 to 58 MeV are available with intensities as high as 10{sup 5}-5 x 10{sup 6} {gamma}/s, energy spreads of 3% or better, and nearly 100% linear polarization. The quality and intensity of the {gamma}-ray beams at HI{gamma}S are responsible for the unprecedented performance of this facility in a broad range of research programs in nuclear structure, nuclear astrophysics and nuclear applications. Recent results from excitation of isomeric states in ({gamma}, n) reactions and parity assignments of dipole states determined via the ({gamma}, {gamma}') reaction are presented.

  5. Vacuum ultraviolet Ar2*laser pumped by a high-intensity laser

    International Nuclear Information System (INIS)

    Kubodera, Shoichi; Kaku, Masanori; Higashiguchi, Takeshi

    2004-01-01

    We observed a small-signal gain of Ar 2 * emission at 126 nm by use of an Ar-filled hollow fiber to guide the ultrashort-pulse high-intensity laser propagation. The small signal gain coefficient was measured to be 0.05 cm -1 at 126 nm. Kinetic analysis revealed that the electrons produced by the high-intensity laser through an optical-field ionization process initiated the Ar 2 * production process. This laser scheme could be combined with high harmonic radiation of the pump laser in the vacuum ultraviolet (VUV), leading to the production of amplified ultrashort VUV pulses. (author)

  6. Comparison of Two Intensities of Aerobic Training (low intensity and High Intensity on Expression of Perlipin 2 Skeletal Muscle, Serum Glucose and Insulin levels in Streptozotocin-Diabetic Rats

    Directory of Open Access Journals (Sweden)

    M Ghafari

    2017-06-01

    Full Text Available Abstract   Background & aim: Lipid metabolism disorder plays an important role in insulin resistance in skeletal muscle and lipid drop proteins such as perlipine 2 (PLIN2 are effective in regulating intracellular fat metabolism. One of the suggested pathways for the effects of endurance activity in metabolic diseases is the effect of physical activity on intramuscular. Therefore, the purpose of this study was compare the intensity of aerobic exercise intensity (low intensity and high intensity on expression of PLIN2 skeletal muscle, serum glucose and insulin levels in streptozotocin-diabetic rats.   Methods: In this experimental study, 24 male Wistar rats were randomly divided into three groups of 8, including two intervention groups (low intensity endurance training group and high intensity continuous exercise group and one control group. After induction of diabetic rats by injection streptozotocin (55 mg / kg body weight, Intraperitoneally, endurance training was applied for eight weeks, three sessions per week in diabetic rats. Exercise intensity in the low-intensity group was equal to 5-8 m / min (equivalent to 50-60% Vo2max, the intensity of training in a high intensity training group was equivalent to a speed of 22-25 m / min (equivalent to 80% Vo2max and the control group did not receive intervene in this time. Relative protein expression of PLIN2 was performed using western blot technique. Data were analyzed by one-way ANOVA and Tukey's post hoc test.   Results: The results of the intergroup comparison revealed a significant difference among three groups in the PLIN2 variables (p = 0.037. The results of post hoc test showed a significant increase in PLIN2 in high intensity training diabetic group compared to the control group (p = 0.033 However, there was no significant difference in PLIN2 level in the low exercise group compared to the control group (p = 0.18. Also, there was no significant difference between the low intensity and

  7. WE-G-12A-01: High Intensity Focused Ultrasound Surgery and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, K [National Cancer Institute, Rockville, MD (United States); O' Neill, B [The Methodist Hospital Research Institute, Houston, TX (United States)

    2014-06-15

    More and more emphasis is being made on alternatives to invasive surgery and the use of ionizing radiation to treat various diseases including cancer. Novel screening, diagnosis, treatment and monitoring of response to treatment are also hot areas of research and new clinical technologies. Ultrasound(US) has gained traction in all of the aforementioned areas of focus. Especially with recent advances in the use of ultrasound to noninvasively treat various diseases/organ systems. This session will focus on covering MR-guided focused ultrasound and the state of the art clinical applications, and the second speaker will survey the more cutting edge technologies e.g. Focused Ultrasound (FUS) mediated drug delivery, principles of cavitation and US guided FUS. Learning Objectives: Fundamental physics and physical limitations of US interaction with tissue and nanoparticles The alteration of tissue transport using focused ultrasound US control of nanoparticle drug carriers for targeted release The basic principles of MRI-guided focused ultrasound (MRgFUS) surgery and therapy the current state of the art clinical applications of MRgFUS requirements for quality assurance and treatment planning.

  8. High signal intensity of the septum pellucidum at MR imaging; Significance in hydrocephalus

    International Nuclear Information System (INIS)

    Yoon, Jeong Hee; Kim, Eun Ha; Chung, Chun Phil; Kim, Chang Soo

    1994-01-01

    To evaluate the significance of high signal intensity of the septum pellucidum in hydrocephalus on proton density-weighted brain MR images. Authors reviewed the MR images of 418 cases of patients with normal (175 case), hydrocephalic(35 cases), atrophic(58 cases), and other groups(150 cases) retrospectively. We analyzed the signal intensity of the septum pellucidum in the normal group and the incidences of high signal intensities of periventricular area of frontal horn of lateral ventricle(area 1), periventricular area except area 1 (area 2), callososeptal area(area 3), and septum pellucidum(area 4) in the normal and abnormal groups. In the normal group, the septum pellucidum was isointense to the head of caudate nucleus on proton density-weighted image. High signal intensity of the septum pellucidum was seen in 31 cases (22 cases of hydrocephalus, 5 cases of brain atrophy, and 4 cases of others), and showed high specificity(91.4%) for hydrocephalus in spite of low sensitivity(62.9%), as compared with periventricular hyperintensities of other areas. High signal intensity of the septum pellucidum on proton density- weighted image may be caused by transependymal CSF migration in the patients with hydrocephalus, and considered as an additional finding of hydrocephalus in the cases of ventriculomegaly

  9. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    Directory of Open Access Journals (Sweden)

    Thomas L. Stöggl

    2017-08-01

    Full Text Available The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR in well-trained endurance athletes.Methods: Thirty-six male (n = 33 and female (n = 3 runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak: 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high intensity interval training HIIT; polarized training POL; high volume low intensity oriented control group CG/HVLIT applying no HIIT. A maximal anaerobic running/cycling test (MART/MACT was performed prior to and following a 9-week training period.Results: Only the HIIT group achieved improvements in peak power/velocity (+6.4%, P < 0.001 and peak lactate (P = 0.001 during the MART/MACT, while, unexpectedly, in none of the groups the performance at the established lactate concentrations (4, 6, 10 mmol·L−1 was changed (P > 0.05. Acute HRR was improved in HIIT (11.2%, P = 0.002 and POL (7.9%, P = 0.023 with no change in the HVLIT oriented control group.Conclusion: Only a training regime that includes a significant amount of HIIT improves the neuromuscular status, anaerobic power and the acute HRR in well-trained endurance athletes. A training regime that followed more a low and moderate intensity oriented model (CG/HVLIT had no effect on any performance or HRR outcomes.

  10. Characterization of a proton beam driven by a high-intensity laser

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Daido, Hiroyuki; Ogura, Koichi; Orimo, Satoshi; Hayashi, Yukio; Mori, Michiaki; Nishiuchi, Mamiko; Yogo, Akifumi; Kado, Masataka; Fukumi, Atsushi; Li, Zhong; Pirozhkov, Alexander S.; Nakamura, Shu

    2007-01-01

    High-energy protons are observed with a 3 μm thick tantalum target irradiated with a high intensity laser. The maximum proton energy is ∼900 keV. The half angle of the generated proton beam (>500 keV) is about 10deg. Characterization of the proton beam will significantly contribute to the proton applications. (author)

  11. 75 FR 52780 - Designation of Nine Counties as High Intensity Drug Trafficking Areas

    Science.gov (United States)

    2010-08-27

    ... EXECUTIVE OFFICE OF THE PRESIDENT Office of National Drug Control Policy Designation of Nine Counties as High Intensity Drug Trafficking Areas ACTION: Notice. SUMMARY: The Director of the Office of National Drug Control Policy designated nine additional counties as High Drug Trafficking Areas pursuant to...

  12. 75 FR 21368 - Designation of Five Counties as High Intensity Drug Trafficking Areas

    Science.gov (United States)

    2010-04-23

    ... EXECUTIVE OFFICE OF THE PRESIDENT Office of National Drug Control Policy Designation of Five Counties as High Intensity Drug Trafficking Areas ACTION: Notice. SUMMARY: The Director of the Office of National Drug Control Policy designated five additional counties as High Drug Trafficking Areas pursuant to...

  13. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    NARCIS (Netherlands)

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-01-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here

  14. The Effects of High-Intensity versus Low-Intensity Resistance Training on Leg Extensor Power and Recovery of Knee Function after ACL-Reconstruction

    DEFF Research Database (Denmark)

    Bieler, Theresa; Sobol, Nanna Aue; Andersen, Lars L

    2014-01-01

    OBJECTIVE: Persistent weakness is a common problem after anterior cruciate ligament- (ACL-) reconstruction. This study investigated the effects of high-intensity (HRT) versus low-intensity (LRT) resistance training on leg extensor power and recovery of knee function after ACL-reconstruction. METH...

  15. Technical Note: Dosimetric effects of couch position variability on treatment plan quality with an MRI-guided Co-60 radiation therapy machine

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Phillip E., E-mail: pechow@mednet.ucla.edu; Thomas, David H.; Agazaryan, Nzhde; Cao, Minsong; Low, Daniel A.; Yang, Yingli; Steinberg, Michael L.; Lee, Percy; Lamb, James M. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 (United States)

    2016-08-15

    Purpose: Magnetic resonance imaging (MRI) guidance in radiation therapy brings real-time imaging and adaptive planning into the treatment vault where it can account for interfraction and intrafraction movement of soft tissue. The only commercially available MRI-guided radiation therapy device is a three-head {sup 60}Co and MRI system with an integrated treatment planning system (TPS). Couch attenuation of the beam of up to 20% is well modeled in the TPS. Variations in the patient’s day-to-day position introduce discrepancies in the actual couch attenuation as modeled in the treatment plan. For this reason, the authors’ institution avoids plans with beams that pass through or near the couch edges. This study investigates the effects of differential beam attenuation by the couch due to couch shifts in order to determine whether couch edge avoidance restrictions can be lifted. Couch shifts were simulated using a Monte Carlo treatment planning system and ion chamber measurements performed for validation. Methods: A total of 27 plans from 23 patients were investigated. Couch shifts of 1 and 2 cm were introduced in combinations of lateral and vertical directions to simulate patient position variations giving 16 shifted plans per reference plan. The 1 and 2 cm shifts were based on shifts recorded in 320 treatment fractions. Results: Following TG176 recommendations for measurement methods, couch attenuation measurements agreed with TPS modeled attenuation to within 2.1%. Planning target volume D95 changed less than 1% for 1 and 2 cm couch shifts in only the x-direction and less than 3% for all directions. Conclusions: Dosimetry of all plans tested was robust to couch shifts up to ±2 cm. In general, couch shifts resulted in clinically insignificant dosimetric deviations. It is conceivable that in certain cases with large systematic couch shifts and plans that are particularly sensitive to shifts, dosimetric changes might rise to a clinically significant level.

  16. SU-F-J-125: Effects of Couch Position Variability On Dosimetric Accuracy with An MRI-Guided Co-60 Radiation Therapy Machine

    Energy Technology Data Exchange (ETDEWEB)

    Chow, P; Thomas, D; Agazaryan, N; Cao, M; Low, D; Yang, Y; Lamb, J [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Magnetic resonance imaging (MRI) guidance in radiation therapy brings real-time imaging and adaptive planning into the treatment vault where it can account for interfraction and intrafraction movement of soft tissue. The only commercially-available MRI-guided radiation therapy device is a three-head 60Co and MRI system with an integrated treatment planning system (TPS). An up to 20% attenuation of the beam by the couch is well modeled in the TPS. However, variations in the patient’s day-to-day position introduce discrepancies in the actual couch position relative its location as modeled in the treatment plan. For this reason, our institution avoids plans with beams that pass through or near the couch edges. This study looks at plans without restriction on beam angles and investigates the effects of couch shift by simulating shifts of the couch relative to the patient, in order to determine whether couch edge avoidance restrictions can be lifted. Methods: A total of 27 plans from 23 patients were investigated. Couch shifts of 1 and 2 cm were introduced in combinations of lateral and vertical direction to simulate variations in patient positioning on the couch giving 16 shifted plans per reference plan. The shift values of 1 and 2 cm were based on shifts recorded in 320 treatment fractions. Results: Measured couch attenuation versus TPS modeled agreed within 2.1%. Planning Target Volume (PTV) D95 changed less than 1% for 1 and 2 cm couch shifts in only the x-direction and less than 3% for all directions. Conclusion: The dosimetry of all plans with shifts up to ±2 cm was within reasonable clinical tolerances. Robustness of a plan to couch shifts can be tested in the TPS. Inclusion of beams traversing the couch edges should be considered if an improvement in plan quality or delivery time can be achieved.

  17. Motion compensation for MRI-compatible patient-mounted needle guide device: estimation of targeting accuracy in MRI-guided kidney cryoablations

    Science.gov (United States)

    Tokuda, Junichi; Chauvin, Laurent; Ninni, Brian; Kato, Takahisa; King, Franklin; Tuncali, Kemal; Hata, Nobuhiko

    2018-04-01

    Patient-mounted needle guide devices for percutaneous ablation are vulnerable to patient motion. The objective of this study is to develop and evaluate a software system for an MRI-compatible patient-mounted needle guide device that can adaptively compensate for displacement of the device due to patient motion using a novel image-based automatic device-to-image registration technique. We have developed a software system for an MRI-compatible patient-mounted needle guide device for percutaneous ablation. It features fully-automated image-based device-to-image registration to track the device position, and a device controller to adjust the needle trajectory to compensate for the displacement of the device. We performed: (a) a phantom study using a clinical MR scanner to evaluate registration performance; (b) simulations using intraoperative time-series MR data acquired in 20 clinical cases of MRI-guided renal cryoablations to assess its impact on motion compensation; and (c) a pilot clinical study in three patients to test its feasibility during the clinical procedure. FRE, TRE, and success rate of device-to-image registration were mm, mm, and 98.3% for the phantom images. The simulation study showed that the motion compensation reduced the targeting error for needle placement from 8.2 mm to 5.4 mm (p  <  0.0005) in patients under general anesthesia (GA), and from 14.4 mm to 10.0 mm () in patients under monitored anesthesia care (MAC). The pilot study showed that the software registered the device successfully in a clinical setting. Our simulation study demonstrated that the software system could significantly improve targeting accuracy in patients treated under both MAC and GA. Intraprocedural image-based device-to-image registration was feasible.

  18. Investigating the Causal Role of rOFA in Holistic Detection of Mooney Faces and Objects: An fMRI-guided TMS Study.

    Science.gov (United States)

    Bona, Silvia; Cattaneo, Zaira; Silvanto, Juha

    2016-01-01

    The right occipital face area (rOFA) is known to be involved in face discrimination based on local featural information. Whether this region is also involved in global, holistic stimulus processing is not known. We used fMRI-guided transcranial magnetic stimulation (TMS) to investigate whether rOFA is causally implicated in stimulus detection based on holistic processing, by the use of Mooney stimuli. Two studies were carried out: In Experiment 1, participants performed a detection task involving Mooney faces and Mooney objects; Mooney stimuli lack distinguishable local features and can be detected solely via holistic processing (i.e. at a global level) with top-down guidance from previously stored representations. Experiment 2 required participants to detect shapes which are recognized via bottom-up integration of local (collinear) Gabor elements and was performed to control for specificity of rOFA's implication in holistic detection. In Experiment 1, TMS over rOFA and rLO impaired detection of all stimulus categories, with no category-specific effect. In Experiment 2, shape detection was impaired when TMS was applied over rLO but not over rOFA. Our results demonstrate that rOFA is causally implicated in the type of top-down holistic detection required by Mooney stimuli and that such role is not face-selective. In contrast, rOFA does not appear to play a causal role in detection of shapes based on bottom-up integration of local components, demonstrating that its involvement in processing non-face stimuli is specific for holistic processing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Is Moderate Intensity Exercise Training Combined with High Intensity Interval Training More Effective at Improving Cardiorespiratory Fitness than Moderate Intensity Exercise Training Alone?

    Directory of Open Access Journals (Sweden)

    Brendon H. Roxburgh, Paul B. Nolan, Ryan M. Weatherwax, Lance C. Dalleck

    2014-09-01

    Full Text Available The purpose of this study was to compare the effectiveness of either continuous moderate intensity exercise training (CMIET alone vs. CMIET combined with a single weekly bout of high intensity interval training (HIIT on cardiorespiratory fitness. Twenty nine sedentary participants (36.3 ± 6.9 yrs at moderate risk of cardiovascular disease were recruited for 12 weeks of exercise training on a treadmill and cycle ergometer. Participants were randomised into three groups: CMIET + HIIT (n = 7; 8-12 x 60 sec at 100% VO2max, 150 sec active recovery, CMIET (n = 6; 30 min at 45-60% oxygen consumption reserve (VO2R and a sedentary control group (n = 7. Participants in the CMIET + HIIT group performed a single weekly bout of HIIT and four weekly sessions of CMIET, whilst the CMIET group performed five weekly CMIET sessions. Probabilistic magnitude-based inferences were determined to assess the likelihood that the true value of the effect represents substantial change. Relative VO2max increased by 10.1% (benefit possible relative to control in in the CMIET + HIIT group (32.7 ± 9.2 to 36.0 ± 11.5 mL·kg-1·min-1 and 3.9% (benefit possible relative to control in the CMIET group (33.2 ± 4.0 to 34.5 ± 6.1 mL·kg-1·min-1, whilst there was a 5.7% decrease in the control group (30.0 ± 4.6 to 28.3 ± 6.5 mL·kg-1·min-1. It was ‘unclear’ if a clinically significant difference existed between the effect of CMIET + HIIT and CMIET on the change in VO2max. Both exercising groups showed clinically meaningful improvements in VO2max. Nevertheless, it remains ‘unclear’ whether one type of exercise training regimen elicits a superior improvement in cardiorespiratory fitness relative to its counterpart.

  20. Improvement in surface fatigue life of hardened gears by high-intensity shot peening

    Science.gov (United States)

    Townsend, Dennis P.

    1992-04-01

    Two groups of carburized, hardened, and ground spur gears that were manufactured from the same heat vacuum induction melted vacuum arc melted (VIM VAR) AISI 9310 steel were endurance tested for surface fatigue. Both groups were manufactured with a standard ground 16 rms surface finish. One group was subjected to a shot peening (SP) intensity of 7 to 9A, and the second group was subjected to a SP intensity of 15 to 17A. All gears were honed after SP to a surface finish of 16 rms. The gear pitch diameter was 8.89 cm. Test conditions were a maximum Hertz stress of 1.71 GPa, a gear temperature of 350 K, and a speed of 10000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The following results were obtained: The 10 pct. surface fatigue (pitting) life of the high intensity (15 to 17A) SPed gears was 2.15 times that of the medium intensity (7 to 9A) SPed gears, the same as that calculated from measured residual stress at a depth of 127 microns. The measured residual stress for the high intensity SPed gears was 57 pct. higher than that for the medium intensity SPed gears at a depth of 127 microns and 540 pct. higher at a depth of 51 microns.

  1. High Intensity Interval- vs Moderate Intensity- Training for Improving Cardiometabolic Health in Overweight or Obese Males: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Gordon Fisher

    Full Text Available To compare the effects of six weeks of high intensity interval training (HIIT vs continuous moderate intensity training (MIT for improving body composition, insulin sensitivity (SI, blood pressure, blood lipids, and cardiovascular fitness in a cohort of sedentary overweight or obese young men. We hypothesized that HIIT would result in similar improvements in body composition, cardiovascular fitness, blood lipids, and SI as compared to the MIT group, despite requiring only one hour of activity per week compared to five hours per week for the MIT group.28 sedentary overweight or obese men (age, 20 ± 1.5 years, body mass index 29.5 ± 3.3 kg/m2 participated in a six week exercise treatment. Participants were randomly assigned to HIIT or MIT and evaluated at baseline and post-training. DXA was used to assess body composition, graded treadmill exercise test to measure cardiovascular fitness, oral glucose tolerance to measure SI, nuclear magnetic resonance spectroscopy to assess lipoprotein particles, and automatic auscultation to measure blood pressure.A greater improvement in VO2peak was observed in MIT compared to HIIT (11.1% vs 2.83%, P = 0.0185 in the complete-case analysis. No differences were seen in the intention to treat analysis, and no other group differences were observed. Both exercise conditions were associated with temporal improvements in % body fat, total cholesterol, medium VLDL, medium HDL, triglycerides, SI, and VO2peak (P < 0.05.Participation in HIIT or MIT exercise training displayed: 1 improved SI, 2 reduced blood lipids, 3 decreased % body fat, and 4 improved cardiovascular fitness. While both exercise groups led to similar improvements for most cardiometabolic risk factors assessed, MIT led to a greater improvement in overall cardiovascular fitness. Overall, these observations suggest that a relatively short duration of either HIIT or MIT training may improve cardiometabolic risk factors in previously sedentary overweight or

  2. High Intensity Interval- vs Moderate Intensity- Training for Improving Cardiometabolic Health in Overweight or Obese Males: A Randomized Controlled Trial.

    Science.gov (United States)

    Fisher, Gordon; Brown, Andrew W; Bohan Brown, Michelle M; Alcorn, Amy; Noles, Corey; Winwood, Leah; Resuehr, Holly; George, Brandon; Jeansonne, Madeline M; Allison, David B

    2015-01-01

    To compare the effects of six weeks of high intensity interval training (HIIT) vs continuous moderate intensity training (MIT) for improving body composition, insulin sensitivity (SI), blood pressure, blood lipids, and cardiovascular fitness in a cohort of sedentary overweight or obese young men. We hypothesized that HIIT would result in similar improvements in body composition, cardiovascular fitness, blood lipids, and SI as compared to the MIT group, despite requiring only one hour of activity per week compared to five hours per week for the MIT group. 28 sedentary overweight or obese men (age, 20 ± 1.5 years, body mass index 29.5 ± 3.3 kg/m2) participated in a six week exercise treatment. Participants were randomly assigned to HIIT or MIT and evaluated at baseline and post-training. DXA was used to assess body composition, graded treadmill exercise test to measure cardiovascular fitness, oral glucose tolerance to measure SI, nuclear magnetic resonance spectroscopy to assess lipoprotein particles, and automatic auscultation to measure blood pressure. A greater improvement in VO2peak was observed in MIT compared to HIIT (11.1% vs 2.83%, P = 0.0185) in the complete-case analysis. No differences were seen in the intention to treat analysis, and no other group differences were observed. Both exercise conditions were associated with temporal improvements in % body fat, total cholesterol, medium VLDL, medium HDL, triglycerides, SI, and VO2peak (P training displayed: 1) improved SI, 2) reduced blood lipids, 3) decreased % body fat, and 4) improved cardiovascular fitness. While both exercise groups led to similar improvements for most cardiometabolic risk factors assessed, MIT led to a greater improvement in overall cardiovascular fitness. Overall, these observations suggest that a relatively short duration of either HIIT or MIT training may improve cardiometabolic risk factors in previously sedentary overweight or obese young men, with no clear advantage between these

  3. Low-intensity red and infrared laser effects at high fluences on Escherichia coli cultures

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, L.L.; Campos, V.M.A.; Magalhaes, L.A.G. [Instituto de Biologia Roberto Alcantara Gomes, Rio de Janeiro, RJ (Brazil). Departamento de Biofisica e Biometria; Paoli, F. [Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG (Brazil). Departamento de Morfologia; Fonseca, A.S., E-mail: adnfonseca@ig.com.br [Universidade Federal do Estado do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Ciencias Fisiologicas

    2015-10-15

    Semiconductor laser devices are readily available and practical radiation sources providing wavelength tenability and high monochromaticity. Low-intensity red and near-infrared lasers are considered safe for use in clinical applications. However, adverse effects can occur via free radical generation, and the biological effects of these lasers from unusually high fluences or high doses have not yet been evaluated. Here, we evaluated the survival, filamentation induction and morphology of Escherichia coli cells deficient in repair of oxidative DNA lesions when exposed to low-intensity red and infrared lasers at unusually high fluences. Cultures of wild-type (AB1157), endonuclease III-deficient (JW1625-1), and endonuclease IV-deficient (JW2146-1) E. coli, in exponential and stationary growth phases, were exposed to red and infrared lasers (0, 250, 500, and 1000 J/cm{sup 2}) to evaluate their survival rates, filamentation phenotype induction and cell morphologies. The results showed that low-intensity red and infrared lasers at high fluences are lethal, induce a filamentation phenotype, and alter the morphology of the E. coli cells. Low-intensity red and infrared lasers have potential to induce adverse effects on cells, whether used at unusually high fluences, or at high doses. Hence, there is a need to reinforce the importance of accurate dosimetry in therapeutic protocols. (author)

  4. Effects of high-intensity physical training on muscle fiber characteristics in poststroke patients

    DEFF Research Database (Denmark)

    Andersen, Jesper Løvind; Jørgensen, Jørgen R.; Zeeman, Peter

    2017-01-01

    INTRODUCTION: Stroke is a leading cause of disability worldwide. High-intensity physical training can improve muscle strength and gait speed, but adaptive mechanisms at the muscle cellular level are largely unknown. METHODS: Outpatients with poststroke hemiparesis participated in a 3-month...... rehabilitation program combining high-intensity strength and body-weight supported treadmill-training. Biopsies sampled bilaterally from vastus lateralis muscles, before, after, and at 1-year follow-up after intervention, were analyzed for fiber size, type, and capillarization. RESULTS: At baseline, paretic...... lower limbs had smaller muscle fiber size and lower type I and IIA and higher type IIX percentages than nonparetic lower limbs. Paretic lower limbs had increased type IIA fibers after training. At follow-up, no difference between the lower limbs remained. CONCLUSIONS: Although high-intensity training...

  5. The high intensity solar cell - Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    This paper discusses the problems associated with conventional solar cells at high intensities and presents the design considerations and performance characteristics of the 'high intensity' (HI) solar cell which appears to eliminate the major problems. Test data obtained at greater than 250 AM1 suns gave a peak output power density of 2 W per sq cm at an efficiency exceeding 6% with an unoptimized cell operating at over 100 C. It appears that operation at 1000 AM1 suns at efficiencies greater than 10% is possible. At 1000 AM1 suns and 10% efficiency, the HI cell manufacturing cost is estimated to be $0.25/watt, with multi-megawatt annual production capability already existing within the industrial sector. A high intensity solar system was also analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency.

  6. Automated system for the determination of patterns of high-intensity LEDs

    International Nuclear Information System (INIS)

    Baly, L.; Bolaño, L.; Arteche, R.; Broco, Y.; Quesada, I.; Rodríguez, E.

    2008-01-01

    Determination of high-intensity LEDs lighting patterns is an important step for the simulation and planning of arrays of these devices configurations. Currently there are systems based on CCD cameras able to efficiently solve this problem, however the high cost of these is a limiting factor for use. Another limitation of CCD cameras, is that they are designed for light levels much lower than those produced by a high-intensity LED. In this paper we present an automated system for the determination of the intensity of LEDs based on the scan point to point patterns. The results of the analysis of a type of LED based on arrays of bars with built-in optical system is presented.

  7. The clinical study on high intensity zone of magnetic resonance imaging using Scolopendrid Aquacupuncture.

    Directory of Open Access Journals (Sweden)

    Jeong-a Lim

    2006-12-01

    Full Text Available Objective : This study was designed to find out the effect of scolopendrid aquacupuncture on low back pain with or without sciatica showing high intensity zone of magnetic resonance imaging. Methods : The 30 patients who had a diagnosis of high intensity zone by lumbar-MRI and admitted to Gwangju oriental medical hospital in wonkwang university from January 2005 to August 2004 were observed. The symptom of inpatients is low back pain with or without sciatica. We treated 30 patients by scolopendrid aquacupuncture besides the general conservative treatment of oriental medicine. Results and Conclusion : The scolopendrid aquacupuncture treatment led to improvement in the pain and symptom of disability as determined by all efficacy measures. After scolopendrid aquacupuncture treatment, there was improvement in VAS, ROM and SLRT. This results suggest that scolopendrid aquacupuncture is good method for treatment of low back pain with or without sciatica showing high intensity zone of magnetic resonance imaging.

  8. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence.

    Science.gov (United States)

    Bartlett, Jonathan D; Close, Graeme L; MacLaren, Don P M; Gregson, Warren; Drust, Barry; Morton, James P

    2011-03-01

    The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6 × 3 min at 90% VO(2max) interspersed with 6 × 3 min active recovery at 50% VO(2max) with a 7-min warm-up and cool down at 70% VO(2max)) or 50 min moderate-intensity continuous running at 70% VO(2max). Ratings of perceived enjoyment after exercise were higher (P running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.

  9. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Science.gov (United States)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  10. The Benefits of High Intensity Functional Training (HIFT) Fitness Programs for Military Personnel

    Science.gov (United States)

    Haddock, Christopher K.; Poston, Walker S.C.; Heinrich, Katie M.; Jahnke, Sara A.; Jitnarin, Nattinee

    2016-01-01

    High intensity functional training (HIFT) programs are designed to address multiple fitness domains, potentially providing improved physical and mental readiness in a changing operational environment. Programs consistent with HIFT principals such as CrossFit, SEALFIT and the US Marine Corps’ High Intensity Tactical Training (HITT) program are increasingly popular among military personnel. This article reviews the practical, health, body composition, and military fitness implications of HIFT exercise programs. We conclude that, given the unique benefits of HIFT, the military should consider evaluating whether these programs should be the standard for military fitness training. PMID:27849484

  11. US evaluation of volume brain lesions produced by high-intensity focused US

    International Nuclear Information System (INIS)

    Chua, R.V.; Chua, G.T.; Fry, F.J.; Franklin, T.D.; Wills, E.R.; Hastings, J.S.; Sanghui, N.T.

    1987-01-01

    Eighteen volume brain lesions produced by high-intensity focused US in the right cerebral hemispheres of research canines were evaluated by diagnostic US from immediately after ablation up to 62 days later. Animals were killed and perfused for whole-brain recovery. US evaluation of whole-brain specimens was performed. Histologic analysis of brain sections verified lesion placement, size, and tissue response to US. These sections were compared with US studies for correlation data. Correlation data suggest that US visualization may aid in accurate placement of volume brain lesions and in evaluation of effects of high-intensity focuses US in normal brain

  12. The effect of high intensity laser propagation instabilities on channel formation in underdense plasmas

    International Nuclear Information System (INIS)

    Najmudin, Z.; Krushelnick, K.; Tatarakis, M.; Clark, E.L.; Danson, C.N.; Malka, V.; Neely, D.; Santala, M.I.K.; Dangor, A.E.

    2003-01-01

    Experiments have been performed using high power laser pulses (up to 50 TW) focused into underdense helium plasmas (n e ≤5x10 19 cm -3 ). Using shadowgraphy, it is observed that the laser pulse can produce irregular density channels, which exhibit features such as long wavelength hosing and 'sausage-like' self-focusing instabilities. This phenomenon is a high intensity effect and the characteristic period of oscillation of these instabilities is typically found to correspond to the time required for ions to move radially out of the region of highest intensity

  13. Design concept of radiation control system for the high intensity proton accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukihiro; Ikeno, Koichi; Akiyama, Shigenori; Harada, Yasunori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Description is given for the characteristic radiation environment for the High Intensity Proton Accelerator Facility and the design concept of the radiation control system of it. The facility is a large scale accelerator complex consisting of high energy proton accelerators carrying the highest beam intensity in the world and the related experimental facilities and therefore provides various issues relevant to the radiation environment. The present report describes the specifications for the radiation control system for the facility, determined in consideration of these characteristics. (author)

  14. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  15. Approach to a very high intensity beam at J-PARC

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    2007-01-01

    The high-intensity, high-energy proton accelerator project, J-PARC, comprises the 400-MeV proton linac, the 3-GeV, 1-MW Rapid-Cycling Synchrotron (RCS) and the 50-GeV Marin Ring (MR) Synchrotron. The secondary particles such as neutrons, muons, Kaons, neutrinos and so forth will be fully made use of for materials science, life science, nuclear physics, and particle physics. Even the industrial use of the neutrons and the nuclear energy application are incorporated in the project. The rationale for choosing the accelerator schemes are presented together with the present status of the project and research and development for the high-intensity, high-energy proton accelerators J-PARC. The development of the high-field gradient RF cavity system making use of the magnetic alloy (MA), which is really necessary for the future development of the high-power proton accelerators, is reported in detail. (author)

  16. High Intensity Interval Training Leads to Greater Improvements in Acute Heart Rate Recovery and Anaerobic Power as High Volume Low Intensity Training

    OpenAIRE

    Thomas L. Stöggl; Glenn Björklund; Glenn Björklund

    2017-01-01

    The purpose of the current study was to explore if training regimes utilizing diverse training intensity distributions result in different responses on neuromuscular status, anaerobic capacity/power and acute heart rate recovery (HRR) in well-trained endurance athletes.Methods: Thirty-six male (n = 33) and female (n = 3) runners, cyclists, triathletes and cross-country skiers [peak oxygen uptake: (VO2peak): 61.9 ± 8.0 mL·kg−1·min−1] were randomly assigned to one of three groups (blocked high ...

  17. Potential Universal Application of High-intensity Interval Training from Athletes and Sports Lovers to Patients.

    Science.gov (United States)

    Azuma, Koichiro; Matsumoto, Hideo

    2017-06-25

    Recently, high-intensity interval training (HIIT) has received much attention as a promising exercise option not only to improve aerobic fitness, but also to prevent and improve lifestyle-related diseases. Epidemiological studies have shown that the exercise volume, as determined by the product of exercise intensity, duration, and frequency, has been shown to be important for improvements in muscle mitochondrial activity and subsequent improvements in aerobic fitness, insulin sensitivity, and metabolic variables. Therefore, continuous moderate-intensity training has been widely recommended. On the other hand, the main contributor of HIIT to improvements in aerobic fitness and metabolic variables is its high-intensity nature, and many recent studies have shown results favoring HIIT when compared with conventional continuous training, despite its shorter exercise duration and smaller exercise volume. In this review, we aim to show the possible universal application of HIIT in a hospital setting, where athletes, sports lovers, and patients have sought medical advice and have the opportunity to undergo detailed evaluations, including an exercise stress test. For athletes, HIIT is mandatory to achieve further improvements in aerobic fitness. For patients, though higher levels of motivation and careful evaluation are required, the time constraints of HIIT are smaller and both aerobic and resistance training can be expected to yield favorable results because of the high-intensity nature of HIIT.

  18. Similar Anti-Inflammatory Acute Responses from Moderate-Intensity Continuous and High-Intensity Intermittent Exercise

    Directory of Open Access Journals (Sweden)

    Carolina Cabral-Santos, José Gerosa-Neto, Daniela Sayuri Inoue, Valéria Leme Gonçalves Panissa, Luís Alberto Gobbo, Alessandro Moura Zagatto, Eduardo Zapaterra Campos, Fábio Santos Lira

    2015-12-01

    Full Text Available The purpose of this study was to compare the effect of high-intensity intermittent exercise (HIIE versus volume matched steady state exercise (SSE on inflammatory and metabolic responses. Eight physically active male subjects completed two experimental sessions, a 5-km run on a treadmill either continuously (70% vVO2max or intermittently (1:1 min at vVO2max. Blood samples were collected at rest, immediately, 30 and 60 minutes after the exercise session. Blood was analyzed for glucose, non-ester fatty acid (NEFA, uric acid, lactate, cortisol, and cytokines (IL-6, IL-10 and TNF-α levels. The lactate levels exhibited higher values immediately post-exercise than at rest (HIIE 1.34 ± 0.24 to 7.11 ± 2.85, and SSE 1.35 ± 0.14 to 4.06±1.60 mmol·L-1, p 0.05. Cortisol, IL-6, IL-10 and TNF-α levels showed time-dependent changes under the different conditions (p < 0.05, however, the area under the curve of TNF-α in the SSE were higher than HIIE (p < 0.05, and the area under the curve of IL-6 in the HIIE showed higher values than SSE (p < 0.05. In addition, both exercise conditions promote increased IL-10 levels and IL-10/TNF-α ratio (p < 0.05. In conclusion, our results demonstrated that both exercise protocols, when volume is matched, promote similar inflammatory responses, leading to an anti-inflammatory status; however, the metabolic responses are different.

  19. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    Science.gov (United States)

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  20. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.

    1988-01-01

    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  1. Validation of the Amsterdam Dynamic Facial Expression Set--Bath Intensity Variations (ADFES-BIV: A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions.

    Directory of Open Access Journals (Sweden)

    Tanja S H Wingenbach

    Full Text Available Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES and termed the Bath Intensity Variations (ADFES-BIV. A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness and 3 complex emotions (contempt, embarrassment, pride that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu hit rates were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the

  2. Validation of the Amsterdam Dynamic Facial Expression Set--Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions.

    Science.gov (United States)

    Wingenbach, Tanja S H; Ashwin, Chris; Brosnan, Mark

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author.

  3. Validation of the Amsterdam Dynamic Facial Expression Set – Bath Intensity Variations (ADFES-BIV): A Set of Videos Expressing Low, Intermediate, and High Intensity Emotions

    Science.gov (United States)

    Wingenbach, Tanja S. H.

    2016-01-01

    Most of the existing sets of facial expressions of emotion contain static photographs. While increasing demand for stimuli with enhanced ecological validity in facial emotion recognition research has led to the development of video stimuli, these typically involve full-blown (apex) expressions. However, variations of intensity in emotional facial expressions occur in real life social interactions, with low intensity expressions of emotions frequently occurring. The current study therefore developed and validated a set of video stimuli portraying three levels of intensity of emotional expressions, from low to high intensity. The videos were adapted from the Amsterdam Dynamic Facial Expression Set (ADFES) and termed the Bath Intensity Variations (ADFES-BIV). A healthy sample of 92 people recruited from the University of Bath community (41 male, 51 female) completed a facial emotion recognition task including expressions of 6 basic emotions (anger, happiness, disgust, fear, surprise, sadness) and 3 complex emotions (contempt, embarrassment, pride) that were expressed at three different intensities of expression and neutral. Accuracy scores (raw and unbiased (Hu) hit rates) were calculated, as well as response times. Accuracy rates above chance level of responding were found for all emotion categories, producing an overall raw hit rate of 69% for the ADFES-BIV. The three intensity levels were validated as distinct categories, with higher accuracies and faster responses to high intensity expressions than intermediate intensity expressions, which had higher accuracies and faster responses than low intensity expressions. To further validate the intensities, a second study with standardised display times was conducted replicating this pattern. The ADFES-BIV has greater ecological validity than many other emotion stimulus sets and allows for versatile applications in emotion research. It can be retrieved free of charge for research purposes from the corresponding author

  4. Effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren

    Directory of Open Access Journals (Sweden)

    Sergio Galdames-Maliqueo

    2017-12-01

    Full Text Available Introduction: The low levels of maximum oxygen consumption (VO2max evaluated in Chilean schoolchildren suggest the startup of trainings that improve the aerobic capacity. Objective: To analyze the effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren. Materials and methods: Thirty-two high school students from the eighth grade, who were divided into two groups, were part of the study (experimental group = 16 students and control group = 16 students. The main analyzed variable was the maximum oxygen consumption through the Course Navette Test. A High-intensity Interval training method was applied based on the maximum aerobic speed obtained through the Test. A mixed ANOVA was used for statistical analysis. Results: The experimental group showed a significant increase in the Maximum Oxygen Consumption between the pretest and posttest when compared with the control group (p < 0.0001. Conclusion: The results of the study showed a positive effect of the High-intensity Interval Training on the maximum consumption of oxygen. At the end of the study, it is concluded that High-intensity Interval Training is a good stimulation methodology for Chilean schoolchildren.

  5. High intensity metallic ion beam from an ecr ion source using the Mivoc method

    International Nuclear Information System (INIS)

    Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Leherissier, P.; Lemagnen, F.; Jaffres, P.A.

    2000-01-01

    The MIVOC method has been successfully used at GANIL to produce a high intensity nickel beam with the ECR4 ion source: 20 μA 58 Ni 11+ at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 pμA on target. This high intensity, required for experiment, led to the discovery of the doubly magic 48 Ni isotope. Experimental setup, handling and off-line preparation using a residual gas analyzer are described in this report. The ion source behavior, performances and limitations are presented in the case of nickel and iron. The ionization efficiencies have been measured and compared to the oven method usually used at GANIL. (author)

  6. Dose rate laser simulation tests adequacy: Shadowing and high intensity effects analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Skorobogatov, P.K.

    1996-01-01

    The adequacy of laser based simulation of the flash X-ray effects in microcircuits may be corrupted mainly due to laser radiation shadowing by the metallization and the non-linear absorption in a high intensity range. The numerical joint solution of the optical equations and the fundamental system of equations in a two-dimensional approximation were performed to adjust the application range of laser simulation. As a result the equivalent dose rate to laser intensity correspondence was established taking into account the shadowing as well as the high intensity effects. The simulation adequacy was verified in the range up to 4·10 11 rad(Si)/s with the comparative laser test of a specially designed test structure

  7. Cooperative Assembly of Magneto-Nanovesicles with Tunable Wall Thickness and Permeability for MRI-Guided Drug Delivery

    KAUST Repository

    Yang, Kuikun

    2018-03-15

    This article describes the fabrication of nanosized magneto-vesicles (MVs) comprising tunable layers of densely packed superparamagnetic iron oxide nanoparticles (SPIONs) in membranes via cooperative assembly of polymer-tethered SPIONs and free poly(styrene)- b-poly(acrylic acid) (PS- b-PAA). The membrane thickness of MVs could be well controlled from 9.8 to 93.2 nm by varying the weight ratio of PS- b-PAA to SPIONs. The increase in membrane thickness was accompanied by the transition from monolayer MVs, to double-layered MVs and to multilayered MVs (MuMVs). This can be attributed to the variation in the hydrophobic/hydrophilic balance of polymer-grafted SPIONs upon the insertion and binding of PS- b-PAA onto the surface of nanoparticles. Therapeutic agents can be efficiently encapsulated in the hollow cavity of MVs and the release of payload can be tuned by varying the membrane thickness of nanovesicles. Due to the high packing density of SPIONs, the MuMVs showed the highest magnetization and transverse relaxivity rate ( r2) in magnetic resonance imaging (MRI) among these MVs and individual SPIONs. Upon intravenous injection, doxorubicin-loaded MuMVs conjugated with RGD peptides could be effectively enriched at tumor sites due to synergetic effect of magnetic and active targeting. As a result, they exhibited drastically enhanced signal in MRI, improved tumor delivery efficiency of drugs as well as enhanced antitumor efficacy, compared with groups with only magnetic or active targeting strategy. The unique nanoplatform may find applications in effective disease control by delivering imaging and therapy to organs/tissues that are not readily accessible by conventional delivery vehicles.

  8. Cooperative Assembly of Magneto-Nanovesicles with Tunable Wall Thickness and Permeability for MRI-Guided Drug Delivery.

    Science.gov (United States)

    Yang, Kuikun; Liu, Yijing; Liu, Yi; Zhang, Qian; Kong, Chuncai; Yi, Chenglin; Zhou, Zijian; Wang, Zhantong; Zhang, Guofeng; Zhang, Yang; Khashab, Niveen M; Chen, Xiaoyuan; Nie, Zhihong

    2018-04-04

    This article describes the fabrication of nanosized magneto-vesicles (MVs) comprising tunable layers of densely packed superparamagnetic iron oxide nanoparticles (SPIONs) in membranes via cooperative assembly of polymer-tethered SPIONs and free poly(styrene)- b-poly(acrylic acid) (PS- b-PAA). The membrane thickness of MVs could be well controlled from 9.8 to 93.2 nm by varying the weight ratio of PS- b-PAA to SPIONs. The increase in membrane thickness was accompanied by the transition from monolayer MVs, to double-layered MVs and to multilayered MVs (MuMVs). This can be attributed to the variation in the hydrophobic/hydrophilic balance of polymer-grafted SPIONs upon the insertion and binding of PS- b-PAA onto the surface of nanoparticles. Therapeutic agents can be efficiently encapsulated in the hollow cavity of MVs and the release of payload can be tuned by varying the membrane thickness of nanovesicles. Due to the high packing density of SPIONs, the MuMVs showed the highest magnetization and transverse relaxivity rate ( r 2 ) in magnetic resonance imaging (MRI) among these MVs and individual SPIONs. Upon intravenous injection, doxorubicin-loaded MuMVs conjugated with RGD peptides could be effectively enriched at tumor sites due to synergetic effect of magnetic and active targeting. As a result, they exhibited drastically enhanced signal in MRI, improved tumor delivery efficiency of drugs as well as enhanced antitumor efficacy, compared with groups with only magnetic or active targeting strategy. The unique nanoplatform may find applications in effective disease control by delivering imaging and therapy to organs/tissues that are not readily accessible by conventional delivery vehicles.

  9. Comparison of affective responses during and after low volume high-intensity interval exercise, continuous moderate- and continuous high-intensity exercise in active, untrained, healthy males.

    Science.gov (United States)

    Niven, Ailsa; Thow, Jacqueline; Holroyd, Jack; Turner, Anthony P; Phillips, Shaun M

    2018-09-01

    This study compared affective responses to low volume high-intensity interval exercise (HIIE), moderate-intensity continuous exercise (MICE) and high-intensity continuous exercise (HICE). Twelve untrained males ([Formula: see text] 48.2 ± 6.7 ml·kg -1 ·min -1 ) completed MICE (30 min cycle at 85% of ventilatory threshold (VT)), HICE (cycle at 105% of VT matched with MICE for total work), and HIIE (10 x 6 s cycle sprints with 60 s recovery). Affective valence and perceived activation were measured before exercise, post warm-up, every 20% of exercise time, and 1, 5, 10, and 15 min post-exercise. Affective valence during exercise declined by 1.75 ± 2.42, 1.17 ± 1.99, and 0.42 ± 1.38 units in HICE, HIIE, and MICE, respectively, but was not statistically influenced by trial (P = 0.35), time (P = 0.06), or interaction effect (P = 0.08). Affective valence during HICE and HIIE was consistently less positive than MICE. Affective valence post-exercise was not statistically influenced by trial (P = 0.10) and at 5 min post-exercise exceeded end-exercise values (P = 0.048). Circumplex profiles showed no negative affect in any trial. Affective responses to low volume HIIE are similar to HICE but remain positive and rebound rapidly, suggesting it may be a potential alternative exercise prescription.

  10. Effects of music and video on perceived exertion during high-intensity exercise

    Institute of Scientific and Technical Information of China (English)

    Enoch C.Chow; Jennifer L.Etnier

    2017-01-01

    Background:Dissociative attentional stimuli (e.g.,music,video) are effective in decreasing ratings of perceived exertion (RPE) during low-to-moderate intensity exercise,but have inconsistent results during exercise at higher intensity.The purpose of this study was to assess attentional focus and RPE during high-intensity exercise as a function of being exposed to music,video,both (music and video),or a no-treatment control condition.Methods:During the first session,healthy men (n =15) completed a maximal fitness test to determine the workload necessary for high-intensity exercise (operationalized as 125% ventilatory threshold) to be performed during subsequent sessions.On 4 subsequent days,they completed 20 min of high-intensity exercise in a no-treatment control condition or while listening to music,watching a video,or both.Attentional focus,RPE,heart rate,and distance covered were measured every 4 min during the exercise.Results:Music and video in combination resulted in significantly lower RPE across time (partial η2 =0.36) and the size of the effect increased over time (partial η2 =0.14).Additionally,music and video in combination resulted in a significantly more dissociative focus than the other conditions (partial η2 =0.29).Conclusion:Music and video in combination may result in lower perceived exertion during high-intensity exercise when compared to music or video in isolation.Future research will be necessary to test if reductions in perceived exertion in response to dissociative attentional stimuli have implications for exercise adherence.

  11. Whole-Body High-Intensity Interval Training Induce Similar Cardiorespiratory Adaptations Compared With Traditional High-Intensity Interval Training and Moderate-Intensity Continuous Training in Healthy Men.

    Science.gov (United States)

    Schaun, Gustavo Z; Pinto, Stephanie S; Silva, Mariana R; Dolinski, Davi B; Alberton, Cristine L

    2018-05-07

    Schaun, GZ, Pinto, SS, Silva, MR, Dolinski, DB, and Alberton, CL. Sixteen weeks of whole-body high-intensity interval training induce similar cardiorespiratory responses compared with traditional high-intensity interval training and moderate-intensity continuous training in healthy men. J Strength Cond Res XX(X): 000-000, 2018-Low-volume high-intensity interval training (HIIT) protocols that use the body weight as resistance could be an interesting and inexpensive alternative to traditional ergometer-based high-intensity interval training (HIIT-T) and moderate-intensity continuous training (MICT). Therefore, our aim was to compare the effects of 16 weeks of whole-body HIIT (HIIT-WB), HIIT-T, and MICT on maximal oxygen uptake (V[Combining Dot Above]O2max), second ventilatory threshold (VT2), and running economy (RE) outcomes. Fifty-five healthy men (23.7 ± 0.7 years, 1.79 ± 0.01 m, 78.5 ± 1.7 kg) were randomized into 3 training groups (HIIT-T = 17; HIIT-WB = 19; MICT = 19) for 16 weeks (3× per week). The HIIT-T group performed eight 20-second bouts at 130% of the velocity associated to V[Combining Dot Above]O2max (vV[Combining Dot Above]O2max) interspersed by 10-second passive recovery on a treadmill, whereas HIIT-WB group performed the same protocol but used calisthenics exercises at an all-out intensity instead of treadmill running. Finally, MICT group exercised for 30 minutes at 90-95% of the heart rate (HR) associated to VT2. After the intervention, all groups improved V[Combining Dot Above]O2max, vV[Combining Dot Above]O2max, time to exhaustion (Tmax), VT2, velocity associated with VT2 (vVT2), and time to reach VT2 (tVT2) significantly (p HIIT-T compared with HIIT-WB (p HIIT-WB can be as effective as traditional HIIT while also being time-efficient compared with MICT to improve health-related outcomes after 16 weeks of training. However, HIIT-T and MICT seem preferable to enhance performance-related outcomes compared with HIIT-WB.

  12. Effects of high-intensity interval versus mild-intensity endurance training on metabolic phenotype and corticosterone response in rats fed a high-fat or control diet.

    Science.gov (United States)

    Shen, Youqing; Huang, Guoyuan; McCormick, Bryan P; Song, Tao; Xu, Xiangfeng

    2017-01-01

    The aim of the present study was to compare the effects of high-intensity interval training (HI) to mild-intensity endurance training (ME), combined with a high-fat diet (HFD) or control diet (CD) on metabolic phenotype and corticosterone levels in rats. Fifty-three rats were randomized to 6 groups according to diet and training regimen as follows: CD and sedentary (CS, n = 11), CD and ME (CME, n = 8), CD and HI (CHI, n = 8), HFD and sedentary (HS, n = 10), HFD and ME (HME, n = 8), and HFD and HI (HHI, n = 8). All exercise groups were trained for 10 weeks and had matched running distances. Dietary intake, body composition, blood metabolites, and corticosterone levels were measured. Histological lipid droplets were observed in the livers. The HFD led to hyperglycemia, hyperlipidemia and higher body fat (all, P 0.06), as well as higher corticosterone levels (P training improved fat weight, glucose, and lipid profiles, and reduced corticosterone levels (P body and fat weight, serum glucose and triglycerides, lipid content in the liver, and corticosterone levels (P training compared to ME training. Reductions in HFD-induced body weight gain, blood glucose and lipid profiles, and corticosterone levels, as well as improvements in QUICKI were better with HHI compared to HME. Correlation analyses revealed that corticosterone levels were significantly associated with phenotype variables (P training, HI training contributes to greater improvements in metabolic and corticosterone responses, leading to a greater reduction in susceptibility to HFD-induced disorders.

  13. High-intensity interval training (HIIT for patients with chronic diseases

    Directory of Open Access Journals (Sweden)

    Leanna M. Ross

    2016-06-01

    Full Text Available Exercise training provides physiological benefits for both improving athletic performance and maintaining good health. Different exercise training modalities and strategies exist. Two common exercise strategies are high-intensity interval training (HIIT and moderate-intensity continuous exercise training (MCT. HIIT was first used early in the 20th century and popularized later that century for improving performance of Olympic athletes. The primary premise underlying HIIT is that, compared to energy expenditure-matched MCT, a greater amount of work is performed at a higher intensity during a single exercise session which is achieved by alternating high-intensity exercise intervals with low-intensity exercise or rest intervals. Emerging research suggests that this same training method can provide beneficial effects for patients with a chronic disease and should be included in the comprehensive medical management plan. Accordingly, a major consideration in developing an individual exercise prescription for a patient with a chronic disease is the selection of an appropriate exercise strategy. In order to maximize exercise training benefits, this strategy should be tailored to the individual's need. The focus of this paper is to provide a brief summary of the current literature regarding the use of HIIT to enhance the functional capacity of individuals with cardiovascular, pulmonary, and diabetes diseases.

  14. Ultrafast photoionization dynamics at high laser intensities in the xuv regime

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, B.; Vagov, A.; Axt, V. M.; Pietsch, U. [Institut fuer Theoretische Physik III, Universitaet Bayreuth, D-95440 Bayreuth (Germany); Institut fuer Festkoerperphysik, Universitaet Siegen, D-57068 Siegen (Germany)

    2011-10-15

    We study the ionization dynamics in the soft-x-ray regime for high intensities and short pulses for excitations near the ionization threshold. Using a one-dimensional helium atom model, we compare exact numerical solutions with time-d