WorldWideScience

Sample records for mri fluoroscopic image

  1. Fluoroscopic Imaging Systems. Chapter 8

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A. K. [University of Texas MD Anderson Cancer Center, Houston (United States)

    2014-09-15

    Fluoroscopy refers to the use of an X ray beam and a suitable image receptor for viewing images of processes or instruments in the body in real time. Fluoroscopic imaging trades the high signal to noise ratio (SNR) of radiography for high temporal resolution, as factors that maintain patient dose at an acceptable level must be used.

  2. Quality assurance in diagnostic radiology - assessing the fluoroscopic image quality

    International Nuclear Information System (INIS)

    Tabakov, S.

    1995-01-01

    The X-ray fluoroscopic image has a considerably lower resolution than the radiographic one. This requires a careful quality control aiming at optimal use of the fluoroscopic equipment. The basic procedures for image quality assessment of Image Intensifier/TV image are described. Test objects from Leeds University (UK) are used as prototypes. The results from examining 50 various fluoroscopic devices are shown. Their limiting spatial resolution varies between 0.8 lp/mm (at maximum II field size) and 2.24 lp/mm (at minimum field size). The mean value of the limiting spatial resolution for a 23 cm Image Intensifier is about 1.24 lp/mm. The mean limits of variation of the contrast/detail diagram for various fluoroscopic equipment are graphically expressed. 14 refs., 1 fig. (author)

  3. 21 CFR 892.1650 - Image-intensified fluoroscopic x-ray system.

    Science.gov (United States)

    2010-04-01

    ... fluoroscopic x-ray system. (a) Identification. An image-intensified fluoroscopic x-ray system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Image-intensified fluoroscopic x-ray system. 892... equipment, patient and equipment supports, component parts, and accessories. (b) Classification. Class II...

  4. 21 CFR 892.1660 - Non-image-intensified fluoroscopic x-ray system.

    Science.gov (United States)

    2010-04-01

    ... fluoroscopic x-ray system. (a) Identification. A non-image-intensified fluoroscopic x-ray system is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Non-image-intensified fluoroscopic x-ray system... display equipment, patient and equipment supports, component parts, and accessories. (b) Classification...

  5. Cryo-balloon catheter localization in fluoroscopic images

    Science.gov (United States)

    Kurzendorfer, Tanja; Brost, Alexander; Jakob, Carolin; Mewes, Philip W.; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert

    2013-03-01

    Minimally invasive catheter ablation has become the preferred treatment option for atrial fibrillation. Although the standard ablation procedure involves ablation points set by radio-frequency catheters, cryo-balloon catheters have even been reported to be more advantageous in certain cases. As electro-anatomical mapping systems do not support cryo-balloon ablation procedures, X-ray guidance is needed. However, current methods to provide support for cryo-balloon catheters in fluoroscopically guided ablation procedures rely heavily on manual user interaction. To improve this, we propose a first method for automatic cryo-balloon catheter localization in fluoroscopic images based on a blob detection algorithm. Our method is evaluated on 24 clinical images from 17 patients. The method successfully detected the cryoballoon in 22 out of 24 images, yielding a success rate of 91.6 %. The successful localization achieved an accuracy of 1.00 mm +/- 0.44 mm. Even though our methods currently fails in 8.4 % of the images available, it still offers a significant improvement over manual methods. Furthermore, detecting a landmark point along the cryo-balloon catheter can be a very important step for additional post-processing operations.

  6. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  7. Identification of arteries and veins in cerebral angiography fluoroscopic images

    Science.gov (United States)

    Andra Tache, Irina

    2017-11-01

    In the present study a new method for pixels tagging into arteries and veins classes from temporal cerebral angiography is presented. This need comes from the neurosurgeon who is evaluating the fluoroscopic angiography and the magnetic resonance images from the brain in order to locate the fistula of the patients who suffer from arterio-venous malformation. The method includes the elimination of the background pixels from a previous segmentation and the generation of the time intensity curves for each remaining pixel. The later undergo signal processing in order to extract the characteristic parameters needed for applying the k-means clustering algorithm. Some of the parameters are: the phase and the maximum amplitude extracted from the Fourier transform, the standard deviation and the mean value. The tagged classes are represented into images which then are re-classified by an expert into artery and vein pixels.

  8. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Cai, W; Rottmann, J; Williams, C; Wagar, M; Berbeco, R; Lewis, J H; Mishra, P; Li, R; Ionascu, D

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. (paper)

  9. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.

    Science.gov (United States)

    Kim, Dongkue; Park, Sangsoo; Jeong, Myung Ho; Ryu, Jeha

    2018-02-01

    In percutaneous coronary intervention (PCI), cardiologists must study two different X-ray image sources: a fluoroscopic image and an angiogram. Manipulating a guidewire while alternately monitoring the two separate images on separate screens requires a deep understanding of the anatomy of coronary vessels and substantial training. We propose 2D/2D spatiotemporal image registration of the two images in a single image in order to provide cardiologists with enhanced visual guidance in PCI. The proposed 2D/2D spatiotemporal registration method uses a cross-correlation of two ECG series in each image to temporally synchronize two separate images and register an angiographic image onto the fluoroscopic image. A guidewire centerline is then extracted from the fluoroscopic image in real time, and the alignment of the centerline with vessel outlines of the chosen angiographic image is optimized using the iterative closest point algorithm for spatial registration. A proof-of-concept evaluation with a phantom coronary vessel model with engineering students showed an error reduction rate greater than 74% on wrong insertion to nontarget branches compared to the non-registration method and more than 47% reduction in the task completion time in performing guidewire manipulation for very difficult tasks. Evaluation with a small number of experienced doctors shows a potentially significant reduction in both task completion time and error rate for difficult tasks. The total registration time with real procedure X-ray (angiographic and fluoroscopic) images takes [Formula: see text] 60 ms, which is within the fluoroscopic image acquisition rate of 15 Hz. By providing cardiologists with better visual guidance in PCI, the proposed spatiotemporal image registration method is shown to be useful in advancing the guidewire to the coronary vessel branches, especially those difficult to insert into.

  10. Video dosimetry: evaluation of X-radiation dose by video fluoroscopic image

    International Nuclear Information System (INIS)

    Nova, Joao Luiz Leocadio da; Lopes, Ricardo Tadeu

    1996-01-01

    A new methodology to evaluate the entrance surface dose on patients under radiodiagnosis is presented. A phantom is used in video fluoroscopic procedures in on line video signal system. The images are obtained from a Siemens Polymat 50 and are digitalized. The results show that the entrance surface dose can be obtained in real time from video imaging

  11. Objective masurement of image quality in fluoroscopic x-ray equipment FluoroQuality

    CERN Document Server

    Tapiovaara, M

    2003-01-01

    The report describes FluoroQuality, a computer program that is developed in STUK and used for measuring the image quality in medical fluoroscopic equipment. The method is based on the statistical decision theory (SDT) and the main measurement result is given in terms of the accumulation rate of the signal-to-noise ratio squared (SNR sup 2 sub r sub a sub t sub e). In addition to this quantity several other quantities are measured. These quantities include the SNR of single image frames, the spatio-temporal noise power spectrum and the temporal lag. The measurement method can be used, for example, for specifying the image quality in fluoroscopic images, for optimising the image quality and dose rate in fluoroscopy and for quality control of fluoroscopic equipment. The theory behind the measurement method is reviewed and the measurement of the various quantities is explained. An example of using the method for optimising a specified fluoroscopic procedure is given. The User's Manual of the program is included a...

  12. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  13. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    Science.gov (United States)

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Echocardiographic and Fluoroscopic Fusion Imaging for Procedural Guidance: An Overview and Early Clinical Experience.

    Science.gov (United States)

    Thaden, Jeremy J; Sanon, Saurabh; Geske, Jeffrey B; Eleid, Mackram F; Nijhof, Niels; Malouf, Joseph F; Rihal, Charanjit S; Bruce, Charles J

    2016-06-01

    There has been significant growth in the volume and complexity of percutaneous structural heart procedures in the past decade. Increasing procedural complexity and accompanying reliance on multimodality imaging have fueled the development of fusion imaging to facilitate procedural guidance. The first clinically available system capable of echocardiographic and fluoroscopic fusion for real-time guidance of structural heart procedures was approved by the US Food and Drug Administration in 2012. Echocardiographic-fluoroscopic fusion imaging combines the precise catheter and device visualization of fluoroscopy with the soft tissue anatomy and color flow Doppler information afforded by echocardiography in a single image. This allows the interventionalist to perform precise catheter manipulations under fluoroscopy guidance while visualizing critical tissue anatomy provided by echocardiography. However, there are few data available addressing this technology's strengths and limitations in routine clinical practice. The authors provide a critical review of currently available echocardiographic-fluoroscopic fusion imaging for guidance of structural heart interventions to highlight its strengths, limitations, and potential clinical applications and to guide further research into value of this emerging technology. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  15. Scale-space for empty catheter segmentation in PCI fluoroscopic images.

    Science.gov (United States)

    Bacchuwar, Ketan; Cousty, Jean; Vaillant, Régis; Najman, Laurent

    2017-07-01

    In this article, we present a method for empty guiding catheter segmentation in fluoroscopic X-ray images. The guiding catheter, being a commonly visible landmark, its segmentation is an important and a difficult brick for Percutaneous Coronary Intervention (PCI) procedure modeling. In number of clinical situations, the catheter is empty and appears as a low contrasted structure with two parallel and partially disconnected edges. To segment it, we work on the level-set scale-space of image, the min tree, to extract curve blobs. We then propose a novel structural scale-space, a hierarchy built on these curve blobs. The deep connected component, i.e. the cluster of curve blobs on this hierarchy, that maximizes the likelihood to be an empty catheter is retained as final segmentation. We evaluate the performance of the algorithm on a database of 1250 fluoroscopic images from 6 patients. As a result, we obtain very good qualitative and quantitative segmentation performance, with mean precision and recall of 80.48 and 63.04% respectively. We develop a novel structural scale-space to segment a structured object, the empty catheter, in challenging situations where the information content is very sparse in the images. Fully-automatic empty catheter segmentation in X-ray fluoroscopic images is an important and preliminary step in PCI procedure modeling, as it aids in tagging the arrival and removal location of other interventional tools.

  16. Fluoroscopic dose reduction by acquisition frame rate reduction and image processing

    International Nuclear Information System (INIS)

    Fritz, S.L.; Mirvis, S.E.; Pals, S.O.

    1986-01-01

    A new design for fluoroscopic exposure reduction incorporates pulsed x-ray exposure, progressive scan video acquisition at frame rates below 30 Hz, interlaced video display at 30 Hz, and a video rate image processing. To evaluate this design, a variety of phantom systems have been developed to measure the impact of low frame rate pulsed digital fluoroscopy on the performance of several clinical tasks (e.g., catheter placement). The authors are currently using these phantoms with a digital fluoroscopy system using continuous x-ray, interlaced video acquisition and variable acquisition frame rate. The design of their target digital fluoroscopic system, sample image sequences, and the results of some preliminary phantom studies are reported

  17. A digital fluoroscopic imaging system for verification during external beam radiotherapy

    International Nuclear Information System (INIS)

    Takai, Michikatsu

    1990-01-01

    A digital fluoroscopic (DF) imaging system has been constructed to obtain portal images for verification during external beam radiotherapy. The imaging device consists of a fluorescent screen viewed by a highly sensitive video camera through a mirror. The video signal is digitized and processed by an image processor which is linked on-line with a host microcomputer. The image quality of the DF system was compared with that of film for portal images of the Burger phantom and the Alderson anthropomorphic phantom using 10 MV X-rays. Contrast resolution of the DF image integrated for 8.5 sec. was superior to the film resolution, while spatial resolution was slightly inferior. The DF image of the Alderson phantom processed by the adaptive histogram equalization was better in showing anatomical landmarks than the film portal image. The DF image integrated for 1 sec. which is used for movie mode can show patient movement during treatment. (author)

  18. Automatic brightness control algorithms and their effect on fluoroscopic imaging

    International Nuclear Information System (INIS)

    Quinn, P.W.; Gagne, R.M.

    1989-01-01

    This paper reports a computer model used to investigate the effect on dose and image quality of three automatic brightness control (ABC) algorithms used in the imaging of barium during general-purpose fluoroscopy. A model incorporating all aspects of image formation - i.e., x- ray production, phantom attenuation, and energy absorption in the CSI phosphor - was driven according to each ABC algorithm as a function of patient thickness. The energy absorbed in the phosphor was kept constant, while the changes in exposure, integral dose, organ dose, and contrast were monitored

  19. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... or patients with claustrophobia. Other MRI machines are open on the sides (open MRI). Open units are especially helpful for examining larger patients or those with claustrophobia. Newer open MRI units provide very high quality images for ...

  2. Clinical comparison between 100 mm photofluorography and digital (1024/sup 2/) fluoroscopic image acquisition

    International Nuclear Information System (INIS)

    Hynes, D.M.; Edmonds, E.W.; Rowlands, J.A.; Porter, A.J.; Toth, B.D.

    1986-01-01

    The authors describe current work in progress in which a clinical image can be recorded on both 100-mm film and a 1,024/sup 2/ image store with the same exposure. The 100-mm film is exposed in the usual manner. However, the same radiation exposure is utilized by the optics of the beam splitter to transfer the output image of the intensifier into a 1,024/sup 2/ image store and thence to hard copy by multiformat camera or laser printer. Comparative phantom and clinical images will be presented, along with observations on dose rates needed for diagnostic digital imaging. Use of this system may allow fluoroscopic dose rates to be reduced

  3. MRI: Imaging of stomach

    International Nuclear Information System (INIS)

    Lam, W. W. M; Lee, J. S. W.; Ho, G.

    2007-01-01

    Full text: The study is to determine the optimal MRI bowel preparation regime for visualization of the stomach anatomy, Eight healthy volunteers were asked to take water, 75% barium and blueberry juice. The image quality and tolerance of different stomach distension regime were evaluated. Blueberry juice gave the best distension, but the signal intensity was not very homogeneous. Taking into account the image quality, tolerability and adverse effects, it is concluded that water is the most desirable oral contrast for MR stomach imaging

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... to a CD or uploaded to a digital cloud server. Currently, MRI is the most sensitive imaging ... over time. top of page What are the benefits vs. risks? Benefits MRI is a noninvasive imaging ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... claustrophobia. Newer open MRI units provide very high quality images for many types of exams. Older open MRI units may not provide this same image quality. Certain types of exams cannot be performed using ...

  6. Characterization of a high-elbow, fluoroscopic electronic portal imaging device for portal dosimetry

    International Nuclear Information System (INIS)

    Boer, J.C.J. de; Visser, A.G.

    2000-01-01

    The application of a newly developed fluoroscopic (CCD-camera based) electronic portal imaging device (EPID) in portal dosimetry is investigated. A description of the EPID response to dose is presented in terms of stability, linearity and optical cross-talk inside the mechanical structure. The EPID has a relatively large distance (41 cm on-axis) between the fluorescent screen and the mirror (high-elbow), which results in cross-talk with properties quite different from that of the low-elbow fluoroscopic EPIDs that have been studied in the literature. In contrast with low-elbow systems, the maximum cross-talk is observed for points of the fluorescent screen that have the largest distance to the mirror, which is explained from the geometry of the system. An algorithm to convert the images of the EPID into portal dose images (PDIs) is presented. The correction applied for cross-talk is a position-dependent additive operation on the EPID image pixel values, with a magnitude that depends on a calculated effective field width. Deconvolution with a point spread function, as applied for low-elbow systems, is not required. For a 25 MV beam, EPID PDIs and ionization chamber measurements in the EPID detector plane were obtained behind an anthropomorphic phantom and a homogeneous absorber for various field shapes. The difference in absolute dose between the EPID and ionization chamber measurements, averaged over the four test fields presented in this paper, was 0.1±0.5% (1 SD) over the entire irradiation field, with no deviation larger than 2%. (author)

  7. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    Science.gov (United States)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a few types. ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings ... tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, radiofrequency pulses re-align hydrogen atoms that ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... room. In addition to affecting the MRI images, these objects can become projectiles within the MRI scanner ... may cause you and/or others nearby harm. These items include: jewelry, watches, credit cards and hearing ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... contrast for an MRI. If you have a history of kidney disease or liver transplant, it will ... claustrophobia. Newer open MRI units provide very high quality images for many types of exams. Older open ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging ( ... brain) in routine clinical practice. top of page What are some common uses of the procedure? MR ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ... MRI an invaluable tool in early diagnosis and evaluation of many conditions, including tumors. MRI enables the ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... or headphones during the exam. MRI scanners are air-conditioned and well-lit. Music may be played ... the limitations of MRI of the Head? High-quality images are assured only if you are able ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... used in tattoos may contain iron and could heat up during an MRI scan, but this is ... imaging based on the electrical activity of the heart, such as electrocardiography (EKG). MRI generally is not ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits MRI is a noninvasive imaging technique that ... than 30 minutes from the onset of symptoms. Risks The MRI examination poses almost no risk to ...

  18. Estimation of lung shunt fraction from simultaneous fluoroscopic and nuclear images

    Science.gov (United States)

    van der Velden, Sandra; Bastiaannet, Remco; Braat, Arthur J. A. T.; Lam, Marnix G. E. H.; Viergever, Max A.; de Jong, Hugo W. A. M.

    2017-11-01

    Radioembolisation with yttrium-90 (90Y) is increasingly used as a treatment of unresectable liver malignancies. For safety, a scout dose of technetium-99m macroaggregated albumin (99mTc-MAA) is used prior to the delivery of the therapeutic activity to mimic the deposition of 90Y. One-day procedures are currently limited by the lack of nuclear images in the intervention room. To cope with this limitation, an interventional simultaneous fluoroscopic and nuclear imaging device is currently being developed. The purpose of this simulation study was to evaluate the accuracy of estimating the lung shunt fraction (LSF) of the scout dose in the intervention room with this device and compare it against current clinical methods. Methods: A male and female XCAT phantom, both with two respiratory profiles, were used to simulate various LSFs resulting from a scout dose of 150 MBq 99mTc-MAA. Hybrid images were Monte Carlo simulated for breath-hold (5 s) and dynamic breathing (10 frames of 0.5 s) acquisitions. Nuclear images were corrected for attenuation with the fluoroscopic image and for organ overlap effects using a pre-treatment CT-scan. For comparison purposes, planar scintigraphy and mobile gamma camera images (both 300 s acquisition time) were simulated. Estimated LSFs were evaluated for all methods and compared to the phantom ground truth. Results: In the clinically relevant range of 10-20% LSF, hybrid imaging overestimated LSF with approximately 2 percentage points (pp) and 3 pp for the normal and irregular breathing phantoms, respectively. After organ overlap correction, LSF was estimated with a more constant error. Errors in planar scintigraphy and mobile gamma camera imaging were more dependent on LSF, body shape and breathing profile. Conclusion: LSF can be estimated with a constant minor error with a hybrid imaging device. Estimated LSF is highly dependent on true LSF, body shape and breathing pattern when estimated with current clinical methods. The hybrid

  19. MRI of persistent cloaca: Can it substitute conventional imaging?

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Shaimaa Abdelsattar, E-mail: shaimaa96@hotmail.com [Department of Radiodiagnosis, Faculty of Medicine, Ain-Shams University (Egypt); AbouZeid, Amr Abdelhamid, E-mail: amrabdelhamid@hotmail.com [Department of Pediatric Surgery, Faculty of Medicine, Ain-Shams University (Egypt)

    2013-02-15

    Purpose: To define the role of MRI in the preoperative assessment of patients with persistent cloaca and whether it can substitute other imaging modalities. Methods: We prospectively examined eleven patients with persistent cloaca between July 2007 and March 2012. Non contrast MRI examinations were performed on 1.5 T magnet using head coil. Multiple pulse sequences (T1WI, T2WI, fat suppression) were obtained in axial, sagittal and coronal planes of the pelvis, abdomen, and spine. The scans were reviewed for the following: the level and type of rectal termination, the developmental state of striated muscle complex (SMC), associated genitourinary and spinal anomalies. MRI findings were compared to conventional fluoroscopic imaging, operative and endoscopic findings. We applied novel MRI parameters (urethral length, relative hiatal distance and vaginal volume). The relation between different parameters was tested statistically using Pearson correlation test. Results: MRI could accurately demonstrate the level of bowel termination in patients with persistent cloaca, in addition to its high sensitivity for detection of mullerian anomalies which were present in 73% of patients. Furthermore, MRI could disclose associating renal and spinal anomalies, and assess the developmental state of SMC. The shorter the urethra (higher urogenital confluence), the narrower the pelvic hiatus, and the more was the obstruction (vaginal distension). Conclusion: MRI is a valuable tool in exploring the different internal anatomical features of the cloacal anomaly; and when combined with endoscopy, MRI can make other preoperative conventional imaging unnecessary.

  20. Evaluation of methods to produce an image library for automatic patient model localization for dose mapping during fluoroscopically guided procedures

    Science.gov (United States)

    Kilian-Meneghin, Josh; Xiong, Z.; Rudin, S.; Oines, A.; Bednarek, D. R.

    2017-03-01

    The purpose of this work is to evaluate methods for producing a library of 2D-radiographic images to be correlated to clinical images obtained during a fluoroscopically-guided procedure for automated patient-model localization. The localization algorithm will be used to improve the accuracy of the skin-dose map superimposed on the 3D patient- model of the real-time Dose-Tracking-System (DTS). For the library, 2D images were generated from CT datasets of the SK-150 anthropomorphic phantom using two methods: Schmid's 3D-visualization tool and Plastimatch's digitally-reconstructed-radiograph (DRR) code. Those images, as well as a standard 2D-radiographic image, were correlated to a 2D-fluoroscopic image of a phantom, which represented the clinical-fluoroscopic image, using the Corr2 function in Matlab. The Corr2 function takes two images and outputs the relative correlation between them, which is fed into the localization algorithm. Higher correlation means better alignment of the 3D patient-model with the patient image. In this instance, it was determined that the localization algorithm will succeed when Corr2 returns a correlation of at least 50%. The 3D-visualization tool images returned 55-80% correlation relative to the fluoroscopic-image, which was comparable to the correlation for the radiograph. The DRR images returned 61-90% correlation, again comparable to the radiograph. Both methods prove to be sufficient for the localization algorithm and can be produced quickly; however, the DRR method produces more accurate grey-levels. Using the DRR code, a library at varying angles can be produced for the localization algorithm.

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Magnetic Resonance Imaging (MRI) procedure View ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the scheduler before the exam and bring ... Image Gallery Magnetic Resonance Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests ...

  3. Effects of intra-operative fluoroscopic 3D-imaging on peri-operative imaging strategy in calcaneal fracture surgery.

    Science.gov (United States)

    Beerekamp, M S H; Backes, M; Schep, N W L; Ubbink, D T; Luitse, J S; Schepers, T; Goslings, J C

    2017-12-01

    Previous studies demonstrated that intra-operative fluoroscopic 3D-imaging (3D-imaging) in calcaneal fracture surgery is promising to prevent revision surgery and save costs. However, these studies limited their focus to corrections performed after 3D-imaging, thereby neglecting corrections after intra-operative fluoroscopic 2D-imaging (2D-imaging). The aim of this study was to assess the effects of additional 3D-imaging on intra-operative corrections, peri-operative imaging used, and patient-relevant outcomes compared to 2D-imaging alone. In this before-after study, data of adult patients who underwent open reduction and internal fixation (ORIF) of a calcaneal fracture between 2000 and 2014 in our level-I Trauma center were collected. 3D-imaging (BV Pulsera with 3D-RX, Philips Healthcare, Best, The Netherlands) was available as of 2007 at the surgeons' discretion. Patient and fracture characteristics, peri-operative imaging, intra-operative corrections and patient-relevant outcomes were collected from the hospital databases. Patients in whom additional 3D-imaging was applied were compared to those undergoing 2D-imaging alone. A total of 231 patients were included of whom 107 (46%) were operated with the use of 3D-imaging. No significant differences were found in baseline characteristics. The median duration of surgery was significantly longer when using 3D-imaging (2:08 vs. 1:54 h; p = 0.002). Corrections after additional 3D-imaging were performed in 53% of the patients. However, significantly fewer corrections were made after 2D-imaging when 3D-imaging was available (Risk difference (RD) -15%; 95% Confidence interval (CI) -29 to -2). Peri-operative imaging, besides intra-operative 3D-imaging, and patient-relevant outcomes were similar between groups. Intra-operative 3D-imaging provides additional information resulting in additional corrections. Moreover, 3D-imaging probably changed the surgeons' attitude to rely more on 3D-imaging, hence a 15%-decrease of

  4. Discrepancy between fluoroscopic arthrography and magnetic resonance arthrography in patients with arthroscopically confirmed supraspinatus tendon tears: The additional benefit of cine fluoroscopic arthrography images

    International Nuclear Information System (INIS)

    Hahn, Seok; Lee, Young Han; Suh, Jin Suck

    2016-01-01

    To determine the additional diagnostic benefits of fluoroscopic arthrography (FA) in patients with full-thickness supraspinatus tendon (SST) tears by comparing FA images with magnetic resonance arthrography (MRA) images. This study included FA and MRA images of 53 patients who were confirmed to have full-thickness SST tears by arthroscopy. In the FA analysis, the presence of contrast leakage into the subacromial-subdeltoid bursa was recorded. In the MRA analysis, contrast leakage, retraction of a torn tendon, width and length of the tear, and supraspinatus atrophy were evaluated. Patients were divided into the concordant group or the discordant group based on the presence of contrast leakage to compare the characteristics of SST tears. We used Fisher's exact test and two-sample t-test for the comparison. Of the 53 patients, 34 were included in the concordant group and 19 were included in the discordant group. In the concordant group, the grades of retraction were higher than those in the discordant group; the width and length of the tears were larger. Muscle atrophy was more severe in the concordant group. A full-thickness SST tear did not always exhibit contrast leakage on FA, particularly small SST tears or tears with low-grade retraction. FA can provide diagnostic information regarding the severity of full-thickness SST tears by itself

  5. Discrepancy between fluoroscopic arthrography and magnetic resonance arthrography in patients with arthroscopically confirmed supraspinatus tendon tears: The additional benefit of cine fluoroscopic arthrography images

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Seok; Lee, Young Han; Suh, Jin Suck [Dept. Radiology, Research Institute of Radiological Science, Medical Convergence Research Institute, and Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    To determine the additional diagnostic benefits of fluoroscopic arthrography (FA) in patients with full-thickness supraspinatus tendon (SST) tears by comparing FA images with magnetic resonance arthrography (MRA) images. This study included FA and MRA images of 53 patients who were confirmed to have full-thickness SST tears by arthroscopy. In the FA analysis, the presence of contrast leakage into the subacromial-subdeltoid bursa was recorded. In the MRA analysis, contrast leakage, retraction of a torn tendon, width and length of the tear, and supraspinatus atrophy were evaluated. Patients were divided into the concordant group or the discordant group based on the presence of contrast leakage to compare the characteristics of SST tears. We used Fisher's exact test and two-sample t-test for the comparison. Of the 53 patients, 34 were included in the concordant group and 19 were included in the discordant group. In the concordant group, the grades of retraction were higher than those in the discordant group; the width and length of the tears were larger. Muscle atrophy was more severe in the concordant group. A full-thickness SST tear did not always exhibit contrast leakage on FA, particularly small SST tears or tears with low-grade retraction. FA can provide diagnostic information regarding the severity of full-thickness SST tears by itself.

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... can also provide functional information (fMRI) in selected cases. MR images of the brain and other cranial structures are clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in early diagnosis and evaluation of many conditions, ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... six weeks) before being safe for MRI examinations. Examples include but are not limited to: artificial heart ... the area to be imaged. Furthermore, the examination takes longer than other imaging modalities (typically x-ray ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Most MRI exams are painless. However, some patients find it uncomfortable to remain still during MR imaging. ... anxious, confused or in severe pain, you may find it difficult to lie still during imaging. A ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... by the interpreting radiologist. Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are clearer and more detailed than other imaging methods. This exam does not use ionizing radiation and ... clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... other imaging methods. This exam does not use ionizing radiation and may require an injection of a contrast ... other internal body structures. MRI does not use ionizing radiation (x-rays). Detailed MR images allow physicians to ...

  14. Fluoroscopic digital radiography

    International Nuclear Information System (INIS)

    Hynes, D.M.; Rowlands, J.A.; Edmonds, E.W.; Porter, A.J.; Toth, B.D.

    1987-01-01

    The authors have been working with three different developmental systems, exploring the clinical benefits of digital recording of the fluoroscopic image. This educational exhibit describes the components of such systems and emphasizes the strengths and weaknesses of each. Specific technical reference is made to the image intensifier, TV camera, 1,024/sup 2/ image store, hard copy devices, and the mechanics of operation in the general fluoroscopic environment. All observations indicate that the problems of resolution, motion blur, noise, field size, and dose can be solved. The findings are supported by clinical examples

  15. Fluoroscopic-guided radiofrequency ablation of the basivertebral nerve: application and analysis with multiple imaging modalities in an ovine model (Invited Paper)

    Science.gov (United States)

    Bergeron, Jeffrey A.; Eskey, Cliff J.; Attawia, Mohammed; Patel, Samit J.; Ryan, Thomas P.; Pellegrino, Richard; Sutton, Jeffrey; Crombie, John; Paul, B. T.; Hoopes, P. J.

    2005-04-01

    Pathologic involvement of the basivertebral nerve, an intraosseous vertebral nerve found in humans and most mammalian species, may play a role in some forms of back pain. This study was designed to assess the feasibility and effects of the percutaneous delivery of radiofrequency (RF) energy to thermally ablate the basivertebral nerve in the lumbar vertebrae of mature sheep. Using fluoroscopic guidance, a RF bipolar device was placed and a thermal dose delivered to lumbar vertebral bodies in sheep. Post-treatment assessment included multiple magnetic resonance imaging (MRI) techniques and computed tomography (CT). These data were analyzed and correlated to histopathology and morphometry findings to describe the cellular and boney structural changes resulting from the treatment. Imaging modalities MRI and CT can be implemented to non-invasively describe treatment region and volume, marrow cellular effects, and bone density alterations immediately following RF treatment and during convalescence. Such imaging can be utilized to assess treatment effects and refine the thermal dose to vertebral body volume ratio used in treatment planning. This information will be used to improve the therapeutic ratio and develop a treatment protocol for human applications.

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... fitting and has no metal fasteners. Guidelines about eating and drinking before an MRI exam vary with the specific exam and with the imaging facility. Unless you are told otherwise, you may follow your regular daily routine and take food and medications as usual. Some MRI examinations may ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a few types. People with the ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... absolutely necessary for medical treatment. See the MRI Safety page for more information about pregnancy and MRI. ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI can detect stroke at a very early stage by mapping the motion of water molecules in ... is because traction devices and many types of life support equipment may distort the MR images and ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam ... and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... the exam. MRI scanners are air-conditioned and well-lit. Music may be played through the headphones ... full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metallic items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings ... and send a signed report to your primary care or referring physician, who will share the results ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a risk, depending on their nature and the strength of the MRI magnet. Many implanted devices will ... full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... tissue from which they come. The MR scanner captures this energy and creates a picture of the ... imaging based on the electrical activity of the heart, such as electrocardiography (EKG). MRI generally is not ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it may cause some medical devices to malfunction. Most orthopedic implants pose no risk, but you should ... a digital cloud server. Currently, MRI is the most sensitive imaging test of the head (particularly the ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... and may add approximately 15 minutes to the total exam time. top of page What will I ... the limitations of MRI of the Head? High-quality images are assured only if you are able ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... distort images of the facial area or brain, so you should let the radiologist know about them. ... MRI units, called short-bore systems , are designed so that the magnet does not completely surround you. ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... to a CD or uploaded to a digital cloud server. Currently, MRI is the most sensitive imaging ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... an MRI scan, but this is rare. Tooth fillings and braces usually are not affected by the magnetic field, but they may distort images of the facial area or brain, so you should let the ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a CD or uploaded to a digital cloud server. Currently, MRI is the most sensitive imaging test ... understanding of the possible charges you will incur. Web page review process: This Web page is reviewed ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... others nearby harm. These items include: jewelry, watches, credit cards and hearing aids, all of which can ... top of page What are the benefits vs. risks? Benefits MRI is a noninvasive imaging technique that ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... to produce detailed pictures of organs, soft tissues, bone and virtually all other internal body structures. MRI ... discovery of abnormalities that might be obscured by bone with other imaging methods. The contrast material used ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... top of page Additional Information and Resources RTAnswers.org : Radiation Therapy for Brain Tumors Radiation Therapy for ... Imaging (MRI) - Head Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... used in tattoos may contain iron and could heat up during an MRI scan, but this is ... called MR angiography (MRA) provides detailed images of blood vessels in the brain—often without the need ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... On very rare occasions, a few patients experience side effects from the contrast material, including nausea, headache and ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Examples include but are not limited to: artificial heart valves implanted drug infusion ports artificial limbs or ... imaging based on the electrical activity of the heart, such as electrocardiography (EKG). MRI generally is not ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI) procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of the brain and other cranial structures are clearer and more detailed than with other ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... tissue and fluid, known as edema . MRI typically costs more and may take more time to perform ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI. For more information, consult your radiologist. The computer workstation that processes the imaging information is located ... not come in contact with the patient. A computer then processes the signals and generates a series ...

  4. Selecting appropriate gastroenteric contrast media for diagnostic fluoroscopic imaging in infants and children: a practical approach.

    Science.gov (United States)

    Callahan, Michael J; Talmadge, Jennifer M; MacDougall, Robert D; Kleinman, Patricia L; Taylor, George A; Buonomo, Carlo

    2017-04-01

    In our experience, questions about the appropriate use of enteric contrast media for pediatric fluoroscopic studies are common. The purpose of this article is to provide a comprehensive review of enteric contrast media used for pediatric fluoroscopy, highlighting the routine use of these media at a large tertiary care pediatric teaching hospital.

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... information please consult the ACR Manual on Contrast Media and its references. top of page What are the limitations of MRI of the Head? High-quality images are assured only if you are able to ...

  7. Magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Takavar A

    1993-04-01

    Full Text Available Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I, a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D. factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  8. Magnetic resonance imaging (MRI)

    OpenAIRE

    Takavar A

    1993-01-01

    Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  9. SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Shiinoki, T; Shibuya, K [Yamaguchi University, Ube, Yamaguchi (Japan); Sawada, A [Kyoto college of medical science, Nantan, Kyoto (Japan); Uehara, T; Yuasa, Y; Koike, M; Kawamura, S [Yamaguchi University Hospital, Ube, Yamaguchi (Japan)

    2016-06-15

    Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: The colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template image matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the

  10. MRI imaging in pediatric appendicitis

    Directory of Open Access Journals (Sweden)

    Robin Riley

    2018-04-01

    Full Text Available An 8-year-old male presents with two days of abdominal pain and emesis. Computed tomography was concerning for obstruction or reactive ileus with an apparent transition point in the right lower quadrant, possibly due to Crohn's. Magnetic resonance imaging was concerning for perforated appendicitis. As demonstrated by this case MRI can be as sensitive as CT in detecting pediatric appendicitis [2]. We recommend using MRI instead of CT to diagnose appendicitis to avoid ionizing radiation and increased cancer risk in the pediatric population. Keywords: Computer tomography, Magnetic resonance imaging, Pediatric appendicitis

  11. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D [University at Buffalo (SUNY) School of Med., Buffalo, NY (United States)

    2016-06-15

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.

  12. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    International Nuclear Information System (INIS)

    Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D

    2016-01-01

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.

  13. SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models

    International Nuclear Information System (INIS)

    Dhou, S; Hurwitz, M; Lewis, J; Mishra, P

    2014-01-01

    Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT

  14. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... types of clips used for brain aneurysms some types of metal coils placed within blood vessels nearly all cardiac defibrillators and pacemakers You ... called MR angiography (MRA) provides detailed images of blood vessels in the ... the opening of certain types of MRI machines. The presence of an implant ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... provides detailed images of blood vessels in the brain—often without the need for contrast material. See the MRA page for more information. MRI can detect stroke at a very early stage by mapping the motion of water molecules in the tissue. ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... internal body structures. MRI does not use ionizing radiation (x-rays). Detailed MR images allow physicians to evaluate various ... kind, such as an allergy to iodine or x-ray contrast material, drugs, food, or the environment, or ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... very early stage by mapping the motion of water molecules in the tissue. This water motion, known as diffusion, is impaired by most ... the limitations of MRI of the Head? High-quality images are assured only if you are able ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... body structures. MRI does not use ionizing radiation (x-rays). Detailed MR images allow physicians to evaluate various ... kind, such as an allergy to iodine or x-ray contrast material, drugs, food, or the environment, or ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... the equipment look like? How does the procedure work? How is the ... use to diagnose medical conditions. MRI uses a powerful magnetic field, radio frequency ...

  1. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering.

    Science.gov (United States)

    den Boer, A; de Feyter, P J; Hummel, W A; Keane, D; Roelandt, J R

    1994-06-01

    Radiographic technology plays an integral role in interventional cardiology. The number of interventions continues to increase, and the associated radiation exposure to patients and personnel is of major concern. This study was undertaken to determine whether a newly developed x-ray tube deploying grid-switched pulsed fluoroscopy and extra beam filtering can achieve a reduction in radiation exposure while maintaining fluoroscopic images of high quality. Three fluoroscopic techniques were compared: continuous fluoroscopy, pulsed fluoroscopy, and a newly developed high-output pulsed fluoroscopy with extra filtering. To ascertain differences in the quality of images and to determine differences in patient entrance and investigator radiation exposure, the radiated volume curve was measured to determine the required high voltage levels (kVpeak) for different object sizes for each fluoroscopic mode. The fluoroscopic data of 124 patient procedures were combined. The data were analyzed for radiographic projections, image intensifier field size, and x-ray tube kilovoltage levels (kVpeak). On the basis of this analysis, a reference procedure was constructed. The reference procedure was tested on a phantom or dummy patient by all three fluoroscopic modes. The phantom was so designed that the kilovoltage requirements for each projection were comparable to those needed for the average patient. Radiation exposure of the operator and patient was measured during each mode. The patient entrance dose was measured in air, and the operator dose was measured by 18 dosimeters on a dummy operator. Pulsed compared with continuous fluoroscopy could be performed with improved image quality at lower kilovoltages. The patient entrance dose was reduced by 21% and the operator dose by 54%. High-output pulsed fluoroscopy with extra beam filtering compared with continuous fluoroscopy improved the image quality, lowered the kilovoltage requirements, and reduced the patient entrance dose by 55% and

  2. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    Science.gov (United States)

    ... to a CD or uploaded to a digital cloud server. Dynamic pelvic floor MRI provides detailed pictures ... with you. top of page What are the benefits vs. risks? Benefits MRI is a noninvasive imaging ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... does not completely surround you. Some newer MRI machines have a larger diameter bore which can be ... size patients or patients with claustrophobia. Other MRI machines are open on the sides (open MRI). Open ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... in the first three to four months of pregnancy unless the potential benefit from the MRI exam ... the MRI Safety page for more information about pregnancy and MRI. If you have claustrophobia (fear of ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... information on the chemicals present in the body's cells, may also be performed during the MRI exam ... medically necessary. MRI may not always distinguish between cancer tissue and fluid, known as edema . MRI typically ...

  6. Brain Tumor Image Segmentation in MRI Image

    Science.gov (United States)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  7. Investigation of first ray mobility during gait by kinematic fluoroscopic imaging-a novel method

    Directory of Open Access Journals (Sweden)

    Martin Heiner

    2012-02-01

    Full Text Available Abstract Background It is often suggested that sagittal instability at the first tarso-metatarsal joint level is a primary factor for hallux valgus and that sagittal instability increases with the progression of the deformity. The assessment of the degree of vertical instability is usually made by clinical evaluation while any measurements mostly refer to a static assessment of medial ray mobility (i.e. the plantar/dorsal flexion in the sagittal plane. Testing methods currently available cannot attribute the degree of mobility to the corresponding anatomical joints making up the medial column of the foot. The aim of this study was to develop a technique which allows for a quantification of the in-vivo sagittal mobility of the joints of the medial foot column during the roll-over process under full weight bearing. Methods Mobility of first ray bones was investigated by dynamic distortion-free fluoroscopy (25 frames/s of 14 healthy volunteers and 8 patients with manifested clinical instability of the first ray. A CAD-based evaluation method allowed the determination of mobility and relative displacements and rotations of the first ray bones within the sagittal plane during the stance phase of gait. Results Total flexion of the first ray was found to be 13.63 (SD 6.14 mm with the healthy volunteers and 13.06 (SD 8.01 mm with the patients (resolution: 0.245 mm/pixel. The dorsiflexion angle was 5.27 (SD 2.34 degrees in the healthy volunteers and increased to 5.56 (SD 3.37 degrees in the patients. Maximum rotations were found at the naviculo-cuneiform joints and least at the first tarso-metatarsal joint level in both groups. Conclusions Dynamic fluoroscopic assessment has been shown to be a valuable tool for characterisation of the kinematics of the joints of the medial foot column during gait. A significant difference in first ray flexion and angular rotation between the patients and healthy volunteers however could not be found.

  8. Automatic Lumbar Vertebrae Segmentation in Fluoroscopic Images Via Optimised Concurrent Hough Transform

    National Research Council Canada - National Science Library

    Zheng, Yalin

    2001-01-01

    .... Digital videofluoroscopy (DVF) was widely used to obtain images for motion studies. This can provide motion sequences of the lumbar spine, but the images obtained often suffer due to noise, exacerbated by the very low radiation dosage...

  9. Detection of organ movement in cervix cancer patients using a fluoroscopic electronic portal imaging device and radiopaque markers

    International Nuclear Information System (INIS)

    Kaatee, Robert S.J.P.; Olofsen, Manouk J.J.; Verstraate, Marjolein B.J.; Quint, Sandra; Heijmen, Ben J.M.

    2002-01-01

    Purpose: To investigate the use of a fluoroscopic electronic portal imaging device (EPID) and radiopaque markers to detect internal cervix movement. Methods and Materials: For 10 patients with radiopaque markers clamped to the cervix, electronic portal images were made during external beam irradiation. Bony structures and markers in the portal images were registered with the same structures in the corresponding digitally reconstructed radiographs of the planning computed tomogram. Results: The visibility of the markers in the portal images was good, but their fixation should be improved. Generally, the correlation between bony structure displacements and marker movement was poor, the latter being substantially larger. The standard deviations describing the systematic and random bony anatomy displacements were 1.2 and 2.6 mm, 1.7 and 2.9 mm, and 1.6 and 2.7 mm in the lateral, cranial-caudal, and dorsal-ventral directions, respectively. For the marker movement those values were 3.4 and 3.4 mm, 4.3 and 5.2 mm, 3.2 and 5.2 mm, respectively. Estimated clinical target volume to planning target volume (CTV-PTV) planning margins (∼11 mm) based on the observed overall marker displacements (bony anatomy + internal cervix movement) are only marginally larger than the margins required to account for internal marker movement alone. Conclusions: With our current patient setup techniques and methods of setup verification and correction, the required CTV-PTV margins are almost fully determined by internal organ motion. Setup verification and correction using radiopaque markers might allow decreasing those margins, but technical improvements are needed

  10. Effect of a television digital noise reduction device on fluoroscopic image quality and dose rate

    International Nuclear Information System (INIS)

    Jaffe, C.C.; Orphanoudakis, S.C.; Ablow, R.C.

    1982-01-01

    In conventional fluoroscopy, the current, and therefore the dose rate, is usually determined by the level at which the radiologist visualizes a just tolerable amount of photon ''mottle'' on the video monitor. In this study, digital processing of the analogue video image reduced noise and generated a television image at half the usual exposure rate. The technique uses frame delay to compare an incoming frame with the preceding output frame. A first-order recursive filter implemented under a motion-detection scheme operates on the image of a point-by-point basis. This effective motion detection algorithm permits noise suppression without creating noticeable lag in moving structures. Eight radiologists evaluated images of vesicoureteral reflux in the pig for noise, contrast, resolution, and general image quality on a five-point preferential scale. They rated the digitally processed fluoroscopy images equivalent in diagnostic value to unprocessed images

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... interfere with the magnetic field of the MRI unit, metal and electronic items are not allowed in ... does the equipment look like? The traditional MRI unit is a large cylinder-shaped tube surrounded by ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... women should not have this exam in the first three to four months of pregnancy unless the ... not to have an MRI exam during the first trimester unless medically necessary. MRI may not always ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... conditions. MRI uses a powerful magnetic field, radio frequency pulses and a computer to produce detailed pictures ... may follow your regular daily routine and take food and medications as usual. Some MRI examinations may ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... used in MRI exams is less likely to produce an allergic reaction than the iodine-based contrast ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... medically necessary. MRI may not always distinguish between cancer tissue and fluid, known as edema . MRI typically ... Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association top ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... tissue and fluid, known as edema . MRI typically costs more and may take more time to perform ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI examination poses almost no risk to the average patient when appropriate safety guidelines are followed. If ... tissue and fluid, known as edema . MRI typically costs more and may take more time to perform ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... as severe kidney disease, may prevent you from being given gadolinium contrast for an MRI. If you ... of time after placement (usually six weeks) before being safe for MRI examinations. Examples include but are ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... This detail makes MRI an invaluable tool in early diagnosis and evaluation of many conditions, including tumors. ... information. MRI can detect stroke at a very early stage by mapping the motion of water molecules ...

  20. PET-MRI and multimodal cancer imaging

    International Nuclear Information System (INIS)

    Wang Taisong; Zhao Jinhua; Song Jianhua

    2011-01-01

    Multimodality imaging, specifically PET-CT, brought a new perspective into the fields of clinical imaging. Clinical cases have shown that PET-CT has great value in clinical diagnosis and experimental research. But PET-CT still bears some limitations. A major drawback is that CT provides only limited soft tissue contrast and exposes the patient to a significant radiation dose. MRI overcome these limitations, it has excellent soft tissue contrast, high temporal and spatial resolution and no radiation damage. Additionally, since MRI provides also functional information, PET-MRI will show a new direction of multimodality imaging in the future. (authors)

  1. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang

    2016-05-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info About Us News Physician ... absolutely necessary for medical treatment. See the MRI Safety page for more information about pregnancy and MRI. ...

  3. Imaging features of colovesical fistulae on MRI.

    Science.gov (United States)

    Tang, Y Z; Booth, T C; Swallow, D; Shahabuddin, K; Thomas, M; Hanbury, D; Chang, S; King, C

    2012-10-01

    MRI is routinely used in the investigation of colovesical fistulae at our institute. Several papers have alluded to its usefulness in achieving the diagnosis; however, there is a paucity of literature on its imaging findings. Our objective was to quantify the MRI characteristics of these fistulae. We selected all cases over a 4-year period with a final clinical diagnosis of colovesical fistula which had been investigated with MRI. The MRI scans were reviewed in a consensus fashion by two consultant uroradiologists. Their MRI features were quantified. There were 40 cases of colovesical fistulae. On MRI, the fistula morphology consistently fell into three patterns. The most common pattern (71%) demonstrated an intervening abscess between the bowel wall and bladder wall. The second pattern (15%) had a visible track between the affected bowel and bladder. The third pattern (13%) was a complete loss of fat plane between the affected bladder and bowel wall. MRI correctly determined the underlying aetiology in 63% of cases. MRI is a useful imaging modality in the diagnosis of colovesical fistulae. The fistulae appear to have three characteristic morphological patterns that may aid future diagnoses of colovesical fistulae. To the authors' knowledge, this is the first publication of the MRI findings in colovesical fistulae.

  4. Imaging brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus

    2018-01-01

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... told otherwise, take your regular medications as usual. Leave jewelry at home and wear loose, comfortable clothing. ... contrast material except when absolutely necessary for medical treatment. See the MRI Safety page for more information ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... any recent surgeries. Some conditions, such as severe kidney disease, may prevent you from being given gadolinium contrast ... an MRI. If you have a history of kidney disease or liver transplant, it will be necessary to ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... scans, MRI does not utilize ionizing radiation. Instead, radiofrequency pulses re-align hydrogen atoms that naturally exist ... thumping sounds when the coils that generate the radiofrequency pulses are activated. Some centers provide earplugs, while ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... tumors stroke infections developmental anomalies hydrocephalus — dilatation of fluid spaces within the brain (ventricles) causes of epilepsy ( ... may not always distinguish between cancer tissue and fluid, known as edema . MRI typically costs more and ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... the head (particularly the brain) in routine clinical practice. top of page What are some common uses ... gadolinium contrast material except when absolutely necessary for medical treatment. See the MRI Safety page for more ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... devices or metal in your body. Guidelines about eating and drinking before your exam vary between facilities. ... fitting and has no metal fasteners. Guidelines about eating and drinking before an MRI exam vary with ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... three to four months of pregnancy unless the potential benefit from the MRI exam is assumed to outweigh the potential risks. Pregnant women should not receive injections of ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... traditional MRI unit is a large cylinder-shaped tube surrounded by a circular magnet. You will lie ... your skin at the site of the IV tube insertion. Some patients may sense a temporary metallic ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metal in your body. Guidelines about eating and drinking before your exam vary between facilities. Unless you ... has no metal fasteners. Guidelines about eating and drinking before an MRI exam vary with the specific ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... not use ionizing radiation and may require an injection of a contrast material called gadolinium, which is ... MRI examinations may require you to receive an injection of contrast material into the bloodstream. The radiologist , ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... will be removed. MRI exams generally include multiple runs (sequences), some of which may last several minutes. ... top of page Who interprets the results and how do I get them? A radiologist, a physician ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... you should let the radiologist know about them. Parents or family members who accompany patients into the ... intercom. Many MRI centers allow a friend or parent to stay in the room as long as ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... will hear and feel loud tapping or thumping sounds when the coils that generate the radiofrequency pulses ... use headphones to reduce the intensity of the sounds made by the MRI machine. You may be ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... contrast for an MRI. If you have a history of kidney disease or liver transplant, it will ... are not limited to: artificial heart valves implanted drug infusion ports artificial limbs or metallic joint prostheses ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... take food and medications as usual. Some MRI examinations may require you to receive an injection of ... for a mild sedative prior to your scheduled examination. Jewelry and other accessories should be left at ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... stroke infections developmental anomalies hydrocephalus — dilatation of fluid spaces within the brain (ventricles) causes of epilepsy (seizure) ... MRI. If you have claustrophobia (fear of enclosed spaces) or anxiety, you may want to ask your ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... magnetic field of the MRI unit, metal and electronic items are not allowed in the exam room. ... tell the technologist if you have medical or electronic devices in your body. These objects may interfere ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... The magnetic field is produced by passing an electric current through wire coils in most MRI units. ... signals that are detected by the coils. The electric current does not come in contact with the ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... have any devices or metal in your body. Guidelines about eating and drinking before your exam vary ... is loose-fitting and has no metal fasteners. Guidelines about eating and drinking before an MRI exam ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... the head (particularly the brain) in routine clinical practice. top of page What are some common uses ... may follow your regular daily routine and take food and medications as usual. Some MRI examinations may ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... can help diagnose conditions such as: brain tumors stroke infections developmental anomalies hydrocephalus — dilatation of fluid spaces ... MRA page for more information. MRI can detect stroke at a very early stage by mapping the ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... procedure performed? MRI examinations may be performed on outpatients or inpatients. You will be positioned on the ... and send a signed report to your primary care or referring physician, who will share the results ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... about pregnancy and MRI. If you have claustrophobia (fear of enclosed spaces) or anxiety, you may want ... also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or headphones ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... used in tattoos may contain iron and could heat up during an MRI scan, but this is ... injection. If you do not require sedation, no recovery period is necessary. You may resume your usual ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI exam, a physician, nurse or technologist will insert an intravenous (IV) catheter, also known as an ... physicians with expertise in several radiologic areas. Outside links: For the convenience of our users, RadiologyInfo .org ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... you have any devices or metal in your body. Guidelines about eating and drinking before your exam ... soft tissues, bone and virtually all other internal body structures. MRI does not use ionizing radiation (x- ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI) of the head uses a powerful magnetic field, radio waves and a computer to produce detailed ... there’s a possibility you are pregnant. The magnetic field is not harmful, but it may cause some ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... their nature and the strength of the MRI magnet. Many implanted devices will have a pamphlet explaining ... large cylinder-shaped tube surrounded by a circular magnet. You will lie on a moveable examination table ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... allergies and whether there’s a possibility you are pregnant. The magnetic field is not harmful, but it ... if there is any possibility that they are pregnant. MRI has been used for scanning patients since ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... of many conditions, including tumors. MRI enables the discovery of abnormalities that might be obscured by bone ... Radiology (ACR) and the Radiological Society of North America (RSNA), comprising physicians with expertise in several radiologic ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help you pass the time. In some cases, intravenous injection of contrast material ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ... The contrast material used in MRI exams is less likely to produce an allergic reaction than the ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... detailed pictures of the brain and other cranial structures that are clearer and more detailed than other ... tissues, bone and virtually all other internal body structures. MRI does not use ionizing radiation (x-rays). ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... contrast for an MRI. If you have a history of kidney disease or liver transplant, it will ... and send a signed report to your primary care or referring physician, who will share the results ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... page Additional Information and Resources RTAnswers.org : Radiation Therapy for Brain Tumors Radiation Therapy for Head and ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... The magnetic field is produced by passing an electric current through wire coils in most MRI units. Other coils, located in the machine and in some cases, placed around the part ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... into the bloodstream. The radiologist , technologist or a nurse may ask if you have allergies of any ... be used in the MRI exam, a physician, nurse or technologist will insert an intravenous (IV) catheter, ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... may follow your regular daily routine and take food and medications as usual. Some MRI examinations may ... to iodine or x-ray contrast material, drugs, food, or the environment, or if you have asthma. ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... any recent surgeries. Some conditions, such as severe kidney disease, may prevent you from being given gadolinium ... an MRI. If you have a history of kidney disease or liver transplant, it will be necessary ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... your regular medications as usual. Leave jewelry at home and wear loose, comfortable clothing. You may be ... Jewelry and other accessories should be left at home, if possible, or removed prior to the MRI ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... contrast for an MRI. If you have a history of kidney disease or liver transplant, it will ... data suggest that it is safe to continue breastfeeding after receiving intravenous contrast. For further information please ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... used in tattoos may contain iron and could heat up during an MRI scan, but this is ... from the contrast material, including nausea, headache and pain at the site of injection. Similarly, patients are ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... contrast material in patients with very poor kidney function. Careful assessment of kidney function before considering a ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the scheduler before the exam and bring ... bore which can be more comfortable for larger size patients or patients with claustrophobia. Other MRI machines ...

  11. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy

    International Nuclear Information System (INIS)

    Tanaka, Rie; Ichikawa, Katsuhiro; Sanada, Sigeru; Mori, Shinichiro; Dobashi, Suguru; Kumagai, Motoki; Minohara, Shinichi; Kawashima, Hiroki

    2010-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). The purpose of this study was to address image lag in target tracking and its influence on the accuracy of tumor tracking. Fluoroscopic images were obtained using a direct type of dynamic FPD. Image lag properties were measured without test devices according to IEC 62220-1. Modulation transfer function (MTF) and profile curves were measured on the edges of a moving tungsten plate at movement rate of 10 and 20 mm/s, covering lung tumor movement of normal breathing. A lung tumor and metal sphere with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the image lag for the first frame after X-ray cutoff was 2.0% and decreased to less than 0.1% in the fifth frame. In the measurement of profile curves on the edges of static and moving tungsten material plates, the effect of image lag was seen as blurred edges of the plate. The blurred edges of a moving target were indicated as reduction of MTF. However, the target could be traced within an error of ±5 mm. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation. (author)

  12. Developments in boron magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Schweizer, M.

    1995-01-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain

  13. Image quality evaluation and patient dose assessment of medical fluoroscopic X-ray systems: A national study

    International Nuclear Information System (INIS)

    Economides, S.; Hourdakis, C. J.; Kalivas, N.; Kalathaki, M.; Simantirakis, G.; Tritakis, P.; Manousaridis, G.; Vogiatzi, S.; Kipouros, P.; Boziari, A.; Kamenopoulou, V.

    2008-01-01

    This study presents the results from a survey conducted by the Greek Atomic Energy Commission (GAEC), during the period 1998-2003, in 530 public and private owned fluoroscopic X-ray systems in Greece. Certain operational parameters for conventional and remote control systems were assessed, according to a quality control protocol developed by GAEC on the basis of the current literature. Public (91.5%) and private (81.5%) owned fluoroscopic units exhibit high-contrast resolution values over 1 lp mm -1 . Moreover, 88.5 and 87.1% of the fluoroscopic units installed in the public and private sector, respectively, present Maximum Patient Entrance Kerma Rate values lower than 100 mGy min -1 . Additionally, 68.3% of the units assessed were found to perform within the acceptance limits. Finally, the third quartile of the Entrance Surface Dose Rate distribution was estimated according to the Dose Reference Level definition and found equal to 35 mGy min -1 . (authors)

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... procedure work? How is the procedure performed? What will I experience during and after the procedure? Who interprets the results and how do I get them? What are the benefits vs. risks? What are the limitations of MRI ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... have allergies of any kind, such as an allergy to iodine or x-ray contrast material, drugs, food, or the environment, or if you have asthma. The contrast material most commonly used for an MRI exam contains a metal ... in patients with iodine contrast allergy. It is far less common for a patient ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or headphones during the exam. MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... to have an allergy to a gadolinium-based contrast agent used for MRI than the iodine-containing contrast ... more information on adverse reactions to gadolinium-based contrast agents, please consult the ACR Manual on Contrast Media . ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... which they come. The MR scanner captures this energy and creates a picture of the tissues scanned based on this information. The magnetic field is produced by passing an electric current through wire coils in most MRI units. ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... contrast for an MRI. If you have a history of kidney disease or liver transplant, it will be necessary to perform a blood test to determine whether the kidneys are functioning adequately. Women should always inform their physician or technologist if ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... able to see, hear and speak with you at all times using a two-way intercom. Many MRI centers allow a friend or parent to stay in the room as long as they are also screened for safety in the magnetic environment. Children will be given ...

  1. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery.

    Science.gov (United States)

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-08-01

    Joint fractures must be accurately reduced minimising soft tissue damages to avoid negative surgical outcomes. To this regard, we have developed the RAFS surgical system, which allows the percutaneous reduction of intra-articular fractures and provides intra-operative real-time 3D image guidance to the surgeon. Earlier experiments showed the effectiveness of the RAFS system on phantoms, but also key issues which precluded its use in a clinical application. This work proposes a redesign of the RAFS's navigation system overcoming the earlier version's issues, aiming to move the RAFS system into a surgical environment. The navigation system is improved through an image registration framework allowing the intra-operative registration between pre-operative CT images and intra-operative fluoroscopic images of a fractured bone using a custom-made fiducial marker. The objective of the registration is to estimate the relative pose between a bone fragment and an orthopaedic manipulation pin inserted into it intra-operatively. The actual pose of the bone fragment can be updated in real time using an optical tracker, enabling the image guidance. Experiments on phantom and cadavers demonstrated the accuracy and reliability of the registration framework, showing a reduction accuracy (sTRE) of about [Formula: see text] (phantom) and [Formula: see text] (cadavers). Four distal femur fractures were successfully reduced in cadaveric specimens using the improved navigation system and the RAFS system following the new clinical workflow (reduction error [Formula: see text], [Formula: see text]. Experiments showed the feasibility of the image registration framework. It was successfully integrated into the navigation system, allowing the use of the RAFS system in a realistic surgical application.

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... you! Do you have a personal story about radiology? Share your patient story here Images × Image Gallery ... reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of North America ( ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... imaging modalities. top of page Additional Information and Resources RTAnswers.org : Radiation Therapy for Brain Tumors Radiation ... To locate a medical imaging or radiation oncology provider in your community, you can search the ACR- ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... practice. top of page What are some common uses of the procedure? MR imaging of the head ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ... not provide cost information. The costs for specific medical imaging tests, treatments and procedures may vary by geographic ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... metallic objects. Patient movement can have the same effect. A very irregular heartbeat may affect the quality of images obtained using techniques that time the imaging based on the electrical activity of ...

  7. Actual imaging time in fetal MRI

    International Nuclear Information System (INIS)

    Brugger, Peter C.; Prayer, Daniela

    2012-01-01

    Objective: Safety issues in magnetic resonance imaging (MRI) are important, especially in fetal MRI. However, since basic data with respect of the effective exposure time in fetal MRI are not available, this study aimed to determine the actual imaging time during a fetal MRI study. Methods: 100 fetal MRI studies of singleton pregnancies performed on a 1.5 T system were analysed with respect to study duration (from starting the survey scan until the end of study), the number of sequences acquired, and the actual imaging time, which was calculated by adding up scan time of each sequence. Furthermore, each sequence type was analysed regarding the number of acquisitions, specific absorption rates (SAR), and duration. Results: Mean study duration was 34.6 min (range: 14–58 min; standard deviation (SD): 9.7 min), the average number of sequences acquired was 26.6 (range: 11–44, SD: 6.6). Actual scan time averaged 11.4 min (range: 4–19 min, SD: 4.0 min). Ultrafast T2-weighted and steady-state free-precession sequences accounted for 62.3% of actual scan time, and were distributed over the whole duration of the study. Conclusion: Actual imaging time only accounts for 33% of total study time and is not continuous. The remaining time is consumed by the preparation phases of the scanner, and is spent with planning sequences and the eventual repositioning of the coil and/or pregnant woman. These data may help to more accurately estimate the exposure to radiofrequency deposition and noise during fetal MRI studies.

  8. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Lumbar Spine KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Lumbar Spine What's in this article? ...

  9. Towards molecular imaging by means of MRI

    NARCIS (Netherlands)

    Norek, M.

    2008-01-01

    The work presented in the thesis is focused on the design of highly efficient contrast agents for molecular imaging by means of MRI based on the detailed physical characterization of the given material. Specifically, attention is paid on the development of contrast agents for magnetic fields higher

  10. Pharmaceutical applications of magnetic resonance imaging (MRI).

    Science.gov (United States)

    Richardson, J Craig; Bowtell, Richard W; Mäder, Karsten; Melia, Colin D

    2005-06-15

    Magnetic resonance imaging (MRI) is a powerful imaging modality that provides internal images of materials and living organisms on a microscopic and macroscopic scale. It is non-invasive and non-destructive, and one of very few techniques that can observe internal events inside undisturbed specimens in situ. It is versatile, as a wide range of NMR modalities can be accessed, and 2D and 3D imaging can be undertaken. Despite widespread use and major advances in clinical MRI, it has seen limited application in the pharmaceutical sciences. In vitro studies have focussed on drug release mechanisms in polymeric delivery systems, but isolated studies of bioadhesion, tablet properties, and extrusion and mixing processes illustrate the wider potential. Perhaps the greatest potential however, lies in investigations of pharmaceuticals in vivo, where pilot human and animal studies have demonstrated we can obtain unique insights into the behaviour of gastrointestinal, topical, colloidal, and targeted drug delivery systems.

  11. WE-G-207-06: 3D Fluoroscopic Image Generation From Patient-Specific 4DCBCT-Based Motion Models Derived From Physical Phantom and Clinical Patient Images

    International Nuclear Information System (INIS)

    Dhou, S; Cai, W; Hurwitz, M; Rottmann, J; Myronakis, M; Cifter, F; Berbeco, R; Lewis, J; Williams, C; Mishra, P; Ionascu, D

    2015-01-01

    Purpose: Respiratory-correlated cone-beam CT (4DCBCT) images acquired immediately prior to treatment have the potential to represent patient motion patterns and anatomy during treatment, including both intra- and inter-fractional changes. We develop a method to generate patient-specific motion models based on 4DCBCT images acquired with existing clinical equipment and used to generate time varying volumetric images (3D fluoroscopic images) representing motion during treatment delivery. Methods: Motion models are derived by deformably registering each 4DCBCT phase to a reference phase, and performing principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated by optimizing the resulting PCA coefficients iteratively through comparison of the cone-beam projections simulating kV treatment imaging and digitally reconstructed radiographs generated from the motion model. Patient and physical phantom datasets are used to evaluate the method in terms of tumor localization error compared to manually defined ground truth positions. Results: 4DCBCT-based motion models were derived and used to generate 3D fluoroscopic images at treatment time. For the patient datasets, the average tumor localization error and the 95th percentile were 1.57 and 3.13 respectively in subsets of four patient datasets. For the physical phantom datasets, the average tumor localization error and the 95th percentile were 1.14 and 2.78 respectively in two datasets. 4DCBCT motion models are shown to perform well in the context of generating 3D fluoroscopic images due to their ability to reproduce anatomical changes at treatment time. Conclusion: This study showed the feasibility of deriving 4DCBCT-based motion models and using them to generate 3D fluoroscopic images at treatment time in real clinical settings. 4DCBCT-based motion models were found to account for the 3D non-rigid motion of the patient anatomy during treatment and have the potential

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... you, notify the radiologist or technologist. It is important that you remain perfectly still while the images are being obtained, which is typically only a few seconds to a few minutes at a time. You will know when images are being recorded ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... examination poses almost no risk to the average patient when appropriate safety guidelines are followed. If sedation is used, there ... have a personal story about radiology? Share your patient story here Images ... Disease Head Injury Brain Tumors Images related ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... the body and determine the presence of certain diseases. The images can then be examined on a ...

  15. Imaging tools to study pharmacology: functional MRI on small rodents

    OpenAIRE

    Elisabeth eJonckers; Disha eShah; Julie eHamaide; Marleen eVerhoye; Annemie eVan Der Linden

    2015-01-01

    Functional Magnetic Resonance Imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimu...

  16. FWFusion: Fuzzy Whale Fusion model for MRI multimodal image ...

    Indian Academy of Sciences (India)

    Hanmant Venketrao Patil

    2018-03-14

    Mar 14, 2018 ... consider multi-modality medical images other than PET and MRI images. ... cipal component averaging based on DWT for fusing CT-. MRI and MRI ..... sub-band LH of the fused image, the distance measure is given based on the ...... sustainable integrated dynamic ship routing and scheduling optimization.

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ... medical imaging or radiation oncology provider in your community, you can search the ACR-accredited facilities database . ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... experience some bruising. There is also a very small chance of irritation of your skin at the ... a result, must be kept away from the area to be imaged. Furthermore, the examination takes longer ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... processes the imaging information is located in a separate room from the scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... images can then be examined on a computer monitor, transmitted electronically, printed or copied to a CD ... excessive sedation. However, the technologist or nurse will monitor your vital signs to minimize this risk. Although ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... eating and drinking before your exam vary between facilities. Unless you are told otherwise, take your regular ... with the specific exam and with the imaging facility. Unless you are told otherwise, you may follow ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... This website does not provide cost information. The costs for specific medical imaging tests, treatments and procedures may vary by geographic region. Discuss the fees associated with your prescribed procedure with your doctor, ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, treatments ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... with metal implants, except for a few types. People with the following implants cannot be scanned and ... it difficult to lie still during imaging. A person who is very large may not fit into ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Magnetic ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... practice. top of page What are some common uses of the procedure? MR imaging of the head ... gadolinium contrast, it may still be possible to use it after appropriate pre-medication. Patient consent will ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... type your comment or suggestion into the following text box: Comment: E-mail: Area code: Phone no: Thank ... View full size with caption Pediatric Content Some imaging tests ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... determine the presence of certain diseases. The images can then be examined on a computer monitor, transmitted ... of abrupt onset or long-standing symptoms. It can help diagnose conditions such as: brain tumors stroke ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for scanning patients since the 1980s with no reports of any ill effects on pregnant women or ... will analyze the images and send a signed report to your primary care or referring physician, who ...

  11. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... you should let the radiologist know about them. Parents or family members who accompany patients into the ... part of the body being imaged, send and receive radio waves, producing signals that are detected by ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... practice. top of page What are some common uses of the procedure? MR imaging of the head ... for immediate assistance. Manufacturers of intravenous contrast indicate mothers should not breastfeed their babies for 24-48 ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... the area of your body being imaged to feel slightly warm, but if it bothers you, notify ... are being recorded because you will hear and feel loud tapping or thumping sounds when the coils ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ... is because traction devices and many types of life support equipment may distort the MR images and ...

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... images and send a signed report to your primary care or referring physician, who will share the ... Society of Urogenital Radiology note that the available data suggest that it is safe to continue breastfeeding ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... a computer to produce detailed pictures of the brain and other cranial structures that are clearer and ... sensitive imaging test of the head (particularly the brain) in routine clinical practice. top of page What ...

  18. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... practice. top of page What are some common uses of the procedure? MR imaging of the head ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  19. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... necessary in trauma situations. Although there is no reason to believe that magnetic resonance imaging harms the ...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... no: Thank you! Do you have a personal story about radiology? Share your patient story here Images × ... Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 Radiological Society of North America, Inc. ( ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... produce detailed pictures of the brain and other cranial structures that are clearer and more detailed than ... cases. MR images of the brain and other cranial structures are clearer and more detailed than with ...

  2. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... scanner. top of page How does the procedure work? Unlike conventional x-ray examinations and computed tomography ( ... the same effect. A very irregular heartbeat may affect the quality of images obtained using techniques that ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... have a history of kidney disease or liver transplant, it will be necessary to perform a blood ... discovery of abnormalities that might be obscured by bone with other imaging methods. The contrast material used ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... Detailed MR images allow physicians to evaluate various parts of the body and determine the presence of ... Patients who might have metal objects in certain parts of their bodies may also require an x- ...

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... radiology examinations, will analyze the images and send a signed report to your primary care or referring physician, who will share the results with you. Follow-up examinations may be necessary. Your doctor will ... exam is requested. Sometimes a follow-up exam is done because a potential ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... epilepsy (seizure) hemorrhage in selected trauma patients certain chronic conditions, such as multiple sclerosis disorders of the ... a very small chance of irritation of your skin at the site of the IV tube insertion. Some ... Images related to Magnetic ...

  7. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... they may move during the scan, possibly causing blindness. Dyes used in tattoos may contain iron and ...

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... the head uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of the brain and other cranial structures that are clearer and more detailed than other imaging methods. This exam does not use ionizing radiation and may require an injection of a ...

  9. Functional Imaging: CT and MRI

    OpenAIRE

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advan...

  10. Multiparametric and molecular imaging of breast tumors with MRI and PET/MRI

    International Nuclear Information System (INIS)

    Pinker, K.; Marino, M.A.; Meyer-Baese, A.; Helbich, T.H.

    2016-01-01

    Magnetic resonance imaging (MRI) of the breast is an indispensable tool in breast imaging for many indications. Several functional parameters with MRI and positron emission tomography (PET) have been assessed for imaging of breast tumors and their combined application is defined as multiparametric imaging. Available data suggest that multiparametric imaging using different functional MRI and PET parameters can provide detailed information about the hallmarks of cancer and may provide additional specificity. Multiparametric and molecular imaging of the breast comprises established MRI parameters, such as dynamic contrast-enhanced MRI, diffusion-weighted imaging (DWI), MR proton spectroscopy ( 1 H-MRSI) as well as combinations of radiological and MRI techniques (e.g. PET/CT and PET/MRI) using radiotracers, such as fluorodeoxyglucose (FDG). Multiparametric and molecular imaging of the breast can be performed at different field-strengths (range 1.5-7 T). Emerging parameters comprise novel promising techniques, such as sodium imaging ( 23 Na MRI), phosphorus spectroscopy ( 31 P-MRSI), chemical exchange saturation transfer (CEST) imaging, blood oxygen level-dependent (BOLD) and hyperpolarized MRI as well as various specific radiotracers. Multiparametric and molecular imaging has multiple applications in breast imaging. Multiparametric and molecular imaging of the breast is an evolving field that will enable improved detection, characterization, staging and monitoring for personalized medicine in breast cancer. (orig.) [de

  11. Imaging of abdominal tumours: CT or MRI?

    International Nuclear Information System (INIS)

    Olsen, Oeystein E.

    2009-01-01

    The scope of this review is to discuss a theoretical approach to imaging policy, particularly in the perspective of radiation risk reduction. Decisions are ideally driven by empirical evidence about efficacy and risk, e.g., in classical hierarchical efficacy model. As a result of the paucity of empirical evidence (inevitable because of rapid technological development), a pragmatic model is needed. This should avoid overemphasis of factors that currently seem to hamper change, namely personal preference, local expertise, infrastructure, availability. Extrapolation of current general knowledge about CT and MRI demonstrates how a pragmatic approach can be applied in the real world with intermediate goals such as (1) channeling patients from CT to MRI, and (2) reducing CT-delivered radiation. Increased utilisation of MRI in body imaging requires optimisation of scan protocols and equipment, and, being a very operator-dependent modality, the active involvement of the radiologist. In CT dose reduction the main challenge is to benchmark the minimum radiation-dose requirement, and therefore the minimum required image quality that is diagnostically acceptable. As this will ultimately depend on pre-test likelihoods in institutional populations, it is difficult to issue general guidance, and local assessment remains a cornerstone in this effort. (orig.)

  12. Advanced imaging techniques in pediatric body MRI

    Energy Technology Data Exchange (ETDEWEB)

    Courtier, Jesse [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Rao, Anil G. [Medical University of South Carolina, Department of Radiology, Charleston, SC (United States); Anupindi, Sudha A. [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2017-05-15

    While there are many challenges specific to pediatric abdomino-pelvic MRI, many recent advances are addressing these challenges. It is therefore essential for radiologists to be familiar with the latest advances in MR imaging. Laudable efforts have also recently been implemented in many centers to improve the overall experience of pediatric patients, including the use of dedicated radiology child life specialists, MRI video goggles, and improved MR suite environments. These efforts have allowed a larger number of children to be scanned while awake, with fewer studies being done under sedation or anesthesia; this has resulted in additional challenges from patient motion and difficulties with breath-holding and tolerating longer scan times. In this review, we highlight common challenges faced in imaging the pediatric abdomen and pelvis and discuss the application of the newest techniques to address these challenges. Additionally, we highlight the newest advances in quantified imaging techniques, specifically in MR liver iron quantification. The techniques described in this review are all commercially available and can be readily implemented. (orig.)

  13. PET/MRI for Oncologic Brain Imaging

    DEFF Research Database (Denmark)

    Rausch, Ivo; Rischka, Lucas; Ladefoged, Claes N

    2017-01-01

    The aim of this study was to compare attenuation-correction (AC) approaches for PET/MRI in clinical neurooncology.Methods:Forty-nine PET/MRI brain scans were included: brain tumor studies using18F-fluoro-ethyl-tyrosine (18F-FET) (n= 31) and68Ga-DOTANOC (n= 7) and studies of healthy subjects using18...... by Siemens Healthcare). As a reference, AC maps were derived from patient-specific CT images (CTref). PET data were reconstructed using standard settings after AC with all 4 AC methods. We report changes in diagnosis for all brain tumor patients and the following relative differences values (RDs...... of the whole brain and 10 anatomic regions segmented on MR images.Results:For brain tumor imaging (A and B), the standard PET-based diagnosis was not affected by any of the 3 MR-AC methods. For A, the average RDs of SUVmeanwere -10%, -4%, and -3% and of the VOIs 1%, 2%, and 7% for DIXON, UTE, and BD...

  14. Guidelines for imaging retinoblastoma: imaging principles and MRI standardization

    Energy Technology Data Exchange (ETDEWEB)

    Graaf, Pim de; Rodjan, Firazia; Castelijns, Jonas A. [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Goericke, Sophia [University Hospital, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Galluzzi, Paolo [Azienda Ospedaliera e Universitaria Senese, Policlinico ' ' Le Scotte' ' , Unit of Diagnostic and Therapeutic Neuroradiology, Siena (Italy); Maeder, Philippe [CHUV, Service de Radiodiagnostic et Radiologie Interventionelle, Lausanne (Switzerland); Brisse, Herve J. [Institut Curie, Departement d' Imagerie, Paris (France)

    2012-01-15

    Retinoblastoma is the most common intraocular tumor in children. The diagnosis is usually established by the ophthalmologist on the basis of fundoscopy and US. Together with US, high-resolution MRI has emerged as an important imaging modality for pretreatment assessment, i.e. for diagnostic confirmation, detection of local tumor extent, detection of associated developmental malformation of the brain and detection of associated intracranial primitive neuroectodermal tumor (trilateral retinoblastoma). Minimum requirements for pretreatment diagnostic evaluation of retinoblastoma or mimicking lesions are presented, based on consensus among members of the European Retinoblastoma Imaging Collaboration (ERIC). The most appropriate techniques for imaging in a child with leukocoria are reviewed. CT is no longer recommended. Implementation of a standardized MRI protocol for retinoblastoma in clinical practice may benefit children worldwide, especially those with hereditary retinoblastoma, since a decreased use of CT reduces the exposure to ionizing radiation. (orig.)

  15. Diagnosis of magnetic resonance imaging (MRI) for blowout fracture. Three advantages of MRI

    International Nuclear Information System (INIS)

    Nishida, Yasuhiro; Aoki, Yoshiko; Hayashi, Osamu; Kimura, Makiko; Murata, Toyotaka; Ishida, Youichi; Iwami, Tatsuya; Kani, Kazutaka

    1999-01-01

    Magnetic resonance imaging (MRI) gives a much more detailed picture of the soft tissue than computerized tomography (CT). In blowout fracture cases, it is very easy to observe the incarcerated orbital tissue. We performed MRI in 19 blowout fracture cases. After evaluating the images, we found three advantages of MRI. The first is that even small herniation of the orbital contents can easily be detected because the orbital fatty tissue contrasts well around the other tissues in MRI. The second is that the incarcerated tissues can be clearly differentiated because a clear contrast between the orbital fatty tissue and the extraocular muscle can be seen in MRI. The third is that the running images of the incarcerated muscle belly can be observed because any necessary directional slies can be taken in MRI. These advantages are very important in the diagnosis of blowout fractures. MRI should be employed in blowout fracture cases in addition to CT. (author)

  16. Indications for fetal magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Prayer, D.

    2006-01-01

    Indications to perform fetal magnetic resonance imaging (MRI) are composed of common ones related to methodological problems of ultrasound (US) assessment (such as for instance hydramnios) and special ones. The latter are related to MR capability of high-resolution soft tissue contrast and an extended field of view that allows visualization of the whole fetus, even in later stages of pregnancy. The most important indications include confirmation of US findings, work-up of malformations with respect to individual prognosis and genetic background, differentiation between acquired conditions and malformations, visualization of pathologies that have to be treated surgically immediately after birth, and morphological changes of the placenta. (orig.) [de

  17. Hemorrhage detection in MRI brain images using images features

    Science.gov (United States)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  18. PET-MRI: the likely future of molecular imaging

    International Nuclear Information System (INIS)

    Chen Xiang; Zhao Jinhua; Zhao Jun

    2008-01-01

    PET-CT is a successful combination of functional and morphologic information, and it has already been shown to have great value both in clinics and in scientific research. MRI is another kind of morphologic imaging method, in contrast to CT, MRI can yield images with higher soft-tissue contrast and better spatial resolution. The combination of PET and MRI for simultaneous data acquisition should have far- reaching consequences for molecular imaging. This review will talk about the problems met in the development of PET-MRI and describe the progress to date and look forward to its potential application. (authors)

  19. Quantification of the gravity-dependent change in the C-arm image center for image compensation in fluoroscopic spinal neuronavigation.

    Science.gov (United States)

    Hariri, S; Abbasi, H R; Chin, S; Steinberg, G; Shahidi, R

    2001-01-01

    In the quest to develop a viable, frameless spinal navigation system, many researchers are utilizing the C-arm fluoroscope. However, there is a significant problem with the C-arm that must be quantified: the gravity-dependent sag effect resulting from the geometry of the C-arm and aggravated by the inequity of weight at each end of the C-arm. This study quantified the C-arm sag effect, giving researchers the protocol and data needed to develop a program that accounts for this distortion. The development of spinal navigation algorithms that account for the C-arm sag effect should produce a more accurate spinal navigation system.

  20. [MRI methods for pulmonary ventilation and perfusion imaging].

    Science.gov (United States)

    Sommer, G; Bauman, G

    2016-02-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O2-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies.

  1. MRI methods for pulmonary ventilation and perfusion imaging

    International Nuclear Information System (INIS)

    Sommer, G.; Bauman, G.

    2016-01-01

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O 2 -enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies. (orig.) [de

  2. A theoretical and experimental evaluation of the microangiographic fluoroscope: A high-resolution region-of-interest x-ray imager

    International Nuclear Information System (INIS)

    Jain, Amit; Bednarek, D. R.; Ionita, Ciprian; Rudin, S.

    2011-01-01

    Purpose: The increasing need for better image quality and high spatial resolution for successful endovascular image-guided interventions (EIGIs) and the inherent limitations of the state-of-the-art detectors provide motivation to develop a detector system tailored to the specific, demanding requirements of neurointerventional applications.Method: A microangiographic fluoroscope (MAF) was developed to serve as a high-resolution, region-of-interest (ROI) x-ray imaging detector in conjunction with large lower-resolution full field-of-view (FOV) state-of-the-art x-ray detectors. The newly developed MAF is an indirect x-ray imaging detector capable of providing real-time images (30 frames per second) with high-resolution, high sensitivity, no lag and low instrumentation noise. It consists of a CCD camera coupled to a Gen 2 dual-stage microchannel plate light image intensifier (LII) through a fiber-optic taper. A 300 μm thick CsI(Tl) phosphor serving as the front end is coupled to the LII. The LII is the key component of the MAF and the large variable gain provided by it enables the MAF to operate as a quantum-noise-limited detector for both fluoroscopy and angiography. Results: The linear cascade model was used to predict the theoretical performance of the MAF, and the theoretical prediction showed close agreement with experimental findings. Linear system metrics such as MTF and DQE were used to gauge the detector performance up to 10 cycles/mm. The measured zero frequency DQE(0) was 0.55 for an RQA5 spectrum. A total of 21 stages were identified for the whole imaging chain and each stage was characterized individually. Conclusions: The linear cascade model analysis provides insight into the imaging chain and may be useful for further development of the MAF detector. The preclinical testing of the prototype detector in animal procedures is showing encouraging results and points to the potential for significant impact on EIGIs when used in conjunction with a state

  3. Recent topics in NMR imaging and MRI

    International Nuclear Information System (INIS)

    Watanabe, Tokuko

    2002-01-01

    NMR and NMR imaging (MRI) are finding increasing use not only in the clinical and medical fields, but also in material, physicochemical, biological, geological, industrial and environmental applications. This short review is limited to two topics: new techniques and pulse sequences and their application to non-clinical fields that may have clinical application; and new trends in MR contrast agents. The former topic addresses pulse sequence and data analysis; dynamics such as diffusion, flow, velocity and velocimetry; chemometrics; pharmacological agents; and chemotherapy; the latter topic addresses contrast agents (CA) sensitive to biochemical activity; CA based on water exchange; molecular interactions and stability of CA; characteristics of emerging CA; superparamagnetic CA; and macromolecular CA. (author)

  4. High-resolution imaging of coronary calcifications by intense low-energy fluoroscopic X-ray obtained from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, S.; Sugishita, Y.; Takeda, T.; Itai, Y.; Tada, J.; Hyodo, K.; Ando, M. [Inst. of Clinical Medicine, Univ. of Tsukuba, Ibaraki (Japan). Dept. of Cardiology

    2000-07-01

    In order to obtain an intense monochromatic low-energy X-ray from synchrotron radiation (SR) and apply it to detect coronary calcifications, the SR beam was reflected with a silicon crystal to be expanded (150 mm in height and 80 mm in width) and to be monochromatized at an energy level of 37 keV. The X-ray was intermittently irradiated to obtain dynamic imaging of 30 images/s. Images were recorded by a digital fluorography system. The low-energy X-ray from SR sharply visualized calcification of coronary arteries, while conventional X-ray could not visualize coronary calcification. The intense monochromatic low-energy X-ray from SR is sensitive, has high-resolution for imaging coronary calcification and may serve as a screening method for coronary artery disease.

  5. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal

    International Nuclear Information System (INIS)

    Hurwitz, Martina; Williams, Christopher L; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G; Mak, Raymond H; Lewis, John H

    2015-01-01

    Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes. (paper)

  6. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal

    Science.gov (United States)

    Hurwitz, Martina; Williams, Christopher L.; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G.; Mak, Raymond H.; Lewis, John H.

    2015-01-01

    Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.

  7. Simultaneous MRI and PET imaging of a rat brain

    International Nuclear Information System (INIS)

    Raylman, Raymond R; Majewski, Stan; Lemieux, Susan K; Velan, S Sendhil; Kross, Brian; Popov, Vladimir; Smith, Mark F; Weisenberger, Andrew G; Zorn, Carl; Marano, Gary D

    2006-01-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging

  8. Simultaneous MRI and PET imaging of a rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Majewski, Stan [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Lemieux, Susan K [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Velan, S Sendhil [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States); Kross, Brian [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Popov, Vladimir [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Smith, Mark F [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Weisenberger, Andrew G [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Zorn, Carl [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA (United States); Marano, Gary D [Center for Advanced Imaging, Department of Radiology, Box 9236, West Virginia University, Morgantown, WV (United States)

    2006-12-21

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  9. Imaging tools to study pharmacology: functional MRI on small rodents

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonckers

    2015-10-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD fMRI techniques, including resting state (rsfMRI, stimulus-evoked (st-fMRI, and pharmacological MRI (phMRI. Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anaesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically-induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest (ROIs. In addition, fMRI techniques allow one to dissect how specific modifications (e.g. treatment, lesion etc. modulate the functioning of specific brain areas (st-fMRI, phMRI and how functional connectivity (rsfMRI between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with

  10. Heart MRI

    Science.gov (United States)

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  11. MRI

    Science.gov (United States)

    ... the room. Pins, hairpins, metal zippers, and similar metallic items can distort the images. Removable dental work ... an MRI can cause heart pacemakers and other implants not to work as well. The magnets can ...

  12. Visualization of pulmonary nodules with magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Plathow, C.; Deutsches Krebsforschungszentrum; Meinzer, H.-P.; Kauczor, H.-U.

    2006-01-01

    Visualization of pulmonary nodules using magnetic resonance imaging (MRI) plays a minor role compared with computed tomography (CT). Technical developments made it possible to apply MRI more and more frequently in functional imaging. Imaging of the motion of pulmonary nodules during respiration, e.g., to optimize high precision therapy techniques, is a new field of research. This paper describes developments in analysis and visualization of pulmonary nodules during respiration using MRI. Besides actual 2D techniques new 3D techniques to quantify motion of pulmonary nodules during respiration are presented. (orig.) [de

  13. PET/MRI in Oncological Imaging: State of the Art

    Science.gov (United States)

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  14. PET/MRI in Oncological Imaging: State of the Art

    Directory of Open Access Journals (Sweden)

    Usman Bashir

    2015-07-01

    Full Text Available Positron emission tomography (PET combined with magnetic resonance imaging (MRI is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging.

  15. MRI, CT and TRUS imaging of seminal vesicle metastasis

    International Nuclear Information System (INIS)

    Larsson, P.; Blomqvist, L.; Norming, U.

    1997-01-01

    We present a case of a testicular germ-cell metastasis in the seminal vesicle. Diagnostic imaging with transrectal ultrasonography (TRUS), CT, and MRI was performed. This case emphasizes the role of MRI in the evaluation of patients with pathology in the pelvic region. (orig.)

  16. Clinically relevant magnetic resonance imaging (MRI) findings in ...

    African Journals Online (AJOL)

    Background: Shoulder pain is the most common and well-documented site of musculoskeletal pain in elite swimmers. Structural abnormalities on magnetic resonance imaging (MRI) of elite swimmers' symptomatic shoulders are common. Little has been documented about the association between MRI findings in the ...

  17. Estimation of in vivo inter-vertebral loading during motion using fluoroscopic and magnetic resonance image informed finite element models.

    Science.gov (United States)

    Zanjani-Pour, Sahand; Meakin, Judith R; Breen, Alex; Breen, Alan

    2018-03-21

    Finite element (FE) models driven by medical image data can be used to estimate subject-specific spinal biomechanics. This study aimed to combine magnetic resonance (MR) imaging and quantitative fluoroscopy (QF) in subject-specific FE models of upright standing, flexion and extension. Supine MR images of the lumbar spine were acquired from healthy participants using a 0.5 T MR scanner. Nine 3D quasi-static linear FE models of L3 to L5 were created with an elastic nucleus and orthotropic annulus. QF data was acquired from the same participants who performed trunk flexion to 60° and trunk extension to 20°. The displacements and rotations of the vertebrae were calculated and applied to the FE model. Stresses were averaged across the nucleus region and transformed to the disc co-ordinate system (S1 = mediolateral, S2 = anteroposterior, S3 = axial). In upright standing S3 was predicted to be -0.7 ± 0.6 MPa (L3L4) and -0.6 ± 0.5 MPa (L4L5). S3 increased to -2.0 ± 1.3 MPa (L3L4) and -1.2 ± 0.6 MPa (L4L5) in full flexion and to -1.1 ± 0.8 MPa (L3L4) and -0.7 ± 0.5 MPa (L4L5) in full extension. S1 and S2 followed similar patterns; shear was small apart from S23. Disc stresses correlated to disc orientation and wedging. The results demonstrate that MR and QF data can be combined in a participant-specific FE model to investigate spinal biomechanics in vivo and that predicted stresses are within ranges reported in the literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Muscle contraction analysis with MRI image

    International Nuclear Information System (INIS)

    Horio, Hideyuki; Kuroda, Yoshihiro; Imura, Masataka; Oshiro, Osamu

    2010-01-01

    The MRI measurement has been widely used from the advantage such as no radiation exposure and high resolution. In various measurement objects, the muscle is used for a research and clinical practice. But it was difficult to judge static state of a muscle contraction. In this study, we focused on a proton density change by the blood vessel pressure at the time of the muscle contraction, and aimed the judgments of muscle contraction from variance of the signal intensity. First, the background was removed from the measured images. Second, each signal divided into the low signal side and the high signal side, and variance values (σ H , σ L ) and the ratio (μ) were calculated. Finally, Relax and strain state ware judged from the ratio (μ). As a Result, in relax state, ratio (μ r ) was 0.9823±0.06133. And in strain state, ratio (μ s ) was 0.7547±0.10824. Therefore, a significant difference was obtained in relax state and strain state. Therefore, the strain state judgment of the muscle was possible by this study's method. (author)

  19. EPOXI EARTH OBS - MRI CALIBRATED IMAGES V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains calibrated, 750-nm filter images of Earth acquired by the Deep Impact Medium Resolution Visible CCD (MRI) during the EPOCh and Cruise 2 phases...

  20. SU-G-IeP3-05: Effects of Image Receptor Technology and Dose Reduction Software On Radiation Dose Estimates for Fluoroscopically-Guided Interventional (FGI) Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Z; Dave, J; Eschelman, D; Gonsalves, C [Thomas Jefferson University, Philadelphia, PA (United States)

    2016-06-15

    Purpose: To investigate the effects of image receptor technology and dose reduction software on radiation dose estimates for most frequently performed fluoroscopically-guided interventional (FGI) procedures at a tertiary health care center. Methods: IRB approval was obtained for retrospective analysis of FGI procedures performed in the interventional radiology suites between January-2011 and December-2015. This included procedures performed using image-intensifier (II) based systems which were subsequently replaced, flat-panel-detector (FPD) based systems which were later upgraded with ClarityIQ dose reduction software (Philips Healthcare) and relatively new FPD system already equipped with ClarityIQ. Post procedure, technologists entered system-reported cumulative air kerma (CAK) and kerma-area product (KAP; only KAP for II based systems) in RIS; these values were analyzed. Data pre-processing included correcting typographical errors and cross-verifying CAK and KAP. The most frequent high and low dose FGI procedures were identified and corresponding CAK and KAP values were compared. Results: Out of 27,251 procedures within this time period, most frequent high and low dose procedures were chemo/immuno-embolization (n=1967) and abscess drainage (n=1821). Mean KAP for embolization and abscess drainage procedures were 260,657, 310,304 and 94,908 mGycm{sup 2}, and 14,497, 15,040 and 6307 mGycm{sup 2} using II-, FPD- and FPD with ClarityIQ- based systems, respectively. Statistically significant differences were observed in KAP values for embolization procedures with respect to different systems but for abscess drainage procedures significant differences were only noted between systems with FPD and FPD with ClarityIQ (p<0.05). Mean CAK reduced significantly from 823 to 308 mGy and from 43 to 21 mGy for embolization and abscess drainage procedures, respectively, in transitioning to FPD systems with ClarityIQ (p<0.05). Conclusion: While transitioning from II- to FPD- based

  1. Image processing techniques for quantification and assessment of brain MRI

    NARCIS (Netherlands)

    Kuijf, H.J.

    2013-01-01

    Magnetic resonance imaging (MRI) is a widely used technique to acquire digital images of the human brain. A variety of acquisition protocols is available to generate images in vivo and noninvasively, giving great opportunities to study the anatomy and physiology of the human brain. In my thesis,

  2. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    International Nuclear Information System (INIS)

    Paulson, E

    2014-01-01

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T using a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  3. MRI

    DEFF Research Database (Denmark)

    Schroeter, Aileen; Rudin, Markus; Gianolio, Eliana

    2017-01-01

    This chapter discusses principles of nuclear magnetic resonance (NMR) and MRI followed by a survey on the major classes of MRI contrast agents (CA), their modes of action, and some of the most significative applications. The two more established classes of MRI-CA are represented by paramagnetic...... been attained that markedly increase the number and typology of systems with CEST properties. Currently much attention is also devoted to hyperpolarized molecules that display a sensitivity enhancement sufficient for their direct exploitation for the formation of the MR image. A real breakthrough...

  4. CT and MRI techniques for imaging around orthopedic hardware

    Energy Technology Data Exchange (ETDEWEB)

    Do, Thuy Duong; Skornitzke, Stephan; Weber, Marc-Andre [Heidelberg Univ. (Germany). Dept. of Clinical Radiology; Sutter, Reto [Uniklinik Balgrist, Zurich (Switzerland). Radiology

    2018-01-15

    Orthopedic hardware impairs image quality in cross-sectional imaging. With an increasing number of orthopedic implants in an aging population, the need to mitigate metal artifacts in computed tomography and magnetic resonance imaging is becoming increasingly relevant. This review provides an overview of the major artifacts in CT and MRI and state-of-the-art solutions to improve image quality. All steps of image acquisition from device selection, scan preparations and parameters to image post-processing influence the magnitude of metal artifacts. Technological advances like dual-energy CT with the possibility of virtual monochromatic imaging (VMI) and new materials offer opportunities to further reduce artifacts in CT and MRI. Dedicated metal artifact reduction sequences contain algorithms to reduce artifacts and improve imaging of surrounding tissue and are essential tools in orthopedic imaging to detect postoperative complications in early stages.

  5. Multi-modal image registration: matching MRI with histology

    Science.gov (United States)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  6. Magnetic resonance imaging (MRI) of an intraventricular hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ryungchan; Higashi, Tooru; Ito, Shotaro; Kadoya, Satoru; Takarada, Akira; Sato, Shuji; Kurauchi, Manabu.

    1987-08-01

    The utility of MRI was investigated in 10 patients with intraventricular hemorrhage. MRI was found to be, in many respects, superior to CT: 1) MRI is able to detect to some extent the aging of an intraventricular hematoma. 2) It can determine the character of intraventricular cerebrospinal fluid, whether it is normal, bloody, or hyperprotein. 3) It can detect the cause of hemorrhage in the case of arterio-venous malformation. 4) MRI permits the detection of the penetration course and the location of a ventricular hematoma. 5) It can clearly detect periventricular lesions of early-stage hydrocephalus, accompanied by increased intracranial pressure and followed by intraventricular hemorrhage, by imaging the periventricular high-signal-intensity area. 6) MRI can clearly diagnose complications of intracranial lesions. For instance, it can distinguish subdural fluid collection from chronic subdural hematoma and can detect whether a cerebral infarction is new or old. On the other hand, MRI also has some disadvantages: 1) The imaging time is long, and clinical application is difficult, in serious and/or infant cases. 2) It is impossible to use MRI in some patients who have magnetic material in their bodies. 3) The spatial-image resolution is not good.

  7. Fusion of PET and MRI for Hybrid Imaging

    Science.gov (United States)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  8. The ALARA (as low as reasonably achievable) concept in pediatric interventional and fluoroscopic imaging: striving to keep radiation doses as low as possible during fluoroscopy of pediatric patients - a white paper executive summary

    International Nuclear Information System (INIS)

    Strauss, Keith J.; Kaste, Sue C.

    2006-01-01

    ALARA represents a practice mandate adhering to the principle of keeping radiation doses to patients and personnel As Low As Reasonably Achievable. This concept is strongly endorsed by the Society for Pediatric Radiology, particularly in the use of procedures and modalities involving higher radiation doses such as CT and fluoroscopic examinations of pediatric patients. There is no doubt that medical imaging, which has undergone tremendous technological advances in recent decades, is integral to patient care. However, these technological advances generally precede the knowledge of end-users concerning the optimal use and correct operation of the resulting imaging equipment, and such knowledge is essential to minimizing potential risks to the patients. Current imaging methods must be optimized for radiation dose reduction in pediatric patients who might be as much as ten times more radiosensitive than adults. Unlike straightforward radiographic examinations, radiation dose to the patient during fluoroscopy is dependent on the operator's training, experience with the fluoroscope, and efficiency in completing a diagnostic study. The range of pediatric radiation doses from fluoroscopy is wide because this examination is performed not only by pediatric radiologists but also by general radiologists who occasionally care for children, interventional cardiologists, gastroenterologists, urologists and others. Thus, a venue where multidisciplinary interaction by this variety of operators can occur serves to improve pediatric patient care

  9. Safety recommendations in magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Nikolaou, K.I.; Plataniotis, T.N; Syrgiamiotis, G.V.; Dousi, M.; Panou, T.; Georgiadis, K.; Bougias, C.

    2008-01-01

    Full text: In order to discuss the long-term biological effects of MRI in the radiological department, all the components of the acquisition process must be considered. Those elements include: the main magnetic field, time varying magnetic fields and radio-frequency fields (RF). Also must be referred other types of hazards obtained by the utilization of contrast materials as gadolinium or pregnancy. The primary concern with the static magnetic field is the possibility of potential biological effects. The majority of studies show no effects on cell growth and morphology at field strengths below 2T. Data accumulated by the National Institute for Occupational Safety, the World Health Organization, and the US State Department, show no evidence of leukemia or other carcinogenesis. The secondary concern of the effects of the main magnetic field is the hazards associated with the sitting of MR systems. The static magnetic field has no respect for the confines of conventional walls, floors or ceilings. Some reversible effects have been noted on Electrocardiogram gating (ECG) at these field strengths. An increase in the amplitude of the T-wave can be noted on an ECG due to the magnetohydrodynamic effect. This is produced when a conductive fluid, such as blood, moves across a magnetic field. Some reversible biological effects including fatigue, headaches, hypotension and accounts of irritability have been observed on human subjects exposed to 2T and above. As yet, there are no known biological effects of MRI on fetuses. Also MR facilities have established individual guidelines for pregnant employees in the MR environment. Ferromagnetic metal objects can become airborne as projectiles in the presence of a strong static magnetic field. Metallic implants pose serious effects which include torque, heating and artifacts on MR images.There have been a large number of studies performed on the biological effects from Time-varying magnetic field (TVMF), since they exist around power

  10. Multimodality imaging: transfer and fusion of SPECT and MRI data

    International Nuclear Information System (INIS)

    Knesaurek, K.

    1994-01-01

    Image fusion is a technique which offers the best of both worlds. It unites the two basic types of medical images: functional body images(PET or SPECT scans), which provide physiological information, and structural images (CT or MRI), which provide an anatomic map of the body. Control-point based registration technique was developed and used. Tc-99m point sources were used as external markers in SPECT studies while, for MRI and CT imaging only anatomic landmarks were used as a control points. The MRI images were acquired on GE Signa 1.2 system and CT data on a GE 9800 scanner. SPECT studies were performed 1h after intravenous injection of the 740 MBq of the Tc-99m-HMPAO on the triple-headed TRIONIX gamma camera. B-spline and bilinear interpolation were used for the rotation, scaling and translation of the images. In the process of creation of a single composite image, in order to retain information from the individual images, MRI (or CT) image was scaled to one color range and a SPECT image to another. In some situations the MRI image was kept black-and-white while the SPECT image was pasted on top of it in 'opaque' mode. Most errors which propagate through the matching process are due to sample size, imperfection of the acquisition system, noise and interpolations used. Accuracy of the registration was investigated by SPECT-CT study performed on a phantom study. The results has shown that accuracy of the matching process is better, or at worse, equal to 2 mm. (author)

  11. Magnetic resonance imaging (MRI) of congenital cardiovascular malformations

    International Nuclear Information System (INIS)

    Sakakibara, Makoto; Kobayashi, Shirou; Imai, Hitoshi; Watanabe, Shigeru; Masuda, Yoshiaki; Inagaki, Yoshiaki; Morita, Huminori; Uematsu, Sadao; Arimizu, Noboru

    1986-01-01

    In order to determine the value of MRI in diagnosing congenital cardiovascular malformations, MR Images were obtained in 25 adult patients with congenital cardiovascular malformations. Gated MRI detected all of 13 atrial septal defects, and all of 4 ventricular septal defects, but ungated MRI detected none of 3 atrial septal defects. Other congenital cardiovascular malformations (2 with Ebstein's disease, 1 with Fallot's pentalogy, and 1 with Pulmonary stenosis) were well visualized. Vascular malformations (1 with Patent ducts arteriosus, 1 with Supravalvelar aortic stenosis, 1 with Coarctation of Aorta, 1 with Right Aortic Arch) were well visualized in all of 7 patients by ungated MRI. MRI was a valuable noninvasive method of diagnosing congenital heart disease. (author)

  12. MRI-based diagnostic imaging of the intratemporal facial nerve

    International Nuclear Information System (INIS)

    Kress, B.; Baehren, W.

    2001-01-01

    Detailed imaging of the five sections of the full intratemporal course of the facial nerve can be achieved by MRI and using thin tomographic section techniques and surface coils. Contrast media are required for tomographic imaging of pathological processes. Established methods are available for diagnostic evaluation of cerebellopontine angle tumors and chronic Bell's palsy, as well as hemifacial spasms. A method still under discussion is MRI for diagnostic evaluation of Bell's palsy in the presence of fractures of the petrous bone, when blood volumes in the petrous bone make evaluation even more difficult. MRI-based diagnostic evaluation of the idiopatic facial paralysis currently is subject to change. Its usual application cannot be recommended for routine evaluation at present. However, a quantitative analysis of contrast medium uptake of the nerve may be an approach to improve the prognostic value of MRI in acute phases of Bell's palsy. (orig./CB) [de

  13. The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Peterfy, Charles G.; Bird, Paul

    2017-01-01

    Objective: The Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis (RA) Magnetic Resonance Imaging (MRI) scoring system (RAMRIS), evaluating bone erosion, bone marrow edema/osteitis, and synovitis, was introduced in 2002, and is now the standard method of objectively quantifying...... inflammation and damage by MRI in RA trials. The objective of this paper was to identify subsequent advances and based on them, to provide updated recommendations for the RAMRIS. Methods: MRI studies relevant for RAMRIS and technical and scientific advances were analyzed by the OMERACT MRI in Arthritis Working...... Group, which used these data to provide updated considerations on image acquisition, RAMRIS definitions, and scoring systems for the original and new RA pathologies. Further, a research agenda was outlined. Results: Since 2002, longitudinal studies and clinical trials have documented RAMRIS variables...

  14. Development and application of PET-MRI image fusion technology

    International Nuclear Information System (INIS)

    Song Jianhua; Zhao Jinhua; Qiao Wenli

    2011-01-01

    The emerging and growing in popularity of PET-CT scanner brings us the convenience and cognizes the advantages such as diagnosis, staging, curative effect evaluation and prognosis for malignant tumor. And the PET-MRI installing maybe a new upsurge when the machine gradually mature, because of the MRI examination without the radiation exposure and with the higher soft tissue resolution. This paper summarized the developing course of image fusion technology and some researches of clinical application about PET-MRI at present, in order to help people to understand the functions and know its wide application of the upcoming new instrument, mainly focuses the application on the central nervous system and some soft tissue lesions. And before PET-MRI popularization, people can still carry out some researches of various image fusion and clinical application on the current equipment. (authors)

  15. Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.

    Science.gov (United States)

    Saint-Jalmes, Hervé; Bordelois, Alejandro; Gambarota, Giulio

    2018-01-01

    The purpose of this study was to implement Virtual Phantom Magnetic Resonance Imaging (ViP MRI), a technique that allows for generating reference signals in MR images using radiofrequency (RF) signals, on a clinical MR system and to test newly designed virtual phantoms. MRI experiments were conducted on a 1.5 T MRI scanner. Electromagnetic modelling of the ViP system was done using the principle of reciprocity. The ViP RF signals were generated using a compact waveform generator (dimensions of 26 cm × 18 cm × 16 cm), connected to a homebuilt 25 mm-diameter RF coil. The ViP RF signals were transmitted to the MRI scanner bore, simultaneously with the acquisition of the signal from the object of interest. Different types of MRI data acquisition (2D and 3D gradient-echo) as well as different phantoms, including the Shepp-Logan phantom, were tested. Furthermore, a uniquely designed virtual phantom - in the shape of a grid - was generated; this newly proposed phantom allows for the investigations of the vendor distortion correction field. High quality MR images of virtual phantoms were obtained. An excellent agreement was found between the experimental data and the inverse cube law, which was the expected functional dependence obtained from the electromagnetic modelling of the ViP system. Short-term time stability measurements yielded a coefficient of variation in the signal intensity over time equal to 0.23% and 0.13% for virtual and physical phantom, respectively. MR images of the virtual grid-shaped phantom were reconstructed with the vendor distortion correction; this allowed for a direct visualization of the vendor distortion correction field. Furthermore, as expected from the electromagnetic modelling of the ViP system, a very compact coil (diameter ~ cm) and very small currents (intensity ~ mA) were sufficient to generate a signal comparable to that of physical phantoms in MRI experiments. The ViP MRI technique was successfully implemented on a clinical MR

  16. Initial tests of a prototype MRI-compatible PET imager

    International Nuclear Information System (INIS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-01-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5x5x4 cm 3 . Each MRI-PET detector module consists of an array of LSO detector elements (2.5x2.5x15 mm 3 ) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ∼60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ∼85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy

  17. Initial tests of a prototype MRI-compatible PET imager

    Energy Technology Data Exchange (ETDEWEB)

    Raylman, Raymond R. [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States)]. E-mail: rraylman@wvu.edu; Majewski, Stan [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lemieux, Susan [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States); Velan, S. Sendhil [Center for Advanced Imaging, Department of Radiology, West Virginia University, HSB Box 9236, Morgantown, WV (United States); Kross, Brain [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Popov, Vladimir [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Smith, Mark F. [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Weisenberger, Andrew G. [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wojcik, Randy [Detector Group, Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2006-12-20

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5x5x4 cm{sup 3}. Each MRI-PET detector module consists of an array of LSO detector elements (2.5x2.5x15 mm{sup 3}) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of {approx}60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to {approx}85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy.

  18. PCA-based groupwise image registration for quantitative MRI

    NARCIS (Netherlands)

    Huizinga, W.; Poot, D. H. J.; Guyader, J.-M.; Klaassen, R.; Coolen, B. F.; van Kranenburg, M.; van Geuns, R. J. M.; Uitterdijk, A.; Polfliet, M.; Vandemeulebroucke, J.; Leemans, A.; Niessen, W. J.; Klein, S.

    2016-01-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T5 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different

  19. Imaging the premature brain: ultrasound or MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de; Benders, Manon J.N.L.; Groenendaal, Floris [UMC Utrecht, Department of Neonatology, Wilhelmina Children' s Hospital, PO Box 85090, Utrecht (Netherlands)

    2013-09-15

    Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide. (orig.)

  20. Functionality and operation of fluoroscopic automatic brightness control/automatic dose rate control logic in modern cardiovascular and interventional angiography systems: a report of Task Group 125 Radiography/Fluoroscopy Subcommittee, Imaging Physics Committee, Science Council.

    Science.gov (United States)

    Rauch, Phillip; Lin, Pei-Jan Paul; Balter, Stephen; Fukuda, Atsushi; Goode, Allen; Hartwell, Gary; LaFrance, Terry; Nickoloff, Edward; Shepard, Jeff; Strauss, Keith

    2012-05-01

    Task Group 125 (TG 125) was charged with investigating the functionality of fluoroscopic automatic dose rate and image quality control logic in modern angiographic systems, paying specific attention to the spectral shaping filters and variations in the selected radiologic imaging parameters. The task group was also charged with describing the operational aspects of the imaging equipment for the purpose of assisting the clinical medical physicist with clinical set-up and performance evaluation. Although there are clear distinctions between the fluoroscopic operation of an angiographic system and its acquisition modes (digital cine, digital angiography, digital subtraction angiography, etc.), the scope of this work was limited to the fluoroscopic operation of the systems studied. The use of spectral shaping filters in cardiovascular and interventional angiography equipment has been shown to reduce patient dose. If the imaging control algorithm were programmed to work in conjunction with the selected spectral filter, and if the generator parameters were optimized for the selected filter, then image quality could also be improved. Although assessment of image quality was not included as part of this report, it was recognized that for fluoroscopic imaging the parameters that influence radiation output, differential absorption, and patient dose are also the same parameters that influence image quality. Therefore, this report will utilize the terminology "automatic dose rate and image quality" (ADRIQ) when describing the control logic in modern interventional angiographic systems and, where relevant, will describe the influence of controlled parameters on the subsequent image quality. A total of 22 angiography units were investigated by the task group and of these one each was chosen as representative of the equipment manufactured by GE Healthcare, Philips Medical Systems, Shimadzu Medical USA, and Siemens Medical Systems. All equipment, for which measurement data were

  1. Functionality and operation of fluoroscopic automatic brightness control/automatic dose rate control logic in modern cardiovascular and interventional angiography systems: A Report of Task Group 125 Radiography/Fluoroscopy Subcommittee, Imaging Physics Committee, Science Council

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Phillip; Lin, Pei-Jan Paul; Balter, Stephen; Fukuda, Atsushi; Goode, Allen; Hartwell, Gary; LaFrance, Terry; Nickoloff, Edward; Shepard, Jeff; Strauss, Keith [Henry Ford Health System, Detroit, Michigan 48202 (United States); Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115 (United States); Columbia University Medical Center, New York, New York 10032 (United States); Shiga Medical Center for Children, Moriyama City, Shiga-Ken, Japan 524-0022 (Japan); University of Virginia Health Science Center, Charlottesville, Virginia 22908 (United States); Baystate Health Systems, Inc., Springfield, Massachusetts 01199 (United States); Columbia University Medical Center, New York, New York 10032 (United States); University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Cincinnati Children' s Hospital Medical Center, Cincinnati, Ohio 45229 (United States)

    2012-05-15

    Task Group 125 (TG 125) was charged with investigating the functionality of fluoroscopic automatic dose rate and image quality control logic in modern angiographic systems, paying specific attention to the spectral shaping filters and variations in the selected radiologic imaging parameters. The task group was also charged with describing the operational aspects of the imaging equipment for the purpose of assisting the clinical medical physicist with clinical set-up and performance evaluation. Although there are clear distinctions between the fluoroscopic operation of an angiographic system and its acquisition modes (digital cine, digital angiography, digital subtraction angiography, etc.), the scope of this work was limited to the fluoroscopic operation of the systems studied. The use of spectral shaping filters in cardiovascular and interventional angiography equipment has been shown to reduce patient dose. If the imaging control algorithm were programmed to work in conjunction with the selected spectral filter, and if the generator parameters were optimized for the selected filter, then image quality could also be improved. Although assessment of image quality was not included as part of this report, it was recognized that for fluoroscopic imaging the parameters that influence radiation output, differential absorption, and patient dose are also the same parameters that influence image quality. Therefore, this report will utilize the terminology ''automatic dose rate and image quality'' (ADRIQ) when describing the control logic in modern interventional angiographic systems and, where relevant, will describe the influence of controlled parameters on the subsequent image quality. A total of 22 angiography units were investigated by the task group and of these one each was chosen as representative of the equipment manufactured by GE Healthcare, Philips Medical Systems, Shimadzu Medical USA, and Siemens Medical Systems. All equipment, for which

  2. Functionality and operation of fluoroscopic automatic brightness control/automatic dose rate control logic in modern cardiovascular and interventional angiography systems: A Report of Task Group 125 Radiography/Fluoroscopy Subcommittee, Imaging Physics Committee, Science Council

    International Nuclear Information System (INIS)

    Rauch, Phillip; Lin, Pei-Jan Paul; Balter, Stephen; Fukuda, Atsushi; Goode, Allen; Hartwell, Gary; LaFrance, Terry; Nickoloff, Edward; Shepard, Jeff; Strauss, Keith

    2012-01-01

    Task Group 125 (TG 125) was charged with investigating the functionality of fluoroscopic automatic dose rate and image quality control logic in modern angiographic systems, paying specific attention to the spectral shaping filters and variations in the selected radiologic imaging parameters. The task group was also charged with describing the operational aspects of the imaging equipment for the purpose of assisting the clinical medical physicist with clinical set-up and performance evaluation. Although there are clear distinctions between the fluoroscopic operation of an angiographic system and its acquisition modes (digital cine, digital angiography, digital subtraction angiography, etc.), the scope of this work was limited to the fluoroscopic operation of the systems studied. The use of spectral shaping filters in cardiovascular and interventional angiography equipment has been shown to reduce patient dose. If the imaging control algorithm were programmed to work in conjunction with the selected spectral filter, and if the generator parameters were optimized for the selected filter, then image quality could also be improved. Although assessment of image quality was not included as part of this report, it was recognized that for fluoroscopic imaging the parameters that influence radiation output, differential absorption, and patient dose are also the same parameters that influence image quality. Therefore, this report will utilize the terminology ''automatic dose rate and image quality'' (ADRIQ) when describing the control logic in modern interventional angiographic systems and, where relevant, will describe the influence of controlled parameters on the subsequent image quality. A total of 22 angiography units were investigated by the task group and of these one each was chosen as representative of the equipment manufactured by GE Healthcare, Philips Medical Systems, Shimadzu Medical USA, and Siemens Medical Systems. All equipment, for which measurement data were

  3. Fluoroscopic tomography. [for body section synthesis

    Science.gov (United States)

    Baily, N. A.; Crepeau, R. L.; Lasser, E. C.

    1974-01-01

    A fluoroscopic tomography system capable of synthesizing body sections at a number of levels within the body has been developed. The synthesized body sections may lie either in a range of planes parallel to, tilted with respect to, skewed with respect to, or both tilted and skewed with respect to the plane of motion of the X-ray tube target. In addition, body sections can be presented which are contoured to the patient's anatomy. That is to say, they may even encompass such complex surfaces as a quadratic hyperplane. In addition, tomograms of organs in motion can be imaged.

  4. Elemental imaging of MRI contrast agents: benchmarking of LA-ICP-MS to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, J.A.T. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); University of Sheffield, Department of Chemical and Biological Engineering, Sheffield (United Kingdom); Cox, A.G.; McLeod, C.W. [University of Sheffield, Centre for Analytical Sciences, Sheffield (United Kingdom); Bunch, J. [University of Birmingham, School of Chemistry, Birmingham (United Kingdom); Writer, M.J.; Hart, S.L. [UCL Institute of Child Health, Wolfson Centre for Gene Therapy of Childhood Disease, London (United Kingdom); Bienemann, A.; White, E. [University of Bristol, School of Clinical Sciences, Southmead Hospital, Bristol (United Kingdom); Bell, J. [Hammersmith Hospital, Metabolic and Molecular Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London (United Kingdom)

    2012-06-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used to map the spatial distribution of magnetic resonance imaging (MRI) contrast agents (Gd-based) in histological sections in order to explore synergies with in vivo MRI. Images from respective techniques are presented for two separate studies namely (1) convection enhanced delivery of a Gd nanocomplex (developmental therapeutic) into rat brain and (2) convection enhanced delivery, with co-infusion of Magnevist (commercial Gd contrast agent) and Carboplatin (chemotherapy drug), into pig brain. The LA technique was shown to be a powerful compliment to MRI not only in offering improved sensitivity, spatial resolution and signal quantitation but also in giving added value regarding the fate of administered agents (Gd and Pt agents). Furthermore simultaneous measurement of Fe enabled assignment of an anomalous contrast enhancement region in rat brain to haemorrhage at the infusion site. (orig.)

  5. Magnetic resonance imaging (MRI) in obstetrics. II. Fetal anatomy.

    Science.gov (United States)

    Powell, M C; Worthington, B S; Buckley, J M; Symonds, E M

    1988-01-01

    Magnetic resonance imaging (MRI) was performed in 36 patients at between 10 and 38 weeks gestation to determine the fetal anatomy that could be identified at different gestations. Fetal motion significantly degraded the image quality in the first and second trimesters, but in the final trimester fetal anatomy was clearly demonstrated. T2 weighted sequences showed the fetal brain and lungs to have a high signal intensity. Shorter TR leading to a T1 weighting gave better resolution of the overall anatomy. MRI has revealed the potential for assessment of lung maturity and the growth-retarded fetus.

  6. Fetal cerebral imaging - ultrasound vs. MRI: an update.

    Science.gov (United States)

    Blondiaux, Eléonore; Garel, Catherine

    2013-11-01

    The purpose of this article is to analyze the advantages and limitations of prenatal ultrasonography (US) and magnetic resonance imaging (MRI) in the evaluation of the fetal brain. These imaging modalities should not be seen as competitive but rather as complementary. There are wide variations in the world regarding screening policies, technology, skills, and legislation about termination of pregnancy, and these variations markedly impact on the way of using prenatal imaging. According to the contribution expected from each technique and to local working conditions, one should choose the most appropriate imaging modality on a case-by-case basis. The advantages and limitations of US and MRI in the setting of fetal brain imaging are displayed. Different anatomical regions (midline, ventricles, subependymal area, cerebral parenchyma, pericerebral space, posterior fossa) and pathological conditions are analyzed and illustrated in order to compare the respective contribution of each technique. An accurate prenatal diagnosis of cerebral abnormalities is of utmost importance for prenatal counseling.

  7. Magnetic Resonance Medical Imaging (MRI)-from the inside

    Science.gov (United States)

    Bottomley, Paul

    There are about 36,000 magnetic resonance imaging (MRI) scanners in the world, with annual sales of 2500. In the USA about 34 million MRI studies are done annually, and 60-70% of all scanners operate at 1.5 Tesla (T). In 1982 there were none. How MRI got to be-and how it got to1.5T is the subject of this talk. Its an insider's view-mine-as a physics PhD student at Nottingham University when MRI (almost) began, through to the invention of the 1.5T clinical MRI scanner at GE's research center in Schenectady NY.Before 1977 all MRI was done on laboratory nuclear magnetic resonance instruments used for analyzing small specimens via chemical shift spectroscopy (MRS). It began with Lauterbur's 1973 observation that turning up the spectrometer's linear gradient magnetic field, generated a spectrum that was a 1D projection of the sample in the direction of the gradient. What followed in the 70's was the development of 3 key methods of 3D spatial localization that remain fundamental to MRI today.As the 1980's began, the once unimaginable prospect of upscaling from 2cm test-tubes to human body-sized magnets, gradient and RF transmit/receive systems, was well underway, evolving from arm-sized, to whole-body electromagnet-based systems operating at plan was to drop the field to 0.3T. We opted to make MRI work at 1.5T instead. The result was a scanner that could study both anatomy and metabolism with a SNR way beyond its lower field rivals. MRI's success truly reflects the team efforts of many: from the NMR physics to the engineering of magnets, gradient and RF systems.

  8. Coronary imaging techniques with emphasis on CT and MRI

    International Nuclear Information System (INIS)

    Lederlin, Mathieu; Latrabe, Valerie; Corneloup, Olivier; Cochet, Hubert; Montaudon, Michel; Laurent, Francois; Thambo, Jean-Benoit

    2011-01-01

    Coronary artery imaging in children is challenging, with high demands both on temporal and spatial resolution due to high heart rates and smaller anatomy. Although invasive conventional coronary angiography remains the benchmark technique, over the past 10 years, CT and MRI have emerged in the field of coronary imaging. The choice of hardware is important. For CT, the minimum requirement is a 64-channel scanner. The temporal resolution of the scanner is most important for optimising image quality and minimising radiation dose. Manufacturers have developed several modes of electrocardiographic (ECG) triggering to facilitate dose reduction. Recent technical advances have opened new possibilities in MRI coronary imaging. As a non-ionising radiation technique, MRI is of great interest in paediatric imaging. It is currently recommended in centres with appropriate expertise for the screening of patients with suspected congenital coronary anomalies. However, MRI is still not feasible in infants. This review describes and discusses the technical requirements and the pros and cons of all three techniques. (orig.)

  9. Soft tissue manifestations of early rheumatic disease. Imaging with MRI

    International Nuclear Information System (INIS)

    Treitl, M.; Panteleon, A.; Koerner, M.; Becker-Gaab, C.; Reiser, M.; Wirth, S.

    2006-01-01

    The aim of this study was to evaluate typical magnetic resonance imaging (MRI) findings in early rheumatic diseases manifesting at the soft tissues of the hand using a retrospective analysis. A total of 186 MRI examinations of patients with clinical suspicion of a rheumatic disease were evaluated in a consensus reading by two experienced radiologists. All imaging patterns were assessed with respect to their type and localization. Under blinded and non-blinded conditions diagnoses were correlated with final clinical diagnosis. The most frequent diagnoses were rheumatoid arthritis (RA, 45.7%) and psoriatic arthritis (PsA, 15.6%). The mean correlation between clinical and MRI diagnosis (r) was 0.75 in blinded and 0.853 in non-blinded reading (p [de

  10. Experiences upgrading a fluoroscopic system to digital specifications

    International Nuclear Information System (INIS)

    Fox, T.; Fenzl, G.

    1995-01-01

    In 1993, an undertable fluoroscopic system was retrofitted with a Fluorospot HC digital system at the radiological clinic of the Knappschaftskrankenhaus in Puettlingen, Germany. The experiences and possibilities resulting from this digital upgrade are related by the authors, whose narrative is also accompanied by examples of clinical images. The costs involved are also discussed in this article. (orig.)

  11. Measurements for testing of fluoroscopic screens, including the photofluorographic units

    International Nuclear Information System (INIS)

    Balfanz, R.

    1986-01-01

    Image quality control measurements for fluoroscopic screens and photofluorographs have shown that both types of equipment have a long operating life, so that constancy and technical performance tests are absolutely necessary. It is recommended to conclude in-service maintenance contracts with the manufacturers. (DG) [de

  12. Opening the black box: imaging nanoparticle transport with MRI

    Science.gov (United States)

    Phoenix, V.; Holmes, W. M.

    2009-12-01

    While most renown for its use in medicine, magnetic resonance imaging (MRI) has tremendous potential in the study of environmental processes. Its ability to non-invasively image inside materials that are opaque to other imaging methods (in particular light based techniques) is a particular strength. MRI has already been used, for example, to study fluid flow in rocks and image mass transport and biogeochemical processes in biofilms [1-4]. Here, we report of the use of MRI to image nanoparticle transport through porous geologic media (in this case packed gravel columns). Packed column experiments are key to understanding nanoparticulate transport in porous geologic media. Whilst highly informative, the data obtained can be a bulk average of a complex and heterogeneous array of interactions within the column. Natural environmental systems are often complex, displaying heterogeneity in geometry, hydrodynamics, geochemistry and microbiology throughout. MRI enables us to quantify better how this heterogeneity may influence nanoparticle transport and fate by enabling us to look inside the column and image the movement of nanoparticles within. To make the nanoparticle readily visible to MRI, it is labelled with a paramagnetic tag (commonly gadolinium). Indeed, a wide variety of off-the-shelf paramagnetically tagged nanoparticles and macromolecules are available, each with different properties enabling us to explore the impact of particle charge, size etc on their transport behaviour. In this preliminary study, packed columns of quartz or marble based gravels (approx 5 mm diameter) were first imaged to check their suitability for MR imaging. This was done as geologic material can contain sufficiently high concentrations of ferro- and paramagnetic ions to induce unwanted artefacts in the MR image. All gravels imaged (Rose quartz, Creswick quartz gravel and Ben Deulin white marble) produced minimal or no artefacts. A solution of the nanoparticle GadoCELLTrack (BioPAL), was

  13. Performance evaluation of cardiac MRI image denoising techniques

    NARCIS (Netherlands)

    AlAttar, M.A.; Mohamed, A.G.A.; Osman, N.F.; Fahmy, A.S.

    2008-01-01

    Black-blood cardiac magnetic resonance imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-to-noise ratio between the myocardium and the blood. In this work, we examined the performance of different classification

  14. Image quality transfer and applications in diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C.; Zikic, Darko; Ghosh, Aurobrata

    2017-01-01

    and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally...

  15. Multi-modal image registration: matching MRI with histology

    NARCIS (Netherlands)

    Alić, L.; Haeck, J.C.; Klein, S.; Bol, K.; Tiel, S.T. van; Wielopolski, P.A.; Bijster, M.; Niessen, W.J.; Bernsen, M.; Veenland, J.F.; Jong, M. de

    2010-01-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co

  16. Magnetic resonance imaging (MRI) of intracranial chordomas

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Teruo; Inoue, Yuichi; Shakudo, Miyuki and others

    1988-03-01

    MR images of 5 patients with intracranial chordoma were evaluated and compared with those of other clival lesions (1 clival osteomyelitis, 1 metastatic clival tumor, 3 clival meningiomas). The MR examination was performed using a 0.5 T superconductive magnet, with approximately 10 mm section thickness, one average and a 256 x 256 matrix. T1 weighted images were obtainned by inversion recovery (IR) with TR 2100 - 2500 msec, TI 600 msec and TE 40 msec. T2 weighted images were obtained by spin echo pulse sequence with TR 1800 - 2500 msec and TE 120 msec (long SE). In several cases, the spin echo pulse sequences with TR 1000 msec and TE 40 msec (short SE) were also done. Multiplaned images were obtained. Four of 5 intracranial chordomas were low in intensity compared to cerebral gray matter on T1 weighted images, and all of 5 chordomas were as high in intensity as cerebrospinal fluid or higher than that of cerebrospinal fluid on T2 weighted images. Clival fatty marrow is high intensity on T1 weighted images. Clival involvement by a tumor was a clearly demonstrated as disappearance of this high intensity in all cases. In two cases, the tumor extended to the retropharyngeal space and this was detected clearly on short SE image. Although clival fatty marrow was disappeared, osteomyelitis and metastatic tumor in clivus were iso-intense to cerebral gray matter on both T1 and T2 weighted images. All of 3 clival meningiomas showed iso-intensity to cerebral gray matter on T1 weighted images and slightly high intensity to brain on T2 weighted images, and clival fatty marrow was normal in all 3 cases. Although our experiences are limited in number, intracranial chordoma appeared to be differentiated from other clival lesions.

  17. MRI of Creutzfeldt-Jakob disease: Imaging features and recommended MRI protocol

    Energy Technology Data Exchange (ETDEWEB)

    Collie, D.A.; Sellar, R.J.; Zeidler, M.; Colchester, A.C.F.; Knight, R.; Will, R.G

    2001-09-01

    Creutzfeldt-Jakob Disease (CJD) is a rare, progressive and invariably fatal neurodegenerative disease characterized by specific histopathological features. Of the four subtypes of CJD described, the commonest is sporadic CJD (sCJD). More recently, a new clinically distinct form of the disease affecting younger patients, known as variant CJD (vCJD), has been identified, and this has been causally linked to the bovine spongiform encephalopathy (BSE) agent in cattle. Characteristic appearances on magnetic resonance imaging (MRI) have been identified in several forms of CJD; sCJD may be associated with high signal changes in the putamen and caudate head and vCJD is usually associated with hyperintensity of the pulvinar (posterior nuclei) of the thalamus. These appearances and other imaging features are described in this article. Using appropriate clinical and radiological criteria and tailored imaging protocols, MRI plays an important part in the in vivodiagnosis of this disease. Collie, D.A. et al. (2001)

  18. MRI of Creutzfeldt-Jakob disease: Imaging features and recommended MRI protocol

    International Nuclear Information System (INIS)

    Collie, D.A.; Sellar, R.J.; Zeidler, M.; Colchester, A.C.F.; Knight, R.; Will, R.G.

    2001-01-01

    Creutzfeldt-Jakob Disease (CJD) is a rare, progressive and invariably fatal neurodegenerative disease characterized by specific histopathological features. Of the four subtypes of CJD described, the commonest is sporadic CJD (sCJD). More recently, a new clinically distinct form of the disease affecting younger patients, known as variant CJD (vCJD), has been identified, and this has been causally linked to the bovine spongiform encephalopathy (BSE) agent in cattle. Characteristic appearances on magnetic resonance imaging (MRI) have been identified in several forms of CJD; sCJD may be associated with high signal changes in the putamen and caudate head and vCJD is usually associated with hyperintensity of the pulvinar (posterior nuclei) of the thalamus. These appearances and other imaging features are described in this article. Using appropriate clinical and radiological criteria and tailored imaging protocols, MRI plays an important part in the in vivodiagnosis of this disease. Collie, D.A. et al. (2001)

  19. Periodontoid pseudotumor: CT and MRI imaging

    International Nuclear Information System (INIS)

    Yu, Eugene; Montanera, Walter

    2005-01-01

    Periodontoid pseudotumor (PP) can be a severe and disabling disease. This disease process typically presents in elderly patients with a longstanding history of myelopathy. We reviewed four cases of PP in order to summarize the clinical and imaging features. (orig.)

  20. Whole-body MRI, dynamic contrast-enhanced MRI, and diffusion-weighted imaging for the staging of multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Dutoit, Julie C.; Verstraete, Koenraad L. [Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2017-06-15

    Magnetic resonance imaging (MRI) is the most sensitive imaging technique for the detection of bone marrow infiltration, and has therefore recently been included in the new diagnostic myeloma criteria, as proposed by the International Myeloma Working Group. Nevertheless, conventional MRI only provides anatomical information and is therefore only of limited use in the response assessment of patients with multiple myeloma. The additional information from functional MRI techniques, such as diffusion-weighted imaging and dynamic contrast-enhanced MRI, can improve the detection rate of bone marrow infiltration and the assessment of response. This can further enhance the sensitivity and specificity of MRI in the staging of multiple myeloma patients. This article provides an overview of the technical aspects of conventional and functional MRI techniques with practical recommendations. It reviews the diagnostic performance, prognostic value, and role in therapy assessment in multiple myeloma and its precursor stages. (orig.)

  1. Imaging the fetus: when does MRI really help?

    International Nuclear Information System (INIS)

    Garel, Catherine

    It is widely accepted that fetal MRI should be used to complement rather than to replace US, which remains the primary screening modality. Under certain circumstances where US is limited, such as maternal obesity, fetal MRI may be useful as a primary screening tool. It is well known that maternal obesity is increasing worldwide and is more common in certain countries. It certainly contributes to a shift from US to MRI as a prenatal diagnostic imaging modality. Inadequacies of US may also be directly related to the sonographer's level of experience. Use and development of fetal US are not comparable in different countries. Some countries prioritise the development of fetal US and increase the experience of sonographers by political initiatives such as reimbursement of US by social insurance, thus raising people's expectations. In other countries, fetal US is considered of secondary importance and is not exploited as much as it could be. Consequently, in those countries, the place occupied by fetal MRI and the expectations regarding its diagnostic accuracy are much more prominent. This is undoubtedly the reason why there are so many discrepancies regarding the relative contributions of fetal MRI and fetal US in the prenatal literature. (orig.)

  2. Imaging the fetus: when does MRI really help?

    Energy Technology Data Exchange (ETDEWEB)

    Garel, Catherine [Hopital d' Enfants Armand-Trousseau, Service de Radiologie Pediatrique, Paris Cedex 12 (France)

    2008-06-15

    It is widely accepted that fetal MRI should be used to complement rather than to replace US, which remains the primary screening modality. Under certain circumstances where US is limited, such as maternal obesity, fetal MRI may be useful as a primary screening tool. It is well known that maternal obesity is increasing worldwide and is more common in certain countries. It certainly contributes to a shift from US to MRI as a prenatal diagnostic imaging modality. Inadequacies of US may also be directly related to the sonographer's level of experience. Use and development of fetal US are not comparable in different countries. Some countries prioritise the development of fetal US and increase the experience of sonographers by political initiatives such as reimbursement of US by social insurance, thus raising people's expectations. In other countries, fetal US is considered of secondary importance and is not exploited as much as it could be. Consequently, in those countries, the place occupied by fetal MRI and the expectations regarding its diagnostic accuracy are much more prominent. This is undoubtedly the reason why there are so many discrepancies regarding the relative contributions of fetal MRI and fetal US in the prenatal literature. (orig.)

  3. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Daniel Pflugfelder

    2017-11-01

    Full Text Available Abstract Background Root systems are highly plastic and adapt according to their soil environment. Studying the particular influence of soils on root development necessitates the adaptation and evaluation of imaging methods for multiple substrates. Non-invasive 3D root images in soil can be obtained using magnetic resonance imaging (MRI. Not all substrates, however, are suitable for MRI. Using barley as a model plant we investigated the achievable image quality and the suitability for root phenotyping of six commercially available natural soil substrates of commonly occurring soil textures. The results are compared with two artificially composed substrates previously documented for MRI root imaging. Results In five out of the eight tested substrates, barley lateral roots with diameters below 300 µm could still be resolved. In two other soils, only the thicker barley seminal roots were detectable. For these two substrates the minimal detectable root diameter was between 400 and 500 µm. Only one soil did not allow imaging of the roots with MRI. In the artificially composed substrates, soil moisture above 70% of the maximal water holding capacity (WHCmax impeded root imaging. For the natural soil substrates, soil moisture had no effect on MRI root image quality in the investigated range of 50–80% WHCmax. Conclusions Almost all tested natural soil substrates allowed for root imaging using MRI. Half of these substrates resulted in root images comparable to our current lab standard substrate, allowing root detection down to a diameter of 300 µm. These soils were used as supplied by the vendor and, in particular, removal of ferromagnetic particles was not necessary. With the characterization of different soils, investigations such as trait stability across substrates are now possible using noninvasive MRI.

  4. Multiple imaging procedures including MRI for the bladder cancer

    International Nuclear Information System (INIS)

    Mikata, Noriharu; Suzuki, Makoto; Takeuchi, Takumi; Kunisawa, Yositaka; Fukutani, Keiko; Kawabe, Kazuki

    1986-01-01

    Endoscopic photography, double contrast cystography, transurethral echography, X-ray CT scan, and MRI (magnetic resonance imaging) were utilized for the staging diagnosis of the four patients with carcinoma of the bladder. In the first case, a 70-year-old man, since all of the five imaging procedures suggested a superficial and pedunculated tumor, his bladder cancer was considered T1. The classification of stage T3 carcinoma was made for the second 86-year-old male. Because all of his imaging examinations showed a tumor infiltrating deep muscle and penetrating the bladder wall. The third case was a 36-year-old male. His clinical stage was diagnosed as T2 or T3a by cystophotography, double contrast cystogram, ultrasonography, and X-ray CT scan. However, MRI showed only thickened bladder wall and the infiltrating tumor could not be distinguished from the hypertrophic wall. The last patient, a 85-year-old female, had a smaller Ta cancer. Her double contrast cystography revealed the small tumor at the lateral bladder wall. But, the tumor could not be detected by transaxial, sagittal and coronal scans. Multiple imaging procedures combining MRI and staging diagnosis of the bladder carcinoma were discussed. (author)

  5. Magnetic resonance imaging (MRI) in the diagnosis of neuromuscular diseases

    International Nuclear Information System (INIS)

    Schalke, B.C.G.; Rohkamm, R.; Kaiser, W.

    1990-01-01

    In the last few years imaging procedures became also important in the diagnosis of neuromuscular diseases. We examined more than 150 patients with different neuromuscular diseases with MRI. Conventional diagnostic procedures like EMG, muscle biopsy can not be replaced by imaging procedures. MRI gives the chance to get additional diagnostic informations. It is possible to determine exact distribution and intensity of pathological changes in the muscle. Inflammatory muscle diseases can be differrentiated by T1/T2 values from atrophic/dystrophic diseases. The resolving power is very high and allows the exact detection of affected areas even in a single muscle. This can help to reduce false negative muscle biopsies. This is very useful in children and young adults. MRI can be used for the early detection of genetic myopathies and neuropathies. MRI allows to examine all muscles, including the heart, bone artefacts are absent. Heart muscle involvement in neuromuscular diseases can directly be shown by this method without any risk for the patient. In addition P-spectroscopy can be done for better understanding of pathogenesis, especially if the exact distribution of pathological changes is known. (author)

  6. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-01-01

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting

  7. Semi-automatic fluoroscope

    International Nuclear Information System (INIS)

    Tarpley, M.W.

    1976-10-01

    Extruded aluminum-clad uranium-aluminum alloy fuel tubes must pass many quality control tests before irradiation in Savannah River Plant nuclear reactors. Nondestructive test equipment has been built to automatically detect high and low density areas in the fuel tubes using x-ray absorption techniques with a video analysis system. The equipment detects areas as small as 0.060-in. dia with 2 percent penetrameter sensitivity. These areas are graded as to size and density by an operator using electronic gages. Video image enhancement techniques permit inspection of ribbed cylindrical tubes and make possible the testing of areas under the ribs. Operation of the testing machine, the special low light level television camera, and analysis and enhancement techniques are discussed

  8. SU-G-BRA-05: Application of a Feature-Based Tracking Algorithm to KV X-Ray Fluoroscopic Images Toward Marker-Less Real-Time Tumor Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Matsuo, Y; Mukumoto, N; Iizuka, Y; Yokota, K; Mizowaki, T; Hiraoka, M [Kyoto University, Graduate School of Medicine, Kyoto (Japan); Nakao, M [Kyoto University, Graduate School of Informatics, Kyoto (Japan)

    2016-06-15

    Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonal kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.

  9. SU-G-BRA-05: Application of a Feature-Based Tracking Algorithm to KV X-Ray Fluoroscopic Images Toward Marker-Less Real-Time Tumor Tracking

    International Nuclear Information System (INIS)

    Nakamura, M; Matsuo, Y; Mukumoto, N; Iizuka, Y; Yokota, K; Mizowaki, T; Hiraoka, M; Nakao, M

    2016-01-01

    Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonal kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.

  10. Degeneration of pyramidal tract of MRI (magnetic resonance imaging)

    International Nuclear Information System (INIS)

    Yamagami, Tatsuhito; Harada, Noboru; Gotoh, Yasunobu; Imataka, Kiyoharu; Kinuta, Yuji; Okumura, Teizo; Niijima, Kyo; Taki, Waro; Kikuchi, Haruhiko.

    1988-01-01

    MRI (magnetic resonance imaging) examinaion was performed on cases of hemiplegia and hemiparesis. These included seven cases of intracerebral hemorrhage, four cases of subarachnoid hemorrhage, one case of cerebral infarct, and two cases of head trauma. The pyramidal tract in the brain stem was studied in five patients with complete hemiplegia and in nine with incomplete hemiparesis. The scanner of the MRI was a resistive type operating at a field of 0.2 Tesla. The inversion recovery (IR) and saturation recovery (SR) techniques were utilized. The pyramidal tract at the level of the midbrain and the pons was recognized as a low intensity area on the T 1 image (IR 1500/43) in the cases of complete hemiplegia. However, it was recognized as a high intensity area on the SR image (SR 1000/60) and the T 2 image (SR 2000/100). No abnormal signal intensity was found in the cases of incomplete hemiparesis. A low intensity area on the T 1 image and a high intensity area on the T 2 image were recognized in the ventral portion of the midbrain and the pons on the affected side. These findings indicate a degeneration of the pyramidal tract at the level of the brain stem in patients with complete hemiplegia. (author)

  11. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    International Nuclear Information System (INIS)

    Lin Yuting; Thayer, David; Luk, Alex L; Gulsen, Gultekin; Gao Hao

    2013-01-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully. (paper)

  12. Accelerated Fractional Ventilation Imaging with Hyperpolarized Gas MRI

    Science.gov (United States)

    Emami, Kiarash; Xu, Yinan; Hamedani, Hooman; Profka, Harrilla; Kadlecek, Stephen; Xin, Yi; Ishii, Masaru; Rizi, Rahim R.

    2013-01-01

    PURPOSE To investigate the utility of accelerated imaging to enhance multi-breath fractional ventilation (r) measurement accuracy using HP gas MRI. Undersampling shortens the breath-hold time, thereby reducing the O2-induced signal decay and allows subjects to maintain a more physiologically relevant breathing pattern. Additionally it may improve r estimation accuracy by reducing RF destruction of HP gas. METHODS Image acceleration was achieved by using an 8-channel phased array coil. Undersampled image acquisition was simulated in a series of ventilation images and images were reconstructed for various matrix sizes (48–128) using GRAPPA. Parallel accelerated r imaging was also performed on five mechanically ventilated pigs. RESULTS Optimal acceleration factor was fairly invariable (2.0–2.2×) over the range of simulated resolutions. Estimation accuracy progressively improved with higher resolutions (39–51% error reduction). In vivo r values were not significantly different between the two methods: 0.27±0.09, 0.35±0.06, 0.40±0.04 (standard) versus 0.23±0.05, 0.34±0.03, 0.37±0.02 (accelerated); for anterior, medial and posterior slices, respectively, whereas the corresponding vertical r gradients were significant (P fractional ventilation measurement with HP gas MRI. PMID:23400938

  13. Functional MRI studies of human vision on a clinical imager

    International Nuclear Information System (INIS)

    George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C.; Sanders, J.; Maclin, E.; Belliveau, J.W.; Caprihan, A.

    1992-01-01

    During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response

  14. High temporal resolution functional MRI using parallel echo volumar imaging

    International Nuclear Information System (INIS)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F.; Le Roux, P.; Dehaine-Lambertz, G.

    2008-01-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  15. Imaging gait analysis: An fMRI dual task study.

    Science.gov (United States)

    Bürki, Céline N; Bridenbaugh, Stephanie A; Reinhardt, Julia; Stippich, Christoph; Kressig, Reto W; Blatow, Maria

    2017-08-01

    In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite © electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. Behavioral results showed that the parameters of both gait analyses, GAITRite © and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite © gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.

  16. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    Science.gov (United States)

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  17. Magnetic Resonance Imaging (MRI and Spectroscopy (MRS in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2008-01-01

    Full Text Available Breast cancer is a major health problem in women and early detection is of prime importance. Breast magnetic resonance imaging (MRI provides both physical and physiologic tissue features that are useful in discriminating malignant from benign lesions. Contrast enhanced MRI is valuable for diagnosis of small tumors in dense breast and the structural and kinetic parameters improved the specificity of diagnosing benign from malignant lesions. It is a complimentary modality for preoperative staging, to follow response to therapy, to detect recurrences and for screening high risk women. Diffusion, perfusion and MR elastography have been applied to breast lesion characterization and show promise.In-vivo MR spectroscopy (MRS is a valuable method to obtain the biochemical status of normal and diseased tissues. Malignant tissues contain high concentration of choline containing compounds that can be used as a biochemical marker. MRS helps to increase the specificity of MRI in lesions larger than 1cm and to monitor the tumor response. Various MR techniques show promise primarily as adjunct to the existing standard detection techniques, and its acceptability as a screening method will increase if specificity can be improved. This review presents the progress made in different MRI and MRS techniques in breast cancer management.

  18. Magnetic Resonance Imaging (MRI and Spectroscopy (MRS in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Uma Sharma

    2008-01-01

    Full Text Available Breast cancer is a major health problem in women and early detection is of prime importance. Breast magnetic resonance imaging (MRI provides both physical and physiologic tissue features that are useful in discriminating malignant from benign lesions. Contrast enhanced MRI is valuable for diagnosis of small tumors in dense breast and the structural and kinetic parameters improved the specificity of diagnosing benign from malignant lesions. It is a complimentary modality for preoperative staging, to follow response to therapy, to detect recurrences and for screening high risk women. Diffusion, perfusion and MR elastography have been applied to breast lesion characterization and show promise. In-vivo MR spectroscopy (MRS is a valuable method to obtain the biochemical status of normal and diseased tissues. Malignant tissues contain high concentration of choline containing compounds that can be used as a biochemical marker. MRS helps to increase the specificity of MRI in lesions larger than 1cm and to monitor the tumor response. Various MR techniques show promise primarily as adjunct to the existing standard detection techniques, and its acceptability as a screening method will increase if specificity can be improved. This review presents the progress made in different MRI and MRS techniques in beast cancer management.

  19. Complete Fourier Direct Magnetic Resonance Imaging (CFD-MRI for Diffusion MRI

    Directory of Open Access Journals (Sweden)

    Alpay eÖzcan

    2013-04-01

    Full Text Available The foundation for an accurate and unifying Fourier based theory of diffusion weighted magnetic resonance imaging (DW-MRI is constructed by carefully re-examining the first principles of DW-MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW-MRI signal by including all of its elements (e.g., imaging gradients using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW-MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex-vivo baboon brain.

  20. Contrast-enhanced MR angiography of the carotid artery using 3D time-resolved imaging of contrast kinetics. Comparison with real-time fluoroscopic triggered 3D-elliptical centric view ordering

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Koshikawa, Tokiko; Fukatsu, Hiroshi; Sakurai, Yasuo; Ishiguchi, Tsuneo; Ishigaki, Takeo; Ichinose, Nobuyasu

    2001-01-01

    The purpose of this study was to evaluate contrast-enhanced MR angiography using the 3D time-resolved imaging of contrast kinetics technique (3D-TRICKS) by direct comparison with the fluoroscopic triggered 3D-elliptical centric view ordering (3D-ELLIP) technique. 3D-TRICKS and 3D-ELLIP were directly compared on a 1.5-Tesla MR unit using the same spatial resolution and matrix. In 3D-TRICKS, the central part of the k-space is updated more frequently than the peripheral part of the k-space, which is divided in the slice-encoding direction. The carotid arteries were imaged using 3D-TRICKS and 3D-ELLIP sequentially in 14 patients. Temporal resolution was 12 sec for 3D-ELLIP and 6 sec for 3D-TRICKS. The signal-to-noise ratio (S/N) of the common carotid artery was measured, and the quality of MIP images was then scored in terms of venous overlap and blurring of vessel contours. No significant difference in mean S/N was seen between the two methods. Significant venous overlap was not seen in any of the patients examined. Moderate blurring of vessel contours was noted on 3D-TRICKS in five patients and on 3D-ELLIP in four patients. Blurring in the slice-encoding direction was slightly more pronounced in 3D-TRICKS. However, qualitative analysis scores showed no significant differences. When the spatial resolution of the two methods was identical, the performance of 3D-TRICKS was found to be comparable in static visualization of the carotid arteries with 3D-ELLIP, although blurring in the slice-encoding direction was slightly more pronounced in 3D-TRICKS. 3D-TRICKS is a more robust technique than 3D-ELLIP, because 3D-ELLIP requires operator-dependent fluoroscopic triggering. Furthermore, 3D-TRICKS can achieve higher temporal resolution. For the spatial resolution employed in this study, 3D-TRICKS may be the method of choice. (author)

  1. CT and MRI imaging of the brain in MELAS syndrome.

    Science.gov (United States)

    Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna

    2013-07-01

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques.

  2. CT and MRI imaging of the brain in MELAS syndrome

    International Nuclear Information System (INIS)

    Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna

    2013-01-01

    MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques

  3. MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI.

    Science.gov (United States)

    Chen, Qin; Lui, Su; Li, Chun-Xiao; Jiang, Li-Jun; Ou-Yang, Luo; Tang, He-Han; Shang, Hui-Fang; Huang, Xiao-Qi; Gong, Qi-Yong; Zhou, Dong

    2008-07-01

    Our aim is to use the high field MR scanner (3T) to verify whether diffusion tensor imaging (DTI) could help in locating the epileptogenic zone in patients with MRI-negative refractory partial epilepsy. Fifteen patients with refractory partial epilepsy who had normal conventional MRI, and 40 healthy volunteers were recruited for the study. DTI was performed on a 3T MR scanner, individual maps of mean diffusivity (MD) and fractional anisotropy (FA) were calculated, and Voxel-Based Analysis (VBA) was performed for individual comparison between patients and controls. Voxel-based analysis revealed significant MD increase in variant regions in 13 patients. The electroclinical seizure localization was concurred to seven patients. No patient exhibited regions of significant decreased MD. Regions of significant reduced FA were observed in five patients, with two of these concurring with electroclinical seizure localization. Two patients had regions of significant increase in FA, which were distinct from electroclinical seizure localization. Our study's results revealed that DTI is a responsive neuroradiologic technique that provides information about the epileptogenic areas in patients with MRI-negative refractory partial epilepsy. This technique may also helpful in pre-surgical evaluation.

  4. Pediatric bowel MRI - accelerated parallel imaging in a single breathhold

    International Nuclear Information System (INIS)

    Hohl, C.; Honnef, D.; Krombach, G.; Muehlenbruch, G.; Guenther, R.W.; Niendorf, T.; Ocklenburg, C.; Wenzl, T.G.

    2008-01-01

    Purpose: to compare highly accelerated parallel MRI of the bowel with conventional balanced FFE sequences in children with inflammatory bowel disease (IBD). Materials and methods: 20 children with suspected or proven IBD underwent MRI using a 1.5 T scanner after oral administration of 700-1000 ml of a Mannitol solution and an additional enema. The examination started with a 4-channel receiver coil and a conventional balanced FFE sequence in axial (2.5 s/slice) and coronal (4.7 s/slice) planes. Afterwards highly accelerated (R = 5) balanced FFE sequences in axial (0.5 s/slice) and coronal (0.9 s/slice) were performed using a 32-channel receiver coil and parallel imaging (SENSE). Both receiver coils achieved a resolution of 0.88 x 0.88 mm with a slice thickness of 5 mm (coronal) and 6 mm (axial) respectively. Using the conventional imaging technique, 4 - 8 breathholds were needed to cover the whole abdomen, while parallel imaging shortened the acquisition time down to a single breathhold. Two blinded radiologists did a consensus reading of the images regarding pathological findings, image quality, susceptibility to artifacts and bowel distension. The results for both coil systems were compared using the kappa-(κ)-coefficient, differences in the susceptibility to artifacts were checked with the Wilcoxon signed rank test. Statistical significance was assumed for p = 0.05. Results: 13 of the 20 children had inflammatory bowel wall changes at the time of the examination, which could be correctly diagnosed with both coil systems in 12 of 13 cases (92%). The comparison of both coil systems showed a good agreement for pathological findings (κ = 0.74 - 1.0) and the image quality. Using parallel imaging significantly more artifacts could be observed (κ = 0.47)

  5. Electromagnetic considerations for RF current density imaging [MRI technique].

    Science.gov (United States)

    Scott, G C; Joy, M G; Armstrong, R L; Henkelman, R M

    1995-01-01

    Radio frequency current density imaging (RF-CDI) is a recent MRI technique that can image a Larmor frequency current density component parallel to B(0). Because the feasibility of the technique was demonstrated only for homogeneous media, the authors' goal here is to clarify the electromagnetic assumptions and field theory to allow imaging RF currents in heterogeneous media. The complete RF field and current density imaging problem is posed. General solutions are given for measuring lab frame magnetic fields from the rotating frame magnetic field measurements. For the general case of elliptically polarized fields, in which current and magnetic field components are not in phase, one can obtain a modified single rotation approximation. Sufficient information exists to image the amplitude and phase of the RF current density parallel to B(0) if the partial derivative in the B(0) direction of the RF magnetic field (amplitude and phase) parallel to B(0) is much smaller than the corresponding current density component. The heterogeneous extension was verified by imaging conduction and displacement currents in a phantom containing saline and pure water compartments. Finally, the issues required to image eddy currents are presented. Eddy currents within a sample will distort both the transmitter coil reference system, and create measurable rotating frame magnetic fields. However, a three-dimensional electro-magnetic analysis will be required to determine how the reference system distortion affects computed eddy current images.

  6. Automatic delineation of brain regions on MRI and PET images from the pig

    DEFF Research Database (Denmark)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M

    2018-01-01

    : Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. NEW METHOD: A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer....... RESULTS: MRI and [11C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same...... the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [11C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames...

  7. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  8. Content Based Medical Image Retrieval for Histopathological, CT and MRI Images

    Directory of Open Access Journals (Sweden)

    Swarnambiga AYYACHAMY

    2013-09-01

    Full Text Available A content based approach is followed for medical images. The purpose of this study is to access the stability of these methods for medical image retrieval. The methods used in color based retrieval for histopathological images are color co-occurrence matrix (CCM and histogram with meta features. For texture based retrieval GLCM (gray level co-occurrence matrix and local binary pattern (LBP were used. For shape based retrieval canny edge detection and otsu‘s method with multivariable threshold were used. Texture and shape based retrieval were implemented using MRI (magnetic resonance images. The most remarkable characteristics of the article are its content based approach for each medical imaging modality. Our efforts were focused on the initial visual search. From our experiment, histogram with meta features in color based retrieval for histopathological images shows a precision of 60 % and recall of 30 %. Whereas GLCM in texture based retrieval for MRI images shows a precision of 70 % and recall of 20 %. Shape based retrieval for MRI images shows a precision of 50% and recall of 25 %. The retrieval results shows that this simple approach is successful.

  9. Trends in magnetic resonance imaging. Technical trends in MRI, noise reduction and fast imaging

    International Nuclear Information System (INIS)

    Sugimoto, Hiroshi

    2007-01-01

    At MRI examination, patients suffer the machine noise and long tight lying as well as an oppressive feeling. This paper describes the technological efforts against the former two. The noise is generated from the force (thumb-ward) to vibrate the magnetic field gradient coil according to the left-hand rule. Authors have developed a MRI machine (Pianissimo) where the coil is placed in vacuum and its actual noise level is found reduced from 105 - 112 to 84 dB(A) at 1.5T. Fast imaging to shorten the imaging time is attained by combination of parallel imaging where MR signals are into multiple high frequency receiver coils, and the usual pulse sequence imaging, which results in the increased encoding in a given time. Together with these, MR angiography and diffusion weighted imaging of abdomen for cancer examination are becoming popular as an additional MRI diagnosis, also acceptable to patients. Future progress of MRI machines conceivably accompanies the unavoidable noise increase and possibly significant magnetic effects on human body, and efforts for their reduction will be continued at patients' viewpoint. (T.I.)

  10. Magnetic resonance imaging (MRI) of primary liver cancer

    International Nuclear Information System (INIS)

    Ohtomo, Kuni; Itai, Yuji; Furui, Shigeru; Yoshikawa, Kohki; Yashiro, Naobumi; Iio, Masahiro

    1985-01-01

    In seven primary liver cancers (HCC 5, CCC 1, mixed 1), MR images (0.35 Tesla superconducting) were compared with macroscopic appearances, and relaxation times (T 1 and T 2 ) with microscopic characteristics. MRI was able to reveal the gross appearance of five nodular lesions, but did not reveal one diffuse HCC and one nodular HCC with marked extracapsular extension. T 2 -weighted SE images could not demonstrate fibrous capsules around the tumor in four nodular HCCs. The T 1 and T 2 values of the tumors were longer than those of the surrounding liver parenchyma, and the T 1 elongation corresponded roughly to the degree of necrosis and fibrosis within the tumors. (author)

  11. Magnetic resonance imaging (MRI) and relaxation time mapping of concrete

    Science.gov (United States)

    Beyea, Steven Donald

    2001-07-01

    The use of Magnetic Resonance Imaging (MRI) of water in concrete is presented. This thesis will approach the problem of MR imaging of concrete by attempting to design new methods, suited to concrete materials, rather than attempting to force the material to suit the method. A number of techniques were developed, which allow the spatial observation of water in concrete in up to three dimensions, and permits the determination of space resolved moisture content, as well as local NMR relaxation times. These methods are all based on the Single-Point Imaging (SPI) method. The development of these new methods will be described, and the techniques validated using phantom studies. The study of one-dimensional moisture transport in drying concrete was performed using SPI. This work examined the effect of initial mixture proportions and hydration time on the drying behaviour of concrete, over a period of three months. Studies of drying concrete were also performed using spatial mapping of the spin-lattice (T1) and effective spin-spin (T2*) relaxation times, thereby permitting the observation of changes in the water occupied pore surface-to-volume ratio (S/V) as a function of drying. Results of this work demonstrated changes in the S/V due to drying, hydration and drying induced microcracking. Three-dimensional MRI of concrete was performed using SPRITE (Single-Point Ramped Imaging with T1 Enhancement) and turboSPI (turbo Single Point Imaging). While SPRITE allows for weighting of MR images using T 1 and T2*, turboSPI allows T2 weighting of the resulting images. Using relaxation weighting it was shown to be possible to discriminate between water contained within a hydrated cement matrix, and water in highly porous aggregates, used to produce low-density concrete. Three dimensional experiments performed using SPRITE and turboSPI examined the role of self-dessication, drying, initial aggregate saturation and initial mixture conditions on the transport of moisture between porous

  12. Image fusion between whole body FDG PET images and whole body MRI images using a full-automatic mutual information-based multimodality image registration software

    International Nuclear Information System (INIS)

    Uchida, Yoshitaka; Nakano, Yoshitada; Fujibuchi, Toshiou; Isobe, Tomoko; Kazama, Toshiki; Ito, Hisao

    2006-01-01

    We attempted image fusion between whole body PET and whole body MRI of thirty patients using a full-automatic mutual information (MI) -based multimodality image registration software and evaluated accuracy of this method and impact of the coregistrated imaging on diagnostic accuracy. For 25 of 30 fused images in body area, translating gaps were within 6 mm in all axes and rotating gaps were within 2 degrees around all axes. In head and neck area, considerably much gaps caused by difference of head inclination at imaging occurred in 16 patients, however these gaps were able to decrease by fused separately. In 6 patients, diagnostic accuracy using PET/MRI fused images was superior compared by PET image alone. This work shows that whole body FDG PET images and whole body MRI images can be automatically fused using MI-based multimodality image registration software accurately and this technique can add useful information when evaluating FDG PET images. (author)

  13. A rapid method of evaluating fluoroscopic system performance

    International Nuclear Information System (INIS)

    Sprawls, P.

    1989-01-01

    This paper presents a study to develop a method for the rapid evaluation and documentation of fluoroscopic image quality. All objects contained within a conventional contrast-detail test phantom (Leeds TO-10) are displayed in an array format according to their contrast and size. A copy of the display is used as the data collection form and a permanent record of system performance. A fluoroscope is evaluated by viewing the test phantom and marking the visible objects on the display. A line drawn through the objects with minimum visibility in each size group forms a contrast-detail curve for the system. This is compared with a standard or reference line, which is in the display.Deviations in curve position are useful indicators of specific image quality problems, such as excessive noise or blurring. The use of a special object-visibility array format display makes it possible to collect data, analyze the results, and create a record of fluoroscopic performance in less than 2 minutes for each viewing mode

  14. MRI quality control: six imagers studied using eleven unified image quality parameters

    International Nuclear Information System (INIS)

    Ihalainen, T.; Sipilae, O.; Savolainen, S.

    2004-01-01

    Quality control of the magnetic resonance imagers of different vendors in the clinical environment is non-harmonised, and comparing the performance is difficult. The purpose of this study was to develop and apply a harmonised long-term quality control protocol for the six imagers in our organisation in order to assure that they fulfil the same basic image quality requirements. The same Eurospin phantom set and identical imaging parameters were used with each imager. Values of 11 comparable parameters describing the image quality were measured. Automatic image analysis software was developed to objectively analyse the images. The results proved that the imagers were operating at a performance level adequate for clinical imaging. Some deficiencies were detected in image uniformity and geometry. The automated analysis of the Eurospin phantom images was successful. The measurements were successfully repeated after 2 weeks on one imager and after half a year on all imagers. As an objective way of examining the image quality, this kind of comparable and objective quality control of different imagers is considered as an essential step towards harmonisation of the clinical MRI studies through a large hospital organisation. (orig.)

  15. Imaging brain microstructure with diffusion MRI: practicality and applications.

    Science.gov (United States)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui

    2017-11-29

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Management of pediatric radiation dose using GE fluoroscopic equipment

    International Nuclear Information System (INIS)

    Belanger, Barry; Boudry, John

    2006-01-01

    In this article, we present GE Healthcare's design philosophy and implementation of X-ray imaging systems with dose management for pediatric patients, as embodied in its current radiography and fluoroscopy and interventional cardiovascular X-ray product offerings. First, we present a basic framework of image quality and dose in the context of a cost-benefit trade-off, with the development of the concept of imaging dose efficiency. A set of key metrics of image quality and dose efficiency is presented, including X-ray source efficiency, detector quantum efficiency (DQE), detector dynamic range, and temporal response, with an explanation of the clinical relevance of each. Second, we present design methods for automatically selecting optimal X-ray technique parameters (kVp, mA, pulse width, and spectral filtration) in real time for various clinical applications. These methods are based on an optimization scheme where patient skin dose is minimized for a target desired image contrast-to-noise ratio. Operator display of skin dose and Dose-Area Product (DAP) is covered, as well. Third, system controls and predefined protocols available to the operator are explained in the context of dose management and the need to meet varying clinical procedure imaging demands. For example, fluoroscopic dose rate is adjustable over a range of 20:1 to adapt to different procedure requirements. Fourth, we discuss the impact of image processing techniques upon dose minimization. In particular, two such techniques, dynamic range compression through adaptive multiband spectral filtering and fluoroscopic noise reduction, are explored in some detail. Fifth, we review a list of system dose-reduction features, including automatic spectral filtration, virtual collimation, variable-rate pulsed fluoroscopic, grid and no-grid techniques, and fluoroscopic loop replay with store. In addition, we describe a new feature that automatically minimizes the patient-to-detector distance, along with an

  17. Magnetic resonance imaging (MRI) of the renal sinus.

    Science.gov (United States)

    Krishna, Satheesh; Schieda, Nicola; Flood, Trevor A; Shanbhogue, Alampady Krishna; Ramanathan, Subramaniyan; Siegelman, Evan

    2018-04-09

    This article presents methods to improve MR imaging approach of disorders of the renal sinus which are relatively uncommon and can be technically challenging. Multi-planar Single-shot T2-weighted (T2W) Fast Spin-Echo sequences are recommended to optimally assess anatomic relations of disease. Multi-planar 3D-T1W Gradient Recalled Echo imaging before and after Gadolinium administration depicts the presence and type of enhancement and relation to arterial, venous, and collecting system structures. To improve urographic phase MRI, concentrated Gadolinium in the collecting systems should be diluted. Diffusion-Weighted Imaging (DWI) should be performed before Gadolinium administration to minimize T2* effects. Renal sinus cysts are common but can occasionally be confused for dilated collecting system or calyceal diverticula, with the latter communicating with the collecting system and filling on urographic phase imaging. Vascular lesions (e.g., aneurysm, fistulas) may mimic cystic (or solid) lesions on non-enhanced MRI but can be suspected by noting similar signal intensity to the blood pool and diagnosis can be confirmed with MR angiogram/venogram. Multilocular cystic nephroma commonly extends to the renal sinus, however, to date are indistinguishable from cystic renal cell carcinoma (RCC). Solid hilar tumors are most commonly RCC and urothelial cell carcinoma (UCC). Hilar RCC are heterogeneous, hypervascular with epicenter in the renal cortex compared to UCC which are centered in the collecting system, homogeneously hypovascular, and show profound restricted diffusion. Diagnosis of renal sinus invasion in RCC is critically important as it is the most common imaging cause of pre-operative under-staging of disease. Fat is a normal component of the renal sinus; however, amount of sinus fat correlates with cardiovascular disease and is also seen in lipomatosis. Fat-containing hilar lesions include lipomas, angiomyolipomas, and less commonly other tumors which engulf sinus

  18. Use of personal computer image for processing a magnetic resonance image (MRI)

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuo; Tanaka, Hitoshi

    1988-01-01

    Image processing of MR imaging was attempted by using a popular personal computer as 16-bit model. The computer processed the images on a 256 x 256 matrix and 512 x 512 matrix. The softwer languages for image-processing were those of Macro-Assembler performed by (MS-DOS). The original images, acuired with an 0.5 T superconducting machine (VISTA MR 0.5 T, Picker International) were transfered to the computer by the flexible disket. Image process are the display of image to monitor, other the contrast enhancement, the unsharped mask contrast enhancement, the various filter process, the edge detections or the color histogram was obtained in 1.6 sec to 67 sec, indicating that commercialzed personal computer had ability for routine clinical purpose in MRI-processing. (author)

  19. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    Science.gov (United States)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  20. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms

    International Nuclear Information System (INIS)

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-01-01

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards. (paper)

  1. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  2. Common fluoroscopic studies in radiology : conduct and analysis method

    International Nuclear Information System (INIS)

    Valverde Sanchez, Allan

    2011-01-01

    A countless number of radiological procedures, that have involved the use of fluoroscopy and contrast media of different indole, have been carried out in all radiology services and medical images of Costa Rica for the diagnosis of diseases or conditions, in both adults and in children. Fluoroscopic studies, often called special or contrast studies, have had particular conditions for its realization. Some from the medical point of view: adequate training in the technical and cognitive development when evaluating the images to not miss important details. Other by the patient: adequate preparation to achieve the best images for optimal diagnosis. For example, adequate bowel preparation is essential for a barium enema, to cooperation by the patient to meet specific indications that the physician dictates when swallowing postures or just when you are prompted. Criteria have been met and unified for contrast studies in different hospitals and clinics. The indications, contra, method, technique of procedure, points to remember, number of images or projections minimum required in the interpretation of contrast studies, as well as a report template of standard and ideal study are presented in a simple, systematic and logical. The manual is intended for residents and attending physicians specialists in radiology and medical imaging including contrast studies more common. Spaces are promoted with current technology studies to set aside more complicated and less sophisticated as have been the fluoroscopic studies; however, in the national reality, access to computerized tomography and magnetic resonance imaging is not as easy. Radiological studies with fluoroscopy performed by trained staff led the treating physician to make sound decisions based on studies relatively simple and easy to do. The tests with the use of fluoroscopic have been named: the esophagogram, gastroduodenal series, gastro intestinal transit, the hysterosalpingography, the cystography and the

  3. Technique of obstetric pelvimetry by magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Sigmund, G.; Wenz, W.; Bauer, M.; DeGregorio, G.; Henne, K.

    1991-01-01

    Magnetic resonance imaging (MRL) allows for the first time direct determination of maternal pelvic dimensions without ionising radiation. Phantom measurements and the correlation with traditional pelvimetric measurements in 10 patients after Caesarean section have shown mean differences of ± 2 mm, with a maximum of 5 mm. The evaluation of pelvic configuration is obtained analogous to the conventional roentgenogram. In addition to conventional or digital X-ray pelvimetry, the soft tissues of the maternal pelvis and the presenting part of the foetus is delineated with high contrast. Positioning in the body coil can be accomplished even late in pregnancy or in impending labour, acceptance by the pregnant women being high. Whereas in a given indication after delivery conventional X-ray pelvimetry continues to be performed, antenatally MRI pelvimetry has now been established in our Departments as the method of choice - based on meanwhile 107 examinations. Present drawbacks are the relatively high cost and the limited availability of MR units. (orig.) [de

  4. Assessing MRI susceptibility artefact through an indicator of image distortion

    Directory of Open Access Journals (Sweden)

    Illanes Alfredo

    2016-09-01

    Full Text Available Susceptibility artefacts in magnetic resonance imaging (MRI caused by medical devices can result in a severe degradation of the MR image quality. The quantification of susceptibility artefacts is regulated by the ASTM standard which defines a manual method to assess the size of an artefact. This means that the estimated artefact size can be user dependent. To cope with this problem, we propose an algorithm to automatically quantify the size of such susceptibility artefacts. The algorithm is based on the analysis of a 3D surface generated from the 2D MR images. The results obtained by the automatic algorithm were compared to the manual measurements performed by study participants. The results show that the automatic and manual measurements follow the same trend. The clear advantage of the automated algorithm is the absence of the inter- and intra-observer variability. In addition, the algorithm also detects the slice containing the largest artefact which was not the case for the manual measurements.

  5. Feasibility study on 3D image reconstruction from 2D orthogonal cine-MRI for MRI-guided radiotherapy.

    Science.gov (United States)

    Paganelli, Chiara; Lee, Danny; Kipritidis, John; Whelan, Brendan; Greer, Peter B; Baroni, Guido; Riboldi, Marco; Keall, Paul

    2018-02-11

    In-room MRI is a promising image guidance strategy in external beam radiotherapy to acquire volumetric information for moving targets. However, limitations in spatio-temporal resolution led several authors to use 2D orthogonal images for guidance. The aim of this work is to present a method to concurrently compensate for non-rigid tumour motion and provide an approach for 3D reconstruction from 2D orthogonal cine-MRI slices for MRI-guided treatments. Free-breathing sagittal/coronal interleaved 2D cine-MRI were acquired in addition to a pre-treatment 3D volume in two patients. We performed deformable image registration (DIR) between cine-MRI slices and corresponding slices in the pre-treatment 3D volume. Based on an extrapolation of the interleaved 2D motion fields, the 3D motion field was estimated and used to warp the pre-treatment volume. Due to the lack of a ground truth for patients, the method was validated on a digital 4D lung phantom. On the phantom, the 3D reconstruction method was able to compensate for tumour motion and compared favourably to the results of previously adopted strategies. The difference in the 3D motion fields between the phantom and the extrapolated motion was 0.4 ± 0.3 mm for tumour and 0.8 ± 1.5 mm for whole anatomy, demonstrating feasibility of performing a 3D volumetric reconstruction directly from 2D orthogonal cine-MRI slices. Application of the method to patient data confirmed the feasibility of utilizing this method in real world scenarios. Preliminary results on phantom and patient cases confirm the feasibility of the proposed approach in an MRI-guided scenario, especially for non-rigid tumour motion compensation. © 2018 The Royal Australian and New Zealand College of Radiologists.

  6. MRI imaging of displaced meniscal tears: Report of a case highlighting new potential pitfalls of the MRI signs

    International Nuclear Information System (INIS)

    Prasad, Abhishek; Brar, Rahat; Rana, Shaleen

    2014-01-01

    Magnetic resonance imaging (MRI) has been found to be an excellent imaging tool for meniscal injuries. Various MRI signs have been described to detect displaced meniscal injuries, specifically the bucket-handle tears. Although these signs are quite helpful in diagnosing meniscal tears, various pitfalls have also been reported for these signs. Double anterior cruciate ligament (ACL) sign refers to presence of a linear hypointense soft tissue anterior to the ACL, which represented the flipped bucket-handle tear of the meniscus. Disproportional posterior horn and flipped meniscus signs represent asymmetrically thickened horns of the menisci due to overlying displaced meniscal fragments. We report a case wherein MRI of the knee showed tear and displacement of the medial patellofemoral ligament (MPFL) and vastus medialis complex, medial collateral ligament (MCL), and posterior cruciate ligament (PCL) mimicking these signs. To our knowledge, internally displaced MPFL and MCLs have not been described as mimics for displaced meniscal fragments

  7. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    International Nuclear Information System (INIS)

    Wang, Ge; Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang; Kalra, Mannudeep; Murugan, Venkatesh; Vannier, Michael

    2015-01-01

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine

  8. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang [Biomedical Imaging Center/Cluster, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Kalra, Mannudeep; Murugan, Venkatesh [Department of Imaging, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Vannier, Michael [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-10-15

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.

  9. Magnetic resonance imaging (MRI) of the cardiovascular system

    International Nuclear Information System (INIS)

    Yoshida, Shigeru

    1991-01-01

    Qualitative assessments of the hypertrophied myocardium were performed using spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) obtained by magnetic resonance imaging (MRI) in 15 normotensive patients with asymmetric septal hypertrophy (ASH), 10 hypertensive patients with concentric hypertrophy (CH) and 5 normal subjects (N). The changes of these values were evaluated related to cardiac cycle, and their usefulness in differentiating diseases. The wall thickness and internal dimension of the left ventricle (LV) in 10 cases were obtained using echocardiography and MRI, and there was a good correlation coefficient in wall thickness (r=0.987) and in internal dimension (r=0.991). Left ventricular short-axis images were obtained using ECG-gated spin-echo sequence (Te=30, 80 msec) and using inversion recovery sequence. T1 and T2 images were calculated at endsystolic and diastolic cardiac phases. The regional wall thickness (WT) and T1 and T2 values were measured in the anterior septum, anterior wall, lateral wall, posterior wall and posterior septum. Myocardial T1 and T2 values were significantly decreased in systole (T1: 185.6±37.9 msec, T2: 24.4±6.3 msec) compared to those in diastole (T1: 249.2±56.7 msec, T2: 31.7±9.4 msec). In both ASH and CH groups, significant correlations were observed between diastolic T1 values and WT (ASH: r=0.80, CH: r=0.45), and between diastolic T2 values and WT (ASH: r=0.58, CH: r=0.60). In the regions where diastolic WT were more than 17 mm, T1 values in the ASH group (343.4±40.5 msec) were significantly higher than those of the CH group (247.3±21.4 msec), although the mean wall thickness values were similar in both groups. These results indicate that myocardial relaxation times are related to cardiac cycle, wall thickness and types of hypertrophy. The T1 and T2 values at diastolic cardiac phase might be useful for distinguishing hypertrophic cardiomyopathy from hypertrophy due to hypertension. (author)

  10. Focal Pancreatitis Mimicking Pancreatic Mass: Magnetic Resonance Imaging (MRI)/Magnetic Resonance Cholangiopancreatography (MRCP) Findings Including Diffusion-Weighted MRI

    International Nuclear Information System (INIS)

    Momtahen, A.J.; Balci, N.C.; Alkaade, S.; Akduman, E.I.; Burton, F.R.

    2008-01-01

    Background: Focal pancreatitis (FP) is a confined inflammation that mimics a pancreatic mass. Its imaging diagnosis is important to avoid unnecessary procedures. Purpose: To describe the spectrum of magnetic resonance imaging (MRI)/magnetic resonance cholangiopancreatography (MRCP) and diffusion-weighted MRI (DWI) findings of focal pancreatitis mimicking pancreatic masses. Material and Methods: Findings of MRI/MRCP including DWI with a b value of 0 and 600 s/mm2 in 14 patients with pancreatic masses on MRI were retrospectively reviewed and compared to normal pancreas in 14 patients as a control group. Results: FP revealed hypointense signal intensity (SI) (3/14), hypo- to isointense SI (7/14), or isointense SI (4/14) on T1-weighted images, and hypointense SI (1/14), isointense SI (5/14), iso- to hyperintense SI (7/14), or hyperintense SI (1/14) on T2-weighted images compared to remaining pancreas (RP). MRCP images revealed dilatation of the common bile duct (CBD) and main pancreatic duct (MPD) (5/14), dilatation of the MPD only (3/14), dilatation of the CBD only (3/14), and normal MPD and CBD (3/14). Both FP and RP revealed three types of time-signal intensity curves: 1) rapid rise to a peak, with a rapid decline (FP=2, RP=4), 2) slow rise to a peak, followed by a slow decline (FP=5, RP=4), and 3) slower rise to a peak, with a slow decline or plateau (FP=7, RP=6). Mean apparent diffusion coefficient (ADC) values for FP and RP were 2.09±0.18 and 2.03±0.2x10 -3 mm 2 /s, respectively. ADC values of FP and RP revealed no significant difference. Conclusion: The spectrum of imaging findings of focal pancreatitis on MRI/MRCP including DWI was described. Findings of FP were not distinctive as compared to the remaining pancreas

  11. Molecular imaging of head and neck cancers. Perspectives of PET/MRI

    International Nuclear Information System (INIS)

    Stumpp, P.; Kahn, T.; Purz, S.; Sabri, O.

    2016-01-01

    The 18 F-fluorodeoxyglucose positron emission tomography-computed tomography ( 18 F-FDG-PET/CT) procedure is a cornerstone in the diagnostics of head and neck cancers. Several years ago PET-magnetic resonance imaging (PET/MRI) also became available as an alternative hybrid multimodal imaging method. Does PET/MRI have advantages over PET/CT in the diagnostics of head and neck cancers ?The diagnostic accuracy of the standard imaging methods CT, MRI and PET/CT is depicted according to currently available meta-analyses and studies concerning the use of PET/MRI for these indications are summarized. In all studies published up to now PET/MRI did not show superiority regarding the diagnostic accuracy in head and neck cancers; however, there is some evidence that in the future PET/MRI can contribute to tumor characterization and possibly be used to predict tumor response to therapy with the use of multiparametric imaging. Currently, 18 F-FDG-PET/CT is not outperformed by PET/MRI in the diagnostics of head and neck cancers. The additive value of PET/MRI due to the use of multiparametric imaging needs to be investigated in future research. (orig.) [de

  12. Imaging of postthalamic visual fiber tracts by anisotropic diffusion weighted MRI and diffusion tensor imaging: principles and applications

    International Nuclear Information System (INIS)

    Reinges, Marcus H.T.; Schoth, Felix; Coenen, Volker A.; Krings, Timo

    2004-01-01

    Diffusion weighted MRI offers the possibility to study the course of the cerebral white matter tracts. In the present manuscript, the basics, the technique and the limitations of diffusion tensor imaging and anisotropic diffusion weighted MRI are presented and their applications in various neurological and neurosurgical diseases are discussed with special emphasis on the visual system. A special focus is laid on the combination of fiber tract imaging, anatomical imaging and functional MRI for presurgical planning and intraoperative neuronavigation of lesions near the visual system

  13. Imaging children suffering from lymphoma: an evaluation of different 18F-FDG PET/MRI protocols compared to whole-body DW-MRI.

    Science.gov (United States)

    Kirchner, Julian; Deuschl, Cornelius; Schweiger, Bernd; Herrmann, Ken; Forsting, Michael; Buchbender, Christian; Antoch, Gerald; Umutlu, Lale

    2017-09-01

    The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted 18 F-FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients. A total of 28 18 F-FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards. PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI 1 ; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI 2 ; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI 3 and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI. 18 F-FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future.

  14. Imaging children suffering from lymphoma: an evaluation of different {sup 18}F-FDG PET/MRI protocols compared to whole-body DW-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, Julian; Buchbender, Christian; Antoch, Gerald [University Dusseldorf, Department of Diagnostic and Interventional Radiology, Medical Faculty, Dusseldorf (Germany); Deuschl, Cornelius; Schweiger, Bernd; Forsting, Michael; Umutlu, Lale [University Hospital Essen, University of Duisburg-Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Herrmann, Ken [University Hospital Essen, University of Duisburg-Essen, Department of Nuclear Medicine, Essen (Germany)

    2017-09-15

    The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted {sup 18}F-FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients. A total of 28 {sup 18}F-FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards. PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI{sub 1}; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI{sub 2}; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI{sub 3} and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI. {sup 18}F-FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future. (orig.)

  15. Synthese und Charakterisierung amphiphiler Porphyrinoide als Kontrastmittel für das Magnetic Resonance Imaging (MRI)

    OpenAIRE

    Neumann, Yvonne

    2011-01-01

    Magnetic resonance imaging (MRI) is a diagnostic tool, which is commonly used in visualization of internal procedures in the living tissue. Used in visualizing procedures, MRI shows an increased contrast-enhancing effect in soft tissue in contrast to other techniques like computer tomography (CT). MRI does not need any ionizing radiation and provides three dimensional tomographic shots. One of the first commonly used porphyrin-based contrast agents was Gadophrin-2, which has a high affinity t...

  16. Hyperpolarized 129Xe MRI: A viable functional lung imaging modality?

    International Nuclear Information System (INIS)

    Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.

    2007-01-01

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3 He as their imaging agent of choice rather than 129 Xe. This preference has been predominantly due to, 3 He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129 Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129 Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO 2 ) by observation of 129 Xe signal decay. We note that the measurement of pO 2 by observation of 129 Xe signal decay is more complex than that for 3 He because of an additional signal loss mechanism due to interphase diffusion of 129 Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO 2 that accounts for both traditional T 1 decay from pO 2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output

  17. Contribution of brain imaging techniques: CT-scan and magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Pasco-Papon, A.; Gourdier, A.L.; Papon, X.; Caron-Poitreau, C.

    1996-01-01

    In light of the current lack of consensus on the benefit of carotid artery surgery to treat asymptomatic carotid artery stenosis, the decision to operate on a patient depends on individual evaluation and characterization of risk factors on carotid artery stenosis greater than 70 %. The assessment of such risk factors is based especially on non-invasive brain imaging techniques.Computed tomography scanning (CT-scan) and magnetic resonance imaging (MRI) enable two types of stenosis to be differentiated, i.e. stenoses which are symptomatic and those that are radiologically proven versus those which are clinically and radiologically silent. CT-scan investigation (with and without injection of iodinated contrast media) still continues to be a common routine test in 1996 whenever a surgical revascularization procedure is planned. The presence of deep lacunar infarcts ipsilateral to the carotid artery stenosis generally evidence the reality of stenosis and thus are useful to the surgeon in establishing whether surgery is indicated. In the absence a consensus on indications for surgical management, the surgeon could use the CT-scan and MRI as medicolegal records which could be compared to a subsequent postoperative CT-scan in case of ischemic complications associated with the surgical procedure. Furthermore, recent cerebral ischemia as evidenced by filling with contrast material, will call for postponing treatment by a few weeks. Although conventional MRI is more contributive than brain CT-scan in terms of sensibility and specificity, its indications are narrower because of its limited availability and cost constraints. But, development of angio-MRI and functional imaging promise that its future is assured and even perhaps as the sole diagnostic method if its indications are expanded to include preoperative angiographic evaluation of atheromatous lesions of supra-aortic trunks. (authors). 37 refs

  18. An MRI system for imaging neonates in the NICU: initial feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tkach, Jean A.; Loew, Wolfgang; Pratt, Ron G.; Daniels, Barret R.; Giaquinto, Randy O.; Winter, Patrick M.; Li, Yu; Dumoulin, Charles L. [Cincinnati Children' s Hospital Medical Center, Imaging Research Center, Department of Radiology, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Hillman, Noah H.; Jobe, Alan H.; Kallapur, Suhas G.; Merhar, Stephanie L.; Ikegami, Machiko; Whitsett, Jeffrey A. [Perinatal Institute, Cincinnati Children' s Hospital Medical Center, Division of Neonatology and Pulmonary Biology, Cincinnati, OH (United States); Kline-Fath, Beth M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2012-11-15

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate. (orig.)

  19. An MRI system for imaging neonates in the NICU: initial feasibility study

    International Nuclear Information System (INIS)

    Tkach, Jean A.; Loew, Wolfgang; Pratt, Ron G.; Daniels, Barret R.; Giaquinto, Randy O.; Winter, Patrick M.; Li, Yu; Dumoulin, Charles L.; Hillman, Noah H.; Jobe, Alan H.; Kallapur, Suhas G.; Merhar, Stephanie L.; Ikegami, Machiko; Whitsett, Jeffrey A.; Kline-Fath, Beth M.

    2012-01-01

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate. (orig.)

  20. An MRI system for imaging neonates in the NICU: initial feasibility study.

    Science.gov (United States)

    Tkach, Jean A; Hillman, Noah H; Jobe, Alan H; Loew, Wolfgang; Pratt, Ron G; Daniels, Barret R; Kallapur, Suhas G; Kline-Fath, Beth M; Merhar, Stephanie L; Giaquinto, Randy O; Winter, Patrick M; Li, Yu; Ikegami, Machiko; Whitsett, Jeffrey A; Dumoulin, Charles L

    2012-11-01

    Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate.

  1. Multimodal in vivo MRI and NIRF imaging of bladder tumor using peptide conjugated glycol chitosan nanoparticles

    Science.gov (United States)

    Key, Jaehong; Dhawan, Deepika; Knapp, Deborah W.; Kim, Kwangmeyung; Kwon, Ick Chan; Choi, Kuiwon; Leary, James F.

    2012-03-01

    Exact detection and complete removal of cancer is a key point to minimize cancer recurrence. However, it is currently very difficult to detect small tumors inside human body and continuously monitor tumors using a non-invasive imaging modality. Presently, positron emission tomography (PET) can provide the most sensitive cancer images in the human body. However, PET imaging has very limited imaging time because they typically use isotopes with short halflives. PET imaging cannot also visualize anatomical information. Magnetic resonance imaging (MRI) can provide highresolution images inside the body but it has a low sensitivity, so MRI contrast agents are necessary to enhance the contrast of tumor. Near infrared fluorescent (NIRF) imaging has a good sensitivity to visualize tumor using optical probes, but it has a very limited tissue penetration depth. Therefore, we developed multi-modality nanoparticles for MRI based diagnosis and NIRF imaging based surgery of cancer. We utilized glycol chitosan of 350 nm as a vehicle for MRI contrast agents and NIRF probes. The glycol chitosan nanoparticles were conjugated with NIRF dye, Cy5.5 and bladder cancer targeting peptides to increase the internalization of cancer. For MR contrast effects, iron oxide based 22 nm nanocubes were physically loaded into the glycol chitosan nanoparticles. The nanoparticles were characterized and evaluated in bladder tumor bearing mice. Our study suggests the potential of our nanoparticles by both MRI and NIRF imaging for tumor diagnosis and real-time NIRF image-guided tumor surgery.

  2. Phase-encoded MRI for geometrically undistorted imaging and signal characterization

    NARCIS (Netherlands)

    van Gorp, JS

    2016-01-01

    Magnetic resonance imaging (MRI) is a versatile diagnostic modality that has earned its place in clinical practice all over the world. MRI delivers excellent soft-tissue contrast that can be utilized to detect disease and measure physiological properties in a non-invasive manner. As long as the main

  3. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker

    NARCIS (Netherlands)

    van Rooden, S.; Versluis, M.J.; Liem, M.K.; Milles, J.; Maier, A.B.; Oleksik, A.M.; Webb, A.G.; van Buchem, M.A.; van der Grond, J.

    2014-01-01

    Background: Postmortem studies have indicated the potential of high-field magnetic resonance imaging (MRI) to visualize amyloid depositions in the cerebral cortex. The aim of this study is to test this hypothesis in patients with Alzheimer's disease (AD). Methods: T2*-weighted MRI was performed in

  4. The OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging (MRI) Scoring System: Updated Recommendations by the OMERACT MRI in Arthritis Working Group.

    Science.gov (United States)

    Østergaard, Mikkel; Peterfy, Charles G; Bird, Paul; Gandjbakhch, Frédérique; Glinatsi, Daniel; Eshed, Iris; Haavardsholm, Espen A; Lillegraven, Siri; Bøyesen, Pernille; Ejbjerg, Bo; Foltz, Violaine; Emery, Paul; Genant, Harry K; Conaghan, Philip G

    2017-11-01

    The Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis (RA) Magnetic Resonance Imaging (MRI) scoring system (RAMRIS), evaluating bone erosion, bone marrow edema/osteitis, and synovitis, was introduced in 2002, and is now the standard method of objectively quantifying inflammation and damage by MRI in RA trials. The objective of this paper was to identify subsequent advances and based on them, to provide updated recommendations for the RAMRIS. MRI studies relevant for RAMRIS and technical and scientific advances were analyzed by the OMERACT MRI in Arthritis Working Group, which used these data to provide updated considerations on image acquisition, RAMRIS definitions, and scoring systems for the original and new RA pathologies. Further, a research agenda was outlined. Since 2002, longitudinal studies and clinical trials have documented RAMRIS variables to have face, construct, and criterion validity; high reliability and sensitivity to change; and the ability to discriminate between therapies. This has enabled RAMRIS to demonstrate inhibition of structural damage progression with fewer patients and shorter followup times than has been possible with conventional radiography. Technical improvements, including higher field strengths and improved pulse sequences, allow higher image resolution and contrast-to-noise ratio. These have facilitated development and validation of scoring methods of new pathologies: joint space narrowing and tenosynovitis. These have high reproducibility and moderate sensitivity to change, and can be added to RAMRIS. Combined scores of inflammation or joint damage may increase sensitivity to change and discriminative power. However, this requires further research. Updated 2016 RAMRIS recommendations and a research agenda were developed.

  5. Functional imaging of the kidneys with fast MRI techniques

    International Nuclear Information System (INIS)

    Prasad, Pottumarthi V.; Priatna, Agus

    1999-01-01

    Availability of faster and stronger gradient systems have given rise to a multitude of fast MRI data acquisition strategies which have tremendously increased the scope of MRI applications. These have led to the realization of long desired comprehensive approaches to evaluate anatomy and function using a single modality. In this work, we describe some of our own experiences with functional evaluation of the kidneys using MRI. Examples that suggest the feasibility of comprehensive approaches for evaluation of renal disease are also provided. We also introduce BOLD renal MRI, a method that may allow basic understanding of human renal physiology and pathophysiology in a way that has not been previously possible

  6. Indications and value of bone scintigraphy in comparison to magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Haug, A.; Hacker, M.; Weiss, M.; Hahn, K.; Pfluger, T.

    2006-01-01

    With increasing use of cross-sectional imaging (CT/MRI) in radiology as well as PET and PET/CT in nuclear medicine, remaining indications for bone scintigraphy are in question. Recently introduced whole-body MRI represents an attractive alternative to bone scintigraphy, as MRI is additionally able to assess lesions that are limited to bone marrow and are located extraosseously. In this overview, indication-related strengths and limitations of MRI and bone scintigraphy are presented and discussed. Furthermore, complementary use of both modalities for special clinical questions is demonstrated. (orig.)

  7. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  8. Optimized workflow and imaging protocols for whole-body oncologic PET/MRI.

    Science.gov (United States)

    Ishii, Shirou; Hara, Takamitsu; Nanbu, Takeyuki; Suenaga, Hiroki; Sugawara, Shigeyasu; Kuroiwa, Daichi; Sekino, Hirofumi; Miyajima, Masayuki; Kubo, Hitoshi; Oriuchi, Noboru; Ito, Hiroshi

    2016-11-01

    Although PET/MRI has the advantages of a simultaneous acquisition of PET and MRI, high soft-tissue contrast of the MRI images, and reduction of radiation exposure, its low profitability and long acquisition time are significant problems in clinical settings. Thus, MRI protocols that meet oncological purposes need to be used in order to reduce examination time while securing detectability. Currently, half-Fourier acquisition single-shot turbo spin echo and 3D-T1 volumetric interpolated breath-hold examination may be the most commonly used sequences for whole-body imaging due to their shorter acquisition time and higher diagnostic accuracy. Although there have been several reports that adding diffusion weighted image (DWI) to PET/MRI protocol has had no effect on tumor detection to date, in cases of liver, kidney, bladder, and prostate cancer, the use of DWI may be beneficial in detecting lesions. Another possible option is to scan each region with different MRI sequences instead of scanning the whole body using one sequence continuously. We herein report a workflow and imaging protocols for whole-body oncologic PET/MRI using an integrated system in the clinical routine, designed for the detection, for example by cancer screening, of metastatic lesions, in order to help future users optimize their workflow and imaging protocols.

  9. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group

    NARCIS (Netherlands)

    Rudwaleit, M.; Jurik, A. G.; Hermann, K.-G. A.; Landewé, R.; van der Heijde, D.; Baraliakos, X.; Marzo-Ortega, H.; Ostergaard, M.; Braun, J.; Sieper, J.

    2009-01-01

    Magnetic resonance imaging (MRI) of sacroiliac joints has evolved as the most relevant imaging modality for diagnosis and classification of early axial spondyloarthritis (SpA) including early ankylosing spondylitis. To identify and describe MRI findings in sacroiliitis and to reach consensus on

  10. Whole-body MRI in adult inflammatory myopathies: Do we need imaging of the trunk?

    International Nuclear Information System (INIS)

    Filli, Lukas; Manoliu, Andrei; Andreisek, Gustav; Guggenberger, Roman; Maurer, Britta

    2015-01-01

    To evaluate whether imaging of the trunk could be omitted in patients with inflammatory myopathies without losing diagnostic accuracy using a restricted whole-body magnetic resonance imaging (rWB-MRI) protocol. After approval by the institutional review board, this study was performed in 63 patients (male/female, 13/50; median age, 52 years; range, 20-81 years) with new-onset myopathic symptoms (group 1, n = 41) or previously diagnosed inflammatory myopathy (group 2, n = 22). After performing whole-body MRI (WB-MRI) at 3.0 Tesla, myositis and fatty atrophy were evaluated in different muscles by two independent radiologists. The intra-class correlation coefficient (ICC) was calculated to evaluate inter-observer reliability. Acquisition time was 56:01 minutes for WB-MRI and 37:37 minutes (32.8 % shorter) for rWB-MRI. In group 1, 14 patients were diagnosed with inflammatory myopathy based on muscle biopsy. rWB-MRI and WB-MRI showed equal sensitivity (42.9 %) and specificity (100 %) for myositis, and showed equal sensitivity (71.4 %) and similar specificity (63.0 % and 48.1 %, respectively) for fatty atrophy. No myositis was found in the body trunk in any patient. Inter-observer reliability was between substantial and perfect (ICC, 0.77-1.00). rWB-MRI showed diagnostic accuracy similar to WB-MRI for inflammatory myopathy at markedly reduced overall acquisition time. (orig.)

  11. Whole-body MRI in adult inflammatory myopathies: Do we need imaging of the trunk?

    Energy Technology Data Exchange (ETDEWEB)

    Filli, Lukas; Manoliu, Andrei; Andreisek, Gustav; Guggenberger, Roman [University Hospital Zurich, University of Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Maurer, Britta [University Hospital Zurich, University of Zurich, Division of Rheumatology, Zurich (Switzerland)

    2015-12-15

    To evaluate whether imaging of the trunk could be omitted in patients with inflammatory myopathies without losing diagnostic accuracy using a restricted whole-body magnetic resonance imaging (rWB-MRI) protocol. After approval by the institutional review board, this study was performed in 63 patients (male/female, 13/50; median age, 52 years; range, 20-81 years) with new-onset myopathic symptoms (group 1, n = 41) or previously diagnosed inflammatory myopathy (group 2, n = 22). After performing whole-body MRI (WB-MRI) at 3.0 Tesla, myositis and fatty atrophy were evaluated in different muscles by two independent radiologists. The intra-class correlation coefficient (ICC) was calculated to evaluate inter-observer reliability. Acquisition time was 56:01 minutes for WB-MRI and 37:37 minutes (32.8 % shorter) for rWB-MRI. In group 1, 14 patients were diagnosed with inflammatory myopathy based on muscle biopsy. rWB-MRI and WB-MRI showed equal sensitivity (42.9 %) and specificity (100 %) for myositis, and showed equal sensitivity (71.4 %) and similar specificity (63.0 % and 48.1 %, respectively) for fatty atrophy. No myositis was found in the body trunk in any patient. Inter-observer reliability was between substantial and perfect (ICC, 0.77-1.00). rWB-MRI showed diagnostic accuracy similar to WB-MRI for inflammatory myopathy at markedly reduced overall acquisition time. (orig.)

  12. Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols

    International Nuclear Information System (INIS)

    Ahmad, Rizwan; Hu, Houchun Harry; Krishnamurthy, Ramkumar; Krishnamurthy, Rajesh

    2018-01-01

    Magnetic resonance imaging (MRI) is an established diagnostic imaging tool for investigating pediatric disease. MRI allows assessment of structure, function, and morphology in cardiovascular imaging, as well as tissue characterization in body imaging, without the use of ionizing radiation. For MRI in children, sedation and general anesthesia (GA) are often utilized to suppress patient motion, which can otherwise compromise image quality and diagnostic efficacy. However, evidence is emerging that use of sedation and GA in children might have long-term neurocognitive side effects, in addition to the short-term procedure-related risks. These concerns make risk-benefit assessment of sedation and GA more challenging. Therefore, reducing or eliminating the need for sedation and GA is an important goal of imaging innovation and research in pediatric MRI. In this review, the authors focus on technical and clinical approaches to reducing and eliminating the use of sedation in the pediatric population based on image acquisition acceleration and imaging protocols abbreviation. This paper covers important physiological and technical considerations for pediatric body MR imaging and discusses MRI techniques that offer the potential of recovering diagnostic-quality images from accelerated scans. In this review, the authors also introduce the concept of reporting elements for important indications for pediatric body MRI and use this as a basis for abbreviating the MR protocols. By employing appropriate accelerated and abbreviated approaches based on an understanding of the imaging needs and reporting elements for a given clinical indication, it is possible to reduce sedation and GA for pediatric chest, cardiovascular and abdominal MRI. (orig.)

  13. Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI.

    Science.gov (United States)

    Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C; Corum, Curt; Martinez, Gary V; Garwood, Michael; Gillies, Robert J

    2014-09-01

    The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT). The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week-old immunocompromised male mice. Tumor growth was assessed weekly for 3 weeks before euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4 Tesla (T) and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of nonexposure to ionizing radiation, quietness, and speed. Copyright © 2013 Wiley Periodicals, Inc.

  14. Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rizwan [The Ohio State University, Department of Biomedical Engineering, Columbus, OH (United States); Hu, Houchun Harry; Krishnamurthy, Ramkumar; Krishnamurthy, Rajesh [Nationwide Children' s Hospital, Department of Radiology, Columbus, OH (United States)

    2018-01-15

    Magnetic resonance imaging (MRI) is an established diagnostic imaging tool for investigating pediatric disease. MRI allows assessment of structure, function, and morphology in cardiovascular imaging, as well as tissue characterization in body imaging, without the use of ionizing radiation. For MRI in children, sedation and general anesthesia (GA) are often utilized to suppress patient motion, which can otherwise compromise image quality and diagnostic efficacy. However, evidence is emerging that use of sedation and GA in children might have long-term neurocognitive side effects, in addition to the short-term procedure-related risks. These concerns make risk-benefit assessment of sedation and GA more challenging. Therefore, reducing or eliminating the need for sedation and GA is an important goal of imaging innovation and research in pediatric MRI. In this review, the authors focus on technical and clinical approaches to reducing and eliminating the use of sedation in the pediatric population based on image acquisition acceleration and imaging protocols abbreviation. This paper covers important physiological and technical considerations for pediatric body MR imaging and discusses MRI techniques that offer the potential of recovering diagnostic-quality images from accelerated scans. In this review, the authors also introduce the concept of reporting elements for important indications for pediatric body MRI and use this as a basis for abbreviating the MR protocols. By employing appropriate accelerated and abbreviated approaches based on an understanding of the imaging needs and reporting elements for a given clinical indication, it is possible to reduce sedation and GA for pediatric chest, cardiovascular and abdominal MRI. (orig.)

  15. Prospective assessment of MRI for imaging retroperitoneal metastases from testicular germ cell tumours

    Energy Technology Data Exchange (ETDEWEB)

    Sohaib, S.A. [Department of Radiology, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom)], E-mail: aslam.sohaib@rmh.nhs.uk; Koh, D.M. [Department of Radiology, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Barbachano, Y. [Department of Computing and Statistics, Royal Marsden Hospital, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Parikh, J.; Husband, J.E.S. [Department of Radiology, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Dearnaley, D.P.; Horwich, A.; Huddart, R. [Department of Academic Urology Unit, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom)

    2009-04-15

    Aim: To determine the sensitivity of magnetic resonance imaging (MRI) in the detection of retroperitoneal lymph nodes in patients with testicular germ cell tumours (TGCT). Methods and materials: A prospective study of 52 patients (mean age 34 years, range 18-54 years) was performed. Imaging of the retroperitoneum was performed using multidetector computed tomography (CT) and 1.5 T MRI systems. The CT and MRI images were read independently by three observers. The number, size, and site of enlarged nodes ({>=}10 mm maximum short axis diameter) were recorded. Retroperitoneal nodal detection on MRI was compared to CT. Results: Twenty-two (42%) of the 52 patients had no retroperitoneal disease; in remaining 30 patients 51 enlarged nodes were identified. On a per patient basis readers 1, 2, and 3 identified nodal disease in 28 of 29, 29 of 30, and 24 of 30 patients, respectively, using MRI compared to CT. Thus for experienced radiologists (readers 1 and 2) MRI is comparable to CT for nodal detection (i.e., this study excludes MRI being inferior to CT with 80% power and 5% type 1 error). Conclusion: MRI offers an alternative method for staging the retroperitoneum in young patients being followed for TGCT and has the major advantage of avoiding exposure to ionizing radiation.

  16. Measurement and imaging of brain function using MRI, MEG, and TMS

    International Nuclear Information System (INIS)

    Iramina, Keiji

    2008-01-01

    This paper reviews functional imaging techniques in neuroscience such as magnetic resonance imaging (MRI) functional MRI (fMRI), magnetoencephalogray (MEG), and transcranial magnetic stimulation (TMS). fMRI and MEG allow the neuronal activity of the brain to be measured non-invasively. MEG detects an electrical activity as neuronal activity, while, fMRI detects a hemodynamic response as neuronal activity. TMS is the application of a brief magnetic pulse or a train of pulses to the skull, which results in the induction of a local electric current in the underlying surface of the brain, thereby producing a localized axonal depolarization. As a non-invasive and effective method to make reversible lesions in the human brain, TMS has a long and successful history. All of these techniques have major potential for applications in the neuroscience and medicine. (author)

  17. Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI

    DEFF Research Database (Denmark)

    Keller, Sune H; Holm, Søren; Hansen, Adam E

    2013-01-01

    Integrated whole-body PET/MRI tomographs have become available. PET/MR imaging has the potential to supplement, or even replace combined PET/CT imaging in selected clinical indications. However, this is true only if methodological pitfalls and image artifacts arising from novel MR-based attenuation...

  18. MRI of the scrotum. Recommendations of the ESUR Scrotal and Penile Imaging Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Tsili, Athina C.; Ntorkou, Alexandra [University of Ioannina, Department of Clinical Radiology, Medical School, Ioannina (Greece); Bertolotto, Michele [Uco di Radiologia, Trieste Univ. (Italy); Turgut, Ahmet Tuncay [Ankara Training and Research Hospital, Department of Radiology, Ankara (Turkey); Dogra, Vikram [University of Rochester School of Medicine and Dentistry, Department of Imaging Sciences, Rochester, NY (United States); Freeman, Simon [Plymouth Hospitals NHS Trust, Plymouth (United Kingdom); Rocher, Laurence [Hopitaux Universitaires Paris Sud, APHP, Ecole Doctorale Biosigne, Le Kremlin Bicetre (France); Belfield, Jane [Royal Liverpool University Hospital, Liverpool (United Kingdom); Studniarek, Michal [Medical University of Gdansk, Gdansk (Poland); Derchi, Lorenzo E. [Universita di Genova, Genova (Italy); Oyen, Raymond [KU Leuven, Radiology, Leuven (Belgium); Ramchandani, Parvati [Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA (United States); Secil, Mustafa [Dokuz Eylul University Faculty of Medicine, Department of Radiology, Izmir (Turkey); Richenberg, Jonathan [Royal Sussex County Hospital Brighton and Brighton and Sussex Medical School, Brighton, Sussex (United Kingdom)

    2018-01-15

    The Scrotal and Penile Imaging Working Group (SPI-WG) appointed by the board of the European Society of Urogenital Radiology (ESUR) has produced recommendations for magnetic resonance imaging (MRI) of the scrotum. The SPI-WG searched for original and review articles published before September 2016 using the Pubmed and Medline databases. Keywords used were 'magnetic resonance imaging', 'testis or testicle or testicular', 'scrotum', 'intratesticular', 'paratesticular', 'extratesticular' 'diffusion-weighted', 'dynamic MRI'. Consensus was obtained among the members of the subcommittee. The expert panel proposed recommendations using Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. The recommended MRI protocol should include T1-, T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced MRI. Scrotal MRI can be clinically applied for lesion characterisation (primary), including both intratesticular and paratesticular masses, differentiation between germ-cell and non-germ-cell neoplasms (evolving), characterisation of the histological type of testicular germ cell neoplasms (TGCNs, in selected cases), local staging of TGCNs (primary), acute scrotum (in selected cases), trauma (in selected cases) and undescended testes (primary). The ESUR SPI-WG produced this consensus paper in which the existing literature on MRI of the scrotum is reviewed. The recommendations for the optimal imaging technique and clinical indications are presented. (orig.)

  19. MRI of the scrotum. Recommendations of the ESUR Scrotal and Penile Imaging Working Group

    International Nuclear Information System (INIS)

    Tsili, Athina C.; Ntorkou, Alexandra; Bertolotto, Michele; Turgut, Ahmet Tuncay; Dogra, Vikram; Freeman, Simon; Rocher, Laurence; Belfield, Jane; Studniarek, Michal; Derchi, Lorenzo E.; Oyen, Raymond; Ramchandani, Parvati; Secil, Mustafa; Richenberg, Jonathan

    2018-01-01

    The Scrotal and Penile Imaging Working Group (SPI-WG) appointed by the board of the European Society of Urogenital Radiology (ESUR) has produced recommendations for magnetic resonance imaging (MRI) of the scrotum. The SPI-WG searched for original and review articles published before September 2016 using the Pubmed and Medline databases. Keywords used were 'magnetic resonance imaging', 'testis or testicle or testicular', 'scrotum', 'intratesticular', 'paratesticular', 'extratesticular' 'diffusion-weighted', 'dynamic MRI'. Consensus was obtained among the members of the subcommittee. The expert panel proposed recommendations using Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. The recommended MRI protocol should include T1-, T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced MRI. Scrotal MRI can be clinically applied for lesion characterisation (primary), including both intratesticular and paratesticular masses, differentiation between germ-cell and non-germ-cell neoplasms (evolving), characterisation of the histological type of testicular germ cell neoplasms (TGCNs, in selected cases), local staging of TGCNs (primary), acute scrotum (in selected cases), trauma (in selected cases) and undescended testes (primary). The ESUR SPI-WG produced this consensus paper in which the existing literature on MRI of the scrotum is reviewed. The recommendations for the optimal imaging technique and clinical indications are presented. (orig.)

  20. MRI and CBCT image registration of temporomandibular joint: a systematic review.

    Science.gov (United States)

    Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Saltaji, Humam; Jaremko, Jacob L; Major, Paul W

    2016-05-10

    The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7 years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.

  1. Facilitating tumor functional assessment by spatially relating 3D tumor histology and In Vivo MRI: Image registration approach

    NARCIS (Netherlands)

    L. Alic (Lejla); J.C. Haeck (Joost); K. Bol (Karin); S. Klein (Stefan); S.T. van Tiel (Sandra); P.A. Wielepolski (Piotr); M. de Jong (Marion); W.J. Niessen (Wiro); M.R. Bernsen (Monique); J.F. Veenland (Jifke)

    2011-01-01

    textabstractBackground: Magnetic resonance imaging (MRI), together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is

  2. Facilitating tumor functional assessment by spatially relating 3D tumor histology and in vivo MRI : Image registration approach

    NARCIS (Netherlands)

    Alic, L.; Haeck, J.C.; Bol, K.; Klein, S.; Van Tiel, S.T.; Wielepolski, P.A.; De Jong, M.; Niessen, W.J.; Bernsen, M.; Veenland, J.F.

    2011-01-01

    Background Magnetic resonance imaging (MRI), together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is complicated

  3. Facilitating tumor functional assessment by spatially relating 3D tumor histology and in vivo MRI: Image registration approach

    NARCIS (Netherlands)

    Alić, L.; Haeck, J.C.; Bol, K.; Klein, S.; Tiel, S.T. van; Wielopolski, P.A.; Bijster, M.; Bernsen, M.; Jong, M. de; Niessen, W.J.; Veenland, J.F.

    2011-01-01

    Background: Magnetic resonance imaging (MRI), together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is complicated

  4. How does MRI work? An introduction into physics and functionality of magnetic resonance imaging. 6. ed.

    International Nuclear Information System (INIS)

    Weishaupt, Dominik; Marincek, Borut

    2009-01-01

    The book provides the basic physics and describes the functionality of magnetic resonance tomography in a very illustrative way. The following topics are covered: Spins and the magnetic resonance phenomenon, image contrast, three-dimensional structure, signal-to-noise ratio, description of a magnetic resonance tomography, basic pulse sequences, fast pulse sequences, methods for fat suppression, parallel imaging, cardiovascular imaging, MR contrast media, MR image artifacts, high-field MRI, imaging beyond morphology and structure, safety and risks [de

  5. Signal to noise comparison of metabolic imaging methods on a clinical 3T MRI

    DEFF Research Database (Denmark)

    Müller, C. A.; Hansen, Rie Beck; Skinner, J. G.

    MRI with hyperpolarized tracers has enabled new diagnostic applications, e.g. metabolic imaging in cancer research. However, the acquisition of the transient, hyperpolarized signal with spatial and frequency resolution requires dedicated imaging methods. Here, we compare three promising candidate...... for 2D MR spectroscopic imaging (MRSI): (i) multi-echo balanced steady-state free precession (me-bSSFP), 1,2 (ii) echo planar spectroscopic imaging (EPSI) sequence and (iii) phase-encoded, pulseacquisition chemical-shift imaging (CSI)...

  6. New Jersey's Thomas Edison and the fluoroscope.

    Science.gov (United States)

    Tselos, G D

    1995-11-01

    Thomas Edison played a major role in the development of early x-ray technology in 1896, notably increasing tube power and reliability and making the fluoroscope a practical instrument. Eventually, Edison would move x-ray technology from the laboratory to the marketplace.

  7. MRI, geometric distortion of the image and stereotaxy

    International Nuclear Information System (INIS)

    Derosier, C.; Delegue, G.; Munier, T.; Pharaboz, C.; Cosnard, G.

    1991-01-01

    The MRI technology may be the starting-point of geometric distortion. The mathematical preciseness of a spatial location may be disturbed and alter the guidance of a MRI interventional act, especially in stereotactic brain biopsy. A review of the literature shows errors of 1 to 1.5 mm. Our results show an error of 0.16±0.66. The control of quality: homogeneity and calibration of magnetic-field gradients, permit an improve of the ballistic preciseness and give permission to realize the guidance of a stereotactic brain biopsy with the alone MRI

  8. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  9. An engineering development of fluoroscopic X-ray medical equipment based-on fluorescent screen

    International Nuclear Information System (INIS)

    Ferry Suyatno; I Putu Susila; Djoko Sukmono

    2011-01-01

    Fluoroscopic x-ray medical equipment uses fluorescent screen to capture structural image of organs. Unlike conventional x-ray equipment which uses film, in the fluoroscopic x-ray, the resulting image is visualized on the fluorescent screen and directly observed by physicians in the patients' rooms. In this study, we developed an image capture system that transforms the image on the fluorescent screen into digital data, which is then transferred to computer for visualization and further processing. By using this system, the observation of the resulting image can be done on a computer that is placed in the control room. The image can also be stored easily and at low cost compared to conventional film. The experiment shows that the system could be used to capture image of the object. However, its quality needs to be improved. In the future, the system will be modified and tested with different types of cameras to obtain better results. (author)

  10. Utility of reconstructed image from 3-D MRI in the region of oral cavity

    International Nuclear Information System (INIS)

    Murakami, Shumei; Kakimoto, Naoya; Nakatani, Atsutoshi; Furuya, Shigeo; Furukawa, Shouhei; Fuchihata, Hajime

    1998-01-01

    The 3-D MRI with short TR was performed in the region of oral cavity, jaw and face, and utility of the reconstructed image was examined. Subjects were 8 healthy volunteers and 12 patients. The 3-D MRI was performed using SPGR with the following parameters; TR: 8 or 9 msec, TE: 2 or 3 msec, and FA: 20-30 degrees. Imaging direction was vertical to body axis. The matrix number was 256 x 192, slice thickness was 1 mm, slice interval was 0 and slice number was 128. The obtained image was reconstructed using software Reformat''. Detectability of temporomandibular joint disc was not enough in 8 of 20 cases. Detectability of mandibular canal was clear in 18 of 20 cases. In panorama MRI, soft tissue such as submandibular gland was detected. But, in hard tissue such as teeth or maxilla, there was a more little information in panorama MRI than in panorama X-ray photography. (K.H.)

  11. Imaging technique and current status of valvular heart disease using cardiac MRI

    International Nuclear Information System (INIS)

    Lotz, J.; Sohns, J.M.

    2013-01-01

    The main indications for cardiac magnetic resonance imaging (MRI) in the evaluation of valvular heart disease are pathologies of the aortic and pulmonary valve. For mitral and tricuspid valve pathologies MRI is not the first line modality as these are usually well visualized by echocardiography. The advantages of MRI in valvular heart disease are a high reliability in the evaluation of ventricular volumes and function as well as the assessment of the perivalvular arterial or atrial structures. This reliability and the limitless access to any imaging plane partially compensates for the lower temporal and spatial resolution in comparison to echocardiography. In patients with congenital heart disease, cardiac MRI is established as a valuable diagnostic tool in daily clinical management, especially for the evaluation of pulmonary valve defects. Nevertheless, echocardiography remains the first-line diagnostic imaging tool for the foreseeable future. (orig.) [de

  12. Functional imaging of the kidneys with fast MRI techniques

    International Nuclear Information System (INIS)

    Prasad, P.V.; Priatna, A.

    1999-01-01

    Availability of faster and stronger gradient systems have given rise to a multitude of fast MRI data acquisition strategies which have tremendously increased the scope of MRI applications. These have led to the realization of long desired comprehensive approaches to evaluate anatomy and function using a single modality. In this work, we describe some of our own experiences with functional evaluation of the kidneys using MRI. Examples that suggest the feasibility of comprehensive approaches for evaluation of renal disease are also provided. We also introduce BOLD renal MRI, a method that may allow basic understanding of human renal physiology and pathophysiology in a way that has not been previously possible. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  13. Functional imaging of the kidneys with fast MRI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, P.V.; Priatna, A. [AN-234, MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave., Boston, MA (United States)

    1999-02-01

    Availability of faster and stronger gradient systems have given rise to a multitude of fast MRI data acquisition strategies which have tremendously increased the scope of MRI applications. These have led to the realization of long desired comprehensive approaches to evaluate anatomy and function using a single modality. In this work, we describe some of our own experiences with functional evaluation of the kidneys using MRI. Examples that suggest the feasibility of comprehensive approaches for evaluation of renal disease are also provided. We also introduce BOLD renal MRI, a method that may allow basic understanding of human renal physiology and pathophysiology in a way that has not been previously possible. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  15. Pre-procedural scout radiographs are unnecessary for routine pediatric fluoroscopic examinations

    Energy Technology Data Exchange (ETDEWEB)

    Creeden, Sean G.; Rao, Anil G.; Eklund, Meryle J.; Hill, Jeanne G.; Thacker, Paul G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2017-03-15

    Although practice patterns vary, scout radiographs are often routinely performed with pediatric fluoroscopic studies. However few studies have evaluated their utility in routine pediatric fluoroscopy. To evaluate the value of scout abdomen radiographs in routine barium or water-soluble enema, upper gastrointestinal (GI) series, and voiding cystourethrogram pediatric fluoroscopic procedures. We retrospectively evaluated 723 barium or water-soluble enema, upper GI series, and voiding cystourethrogram fluoroscopic procedures performed at our institution. We assessed patient history and demographics, clinical indication for the examination, prior imaging findings and impressions, scout radiograph findings, additional findings provided by the scout radiograph that were previously unknown, and whether the scout radiograph contributed any findings that significantly changed management. We retrospectively evaluated 723 fluoroscopic studies (368 males and 355 females) in pediatric patients. Of these, 700 (96.8%) had a preliminary scout radiograph. Twenty-three (3.2%) had a same-day radiograph substituted as a scout radiograph. Preliminary scout abdomen radiographs/same-day radiographs showed no new significant findings in 719 (99.4%) studies. New but clinically insignificant findings were seen in 4 (0.6%) studies and included umbilical hernia, inguinal hernia and hip dysplasia. No findings were found on the scout radiographs that would either alter the examination performed or change management with regard to the exam. Pre-procedural scout abdomen radiographs are unnecessary in routine barium and water-soluble enema, upper GI series, and voiding cystourethrogram pediatric fluoroscopic procedures and can be substituted with a spot fluoroscopic last-image hold. (orig.)

  16. An iterative reconstruction method of complex images using expectation maximization for radial parallel MRI

    International Nuclear Information System (INIS)

    Choi, Joonsung; Kim, Dongchan; Oh, Changhyun; Han, Yeji; Park, HyunWook

    2013-01-01

    In MRI (magnetic resonance imaging), signal sampling along a radial k-space trajectory is preferred in certain applications due to its distinct advantages such as robustness to motion, and the radial sampling can be beneficial for reconstruction algorithms such as parallel MRI (pMRI) due to the incoherency. For radial MRI, the image is usually reconstructed from projection data using analytic methods such as filtered back-projection or Fourier reconstruction after gridding. However, the quality of the reconstructed image from these analytic methods can be degraded when the number of acquired projection views is insufficient. In this paper, we propose a novel reconstruction method based on the expectation maximization (EM) method, where the EM algorithm is remodeled for MRI so that complex images can be reconstructed. Then, to optimize the proposed method for radial pMRI, a reconstruction method that uses coil sensitivity information of multichannel RF coils is formulated. Experiment results from synthetic and in vivo data show that the proposed method introduces better reconstructed images than the analytic methods, even from highly subsampled data, and provides monotonic convergence properties compared to the conjugate gradient based reconstruction method. (paper)

  17. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    Science.gov (United States)

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  18. Diagnostic imaging strategy for MDCT- or MRI-detected breast lesions: use of targeted sonography

    International Nuclear Information System (INIS)

    Nakano, Satoko; Ohtsuka, Masahiko; Mibu, Akemi; Karikomi, Masato; Sakata, Hitomi; Yamamoto, Masahiro

    2012-01-01

    Leading-edge technology such as magnetic resonance imaging (MRI) or computed tomography (CT) often reveals mammographically and ultrasonographically occult lesions. MRI is a well-documented, effective tool to evaluate these lesions; however, the detection rate of targeted sonography varies for MRI detected lesions, and its significance is not well established in diagnostic strategy of MRI detected lesions. We assessed the utility of targeted sonography for multidetector-row CT (MDCT)- or MRI-detected lesions in practice. We retrospectively reviewed 695 patients with newly diagnosed breast cancer who were candidates for breast conserving surgery and underwent MDCT or MRI in our hospital between January 2004 and March 2011. Targeted sonography was performed in all MDCT- or MRI-detected lesions followed by imaging-guided biopsy. Patient background, histopathology features and the sizes of the lesions were compared among benign, malignant and follow-up groups. Of the 695 patients, 61 lesions in 56 patients were detected by MDCT or MRI. The MDCT- or MRI-detected lesions were identified by targeted sonography in 58 out of 61 lesions (95.1%). Patients with pathological diagnoses were significantly older and more likely to be postmenopausal than the follow-up patients. Pathological diagnosis proved to be benign in 20 cases and malignant in 25. The remaining 16 lesions have been followed up. Lesion size and shape were not significantly different among the benign, malignant and follow-up groups. Approximately 95% of MDCT- or MRI-detected lesions were identified by targeted sonography, and nearly half of these lesions were pathologically proven malignancies in this study. Targeted sonography is a useful modality for MDCT- or MRI-detected breast lesions

  19. Understanding Patient Preference in Female Pelvic Imaging: Transvaginal Ultrasound and MRI.

    Science.gov (United States)

    Sakala, Michelle D; Carlos, Ruth C; Mendiratta-Lala, Mishal; Quint, Elisabeth H; Maturen, Katherine E

    2018-04-01

    Women with pelvic pain or abnormal uterine bleeding may undergo diagnostic imaging. This study evaluates patient experience in transvaginal ultrasound (TVUS) and magnetic resonance imaging (MRI) and explores correlations between preference and symptom severity. Institutional review board approval was obtained for this Health Insurance Portability and Accountability Act-compliant prospective study. Fifty premenopausal women with pelvic symptoms evaluated by recent TVUS and MRI and without history of gynecologic cancer or hysterectomy were included. A phone questionnaire used validated survey instruments including Uterine Fibroid Symptoms Quality of Life index, Testing Morbidities Index, and Wait Trade Off for TVUS and MRI examinations. Using Wait Trade Off, patients preferred TVUS over MRI (3.58 vs 2.80 weeks, 95% confidence interval [CI] -1.63, 0.12; P = .08). Summary test utility of Testing Morbidities Index for MRI was worse than for TVUS (81.64 vs 87.42, 95%CI 0.41, 11.15; P = .03). Patients reported greater embarrassment during TVUS than during MRI (P MRI, and greater mental (P = .02) and physical (P = .02) problems after MRI versus TVUS. Subscale correlations showed physically inactive women rated TVUS more negatively (R = -0.32, P = .03), whereas women with more severe symptoms of loss of control of health (R = -0.28, P = .04) and sexual dysfunction (R = -0.30, P = .03) rated MRI more negatively. Women with pelvic symptoms had a slight but significant preference for TVUS over MRI. Identifying specific distressing aspects of each test and patient factors contributing to negative perceptions can direct improvement in both test environment and patient preparation. Improved patient experience may increase imaging value. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  20. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization

    Directory of Open Access Journals (Sweden)

    Wendy Whiteside

    2015-01-01

    Full Text Available Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver.

  1. Three-dimensional magnetic resonance imaging overlay to assist with percutaneous transhepatic access at the time of cardiac catheterization

    International Nuclear Information System (INIS)

    Whiteside, Wendy; Christensen, Jason; Zampi, Jeffrey D

    2005-01-01

    Multimodality image overlay is increasingly used for complex interventional procedures in the cardiac catheterization lab. We report a case in which three-dimensional magnetic resonance imaging (3D MRI) overlay onto live fluoroscopic imaging was utilized to safely obtain transhepatic access in a 12-year-old patient with prune belly syndrome, complex and distorted abdominal anatomy, and a vascular mass within the liver

  2. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    DEFF Research Database (Denmark)

    Arabi, H.; Koutsouvelis, N.; Rouzaud, M.

    2016-01-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial t......-CT images from conventional Dixon MRI sequences with improved bone extraction accuracy. The approach is promising for potential use in PET AC and MRI-only or hybrid PET/MRI-guided RT treatment planning. © 2016 Institute of Physics and Engineering in Medicine.......Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial...... the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas...

  3. Primary ureteral carcinoma: MRI diagnosis and comparison with other diagnostic imaging facilities

    International Nuclear Information System (INIS)

    An Ningyu; Jiang Bo; Cai Youquan; Liang Yan

    2004-01-01

    Objective: To investigate MRI examination methods and imaging manifestations of primary ureteral carcinoma, and to evaluate its clinical values when comparing with other diagnostic imaging facilities. Methods: Eighty-seven cases of primary ureteral carcinoma who were operated within recent 8 years came into the study, among which, 35 cases had MRI examinations. For MRI examination, coronal heavy T 2 WI (water imaging) was performed to show the dilated ureter, then axial T 2 WI and T 1 WI were scanned at the obstruction level. 11 cases underwent additional Gd-DTPA dynamic contrast enhanced scans. The original pre-operative diagnostic reports of various imaging facilities were analyzed comparing with the results of operation and pathology. Results: MRI showed ureteral dilatation in 33 of 35 cases, no abnormal appearance in 1 case, and only primary kidney atrophy post renal transplantation in 1 case. Among the 33 cases with ureteral obstruction, soft mass at the obstruction level was detected on axial scans in 32 cases. The lesions showed gradual and homogeneous mild to moderate enhancement on contrast MRI. The overall employment rate of imaging facilities was as follows: ultrasound (94.3%), IVU (59.8%), CT (52.9%), MRI (40.2%), and RUP (35.6%). The accurate diagnostic rate was as follows :MRI (91.4%), RUP (80.6%), CT (63.0%), ultrasound (47.6%), and IVU (11.5%). Conclusion: Combination of MR water imaging and conventional sequences can demonstrate most primary ureteral carcinoma lesions and has a highest diagnostic accuracy among the current diagnostic imaging facilities. It should be taken as the first diagnostic imaging method of choice when primary ureteral carcinoma is suspected after ultrasound screening

  4. Application of magnetic resonance imaging (MRI) technique on monitoring flower bud differentiation of tulip

    International Nuclear Information System (INIS)

    Han Haojun; Yang Hongguang; Han Hongbin; Sun Xiaomei

    2009-01-01

    Magnetic resonance imaging (MRI) was used for observing morphogenesis process in the living specimen situation of tulip flower buds. Through a comparison of different MRI imaging formation technique (longitudinal relaxation-T1WI, transverse relaxation time weighted imaging-T2WI, proton density weighted imaging-PDWI), seeking for an accurate and practical MRI technique to observe tulip bulb and differentiation period of flower bud. The results showed that in the demonstration of the morphological characters as well as morphogenesis process of flower bud differentiation, the T1WI was completely consistent with the results of rough slice, PDWI and T1WI also had obviously higher map quality than the T2WI (P<0.05). It is indicated that the magnetic resonance imaging technique could monitor the development of flower bud differentiation in vivo. (authors)

  5. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Imaging Sciences and Interventional Radiology, Trivandrum (India); Sujesh, Sreedharan [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Trivandrum (India); Ashalata, Radhakrishnan; Radhakrishnan, Kurupath [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurology, Trivandrum (India); Abraham, Mathew [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurosurgery, Trivandrum (India)

    2007-10-15

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  6. Real-time functional MR imaging (fMRI) for presurgical evaluation of paediatric epilepsy

    International Nuclear Information System (INIS)

    Kesavadas, Chandrasekharan; Thomas, Bejoy; Kumar Gupta, Arun; Sujesh, Sreedharan; Ashalata, Radhakrishnan; Radhakrishnan, Kurupath; Abraham, Mathew

    2007-01-01

    The role of fMRI in the presurgical evaluation of children with intractable epilepsy is being increasingly recognized. Real-time fMRI allows the clinician to visualize functional brain activation in real time. Since there is no off-line data analysis as in conventional fMRI, the overall time for the procedure is reduced, making it clinically feasible in a busy clinical sitting. (1) To study the accuracy of real-time fMRI in comparison to conventional fMRI with off-line processing; (2) to determine its effectiveness in mapping the eloquent cortex and language lateralization in comparison to invasive procedures such as intraoperative cortical stimulation and Wada testing; and (3) to evaluate the role of fMRI in presurgical decision making in children with epilepsy. A total of 23 patients (age range 6-18 years) underwent fMRI with sensorimotor, visual and language paradigms. Data processing was done in real time using in-line BOLD. The results of real-time fMRI matched those of off-line processing done using the well-accepted standard technique of statistical parametric mapping (SPM) in all the initial ten patients in whom the two techniques were compared. Coregistration of the fMRI data on a 3-D FLAIR sequence rather than a T1-weighted image gave better information regarding the relationship of the lesion to the area of activation. The results of intraoperative cortical stimulation and fMRI matched in six out of six patients, while the Wada test and fMRI had similar results in four out of five patients in whom these techniques were performed. In the majority of patients in this series the technique influenced patient management. Real-time fMRI is an easily performed and reliable technique in the presurgical workup of children with epilepsy. (orig.)

  7. Imaging of tumor viability in lung cancer. Initial results using 23Na-MRI

    International Nuclear Information System (INIS)

    Henzler, T.; Apfaltrer, P.; Haneder, S.; Schoenberg, S.O.; Fink, C.; Konstandin, S.; Schad, L.; Schmid-Bindert, G.; Manegold, C.; Wenz, F.

    2012-01-01

    23 Na-MRI has been proposed as a potential imaging biomarker for the assessment of tumor viability and the evaluation of therapy response but has not yet been evaluated in patients with lung cancer. We aimed to assess the feasibility of 23 Na-MRI in patients with lung cancer. Three patients with stage IV adenocarcinoma of the lung were examined on a clinical 3 Tesla MRI system (Magnetom TimTrio, Siemens Healthcare, Erlangen, Germany). Feasibility of 23 Na-MRI images was proven by comparison and fusion of 23 Na-MRI with 1 H-MR, CT and FDG-PET-CT images. 23 Na signal intensities (SI) of tumor and cerebrospinal fluid (CSF) of the spinal canal were measured and the SI ratio in tumor and CSF was calculated. One chemonaive patient was examined before and after the initiation of combination therapy (Carboplatin, Gemcitabin, Cetuximab). All 23 Na-MRI examinations were successfully completed and were of diagnostic quality. Fusion of 23 Na-MRI images with 1 H-MRI, CT and FDG-PET-CT was feasible in all patients and showed differences in solid and necrotic tumor areas. The mean tumor SI and the tumor/CSF SI ratio were 13.3 ± 1.8 x 103 and 0.83 ± 0.14, respectively. In necrotic tumors, as suggested by central non-FDG-avid areas, the mean tumor SI and the tumor/CSF ratio were 19.4 x 103 and 1.10, respectively. 23 Na-MRI is feasible in patients with lung cancer and could provide valuable functional molecular information regarding tumor viability, and potentially treatment response. (orig.)

  8. Reliability of Early Magnetic Resonance Imaging (MRI) and Necessity of Repeating MRI in Noncooled and Cooled Infants With Neonatal Encephalopathy.

    Science.gov (United States)

    Chakkarapani, Elavazhagan; Poskitt, Kenneth J; Miller, Steven P; Zwicker, Jill G; Xu, Qi; Wong, Darren S T; Roland, Elke H; Hill, Alan; Chau, Vann

    2016-04-01

    In cooled newborns with encephalopathy, although late magnetic resonance imaging (MRI) scan (10-14 days of age) is reliable in predicting long-term outcome, it is unknown whether early scan (3-6 days of life) is. We compared the predominant pattern and extent of lesion between early and late MRI in 89 term neonates with neonatal encephalopathy. Forty-three neonates (48%) were cooled. The predominant pattern of lesions and the extent of lesion in the watershed region agreed near perfectly in noncooled (kappa = 0.94; k = 0.88) and cooled (k = 0.89; k = 0.87) infants respectively. There was perfect agreement in the extent of lesion in the basal nuclei in noncooled infants (k = 0.83) and excellent agreement in cooled infants (k = 0.67). Changes in extent of lesions on late MRI occurred in 19 of 89 infants, with higher risk in infants with hypoglycemia and moderate-severe lesions in basal nuclei. In most term neonates with neonatal encephalopathy, early MRI (relative to late scan) robustly predicts the predominant pattern and extent of injury. © The Author(s) 2015.

  9. Role of magnetic resonance imaging (MRI), MR spectroscopy (MRS) and other imaging modalities in breast cancer

    International Nuclear Information System (INIS)

    Sharma, Uma; Virendra Kumar; Jagannathan, N.R.

    2004-01-01

    Breast cancer is the commonest cancer among women world over and the diagnosis continues to generate fear and turmoil in the life of patients and their families. This article describes the currently available techniques used for screening primary and recurrent breast cancers and the evaluation of therapeutic response of breast cancer with special emphasis on MRI and MRS techniques. MRI, a noninvasive technique, provides anatomic images in multiple planes enabling tissue characterization. Contrast enhanced MR studies have been found to be useful in the diagnosis of small tumors in dense breast benign diseases from malignant ones. In vivo magnetic resonance spectroscopy (MRS) is another useful technique for diagnosis and for assessing the biochemical status of normal and diseased tissues. Being noninvasive, MR techniques can be used repetitively for assessment of response of the tumor to various therapeutic regimens and for evaluating the efficacy of drugs at both the structural and molecular level. An overview of the various aspects of different imaging modalities used in breast cancer research including various in vivo MR methodologies with clinical examples is presented in this review. (author)

  10. Animal MRI Core

    Data.gov (United States)

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  11. MRI reconstruction of multi-image acquisitions using a rank regularizer with data reordering

    Energy Technology Data Exchange (ETDEWEB)

    Adluru, Ganesh, E-mail: gadluru@gmail.com; Anderson, Jeffrey [UCAIR, Department of Radiology, University of Utah, Salt Lake City, Utah 84108 (United States); Gur, Yaniv [IBM Almaden Research Center, San Jose, California 95120 (United States); Chen, Liyong; Feinberg, David [Advanced MRI Technologies, Sebastpool, California, 95472 (United States); DiBella, Edward V. R. [UCAIR, Department of Radiology, University of Utah, Salt Lake City, Utah 84108 and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-08-15

    Purpose: To improve rank constrained reconstructions for undersampled multi-image MRI acquisitions. Methods: Motivated by the recent developments in low-rank matrix completion theory and its applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of undersampled multi-image data that uses prior image information is proposed. Instead of directly minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of reordered matrix values is minimized. The reordering is based on the prior image estimates. The method is tested on brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data. Results: Good quality images from data undersampled by a factor of three for diffusion imaging and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained. Reordering gave visually improved image quality over standard nuclear norm minimization reconstructions. Root mean squared errors with respect to ground truth images were improved by ∼18% and ∼16% with reordering for diffusion and perfusion applications, respectively. Conclusions: The reordered low-rank constraint is a way to inject prior image information that offers improvements over a standard low-rank constraint for undersampled multi-image MRI reconstructions.

  12. MRI reconstruction of multi-image acquisitions using a rank regularizer with data reordering

    International Nuclear Information System (INIS)

    Adluru, Ganesh; Anderson, Jeffrey; Gur, Yaniv; Chen, Liyong; Feinberg, David; DiBella, Edward V. R.

    2015-01-01

    Purpose: To improve rank constrained reconstructions for undersampled multi-image MRI acquisitions. Methods: Motivated by the recent developments in low-rank matrix completion theory and its applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of undersampled multi-image data that uses prior image information is proposed. Instead of directly minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of reordered matrix values is minimized. The reordering is based on the prior image estimates. The method is tested on brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data. Results: Good quality images from data undersampled by a factor of three for diffusion imaging and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained. Reordering gave visually improved image quality over standard nuclear norm minimization reconstructions. Root mean squared errors with respect to ground truth images were improved by ∼18% and ∼16% with reordering for diffusion and perfusion applications, respectively. Conclusions: The reordered low-rank constraint is a way to inject prior image information that offers improvements over a standard low-rank constraint for undersampled multi-image MRI reconstructions

  13. AUTOMATED CLASSIFICATION AND SEGREGATION OF BRAIN MRI IMAGES INTO IMAGES CAPTURED WITH RESPECT TO VENTRICULAR REGION AND EYE-BALL REGION

    Directory of Open Access Journals (Sweden)

    C. Arunkumar

    2014-05-01

    Full Text Available Magnetic Resonance Imaging (MRI images of the brain are used for detection of various brain diseases including tumor. In such cases, classification of MRI images captured with respect to ventricular and eye ball regions helps in automated location and classification of such diseases. The methods employed in the paper can segregate the given MRI images of brain into images of brain captured with respect to ventricular region and images of brain captured with respect to eye ball region. First, the given MRI image of brain is segmented using Particle Swarm Optimization (PSO algorithm, which is an optimized algorithm for MRI image segmentation. The algorithm proposed in the paper is then applied on the segmented image. The algorithm detects whether the image consist of a ventricular region or an eye ball region and classifies it accordingly.

  14. Automatic delineation of brain regions on MRI and PET images from the pig.

    Science.gov (United States)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus

    2018-01-15

    The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study

    International Nuclear Information System (INIS)

    Im, Chang-Hwan; Lee, Soo Yeol

    2006-01-01

    fMRI-constrained EEG/MEG source imaging can be a powerful tool in studying human brain functions with enhanced spatial and temporal resolutions. Recent studies on the combination of fMRI and EEG/MEG have suggested that fMRI prior information could be readily implemented by simply imposing different weighting factors to cortical sources overlapping with the fMRI activations. It has been also reported, however, that such a hard constraint may cause severe distortions or elimination of meaningful EEG/MEG sources when there are distinct mismatches between the fMRI activations and the EEG/MEG sources. If one wants to obtain the actual EEG/MEG source locations and uses the fMRI prior information as just an auxiliary tool to enhance focality of the distributed EEG/MEG sources, it is reasonable to weaken the strength of fMRI constraint when severe mismatches between fMRI and EEG/MEG sources are observed. The present study suggests an efficient technique to automatically adjust the strength of fMRI constraint according to the mismatch level. The use of the proposed technique rarely affects the results of conventional fMRI-constrained EEG/MEG source imaging if no major mismatch between the two modalities is detected; while the new results become similar to those of typical EEG/MEG source imaging without fMRI constraint if the mismatch level is significant. A preliminary simulation study using realistic EEG signals demonstrated that the proposed technique can be a promising tool to selectively apply fMRI prior information to EEG/MEG source imaging

  16. Magnetic resonance imaging (MRI) in diffuse liver diseases. Comparison with CT

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Masaharu; Ebara, Masaaki; Ohto, Masao

    1987-06-01

    MRI (Magnetic Resonance Imaging) was performed in 74 patients with chronic hepatitis, liver cirrhosis, idiopathic portal hypertension, Budd-Chiari syndrome, extrahepatic protal vein occlusion, Wilson disease and hemochromatosis. We measured relaxation time of the liver and the spleen in these patients and compared MRI with CT in the diagnostic capability. MRI was superior to plain CT in the detection of collateral vessels in liver cirrhosis and extrahepatic protal vein occlusion. MRI could also demonstrate the occluded part of the inferior vena cava in Budd-Chiari syndrome. However, MRI was almost the same as CT in the visualization of the hepatic configuration in liver cirrhosis. In liver cirrhosis, T1 values of the liver and the spleen were longer than those in normal controls, and T1 values of the liver were correlated with ICG R-15. Hepatic T1 values in Budd-Chiari syndrome were longer than those in normal controls.

  17. An availability of brain magnetic resonance imaging (MRI) in the early diagnosis of latent hepatic encephalopathy

    International Nuclear Information System (INIS)

    Kuwahara, Noaki; Tanabe, Masako; Fujiwara, Akiko; Minato, Takeshi; Sasaki, Hiromasa; Higashi, Toshihiro; Tsuji, Takao.

    1996-01-01

    Brain MRI was carried out in patients with chronic liver diseases. No abnormal findings were recognized in patients with chronic viral hepatitis, while 59.2% of cirrhotics showed a symmetrically strong signal in basal ganglia on T1 weighted image in MRI. This finding significantly related with lowered Fischer's ratio of serum amino acid, increased levels of serum phenylalanine, tyrosine and hyaluronic acid, prolonged prothrombin time and decreased platelet counts in the peripheral blood. Overt hepatic encephalopathy was observed in 6 of 34 patients with the strong signal in MRI during follow-up period, while none of patients without that finding developed hepatic encephalopathy. These results have indicated that the strong signal in basal ganglia on MRI appears in cirrhotic patients with severe liver dysfunction, and it is an useful index in the early diagnosis of latent hepatic encephalopathy. An improvement of this MRI finding was not observed by long-term oral administration of branched-chain amino acid. (author)

  18. Semi-automatic delineation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fitton, I. [European Georges Pompidou Hospital, Department of Radiology, 20 rue Leblanc, 75015, Paris (France); Cornelissen, S. A. P. [Image Sciences Institute, UMC, Department of Radiology, P.O. Box 85500, 3508 GA Utrecht (Netherlands); Duppen, J. C.; Rasch, C. R. N.; Herk, M. van [The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Radiotherapy, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Steenbakkers, R. J. H. M. [University Medical Center Groningen, Department of Radiation Oncology, Hanzeplein 1, 9713 GZ Groningen (Netherlands); Peeters, S. T. H. [UZ Gasthuisberg, Herestraat 49, 3000 Leuven, Belgique (Belgium); Hoebers, F. J. P. [Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO clinic), GROW School for Oncology and Development Biology Maastricht, 6229 ET Maastricht (Netherlands); Kaanders, J. H. A. M. [UMC St-Radboud, Department of Radiotherapy, Geert Grooteplein 32, 6525 GA Nijmegen (Netherlands); Nowak, P. J. C. M. [ERASMUS University Medical Center, Department of Radiation Oncology,Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2011-08-15

    Purpose: To develop a delineation tool that refines physician-drawn contours of the gross tumor volume (GTV) in nasopharynx cancer, using combined pixel value information from x-ray computed tomography (CT) and magnetic resonance imaging (MRI) during delineation. Methods: Operator-guided delineation assisted by a so-called ''snake'' algorithm was applied on weighted CT-MRI registered images. The physician delineates a rough tumor contour that is continuously adjusted by the snake algorithm using the underlying image characteristics. The algorithm was evaluated on five nasopharyngeal cancer patients. Different linear weightings CT and MRI were tested as input for the snake algorithm and compared according to contrast and tumor to noise ratio (TNR). The semi-automatic delineation was compared with manual contouring by seven experienced radiation oncologists. Results: A good compromise for TNR and contrast was obtained by weighing CT twice as strong as MRI. The new algorithm did not notably reduce interobserver variability, it did however, reduce the average delineation time by 6 min per case. Conclusions: The authors developed a user-driven tool for delineation and correction based a snake algorithm and registered weighted CT image and MRI. The algorithm adds morphological information from CT during the delineation on MRI and accelerates the delineation task.

  19. Morphometric MRI changes in intracranial hypertension due to cerebral venous thrombosis: a retrospective imaging study

    International Nuclear Information System (INIS)

    Dong, Cheng; Zheng, Ying-mei; Li, Xiao-li; Wang, He-xiang; Hao, Da-peng; Nie, Pei; Pang, Jing; Xu, Wen-jian

    2016-01-01

    Aim: To evaluate whether some magnetic resonance imaging (MRI) signs suggesting idiopathic intracranial hypertension (IIH) could also be found in intracranial hypertension (IH) due to cerebral venous thrombosis (CVT) and to assess their possible contribution to diagnosing this disorder. Materials and methods: Thirty-one patients with IH due to CVT were evaluated prospectively using MRI. A group of 33 age- and sex-matched healthy volunteers served as controls. The optic nerve and sheath, pituitary gland, and ventricles were assessed. The prevalence of each imaging feature was compared between the two groups. Results: Optic nerve sheath (ONS) dilatation and decreased pituitary gland height were the most valid signs suggesting IH in CVT patients: sensitivity 70.97% and 87.1%, respectively; specificity 96.97% and 72.73%, respectively; area under the curve 0.840 and 0.809, respectively. The MRI finding that showed the strongest association with IH in CVT patients was ONS dilatation (odds ratio 78.5). Conclusions: The combination of T1-weighted volumetric MRI and magnetic resonance venography could be helpful for diagnosing IH with CVT. Abnormalities of the ONS and the pituitary gland were reliable diagnostic signs for IH due to CVT. - Highlights: • We compared the prevalence of MRI imaging features between IH patients due to CVT and healthy volunteers. • Several MRI imaging features occur more frequently in IH patients due to CVT. • Abnormalities of the ONS and the pituitary gland were reliable diagnostic signs for IH due to CVT.

  20. Functional and molecular imaging with MRI: potential applications in paediatric radiology

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Gallagher, Ferdia A.

    2011-01-01

    MRI is a very versatile tool for noninvasive imaging and it is particularly attractive as an imaging technique in paediatric patients given the absence of ionizing radiation. Recent advances in the field of MRI have enabled tissue function to be probed noninvasively, and increasingly MRI is being used to assess cellular and molecular processes. For example, dynamic contrast-enhanced MRI has been used to assess tissue vascularity, diffusion-weighted imaging can quantify molecular movements of water in tissue compartments and MR spectroscopy provides a quantitative assessment of metabolite levels. A number of targeted contrast agents have been developed that bind specifically to receptors on the vascular endothelium or cell surface and there are several MR methods for labelling cells and tracking cellular movements. Hyperpolarization techniques have the capability of massively increasing the sensitivity of MRI and these have been used to image tissue pH, successful response to drug treatment as well as imaging the microstructure of the lungs. Although there are many challenges to be overcome before these techniques can be translated into routine paediatric imaging, they could potentially be used to aid diagnosis, predict disease outcome, target biopsies and determine treatment response noninvasively. (orig.)

  1. 2D dose distribution images of a hybrid low field MRI-γ detector

    Energy Technology Data Exchange (ETDEWEB)

    Abril, A., E-mail: ajabrilf@unal.edu.co; Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co [Medical Physics Group, Physics department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the {sup 99m}Tc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  2. 2D dose distribution images of a hybrid low field MRI-γ detector

    International Nuclear Information System (INIS)

    Abril, A.; Agulles-Pedrós, L.

    2016-01-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the "9"9"mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  3. 2D dose distribution images of a hybrid low field MRI-γ detector

    Science.gov (United States)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  4. Diagnosis of cardiovascular diseases by digital fluoroscopic angiography

    International Nuclear Information System (INIS)

    Takahashi, Mutsumasa; Hirota, Yoshihisa; Tsuchigame, Naotoshi

    1982-01-01

    Digital fluoroscopic angiography (DFA) is a recently developed angiocardiographic technique, which consists of digitization and real-time subtraction of X-ray transmission data from an image intensifier and television fluoroscopic system. A prototype unit based on this principle was developed and installed at our hospital and initial clinical trial has been performed. Fifty-three examinations were performed on 49 patients with various cardiovascular conditions. DFA was useful in demonstration of intracardiac shunt, and valvular diseases secondary to congenital heart diseases. In ischemic heart diseases, DFA noninvasively demonstrated the heart wall motion, making it possible to evaluate dyskinesis, akinesis and ventricular aneurysm. DFA was also valuable in visualizing disproportionate enlargement of cardiac chambers, stasis, and frequently regurgitation of contrast media in valvular heart diseases. Abnormal mediastinal enlargement and aortic aneurysm were differentiated from other conditions to good advantage. DFA will be used more widely in the above conditions because of non-invasive and simple procedures. Future effort should be directed towards improvement of spatial resolution and development of new algorithm for hemodynamic evaluation. (author)

  5. Evaluation of electrode position in deep brain stimulation by image fusion (MRI and CT)

    Energy Technology Data Exchange (ETDEWEB)

    Barnaure, I.; Lovblad, K.O.; Vargas, M.I. [Geneva University Hospital, Department of Neuroradiology, Geneva 14 (Switzerland); Pollak, P.; Horvath, J.; Boex, C.; Burkhard, P. [Geneva University Hospital, Department of Neurology, Geneva (Switzerland); Momjian, S. [Geneva University Hospital, Department of Neurosurgery, Geneva (Switzerland); Remuinan, J. [Geneva University Hospital, Department of Radiology, Geneva (Switzerland)

    2015-09-15

    Imaging has an essential role in the evaluation of correct positioning of electrodes implanted for deep brain stimulation (DBS). Although MRI offers superior anatomic visualization of target sites, there are safety concerns in patients with implanted material; imaging guidelines are inconsistent and vary. The fusion of postoperative CT with preoperative MRI images can be an alternative for the assessment of electrode positioning. The purpose of this study was to assess the accuracy of measurements realized on fused images (acquired without a stereotactic frame) using a manufacturer-provided software. Data from 23 Parkinson's disease patients who underwent bilateral electrode placement for subthalamic nucleus (STN) DBS were acquired. Preoperative high-resolution T2-weighted sequences at 3 T, and postoperative CT series were fused using a commercially available software. Electrode tip position was measured on the obtained images in three directions (in relation to the midline, the AC-PC line and an AC-PC line orthogonal, respectively) and assessed in relation to measures realized on postoperative 3D T1 images acquired at 1.5 T. Mean differences between measures carried out on fused images and on postoperative MRI lay between 0.17 and 0.97 mm. Fusion of CT and MRI images provides a safe and fast technique for postoperative assessment of electrode position in DBS. (orig.)

  6. Concomitant Intracranial and Lumbar Chronic Subdural Hematoma Treated by Fluoroscopic Guided Lumbar Puncture: A Case Report and Literature Review

    Science.gov (United States)

    ICHINOSE, Daisuke; TOCHIGI, Satoru; TANAKA, Toshihide; SUZUKI, Tomoya; TAKEI, Jun; HATANO, Keisuke; KAJIWARA, Ikki; MARUYAMA, Fumiaki; SAKAMOTO, Hiroki; HASEGAWA, Yuzuru; TANI, Satoshi; MURAYAMA, Yuichi

    2018-01-01

    A 40-year-old man presented with a severe headache, lower back pain, and lower abdominal pain 1 month after a head injury caused by falling. Computed tomography (CT) of the head demonstrated bilateral chronic subdural hematoma (CSDH) with a significant amount in the left frontoparietal region. At the same time, magnetic resonance imaging (MRI) of the lumbar spine also revealed CSDH from L2 to S1 level. A simple drainage for the intracranial CSDH on the left side was performed. Postoperatively, the headache was improved; however, the lower back and abdominal pain persisted. Aspiration of the liquefied spinal subdural hematoma was performed by a lumbar puncture under fluoroscopic guidance. The clinical symptoms were dramatically improved postoperatively. Concomitant intracranial and spinal CSDH is considerably rare so only 23 cases including the present case have been reported in the literature so far. The etiology and therapeutic strategy were discussed with a review of the literature. Therapeutic strategy is not established for these two concomitant lesions. Conservative follow-up was chosen for 14 cases, resulting in a favorable clinical outcome. Although surgical evacuation of lumbosacral CSDH was performed in seven cases, an alteration of cerebrospinal fluid (CSF) pressure following spinal surgery should be reminded because of the intracranial lesion. Since CSDH is well liquefied in both intracranial and spinal lesion, a less invasive approach is recommended not only for an intracranial lesion but also for spinal lesion. Fluoroscopic-guided lumbar puncture for lumbosacral CSDH following burr hole surgery for intracranial CSDH could be a recommended strategy. PMID:29479039

  7. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    Science.gov (United States)

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  8. Magnetic resonance imaging (MRI) of avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Kokubo, Takashi; Yoshikawa, Kohki; Aoki, Shigeki

    1987-01-01

    Thirty-seven patients with the clinical diagnosis of or suspicious of avascular necrosis (AN) of the femoral head were examined by magnetic resonance imaging (MRI). In all patients with AN confirmed from clinical symptoms, past history and plain radiographs, MRI demonstrated abnormal low intensity area in the necrosed femoral head. The abnormal findings on MRI were divided into three patterns: low signal intensity occupying the greater part of the femoral head (type A), low signal intensity localized in the periphery (type B), ring-shaped or band-like low signal intensity (type C). No correlation was found among MRI patterns, radiographic findings and radionuclide bone scan images, except that the type C was not found in the stage IV determined radiographically. In the patients suspicious of AN, the positive rate of MRI was higher than that of radionuclide scan. Abnormal findings on only MRI may not necessarily indicate AN. However, such a patient must be kept under observation, because the possibility exists that only MRI detects early or asymptomatic AN of the femoral head. (author)

  9. Magnetic resonance imaging (MRI) of avascular necrosis of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Kokubo, Takashi; Yoshikawa, Kohki; Aoki, Shigeki

    1987-05-01

    Thirty-seven patients with the clinical diagnosis of or suspicious of avascular necrosis (AN) of the femoral head were examined by magnetic resonance imaging (MRI). In all patients with AN confirmed from clinical symptoms, past history and plain radiographs, MRI demonstrated abnormal low intensity area in the necrosed femoral head. The abnormal findings on MRI were divided into three patterns: low signal intensity occupying the greater part of the femoral head (type A), low signal intensity localized in the periphery (type B), ring-shaped or band-like low signal intensity (type C). No correlation was found among MRI patterns, radiographic findings and radionuclide bone scan images, except that the type C was not found in the stage IV determined radiographically. In the patients suspicious of AN, the positive rate of MRI was higher than that of radionuclide scan. Abnormal findings on only MRI may not necessarily indicate AN. However, such a patient must be kept under observation, because the possibility exists that only MRI detects early or asymptomatic AN of the femoral head.

  10. Making the most of the imaging we have: using head MRI to estimate body composition

    International Nuclear Information System (INIS)

    Lack, C.M.; Lesser, G.J.; Umesi, U.N.; Bowns, J.; Chen, M.Y.; Case, D.; Hightower, R.C.; Johnson, A.J.

    2016-01-01

    Aim: To investigate the use of clinical head magnetic resonance imaging (MRI) in determining body composition and to evaluate how well it correlates with established measures based on abdominal computed tomography (CT). Materials and methods: Ninety-nine consecutive patients were identified who had undergone both brain MRI and abdominal CT within a 2-week span. Volumes of fat and muscle in the extracranial head were measured utilising several techniques by both abdominal CT and head MRI. Results: MRI-based total fat volumes in the head correlated with CT-based measurements of fat in the abdomen using both single-section (r=0.64, p<0.01) and multisection (r=0.60, p<0.01) techniques. No significant correlation was found between muscle volumes in the abdomen and head. Conclusion: Based on the present results, head MRI-based measures may provide a useful surrogate for CT measurements of abdominal fat, particularly in patients with neurological cancers, as head MRI (and not abdominal CT) is routinely and repeatedly obtained for the purpose of clinical care for these patients. - Highlights: • We compared body composition using brain MRI with previously proven abdominal CT. • Fat and muscle volumes of the extracranial compartment can be measured by MRI. • Muscle volume in the face does not correlate with abdominal muscle volume. • Fat volume in the face can be used as a surrogate for abdominal fat volume.

  11. Physiological and technical limitations of functional magnetic resonance imaging (fMRI) - consequences for clinical use

    International Nuclear Information System (INIS)

    Wuestenberg, T.; Jordan, K.; Giesel, F.L.; Villringer, A.

    2003-01-01

    Functional magnetic resonance imaging (fMRI) is the most common noninvasive technique in functional neuroanatomy. The capabilities and limitations of the method will be discussed based on a short review of the current knowledge about the neurovascular relationship. The focus of this article is on current methodical and technical problems regarding fMRI-based detection and localization of neuronal activity. Main error sources and their influence on the reliability and validity of fMRI-methods are presented. Appropriate solution strategies will be proposed and evaluated. Finally, the clinical relevance of MR-based diagnostic methods are discussed. (orig.) [de

  12. Comparative study on developmental stages of the clavicle by postmortem MRI and CT imaging

    DEFF Research Database (Denmark)

    Larsen, Sara Tangmose; Lynnerup, Niels; Jensen, K.E.

    2013-01-01

    Objectives: The developmental stages of the clavicles are important for forensic age estimation purposes in adolescents. This study compares the 4-stage system to evaluate the ossification of the medial end of the clavicle as visualized by magnetic resonance imaging (MRI) and computed tomography...... (CT). As several forensic institutes routinely perform CT scans, the large amount of available data may serve as reference sample for MRI in specific cases. Material and methods: This prospective study included an MRI and CT scan of 47 autopsy cases performed prior to medico-legal autopsy (age range...

  13. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    Science.gov (United States)

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  14. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging.

    Science.gov (United States)

    Brody, David L; Mac Donald, Christine L; Shimony, Joshua S

    2015-01-01

    Brain imaging plays a key role in the assessment of traumatic brain injury. In this review, we present our perspectives on the use of computed tomography (CT), conventional magnetic resonance imaging (MRI), and newer advanced modalities such as diffusion tensor imaging. Specifically, we address assessment for immediately life-threatening intracranial lesions (noncontrast head CT), assessment of progression of intracranial lesions (noncontrast head CT), documenting intracranial abnormalities for medicolegal reasons (conventional MRI with blood-sensitive sequences), presurgical planning for post-traumatic epilepsy (high spatial resolution conventional MRI), early prognostic decision making (conventional MRI with diffusion-weighted imaging), prognostic assessment for rehabilitative planning (conventional MRI and possibly diffusion tensor imaging in the future), stratification of subjects and pharmacodynamic tracking of targeted therapies in clinical trials (specific MRI sequences or positron emission tomography (PET) ligands, e.g., diffusion tensor imaging for traumatic axonal injury). We would like to emphasize that all of these methods, especially the newer research approaches, require careful radiologic-pathologic validation for optimal interpretation. We have taken this approach in a mouse model of pericontusional traumatic axonal injury. We found that the extent of reduction in the diffusion tensor imaging parameter relative anisotropy directly correlated with the number of amyloid precursor protein (APP)-stained axonal varicosities (r(2)=0.81, p<0.0001, n=20 injured mice). Interestingly, however, the least severe contusional injuries did not result in APP-stained axonal varicosities, but did cause reduction in relative anisotropy. Clearly, both the imaging assessments and the pathologic assessments will require iterative refinement. © 2015 Elsevier B.V. All rights reserved.

  15. Innovative multimodal DOTA/NODA nanoparticles for MRI and PET imaging for tumor detection

    International Nuclear Information System (INIS)

    Truillet, Charles; Bouziotis, Penelope; Tsoukalas, Charalambos; Sancey, Lucie; Denat, Franck; Boschetti, Frédéric; Stellas, Dimitris; Anagnostopoulos, Constantinos D; Koutoulidis, Vassilis; Moulopoulos, Lia A; Lux, François; Perriat, P; Tillement, Olivier

    2014-01-01

    The knowledge of the exact tumor stage is essential to adapt therapeutic strategies or to follow the evolution of the tumor after therapy in order to increase the survival chance. The multi-tasking diagnostics that combine techniques such as PET and MRI could really improve imaging tumor stage. PET mainly offers functional information about the disease with high sensitivity. MRI offers predominantly morphological information, able to provide an excellent soft tissue contrasts due to its high resolution.

  16. Innovative multimodal DOTA/NODA nanoparticles for MRI and PET imaging for tumor detection

    Energy Technology Data Exchange (ETDEWEB)

    Truillet, Charles [ILM, UMR 5306, University of Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Matériaux Ingénierie et Science, INSA Lyon, CNRS, University of Lyon, 69622 Villeurbanne (France); Bouziotis, Penelope; Tsoukalas, Charalambos [Radiochemistry Studies Laboratory, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research “Demokritos”, Athens (Greece); Sancey, Lucie [ILM, UMR 5306, University of Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Denat, Franck [Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS 6302, University of Bourgogne, 21078 Dijon Cedex (France); Boschetti, Frédéric [CheMatech, 21000 Dijon (France); Stellas, Dimitris [Department of Cancer Biology, Biomedical Research Foundation, Academy of Athens, Athens (Greece); Anagnostopoulos, Constantinos D [Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens (Greece); Koutoulidis, Vassilis; Moulopoulos, Lia A [Department of Radiology, University of Athens Medical School, Areteion Hospital, Athens (Greece); Lux, François [ILM, UMR 5306, University of Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France); Perriat, P [Matériaux Ingénierie et Science, INSA Lyon, CNRS, University of Lyon, 69622 Villeurbanne (France); Tillement, Olivier [ILM, UMR 5306, University of Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2014-07-29

    The knowledge of the exact tumor stage is essential to adapt therapeutic strategies or to follow the evolution of the tumor after therapy in order to increase the survival chance. The multi-tasking diagnostics that combine techniques such as PET and MRI could really improve imaging tumor stage. PET mainly offers functional information about the disease with high sensitivity. MRI offers predominantly morphological information, able to provide an excellent soft tissue contrasts due to its high resolution.

  17. Usefulness of magnetic resonance imaging (MRI) for patients with unilateral tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Motoyasu [Sasebo Central Hospital, Nagasaki (Japan); Yoshida, Haruo; Kumagami, Hidetaka; Takahashi, Haruo [Nagasaki Univ. (Japan). Graduate School of Biomedical Sciences; Oosato, Yasuo [Sasebo City Hospital, Nagasaki (Japan); Dotsu, Mitsuru [National Nagasaki Medical Center, Omura (Japan)

    2004-06-01

    Audiography, X-ray (Stenvers view) and Magnetic Resonance Imaging (MRI) were performed on 88 patients exhibiting unilateral tinnitus. We diagnosed 4 cases (4.5%) of vestibular schwannoma and 41 cases (46.6%) of other abnormalities, including 2 cases of meningioma, 24 cases of old cerebral infarction, and 5 cases of mastoiditis. MRI was considered to be a first-line clinical examination for patients with unilateral tinnitus. (author)

  18. Usefulness of magnetic resonance imaging (MRI) for patients with unilateral tinnitus

    International Nuclear Information System (INIS)

    Katsura, Motoyasu; Yoshida, Haruo; Kumagami, Hidetaka; Takahashi, Haruo; Dotsu, Mitsuru

    2004-01-01

    Audiography, X-ray (Stenvers view) and Magnetic Resonance Imaging (MRI) were performed on 88 patients exhibiting unilateral tinnitus. We diagnosed 4 cases (4.5%) of vestibular schwannoma and 41 cases (46.6%) of other abnormalities, including 2 cases of meningioma, 24 cases of old cerebral infarction, and 5 cases of mastoiditis. MRI was considered to be a first-line clinical examination for patients with unilateral tinnitus. (author)

  19. The use of parallel imaging for MRI assessment of knees in children and adolescents.

    Science.gov (United States)

    Doria, Andrea S; Chaudry, Gulraiz A; Nasui, Cristina; Rayner, Tammy; Wang, Chenghua; Moineddin, Rahim; Babyn, Paul S; White, Larry M; Sussman, Marshall S

    2010-03-01

    Parallel imaging provides faster scanning at the cost of reduced signal-to-noise ratio (SNR) and increased artifacts. To compare the diagnostic performance of two parallel MRI protocols (PPs) for assessment of pathologic knees using an 8-channel knee coil (reference standard, conventional protocol [CP]) and to characterize the SNR losses associated with parallel imaging. Two radiologists blindly interpreted 1.5 Tesla knee MRI images in 21 children (mean 13 years, range 9-18 years) with clinical indications for an MRI scan. Sagittal proton density, T2-W fat-saturated FSE, axial T2-W fat-saturated FSE, and coronal T1-W (NEX of 1,1,1) images were obtained with both CP and PP. Images were read for soft tissue and osteochondral findings. There was a 75% decrease in acquisition time using PP in comparison to CP. The CP and PP protocols fell within excellent or upper limits of substantial agreement: CP, kappa coefficient, 0.81 (95% CIs, 0.73-0.89); PP, 0.80-0.81 (0.73-0.89). The sensitivity of the two PPs was similar for assessment of soft (0.98-1.00) and osteochondral (0.89-0.94) tissues. Phantom data indicated an SNR of 1.67, 1.6, and 1.51 (axial, sagittal and coronal planes) between CP and PP scans. Parallel MRI provides a reliable assessment for pediatric knees in a significantly reduced scan time without affecting the diagnostic performance of MRI.

  20. Radiofrequency catheter ablation: Relationship between fluoroscopic time and skin doses according to diagnoses. Basis to establish a quality assurance programme

    International Nuclear Information System (INIS)

    Cotelo, E.; Pouso, J.; Reyes, W.

    2001-01-01

    Radiofrequency Cardiac Catheter Ablation is an Interventional Radiology procedure of great complexity because the cardiologist needs a simultaneous evaluation of fluoroscopic images and electrophysiologic information. Therefore, the procedure typically involves extended fluoroscopic time that may cause radiation-skin injures to patients. Skin doses depend on many factors: equipment design features and its proper use, cardiologist practice, fluoroscopic time, irradiated areas, application of radiation protection recommendations, etc. We evaluate fluoroscopic time in relation to pathology and we estimate skin doses on 233 procedures at the Electrophysiology Laboratory in Casa de Galicia, Montevideo, Uruguay. Significant differences among the medians of fluoroscopic time were found in those procedures depending on diagnoses and results. Higher fluoroscopic time was found in flutter and auricular tachycardia (median was 83 minutes, p=0.0001). In successful procedures (almost 90%), median skin doses was 2.0 Grays (p=0.0001). On the basis of records information, the standard operating procedure and the clinical protocol, expanding close cooperation between the cardiologists and the experts in Radiation Protection will secure the establishment of an Assurance Quality Program. (author)

  1. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    Science.gov (United States)

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  2. Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI

    International Nuclear Information System (INIS)

    Jackowski, Christian; Warntjes, Marcel J.B.; Persson, Anders; Berge, Johan; Baer, Walter

    2011-01-01

    To investigate the performance of postmortem magnetic resonance imaging (pmMRI) in identification and characterization of lethal myocardial infarction in a non-invasive manner on human corpses. Before forensic autopsy, 20 human forensic corpses were examined on a 1.5-T system for the presence of myocardial infarction. Short axis, transversal and longitudinal long axis images (T1-weighted; T2-weighted; PD-weighted) were acquired in situ. In subsequent autopsy, the section technique was adapted to short axis images. Histological investigations were conducted to confirm autopsy and/or radiological diagnoses. Nineteen myocardial lesions were detected and age staged with pmMRI, of which 13 were histologically confirmed (chronic, subacute and acute). Six lesions interpreted as peracute by pmMRI showed no macroscopic or histological finding. Five of the six peracute lesions correlated well to coronary pathology, and one case displayed a severe hypertrophic alteration. pmMRI reliably demonstrates chronic, subacute and acute myocardial infarction in situ. In peracute cases pmMRI may display ischemic lesions undetectable at autopsy and routine histology. pmMRI has the potential to substantiate autopsy and to counteract the loss of reliable information on causes of death due to the recent disappearance of the clinical autopsy. (orig.)

  3. MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rasaneh, Samira; Rajabi, Hossein, E-mail: hrajabi@modares.ac.ir [Tarbiat Modares University, Department of Medical Physics (Iran, Islamic Republic of); Babaei, Mohammad Hossein [Nuclear Science and Technology Research Institute, Department of Radioisotope (Iran, Islamic Republic of); Akhlaghpoor, Shahram [Sina Hospital, Tehran Medical University, Noor Medical Imaging Center (Iran, Islamic Republic of)

    2011-06-15

    In this study, Trastuzumab modified Magnetic Nanoparticles (TMNs) were prepared as a new contrast agent for detecting HER2 (Human epidermal growth factor receptor-2) expression tumors by magnetic resonance imaging (MRI). TMNs were prepared based on iron oxide nanoparticles core and Trastuzumab modified dextran coating. The TMNs core and hydrodynamic size were determined by transmission electron microscopy and dynamic light scattering. TMNs stability and cytotoxicity were investigated. The ability of TMNs for HER2 detection were evaluated in breast carcinoma cell lines (SKBr3 and MCF7 cells) and tumor-bearing mice by MRI and iron uptake determination. The particles core and hydrodynamic size were 9 {+-} 2.5 and 41 {+-} 15 nm (size range: 15-87 nm), respectively. The molar antibody/nanoparticle ratio was 3.1-3.5. TMNs were non-toxic to the cells below the 30 {mu}g (Fe)/mL concentration and good stable up to 8 weeks in PBS buffer. TMNs could detect HER2 oncogenes in the cells surface with imagable contrast by MRI. The invivo study in mice bearing tumors indicated that TMNs possessed a good diagnostic ability as HER2 specific contrast agent by MRI. TMNs were demonstrated to be able to selectively accumulate in the tumor cells, with a proper signal enhancement in MRI T2 images. So, the complex may be considered for further investigations as an MRI contrast agent for detection of HER2 expression tumors in human.

  4. Fluoroscopic screen which is optically homogeneous

    International Nuclear Information System (INIS)

    1975-01-01

    A high efficiency fluoroscopic screen for X-ray examination consists of an optically homogeneous crystal plate of fluorescent material such as activated cesium iodide, supported on a transparent protective plate, with the edges of the assembly beveled and optically coupled to a light absorbing compound. The product is dressed to the desired thickness and provided with an X-ray-transparent light-opaque cover. (Auth.)

  5. Radiation exposure from shoe-fitting fluoroscopes

    International Nuclear Information System (INIS)

    Busch, Uwe

    2015-01-01

    It is 40 years ago that a very popular X-ray device disappeared in German shoe shops: the shoe-fitting fluoroscope or Pedoskop. Since the 1930s, these X-ray machines were an integral part of any good shoe business. Following the entry into force X-Ray Regulation (RoeV 1973) the use of these devices was prohibited in Germany.

  6. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    International Nuclear Information System (INIS)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-01-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or 18 F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  7. Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging

    International Nuclear Information System (INIS)

    Chen, Zikuan; Calhoun, Vince

    2012-01-01

    The blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) modality has been numerically simulated by calculating single voxel signals. However, the observation on single voxel signals cannot provide information regarding the spatial distribution of the signals. Specifically, a single BOLD voxel signal simulation cannot answer the fundamental question: is the magnetic resonance (MR) image a replica of its underling magnetic susceptibility source? In this paper, we address this problem by proposing a multivoxel volumetric BOLD fMRI simulation model and a susceptibility expression formula for linear neurovascular coupling process, that allow us to examine the BOLD fMRI procedure from neurovascular coupling to MR image formation. Since MRI technology only senses the magnetism property, we represent a linear neurovascular-coupled BOLD state by a magnetic susceptibility expression formula, which accounts for the parameters of cortical vasculature, intravascular blood oxygenation level, and local neuroactivity. Upon the susceptibility expression of a BOLD state, we carry out volumetric BOLD fMRI simulation by calculating the fieldmap (established by susceptibility magnetization) and the complex multivoxel MR image (by intravoxel dephasing). Given the predefined susceptibility source and the calculated complex MR image, we compare the MR magnitude (phase, respectively) image with the predefined susceptibility source (the calculated fieldmap) by spatial correlation. The spatial correlation between the MR magnitude image and the magnetic susceptibility source is about 0.90 for the settings of T E = 30 ms, B 0 = 3 T, voxel size = 100 micron, vessel radius = 3 micron, and blood volume fraction = 2%. Using these parameters value, the spatial correlation between the MR phase image and the susceptibility-induced fieldmap is close to 1.00. Our simulation results show that the MR magnitude image is not an exact replica of the magnetic susceptibility

  8. Use of dynamic images in radiology education: Movies of CT and MRI in the anatomy classroom.

    Science.gov (United States)

    Jang, Hye Won; Oh, Chang-Seok; Choe, Yeon Hyeon; Jang, Dong Su

    2018-04-19

    Radiology education is a key component in many preclinical anatomy courses. However, the reported effectiveness of radiology education within such anatomy classrooms has varied. This study was conducted to determine if a novel educational method using dynamic images of movies of computed tomography (CT) and magnetic resonance imaging (MRI) was effective in radiology education during a preclinical anatomy course, aided by clay modeling, specific hand gestures (digit anatomy), and reports from dissection findings uploaded to the anatomy course website (digital reports). Feedback surveys using a five-point Likert scale were administered to better clarify students' opinions regarding their understanding of CT and MRI of anatomical structures, as well as to determine if such preclinical radiology education was helpful in their clinical studies. After completion of the anatomy course taught with dynamic images of CT and MRI, most students demonstrated an adequate understanding of basic CT and MR images. Additionally, students in later clinical years generally believed that their study of radiologic images during the preclinical anatomy course was helpful for their clinical studies and clerkship rotations. Moreover, student scores on imaging anatomy examinations demonstrated meaningful improvements in performance after using dynamic images from movies of CT and MRI. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  9. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Gok, Beril; Jallo, George; Hayeri, Reza; Wahl, Richard; Aygun, Nafi

    2013-01-01

    We studied the contribution of interictal FDG-PET ([18 F] fluorodeoxyglucose-positron emission tomography) in epileptic focus identification in temporal lobe epilepsy patients with positive, equivocal and negative magnetic resonance imaging (MRI). Ninety-eight patients who underwent surgical treatment for drug resistant temporal lobe epilepsy after neuropsychological evaluation, scalp video EEG monitoring, FDG-PET, MRI and/or long-term intracranial EEG and with >12 months clinical follow-up were included in this study. FDG-PET findings were compared to MRI, histopathology, scalp video EEG and long-term intracranial EEG monitoring. FDG-PET lateralized the seizure focus in 95 % of MRI positive, 69 % of MRI equivocal and 84 % of MRI negative patients. There was no statistically significant difference between the surgical outcomes among the groups with Engel class I and II outcomes achieved in 86 %, 86 %, 84 % of MRI positive, equivocal and negative temporal lobe epilepsy patients, respectively. The patients with positive unilateral FDG-PET demonstrated excellent postsurgical outcomes, with 96 % Engel class I and II. Histopathology revealed focal lesions in 75 % of MRI equivocal, 84 % of MRI positive, and 23 % of MRI negative temporal lobe epilepsy cases. FDG-PET is an accurate noninvasive method in lateralizing the epileptogenic focus in temporal lobe epilepsy, especially in patients with normal or equivocal MRIs, or non-lateralized EEG monitoring. Very subtle findings in MRI are often associated with histopathological lesions and should be described in MRI reports. The patients with negative or equivocal MRI temporal lobe epilepsy are good surgical candidates with comparable postsurgical outcomes to patients with MRI positive temporal lobe epilepsy. (orig.)

  10. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Gok, Beril [Drexel University, Department of Radiology, Mercy Catholic Medical Center, Philadelphia, PA (United States); Johns Hopkins University, Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Jallo, George [Johns Hopkins University, Department of Neurosurgery, Baltimore, MD (United States); Hayeri, Reza [Drexel University, Department of Radiology, Mercy Catholic Medical Center, Philadelphia, PA (United States); Wahl, Richard [Johns Hopkins University, Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Baltimore, MD (United States); Aygun, Nafi [Johns Hopkins University, Division of Neuroradiology, Department of Radiology and Radiological Sciences, Baltimore, MD (United States)

    2013-05-15

    We studied the contribution of interictal FDG-PET ([18 F] fluorodeoxyglucose-positron emission tomography) in epileptic focus identification in temporal lobe epilepsy patients with positive, equivocal and negative magnetic resonance imaging (MRI). Ninety-eight patients who underwent surgical treatment for drug resistant temporal lobe epilepsy after neuropsychological evaluation, scalp video EEG monitoring, FDG-PET, MRI and/or long-term intracranial EEG and with >12 months clinical follow-up were included in this study. FDG-PET findings were compared to MRI, histopathology, scalp video EEG and long-term intracranial EEG monitoring. FDG-PET lateralized the seizure focus in 95 % of MRI positive, 69 % of MRI equivocal and 84 % of MRI negative patients. There was no statistically significant difference between the surgical outcomes among the groups with Engel class I and II outcomes achieved in 86 %, 86 %, 84 % of MRI positive, equivocal and negative temporal lobe epilepsy patients, respectively. The patients with positive unilateral FDG-PET demonstrated excellent postsurgical outcomes, with 96 % Engel class I and II. Histopathology revealed focal lesions in 75 % of MRI equivocal, 84 % of MRI positive, and 23 % of MRI negative temporal lobe epilepsy cases. FDG-PET is an accurate noninvasive method in lateralizing the epileptogenic focus in temporal lobe epilepsy, especially in patients with normal or equivocal MRIs, or non-lateralized EEG monitoring. Very subtle findings in MRI are often associated with histopathological lesions and should be described in MRI reports. The patients with negative or equivocal MRI temporal lobe epilepsy are good surgical candidates with comparable postsurgical outcomes to patients with MRI positive temporal lobe epilepsy. (orig.)

  11. Studies on improvement of diagnosis of neurosurgical lesions by magnetic resonance imaging (MRI), 2

    International Nuclear Information System (INIS)

    Shimizu, Kotoyuki

    1989-01-01

    Findings of magnetic resonance (MRI) imaging in 46 patients with sellar or parasellar mass were reviewed and compared with those of concurrently available X-ray CT. Intrasellar contents, the hypothalamic pituitary region, adjacent brain stem, optic nerves, and the surrounding cerebrospinal fluid were clearly depicted on T1-weighted images. The cavernous sinus and blood vessels, including the Willis circle, were visualized on T2-weighted images. In detecting pituitary macroadenoma, MRI seemed to be the most userful modality, because it was superior to CT in identifying abnormal changes of the infundibulum, diaphragma sellae, cavernous sinus and optic chiasm. Macroadenoma of the pituitary gland was usually isointense to the normal cerebral cortex on T1- and T2-weighted images. T1- and T2-weighted relaxation times for pituitary adenoma were slightly prolonged. The normal pituitary gland was distinguishable from adenomatous tissues. For microadenoma, MRI failed to show lesions or erosion of the sellar floor. Craniopharyngioma, meningioma of the tuberculum sellae, hypothalamic tumor, such as glioma and germinoma, and the other parasellar masses were clearly visualized on MRI. MRI was superior to CT in detecting tumor and its involvement, but inferior in detecting presence of calcification. T1-weighted imaging was useful in identifing the presence of intratumoral hemorrhage. Cysts of craniopharyngioma had various appearances on T1-weighted images. High signal cyst intensity corresponded to a high cholesterol content or the presence of methemoglobin. MRI depicted empty sella. The intrasellar content had the same appearance as that of the cerebrospinal fluid space, and the flattened pituitary gland and pituitary stalk were detected on T1-weighted images. (N.K.)

  12. gr-MRI: A software package for magnetic resonance imaging using software defined radios

    Science.gov (United States)

    Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.

  13. Dual-Modal Nanoprobes for Imaging of Mesenchymal Stem Cell Transplant by MRI and Fluorescence Imaging

    International Nuclear Information System (INIS)

    Sung, Chang Kyu; Hong, Kyung Ah; Lin, Shun Mei

    2009-01-01

    To determine the feasibility of labeling human mesenchymal stem cells (hMSCs) with bifunctional nanoparticles and assessing their potential as imaging probes in the monitoring of hMSC transplantation. The T1 and T2 relaxivities of the nanoparticles (MNP SiO 2 [RITC]-PEG) were measured at 1.5T and 3T magnetic resonance scanner. Using hMSCs and the nanoparticles, labeling efficiency, toxicity, and proliferation were assessed. Confocal laser scanning microscopy and transmission electron microscopy were used to specify the intracellular localization of the endocytosed iron nanoparticles. We also observed in vitro and in vivo visualization of the labeled hMSCs with a 3T MR scanner and optical imaging. MNP SiO 2 (RITC)-PEG showed both superparamagnetic and fluorescent properties. The r 1 and r 2 relaxivity values of the MNP SiO 2 (RITC)-PEG were 0.33 and 398 mM -1 s -1 at 1.5T, respectively, and 0.29 and 453 mM -1 s -1 at 3T, respectively. The effective internalization of MNP SiO 2 (RITC)-PEG into hMSCs was observed by confocal laser scanning fluorescence microscopy. The transmission electron microscopy images showed that MNP SiO 2 (RITC)-PEG was internalized into the cells and mainly resided in the cytoplasm. The viability and proliferation of MNP SiO 2 (RITC)-PEG-labeled hMSCs were not significantly different from the control cells. MNP SiO 2 (RITC)-PEG-labeled hMSCs were observed in vitro and in vivo with optical and MR imaging. MNP SiO 2 (RITC)-PEG can be a useful contrast agent for stem cell imaging, which is suitable for a bimodal detection by MRI and optical imaging

  14. Molecular imaging of atherosclerosis in mice with MRI and near-infrared fluorescence imaging

    International Nuclear Information System (INIS)

    Lu Tong; Wen Song; Zhou Guanhui; Ju Shenghong; Teng Gaojun

    2012-01-01

    Objective: To explore the feasibility of detecting atherosclerotic plaques with 7.0 T MRI and near-infrared fluorescence imaging (NIRF) using molecular imaging probes. Methods: Atherosclerotic plaques were established in male atherosclerotic apolipoprotein E knockout (ApoE-/-) mice fed with high-cholesterol diet for 20 weeks. Wild-type C57BL/6 mice were used as negative controls. 7.0 T MRI was performed before and 36 h after intravenously administration of ultrasmall superparamagnetic particle of iron oxide (USPIO). NIR 797 was conjugated with anti-mouse-oxidized modified low density lipoprotein (oxLDL) antibodies to construct an anti-oxLDL-Ab-NIR 797 probe while non-specific IgG-NIR 797 and PBS used as controls. NIRF was performed 24 h after tail vein injection of the probe. Independent sample t-test and one-way analysis of variance were used to analyze the data by SPSS 17.0. Results: In APOE-/-mice, in vivo 36 h post-USPIO T 2 WI images revealed strong focal signal loss in the abdominal aorta than that of pre-USPIO, with relative signal intensity 0.70 ± 0.04 and 1.28 ± 0.06, respectively (t=3.376, P<0.05). The percent of signal reduced was (-56.58 ± 4.25)%. The Prussian blue staining confirmed the depositions of iron particles in the plaque lesions. Significant fluorochrome accumulation in atherosclerotic plaques was demonstrated in aortic root, aortic arch and the starting of descending aorta 24 h after injection of the anti-oxLDL-Ab-NIR 797 probe. Minimal antibody uptake was observed in normal vessels from wild-type mice receiving the anti-oxLDL-Ab-NIR 797 (SNR: 2.29 ± 1.11) and in atherosclerotic vessels from ApoE-/- mice receiving the non-specific IgG-NIR 797 (19.58 ±3.06) or PBS (4.19 ±0.82), which was significantly different from the uptake of anti-oxLDL-Ab-NIR 797 group (42.51 ±5.24, F=25.104, P<0.05). Comparison between oil red O staining and NIRF 24 h after injection of NIR 797 labeled oxLDL-antibody revealed a significant correlation (r=0.738, P

  15. Stereotactic imaging for radiotherapy: accuracy of CT, MRI, PET and SPECT

    International Nuclear Information System (INIS)

    Karger, Christian P; Hipp, Peter; Henze, Marcus; Echner, Gernot; Hoess, Angelika; Schad, Lothar; Hartmann, Guenther H

    2003-01-01

    CT, MRI, PET and SPECT provide complementary information for treatment planning in stereotactic radiotherapy. Stereotactic correlation of these images requires commissioning tests to confirm the localization accuracy of each modality. A phantom was developed to measure the accuracy of stereotactic localization for CT, MRI, PET and SPECT in the head and neck region. To this end, the stereotactically measured coordinates of structures within the phantom were compared with their mechanically defined coordinates. For MRI, PET and SPECT, measurements were performed using two different devices. For MRI, T1- and T2-weighted imaging sequences were applied. For each measurement, the mean radial deviation in space between the stereotactically measured and mechanically defined position of target points was determined. For CT, the mean radial deviation was 0.4 ± 0.2 mm. For MRI, the mean deviations ranged between 0.7 ± 0.2 mm and 1.4 ± 0.5 mm, depending on the MRI device and the imaging sequence. For PET, mean deviations of 1.1 ± 0.5 mm and 2.4 ± 0.3 mm were obtained. The mean deviations for SPECT were 1.6 ± 0.5 mm and 2.0 ± 0.6 mm. The phantom is well suited to determine the accuracy of stereotactic localization with CT, MRI, PET and SPECT in the head and neck region. The obtained accuracy is well below the physical resolution for CT, PET and SPECT, and of comparable magnitude for MRI. Since the localization accuracy may be device dependent, results obtained at one device cannot be generalized to others

  16. Abnormal findings of magnetic resonance imaging (MRI) in patients with systemic lupus erythematosus involving the brain

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Akira; Okada, Jun; Kondo, Hirobumi (Kitasato Univ., Sagamihara, Kanagawa (Japan). School of Medicine); Kashiwazaki, Sadao

    1992-06-01

    To elucidate the clinical significance of MRI on central nervous system systemic lupus erythematosus (CNS-SLE), MRI and CT scans were performed in 35 patients with SLE, of 18 patients who had CNS manifestations at the time of MRI examinations. The investigations were also carried out in 17 patients without CNS-SLE. The rate of detection of abnormal findings on MRI in patients with CNS-SLE was 77.2% (14/18), which was high, as compared with the rate of those on CT scans (50%: 9/18). Especially, all of 4 patients with seizure and 3 patients with encephalopathy showed abnormal MRI findings, although respectively 50% and 33.3% of them had abnormal CT scan findings. MRI findings were classified into 4 groups below: (1) Large focal are as increased signal intensity at T2 weighted image. These were observed in 2 of 4 patients with seizure and 1 of 3 patients with encephalopathy, which were completely resolved after treatment. (2) Patchy subcortical foci of increased signal intensity at T2 weighted image. These were observed in 11 of 18 CNS-SLE and 7 of 17 without CNS-SLE, which were not detected by CT scan. (3) All of six patients with cerebral infarctions showed high signal intensity areas at T2 weighted image and low signal intensity areas at T1 weighted image. (4) Normal findings were observed in 4 of 18 CNS-SLE (22.2%). We concluded that MRI is useful for the evaluation of CNS-SLE and provides more information than CT scan. (author).

  17. Abnormal findings of magnetic resonance imaging (MRI) in patients with systemic lupus erythematosus involving the brain

    International Nuclear Information System (INIS)

    Ishikawa, Akira; Okada, Jun; Kondo, Hirobumi; Kashiwazaki, Sadao.

    1992-01-01

    To elucidate the clinical significance of MRI on central nervous system systemic lupus erythematosus (CNS-SLE), MRI and CT scans were performed in 35 patients with SLE, of 18 patients who had CNS manifestations at the time of MRI examinations. The investigations were also carried out in 17 patients without CNS-SLE. The rate of detection of abnormal findings on MRI in patients with CNS-SLE was 77.2% (14/18), which was high, as compared with the rate of those on CT scans (50%: 9/18). Especially, all of 4 patients with seizure and 3 patients with encephalopathy showed abnormal MRI findings, although respectively 50% and 33.3% of them had abnormal CT scan findings. MRI findings were classified into 4 groups below: 1) Large focal are as increased signal intensity at T2 weighted image. These were observed in 2 of 4 patients with seizure and 1 of 3 patients with encephalopathy, which were completely resolved after treatment. 2) Patchy subcortical foci of increased signal intensity at T2 weighted image. These were observed in 11 of 18 CNS-SLE and 7 of 17 without CNS-SLE, which were not detected by CT scan. 3) All of six patients with cerebral infarctions showed high signal intensity areas at T2 weighted image and low signal intensity areas at T1 weighted image. 4) Normal findings were observed in 4 of 18 CNS-SLE (22.2%). We concluded that MRI is useful for the evaluation of CNS-SLE and provides more information than CT scan. (author)

  18. Imaging of the myocardium using {sup 18}F-FDG-PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ferda, Jiří, E-mail: ferda@fnplzen.cz [Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic); Hromádka, Milan, E-mail: hromadkam@fnplzen.cz [Department of Cardiology, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic); Baxa, Jan, E-mail: baxaj@fnplzen.cz [Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň (Czech Republic)

    2016-10-15

    Highlights: • The natural combination of the metabolic and structural information is the most important strenghtof myocardial PET/MRI. • Metabolic conversion to glycolysis is needed in the assesment ov the viable myocardium. • Metabolic conversion to the fatty acid metabolism is the crucial in the assesment of the ischemic memory and myocardial inflammation. - Abstract: The introduction of the integrated hybrid PET/MRI equipment creates the possibility to perform PET and MRI simultaneously. Depending on the clinical question, the metabolic conversion to glycolytic activity or beta-oxidation is performed before the application of FDG. Since FDG aids to evaluate the energetic metabolism of the myocytes and myocardial MRI reaches the imaging capabilities of perfusion and tissue characterization in the daily routine, FDG-PET/MRI looks to be a promising method of PET/MRI exploitation in cardiac imaging. When myocardial FDG uptake should be evaluated in association with the perfusion distribution, the cross-evaluation of FDG accumulation distribution and perfusion distribution pattern is necessary. The different scenarios may be used in the assessment of myocardium, the conversion to glycolytic activity is used in the imaging of the viable myocardium, but the glycolytic activity suppression might be used in the indications of the identification of injured myocardium by ischemia or inflammation. FDG-PET/MRI might aid to answer the clinical tasks according to the structure, current function and possibilities to improve the function in ischemic heart disease or to display the extent or activity of myocardial inflammation in sarcoidosis. The tight coupling between metabolism, perfusion and contractile function offers an opportunity for the simultaneous assessment of cardiac performance using one imaging modality.

  19. Acceleration of cardiovascular MRI using parallel imaging: basic principles, practical considerations, clinical applications and future directions

    International Nuclear Information System (INIS)

    Niendorf, T.; Sodickson, D.

    2006-01-01

    Cardiovascular Magnetic Resonance (CVMR) imaging has proven to be of clinical value for non-invasive diagnostic imaging of cardiovascular diseases. CVMR requires rapid imaging; however, the speed of conventional MRI is fundamentally limited due to its sequential approach to image acquisition, in which data points are collected one after the other in the presence of sequentially-applied magnetic field gradients and radiofrequency coils to acquire multiple data points simultaneously, and thereby to increase imaging speed and efficiency beyond the limits of purely gradient-based approaches. The resulting improvements in imaging speed can be used in various ways, including shortening long examinations, improving spatial resolution and anatomic coverage, improving temporal resolution, enhancing image quality, overcoming physiological constraints, detecting and correcting for physiologic motion, and streamlining work flow. Examples of these strategies will be provided in this review, after some of the fundamentals of parallel imaging methods now in use for cardiovascular MRI are outlined. The emphasis will rest upon basic principles and clinical state-of-the art cardiovascular MRI applications. In addition, practical aspects such as signal-to-noise ratio considerations, tailored parallel imaging protocols and potential artifacts will be discussed, and current trends and future directions will be explored. (orig.)

  20. Reconstruction of MRI/CT compatible ring and tandem applicators in CT or MRI images used for treatment planning in brachytherapy

    International Nuclear Information System (INIS)

    Surendran, N.; Kim, Hayeon; Beriwal, Sushil; Saiful Huq, M.

    2008-01-01

    Brachytherapy (BT) plays a crucial role in the management of invasive cervix cancer from stage I to IV. Intracavitary techniques are based on afterloading devices, with different types of applicators. CT and/or MRI compatible applicators allow a sectional image based approach with a better assessment of gross tumour volume (GTV) and definition and delineation of target volume (CTV) compared to traditional approaches. To evaluate reconstruction of MRI/CT compatible ring and tandem applicators in 3D CT or MRI images used for treatment planning in Brachytherapy

  1. Signal to noise ratio (SNR) and image uniformity: an estimate of performance of magnetic resonance imaging (MRI) system

    International Nuclear Information System (INIS)

    Narayan, P.; Suri, S.; Choudhary, S.R.

    2001-01-01

    In most general definition, noise in an image, is any variation that represents a deviation from truth. Noise sources in MRI can be systematic or random and statistical in nature. Data processing algorithms that smooth and enhance the edges by non-linear intensity assignments among other factors can affect the distribution of statistical noise. The SNR and image uniformity depends on the various parameters of NMR imaging system (viz. General system calibration, Gain coil tuning, AF shielding, coil loading, image processing and scan parameters like TE, TR, interslice distance, slice thickness, pixel size and matrix size). A study on SNR and image uniformity have been performed using standard head AF coil with different TR and the estimates of their variation are presented. A comparison between different techniques has also been evaluated using standard protocol of the Siemens Magnetom Vision Plus MRI system

  2. Atlas-based deformable image registration for MRI-guided prostate radiation therapy

    International Nuclear Information System (INIS)

    Dowling, J.; Fripp, J.; Salvado, O.; Lambert, J.; Denham, J.W.; Capp, A.; Grer, P.B.; Parker, J.

    2010-01-01

    Full text: To develop atlas-based deformable image registration methods to automatically segment organs and map electron densities to pelvic MRI scans for MRI-guided radiation therapy. Methods An MRT pelvic atlas and corresponding CT atlas were developed based on whole pelvic T 2 MRI scans and CT scans for 39 patients. Expert manual segmentations on both MRI and CT scans were obtained. The atlas was deformably registered to the individual patient MRI scans for automatic prostate, rectum, bladder and bone segmentation. These were compared to the manual segmentations using the Dice overlap coefficient. The same deformation vectors were then applied to the CT-atlas to produce pseudo-CT scans that correspond to the patient MRI scan anatomy but are populated with Hounsfield units. The original patient plan was recalculated on the pseudo-CT and compared to the original CT plan and bulk density plans on the MRI scans. Results Dice coefficient results were high (>0.8) for bone and prostate but lower (<0.7) for bladder and rectum which exhibit greater changes in shape and volume. Doses calculated on pseudo-CT scans were within 3% of original patient plans. Two sources of discrepancy were found; MR anatomy differences from CT due to patient setup differences at the MR scanner. and Hounsfield unit differences for bone in the pseudo-CT from original CT. Patient setup will be adressed with a

  3. Analysis of systemic lupus erythematosus (SLE) involving the central nervous system by magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kimihiro; Hara, Masako; Nakajima, Shinji and others

    1989-04-01

    Involvement of the central nervous system (CNS) commonly occurs in systemic lupus erythematosus (SLE). But definitive diagnosis remains difficult even with computed tomography (CT). In this study, we used the recently developed technique, magnetic resonance imaging (MRI) for CNS lupus and compared it with CT scans. CT was performed with a General Electric 8800 CT/T scanner. MRI was performed using a Mitsubishi Electric MMI-150 S. Ten patients with CNS lupus were divided into 3 groups. Group I included 4 cases with neurological manifestations alone. All lesions seen on CT were also detected by MRI, with greater clarity and extent. Furthermore, MRI depicted several microinfarcts in white matter without symptoms. Group II included 5 cases with psychiatric features alone. MRI detected a thalamic microinfarct in only one case while CT showed no abnormality in all cases. Group III included 1 case with both neurological and psychiatric symptoms. MRI demonstrated a small infarct of midbrain corresponding with neurological symptoms, more clearly than CT. Therefore MRI demonstrates the degree of brain involvement in SLE more accurately than CT. (author).

  4. Analysis of systemic lupus erythematosus (SLE) involving the central nervous system by magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Suzuki, Kimihiro; Hara, Masako; Nakajima, Shinji

    1989-01-01

    Involvement of the central nervous system (CNS) commonly occurs in systemic lupus erythematosus (SLE). But definitive diagnosis remains difficult even with computed tomography (CT). In this study, we used the recently developed technique, magnetic resonance imaging (MRI) for CNS lupus and compared it with CT scans. CT was performed with a General Electric 8800 CT/T scanner. MRI was performed using a Mitsubishi Electric MMI-150 S. Ten patients with CNS lupus were divided into 3 groups. Group I included 4 cases with neurological manifestations alone. All lesions seen on CT were also detected by MRI, with greater clarity and extent. Furthermore, MRI depicted several microinfarcts in white matter without symptoms. Group II included 5 cases with psychiatric features alone. MRI detected a thalamic microinfarct in only one case while CT showed no abnormality in all cases. Group III included 1 case with both neurological and psychiatric symptoms. MRI demonstrated a small infarct of midbrain corresponding with neurological symptoms, more clearly than CT. Therefore MRI demonstrates the degree of brain involvement in SLE more accurately than CT. (author)

  5. Magnetic resonance imaging of the triangular fibrocartilage complex. Usefulness of the fat suppression MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Toshiyasu [Fujita Health Univ., Nagoya (Japan). Second Hospital; Yabe, Yutaka; Horiuchi, Yukio; Kikuchi, Yoshito; Makita, Satoo

    1996-08-01

    Advances in magnetic resonance imaging (MRI) now allow for the visualization of small structures, such as the triangular fibrocartilage complex (TFCC) of the wrist. Recent investigators suggested that MRI is useful in delineation of the TFCC itself and its abnormality, and supported that diagnostic value of MRI for the TFCC tears is almost equal to those of arthrography and arthroscopy. In contrast, there were several reports that representation of the TFCC in MRI was less worth than in arthrography. Further, it was reported that MRI was not useful because abnormal findings existed at normal volunteers` wrists. Recent development of the pulse sequence is remarkable, such as gradient echo, fast spin echo and fat suppression method. However, as the previous MR studies of the TFCC mainly using conventional spin echo pulse sequence, there were a few comparison of each pulse sequence and we do not know how each pulse sequence delineates the TFCC. Therefore, we studied MRI of the TFCC using several pulse sequence in normal volunteers, and compared MR slices of the TFCC with corresponding histological sections to evaluate shape detectability of MRI. (J.P.N.)

  6. Staging of endometrial cancer with MRI: Guidelines of the European Society of Urogenital Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kinkel, K. [Geneva University Hospital and Institut de Radiologie, Clinique des Grangettes, Chene-Bougeries/Geneva (Switzerland); Clinique des Grangettes, Institut de radiologie, Chene-Bougerie/Geneva (Switzerland); Forstner, R. [LandesklinikenSalzburg, Zentralroentgeninstitut, Salzburg (Austria); Danza, F.M. [Universita Cattolica del S. Cuore, Dipartimento di Bioimmagini e scienze radiologiche, Rome (Italy); Oleaga, L. [Hospital Clinic, Radiology Department, Barcelona (Spain); Cunha, T.M. [Instituto Portugues de Oncologia de Lisboa Francisco Gentil, Department of Radiology, Lisboa Codex (Portugal); Bergman, A. [Uppsala University Hospital, Department of Radiology, Uppsala (Sweden); Barentsz, J.O. [Radboud University Nijmegen Medical Center, Department of Radiology, Nijmegen (Netherlands); Balleyguier, C. [Institut de Cancerologie Gustave Roussy, Department of Radiology, Villejuif Cedex (France); Brkljacic, B. [University Hospital ' ' Dubrava' ' , Department of Diagnostic and Interventional Radiology, Zagreb (Croatia); University of Zagreb, Medical School, Zagreb (Croatia); Spencer, J.A. [St James' s Institute of Oncology, Department of Clinical Radiology, Leeds (United Kingdom)

    2009-07-15

    The purpose of this study was to define guidelines for endometrial cancer staging with MRI. The technique included critical review and expert consensus of MRI protocols by the female imaging subcommittee of the European Society of Urogenital Radiology, from ten European institutions, and published literature between 1999 and 2008. The results indicated that high field MRI should include at least two T2-weighted sequences in sagittal, axial oblique or coronal oblique orientation (short and long axis of the uterine body) of the pelvic content. High-resolution post-contrast images acquired at 2 min {+-} 30 s after intravenous contrast injection are suggested to be optimal for the diagnosis of myometrial invasion. If cervical invasion is suspected, additional slice orientation perpendicular to the axis of the endocervical channel is recommended. Due to the limited sensitivity of MRI to detect lymph node metastasis without lymph node-specific contrast agents, retroperitoneal lymph node screening with pre-contrast sequences up to the level of the kidneys is optional. The likelihood of lymph node invasion and the need for staging lymphadenectomy are also indicated by high-grade histology at endometrial tissue sampling and by deep myometrial or cervical invasion detected by MRI. In conclusion, expert consensus and literature review lead to an optimized MRI protocol to stage endometrial cancer. (orig.)

  7. Staging of endometrial cancer with MRI: Guidelines of the European Society of Urogenital Imaging

    International Nuclear Information System (INIS)

    Kinkel, K.; Forstner, R.; Danza, F.M.; Oleaga, L.; Cunha, T.M.; Bergman, A.; Barentsz, J.O.; Balleyguier, C.; Brkljacic, B.; Spencer, J.A.

    2009-01-01

    The purpose of this study was to define guidelines for endometrial cancer staging with MRI. The technique included critical review and expert consensus of MRI protocols by the female imaging subcommittee of the European Society of Urogenital Radiology, from ten European institutions, and published literature between 1999 and 2008. The results indicated that high field MRI should include at least two T2-weighted sequences in sagittal, axial oblique or coronal oblique orientation (short and long axis of the uterine body) of the pelvic content. High-resolution post-contrast images acquired at 2 min ± 30 s after intravenous contrast injection are suggested to be optimal for the diagnosis of myometrial invasion. If cervical invasion is suspected, additional slice orientation perpendicular to the axis of the endocervical channel is recommended. Due to the limited sensitivity of MRI to detect lymph node metastasis without lymph node-specific contrast agents, retroperitoneal lymph node screening with pre-contrast sequences up to the level of the kidneys is optional. The likelihood of lymph node invasion and the need for staging lymphadenectomy are also indicated by high-grade histology at endometrial tissue sampling and by deep myometrial or cervical invasion detected by MRI. In conclusion, expert consensus and literature review lead to an optimized MRI protocol to stage endometrial cancer. (orig.)

  8. Liver Imaging Reporting and Data System on CT and gadoxetic acid-enhanced MRI with diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Dong Ik; Jang, Kyung Mi; Kim, Seong Hyun; Kang, Tae Wook; Song, Kyoung Doo [Sungkyunkwan University School of Medicine, Department of Radiology and Center for Imaging Science, Samsung Medical Center, Seoul (Korea, Republic of)

    2017-10-15

    To assess major imaging features of Liver Imaging Reporting and Data System (LI-RADS) on contrast-enhanced CT and gadoxetic acid-enhanced MRI and to estimate whether the combination of signal intensity favouring HCC on hepatobiliary phase (HBP) and diffusion-weighted images (DWI) can act as a major feature in LI-RADS. Four hundred twenty one patients with 445 observations were included. Major features of LI-RADS on CT and MRI as well as HBP and DWI features were assessed. Diagnostic performances of LR-5 according to LI-RADS v2014 and modified LI-RADS which incorporate combination of HBP and DWI were assessed. Pairwise comparisons of the receiver operating characteristic (ROC) curves were performed. For HCCs, capsule appearance had the highest rate of discordance between CT and MRI (32.7%), followed by washout appearance (22.2%). Specificity (75%) of LR-5 of LI-RADS v2014 was lower than that (77.1-79.2%) of modified LI-RADS. Area under the ROC curve of modified LI-RADS (0.755-0.775) was not significantly different from that of LI-RADS v 2014 (0.709) (p > 0.05). There were substantial discordances between CT and MRI for capsule and washout appearances in hepatic observations, and combination of gadoxetic acid-enhanced MRI and DWI might be able to be incorporated as a major feature of LI-RADS. (orig.)

  9. Visual grading of 2D and 3D functional MRI compared with image-based descriptive measures

    Energy Technology Data Exchange (ETDEWEB)

    Ragnehed, Mattias [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences, Division of Radiological Sciences/Radiology, Faculty of Health Sciences, Linkoeping (Sweden); Leinhard, Olof Dahlqvist; Pihlsgaard, Johan; Lundberg, Peter [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Linkoeping University, Division of Radiological Sciences, Radiation Physics, IMH, Linkoeping (Sweden); Wirell, Staffan [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Soekjer, Hannibal; Faegerstam, Patrik [Linkoeping University Hospital, Department of Radiology, Linkoeping (Sweden); Jiang, Bo [Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden); Smedby, Oerjan; Engstroem, Maria [Linkoeping University, Division of Radiological Sciences, Radiology, IMH, Linkoeping (Sweden); Linkoeping University, Center for Medical Image Science and Visualization, CMIV, Linkoeping (Sweden)

    2010-03-15

    A prerequisite for successful clinical use of functional magnetic resonance imaging (fMRI) is the selection of an appropriate imaging sequence. The aim of this study was to compare 2D and 3D fMRI sequences using different image quality assessment methods. Descriptive image measures, such as activation volume and temporal signal-to-noise ratio (TSNR), were compared with results from visual grading characteristics (VGC) analysis of the fMRI results. Significant differences in activation volume and TSNR were not directly reflected by differences in VGC scores. The results suggest that better performance on descriptive image measures is not always an indicator of improved diagnostic quality of the fMRI results. In addition to descriptive image measures, it is important to include measures of diagnostic quality when comparing different fMRI data acquisition methods. (orig.)

  10. MRI of the Chest

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Chest Magnetic resonance imaging (MRI) ... clearer and more detailed than with other imaging methods. This detail makes MRI an invaluable tool in ...

  11. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness

    DEFF Research Database (Denmark)

    Stender, Johan; Gosseries, Olivia; Bruno, Marie-Aurélie

    2014-01-01

    a validation study of two neuroimaging-based diagnostic methods: PET imaging and functional MRI (fMRI). METHODS: For this clinical validation study, we included patients referred to the University Hospital of Liège, Belgium, between January, 2008, and June, 2012, who were diagnosed by our unit...... with unresponsive wakefulness syndrome, locked-in syndrome, or minimally conscious state with traumatic or non-traumatic causes. We did repeated standardised clinical assessments with the Coma Recovery Scale-Revised (CRS-R), cerebral (18)F-fluorodeoxyglucose (FDG) PET, and fMRI during mental activation tasks. We...... state (48=traumatic, 78=non-traumatic; 110=chronic, 16=subacute). (18)F-FDG PET had high sensitivity for identification of patients in a minimally conscious state (93%, 95% CI 85-98) and high congruence (85%, 77-90) with behavioural CRS-R scores. The active fMRI method was less sensitive at diagnosis...

  12. Magnetic resonance imaging (MRI) in the diagnosis of optic neuritis and neuropathy

    International Nuclear Information System (INIS)

    Kakisu, Yonetsugu; Adachi-Usami, Emiko; Kojima, Shigeyuki; Hirayama, Keizo

    1989-01-01

    Magnetic resonance imaging (MRI) was performed in thirty patients who had been suffering from optic neuritis (ON). Twenty-one cases were caused by multiple sclerosis (MS) and in 9 cases the causes been defined. In MRI, abnormalities were found in 17 out of 21 MS cases in several places such as near the ventricles, mid-brain, spinal cord etc. Increased signals from the optic chiasm to optic radiation were found in 5 cases. However, abnormal MRI findings did not always correspond to Goldmann visual field defects. In 3 out of 9 cases of ON with unknown causes, high signals in the white matter of the brain were found, and it was suggested that those may develop to MS. MRI was, thus, proved to be very useful for the diagnois of MS. (author)

  13. Magnetic resonance imaging (MRI) in the diagnosis of optic neuritis and neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Kakisu, Yonetsugu; Adachi-Usami, Emiko; Kojima, Shigeyuki; Hirayama, Keizo

    1989-02-01

    Magnetic resonance imaging (MRI) was performed in thirty patients who had been suffering from optic neuritis (ON). Twenty-one cases were caused by multiple sclerosis (MS) and in 9 cases the causes been defined. In MRI, abnormalities were found in 17 out of 21 MS cases in several places such as near the ventricles, mid-brain, spinal cord etc. Increased signals from the optic chiasm to optic radiation were found in 5 cases. However, abnormal MRI findings did not always correspond to Goldmann visual field defects. In 3 out of 9 cases of ON with unknown causes, high signals in the white matter of the brain were found, and it was suggested that those may develop to MS. MRI was, thus, proved to be very useful for the diagnois of MS.

  14. The registration accuracy analysis of different CT-MRI imaging fusion method in brain tumor

    International Nuclear Information System (INIS)

    Lu Jie; Yin Yong; Shao Qian; Zhang Zicheng; Chen Jinhu; Chen Zhaoqiu

    2010-01-01

    Objective: To find an effective CT-MRI image fusion protocol in brain tumor by analyzing the registration accuracy of different methods. Methods: The simulation CT scan and MRI T 1 WI imaging of 10 brain tumor patients obtained with same position were registered by Tris-Axes landmark ,Tris-Axes landmark + manual adjustment, mutual information and mutual information + manual adjustment method. The clinical tumor volume (CTV) were contoured on both CT and MRI images respectively. The accuracy of image fusion was assessed by the mean distance of five bone markers (d 1-5 ), central position of CTV (d CTV ) the percentage of CTV overlap (P CT-MRI ) between CT and MRI images. The difference between different methods was analyzed by Freedman M non-parameter test. Results: The difference of the means d1-5 between the Tris-Axes landmark,Tris-Axes landmark plus manual adjustment,mutual information and mutual information plus manual adjustment methods were 0.28 cm ±0.12 cm, 0.15 cm ±0.02 cm, 0.25 cm± 0.19 cm, 0.10 cm ± 0.06 cm, (M = 14.41, P = 0.002). the means d CTV were 0.59 cm ± 0.28 cm, 0.60 cm± 0.32 cm, 0.58 cm ± 0.39 cm, 0.42 cm± 0.30 cm (M = 9.72, P = 0.021), the means P CT-MRI were 0.69% ±0.18%, 0.68% ±0.16%, 0.66% ±0.17%, 0.74% ±0.14% (M =14.82, P=0.002), respectively. Conclusions: Mutual information plus manual adjustment registration method was the preferable fusion method for brain tumor patients. (authors)

  15. A novel nitroreductase-enhanced MRI contrast agent and its potential application in bacterial imaging

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2018-05-01

    Full Text Available Nitroreductases (NTRs are known to be able to metabolize nitro-substituted compounds in the presence of reduced nicotinamide adenine dinucleotide (NADH as an electron donor. NTRs are present in a wide range of bacterial genera and, to a lesser extent, in eukaryotes hypoxic tumour cells and tumorous tissues, which makes it an appropriate biomarker for an imaging target to detect the hypoxic status of cancer cells and potential bacterial infections. To evaluate the specific activation level of NTR, great efforts have been devoted to the development of fluorescent probes to detect NTR activities using fluorogenic methods to probe its behaviour in a cellular context; however, NTR-responsive MRI contrast agents are still by far underexplored. In this study, para-nitrobenzyl substituted T1-weighted magnetic resonance imaging (MRI contrast agent Gd-DOTA-PNB (probe 1 has been designed and explored for the possible detection of NTR. Our experimental results show that probe 1 could serve as an MRI-enhanced contrast agent for monitoring NTR activity. The in vitro response and mechanism of the NTR catalysed reduction of probe 1 have been investigated through LC–MS and MRI. Para-nitrobenzyl substituted probe 1 was catalytically reduced by NTR to the intermediate para-aminobenzyl substituted probe which then underwent a rearrangement elimination reaction to Gd-DOTA, generating the enhanced T1-weighted MR imaging. Further, LC–MS and MRI studies of living Escherichia coli have confirmed the NTR activity detection ability of probe 1 at a cellular level. This method may potentially be used for the diagnosis of bacterial infections. KEY WORDS: Nitroreductase, MRI contrast agent, Smart imaging probes, Bacterial imaging, Bacterial infection

  16. Image quality transfer and applications in diffusion MRI

    DEFF Research Database (Denmark)

    Alexander, Daniel C.; Zikic, Darko; Ghosh, Aurobrata

    2017-01-01

    This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure u...

  17. The use of MRI and CT in Imaging Occult Hip Fractures

    Directory of Open Access Journals (Sweden)

    Obadă B.

    2014-11-01

    Full Text Available Diagnosis of hip fractures is particularly important due to the high dependence on the integrity of this structure for people to function in their daily lives. Left unrecognized, patients face increasing morbidity and mortality as time from the original injury lengthens. A delay of just 2 days in surgical treatment for an acute hip fracture doubles mortality. In addition, an unrecognized non-displaced fracture may displace, requiring surgery of much higher risk. This may be part of the reason that the most frequent lawsuit against Emergency Physicians is for missed orthopedic injury. We reviewed the use of MRI and CT for occult hip fractures (OHF detection at a major urban trauma unit. Our study is a retrospective review. Inclusion criteria: all patients presenting to the Emergency Clinical Hospital of Constanta with a suspected, posttraumatic, occult hip fracture, over a 5 years period were included. All patients had negative initial radiographs and underwent further imaging with either CT or MRI. A total of 185 cases meeting the inclusion criteria were identified. 72 occult hip fractures were detected with both imaging modalities. Although MRI certainly enables greater image detail, in our experience both modalities are able to provide satisfactory fracture characterization. The choice of imaging should be determined by availability and indication. MRI provides superior imaging of soft tissue but is less sensitive for degenerative changes in presence of bone edema.

  18. Reducing radiation exposure in an electrophysiology lab with introduction of newer fluoroscopic technology

    Directory of Open Access Journals (Sweden)

    Munish Sharma

    2017-09-01

    Full Text Available The use of fluoroscopic devices exposes patients and operators to harmful effects of ionizing radiation in an electrophysiology (EP lab. We sought to know if the newer fluoroscopic technology (Allura Clarity installed in a hybrid EP helps to reduce prescribed radiation dose. We performed radiation dose analysis of 90 patients who underwent various procedures in the EP lab at a community teaching hospital after the introduction of newer fluoroscopic technology in June of 2016.Watchman device insertion, radiofrequency ablation procedures, permanent pacemaker (PPM/implantable cardioverter defibrillator (ICD placement and battery changes were included in the study to compare radiation exposure during different procedures performed commonly in an EP lab. In all cases of watchman device placement, radiofrequency ablation procedures, PPM/ICD placement and battery changes, there was a statistically significant difference (<0.05 in radiation dose exposure. Significant reduction in radiation exposure during various procedures performed in an EP lab was achieved with aid of newer fluoroscopic technology and better image detection technology.

  19. Patient dose measurements in fluoroscopic examinations, aiming to the establishment of reference levels in Brazil

    International Nuclear Information System (INIS)

    Canevaro, L.; Drexler, G.

    2001-01-01

    This work was performed to investigate the actual exposure levels of the patients submitted to fluoroscopic procedures in diagnostic radiology. The data will be useful for a baseline in the establishment of local reference levels for fluoroscopic procedures, as recommended by the European Commission and IAEA. At present time there are no internationally accepted definitions for references levels for fluoroscopic complex procedures. Dose-area product (DAP) meters were employed in a pilot survey expressing the radiation exposures in terms of this quantity. This class of instrumentation has not yet been employed in Brazil. Parameters recorded were radiographic technique, fluoroscopy time, number of images, fluoroscopic and radiographic field sizes and DAPs. For fluoroscopy practice, a reference parameters set is recommended, instead of one diagnostic reference level. High patient exposures were found, calling for joined actions of health authorities, physicians, medical physicists, technicians and manufacturers. Monitoring of patient exposure, optimizing the radiation protection and establishing quantitative assessments of the exposition to the population in Brazil in this kind of procedure is important. (author)

  20. Measurement of Strain in the Left Ventricle during Diastole withcine-MRI and Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Veress, Alexander I.; Gullberg, Grant T.; Weiss, Jeffrey A.

    2005-07-20

    The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as Hyperelastic Warping for the measurement of local strains in the left ventricle from clinical cine-MRI image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastoliccine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from Hyperelastic Warping showed good agreement with those of the forward solution. The technique had low sensitivity to changes in material parameters, with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the Warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to an SNR of 4.0. This study demonstrates that Warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.

  1. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging.

    Science.gov (United States)

    De Ciantis, Alessio; Barba, Carmen; Tassi, Laura; Cosottini, Mirco; Tosetti, Michela; Costagli, Mauro; Bramerio, Manuela; Bartolini, Emanuele; Biagi, Laura; Cossu, Massimo; Pelliccia, Veronica; Symms, Mark R; Guerrini, Renzo

    2016-03-01

    To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T

  2. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group

    DEFF Research Database (Denmark)

    Rudwaleit, M; Jurik, A G; Hermann, K-G A

    2009-01-01

    BACKGROUND: Magnetic resonance imaging (MRI) of sacroiliac joints has evolved as the most relevant imaging modality for diagnosis and classification of early axial spondyloarthritis (SpA) including early ankylosing spondylitis. OBJECTIVES: To identify and describe MRI findings in sacroiliitis and...... relevant for sacroiliitis have been defined by consensus by a group of rheumatologists and radiologists. These definitions should help in applying correctly the imaging feature "active sacroiliitis by MRI" in the new ASAS classification criteria for axial SpA.......BACKGROUND: Magnetic resonance imaging (MRI) of sacroiliac joints has evolved as the most relevant imaging modality for diagnosis and classification of early axial spondyloarthritis (SpA) including early ankylosing spondylitis. OBJECTIVES: To identify and describe MRI findings in sacroiliitis...... conditions which may mimic SpA. Descriptions of the pathological findings and technical requirements for the appropriate acquisition were formulated. In a consensual approach MRI findings considered to be essential for sacroiliitis were defined. RESULTS: Active inflammatory lesions such as bone marrow oedema...

  3. In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI.

    Directory of Open Access Journals (Sweden)

    Gesa Weise

    Full Text Available (19F magnetic resonance imaging (MRI was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared (19F MRI with iron-enhanced MRI in mice with photothrombosis (PT at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation.Perfluorocarbons (PFC or superparamagnetic iron oxide particles (SPIO were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong (19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like (19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the (19F markers (infarct core/rim could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage.Our study shows that vessel occlusion can be followed in vivo by (19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.

  4. A protocol for patients with cardiovascular implantable devices undergoing magnetic resonance imaging (MRI): should defibrillation threshold testing be performed post-(MRI).

    Science.gov (United States)

    Burke, Peter Thomas; Ghanbari, Hamid; Alexander, Patrick B; Shaw, Michael K; Daccarett, Marcos; Machado, Christian

    2010-06-01

    Magnetic resonance imaging (MRI) in patients with Cardiovascular Implantable Electronic Devices (CIED) has not been approved by the Food and Drug Administration. Recent data suggests MRI as a relative rather than absolute contraindication in CIED patients. Recently, the American Heart Association has recommended defibrillation threshold testing (DFTT) in implantable cardioverter defibrillator (ICD) patients undergoing MRI. We evaluated the feasibility and safety of a protocol for MRI in CIED patients, incorporating the new recommendations on DFTT. Consecutive patients with CIED undergoing MRI were included. The protocol consisted of continuous monitoring during imaging, device interrogation pre- and post-MRI, reprogramming of the pacemaker to an asynchronous mode in pacemaker-dependent (PMD) patients and a non-tracking/sensing mode for non-PMD patients. All tachyarrhythmia therapies were disabled. Devices were interrogated for lead impedance, battery life, pacing, and sensing thresholds. All patients with ICD underwent DFTT/defibrillator safety margin testing (DSMT) post-MRI. A total of 92 MRI's at 1.5 Tesla were performed in 38 patients. A total of 13 PMD patients, ten ICD patients, four cardiac resynchronization therapy with defibrillator (CRT-D) patients, and 11 non-PMD patients were scanned from four major manufacturers. No device circuitry damage, programming alterations, inappropriate shocks, failure to pace, or changes in sensing, pacing, or defibrillator thresholds were found on single or multiple MRI sessions. Our protocol for MRI in CIED patients appears safe, feasible, and reproducible. This is irrespective of the type of CIED, pacemaker dependancy or multiple 24-h scanning sessions. Our protocol addresses early detection of potential complications and establishes a response system for potential device-related complications. Our observation suggests that routine DFTT/DSMT post-MRI may not be necessary.

  5. New developments in imaging: Sonography, cine-CT, MRI

    International Nuclear Information System (INIS)

    Otto, R.J.; Higgins, C.B.

    1987-01-01

    The book can be conveniently subdivided into three sections: the first on magnetic resonance imaging the second on cine-computed tomography and the third on advances in ultrasound (US). The MR imaging section includes two chapters: the first on indications for MR in abdominal disease (a cookbook layout of indications for MR imaging versus CT) and the second on MR imaging of the heart. There are also chapters on MR imaging and US in the pelvis, contrast agent principles, and a chapter on imaging renal tumors. The third section, on US, contains chapters on the liver and gastrointenstinal disease, interventional US sonography during neurosurgery, state-of-the-art echocardiography. Doppler flow imaging, contrast media for sonography, endometrial sonography, and high-resolution US in the first trimester. The final chapter is presented as a scientific paper rather than as a chapter in a book and has no illustrations

  6. Lung tumor tracking in fluoroscopic video based on optical flow

    International Nuclear Information System (INIS)

    Xu Qianyi; Hamilton, Russell J.; Schowengerdt, Robert A.; Alexander, Brian; Jiang, Steve B.

    2008-01-01

    Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate and real-time localization of the lung tumor position during treatment. Deriving tumor position from external surrogates such as abdominal surface motion may have large uncertainties due to the intra- and interfraction variations of the correlation between the external surrogates and internal tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant anatomic features projected in fluoroscopic images without implanted fiducial markers based on an optical flow algorithm. The algorithm generates the centroid position of the tracked target and ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor projection in an initial image frame. Then, the optical flow between this and all incoming frames acquired during treatment delivery is computed as initial estimations of tumor centroid displacements. The tumor contour in the initial frame is transferred to the incoming frames based on the average of the motion vectors, and its positions in the incoming frames are determined by fine-tuning the contour positions using a template matching algorithm with a small search range. The tracking results were validated by comparing with clinician determined contours on each frame. The position difference in 95% of the frames was found to be less than 1.4 pixels (∼0.7 mm) in the best case and 2.8 pixels (∼1.4 mm) in the worst case for the five patients studied.

  7. Ex-PRESS glaucoma filter: an MRI compatible metallic orbital foreign body imaged at 1.5 and 3T.

    Science.gov (United States)

    Mabray, M C; Uzelac, A; Talbott, J F; Lin, S C; Gean, A D

    2015-05-01

    To report on the MRI compatibility of the Ex-PRESS glaucoma filtration device, a tiny metallic implant placed into the anterior chamber of the eye that is much smaller than traditional glaucoma shunts, and to educate the radiology community regarding its appearance. Seven patients with Ex-PRESS glaucoma filtration devices were identified that had undergone MRI at San Francisco General Hospital/University of California San Francisco Medical Center by searching and cross-referencing the radiology reporting system and the electronic medical record. MRI images were reviewed for artefact interfering with interpretation. Ophthalmology examinations were reviewed for evidence of complications. Eighteen individual MRI examinations were performed during 12 unique MRI events on these 7 patients. 13/18 individual MRI examinations and 7/12 MRI events were performed at 3 T with the others performed at 1.5 T. Mean time from Ex-PRESS implantation to MRI was 17.5 months. Mean time from MRI to first ophthalmology examination was 1.1 months and from MRI to latest ophthalmology examination was 6.6 months. Susceptibility artefact did not interfere with image interpretation and no complications related to MRI were encountered. The Ex-PRESS glaucoma filtration device appears to be safe for MRI at 1.5 and 3 T and does not produce significant susceptibility artefact to affect diagnostic interpretation adversely. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Magnetisk resonans-imaging (MRI)-styret fokuseret ultralyd

    DEFF Research Database (Denmark)

    Salomir, Rares; Hokland, S.; Pedersen, M.

    2005-01-01

    Focussed ultrasound is the only known technology that allows non-invasive local hyperthermia. Since MRI may be employed to obtain real-time temperature maps non-invasively, the combination of these two technologies offers great advantages, specifically aimed towards oncological studies. Real......-time identification of the target region and accurate control of the temperature evolution during the treatment are now possible. Thermal ablation of pathological tissue, local drug delivery using thermosensitive microcarriers and controlled transgene expression using thermosensitive promoters have recently been...

  9. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    International Nuclear Information System (INIS)

    Lin, C.

    2016-01-01

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  10. WE-DE-206-03: MRI Image Formation - Slice Selection, Phase Encoding, Frequency Encoding, K-Space, SNR

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C. [Indiana University School of Medicine (United States)

    2016-06-15

    Magnetic resonance imaging (MRI) has become an essential part of clinical imaging due to its ability to render high soft tissue contrast. Instead of ionizing radiation, MRI use strong magnetic field, radio frequency waves and field gradients to create diagnostic useful images. It can be used to image the anatomy and also functional and physiological activities within the human body. Knowledge of the basic physical principles underlying MRI acquisition is vitally important to successful image production and proper image interpretation. This lecture will give an overview of the spin physics, imaging principle of MRI, the hardware of the MRI scanner, and various pulse sequences and their applications. It aims to provide a conceptual foundation to understand the image formation process of a clinical MRI scanner. Learning Objectives: Understand the origin of the MR signal and contrast from the spin physics level. Understand the main hardware components of a MRI scanner and their purposes Understand steps for MR image formation including spatial encoding and image reconstruction Understand the main kinds of MR pulse sequences and their characteristics.

  11. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Pt. 2

    International Nuclear Information System (INIS)

    Alt, Celine D.; Kauczor, Hans-Ulrich; Hallscheidt, Peter; Brocker, Kerstin A.; Eichbaum, Michael; Sohn, Christof; Arnegger, Florian U.

    2011-01-01

    To compose diagnostic standard operating procedures for both clinical and imaging assessment for vulvar and vaginal cancer, for vaginal sarcoma, and for ovarian cancer. The literature was reviewed for diagnosing the above mentioned malignancies in the female pelvis. Special focus herein lies in tumor representation in MRI, followed by the evaluation of CT and PET/CT for this topic. MRI is a useful additional diagnostic complement but by no means replaces established methods of gynecologic diagnostics and ultrasound. In fact, MRI is only implemented in the guidelines for vulvar cancer. According to the current literature, CT is still the cross-sectional imaging modality of choice for evaluating ovarian cancer. PET/CT appears to have advantages for staging and follow-up in sarcomas and cancers of the ovaries. (orig.)

  12. Prospective comparison of T2w-MRI and dynamic-contrast-enhanced MRI, 3D-MR spectroscopic imaging or diffusion-weighted MRI in repeat TRUS-guided biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Portalez, Daniel [Clinique Pasteur, 45, Department of Radiology, Toulouse (France); Rollin, Gautier; Mouly, Patrick; Jonca, Frederic; Malavaud, Bernard [Hopital de Rangueil, Department of Urology, Toulouse Cedex 9 (France); Leandri, Pierre [Clinique Saint Jean, 20, Department of Urology, Toulouse (France); Elman, Benjamin [Clinique Pasteur, 45, Department of Urology, Toulouse (France)

    2010-12-15

    To compare T2-weighted MRI and functional MRI techniques in guiding repeat prostate biopsies. Sixty-eight patients with a history of negative biopsies, negative digital rectal examination and elevated PSA were imaged before repeat biopsies. Dichotomous criteria were used with visual validation of T2-weighted MRI, dynamic contrast-enhanced MRI and literature-derived cut-offs for 3D-spectroscopy MRI (choline-creatine-to-citrate ratio >0.86) and diffusion-weighted imaging (ADC x 10{sup 3} mm{sup 2}/s < 1.24). For each segment and MRI technique, results were rendered as being suspicious/non-suspicious for malignancy. Sextant biopsies, transition zone biopsies and at least two additional biopsies of suspicious areas were taken. In the peripheral zones, 105/408 segments and in the transition zones 19/136 segments were suspicious according to at least one MRI technique. A total of 28/68 (41.2%) patients were found to have cancer. Diffusion-weighted imaging exhibited the highest positive predictive value (0.52) compared with T2-weighted MRI (0.29), dynamic contrast-enhanced MRI (0.33) and 3D-spectroscopy MRI (0.25). Logistic regression showed the probability of cancer in a segment increasing 12-fold when T2-weighted and diffusion-weighted imaging MRI were both suspicious (63.4%) compared with both being non-suspicious (5.2%). The proposed system of analysis and reporting could prove clinically relevant in the decision whether to repeat targeted biopsies. (orig.)

  13. A quantitative experimental phantom study on MRI image uniformity.

    Science.gov (United States)

    Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei

    2018-05-02

    Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e., Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included Spin Echo (SE) and gradient echo (GRE) scanned in three planes (i.e., Axial, Coronal, and Sagittal). Moreover, three surface coil types (i.e., Head and Neck or HN, Brain, and TMJ coils) and two image correction methods (i.e., Surface Coil Intensity Correction or SCIC, Phased array Uniformity Enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the NEMA peak-deviation non-uniformity method. Results showed that TMJ coils elicited the least uniform image and Brain coils outperformed HN coils when metallic materials were present. Additionally, when metallic materials were present, SE outperformed GRE especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e., no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g., coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.

  14. Arcuate fasciculus laterality by diffusion tensor imaging correlates with language laterality by functional MRI in preadolescent children.

    Science.gov (United States)

    Sreedharan, Ruma Madhu; Menon, Amitha C; James, Jija S; Kesavadas, Chandrasekharan; Thomas, Sanjeev V

    2015-03-01

    Language lateralization is unique to humans. Functional MRI (fMRI) and diffusion tensor imaging (DTI) enable the study of language areas and white matter fibers involved in language, respectively. The objective of this study was to correlate arcuate fasciculus (AF) laterality by diffusion tensor imaging with that by fMRI in preadolescent children which has not yet been reported. Ten children between 8 and 12 years were subjected to fMRI and DTI imaging using Siemens 1.5 T MRI. Two language fMRI paradigms--visual verb generation and word pair task--were used. Analysis was done using SPM8 software. In DTI, the fiber volume of the arcuate fasciculus (AFV) and fractional anisotropy (FA) was measured. The fMRI Laterality Index (fMRI-LI) and DTI Laterality Index (DTI-LI) were calculated and their correlation assessed using the Pearson Correlation Index. Of ten children, mean age 10.6 years, eight showed left lateralization while bilateral language lateralization was seen in two. AFV by DTI was more on the left side in seven of the eight children who had left lateralization by fMRI. DTI could not trace the AF in one child. Of the two with bilateral language lateralization on fMRI, one showed larger AFV on the right side while the other did not show any asymmetry. There was a significant correlation (p laterality in children with a high degree of correlation between the two imaging modalities.

  15. Incidence and mechanism of central pontine myelinolysis based on analysis of MRI images and risk factors

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masato [Akita Univ. (Japan). School of Medicine

    2000-02-01

    In this study, the incidence of central pontine myelinolysis (CPM)-like lesions on MRI images was studied in 1917 subjects, 1,500 of which were psychiatric patients and 417 were patients attending a brain health examination. The CPM-like lesions were first classified into four groups based on the characteristics of their MRI images: group 1 showed symmetrical lesions on both T1 low and T2 high images and were considered to be typical CPM; group 2 showed symmetrical high intensity lesions only on T2 images; group 3 had asymmetrical lesions only on T2 images; and group 4 had asymmetrical lesions on both T1 low and T2 high images. Furthermore, the relationships of each group with particular risk factors, such as alcoholism, hypertension, hyperlipidemia were statistically analysed. The cause of CPM-like features in the MRI images were discussed. Among our subjects, the incidence of CPM-like lesions was 3.8%, and that of group 1 was 1.2%. Significant correlations between group 1 and alcoholism, and group 3 and 4 with brain ischemic lesions were observed. A previous hypothesis that group 2 may be a premature state of CPM is not supported by our results. (author)

  16. Incidence and mechanism of central pontine myelinolysis based on analysis of MRI images and risk factors

    International Nuclear Information System (INIS)

    Kondo, Masato

    2000-01-01

    In this study, the incidence of central pontine myelinolysis (CPM)-like lesions on MRI images was studied in 1917 subjects, 1,500 of which were psychiatric patients and 417 were patients attending a brain health examination. The CPM-like lesions were first classified into four groups based on the characteristics of their MRI images: group 1 showed symmetrical lesions on both T1 low and T2 high images and were considered to be typical CPM; group 2 showed symmetrical high intensity lesions only on T2 images; group 3 had asymmetrical lesions only on T2 images; and group 4 had asymmetrical lesions on both T1 low and T2 high images. Furthermore, the relationships of each group with particular risk factors, such as alcoholism, hypertension, hyperlipidemia were statistically analysed. The cause of CPM-like features in the MRI images were discussed. Among our subjects, the incidence of CPM-like lesions was 3.8%, and that of group 1 was 1.2%. Significant correlations between group 1 and alcoholism, and group 3 and 4 with brain ischemic lesions were observed. A previous hypothesis that group 2 may be a premature state of CPM is not supported by our results. (author)

  17. General-purpose radiographic and fluoroscopic table

    International Nuclear Information System (INIS)

    Ishizaki, Noritaka

    1982-01-01

    A new series of diagnostic tables, Model DT-KEL, was developed for general-purpose radiographic and fluoroscopic systems. Through several investigations, the table was so constructed that the basic techniques be general radiography and GI examination, and other techniques be optionally added. The diagnostic tables involve the full series of the type for various purposes and are systematized with the surrounding equipment. A retractable mechanism of grids was adopted first for general use. The fine grids with a density of 57 lines per cm, which was adopted in KEL-2, reduced the X-ray doses by 16 percent. (author)

  18. Short-term outcome of fluoroscopic-guided steroid injection therapy of lumber facet cyst-induced radicular pain

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Mi Ri; Kwon, Jong Won; Lee, Jong Seo; Kim, Eu Sang [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-04-15

    To determine the short-term effect of fluoroscopic-guided steroid injection therapy of lumbar facet cyst-induced radicular pain. Seventeen patients with radiculopathy due to lumbar synovial cysts, who were treated with fluoroscopically guided injection, were retrospectively evaluated. All plain radiographic images and MR images before the therapy were reviewed. Five patients underwent only the facet joint injection, whereas twelve patients underwent the facet joint injection with perineural injection therapy. The clinical course of pain was evaluated on the first follow-up after therapy. Effective pain relief was achieved in 11 (64.7%) of the 17 patients. Among 12 patients who underwent facet joint injection with perineural injection, 9 patients (75%) had an effective pain relief. Of 5 patients, 2 (40%) patients only took the facet joint injection and had an effective pain relief. Fluoroscopic-guided steroid injection therapy shows a good short-term effect in patients with symptomatic lumbar facet joint synovial cysts.

  19. Anato-metabolic fusion of PET, CT and MRI images

    International Nuclear Information System (INIS)

    Przetak, C.; Baum, R.P.; Niesen, A.; Slomka, P.; Proeschild, A.; Leonhardi, J.

    2000-01-01

    The fusion of cross-sectional images - especially in oncology - appears to be a very helpful tool to improve the diagnostic and therapeutic accuracy. Though many advantages exist, image fusion is applied routinely only in a few hospitals. To introduce image fusion as a common procedure, technical and logistical conditions have to be fulfilled which are related to long term archiving of digital data, data transfer and improvement of the available software in terms of usefulness and documentation. The accuracy of coregistration and the quality of image fusion has to be validated by further controlled studies. (orig.) [de

  20. Conventional MRI and magnetisation transfer imaging of tumour-like multiple sclerosis in a child

    International Nuclear Information System (INIS)

    Metafratzi, Z.; Argyropoulou, M.I.; Efremidis, S.C.; Tzoufi, M.; Papadopoulou, Z.

    2002-01-01

    Tumefactive multiple sclerosis is a rare entity in children. Differential diagnosis includes other mass lesions such as neoplasm and abscess. A case of tumefactive multiple sclerosis in a child is presented. The open-ring pattern of enhancement on conventional MRI and magnetisation transfer imaging was important for the initial diagnosis and the evaluation of the course of the disease. (orig.)