WorldWideScience

Sample records for mri cell tracking

  1. Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies

    Science.gov (United States)

    Danhier, Pierre; Deumer, Gladys; Joudiou, Nicolas; Bouzin, Caroline; Levêque, Philippe; Haufroid, Vincent; Jordan, Bénédicte F.; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2017-01-01

    Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells. PMID:28467814

  2. Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking

    Science.gov (United States)

    Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.

    2013-01-01

    Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825

  3. Magnetic cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of hepatocyte transplantation.

    Directory of Open Access Journals (Sweden)

    Dwayne R Roach

    Full Text Available Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this work, we describe culture conditions for magnetic cell labeling of cells from two different pig hepatocyte cell sources; primary pig hepatocytes (ppHEP and stem cell-derived hepatocytes (PICM-19FF. The magnetic particle is a micron-sized iron oxide particle (MPIO that has been extensively studied for magnetic cell labeling for MRI-based cell tracking. ppHEP could endocytose MPIO with labeling percentages as high as 70%, achieving iron content as high as ~55 pg/cell, with >75% viability. PICM-19FF had labeling >97%, achieving iron content ~38 pg/cell, with viability >99%. Extensive morphological and functional assays indicated that magnetic cell labeling was benign to the cells. The results encourage the use of MRI-based cell tracking for the development and clinical use of hepatocyte transplantation methodologies. Further, these results generally highlight the importance of functional cell assays in the evaluation of contrast agent biocompatibility.

  4. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking.

    Directory of Open Access Journals (Sweden)

    Arthur Taylor

    Full Text Available Iron-oxide based contrast agents play an important role in magnetic resonance imaging (MRI of labelled cells in vivo. Currently, a wide range of such contrast agents is available with sizes varying from several nanometers up to a few micrometers and consisting of single or multiple magnetic cores. Here, we evaluate the effectiveness of these different particles for labelling and imaging stem cells, using a mouse mesenchymal stem cell line to investigate intracellular uptake, retention and processing of nano- and microsized contrast agents. The effect of intracellular confinement on transverse relaxivity was measured by MRI at 7 T and in compliance with the principles of the '3Rs', the suitability of the contrast agents for MR-based cell tracking in vivo was tested using a chick embryo model. We show that for all particles tested, relaxivity was markedly reduced following cellular internalisation, indicating that contrast agent relaxivity in colloidal suspension does not accurately predict performance in MR-based cell tracking studies. Using a bimodal imaging approach comprising fluorescence and MRI, we demonstrate that labelled MSC remain viable following in vivo transplantation and can be tracked effectively using MRI. Importantly, our data suggest that larger particles might confer advantages for longer-term imaging.

  5. MRI-tracking of transplanted human ASC in a SCID mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, Birte J.; Kasten, Annika [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center (Germany); Kühn, Jens-Peter [Institute of Diagnostic Radiology and Neuroradiology, Greifswald University Medical Center (Germany); Winter, Karsten [Institute of Anatomy, Faculty of Medicine, University of Leipzig (Germany); Grüttner, Cordula [Micromod Partikeltechnologie GmbH, Rostock (Germany); Frerich, Bernhard, E-mail: bernhard.frerich@med.uni-rostock.de [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center (Germany)

    2017-04-01

    Background: Regarding strategies improving the efficacy of stem cell transplantation in adipose tissue engineering, cell tracking might be useful. Here we report the in vivo tracking of adipose tissue derived stem cells (ASC) by means of nanoparticle labeling and magnetic resonance imaging (MRI). Here we report the in vivo tracking of adipose tissue derived stromal cells (ASC) by means of nanoparticle labeling and magnetic resonance imaging (MRI). Materials and methods: Human ASC were amplified and labeled with two types of magnetic nanoparticles (MNP), BNF starch and nanomag®-D-spio. Adipose tissue constructs were fabricated by seeding collagen scaffolds with labeled and unlabeled ASCs. Constructs were implanted subcutaneously in the back of severe combined immunodeficient (SCID) mice (n =69, group 1: control with cells w/o label, group 2: BNF starch labeled cells, group 3: nanomag®-D-spio labeled cells). MRI scans were performed at 24 hours, four, twelve and 28 days and four months in a 7.1 T animal device. Explanted constructs were analyzed histomorphometrically. Results: MRI scans showed high contrast of the labeled cells in t2-tse-sequence compared to unlabeled controls. Loss of volume of the implants was observed over time due to partial loss for transplanted cells without significant difference (level of significance p<0.017). Compared to histomorphometry, there was found a positiv correlations in measurement of implant size with a significant at day four (correlation coefficient =0.643; p=0.024) and day twelve (correlation coefficient =0.687; p=0.010). Additional Prussian blue stain showed iron in all implants. Significant differences between the three groups (significance level p<0.017) were found after twelve days between control group and group 3 (p=0.008) and after 28 days between control group and group 2 and 3 (p=0.011). Conclusion: Both MNPs might be suitable for tracking of ASC in vivo and show long term stability over 4 months. - Highlights:

  6. Managing magnetic nanoparticle aggregation and cellular uptake: a precondition for efficient stem-cell differentiation and MRI tracking.

    Science.gov (United States)

    Fayol, Delphine; Luciani, Nathalie; Lartigue, Lenaic; Gazeau, Florence; Wilhelm, Claire

    2013-02-01

    The labeling of stem cells with iron oxide nanoparticles is increasingly used to enable MRI cell tracking and magnetic cell manipulation, stimulating the fields of tissue engineering and cell therapy. However, the impact of magnetic labeling on stem-cell differentiation is still controversial. One compromising factor for successful differentiation may arise from early interactions of nanoparticles with cells during the labeling procedure. It is hypothesized that the lack of control over nanoparticle colloidal stability in biological media may lead to undesirable nanoparticle localization, overestimation of cellular uptake, misleading MRI cell tracking, and further impairment of differentiation. Herein a method is described for labeling mesenchymal stem cells (MSC), in which the physical state of citrate-coated nanoparticles (dispersed versus aggregated) can be kinetically tuned through electrostatic and magnetic triggers, as monitored by diffusion light scattering in the extracellular medium and by optical and electronic microscopy in cells. A set of statistical cell-by-cell measurements (flow cytometry, single-cell magnetophoresis, and high-resolution MRI cellular detection) is used to independently quantify the nanoparticle cell uptake and the effects of nanoparticle aggregation. Such aggregation confounds MRI cell detection as well as global iron quantification and has adverse effects on chondrogenetic differentiation. Magnetic labeling conditions with perfectly stable nanoparticles-suitable for obtaining differentiation-capable magnetic stem cells for use in cell therapy-are subsequently identified. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Use of trimetasphere metallofullerene MRI contrast agent for the non-invasive longitudinal tracking of stem cells in the lung.

    Science.gov (United States)

    Murphy, Sean V; Hale, Austin; Reid, Tanya; Olson, John; Kidiyoor, Amritha; Tan, Josh; Zhou, Zhiguo; Jackson, John; Atala, Anthony

    2016-04-15

    Magnetic Resonance Imaging (MRI) is a commonly used, non-invasive imaging technique that provides visualization of soft tissues with high spatial resolution. In both a research and clinical setting, the major challenge has been identifying a non-invasive and safe method for longitudinal tracking of delivered cells in vivo. The labeling and tracking of contrast agent labeled cells using MRI has the potential to fulfill this need. Contrast agents are often used to enhance the image contrast between the tissue of interest and surrounding tissues with MRI. The most commonly used MRI contrast agents contain Gd(III) ions. However, Gd(III) ions are highly toxic in their ionic form, as they tend to accumulate in the liver, spleen, kidney and bones and block calcium channels. Endohedral metallofullerenes such as trimetallic nitride endohedral metallofullerenes (Trimetasphere®) are one unique class of fullerene molecules where a Gd3N cluster is encapsulated inside a C80 carbon cage referred to as Gd3N@C80. These endohedral metallofullerenes have several advantages over small chelated Gd(III) complexes such as increased stability of the Gd(III) ion, minimal toxic effects, high solubility in water and high proton relativity. In this study, we describe the evaluation of gadolinium-based Trimetasphere® positive contrast agent for the ​in vitro labeling and in vivo tracking of human amniotic fluid-derived stem cells within lung tissue. In addition, we conducted a 'proof-of-concept' experiment demonstrating that this methodology can be used to track the homing of stem cells to injured lung tissue and provide longitudinal analysis of cell localization over an extended time course. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Magneto-optical labeling of fetal neural stem cells for in vivo MRI tracking.

    Science.gov (United States)

    Flexman, J A; Minoshima, S; Kim, Y; Cross, D J

    2006-01-01

    Neural stem cell therapy for neurological pathologies, such as Alzheimer's and Parkinson's disease, may delay the onset of symptoms, replace damaged neurons and/or support the survival of endogenous cells. Magnetic resonance imaging (MRI) can be used to track magnetically labeled cells in vivo to observe migration. Prior to transplantation, labeled cells must be characterized to show that they retain their intrinsic properties, such as cell proliferation into neurospheres in a supplemented environment. In vivo images must also be correlated to sensitive, histological markers. In this study, we show that fetus-derived neural stem cells can be co-labeled with superparamagnetic iron oxide and PKH26, a fluorescent dye. Labeled cells retain the ability to proliferate into neurospheres in culture, but labeling prevents neurospheres from merging in a non-adherent culture environment. After labeled NSCs were transplantation into the rat brain, their location and subsequent migration along the corpus callosum was detected using MRI. This study demonstrates an imaging paradigm with which to develop an in vivo assay for quantitatively evaluating fetal neural stem cell migration.

  9. In-Vivo Detection and Tracking of T Cells in Various Organs in a Melanoma Tumor Model by 19F-Fluorine MRS/MRI.

    Directory of Open Access Journals (Sweden)

    Christine Gonzales

    Full Text Available 19F-MRI and 19F-MRS can identify specific cell types after in-vitro or in-vivo 19F-labeling. Knowledge on the potential to track in-vitro 19F-labeled immune cells in tumor models by 19F-MRI/MRS is scarce.To study 19F-based MR techniques for in-vivo tracking of adoptively transferred immune cells after in-vitro 19F-labeling, i.e. to detect and monitor their migration non-invasively in melanoma-bearing mice.Splenocytes (SP were labeled in-vitro with a perfluorocarbon (PFC and IV-injected into non-tumor bearing mice. In-vitro PFC-labeled ovalbumin (OVA-specific T cells from the T cell receptor-transgenic line OT-1, activated with anti-CD3 and anti-CD28 antibodies (Tact or OVA-peptide pulsed antigen presenting cells (TOVA-act, were injected into B16 OVA melanoma-bearing mice. The distribution of the 19F-labelled donor cells was determined in-vivo by 19F-MRI/MRS. In-vivo 19F-MRI/MRS results were confirmed by ex-vivo 19F-NMR and flow cytometry.SP, Tact, and TOVA-act were successfully PFC-labeled in-vitro yielding 3x1011-1.4x1012 19F-atoms/cell in the 3 groups. Adoptively transferred 19F-labeled SP, TOVA-act, and Tact were detected by coil-localized 19F-MRS in the chest, abdomen, and left flank in most animals (corresponding to lungs, livers, and spleens, respectively, with highest signal-to-noise for SP vs TOVA-act and Tact, p<0.009 for both. SP and Tact were successfully imaged by 19F-MRI (n = 3; liver. These in-vivo data were confirmed by ex-vivo high-resolution 19F-NMR-spectroscopy. By flow cytometric analysis, however, TOVA-act tended to be more abundant versus SP and Tact (liver: p = 0.1313; lungs: p = 0.1073; spleen: p = 0.109. Unlike 19F-MRI/MRS, flow cytometry also identified transferred immune cells (SP, Tact, and TOVA-act in the tumors.SP, Tact, and TOVA-act were successfully PFC-labeled in-vitro and detected in-vivo by non-invasive 19F-MRS/MRI in liver, lung, and spleen. The portion of 19F-labeled T cells in the adoptively transferred cell

  10. Homing and Tracking of Iron Oxide Labelled Mesenchymal Stem Cells After Infusion in Traumatic Brain Injury Mice: a Longitudinal In Vivo MRI Study.

    Science.gov (United States)

    Mishra, Sushanta Kumar; Khushu, Subash; Singh, Ajay K; Gangenahalli, Gurudutta

    2018-06-17

    Stem cells transplantation has emerged as a promising alternative therapeutic due to its potency at injury site. The need to monitor and non-invasively track the infused stem cells is a significant challenge in the development of regenerative medicine. Thus, in vivo tracking to monitor infused stem cells is especially vital. In this manuscript, we have described an effective in vitro labelling method of MSCs, a serial in vivo tracking of implanted stem cells at traumatic brain injury (TBI) site through 7 T magnetic resonance imaging (MRI). Proper homing of infused MSCs was carried out at different time points using histological analysis and Prussian blue staining. Longitudinal in vivo tracking of infused MSCs were performed up to 21 days in different groups through MRI using relaxometry technique. Results demonstrated that MSCs incubated with iron oxide-poly-L-lysine complex (IO-PLL) at a ratio of 50:1.5 μg/ml and a time period of 6 h was optimised to increase labelling efficiency. T2*-weighted images and relaxation study demonstrated a significant signal loss and effective decrease in transverse relaxation time on day-3 at injury site after systemic transplantation, revealed maximum number of stem cells homing to the lesion area. MRI results further correlate with histological and Prussian blue staining in different time periods. Decrease in negative signal and increase in relaxation times were observed after day-14, may indicate damage tissue replacement with healthy tissue. MSCs tracking with synthesized negative contrast agent represent a great advantage during both in vitro and in vivo analysis. The proposed absolute bias correction based relaxometry analysis could be extrapolated for stem cell tracking and therapies in various neurodegenerative diseases.

  11. Stem cell tracking using iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bull E

    2014-03-01

    Full Text Available Elizabeth Bull,1 Seyed Yazdan Madani,1 Roosey Sheth,1 Amelia Seifalian,1 Mark Green,2 Alexander M Seifalian1,31UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, 2Department of Physics, King’s College London, Strand Campus, London, UK; 3Royal Free London National Health Service Foundation Trust Hospital, London, UKAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.Keywords: stem cells, nanoparticle, magnetic

  12. TRACKING STEM CELLS IN AN INHERENTLY REGENRATIVE ENVIRONMENT

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Foldager, Casper Bindzus; Hagensen, Mette

    2012-01-01

    of such therapies. The objective of this study was to non-invasively evaluate regeneration over time in a truly regenerative process, the regeneration of an axolotl limb, employing superparamagnetic iron oxide particles (SPIO) contrast agents for stem cell tracking in MRI. Materials and Methods: Amputation of one...... in conjugation with the transfection agent poly-L-lysin (PLL) was tested on cultures of axolotl blastema cells from 7 animals in vitro. PicoGreen-DNA quantification following 3 weeks of culturing was performed to quantify cell viability. MRI-tracking of SPIO labelled blastema cells in the regenerating limb of 5....... Results: SPIO labelling with neither VSOP-C200, Resovist nor Resovist/PLL had any significant effect on blastema cell viability in vitro. Labelled tissue was clearly detectable in vivo 49 days after amputation using MRI (Fig. 1) and a significant decline in signal intensity of labelled limbs versus sham...

  13. Three-dimensional liver motion tracking using real-time two-dimensional MRI.

    Science.gov (United States)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-04-01

    Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Axial, sagittal, and coronal 2D MRI series

  14. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brix, Lau, E-mail: lau.brix@stab.rm.dk [Department of Procurement and Clinical Engineering, Region Midt, Olof Palmes Allé 15, 8200 Aarhus N, Denmark and MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Ringgaard, Steffen [MR Research Centre, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Sørensen, Thomas Sangild [Department of Computer Science, Aarhus University, Aabogade 34, 8200 Aarhus N, Denmark and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N (Denmark); Poulsen, Per Rugaard [Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark and Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark)

    2014-04-15

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  15. Three-dimensional liver motion tracking using real-time two-dimensional MRI

    International Nuclear Information System (INIS)

    Brix, Lau; Ringgaard, Steffen; Sørensen, Thomas Sangild; Poulsen, Per Rugaard

    2014-01-01

    Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (or tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal

  16. Noninvasive in vivo tracking of mesenchymal stem cells and evaluation of cell therapeutic effects in a murine model using a clinical 3.0 T MRI.

    Science.gov (United States)

    Drey, Florian; Choi, Yeong-Hoon; Neef, Klaus; Ewert, Birgit; Tenbrock, Arne; Treskes, Philipp; Bovenschulte, Henning; Liakopoulos, Oliver J; Brenkmann, Meike; Stamm, Christof; Wittwer, Thorsten; Wahlers, Thorsten

    2013-01-01

    Cardiac cell therapy with mesenchymal stem cells (MSCs) represents a promising treatment approach for end-stage heart failure. However, little is known about the underlying mechanisms and the fate of the transplanted cells. The objective of the presented work is to determine the feasibility of magnetic resonance imaging (MRI) and in vivo monitoring after transplantation into infarcted mouse hearts using a clinical 3.0 T MRI device. The labeling procedure of bone marrow-derived MSCs with micron-sized paramagnetic iron oxide particles (MPIOs) did not affect the viability of the cells and their cell type-defining properties when compared to unlabeled cells. Using a clinical 3.0 T MRI scanner equipped with a dedicated small animal solenoid coil, 10(5) labeled MSCs could be detected and localized in the mouse hearts for up to 4 weeks after intramyocardial transplantation. Weekly ECG-gated scans using T1-weighted sequences were performed, and left ventricular function was assessed. Histological analysis of hearts confirmed the survival of labeled MSCs in the target area up to 4 weeks after transplantation. In conclusion, in vivo tracking of labeled MSCs using a clinical 3.0 T MRI scanner is feasible. In combination with assessment of heart function, this technology allows the monitoring of the therapeutic efficacy of regenerative therapies in a small animal model.

  17. Cell tracking using iron oxide fails to distinguish dead from living transplanted cells in the infarcted heart.

    Science.gov (United States)

    Winter, E M; Hogers, B; van der Graaf, L M; Gittenberger-de Groot, A C; Poelmann, R E; van der Weerd, L

    2010-03-01

    Recently, debate has arisen about the usefulness of cell tracking using iron oxide-labeled cells. Two important issues in determining the usefulness of cell tracking with MRI are generally overlooked; first, the effect of graft rejection in immunocompetent models, and second, the necessity for careful histological confirmation of the fate of the labeled cells in the presence of iron oxide. Therefore, both iron oxide-labeled living as well as dead epicardium-derived cells (EPDCs) were investigated in ischemic myocardium of immunodeficient non-obese diabetic (NOD)/acid: non-obese diabetic severe combined immunodeficient (NOD/scid) mice with 9.4T MRI until 6 weeks after surgery, at which time immunohistochemical analysis was performed. In both groups, voids on MRI scans were observed that did not change in number, size, or localization over time. Based on MRI, no distinction could be made between living and dead injected cells. Prussian blue staining confirmed that the hypointense spots on MRI corresponded to iron-loaded cells. However, in the dead-EPDC recipients, all iron-positive cells appeared to be macrophages, while the living-EPDC recipients also contained engrafted iron-loaded EPDCs. Iron labeling is inadequate for determining the fate of transplanted cells in the immunodeficient host, since dead cells produce an MRI signal indistinguishable from incorporated living cells. (c) 2010 Wiley-Liss, Inc.

  18. Iron Oxide as an MRI Contrast Agent for Cell Tracking

    Science.gov (United States)

    Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.

    2015-01-01

    Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609

  19. Tracking of stem cells for treatment in cardiovascular disease

    International Nuclear Information System (INIS)

    Kang, Won Jun

    2005-01-01

    Various stem cells or progenitor cells are being used to treat cardiovascular disease. In ischemic heart disease, stem cell therapy is expected to regenerate damaged myocardium. To evaluate effects of stem cell treatment, the method to image stem cell location, distribution and differentiation is necessary. Optical imaging, MRI, nuclear imaging methods have been used for tracking stem cells. The methods and problems of each imaging technique are reviewed

  20. MRI-guided tumor tracking in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Laura I; Jiang, Steve B [Center for Advanced Radiotherapy Technology and Department of Radiation Oncology, University of California San Diego, 3960 Health Sciences Dr., La Jolla, CA 92093-0865 (United States); Du, Jiang, E-mail: lcervino@ucsd.edu [Department of Radiology, University of California San Diego, 200 West Arbor Dr., San Diego, CA 92103-8226 (United States)

    2011-07-07

    Precise tracking of lung tumor motion during treatment delivery still represents a challenge in radiation therapy. Prototypes of MRI-linac hybrid systems are being created which have the potential of ionization-free real-time imaging of the tumor. This study evaluates the performance of lung tumor tracking algorithms in cine-MRI sagittal images from five healthy volunteers. Visible vascular structures were used as targets. Volunteers performed several series of regular and irregular breathing. Two tracking algorithms were implemented and evaluated: a template matching (TM) algorithm in combination with surrogate tracking using the diaphragm (surrogate was used when the maximum correlation between the template and the image in the search window was less than specified), and an artificial neural network (ANN) model based on the principal components of a region of interest that encompasses the target motion. The mean tracking error e and the error at 95% confidence level e{sub 95} were evaluated for each model. The ANN model led to e = 1.5 mm and e{sub 95} = 4.2 mm, while TM led to e = 0.6 mm and e{sub 95} = 1.0 mm. An extra series was considered separately to evaluate the benefit of using surrogate tracking in combination with TM when target out-of-plane motion occurs. For this series, the mean error was 7.2 mm using only TM and 1.7 mm when the surrogate was used in combination with TM. Results show that, as opposed to tracking with other imaging modalities, ANN does not perform well in MR-guided tracking. TM, however, leads to highly accurate tracking. Out-of-plane motion could be addressed by surrogate tracking using the diaphragm, which can be easily identified in the images.

  1. Iron Oxide as an Mri Contrast Agent for Cell Tracking: Supplementary Issue

    Directory of Open Access Journals (Sweden)

    Daniel J. Korchinski

    2015-01-01

    Full Text Available Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation.

  2. Real Time MRI Motion Correction with Markerless Tracking

    DEFF Research Database (Denmark)

    Benjaminsen, Claus; Jensen, Rasmus Ramsbøl; Wighton, Paul

    Prospective motion correction for MRI neuroimaging has been demonstrated using MR navigators and external tracking systems using markers. The drawbacks of these two motion estimation methods include prolonged scan time plus lack of compatibility with all image acquisitions, and difficulties...... validating marker attachment resulting in uncertain estimation of the brain motion respectively. We have developed a markerless tracking system, and in this work we demonstrate the use of our system for prospective motion correction, and show that despite being computationally demanding, markerless tracking...... can be implemented for real time motion correction....

  3. Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking

    Science.gov (United States)

    Nkansah, Michael K.; Thakral, Durga; Shapiro, Erik M.

    2010-01-01

    Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments. PMID:21404328

  4. Imaging transplanted stem cells in real time using an MRI dual-contrast method

    Science.gov (United States)

    Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri

    2015-01-01

    Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231

  5. Magnetic resonance imaging with superparamagnetic iron oxide fails to track the long-term fate of mesenchymal stem cells transplanted into heart.

    Science.gov (United States)

    Ma, Ning; Cheng, Huaibing; Lu, Minjie; Liu, Qiong; Chen, Xiuyu; Yin, Gang; Zhu, Hao; Zhang, Lianfeng; Meng, Xianmin; Tang, Yue; Zhao, Shihua

    2015-03-12

    MRI for in vivo stem cell tracking remains controversial. Here we tested the hypothesis that MRI can track the long-term fate of the superparamagnetic iron oxide (SPIO) nanoparticles labelled mesenchymal stem cells (MSCs) following intramyocardially injection in AMI rats. MSCs (1 × 10(6)) from male rats doubly labeled with SPIO and DAPI were injected 2 weeks after myocardial infarction. The control group received cell-free media injection. In vivo serial MRI was performed at 24 hours before cell delivery (baseline), 3 days, 1, 2, and 4 weeks after cell delivery, respectively. Serial follow-up MRI demonstrated large persistent intramyocardial signal-voids representing SPIO during the follow-up of 4 weeks, and MSCs did not moderate the left ventricular dysfunction. The TUNEL analysis confirmed that MSCs engrafted underwent apoptosis. The histopathological studies revealed that the site of cell injection was infiltrated by inflammatory cells progressively and the iron-positive cells were macrophages identified by CD68 staining, but very few or no DAPI-positive stem cells at 4 weeks after cells transplantation. The presence of engrafted cells was confirmed by real-time PCR, which showed that the amount of Y-chromosome-specific SRY gene was consistent with the results. MRI may not reliably track the long-term fate of SPIO-labeled MSCs engraftment in heart.

  6. Long-term MRI cell tracking after intraventricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF.

    Directory of Open Access Journals (Sweden)

    Miroslaw Janowski

    Full Text Available The purpose of the study was to evaluate the long-term clinical tracking of magnetically labeled stem cells after intracerebroventricular transplantation as well as to investigate in vitro feasibility for magnetic guidance of cell therapy within large fluid compartments.After approval by our Institutional Review Board, an 18-month-old patient, diagnosed as being in a vegetative state due to global cerebral ischemia, underwent cell transplantation to the frontal horn of the lateral ventricle, with umbilical cord blood-derived stem cells labeled with superparamagnetic iron oxide (SPIO contrast agent. The patient was followed over 33 months with clinical examinations and MRI. To evaluate the forces governing the distribution of cells within the fluid compartment of the ventricular system in vivo, a gravity-driven sedimentation assay and a magnetic field-driven cell attraction assay were developed in vitro.Twenty-four hours post-transplantation, MR imaging (MRI was able to detect hypointense cells in the occipital horn of the lateral ventricle. The signal gradually decreased over 4 months and became undetectable at 33 months. In vitro, no significant difference in cell sedimentation between SPIO-labeled and unlabeled cells was observed (p = NS. An external magnet was effective in attracting cells over distances comparable to the size of human lateral ventricles.MR imaging of SPIO-labeled cells allows monitoring of cells within lateral ventricles. While the initial biodistribution is governed by gravity-driven sedimentation, an external magnetic field may possibly be applied to further direct the distribution of labeled cells within large fluid compartments such as the ventricular system.

  7. Cell tracking. Principles and applications

    International Nuclear Information System (INIS)

    Grimm, Jan; Kircher, Moritz F.; Weissleder, Ralph

    2007-01-01

    Cell based therapies such as stem cell therapies or adoptive immunotherapies are currently being explored as a potential treatment for a variety of diseases such as Parkinson's disease, diabetes or cancer. However, quantitative and qualitative evaluation of adoptively transferred cells is indispensable for monitoring the efficiency of the treatment. Current approaches mostly analyze transferred cells from peripheral blood, which cannot assess whether transferred cells actuallyhome to and stay in the targeted tissue. Using cell-labeling methods such as direct labeling or transfection with a marker gene in conjunction with various imaging modalities (MRI, optical or nuclear imaging), labeled cells can be followed in vivo in real-time, and their accumulation as well as function in vivo can be monitored and quantified accurately. This method is usually referred to as ''cell tracking'' or ''cell trafficking'' and is also being applied in basic biological sciences, exemplified in the evaluation of genes contributing to metastasis. This review focuses on principles of this promising methodology and explains various approaches by highlighting recent examples. (orig.) [de

  8. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    Science.gov (United States)

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  9. Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning

    Science.gov (United States)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2018-01-01

    Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.

  10. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    Science.gov (United States)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  11. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells.

    Science.gov (United States)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-05

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  12. Use of Nanoparticle Contrast Agents for Cell Tracking with Computed Tomography

    Science.gov (United States)

    2017-01-01

    Efforts to develop novel cell-based therapies originated with the first bone marrow transplant on a leukemia patient in 1956. Preclinical and clinical examples of cell-based treatment strategies have shown promising results across many disciplines in medicine, with recent advances in immune cell therapies for cancer producing remarkable response rates, even in patients with multiple treatment failures. However, cell-based therapies suffer from inconsistent outcomes, motivating the search for tools that allow monitoring of cell delivery and behavior in vivo. Noninvasive cell imaging techniques, also known as cell tracking, have been developed to address this issue. These tools can allow real-time, quantitative, and long-term monitoring of transplanted cells in the recipient, providing insight on cell migration, distribution, viability, differentiation, and fate, all of which play crucial roles in treatment efficacy. Understanding these parameters allows the optimization of cell choice, delivery route, and dosage for therapy and advances cell-based therapy for specific clinical uses. To date, most cell tracking work has centered on imaging modalities such as MRI, radionuclide imaging, and optical imaging. However, X-ray computed tomography (CT) is an emerging method for cell tracking that has several strengths such as high spatial and temporal resolution, and excellent quantitative capabilities. The advantages of CT for cell tracking are enhanced by its wide availability and cost effectiveness, allowing CT to become one of the most popular clinical imaging modalities and a key asset in disease diagnosis. In this review, we will discuss recent advances in cell tracking methods using X-ray CT in various applications, in addition to predictions on how the field will progress. PMID:28485976

  13. Dual-Tasking Alleviated Sleep Deprivation Disruption in Visuomotor Tracking: An fMRI Study

    Science.gov (United States)

    Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Basner, Robert C.; Ghez, Claude; Stern, Yaakov

    2012-01-01

    Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a…

  14. Magentic Cell labeling of primary and stem cell-derived pig hepatocytes for MRI-based cell tracking of heptocytes transplantation

    Science.gov (United States)

    Pig hepatocytes are an important investigational tool for optimizing hepatocyte transplantation schemes in both allogeneic and xenogeneic transplant scenarios. MRI can be used to serially monitor the transplanted cells, but only if the hepatocytes can be labeled with a magnetic particle. In this wo...

  15. Tracking of Neural Stem Cells in Rats with Intracerebral Hemorrhage by the Use of 3T MRI

    International Nuclear Information System (INIS)

    Chang, Nam Kyu; Jeong, Yong Yeon; Park, Jong Seong

    2008-01-01

    To access the feasibility of clinically available 3T MRI to detect the migration of labeled neural stem cells (NSCs) in intracerebral hemorrhage (ICH) in a rat model. The ethics committee of our institution approved this study. ICH was induced by the injection of collagenase type IV into the right striatum of ten Sprague-Dawley rats. Human NSCs conjugated with Feridex (superparamagnetic iron oxide: SPIO) were transplanted into the left striatum one week after ICH induction. MRI was performed on a 3T scanner during the first, second, third, fourth, and sixth weeks post-transplantation. MRI was obtained using coronal T2- and T2 * -weighted sequences. Two rats were sacrificed every week after in vivo MRI in order to analyze the histological findings. ICH in the right striatum was detected by MRI one and two weeks after transplantation without migration of the NSCs. There was no migration of the NSCs as seen on the histological findings one week after transplantation. The histological findings two weeks after transplantation showed a small number of NSCs along the corpus callosum. On MRI three weeks after transplantation, there was a hypointense line along the corpus callosum and decreased signal intensity in the right periventricular region. Histological findings three weeks after transplantation confirmed the presence of the hypointense line representing SPIO-labeled NSCs. MRI four and six weeks after transplantation showed a hypointense spot in the right periventricular region. The histological findings four and six weeks after transplantation showed the presence of prominent NSCs in the right periventricular region. 3T MRI can detect the migration of NSCs in rats with ICH along the corpus callosum. Therefore, 3T MRI could be feasible for detecting the migration of NSCs in the clinical setting of stem cell therapy

  16. Tracking stem cells in tissue-engineered organs using magnetic nanoparticles

    OpenAIRE

    Hachani, R.; Lowdell, M.; Birchall, M.; Thanh, N. T.

    2013-01-01

    The use of human stem cells (SCs) in tissue engineering holds promise in revolutionising the treatment of numerous diseases. There is a pressing need to comprehend the distribution, movement and role of SCs once implanted onto scaffolds. Nanotechnology has provided a platform to investigate this through the development of inorganic magnetic nanoparticles (MNPs). MNPs can be used to label and track SCs by magnetic resonance imaging (MRI) since this clinically available imaging modality has hig...

  17. Accelerating volumetric cine MRI (VC-MRI) using undersampling for real-time 3D target localization/tracking in radiation therapy: a feasibility study

    Science.gov (United States)

    Harris, Wendy; Yin, Fang-Fang; Wang, Chunhao; Zhang, You; Cai, Jing; Ren, Lei

    2018-01-01

    Purpose. To accelerate volumetric cine MRI (VC-MRI) using undersampled 2D-cine MRI to provide real-time 3D guidance for gating/target tracking in radiotherapy. Methods. 4D-MRI is acquired during patient simulation. One phase of the prior 4D-MRI is selected as the prior images, designated as MRIprior. The on-board VC-MRI at each time-step is considered a deformation of the MRIprior. The deformation field map is represented as a linear combination of the motion components extracted by principal component analysis from the prior 4D-MRI. The weighting coefficients of the motion components are solved by matching the corresponding 2D-slice of the VC-MRI with the on-board undersampled 2D-cine MRI acquired. Undersampled Cartesian and radial k-space acquisition strategies were investigated. The effects of k-space sampling percentage (SP) and distribution, tumor sizes and noise on the VC-MRI estimation were studied. The VC-MRI estimation was evaluated using XCAT simulation of lung cancer patients and data from liver cancer patients. Volume percent difference (VPD) and Center of Mass Shift (COMS) of the tumor volumes and tumor tracking errors were calculated. Results. For XCAT, VPD/COMS were 11.93  ±  2.37%/0.90  ±  0.27 mm and 11.53  ±  1.47%/0.85  ±  0.20 mm among all scenarios with Cartesian sampling (SP  =  10%) and radial sampling (21 spokes, SP  =  5.2%), respectively. When tumor size decreased, higher sampling rate achieved more accurate VC-MRI than lower sampling rate. VC-MRI was robust against noise levels up to SNR  =  20. For patient data, the tumor tracking errors in superior-inferior, anterior-posterior and lateral (LAT) directions were 0.46  ±  0.20 mm, 0.56  ±  0.17 mm and 0.23  ±  0.16 mm, respectively, for Cartesian-based sampling with SP  =  20% and 0.60  ±  0.19 mm, 0.56  ±  0.22 mm and 0.42  ±  0.15 mm, respectively, for

  18. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography.

    Science.gov (United States)

    Lamacie, Mariana M; Thavendiranathan, Paaladinesh; Hanneman, Kate; Greiser, Andreas; Jolly, Marie-Pierre; Ward, Richard; Wintersperger, Bernd J

    2017-04-01

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all pcine MRI. • Inverse DRA demonstrated superior reproducibility compared to feature-tracking (FT) methods. • Cine MR DRA and FT analysis demonstrate differences to speckle-tracking echocardiography • DRA demonstrated better correlation with STE than FT for MR-derived global strain data.

  19. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    Science.gov (United States)

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  20. In vivo quantification of magnetically labelled cells by MRI relaxometry.

    Science.gov (United States)

    Gimenez, Ulysse; Lajous, Hélène; El Atifi, Michèle; Bidart, Marie; Auboiroux, Vincent; Fries, Pascal Henry; Berger, François; Lahrech, Hana

    2016-11-01

    Cellular MRI, which visualizes magnetically labelled cells (cells*), is an active research field for in vivo cell therapy and tracking. The simultaneous relaxation rate measurements (R 2 *, R 2 , R 1 ) are the basis of a quantitative cellular MRI method proposed here. U937 cells were labelled with Molday ION Rhodamine B, a bi-functional superparamagnetic and fluorescent nanoparticle (U937*). U937* viability and proliferation were not affected in vitro. In vitro relaxometry was performed in a cell concentration range of [2.5 × 10 4 -10 8 ] cells/mL. These measurements show the existence of complementary cell concentration intervals where these rates vary linearly. The juxtaposition of these intervals delineates a wide cell concentration range over which one of the relaxation rates in a voxel of an in vivo image can be converted into an absolute cell concentration. The linear regime was found at high concentrations for R 1 in the range of [10 6 - 2 × 10 8 ] cells/mL, at intermediate concentrations for R 2 in [2.5 × 10 5 - 5 × 10 7 ] cells/mL and at low concentrations for R 2 * in [8 × 10 4 - 5 × 10 6 ] cells/mL. In vivo relaxometry was performed in a longitudinal study, with labelled U937 cells injected into a U87 glioma mouse model. Using in vitro data, maps of in vivo U937* concentrations were obtained by converting one of the in vivo relaxation rates to cell concentration maps. MRI results were compared with the corresponding optical images of the same brains, showing the usefulness of our method to accurately follow therapeutic cell biodistribution in a longitudinal study. Results also demonstrate that the method quantifies a large range of magnetically labelled cells*. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang

    2016-05-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  2. New MRI technologies. Diffusion MRI and its application to functional neuroimaging and analyses of white matter integrity

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuo

    2010-01-01

    Described is the technological aspect of MRI, MR diffusion-weighted imaging (MR-DWI), principles of its measurement and application for imaging the cerebral function and for aiding the quantitative diagnosis of brain diseases. The author explains the principle of MR imaging process; diffusion properties of water molecules, MR-DWI based on them and DW-fMRI of the brain; MR-diffusion tensor imaging (MR-DTI), its analysis and color acquisition, and tracking of white matter nerve fibers; analysis of white matter lesions by the tracking; and the new tracking method at the chiasm of nerve fascicles. The usual fMRI reflects the blood oxygen level depending (BOLD) signals whereas recently attracted DW-fMRI, the volume changes of nerve cells concomitant to nerve activation accompanying apparent changes of water diffusion coefficients in and out of cells which occur faster than BOLD signs, resulting in higher resolution of time and space. However, DWI requires the higher intensity of static magnetic field like 3T. MR-DTI acquires the anisotropic diffusion of water molecules using MR-DWI technique with application of 6 or more motion probing gradients, thus makes it possible to track the running directions of nerve fibers and capillary vessels, and is proposed to be a useful mean of specific fiber tracking in the white matter when displayed by 3 different colors exhibiting the directions like the right/left (x axis, red), anterior/posterior (y, green) and upper/lower (z, blue) sides of head. Recently, MR-DWI and MR-DTI have been found usable for pathogenic studies of brain diseases such as dementia. Tensor anisotropy is apparently lowered at the chiasm of nerve fascicles, the cause of tracking error, for which authors have developed a new method using the similarity of directional vector, not of tensor, before and behind the chiasm. As exemplified, MRI technology is further advancing even at present. (T.T.)

  3. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine.

    Science.gov (United States)

    Srivastava, Amit K; Kadayakkara, Deepak K; Bar-Shir, Amnon; Gilad, Assaf A; McMahon, Michael T; Bulte, Jeff W M

    2015-04-01

    The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations. © 2015. Published by The Company of Biologists Ltd.

  4. A low cost fMRI-compatible tracking system using the Nintendo Wii remote.

    Science.gov (United States)

    Modroño, Cristián; Rodríguez-Hernández, Antonio F; Marcano, Francisco; Navarrete, Gorka; Burunat, Enrique; Ferrer, Marta; Monserrat, Raquel; González-Mora, José L

    2011-11-15

    It is sometimes necessary during functional magnetic resonance imaging (fMRI) experiments to capture different movements made by the subjects, e.g. to enable them to control an item or to analyze its kinematics. The aim of this work is to present an inexpensive hand tracking system suitable for use in a high field MRI environment. It works by introducing only one light-emitting diode (LED) in the magnet room, and by receiving its signal with a Nintendo Wii remote (the primary controller for the Nintendo Wii console) placed outside in the control room. Thus, it is possible to take high spatial and temporal resolution registers of a moving point that, in this case, is held by the hand. We tested it using a ball and racket virtual game inside a 3 Tesla MRI scanner to demonstrate the usefulness of the system. The results show the involvement of a number of areas (mainly occipital and frontal, but also parietal and temporal) when subjects are trying to stop an object that is approaching from a first person perspective, matching previous studies performed with related visuomotor tasks. The system presented here is easy to implement, easy to operate and does not produce important head movements or artifacts in the acquired images. Given its low cost and ready availability, the method described here is ideal for use in basic and clinical fMRI research to track one or more moving points that can correspond to limbs, fingers or any other object whose position needs to be known. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    C Lalande

    2011-04-01

    Full Text Available For bone tissue engineering, human Adipose Derived Stem Cells (hADSCs are proposed to be associated with a scaffold for promoting bone regeneration. After implantation, cellularised scaffolds require a non-invasive method for monitoring their fate in vivo. The purpose of this study was to use Magnetic Resonance Imaging (MRI-based tracking of these cells, labelled with magnetic agents for in vivo longitudinal assessment. hADSCs were isolated from adipose tissue and labelled with USPIO-rhodamine (Ultrasmall SuperParamagnetic Iron Oxide. USPIO internalisation, absence of toxicity towards hADSCs, and osteogenic differentiation of the labelled cells were evaluated in standard culture conditions. Labelled cells were then seeded within a 3D porous polysaccharide-based scaffold and imaged in vitro using fluorescence microscopy and MRI. Cellularised scaffolds were implanted subcutaneously in nude mice and MRI analyses were performed from 1 to 28 d after implantation. In vitro, no effect of USPIO labelling on cell viability and osteogenic differentiation was found. USPIO were efficiently internalised by hADSCs and generated a high T2* contrast. In vivo MRI revealed that hADSCs remain detectable until 28 d after implantation and could migrate from the scaffold and colonise the area around it. These data suggested that this scaffold might behave as a cell carrier capable of both holding a cell fraction and delivering cells to the site of implantation. In addition, the present findings evidenced that MRI is a reliable technique to validate cell-seeding procedures in 3D porous scaffolds, and to assess the fate of hADSCs transplanted in vivo.

  6. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs.

    Science.gov (United States)

    Di Corato, Riccardo; Gazeau, Florence; Le Visage, Catherine; Fayol, Delphine; Levitz, Pierre; Lux, François; Letourneur, Didier; Luciani, Nathalie; Tillement, Olivier; Wilhelm, Claire

    2013-09-24

    Recent advances in cell therapy and tissue engineering opened new windows for regenerative medicine, but still necessitate innovative noninvasive imaging technologies. We demonstrate that high-resolution magnetic resonance imaging (MRI) allows combining cellular-scale resolution with the ability to detect two cell types simultaneously at any tissue depth. Two contrast agents, based on iron oxide and gadolinium oxide rigid nanoplatforms, were used to "tattoo" endothelial cells and stem cells, respectively, with no impact on cell functions, including their capacity for differentiation. The labeled cells' contrast properties were optimized for simultaneous MRI detection: endothelial cells and stem cells seeded together in a polysaccharide-based scaffold material for tissue engineering appeared respectively in black and white and could be tracked, at the cellular level, both in vitro and in vivo. In addition, endothelial cells labeled with iron oxide nanoparticles could be remotely manipulated by applying a magnetic field, allowing the creation of vessel substitutes with in-depth detection of individual cellular components.

  7. Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement

    Directory of Open Access Journals (Sweden)

    Hedlund A

    2011-12-01

    Full Text Available Anna Hedlund1,2, Maria Ahrén3, Håkan Gustafsson1,2, Natalia Abrikossova3, Marcel Warntjes2,4, Jan-Ingvar Jönsson5, Kajsa Uvdal3, Maria Engström1,21Division of Radiology, Department of Medical and Health Sciences, 2Center for Medical Image Science and Visualization, 3Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry, and Biology, 4Division of Clinical Physiology, Department of Medicine and Health Sciences, 5Department of Clinical and Experimental Medicine, Experimental Hematology Unit, Linköping University, Linköping, SwedenAbstract: As the utility of magnetic resonance imaging (MRI broadens, the importance of having specific and efficient contrast agents increases and in recent time there has been a huge development in the fields of molecular imaging and intracellular markers. Previous studies have shown that gadolinium oxide (Gd2O3 nanoparticles generate higher relaxivity than currently available Gd chelates: In addition, the Gd2O3 nanoparticles have promising properties for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles in hematopoietic cells and to improve techniques for monitoring hematopoietic stem cell migration by MRI. Particle uptake was studied in two cell lines: the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles and it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by electron microscopy and MRI, and analyzed for particle content by inductively coupled plasma sector field mass spectrometry. Results showed that particles were intracellular, however, sparsely in Ba/F3. The relaxation times were shortened with increasing particle concentration. Relaxivities, r1 and r2 at 1.5 T and 21°C, for Gd2O3 nanoparticles in different cell samples were 3.6–5.3 s-1 mM-1 and 9.6–17.2 s-1 mM-1

  8. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, Annika; Siegmund, Birte J. [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany); Grüttner, Cordula [Micromod Partikeltechnologie GmbH, Warnemünde, D-18115 Rostock (Germany); Kühn, Jens-Peter [Department of Radiology and Neuroradiology, Greifswald University Medical Center, D-17475 Greifswald (Germany); Frerich, Bernhard, E-mail: bernhard.frerich@med.uni-rostock.de [Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35 D-18057 Rostock (Germany)

    2015-04-15

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation.

  9. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    International Nuclear Information System (INIS)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-01-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time. - Highlights: • Adipose tissue-derived stem cells (ASC) were labeled with magnetic iron oxide nanoparticles. • Nanoparticles influenced the adipogenic differentiation of ASC. • Labeled cells were seeded onto collagen scaffolds and implanted in SCID mice. • Nanoparticle-labeled cells were visualized in vivo using T2-weighted sequences. • Volume of collagen scaffolds was decreased over time after implantation

  10. Modeling of the bony pelvis from MRI using a multi-atlas AE-SDM for registration and tracking in image-guided robotic prostatectomy.

    Science.gov (United States)

    Gao, Qinquan; Chang, Ping-Lin; Rueckert, Daniel; Ali, S Mohammed; Cohen, Daniel; Pratt, Philip; Mayer, Erik; Yang, Guang-Zhong; Darzi, Ara; Edwards, Philip Eddie

    2013-03-01

    A fundamental challenge in the development of image-guided surgical systems is alignment of the preoperative model to the operative view of the patient. This is achieved by finding corresponding structures in the preoperative scans and on the live surgical scene. In robot-assisted laparoscopic prostatectomy (RALP), the most readily visible structure is the bone of the pelvic rim. Magnetic resonance imaging (MRI) is the modality of choice for prostate cancer detection and staging, but extraction of bone from MRI is difficult and very time consuming to achieve manually. We present a robust and fully automated multi-atlas pipeline for bony pelvis segmentation from MRI, using a MRI appearance embedding statistical deformation model (AE-SDM). The statistical deformation model is built using the node positions of deformations obtained from hierarchical registrations of full pelvis CT images. For datasets with corresponding CT and MRI images, we can transform the MRI into CT SDM space. MRI appearance can then be used to improve the combined MRI/CT atlas to MRI registration using SDM constraints. We can use this model to segment the bony pelvis in a new MRI image where there is no CT available. A multi-atlas segmentation algorithm is introduced which incorporates MRI AE-SDMs guidance. We evaluated the method on 19 subjects with corresponding MRI and manually segmented CT datasets by performing a leave-one-out study. Several metrics are used to quantify the overlap between the automatic and manual segmentations. Compared to the manual gold standard segmentations, our robust segmentation method produced an average surface distance 1.24±0.27mm, which outperforms state-of-the-art algorithms for MRI bony pelvis segmentation. We also show that the resulting surface can be tracked in the endoscopic view in near real time using dense visual tracking methods. Results are presented on a simulation and a real clinical RALP case. Tracking is accurate to 0.13mm over 700 frames

  11. Diagnosis of renal cell cancer by dynamic MRI

    International Nuclear Information System (INIS)

    Togami, Izumi; Kitagawa, Takahiro; Katoh, Katsuya

    1992-01-01

    Dynamic MRI was performed in 15 cases (16 lesions) of renal cell cancer. The enhanced pattern of the tumor was mainly evaluated and findings were compared with these of dynamic CT and renal angiography. Enhanced patterns on dynamic MRI and dynamic CT were similar, but each phase on dynamic MRI tended to be prolonged compared with dynamic CT. Many hypervascular tumors on renal angiography had prominent enhancement in an early phase on dynamic MRI, but there was no prominent enhancement in cases with tumor thrombi in the renal vein or IVC. All hypovascular tumors were enhanced to some degree without exception on dynamic MRI. Dynamic MRI is considered to be useful for the evaluation of the characterization, especially vascularity, of renal cell cancer, but we should pay attention to the differential diagnosis from other tumor in atypical cases because its enhanced patterns are various on dynamic MRI. (author)

  12. SU-E-J-240: Development of a Novel 4D MRI Sequence for Real-Time Liver Tumor Tracking During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, L; Burmeister, J [Department of Oncology, Wayne State Univ School of Medicine, Detroit, MI (United States); Ye, Y [Department of Radiology, Wayne State Univ School of Medicine, Detroit, MI (United States)

    2015-06-15

    Purpose: To develop a Novel 4D MRI Technique that is feasible for realtime liver tumor tracking during radiotherapy. Methods: A volunteer underwent an abdominal 2D fast EPI coronal scan on a 3.0T MRI scanner (Siemens Inc., Germany). An optimal set of parameters was determined based on image quality and scan time. A total of 23 slices were scanned to cover the whole liver in the test scan. For each scan position, the 2D images were retrospectively sorted into multiple phases based on breathing signal extracted from the images. Consequently the 2D slices with same phase numbers were stacked to form one 3D image. Multiple phases of 3D images formed the 4D MRI sequence representing one breathing cycle. Results: The optimal set of scan parameters were: TR= 57ms, TE= 19ms, FOV read= 320mm and flip angle= 30°, which resulted in a total scan time of 14s for 200 frames (FMs) per slice and image resolution of (2.5mm,2.5mm,5.0mm) in three directions. Ten phases of 3D images were generated, each of which had 23 slices. Based on our test scan, only 100FMs were necessary for the phase sorting process which may lower the scan time to 7s/100FMs/slice. For example, only 5 slices/35s are necessary for a 4D MRI scan to cover liver tumor size ≤ 2cm leading to the possibility of tumor trajectory tracking every 35s during treatment. Conclusion: The novel 4D MRI technique we developed can reconstruct a 4D liver MRI sequence representing one breathing cycle (7s/ slice) without an external monitor. This technique can potentially be used for real-time liver tumor tracking during radiotherapy.

  13. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Directory of Open Access Journals (Sweden)

    Christina A Pacak

    Full Text Available The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI and X-ray micro-computed tomography (μCT. SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  14. MRI-guided trephine biopsy and fine-needle aspiration in the diagnosis of bone lesions in low-field (0.23 T) MRI system using optical instrument tracking

    International Nuclear Information System (INIS)

    Blanco Sequeiros, Roberto; Klemola, Rauli; Ojala, Risto; Jyrkinen, Lasse; Tervonen, Osmo; Lappi-Blanco, Elisa; Soini, Ylermi

    2002-01-01

    The purpose of this study was to evaluate the feasibility of MRI-guided bone biopsy with optical instrument tracking and evaluate advantage of combined fine-needle aspiration (FNA) with trephine biopsy. Twenty trephine bone biopsies and 13 FNAs were performed under MRI and CT guidance in 14 patients. Informed consent was obtained from all patients. The evaluation of diagnostic accuracy was achieved by comparing the histopathological and cytological diagnosis with current or final diagnosis made during 6-month clinical follow-up. A 0.23-T open MRI scanner with interventional tools (Outlook Proview, Marconi Medical Systems, Cleveland, Ohio) was used. A surface coil was used. For trephine biopsy MRI-compatible bone biopsy set (Daum medical, Schwerin, Germany) was used. The FNA was performed with MRI compatible 20-G needle (Cook, Bloomington, Ind.). The diagnostic accuracy of MRI-guided trephine biopsy was 95%. The FNA sample diagnosis concurred with the histological in 54%. Our results show that MRI guidance in bone biopsies is accurate and safe. It is comparable to CT-guided or open biopsy. The role of combined FNA with bone biopsies remains controversial. (orig.)

  15. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography.

    Science.gov (United States)

    Satriano, Alessandro; Heydari, Bobak; Narous, Mariam; Exner, Derek V; Mikami, Yoko; Attwood, Monica M; Tyberg, John V; Lydell, Carmen P; Howarth, Andrew G; Fine, Nowell M; White, James A

    2017-12-01

    Two-dimensional (2D) strain analysis is constrained by geometry-dependent reference directions of deformation (i.e. radial, circumferential, and longitudinal) following the assumption of cylindrical chamber architecture. Three-dimensional (3D) principal strain analysis may overcome such limitations by referencing intrinsic (i.e. principal) directions of deformation. This study aimed to demonstrate clinical feasibility of 3D principal strain analysis from routine 2D cine MRI with validation to strain from 2D tagged cine analysis and 3D speckle tracking echocardiography. Thirty-one patients undergoing cardiac MRI were studied. 3D strain was measured from routine, multi-planar 2D cine SSFP images using custom software designed to apply 4D deformation fields to 3D cardiac models to derive principal strain. Comparisons of strain estimates versus those by 2D tagged cine, 2D non-tagged cine (feature tracking), and 3D speckle tracking echocardiography (STE) were performed. Mean age was 51 ± 14 (36% female). Mean LV ejection fraction was 66 ± 10% (range 37-80%). 3D principal strain analysis was feasible in all subjects and showed high inter- and intra-observer reproducibility (ICC range 0.83-0.97 and 0.83-0.98, respectively-p analysis is feasible using routine, multi-planar 2D cine MRI and shows high reproducibility with strong correlations to 2D conventional strain analysis and 3D STE-based analysis. Given its independence from geometry-related directions of deformation this technique may offer unique benefit for the detection and prognostication of myocardial disease, and warrants expanded investigation.

  16. MRI of sickle cell cerebral infarction

    International Nuclear Information System (INIS)

    Zimmerman, R.A.; Goldberg, H.I.; Bilaniuk, L.T.; Hackney, D.B.; Johnson, M.; Grossman, R.I.; Hecht-Leavitt, C.; Gill, F.; Pennsylvania Univ., Philadelphia

    1987-01-01

    Eleven patients with sickle cell disease and neurological symptoms underwent MRI examination. Cerebral infarcts of two types were found, those in the vascular distribution of the middle cerebral artery and those in the deep white matter. In the patient whose hydration and whose oxygenation of erythrocytes has been treated, MRI offers diagnostic advantages over arteriography and CT. (orig.)

  17. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Science.gov (United States)

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  18. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    Directory of Open Access Journals (Sweden)

    Jenny Jeong

    Full Text Available Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  19. Labeling of mesenchymal stem cells for MRI with single-cell sensitivity

    Directory of Open Access Journals (Sweden)

    Ariza de Schellenberger A

    2016-04-01

    Full Text Available Angela Ariza de Schellenberger,1 Harald Kratz,1 Tracy D Farr,2,3 Norbert Löwa,4 Ralf Hauptmann,1 Susanne Wagner,1 Matthias Taupitz,1 Jörg Schnorr,1 Eyk A Schellenberger1 1Department of Radiology, 2Department of Experimental Neurology, Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany; 3School of Life Sciences, University of Nottingham, Medical School, Nottingham, UK; 4Department of Biomagnetic Signals, Physikalisch-Technische Bundesanstalt Berlin, Berlin, Germany Abstract: Sensitive cell detection by magnetic resonance imaging (MRI is an important tool for the development of cell therapies. However, clinically approved contrast agents that allow single-cell detection are currently not available. Therefore, we compared very small iron oxide nanoparticles (VSOP and new multicore carboxymethyl dextran-coated iron oxide nanoparticles (multicore particles, MCP designed by our department for magnetic particle imaging (MPI with discontinued Resovist® regarding their suitability for detection of single mesenchymal stem cells (MSC by MRI. We achieved an average intracellular nanoparticle (NP load of >10 pg Fe per cell without the use of transfection agents. NP loading did not lead to significantly different results in proliferation, colony formation, and multilineage in vitro differentiation assays in comparison to controls. MRI allowed single-cell detection using VSOP, MCP, and Resovist® in conjunction with high-resolution T2*-weighted imaging at 7 T with postprocessing of phase images in agarose cell phantoms and in vivo after delivery of 2,000 NP-labeled MSC into mouse brains via the left carotid artery. With optimized labeling conditions, a detection rate of ~45% was achieved; however, the experiments were limited by nonhomogeneous NP loading of the MSC population. Attempts should be made to achieve better cell separation for homogeneous NP loading and to thus improve NP

  20. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes.

    Science.gov (United States)

    Bjerre, Troels; Crijns, Sjoerd; af Rosenschöld, Per Munck; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul

    2013-07-21

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.

  1. Software for precise tracking of cell proliferation

    International Nuclear Information System (INIS)

    Kurokawa, Hiroshi; Noda, Hisayori; Sugiyama, Mayu; Sakaue-Sawano, Asako; Fukami, Kiyoko; Miyawaki, Atsushi

    2012-01-01

    Highlights: ► We developed software for analyzing cultured cells that divide as well as migrate. ► The active contour model (Snakes) was used as the core algorithm. ► The time backward analysis was also used for efficient detection of cell division. ► With user-interactive correction functions, the software enables precise tracking. ► The software was successfully applied to cells with fluorescently-labeled nuclei. -- Abstract: We have developed a multi-target cell tracking program TADOR, which we applied to a series of fluorescence images. TADOR is based on an active contour model that is modified in order to be free of the problem of locally optimal solutions, and thus is resistant to signal fluctuation and morphological changes. Due to adoption of backward tracing and addition of user-interactive correction functions, TADOR is used in an off-line and semi-automated mode, but enables precise tracking of cell division. By applying TADOR to the analysis of cultured cells whose nuclei had been fluorescently labeled, we tracked cell division and cell-cycle progression on coverslips over an extended period of time.

  2. Automated Tracking of Cell Migration with Rapid Data Analysis.

    Science.gov (United States)

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy.

    Science.gov (United States)

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa

    2016-08-01

    For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28%  ±  1

  4. Visualisation of axolotl blastema cells and pig endothelial progenitor cells using very small super paramagnetic iron oxide particles in MRI: A technique with applications for non invasive visualisation of regenerative processes

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Kjær, N.B.; Bek, Maria

    oxide particles (VSOP) in animal cells enable non invasive cell tracking using magnetic resonance imaging (MRI) and can prove useful, when visualising regenerative processes. This study examines the possibility of labelling limited numbers of axolotl blastema cells (aBC) and pig endothelial progenitor...... implanted in live axolotl tail and dead porcine heart, respectively. Cellular iron uptake was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Results: T2*-weighted 2D gradient-echo sequences on samples of 10˄5 cells yielded at significant linear correlations between...

  5. Procedural Learning and Associative Memory Mechanisms Contribute to Contextual Cueing: Evidence from fMRI and Eye-Tracking

    Science.gov (United States)

    Manelis, Anna; Reder, Lynne M.

    2012-01-01

    Using a combination of eye tracking and fMRI in a contextual cueing task, we explored the mechanisms underlying the facilitation of visual search for repeated spatial configurations. When configurations of distractors were repeated, greater activation in the right hippocampus corresponded to greater reductions in the number of saccades to locate…

  6. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    International Nuclear Information System (INIS)

    Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias

    2009-01-01

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  7. Stem Cell Tracking Technologies for Neurological Regenerative Medicine Purposes

    Directory of Open Access Journals (Sweden)

    Yongtao Zheng

    2017-01-01

    Full Text Available The growing field of stem cell therapy is moving toward clinical trials in a variety of applications, particularly for neurological diseases. However, this translation of cell therapies into humans has prompted a need to create innovative and breakthrough methods for stem cell tracing, to explore the migration routes and its reciprocity with microenvironment targets in the body, to monitor and track the outcome after stem cell transplantation therapy, and to track the distribution and cell viability of transplanted cells noninvasively and longitudinally. Recently, a larger number of cell tracking methods in vivo were developed and applied in animals and humans, including magnetic resonance imaging, nuclear medicine imaging, and optical imaging. This review has been intended to summarize the current use of those imaging tools in tracking stem cells, detailing their main features and drawbacks, including image resolution, tissue penetrating depth, and biosafety aspects. Finally, we address that multimodality imaging method will be a more potential tracking tool in the future clinical application.

  8. A newly identified frontal path from fornix in septum pellucidum with 7.0T MRI track density imaging (TDI – The septum pellucidum tract (SPT

    Directory of Open Access Journals (Sweden)

    Zang-Hee eCho

    2015-11-01

    Full Text Available The high anatomical contrast achieved with the newly emerging MRI tractographic technique of super-resolution track density imaging (TDI encouraged us to search for a new fiber tract in the septum pellucidum. Although this septum pellucidum tract (SPT has been observed previously, its connections were unclear due to ambiguity and limited resolution of conventional MRI images. It is now possible to identify detailed parts of SPT with the increased resolution of TDI, which involves diffusion MRI imaging, whole-brain tractography, and voxel subdivision using the track-count information. Four healthy male subjects were included in the study. The experiment was performed with 7.0T MRI, following the guidelines of the institute’s institutional review board. Data were processed with the super-resolution TDI technique to generate a tractographic map with 0.18 mm isotropic resolution. The SPT was identified in all subjects. Based on additional seed tracking method with inter-axis correlation search, we have succeeded in identifying a new frontal lobe pathway in the SPT. We hypothesize that the tract is connected as a superior dorsal branch of the fornix that leads to the prefrontal cortex.

  9. PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking

    Science.gov (United States)

    White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders

    2010-01-01

    Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635

  10. Pipeline for Tracking Neural Progenitor Cells

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Dahl, Anders Lindbjerg; Holm, Peter

    2012-01-01

    Automated methods for neural stem cell lineage construction become increasingly important due to the large amount of data produced from time lapse imagery of in vitro cell growth experiments. Segmentation algorithms with the ability to adapt to the problem at hand and robust tracking methods play...... a key role in constructing these lineages. We present here a tracking pipeline based on learning a dictionary of discriminative image patches for segmentation and a graph formulation of the cell matching problem incorporating topology changes and acknowledging the fact that segmentation errors do occur...

  11. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, C. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Brossmann, J. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Melchert, U.H. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Schroeder, C. [Radiologische Abt., Universitaets-Kinderklinik, Christian-Albrechts-Universitaet, Kiel (Germany); Boer, R. de [Philips Medical Systems, Best (Netherlands); Spielmann, R.P. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany); Heller, M. [Klinik fuer Radiologische Diagnostik, Univ. Kiel (Germany)

    1995-12-31

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  12. Functional MRI of the patellofemoral joint: comparison of ultrafast MRI, motion-triggered cine MRI and static MRI

    International Nuclear Information System (INIS)

    Muhle, C.; Brossmann, J.; Melchert, U.H.; Schroeder, C.; Boer, R. de; Spielmann, R.P.; Heller, M.

    1995-01-01

    To evaluate the feasibility and usefulness of ultrafast MRI (u), patellar tracking from 30 of flexion to knee extension (0 ) was analysed and compared with motion-triggered cine MRI (m) and a static MRI technique (s). The different imaging methods were compared in respect of the patellofemoral relationship, the examination time and image quality. Eight healthy subjects and four patients (in total 18 joints) with patellar subluxation or luxation were examined. Significant differences between the static MRI series without quadriceps contraction and the functional MRI studies (motion-triggered cine MRI and ultrafast MRI) were found for the patellar tilt angle. In the dynamic joint studies there was no statistical difference of the regression coefficients between the motion-triggered cine MRI studies and the ultrafast MRI studies. The findings of the functional MRI studies compared with the static MRI images were significantly different for the lateralisation of the patella, expressed by the lateral patellar displacement and bisect offset. No significant differences in patellar lateralisation were found between motion-triggered cine MRI and ultrafast MRI. Ultrafast MRI was superior to motion-triggered cine MRI in terms of the reduction in imaging time and improvement of the image quality. (orig.)

  13. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis.

    Science.gov (United States)

    Svensson, Carl-Magnus; Medyukhina, Anna; Belyaev, Ivan; Al-Zaben, Naim; Figge, Marc Thilo

    2018-03-01

    Automated microscopy has given researchers access to great amounts of live cell imaging data from in vitro and in vivo experiments. Much focus has been put on extracting cell tracks from such data using a plethora of segmentation and tracking algorithms, but further analysis is normally required to draw biologically relevant conclusions. Such relevant conclusions may be whether the migration is directed or not, whether the population has homogeneous or heterogeneous migration patterns. This review focuses on the analysis of cell migration data that are extracted from time lapse images. We discuss a range of measures and models used to analyze cell tracks independent of the biological system or the way the tracks were obtained. For single-cell migration, we focus on measures and models giving examples of biological systems where they have been applied, for example, migration of bacteria, fibroblasts, and immune cells. For collective migration, we describe the model systems wound healing, neural crest migration, and Drosophila gastrulation and discuss methods for cell migration within these systems. We also discuss the role of the extracellular matrix and subsequent differences between track analysis in vitro and in vivo. Besides methods and measures, we are putting special focus on the need for openly available data and code, as well as a lack of common vocabulary in cell track analysis. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  14. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    Science.gov (United States)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  15. Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury

    Directory of Open Access Journals (Sweden)

    Qin JB

    2012-10-01

    Full Text Available Jin-Bao Qin,1,5,* Kang-An Li,2,* Xiang-Xiang Li,1,5 Qing-Song Xie,3 Jia-Ying Lin,4 Kai-Chuang Ye,1,5 Mi-Er Jiang,1,5 Gui-Xiang Zhang,2 Xin-Wu Lu1,51Department of Vascular Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 2Department of Radiology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of Neurosurgery, Cixi Municipal People's Hospital, Zhejiang Province, China; 4Clinic for Gynecology, Charite-Universitatsmedizin Berlin, Berlin, Germany; 5Vascular Center, Shanghai Jiao Tong University, Shanghai, China*These two authors contributed equally to this workBackground: Stem cell therapy has shown great promise for regenerative repair of injured or diseased tissues. Adipose-derived stem cells (ADSCs have become increasingly attractive candidates for cellular therapy. Magnetic resonance imaging has been proven to be effective in tracking magnetic-labeled cells and evaluating their clinical relevance after cell transplantation. This study investigated the feasibility of imaging green fluorescent protein-expressing ADSCs (GFP-ADSCs labeled with superparamagnetic iron oxide particles, and tracked them in vivo with noninvasive magnetic resonance imaging after cell transplantation in a model of mouse carotid artery injury.Methods: GFP-ADSCs were isolated from the adipose tissues of GFP mice and labeled with superparamagnetic iron oxide particles. Intracellular stability, proliferation, and viability of the labeled cells were evaluated in vitro. Next, the cells were transplanted into a mouse carotid artery injury model. Clinical 3 T magnetic resonance imaging was performed immediately before and 1, 3, 7, 14, 21, and 30 days after cell transplantation. Prussian blue staining and histological analysis were performed 7 and 30 days after transplantation.Results: GFP-ADSCs were found to be efficiently labeled with superparamagnetic iron oxide

  16. Assessment of Myocardial Contractile Function Using Global and Segmental Circumferential Strain following Intracoronary Stem Cell Infusion after Myocardial Infarction: MRI Feature Tracking Feasibility Study

    International Nuclear Information System (INIS)

    Bhatti, Sabha; Al-Khalidi, Hussein; Hor, Kan; Hakeem, Abdul; Taylor, Michael; Quyyumi, Arshed A.; Oshinski, John; Pecora, Andrew L.; Kereiakes, Dean; Chung, Eugene; Pedrizzetti, Gianni; Miszalski-Jamka, Tomasz; Mazur, Wojciech

    2012-01-01

    Background. Magnetic resonance imaging (MRI) strain analysis is a sensitive method to assess myocardial function. Our objective was to define the feasibility of MRI circumferential strain (ε cc ) analysis in assessing subtle changes in myocardial function following stem cell therapy. Methods and Results. Patients in the Amorcyte Phase I trial were randomly assigned to treatment with either autologous bone-marrow-derived stem cells infused into the infarct-related artery 5 to 11 days following primary PCI or control. MRI studies were obtained at baseline, 3, and 6 months. ε cc was measured in the short axis views at the base, mid and apical slices of the left ventricle (LV) for each patient (13 treatments and 10 controls). Mid-anterior LV ε cc improved between baseline −18.5 ± 8.6 and 3 months −22.6 ± 7.0, P = 0.03. There were no significant changes in ε cc at 3 months and 6 months compared to baseline for other segments. There was excellent intraobserver and interobserver agreement for basal and mid circumferential strain. Conclusion. MRI segmental strain analysis is feasible in assessment of regional myocardial function following cell therapy with excellent intra- and inter-observer variability's. Using this method, a modest interval change in segmental ε cc was detected in treatment group

  17. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Victoria, James; Dempsey, James [ViewRay Incorporated, Inc., Oakwood Village, Ohio 44146 (United States); Ruan, Su [Laboratoire LITIS (EA 4108), Equipe Quantif, University of Rouen, Rouen 76183 (France); Anastasio, Mark [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States)

    2016-08-15

    Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity

  18. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy

    International Nuclear Information System (INIS)

    Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark

    2016-01-01

    Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity

  19. A benchmark for comparison of cell tracking algorithms

    NARCIS (Netherlands)

    M. Maška (Martin); V. Ulman (Vladimír); K. Svoboda; P. Matula (Pavel); P. Matula (Petr); C. Ederra (Cristina); A. Urbiola (Ainhoa); T. España (Tomás); R. Venkatesan (Rajkumar); D.M.W. Balak (Deepak); P. Karas (Pavel); T. Bolcková (Tereza); M. Štreitová (Markéta); C. Carthel (Craig); S. Coraluppi (Stefano); N. Harder (Nathalie); K. Rohr (Karl); K.E.G. Magnusson (Klas E.); J. Jaldén (Joakim); H.M. Blau (Helen); O.M. Dzyubachyk (Oleh); P. Křížek (Pavel); G.M. Hagen (Guy); D. Pastor-Escuredo (David); D. Jimenez-Carretero (Daniel); M.J. Ledesma-Carbayo (Maria); A. Muñoz-Barrutia (Arrate); E. Meijering (Erik); M. Kozubek (Michal); C. Ortiz-De-Solorzano (Carlos)

    2014-01-01

    textabstractMotivation: Automatic tracking of cells in multidimensional time-lapse fluorescence microscopy is an important task in many biomedical applications. A novel framework for objective evaluation of cell tracking algorithms has been established under the auspices of the IEEE International

  20. Evaluation of an image-based tracking workflow with Kalman filtering for automatic image plane alignment in interventional MRI.

    Science.gov (United States)

    Neumann, M; Cuvillon, L; Breton, E; de Matheli, M

    2013-01-01

    Recently, a workflow for magnetic resonance (MR) image plane alignment based on tracking in real-time MR images was introduced. The workflow is based on a tracking device composed of 2 resonant micro-coils and a passive marker, and allows for tracking of the passive marker in clinical real-time images and automatic (re-)initialization using the microcoils. As the Kalman filter has proven its benefit as an estimator and predictor, it is well suited for use in tracking applications. In this paper, a Kalman filter is integrated in the previously developed workflow in order to predict position and orientation of the tracking device. Measurement noise covariances of the Kalman filter are dynamically changed in order to take into account that, according to the image plane orientation, only a subset of the 3D pose components is available. The improved tracking performance of the Kalman extended workflow could be quantified in simulation results. Also, a first experiment in the MRI scanner was performed but without quantitative results yet.

  1. Stem cell therapy: MRI guidance and monitoring.

    Science.gov (United States)

    Kraitchman, Dara L; Gilson, Wesley D; Lorenz, Christine H

    2008-02-01

    With the recent advances in magnetic resonance (MR) labeling of cellular therapeutics, it is natural that interventional MRI techniques for targeting would be developed. This review provides an overview of the current methods of stem cell labeling and the challenges that are created with respect to interventional MRI administration. In particular, stem cell therapies will require specialized, MR-compatible devices as well as integration of graphical user interfaces with pulse sequences designed for interactive, real-time delivery in many organs. Specific applications that are being developed will be reviewed as well as strategies for future translation to the clinical realm. (Copyright) 2008 Wiley-Liss, Inc.

  2. MRI with DWI for the Detection of Posttreatment Head and Neck Squamous Cell Carcinoma: Why Morphologic MRI Criteria Matter.

    Science.gov (United States)

    Ailianou, A; Mundada, P; De Perrot, T; Pusztaszieri, M; Poletti, P-A; Becker, M

    2018-04-01

    Although diffusion-weighted imaging combined with morphologic MRI (DWIMRI) is used to detect posttreatment recurrent and second primary head and neck squamous cell carcinoma, the diagnostic criteria used so far have not been clarified. We hypothesized that precise MRI criteria based on signal intensity patterns on T2 and contrast-enhanced T1 complement DWI and therefore improve the diagnostic performance of DWIMRI. We analyzed 1.5T MRI examinations of 100 consecutive patients treated with radiation therapy with or without additional surgery for head and neck squamous cell carcinoma. MRI examinations included morphologic sequences and DWI ( b =0 and b =1000 s/mm 2 ). Histology and follow-up served as the standard of reference. Two experienced readers, blinded to clinical/histologic/follow-up data, evaluated images according to clearly defined criteria for the diagnosis of recurrent head and neck squamous cell carcinoma/second primary head and neck squamous cell carcinoma occurring after treatment, post-radiation therapy inflammatory edema, and late fibrosis. DWI analysis included qualitative (visual) and quantitative evaluation with an ADC threshold. Recurrent head and neck squamous cell carcinoma/second primary head and neck squamous cell carcinoma occurring after treatment was present in 36 patients, whereas 64 patients had post-radiation therapy lesions only. The Cohen κ for differentiating tumor from post-radiation therapy lesions with MRI and qualitative DWIMRI was 0.822 and 0.881, respectively. Mean ADCmean in recurrent head and neck squamous cell carcinoma/second primary head and neck squamous cell carcinoma occurring after treatment (1.097 ± 0.295 × 10 -3 mm 2 /s) was significantly lower ( P .05). Although ADCs were similar in tumors and late fibrosis, morphologic MRI criteria facilitated distinction between the 2 conditions. The sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios (95% CI) of

  3. In vivo cell tracking with bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Eun; Kalimuthu, Senthilkumar; Ahn, Byeong Cheol [Dept. of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu (Korea, Republic of)

    2015-03-15

    Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed.

  4. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes

    DEFF Research Database (Denmark)

    Bjerre, Troels; Crijns, Sjoerd; Rosenschöld, Per Munck af

    2013-01-01

    The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking...... of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path....... For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm...

  5. Exploring differences in speech processing among elderly hearing-impaired listeners with or without hearing aid experience: Eye-tracking and fMRI measurements

    DEFF Research Database (Denmark)

    Habicht, Julia; Behler, Oliver; Kollmeier, Birger

    2018-01-01

    on the cognitive processes underlying speech comprehension. Eye-tracking and functional magnetic resonance imaging (fMRI) measurements were carried out with acoustic sentence-in-noise (SIN) stimuli complemented by pairs of pictures that either correctly (target) or incorrectly (competitor) depicted the sentence...... meanings. For the eye-tracking measurements, the time taken by the participants to start fixating the target picture (the ‘processing time’) was measured. For the fMRI measurements, brain activation inferred from blood oxygenation level dependent (BOLD) responses following sentence comprehension...... frontal areas for SIN relative to noise-only stimuli in the eHA group compared to the iHA group. Together, these results imply that HA experience leads to faster speech-in-noise processing, possibly related to less recruitment of brain regions outside the core sentence-comprehension network. Follow...

  6. In vitro detection of circulating tumor cells compared by the CytoTrack and CellSearch methods

    DEFF Research Database (Denmark)

    Hillig, T.; Horn, P.; Nygaard, Ann-Britt

    2015-01-01

    .23/p = 0.09). Overall, the recovery of CytoTrack and CellSearch was 68.8 +/- 3.9 %/71.1 +/- 2.9 %, respectively (p = 0.58). In spite of different methodologies, CytoTrack and CellSearch found similar number of CTCs, when spiking was performed with the EpCAM and pan cytokeratin-positive cell line MCF-7......Comparison of two methods to detect circulating tumor cells (CTC) CytoTrack and CellSearch through recovery of MCF-7 breast cancer cells, spiked into blood collected from healthy donors. Spiking of a fixed number of EpCAM and pan-cytokeratin positive MCF-7 cells into 7.5 mL donor blood...... was performed by FACSAria flow sorting. The samples were shipped to either CytoTrack or CellSearch research facilities within 48 h, where evaluation of MCF-7 recovery was performed. CytoTrack and CellSearch analyses were performed simultaneously. Recoveries of MCF-7 single cells, cells in clusters, and clusters...

  7. Dynamic MRI of ferumoxide-labeled bone mesenchmal stem cells after transplantation in infarcted myocardium

    International Nuclear Information System (INIS)

    Liu Qiong; Zhao Shihua; Lu Minjie; Jiang Shiliang; Yan Chaowu; Zhang Yan; Meng Liang; Tang Yue; Meng Xianmin; Wei Yingjie; Wang Qingzhi

    2009-01-01

    Objective: To investigate the ability of magnetic resonance imaging (MRI) in tracking magnetically labeled mesenchymal stem cells (MR-MSCs) in a swine myocardial infarction (MI) model. Methods: Adult Chinese mini-pigs (n=6) were subjected to open-chest experimental MI operation. Their autogeneic bone marrow-derived mesenchymal stem cells (MSCs) was cultured and doubly labeled with ferumoxides and DAPI. On the 14 th day after MSCs transplantation, the size and location of the myocardial infarction were assessed by using delayed-enhancement MRI (DE-MRI). Then the labeled MSCs were injected intramyocardially into peri-infarct zone and normal myocardium. At 24 hrs and 3 weeks after injection, the contrast and the volume of the MR-MSCs hypointense lesion from the MR images were acquired, and the contrast was determined using the difference in signal intensity between the hypointense and normal myocardium divided by signal intensity of the normal region. After humane euthanasia, the heart was excised and histology corresponding to MRI slices that demonstrated MR-MSCs lesions was performed. Repeated-measures ANOVA and a paired t test were used for comparison of the contrast and the volume of the MR-MSCs hypointense lesion at different time points. Comparisons between independent groups were performed with the standard Student t test. Results: The labeling efficiency of ferumoxides and DAPI was 100%. On the 14 th day after the MI operation, the average percentage of infracted myocardial area was (33.6±8.9)%. Twenty- four hours after MSCs transplantation, MSCs injection sites appeared as ovoid hypointensive lesions with sharp border on T 2 * images. At 24 h after injection, the signal contrast [(67.00±5.48)% vs (61.92±7.76)%,t=1.65, P=0.1158] and the size [(0.56±0.24) cm 2 vs (0.52±0.25) cm 2 , t=0.39, P=0.7044] of the lesions showed no statistical difference between the peri-infarct zone and the normal myocardium. At 3 weeks after injection, the signal contrast

  8. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.

    Science.gov (United States)

    Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G

    2016-11-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. © 2016 The Authors.

  9. Track structure model of cell damage in space flight

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  10. Abnormal diffusion-weighted MRI in medulloblastoma: does it reflect small cell histology?

    International Nuclear Information System (INIS)

    Kotsenas, A.L.; Roth, T.C.; Manness, W.K.; Faerber, E.N.

    1999-01-01

    A 12-year-old boy presented with the classic CT and MRI findings of medulloblastoma and the unusual finding of increased signal on diffusion MRI. The small-cell histology of medulloblastoma may account for the increased signal seen on diffusion MRI. Diffusion MRI with echoplanar technique may be useful in evaluation of these tumors and metastatic disease. (orig.)

  11. A Technique for Generating Volumetric Cine MRI (VC-MRI)

    Science.gov (United States)

    Harris, Wendy; Ren, Lei; Cai, Jing; Zhang, You; Chang, Zheng; Yin, Fang-Fang

    2016-01-01

    Purpose To develop a technique to generate on-board volumetric-cine MRI (VC-MRI) using patient prior images, motion modeling and on-board 2D-cine MRI. Methods One phase of a 4D-MRI acquired during patient simulation is used as patient prior images. 3 major respiratory deformation patterns of the patient are extracted from 4D-MRI based on principal-component-analysis. The on-board VC-MRI at any instant is considered as a deformation of the prior MRI. The deformation field is represented as a linear combination of the 3 major deformation patterns. The coefficients of the deformation patterns are solved by the data fidelity constraint using the acquired on-board single 2D-cine MRI. The method was evaluated using both XCAT simulation of lung cancer patients and MRI data from four real liver cancer patients. The accuracy of the estimated VC-MRI was quantitatively evaluated using Volume-Percent-Difference(VPD), Center-of-Mass-Shift(COMS), and target tracking errors. Effects of acquisition orientation, region-of-interest(ROI) selection, patient breathing pattern change and noise on the estimation accuracy were also evaluated. Results Image subtraction of ground-truth with estimated on-board VC-MRI shows fewer differences than image subtraction of ground-truth with prior image. Agreement between profiles in the estimated and ground-truth VC-MRI was achieved with less than 6% error for both XCAT and patient data. Among all XCAT scenarios, the VPD between ground-truth and estimated lesion volumes was on average 8.43±1.52% and the COMS was on average 0.93±0.58mm across all time-steps for estimation based on the ROI region in the sagittal cine images. Matching to ROI in the sagittal view achieved better accuracy when there was substantial breathing pattern change. The technique was robust against noise levels up to SNR=20. For patient data, average tracking errors were less than 2 mm in all directions for all patients. Conclusions Preliminary studies demonstrated the

  12. The development of a 4D treatment planning methodology to simulate the tracking of central lung tumors in an MRI-linac.

    Science.gov (United States)

    Al-Ward, Shahad M; Kim, Anthony; McCann, Claire; Ruschin, Mark; Cheung, Patrick; Sahgal, Arjun; Keller, Brian M

    2018-01-01

    Targeting and tracking of central lung tumors may be feasible on the Elekta MRI-linac (MRL) due to the soft-tissue visualization capabilities of MRI. The purpose of this work is to develop a novel treatment planning methodology to simulate tracking of central lung tumors with the MRL and to quantify the benefits in OAR sparing compared with the ITV approach. Full 4D-CT datasets for five central lung cancer patients were selected to simulate the condition of having 4D-pseudo-CTs derived from 4D-MRI data available on the MRL with real-time tracking capabilities. We used the MRL treatment planning system to generate two plans: (a) with a set of MLC-defined apertures around the target at each phase of the breathing ("4D-MRL" method); (b) with a fixed set of fields encompassing the maximum inhale and exhale of the breathing cycle ("ITV" method). For both plans, dose accumulation was performed onto a reference phase. To further study the potential benefits of a 4D-MRL method, the results were stratified by tumor motion amplitude, OAR-to-tumor proximity, and the relative OAR motion (ROM). With the 4D-MRL method, the reduction in mean doses was up to 3.0 Gy and 1.9 Gy for the heart and the lung. Moreover, the lung's V12.5 Gy was spared by a maximum of 300 cc. Maximum doses to serial organs were reduced by up to 6.1 Gy, 1.5 Gy, and 9.0 Gy for the esophagus, spinal cord, and the trachea, respectively. OAR dose reduction with our method depended on the tumor motion amplitude and the ROM. Some OARs with large ROMs and in close proximity to the tumor benefited from tracking despite small tumor amplitudes. We developed a novel 4D tracking methodology for the MRL for central lung tumors and quantified the potential dosimetric benefits compared with our current ITV approach. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. Influence of MRI contrast media on histamine release from mast cells.

    Science.gov (United States)

    Kun, Tomasz; Jakubowski, Lucjusz

    2012-07-01

    Mast cells, owing to diversity of secreted mediators, play a crucial role in the regulation of inflammatory response. Together with basophils, mast cells constitute a central pathogenetic element of anaphylactic (IgE-dependent) and anaphylactoid (IgE-independent) reactions. In severe cases, generalized degranulation of mast cells may cause symptoms of anaphylactic shock. The influence of the classical, iodine-based contrast media on mastocyte degranulation has been fully described. Our objective was to determine the influence of the gadolinium-based MRI contrast media on histamine release from mast cells and to compare the activity of ionic and non-ionic preparations of contrast media. To determine the intensity of mast cell degranulation, we used an experimental model based on mastocytes isolated from rat peritoneal fluid. Purified suspensions of mast cells were incubated with various concentrations of Gd-DTPA and Gd-DTPA-BMA, and solutions of PEG 600 which served as a non-toxic osmotic stimulus. The intensity of mast cell activation was presented as mean percentage of histamine released from cells after incubation. The obtained results demonstrate that both ionic and non-ionic preparations of the MRI contrast media are able to induce mast cell degranulation in vitro. It was also proved that the non-ionic MRI contrast media stimulate mast cells markedly more weakly than ionic contrast media at identical concentration. The aforementioned results may suggest a more profitable safety profile of the non-ionic contrast preparations. We may also conclude that triggering of mast cell degranulation after incubation with the solutions of MRI contrast media results from non-specific osmotic stimulation and direct toxicity of free ionic residues.

  14. Influence of MRI contrast media on histamine release from mast cells

    International Nuclear Information System (INIS)

    Kun, Tomasz; Jakubowski, Lucjusz

    2012-01-01

    Mast cells, owing to diversity of secreted mediators, play a crucial role in the regulation of inflammatory response. Together with basophils, mast cells constitute a central pathogenetic element of anaphylactic (IgE-dependent) and anaphylactoid (IgE-independent) reactions. In severe cases, generalized degranulation of mast cells may cause symptoms of anaphylactic shock. The influence of the classical, iodine-based contrast media on mastocyte degranulation has been fully described. Our objective was to determine the influence of the gadolinium-based MRI contrast media on histamine release from mast cells and to compare the activity of ionic and non-ionic preparations of contrast media. To determine the intensity of mast cell degranulation, we used an experimental model based on mastocytes isolated from rat peritoneal fluid. Purified suspensions of mast cells were incubated with various concentrations of Gd-DTPA and Gd-DTPA-BMA, and solutions of PEG 600 which served as a non-toxic osmotic stimulus. The intensity of mast cell activation was presented as mean percentage of histamine released from cells after incubation. The obtained results demonstrate that both ionic and non-ionic preparations of the MRI contrast media are able to induce mast cell degranulation in vitro. It was also proved that the non-ionic MRI contrast media stimulate mast cells markedly more weakly than ionic contrast media at identical concentration. The aforementioned results may suggest a more profitable safety profile of the non-ionic contrast preparations. We may also conclude that triggering of mast cell degranulation after incubation with the solutions of MRI contrast media results from non-specific osmotic stimulation and direct toxicity of free ionic residues

  15. Gold nanoparticles for non-invasive cell tracking with CT imaging

    Science.gov (United States)

    Meir, Rinat; Betzer, Oshra; Barnoy, Eran; Motiei, Menachem; Popovtzer, Rachela

    2018-02-01

    Cell-based therapies use living cells with therapeutic traits to treat various diseases. This is a beneficial alternative for diseases that existing medicine cannot cure efficiently. However, inconsistent results in clinical trials are preventing the advancement and implementation of cell-based therapy. In order to explain such results, there is a need to discover the fate of the transplanted cells. To answer this need, we developed a technique for noninvasive in vivo cell tracking, which uses gold nanoparticles as contrast agents for CT imaging. Herein, we investigate the design principles of this technique for intramuscular transplantation of therapeutic cells. Longitudinal studies were performed, demonstrating the ability to track cells over long periods of time. As few as 500 cells could be detected and a way to quantify the number of cells visualized by CT was demonstrated. This cell-tracking technology has the potential to become an essential tool in pre-clinical studies as well as in clinical trials and advance cell therapy.

  16. TH-AB-BRA-08: Simulated Tumor Tracking in An MRI Linac for Lung Tumor Lesions Using the Monaco Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ward, S; Kim, A; McCann, C; Ruschin, M; Cheung, P; Sahgal, A; Keller, B [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada)

    2016-06-15

    Purpose: To simulate tumor tracking in an Elekta MRI-linac (MRL) and to compare this tracking method with our current ITV approach in terms of OAR sparing for lung cancer patients. Methods: Five SABR-NSCLC patients with central lung tumors were selected for reasons of potential enhancement of tumor-tissue delineation using MRI. The Monaco TPS was used to compare the current clinical ITV approach to a simulated, novel tracking method which used a 7MV MRL beam in the presence of an orthogonal 1.5 T magnetic field (4D-MRL method). In the simulated tracking scenario, achieved using the virtual couch shift (VCS), the PTV was defined using an isotropic 5mm margin applied to the GTV of each phase, as acquired from an 8-phase amplitude-binned 4DCT. These VCS plans were optimized and weighted on each phase. The dose weighting was performed using the patient-specific breathing traces. The doses were accumulated on the inhale phase. The two methods were compared by assessing the OAR DVHs. Results: The 4D-MRL method resulted in a reduced target volume (by an average of 29% over all patients). The benefits of using an MRL tracking system depended on the tumor motion amplitude and the relative OAR motion (ROM) to the target. The reduction in mean doses to parallel organs was up to 3 Gy for the heart and 2.1 Gy for the lung. The reductions in maximum doses to serial organs were up to 9.4 Gy, 5.6 Gy, and 8.7 Gy for the esophagus, spinal cord, and the trachea, respectively. Serial organs benefited from MRL tracking when the ROM was ≥ 0.3 cm despite small tumor motion amplitude in some cases. Conclusions: This work demonstrated the potential benefit for an MRL tracking system to spare OARs in SABR-NSCLC patients with central tumors. The benefits are embodied in the target volume reduction. This project was made possible with the financial support of Elekta.

  17. Automated cell tracking and analysis in phase-contrast videos (iTrack4U): development of Java software based on combined mean-shift processes.

    Science.gov (United States)

    Cordelières, Fabrice P; Petit, Valérie; Kumasaka, Mayuko; Debeir, Olivier; Letort, Véronique; Gallagher, Stuart J; Larue, Lionel

    2013-01-01

    Cell migration is a key biological process with a role in both physiological and pathological conditions. Locomotion of cells during embryonic development is essential for their correct positioning in the organism; immune cells have to migrate and circulate in response to injury. Failure of cells to migrate or an inappropriate acquisition of migratory capacities can result in severe defects such as altered pigmentation, skull and limb abnormalities during development, and defective wound repair, immunosuppression or tumor dissemination. The ability to accurately analyze and quantify cell migration is important for our understanding of development, homeostasis and disease. In vitro cell tracking experiments, using primary or established cell cultures, are often used to study migration as cells can quickly and easily be genetically or chemically manipulated. Images of the cells are acquired at regular time intervals over several hours using microscopes equipped with CCD camera. The locations (x,y,t) of each cell on the recorded sequence of frames then need to be tracked. Manual computer-assisted tracking is the traditional method for analyzing the migratory behavior of cells. However, this processing is extremely tedious and time-consuming. Most existing tracking algorithms require experience in programming languages that are unfamiliar to most biologists. We therefore developed an automated cell tracking program, written in Java, which uses a mean-shift algorithm and ImageJ as a library. iTrack4U is a user-friendly software. Compared to manual tracking, it saves considerable amount of time to generate and analyze the variables characterizing cell migration, since they are automatically computed with iTrack4U. Another major interest of iTrack4U is the standardization and the lack of inter-experimenter differences. Finally, iTrack4U is adapted for phase contrast and fluorescent cells.

  18. Automated cell tracking and analysis in phase-contrast videos (iTrack4U: development of Java software based on combined mean-shift processes.

    Directory of Open Access Journals (Sweden)

    Fabrice P Cordelières

    Full Text Available Cell migration is a key biological process with a role in both physiological and pathological conditions. Locomotion of cells during embryonic development is essential for their correct positioning in the organism; immune cells have to migrate and circulate in response to injury. Failure of cells to migrate or an inappropriate acquisition of migratory capacities can result in severe defects such as altered pigmentation, skull and limb abnormalities during development, and defective wound repair, immunosuppression or tumor dissemination. The ability to accurately analyze and quantify cell migration is important for our understanding of development, homeostasis and disease. In vitro cell tracking experiments, using primary or established cell cultures, are often used to study migration as cells can quickly and easily be genetically or chemically manipulated. Images of the cells are acquired at regular time intervals over several hours using microscopes equipped with CCD camera. The locations (x,y,t of each cell on the recorded sequence of frames then need to be tracked. Manual computer-assisted tracking is the traditional method for analyzing the migratory behavior of cells. However, this processing is extremely tedious and time-consuming. Most existing tracking algorithms require experience in programming languages that are unfamiliar to most biologists. We therefore developed an automated cell tracking program, written in Java, which uses a mean-shift algorithm and ImageJ as a library. iTrack4U is a user-friendly software. Compared to manual tracking, it saves considerable amount of time to generate and analyze the variables characterizing cell migration, since they are automatically computed with iTrack4U. Another major interest of iTrack4U is the standardization and the lack of inter-experimenter differences. Finally, iTrack4U is adapted for phase contrast and fluorescent cells.

  19. MRI of intracranial germ-cell tumours

    International Nuclear Information System (INIS)

    Liang, L.; Korogi, Y.; Sugahara, T.; Ikushima, I.; Shigematsu, Y.; Okuda, T.; Takahashi, M.; Kochi, M.; Ushio, Y.

    2002-01-01

    Abstract. Our aim was to review the MRI appearances of primary intracranial germ-cell tumours (GCT). We reviewed the MRI studies of 32 patients: 19 with germinomas, five with teratomas, one with an embryonal carcinoma, five with mixed and two with malignant nongerminomatous GCT. Eleven were in the pineal region, 12 suprasellar, five in the both sites, two in the basal ganglia and two in the corpus callosum. Contrast-enhanced images were available for 27 patients. The solid parts of GCT were nearly isointense with grey matter on both T1- and T2-weighted images. In seven patients with nongerminomatous GCT high-signal components were found on T1-weighted images, representing haemorrhage, high-protein fluid or fat. Cystic components were detected in 17 of 27 patients; eight germinomas and all nine nongerminomatous GCT had cysts. The solid components of germinomas enhanced homogeneously in eight cases and heterogeneously in 10, while all nongerminomatous GCT showed heterogeneous enhancement. MRI features tumours can facilitate correct diagnosis of GCT, including histological subtypes. (orig.)

  20. Functional and molecular imaging with MRI: potential applications in paediatric radiology

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Gallagher, Ferdia A.

    2011-01-01

    MRI is a very versatile tool for noninvasive imaging and it is particularly attractive as an imaging technique in paediatric patients given the absence of ionizing radiation. Recent advances in the field of MRI have enabled tissue function to be probed noninvasively, and increasingly MRI is being used to assess cellular and molecular processes. For example, dynamic contrast-enhanced MRI has been used to assess tissue vascularity, diffusion-weighted imaging can quantify molecular movements of water in tissue compartments and MR spectroscopy provides a quantitative assessment of metabolite levels. A number of targeted contrast agents have been developed that bind specifically to receptors on the vascular endothelium or cell surface and there are several MR methods for labelling cells and tracking cellular movements. Hyperpolarization techniques have the capability of massively increasing the sensitivity of MRI and these have been used to image tissue pH, successful response to drug treatment as well as imaging the microstructure of the lungs. Although there are many challenges to be overcome before these techniques can be translated into routine paediatric imaging, they could potentially be used to aid diagnosis, predict disease outcome, target biopsies and determine treatment response noninvasively. (orig.)

  1. MRI of islet cell tumors of the pancreas

    International Nuclear Information System (INIS)

    Ohtomo, Kuni; Itai, Yuji; Yoshikawa, Koki; Kokubo, Taka; Yashiro, Naofumi; Iio, Masahiro; Atomi, Yu

    1986-01-01

    Magnetic resonance imaging (MRI) was performed in five patients with islet cell tumors of the pancreas, using 0.35 T and 1.5 T superconductive magnets. MRI identified tumors in 3 patients. The tumors seen in the 3 patients appeared as areas of higher signal intensity than the liver on spin-echo (SE) images with repetition time of 1,600 msec/echo time of 35 or 70 msec, and as areas of similar or lower intensity on SE 400/35 or 70 images. The tumor imaged by SE techniques with 1,600/35 msec, 400/35 msec, and 1,600/35 or 70 msec in one patient was manifested by prolongation of T1 and T2, as compared with the liver. Tumors in the remaining two patients, which were not detected on MRI, were 15 mm or smaller. MRI remains to be improved in the visualization of small lesions. (Namekawa, K.)

  2. Detecting and Tracking Nonfluorescent Nanoparticles Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Fang, Ning

    2012-01-17

    Precisely imaging and tracking dynamic biological processes in live cells are crucial for both fundamental research in life sciences and biomedical applications. Nonfluorescent nanoparticles are emerging as important optical probes in live-cell imaging because of their excellent photostability, large optical cross sections, and low cytotoxicity. Here, we provide a review of recent development in optical imaging of nonfluorescent nanoparticle probes and their applications in dynamic tracking and biosensing in live cells. A brief discussion on cytotoxicity of nanoparticle probes is also provided.

  3. Cell biology, MRI and geometry: insight into a microscopic/macroscopic marriage.

    Science.gov (United States)

    de Oliveira, Sérgio Almeida; Gowdak, Luís Henrique W; Buckberg, Gerald; Krieger, José Eduardo

    2006-04-01

    The concept of cell therapy as an adjunctive therapy to myocardial surgical revascularization for patients with severe coronary artery disease is illustrated by two case reports of ischemic cardiac disease that were unsuitable for revascularization by coronary grafting. The potential interaction of cell therapy, magnetic resonance imaging (MRI) of viability, and left ventricle (LV) restoration is described. Each patient had an ejection fraction below 30%, a relatively conical heart, and MRI gadolinium scan showing predominantly viable muscle. Intramyocardial injections of autologous bone marrow-derived cells (BMC) were performed along with either incomplete coronary artery bypass grafting (CABG) (to mother regions) or with transmyocardial laser revascularization (TMLR). An improvement in contractile function was seen at 6-12-month intervals after the procedure. The implications of possible underlying mechanisms of improvement in both myocardial perfusion and contractility suggest the striking importance of both micro- and macroenvironment for any cell-based therapeutic strategy. These observations imply that the interaction of cell biology, viability by MRI and geometry may be important in the future, as geometry can be restored surgically, and the new architectural form may develop enhanced function if it contains viable tissue and cell-based treatment can be delivered.

  4. Changed processing of visual sexual stimuli under GnRH-therapy – a single case study in pedophilia using eye tracking and fMRI

    Science.gov (United States)

    2014-01-01

    Background Antiandrogen therapy (ADT) has been used for 30 years to treat pedophilic patients. The aim of the treatment is a reduction in sexual drive and, in consequence, a reduced risk of recidivism. Yet the therapeutic success of antiandrogens is uncertain especially regarding recidivism. Meta-analyses and reviews report only moderate and often mutually inconsistent effects. Case presentation Based on the case of a 47 year old exclusively pedophilic forensic inpatient, we examined the effectiveness of a new eye tracking method and a new functional magnetic resonance imaging (fMRI)-design in regard to the evaluation of ADT in pedophiles. We analyzed the potential of these methods in exploring the impact of ADT on automatic and controlled attentional processes in pedophiles. Eye tracking and fMRI measures were conducted before the initial ADT as well as four months after the onset of ADT. The patient simultaneously viewed an image of a child and an image of an adult while eye movements were measured. During the fMRI-measure the same stimuli were presented subliminally. Eye movements demonstrated that controlled attentional processes change under ADT, whereas automatic processes remained mostly unchanged. We assume that these results reflect either the increased ability of the patient to control his eye movements while viewing prepubertal stimuli or his better ability to manipulate his answer in a socially desirable manner. Unchanged automatic attentional processes could reflect the stable pedophilic preference of the patient. Using fMRI, the subliminal presentation of sexually relevant stimuli led to changed activation patterns under the influence of ADT in occipital and parietal brain regions, the hippocampus, and also in the orbitofrontal cortex. We suggest that even at an unconscious level ADT can lead to changed processing of sexually relevant stimuli, reflecting changes of cognitive and perceptive automatic processes. Conclusion We are convinced that our

  5. Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label.

    Science.gov (United States)

    Carlson, Alicia L; Fujisaki, Joji; Wu, Juwell; Runnels, Judith M; Turcotte, Raphaël; Spencer, Joel A; Celso, Cristina Lo; Scadden, David T; Strom, Terry B; Lin, Charles P

    2013-01-01

    We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion) after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. Combining the use of this photoconvertible dye with intravital microscopy, we tracked the division of individual hematopoietic stem/progenitor cells within the calvarium bone marrow of live mice. We also studied the peripheral differentiation of individual T cells by tracking the gain or loss of FoxP3-GFP expression, a marker of the immune suppressive function of CD4(+) T cells. With the near-infrared photoconvertible membrane dye, the entire visible spectral range is available for simultaneous use with other fluorescent proteins to monitor gene expression or to trace cell lineage commitment in vivo with high spatial and temporal resolution.

  6. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under i....... Amorphous track modelling of luminescence detector efficiency in proton and carbon beams. 4.Tsuruoka C, Suzuki M, Kanai T, et al. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 2005;163:494-500.......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion....... [2] . In addition, a new approach based on microdosimetric distributions is presented and investigated [3] . Material and methods: A suitable software library embrasing the mentioned amorphous track models including numerous submodels with respect to delta-electron range models, radial dose...

  7. Central nervous system lesions in adult T-cell leukaemia: MRI and pathology

    International Nuclear Information System (INIS)

    Kitajima, M.; Korogi, Y.; Shigematsu, Y.; Liang, L.; Takahashi, M.; Matsuoka, M.; Yamamoto, T.; Jhono, M.; Eto, K.

    2002-01-01

    Adult T-cell leukaemia (ATL) is a T-cell lymphoid neoplasm caused by human T-cell leukaemia virus type I (HTLV-I). Radiological findings in central nervous system (CNS) involvement have not been well characterised. We reviewed the MRI of 18 patients with ATL who developed new neurological symptoms or signs, and pathology specimens from a 53-year-old woman who died of ATL. MRI findings were divided into three categories: definite, probable, and other abnormal. Definite and probable findings were defined as ATL-related. The characteristic findings were multiple parenchymal masses with or without contrast enhancement adjacent to cerebrospinal fluid (CSF) spaced and the deep grey matter of both cerebral hemispheres, plus leptomeningeal lesion. One patient had both cerebral and spinal cord lesions. Other abnormal findings in eight patients included one case of leukoencephalopathy caused by methotrexate. The histology findings consisted of clusters of tumour cells along perivascular spaces, and scattered infiltration of the parenchyma, with nests of tumour cells. Leptomeningeal infiltration by tumour spread into the parenchyma and secondary degeneration of the neuronal tracts was observed. MRI was useful for detecting CNS invasion by ATL and differentiating it from other abnormalities. The MRI findings seemed to correlate well with the histological changes. (orig.)

  8. Central nervous system lesions in adult T-cell leukaemia: MRI and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, M.; Korogi, Y.; Shigematsu, Y.; Liang, L.; Takahashi, M. [Department of Radiology, Kumamoto University School of Medicine, Honjo, Kumamoto (Japan); Matsuoka, M. [Second Division of Internal Medicine, Kumamoto University School of Medicine, Honjo, Kumamoto (Japan); Yamamoto, T. [Department of Pathology, Kumamoto University School of Medicine, Honjo, Kumamoto (Japan); Jhono, M. [Department of Dermatology, Kumamoto University School of Medicine, Honjo, Kumamoto (Japan); Eto, K. [The National Institute for Minamata Disease, Minamata (Japan)

    2002-07-01

    Adult T-cell leukaemia (ATL) is a T-cell lymphoid neoplasm caused by human T-cell leukaemia virus type I (HTLV-I). Radiological findings in central nervous system (CNS) involvement have not been well characterised. We reviewed the MRI of 18 patients with ATL who developed new neurological symptoms or signs, and pathology specimens from a 53-year-old woman who died of ATL. MRI findings were divided into three categories: definite, probable, and other abnormal. Definite and probable findings were defined as ATL-related. The characteristic findings were multiple parenchymal masses with or without contrast enhancement adjacent to cerebrospinal fluid (CSF) spaced and the deep grey matter of both cerebral hemispheres, plus leptomeningeal lesion. One patient had both cerebral and spinal cord lesions. Other abnormal findings in eight patients included one case of leukoencephalopathy caused by methotrexate. The histology findings consisted of clusters of tumour cells along perivascular spaces, and scattered infiltration of the parenchyma, with nests of tumour cells. Leptomeningeal infiltration by tumour spread into the parenchyma and secondary degeneration of the neuronal tracts was observed. MRI was useful for detecting CNS invasion by ATL and differentiating it from other abnormalities. The MRI findings seemed to correlate well with the histological changes. (orig.)

  9. Large scale tracking of stem cells using sparse coding and coupled graphs

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Dahl, Anders Lindbjerg; Holm, Peter

    Stem cell tracking is an inherently large scale problem. The challenge is to identify and track hundreds or thousands of cells over a time period of several weeks. This requires robust methods that can leverage the knowledge of specialists on the field. The tracking pipeline presented here consists...

  10. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  11. Active MRI tracking for robotic assisted FUS

    Science.gov (United States)

    Xiao, Xu; Huang, Zhihong; Melzer, Andreas

    2017-03-01

    MR guided FUS is a noninvasive method producing thermal necrosis at the position of tumors with high accuracy and temperature control. Because the typical size of the ultrasound focus is smaller than the area of interested treatment tissues, focus repositioning become necessary to achieve multiple sonications to cover the whole targeted area. Using MR compatible mechanical actuators could help the ultrasound beam to reach a wider treatment range than using electrical beam steering technique and more flexibility in position the transducer. An active MR tracking technique was combined into the MRgFUS system to help locating the position of the mechanical actuator and the FUS transducer. For this study, a precise agar reference model was designed and fabricated to test the performance of the active tracking technique when it was used on the MR-compatible robotics InnoMotion™ (IBSMM, Engineering spol. s r.o. / Ltd, Czech Republic). The precision, tracking range and positioning speed of the combined robotic FUS system were evaluated in this study. Compared to the existing MR guided HIFU systems, the combined robotic system with active tracking techniques provides a potential that allows the FUS treatment to operate in a larger spatial range and with a faster speed, which is one of the main challenges for organ motion tracking.

  12. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  13. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    International Nuclear Information System (INIS)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-01-01

    Research highlights: → We develop a method to track a quantum dot-conjugated protein in yeast cells. → We incorporate the conjugated quantum dot proteins into yeast spheroplasts. → We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  14. In vivo tracking of magnetically labeled mesenchmal stem cells injected via renal arteries in kidney failure rat

    International Nuclear Information System (INIS)

    Sun Junhui; Teng Gaojun; Ju Shenghong; Ma Zhanlong; Mai Xiaoli; Zhang Yu; Ma Ming

    2006-01-01

    Objective: To evaluate in vivo depiction and tracking for magnetically labeled bone marrow mesenchymal stern cells (MSCs) in a renal failure rat model injected intravascularly using a 1.5 T magnetic resonance imaging (MRI) system. Methods: Rat MSCs were isolated, purified, expanded and then incubated with home synthesized Fe 2 O 3 -PLL. Prussian blue stain was employed for identifying intracellular irons. An acute renal failure in rat was induced by intramuscular injection of glycerol and MSCs were injected into renal arteries of 11 recipients (labeled cells in six, unlabeled cells in five). MR images of kidneys were obtained respectively before injection of MSCs, and immediately, 1, 3, 5, and 8 clays after transplantation. MR imaging findings were analyzed, which were correlated with histological findings. Results: Rat MSCs were successfully labeled, and labeling efficiency was almost 100%. Prussian blue staining of Fe 2 O 3 -PLL labeled cells revealed the presence of iron-containing vesicles or endosomes in the cytoplasm. In the renal failure model of rats, the labeled MSCs were demonstrated as signal intensity loss in renal cortex on T 2 * -weighted MR images. The signal intensity decrease was visualized up to days 8 after transplantation. Histological analyses showed that most Prussian blue staining-positive cells were well correlated with the area where a signal intensity loss was observed in MRI. Signal intensity decrease was not detected after transplantation of unlabeled cells. Conclusion: The rat MSCs can be effectively labeled with Fe 2 O 3 -PLL. 1.5-T MR imaging seems to be a good technique to monitor the magnetically labeled MSCs in vivo in renal failure rat model intravascularly administered, which may have much more potential values for studying the engraftment of stem cells in kidneys. (authors)

  15. Cell therapy in myocardial infarction: emphasis on the role of MRI

    International Nuclear Information System (INIS)

    Ye, Yuxiang; Bogaert, Jan

    2008-01-01

    Despite tremendous progress in myocardial infarct (MI) treatment, mortality rates remain substantial. Permanent loss of cardiomyocytes after ischemic injury, results in irreversible loss of myocardial contractility, reduction in ventricular performance, and may initiate the development of dilated heart failure. The discovery that pluripotent progenitor cells bear the capacity to differentiate to mature cardiac cells raised the hope of cell-based regenerative medicine. Engraftment of stem cells in the damaged myocardium, repair and functional improvement appeared suddenly a nearby reality. Promising results in animal models, and preliminary studies reporting the feasibility and safety of adult stem cell therapy in MI patients led to the first double-blinded randomized, placebo-controlled trials. The initial great enthusiasm for this paradigm shift in MI treatment has been tempered by the mainly negative or modestly positive study findings. Before new, larger clinical trials can be initiated, a number of critical questions and issues need to be considered starting with a scrutinized analysis of currently available data to extending our knowledge of the mechanism of scarless myocardial regeneration. Cardiac cell therapy necessitates a multidisciplinary approach, whereby imaging, in particular MRI, and the input of the imaging specialist is crucial to the success of cardiac cell regenerative medicine. MRI is an appealing technique for cell trafficking depicting engraftment, differentiation and survival. Endomyocardial cell administration can be achieved safely with MR fluoroscopy and MRI is without any doubt the most accurate and reproducible technique to measure study end-points. (orig.)

  16. MRI with fibre tracking in Cogan congenital oculomotor apraxia

    Energy Technology Data Exchange (ETDEWEB)

    Merlini, Laura [University Hospital of Geneva, Pediatric Radiology, Geneva (Switzerland); Vargas, Maria I. [University Hospital of Geneva, Neuroradiology, Geneva (Switzerland); Haller, Raoul de [University Hospital of Geneva, Pediatric Ophthalmology, Geneva (Switzerland); Rilliet, Benedict [University Hospital of Geneva, Pediatric Neurosurgery, Geneva (Switzerland); Fluss, Joel [University Hospital of Geneva, Pediatric Neurology, Geneva (Switzerland)

    2010-10-15

    Congenital ocular motor apraxia (COMA) occasionally shares with Joubert syndrome (JS) and related disorders (JSRDs) a peculiar malformation, the 'molar tooth sign' (MTS). In JSRDs, the absence of superior cerebellar peduncles (SCP) decussation is reported. To investigate whether COMA demonstrates similar abnormal axonal pathways. Eight healthy age-matched controls, three children with clinical COMA and one child with clinical JSRD underwent examination with a 1.5-T MRI scanner. Diffusion-weighted imaging (DWI), colour-coded fractional anisotropy maps and three-dimensional diffusion tensor imaging (DTI) tractography of the cerebellorubral network were analyzed. On DTI cartography, the 'red dot' originally supposed to represent the SCP decussation in the midbrain was present in controls as well in those with COMA but absent in the single case with JS. In none of the subjects including controls was 3-D FT able to depict the SCP decussation. When seeded, the red dot resulted in the ventral tegmental decussation (VTD). It was normal in controls and in patients with COMA but was absent in our single patient with JSRD. MTS was identified in alla patients with COMA and in the patient with JSRD. MTS can be present in both COMA and JSRD but the underlying anatomy depicted by fibre tracking is distinct. The main difference is the integrity of the VTD in COMA. (orig.)

  17. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    Directory of Open Access Journals (Sweden)

    Cristina Rosazza

    2018-06-01

    Full Text Available Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery.Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI tasks of arm and leg movement and Diffusion Tensor Imaging (DTI before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients.Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery.Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative

  18. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.

    Science.gov (United States)

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the

  19. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging.

    Science.gov (United States)

    Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence

    2012-05-01

    Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.

  20. Dynamically constrained pipeline for tracking neural progenitor cells

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Dahl, Anders; Holm, Peter

    2013-01-01

    . A mitosis detector constructed from empirical observations of cells in a pre-mitotic state interacts with the graph formulation to dynamically allow for cell mitosis when appropriate. Track consistency is ensured by introducing pragmatic constraints and the notion of blob states. We validate the proposed...

  1. Chondroblastoma and clear cell chondrosarcoma: radiological and MRI characteristics with histopathological correlation

    International Nuclear Information System (INIS)

    Kaim, Achim H.; Huegli, Rolf; Bonel, Harald M.; Jundt, Gernot

    2002-01-01

    Objective: To analyze and compare the radiological and magnetic resonance imaging (MRI) appearances of chondroblastoma and clear cell chondrosarcoma with histopathological correlation. Design and patients: Twelve patients with histologically proven chondroblastoma and of another four patients with clear cell chondrosarcoma were investigated by radiographs and MRI (T1-, T2-weighted sequences, intravenous gadolinium application). Additionally, the clinical and radiologic data of seven cases of clear cell chondrosarcoma without available MRI were considered. The localization, calcification of tumor matrix, periosteal reaction, cortical bone and patterns of bone destruction were analyzed according to the Lodwick radiological grading system (LRGS). The signal intensity on T1- and T2-weighted sequences, characteristics of contrast enhancement, associated bone marrow edema, soft tissue reaction and joint involvement were evaluated. Histopathological specimens were available in all cases. Results: The age of patients with chondroblastoma (range 15-59 years, mean 22.3 years) was lower than that of those with clear cell chondrosarcoma (range 19-61 years, mean 36.6 years), and the lesions were smaller in the chondroblastoma group (range 1-4 cm, mean 2.3 cm) than in patients with clear cell chondrosarcoma (range 3-7.5 cm, mean 5.2 cm). The chondroblastomas were more confined to the epiphysis (10/12) than the clear cell chondrosarcomas. All chondroblastomas and clear cell chondrosarcomas except one were classified as grade 1A or 1B according to the LRGS; one clear cell chondrosarcoma was judged as grade 2. Signal intensity of the tumors on MRI was very heterogeneous in both groups. High signal intensity on T2-weighted MR images in chondroblastoma mostly corresponded to areas with aneurysmal bone cyst components and in clear cell chondrosarcoma to islands of hyaline cartilage. Contrast enhancement occurred in all tumors and tended to be more intense with clear cell

  2. Chondroblastoma and clear cell chondrosarcoma: radiological and MRI characteristics with histopathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kaim, Achim H.; Huegli, Rolf [Institute of Diagnostic Radiology, University Hospital Basle (Switzerland); Bonel, Harald M. [Institute of Clinical Radiology, University Hospital, Munich-Grosshadern (Germany); Jundt, Gernot [Institute of Pathology, University Hospital Basle (Switzerland)

    2002-02-01

    Objective: To analyze and compare the radiological and magnetic resonance imaging (MRI) appearances of chondroblastoma and clear cell chondrosarcoma with histopathological correlation. Design and patients: Twelve patients with histologically proven chondroblastoma and of another four patients with clear cell chondrosarcoma were investigated by radiographs and MRI (T1-, T2-weighted sequences, intravenous gadolinium application). Additionally, the clinical and radiologic data of seven cases of clear cell chondrosarcoma without available MRI were considered. The localization, calcification of tumor matrix, periosteal reaction, cortical bone and patterns of bone destruction were analyzed according to the Lodwick radiological grading system (LRGS). The signal intensity on T1- and T2-weighted sequences, characteristics of contrast enhancement, associated bone marrow edema, soft tissue reaction and joint involvement were evaluated. Histopathological specimens were available in all cases. Results: The age of patients with chondroblastoma (range 15-59 years, mean 22.3 years) was lower than that of those with clear cell chondrosarcoma (range 19-61 years, mean 36.6 years), and the lesions were smaller in the chondroblastoma group (range 1-4 cm, mean 2.3 cm) than in patients with clear cell chondrosarcoma (range 3-7.5 cm, mean 5.2 cm). The chondroblastomas were more confined to the epiphysis (10/12) than the clear cell chondrosarcomas. All chondroblastomas and clear cell chondrosarcomas except one were classified as grade 1A or 1B according to the LRGS; one clear cell chondrosarcoma was judged as grade 2. Signal intensity of the tumors on MRI was very heterogeneous in both groups. High signal intensity on T2-weighted MR images in chondroblastoma mostly corresponded to areas with aneurysmal bone cyst components and in clear cell chondrosarcoma to islands of hyaline cartilage. Contrast enhancement occurred in all tumors and tended to be more intense with clear cell

  3. Efficient MRI labeling of endothelial progenitor cells: design of thiolated surface stabilized superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Shahnaz, Gul; Kremser, Christian; Reinisch, Andreas; Vetter, Anja; Laffleur, Flavia; Rahmat, Deni; Iqbal, Javed; Dünnhaupt, Sarah; Salvenmoser, Willi; Tessadri, Richard; Griesser, Ulrich; Bernkop-Schnürch, Andreas

    2013-11-01

    The aim of this study was to design thiolated surface stabilized superparamagnetic iron oxide nanoparticles (TSS-SPIONs) for efficient internalization with high MRI sensitivity. TSS-SPIONs were developed by chelation between thiolated chitosan-thioglycolic acid (chitosan-TGA) hydrogel and iron ions (Fe(2+)/Fe(3+)). Likely, unmodified chitosan hydrogel SPIONs (UC-SPIONs) and uncoated SPIONs were used as control. Moreover, TSS-SPIONs were investigated regarding to their iron core size, hydrodynamic diameter, zeta potential, iron contents, molar relaxivities (r1 and r2), and cellular internalization. TSS-SPIONs demonstrated an iron oxide core diameter (crystallite size by XRD) of 3.1 ± 0.02 nm, a hydrodynamic diameter of 94 ± 20 nm, a zeta potential of +21 ± 5 mV, and an iron content of 3.6 ± 0.9 mg/mL. In addition, internalization of TSS-SPIONs into human endothelial progenitor cells (EPC) from umbilical cord blood was more than threefold and 17-fold higher in contrast to UC-SPIONs and SPIONs, respectively. With twofold lower incubation iron concentration of TSS-SPIONs, more than threefold higher internalization was achieved as compared to Resovist®. Also, cell viability of more than 90% was observed in the presence of TSS-SPIONs after 24h. The molar MR relaxivities (r2) value at 1.5 T was threefold higher than that of Resovist® and demonstrated that TSS-SPIONs have the potential as very effective T2 contrast-enhancement agent. According to these findings, TSS-SPIONs with efficient internalization, lower cytotoxicity, and high MRI sensitivity seem to be promising for cell tracking. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Quantification of Superparamagnetic Iron Oxide (SPIO)-labeled Cells Using MRI

    Science.gov (United States)

    Rad, Ali M; Arbab, Ali S; Iskander, ASM; Jiang, Quan; Soltanian-Zadeh, Hamid

    2015-01-01

    Purpose To show the feasibility of using magnetic resonance imaging (MRI) to quantify superparamagnetic iron oxide (SPIO)-labeled cells. Materials and Methods Lymphocytes and 9L rat gliosarcoma cells were labeled with Ferumoxides-Protamine Sulfate complex (FE-PRO). Cells were labeled efficiently (more than 95%) and iron concentration inside each cell was measured by spectrophotometry (4.77-30.21 picograms). Phantom tubes containing different number of labeled or unlabeled cells as well as different concentrations of FE-PRO were made. In addition, labeled and unlabeled cells were injected into fresh and fixed rat brains. Results Cellular viability and proliferation of labeled and unlabeled cells were shown to be similar. T2-weighted images were acquired using 7 T and 3 T MRI systems and R2 maps of the tubes containing cells, free FE-PRO, and brains were made. There was a strong linear correlation between R2 values and labeled cell numbers but the regression lines were different for the lymphocytes and gliosarcoma cells. Similarly, there was strong correlation between R2 values and free iron. However, free iron had higher R2 values than the labeled cells for the same concentration of iron. Conclusion Our data indicated that in vivo quantification of labeled cells can be done by careful consideration of different factors and specific control groups. PMID:17623892

  5. Magnetic resonance cell-tracking studies: spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Böhm, Ingrid

    2011-08-01

    The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r  =  .9958; p  =  2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).

  6. Magnetic Resonance Cell-Tracking Studies: Spectrophotometry-Based Method for the Quantification of Cellular Iron Content after Loading with Superparamagnetic Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ingrid Böhm

    2011-07-01

    Full Text Available The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI. Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT whole-body system. Mean peak wavelengths Λpeak was determined at A720nm (range 719–722 nm. Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r = .9958; p = 2.2 × 10−12. The limit of detection was 0.01 μg Fe/mL (0.1785 mM, and the limit of quantification was 0.04 μg Fe/mL (0.714 mM. Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T2-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside.

  7. MRI of congenital urethroperineal fistula

    Energy Technology Data Exchange (ETDEWEB)

    Ghadimi-Mahani, Maryam; Dillman, Jonathan R.; Pai, Deepa; DiPietro, Michael [C. S. Mott Children' s Hospital, Department of Radiology, Section of Pediatric Radiology, University of Michigan Health System, Ann Arbor, MI (United States); Park, John [C. S. Mott Children' s Hospital, Department of Pediatric Urology, University of Michigan Health System, Ann Arbor, MI (United States)

    2010-12-15

    We present the MRI features of a congenital urethroperineal fistula diagnosed in a 12-year-old boy being evaluated after a single urinary tract infection. This diagnosis was initially suggested by voiding cystourethrogram and confirmed by MRI. Imaging revealed an abnormal fluid-filled tract arising from the posterior urethra and tracking to the perineal skin surface that increased in size during micturition. Surgical resection and histopathological evaluation of the abnormal tract confirmed the diagnosis of congenital urethroperineal fistula. MRI played important roles in confirming the diagnosis and assisting surgical planning. (orig.)

  8. MRI of congenital urethroperineal fistula

    International Nuclear Information System (INIS)

    Ghadimi-Mahani, Maryam; Dillman, Jonathan R.; Pai, Deepa; DiPietro, Michael; Park, John

    2010-01-01

    We present the MRI features of a congenital urethroperineal fistula diagnosed in a 12-year-old boy being evaluated after a single urinary tract infection. This diagnosis was initially suggested by voiding cystourethrogram and confirmed by MRI. Imaging revealed an abnormal fluid-filled tract arising from the posterior urethra and tracking to the perineal skin surface that increased in size during micturition. Surgical resection and histopathological evaluation of the abnormal tract confirmed the diagnosis of congenital urethroperineal fistula. MRI played important roles in confirming the diagnosis and assisting surgical planning. (orig.)

  9. A novel validation algorithm allows for automated cell tracking and the extraction of biologically meaningful parameters.

    Directory of Open Access Journals (Sweden)

    Daniel H Rapoport

    Full Text Available Automated microscopy is currently the only method to non-invasively and label-free observe complex multi-cellular processes, such as cell migration, cell cycle, and cell differentiation. Extracting biological information from a time-series of micrographs requires each cell to be recognized and followed through sequential microscopic snapshots. Although recent attempts to automatize this process resulted in ever improving cell detection rates, manual identification of identical cells is still the most reliable technique. However, its tedious and subjective nature prevented tracking from becoming a standardized tool for the investigation of cell cultures. Here, we present a novel method to accomplish automated cell tracking with a reliability comparable to manual tracking. Previously, automated cell tracking could not rival the reliability of manual tracking because, in contrast to the human way of solving this task, none of the algorithms had an independent quality control mechanism; they missed validation. Thus, instead of trying to improve the cell detection or tracking rates, we proceeded from the idea to automatically inspect the tracking results and accept only those of high trustworthiness, while rejecting all other results. This validation algorithm works independently of the quality of cell detection and tracking through a systematic search for tracking errors. It is based only on very general assumptions about the spatiotemporal contiguity of cell paths. While traditional tracking often aims to yield genealogic information about single cells, the natural outcome of a validated cell tracking algorithm turns out to be a set of complete, but often unconnected cell paths, i.e. records of cells from mitosis to mitosis. This is a consequence of the fact that the validation algorithm takes complete paths as the unit of rejection/acceptance. The resulting set of complete paths can be used to automatically extract important biological parameters

  10. Tissue-Point Motion Tracking in the Tongue from Cine MRI and Tagged MRI

    Science.gov (United States)

    Woo, Jonghye; Stone, Maureen; Suo, Yuanming; Murano, Emi Z.; Prince, Jerry L.

    2014-01-01

    Purpose: Accurate tissue motion tracking within the tongue can help professionals diagnose and treat vocal tract--related disorders, evaluate speech quality before and after surgery, and conduct various scientific studies. The authors compared tissue tracking results from 4 widely used deformable registration (DR) methods applied to cine magnetic…

  11. Predictive saccades in children and adults: A combined fMRI and eye tracking study.

    Directory of Open Access Journals (Sweden)

    Katerina Lukasova

    Full Text Available Saccades were assessed in 21 adults (age 24 years, SD = 4 and 15 children (age 11 years, SD = 1, using combined functional magnetic resonance imaging (fMRI and eye-tracking. Subjects visually tracked a point on a horizontal line in four conditions: time and position predictable task (PRED, position predictable (pPRED, time predictable (tPRED and visually guided saccades (SAC. Both groups in the PRED but not in pPRED, tPRED and SAC produced predictive saccades with latency below 80 ms. In task versus group comparisons, children's showed less efficient learning compared to adults for predictive saccades (adults = 48%, children = 34%, p = 0.05. In adults brain activation was found in the frontal and occipital regions in the PRED, in the intraparietal sulcus in pPRED and in the frontal eye field, posterior intraparietal sulcus and medial regions in the tPRED task. Group-task interaction was found in the supplementary eye field and visual cortex in the PRED task, and the frontal cortex including the right frontal eye field and left frontal pole, in the pPRED condition. These results indicate that, the basic visuomotor circuitry is present in both adults and children, but fine-tuning of the activation according to the task temporal and spatial demand mature late in child development.

  12. A track-event theory of cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Besserer, Juergen; Schneider, Uwe [Zuerich Univ. (Switzerland). Inst. of Physics; Radiotherapy Hirslanden, Zuerich (Switzerland)

    2015-09-01

    When fractionation schemes for hypofractionation and stereotactic body radiotherapy are considered, a reliable cell survival model at high dose is needed for calculating doses of similar biological effectiveness. In this work a simple model for cell survival which is valid also at high dose is developed from Poisson statistics. An event is defined by two double strand breaks (DSB) on the same or different chromosomes. An event is always lethal due to direct lethal damage or lethal binary misrepair by the formation of chromosome aberrations. Two different mechanisms can produce events: one-track events (OTE) or two-track-events (TTE). The target for an OTE is always a lethal event, the target for an TTE is one DSB. At least two TTEs on the same or different chromosomes are necessary to produce an event. Both, the OTE and the TTE are statistically independent. From the stochastic nature of cell kill which is described by the Poisson distribution the cell survival probability was derived. It was shown that a solution based on Poisson statistics exists for cell survival. It exhibits exponential cell survival at high dose and a finite gradient of cell survival at vanishing dose, which is in agreement with experimental cell studies. The model fits the experimental data nearly as well as the three-parameter formula of Hug-Kellerer and is only based on two free parameters. It is shown that the LQ formalism is an approximation of the model derived in this work. It could be also shown that the derived model predicts a fractionated cell survival experiment better than the LQ-model. It was shown that cell survival can be described with a simple analytical formula on the basis of Poisson statistics. This solution represents in the limit of large dose the typical exponential behavior and predicts cell survival after fractionated dose application better than the LQ-model.

  13. A track-event theory of cell survival

    International Nuclear Information System (INIS)

    Besserer, Juergen; Schneider, Uwe

    2015-01-01

    When fractionation schemes for hypofractionation and stereotactic body radiotherapy are considered, a reliable cell survival model at high dose is needed for calculating doses of similar biological effectiveness. In this work a simple model for cell survival which is valid also at high dose is developed from Poisson statistics. An event is defined by two double strand breaks (DSB) on the same or different chromosomes. An event is always lethal due to direct lethal damage or lethal binary misrepair by the formation of chromosome aberrations. Two different mechanisms can produce events: one-track events (OTE) or two-track-events (TTE). The target for an OTE is always a lethal event, the target for an TTE is one DSB. At least two TTEs on the same or different chromosomes are necessary to produce an event. Both, the OTE and the TTE are statistically independent. From the stochastic nature of cell kill which is described by the Poisson distribution the cell survival probability was derived. It was shown that a solution based on Poisson statistics exists for cell survival. It exhibits exponential cell survival at high dose and a finite gradient of cell survival at vanishing dose, which is in agreement with experimental cell studies. The model fits the experimental data nearly as well as the three-parameter formula of Hug-Kellerer and is only based on two free parameters. It is shown that the LQ formalism is an approximation of the model derived in this work. It could be also shown that the derived model predicts a fractionated cell survival experiment better than the LQ-model. It was shown that cell survival can be described with a simple analytical formula on the basis of Poisson statistics. This solution represents in the limit of large dose the typical exponential behavior and predicts cell survival after fractionated dose application better than the LQ-model.

  14. CT and MRI features of acinar cell carcinoma of the pancreas with pathological correlations

    International Nuclear Information System (INIS)

    Hsu, M.-Y.; Pan, K.-T.; Chu, S.-Y.; Hung, C.-F.; Wu, R.-C.; Tseng, J.-H.

    2010-01-01

    Aim: To document the computed tomography (CT) and magnetic resonance imaging (MRI) features of acinar cell carcinoma of the pancreas and to correlate them with pathological findings to determine the unique imaging manifestations of this rare subtype tumour of the pancreas. Materials and methods: From January 1986 to August 2008, six patients (five men and one woman, mean age 61.3 years) with histologically proven acinar cell carcinoma of the pancreas underwent CT (n = 6) and MRI (n = 4) examinations. The imaging features of each tumour were documented and compared with pathological findings. Results: The tumours were distributed in the head (n = 4), body (n = 1), and tail (n = 1) of the pancreas. Four masses (67%) were uniformly or partially well-defined with thin, enhancing capsules. Central cystic components were found in five tumours (83%). Two tumours (33%) exhibited intratumoural haemorrhage, and one tumour (17%) had amorphous intratumoural calcification. In both CT and MRI, the tumours enhanced less than the adjacent normal pancreatic parenchyma. The signal intensity on MRI was predominantly T1 hypointense and T2 iso- to hyperintense. Conclusion: Acinar cell carcinoma of the pancreas has distinct imaging features, and both CT and MRI are useful and complementary imaging methods.

  15. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography

    International Nuclear Information System (INIS)

    Lamacie, Mariana M.; Thavendiranathan, Paaladinesh; Hanneman, Kate; Greiser, Andreas; Jolly, Marie-Pierre; Ward, Richard; Wintersperger, Bernd J.

    2017-01-01

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all p<0.001), only DRA correlated significantly to STE for GLS (r=0.47; p=0.006). However, good correlation was demonstrated between MR techniques (GLS:r=0.74; GCS:r=0.80; GRS:r=0.45, all p<0.05). Comparing DRA with FT, intra-/interobserver coefficient of variance was lower (1.6 %/3.2 % vs. 6.4 %/5.7 %) and intraclass-correlation coefficient was higher. DRA GCS and GRS data presented zero variability for repeated observations. DRA is an automated method that allows myocardial deformation assessment with superior reproducibility compared to FT. (orig.)

  16. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Lamacie, Mariana M. [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); Thavendiranathan, Paaladinesh [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medicine, Division of Cardiology, Toronto, Ontario (Canada); Hanneman, Kate [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Greiser, Andreas [Siemens Healthcare, Erlangen (Germany); Jolly, Marie-Pierre [Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ (United States); Ward, Richard [University of Toronto, Department of Medicine, Division of Cardiology, Toronto, Ontario (Canada); Wintersperger, Bernd J. [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Toronto General Hospital, Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-04-15

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all p<0.001), only DRA correlated significantly to STE for GLS (r=0.47; p=0.006). However, good correlation was demonstrated between MR techniques (GLS:r=0.74; GCS:r=0.80; GRS:r=0.45, all p<0.05). Comparing DRA with FT, intra-/interobserver coefficient of variance was lower (1.6 %/3.2 % vs. 6.4 %/5.7 %) and intraclass-correlation coefficient was higher. DRA GCS and GRS data presented zero variability for repeated observations. DRA is an automated method that allows myocardial deformation assessment with superior reproducibility compared to FT. (orig.)

  17. Self-assembled superparamagnetic nanoparticles as MRI contrast agents— A review

    International Nuclear Information System (INIS)

    Su Hong-Ying; Wu Chang-Qiang; Ai Hua; Li Dan-Yang

    2015-01-01

    Recent progress of the preparation and applications of superparamagnetic iron oxide (SPIO) clusters as magnetic resonance imaging (MRI) probes is reviewed with regard to their applications in labeling and tracking cells in vivo, in diagnosis of cardiovascular diseases and tumors, and in drug delivery systems. Magnetic nanoparticles (NPs), especially SPIO nanoparticles, have long been used as MRI contrast agents and as an advantageous nanoplatform for drug delivery, taking advantage of their unique magnetic properties and ability to function at the molecular and cellular levels. Due to advances in nanotechnology, various means to control SPIO NPs’ size, composition, magnetization and relaxivity have been developed, as well as ways to usefully modify their surface. Recently, self-assembly of SPIO NP clusters in particulate carriers—such as polymeric micelles, vesicles, liposomes, and layer-by-layer (LbL) capsules—have been widely studied for application as ultrasensitive MRI probes, owing to their remarkably high spin–spin (T 2 ) relaxivity and convenience for further functionalization. (topical review)

  18. Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders

    International Nuclear Information System (INIS)

    Montagne, Axel; Gauberti, Maxime; Jullienne, Amandine; Briens, Aurelien; Docagne, Fabian; Vivien, Denis; Maubert, Eric; Macrez, Richard; Defer, Gilles; Raynaud, Jean-Sebastien; Louin, Gaelle; Buisson, Alain; Haelewyn, Benoit

    2012-01-01

    Since endothelial cells can be targeted by large contrast-carrying particles, molecular imaging of cerebrovascular cell activation is highly promising to evaluate the underlying inflammation of the central nervous system (CNS). In this study, we aimed to demonstrate that molecular magnetic resonance imaging (MRI) of cerebrovascular cell activation can reveal CNS disorders in the absence of visible lesions and symptoms. To this aim, we optimized contrast carrying particles targeting vascular cell adhesion molecule-1 and MRI protocols through both in vitro and in vivo experiments. Although, pre-contrast MRI images failed to reveal the ongoing pathology, contrast-enhanced MRI revealed hypoperfusion-triggered CNS injury in vascular dementia, unmasked amyloid-induced cerebrovascular activation in Alzheimer's disease and allowed monitoring of disease activity during experimental autoimmune encephalomyelitis. Moreover, contrast-enhanced MRI revealed the cerebrovascular cell activation associated with known risk factors of CNS disorders such as peripheral inflammation, ethanol consumption, hyperglycemia and aging. By providing a dramatically higher sensitivity than previously reported methods and molecular contrast agents, the technology described in the present study opens new avenues of investigation in the field of neuro-inflammation. (authors)

  19. Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara, E-mail: chiara.paganelli@polimi.it [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Seregni, Matteo; Fattori, Giovanni [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Summers, Paul [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Bellomi, Massimo [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Department of Health Sciences, Università degli Studi di Milano, Milano (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy)

    2015-03-15

    Purpose: This study applied automatic feature detection on cine–magnetic resonance imaging (MRI) liver images in order to provide a prospective comparison between MRI-guided and surrogate-based tracking methods for motion-compensated liver radiation therapy. Methods and Materials: In a population of 30 subjects (5 volunteers plus 25 patients), 2 oblique sagittal slices were acquired across the liver at high temporal resolution. An algorithm based on scale invariant feature transform (SIFT) was used to extract and track multiple features throughout the image sequence. The position of abdominal markers was also measured directly from the image series, and the internal motion of each feature was quantified through multiparametric analysis. Surrogate-based tumor tracking with a state-of-the-art external/internal correlation model was simulated. The geometrical tracking error was measured, and its correlation with external motion parameters was also investigated. Finally, the potential gain in tracking accuracy relying on MRI guidance was quantified as a function of the maximum allowed tracking error. Results: An average of 45 features was extracted for each subject across the whole liver. The multi-parametric motion analysis reported relevant inter- and intrasubject variability, highlighting the value of patient-specific and spatially-distributed measurements. Surrogate-based tracking errors (relative to the motion amplitude) were were in the range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion parameters. The gain of MRI guidance compared to surrogate-based motion tracking was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error tolerance. Conclusions: Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI

  20. The Right Temporoparietal Junction Supports Speech Tracking During Selective Listening: Evidence from Concurrent EEG-fMRI.

    Science.gov (United States)

    Puschmann, Sebastian; Steinkamp, Simon; Gillich, Imke; Mirkovic, Bojana; Debener, Stefan; Thiel, Christiane M

    2017-11-22

    Listening selectively to one out of several competing speakers in a "cocktail party" situation is a highly demanding task. It relies on a widespread cortical network, including auditory sensory, but also frontal and parietal brain regions involved in controlling auditory attention. Previous work has shown that, during selective listening, ongoing neural activity in auditory sensory areas is dominated by the attended speech stream, whereas competing input is suppressed. The relationship between these attentional modulations in the sensory tracking of the attended speech stream and frontoparietal activity during selective listening is, however, not understood. We studied this question in young, healthy human participants (both sexes) using concurrent EEG-fMRI and a sustained selective listening task, in which one out of two competing speech streams had to be attended selectively. An EEG-based speech envelope reconstruction method was applied to assess the strength of the cortical tracking of the to-be-attended and the to-be-ignored stream during selective listening. Our results show that individual speech envelope reconstruction accuracies obtained for the to-be-attended speech stream were positively correlated with the amplitude of sustained BOLD responses in the right temporoparietal junction, a core region of the ventral attention network. This brain region further showed task-related functional connectivity to secondary auditory cortex and regions of the frontoparietal attention network, including the intraparietal sulcus and the inferior frontal gyrus. This suggests that the right temporoparietal junction is involved in controlling attention during selective listening, allowing for a better cortical tracking of the attended speech stream. SIGNIFICANCE STATEMENT Listening selectively to one out of several simultaneously talking speakers in a "cocktail party" situation is a highly demanding task. It activates a widespread network of auditory sensory and

  1. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Magro, Elsa [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); Moreau, Tristan; Gibaud, Bernard [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); Seizeur, Romuald [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Cavale Blanche, Service de Neurochirurgie, Pole Neurolocomoteur, Brest (France); INSERM UMR 1101 LaTIM, Brest (France); Morandi, Xavier [INSERM U 1099/Universite de Rennes 1, Equipe MediCIS, Faculte de Medecine, Rennes Cedex (France); CHU Pontchaillou, Service de Neurochirurgie, Rennes (France)

    2012-11-15

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  2. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

    International Nuclear Information System (INIS)

    Magro, Elsa; Moreau, Tristan; Gibaud, Bernard; Seizeur, Romuald; Morandi, Xavier

    2012-01-01

    Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. These results raise questions about the functional role of these MRI tracks and their relation with laterality. (orig.)

  3. Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism.

    Science.gov (United States)

    Cruz, Luis J; Tacken, Paul J; Zeelenberg, Ingrid S; Srinivas, Mangala; Bonetto, Fernando; Weigelin, Bettina; Eich, Christina; de Vries, I Jolanda; Figdor, Carl G

    2014-12-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), involved in the induction of immunity and currently exploited for antitumor immunotherapies. An optimized noninvasive imaging modality capable of determining and quantifying DC-targeted nanoparticle (NP) trajectories could provide valuable information regarding therapeutic vaccine outcome. Here, targeted poly(d,l-lactide-co-glycolide) nanoparticles (PLGA NPs) recognizing DC receptors were equipped with superparamagnetic iron oxide particles (SPIO) or gold nanoparticles with fluorescently labeled antigen. The fluorescent label allowed for rapid analysis and quantification of DC-specific uptake of targeted PLGA NPs in comparison to uptake by other cells. Transmission electron microscopy (TEM) showed that a fraction of the encapsulated antigen reached the lysosomal compartment of DCs, where SPIO and gold were already partially released. However, part of the PLGA NPs localized within the cytoplasm, as confirmed by confocal microscopy. DCs targeted with NPs carrying SPIO or fluorescent antigen were detected within lymph nodes as early as 1 h after injection by magnetic resonance imaging (MRI). Despite the fact that targeting did not markedly affect PLGA NP biodistribution on organism and tissue level, it increased delivery of NPs to DCs residing in peripheral lymph nodes and resulted in enhanced T cell proliferation. In conclusion, two imaging agents within a single carrier allows tracking of targeted PLGA NPs at the subcellular, cellular, and organismal levels, thereby facilitating the rational design of in vivo targeted vaccination strategies.

  4. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback.

    Science.gov (United States)

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S

    2013-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.

  5. Teleoperation System with Hybrid Pneumatic-Piezoelectric Actuation for MRI-Guided Needle Insertion with Haptic Feedback

    Science.gov (United States)

    Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.

    2014-01-01

    This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446

  6. Robust Individual-Cell/Object Tracking via PCANet Deep Network in Biomedicine and Computer Vision

    Directory of Open Access Journals (Sweden)

    Bineng Zhong

    2016-01-01

    Full Text Available Tracking individual-cell/object over time is important in understanding drug treatment effects on cancer cells and video surveillance. A fundamental problem of individual-cell/object tracking is to simultaneously address the cell/object appearance variations caused by intrinsic and extrinsic factors. In this paper, inspired by the architecture of deep learning, we propose a robust feature learning method for constructing discriminative appearance models without large-scale pretraining. Specifically, in the initial frames, an unsupervised method is firstly used to learn the abstract feature of a target by exploiting both classic principal component analysis (PCA algorithms with recent deep learning representation architectures. We use learned PCA eigenvectors as filters and develop a novel algorithm to represent a target by composing of a PCA-based filter bank layer, a nonlinear layer, and a patch-based pooling layer, respectively. Then, based on the feature representation, a neural network with one hidden layer is trained in a supervised mode to construct a discriminative appearance model. Finally, to alleviate the tracker drifting problem, a sample update scheme is carefully designed to keep track of the most representative and diverse samples during tracking. We test the proposed tracking method on two standard individual cell/object tracking benchmarks to show our tracker's state-of-the-art performance.

  7. [Study on method of tracking the active cells in image sequences based on EKF-PF].

    Science.gov (United States)

    Tang, Chunming; Liu, Ying

    2013-02-01

    In cell image sequences, due to the nonlinear and nonGaussian motion characteristics of active cells, the accurate prediction and tracking is still an unsolved problem. We applied extended Kalman particle filter (EKF-PF) here in our study, attempting to solve the problem. Firstly we confirmed the existence and positions of the active cells. Then we established a motion model and improved it via adding motion angle estimation. Next we predicted motion parameters, such as displacement, velocity, accelerated velocity and motion angle, in region centers of the cells being tracked. Finally we obtained the motion traces of active cells. There were fourteen active cells in three image sequences which have been tracked. The errors were less than 2.5 pixels when the prediction values were compared with actual values. It showed that the presented algorithm may basically reach the solution of accurate predition and tracking of the active cells.

  8. Automatic multimodal real-time tracking for image plane alignment in interventional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Neumann, Markus

    2014-01-01

    Interventional magnetic resonance imaging (MRI) aims at performing minimally invasive percutaneous interventions, such as tumor ablations and biopsies, under MRI guidance. During such interventions, the acquired MR image planes are typically aligned to the surgical instrument (needle) axis and to surrounding anatomical structures of interest in order to efficiently monitor the advancement in real-time of the instrument inside the patient's body. Object tracking inside the MRI is expected to facilitate and accelerate MR-guided interventions by allowing to automatically align the image planes to the surgical instrument. In this PhD thesis, an image-based work-flow is proposed and refined for automatic image plane alignment. An automatic tracking work-flow was developed, performing detection and tracking of a passive marker directly in clinical real-time images. This tracking work-flow is designed for fully automated image plane alignment, with minimization of tracking-dedicated time. Its main drawback is its inherent dependence on the slow clinical MRI update rate. First, the addition of motion estimation and prediction with a Kalman filter was investigated and improved the work-flow tracking performance. Second, a complementary optical sensor was used for multi-sensor tracking in order to decouple the tracking update rate from the MR image acquisition rate. Performance of the work-flow was evaluated with both computer simulations and experiments using an MR compatible test bed. Results show a high robustness of the multi-sensor tracking approach for dynamic image plane alignment, due to the combination of the individual strengths of each sensor. (author)

  9. Utility of MRI versus tumor markers for post-treatment surveillance of marker-positive CNS germ cell tumors.

    Science.gov (United States)

    Cheung, Victoria; Segal, Devorah; Gardner, Sharon L; Zagzag, David; Wisoff, Jeffrey H; Allen, Jeffrey C; Karajannis, Matthias A

    2016-09-01

    Patients with marker-positive central nervous system (CNS) germ cell tumors are typically monitored for tumor recurrence with both tumor markers (AFP and b-hCG) and MRI. We hypothesize that the recurrence of these tumors will always be accompanied by an elevation in tumor markers, and that surveillance MRI may not be necessary. We retrospectively identified 28 patients with CNS germ cell tumors treated at our institution that presented with an elevated serum or cerebrospinal fluid (CSF) tumor marker at the time of diagnosis. We then identified those who had a tumor recurrence after having been in remission and whether each recurrence was detected via MRI changes, elevated tumor markers, or both. Four patients suffered a tumor recurrence. Only one patient had simultaneously elevated tumor markers and MRI evidence of recurrence. Two patients had evidence of recurrence on MRI without corresponding elevations in serum or CSF tumor markers. One patient had abnormal tumor markers with no evidence of recurrence on MRI until 6 months later. We conclude that in patients with marker-positive CNS germ cell tumors who achieve complete remission, continued surveillance imaging in addition to measurement of tumor markers is indicated to detect recurrences.

  10. NucliTrack: an integrated nuclei tracking application.

    Science.gov (United States)

    Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris

    2017-10-15

    Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  11. Cell Labeling for 19F MRI: New and Improved Approach to Perfluorocarbon Nanoemulsion Design

    Directory of Open Access Journals (Sweden)

    Jonathan Williams

    2013-09-01

    Full Text Available This report describes novel perfluorocarbon (PFC nanoemulsions designed to improve ex vivo cell labeling for 19F magnetic resonance imaging (MRI. 19F MRI is a powerful non-invasive technique for monitoring cells of the immune system in vivo, where cells are labeled ex vivo with PFC nanoemulsions in cell culture. The quality of 19F MRI is directly affected by the quality of ex vivo PFC cell labeling. When co-cultured with cells for longer periods of time, nanoemulsions tend to settle due to high specific weight of PFC oils (1.5–2.0 g/mL. This in turn can decrease efficacy of excess nanoemulsion removal and reliability of the cell labeling in vitro. To solve this problem, novel PFC nanoemulsions are reported which demonstrate lack of sedimentation and high stability under cell labeling conditions. They are monodisperse, have small droplet size (~130 nm and low polydispersity (<0.15, show a single peak in the 19F nuclear magnetic resonance spectrum at −71.4 ppm and possess high fluorine content. The droplet size and polydispersity remained unchanged after 160 days of follow up at three temperatures (4, 25 and 37 °C. Further, stressors such as elevated temperature in the presence of cells, and centrifugation, did not affect the nanoemulsion droplet size and polydispersity. Detailed synthetic methodology and in vitro testing for these new PFC nanoemulsions is presented.

  12. Prospective assessment of MRI for imaging retroperitoneal metastases from testicular germ cell tumours

    Energy Technology Data Exchange (ETDEWEB)

    Sohaib, S.A. [Department of Radiology, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom)], E-mail: aslam.sohaib@rmh.nhs.uk; Koh, D.M. [Department of Radiology, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Barbachano, Y. [Department of Computing and Statistics, Royal Marsden Hospital, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Parikh, J.; Husband, J.E.S. [Department of Radiology, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom); Dearnaley, D.P.; Horwich, A.; Huddart, R. [Department of Academic Urology Unit, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey (United Kingdom)

    2009-04-15

    Aim: To determine the sensitivity of magnetic resonance imaging (MRI) in the detection of retroperitoneal lymph nodes in patients with testicular germ cell tumours (TGCT). Methods and materials: A prospective study of 52 patients (mean age 34 years, range 18-54 years) was performed. Imaging of the retroperitoneum was performed using multidetector computed tomography (CT) and 1.5 T MRI systems. The CT and MRI images were read independently by three observers. The number, size, and site of enlarged nodes ({>=}10 mm maximum short axis diameter) were recorded. Retroperitoneal nodal detection on MRI was compared to CT. Results: Twenty-two (42%) of the 52 patients had no retroperitoneal disease; in remaining 30 patients 51 enlarged nodes were identified. On a per patient basis readers 1, 2, and 3 identified nodal disease in 28 of 29, 29 of 30, and 24 of 30 patients, respectively, using MRI compared to CT. Thus for experienced radiologists (readers 1 and 2) MRI is comparable to CT for nodal detection (i.e., this study excludes MRI being inferior to CT with 80% power and 5% type 1 error). Conclusion: MRI offers an alternative method for staging the retroperitoneum in young patients being followed for TGCT and has the major advantage of avoiding exposure to ionizing radiation.

  13. MDMA ‘ecstasy’ increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI

    Science.gov (United States)

    Rouine, J; Gobbo, O L; Campbell, M; Gigliucci, V; Ogden, I; McHugh Smith, K; Duffy, P; Behan, B; Byrne, D; Kelly, M E; Blau, C W; Kerskens, C M; Harkin, A

    2013-01-01

    Background and Purpose The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA ‘ecstasy’) to rats. Experimental Approach Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg−1; i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg−1; i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg−1; i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. Key Results MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg−1; i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. Conclusions and Implications MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use. PMID:23517012

  14. Tracking and Finding Slow-Proliferating/Quiescent Cancer Stem Cells with Fluorescent Nanodiamonds.

    Science.gov (United States)

    Lin, Hsin-Hung; Lee, Hsiao-Wen; Lin, Ruey-Jen; Huang, Chih-Wei; Liao, Yi-Chun; Chen, Yit-Tsong; Fang, Jim-Min; Lee, Te-Chang; Yu, Alice L; Chang, Huan-Cheng

    2015-09-09

    Quiescent cancer stem cells (CSCs) have long been considered to be a source of tumor initiation. However, identification and isolation of these cells have been hampered by the fact that commonly used fluorescent markers are not sufficiently stable, both chemically and photophysically, to allow tracking over an extended period of time. Here, it is shown that fluorescent nanodiamonds (FNDs) are well suited for this application. Genotoxicity tests of FNDs with comet and micronucleus assays for human fibroblasts and breast cancer cells indicate that the nanoparticles neither cause DNA damage nor impair cell growth. Using AS-B145-1R breast cancer cells as the model cell line for CSC, it is found that the FND labeling outperforms 5-ethynyl-2'-deoxyuridine (EdU) and carboxyfluorescein diacetate succinimidyl ester (CFSE) in regards to its long-term tracking capability (>20 d). Moreover, through a quantification of their stem cell activity by measuring mammosphere-forming efficiencies (MFEs) and self-renewal rates, the FND-positive cells are identified to have an MFE twice as high as that of the FND-negative cells isolated from the same dissociated mammospheres. Thus, the nanoparticle-based labeling technique provides an effective new tool for tracking and finding slow-proliferating/quiescent CSCs in cancer research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform.

    Science.gov (United States)

    Versari, Cristian; Stoma, Szymon; Batmanov, Kirill; Llamosi, Artémis; Mroz, Filip; Kaczmarek, Adam; Deyell, Matt; Lhoussaine, Cédric; Hersen, Pascal; Batt, Gregory

    2017-02-01

    With the continuous expansion of single cell biology, the observation of the behaviour of individual cells over extended durations and with high accuracy has become a problem of central importance. Surprisingly, even for yeast cells that have relatively regular shapes, no solution has been proposed that reaches the high quality required for long-term experiments for segmentation and tracking (S&T) based on brightfield images. Here, we present CellStar , a tool chain designed to achieve good performance in long-term experiments. The key features are the use of a new variant of parametrized active rays for segmentation, a neighbourhood-preserving criterion for tracking, and the use of an iterative approach that incrementally improves S&T quality. A graphical user interface enables manual corrections of S&T errors and their use for the automated correction of other, related errors and for parameter learning. We created a benchmark dataset with manually analysed images and compared CellStar with six other tools, showing its high performance, notably in long-term tracking. As a community effort, we set up a website, the Yeast Image Toolkit, with the benchmark and the Evaluation Platform to gather this and additional information provided by others. © 2017 The Authors.

  16. Documenting the location of systematic transrectal ultrasound-guided prostate biopsies: correlation with multi-parametric MRI.

    Science.gov (United States)

    Turkbey, Baris; Xu, Sheng; Kruecker, Jochen; Locklin, Julia; Pang, Yuxi; Shah, Vijay; Bernardo, Marcelino; Baccala, Angelo; Rastinehad, Ardeshir; Benjamin, Compton; Merino, Maria J; Wood, Bradford J; Choyke, Peter L; Pinto, Peter A

    2011-03-29

    During transrectal ultrasound (TRUS)-guided prostate biopsies, the actual location of the biopsy site is rarely documented. Here, we demonstrate the capability of TRUS-magnetic resonance imaging (MRI) image fusion to document the biopsy site and correlate biopsy results with multi-parametric MRI findings. Fifty consecutive patients (median age 61 years) with a median prostate-specific antigen (PSA) level of 5.8 ng/ml underwent 12-core TRUS-guided biopsy of the prostate. Pre-procedural T2-weighted magnetic resonance images were fused to TRUS. A disposable needle guide with miniature tracking sensors was attached to the TRUS probe to enable fusion with MRI. Real-time TRUS images during biopsy and the corresponding tracking information were recorded. Each biopsy site was superimposed onto the MRI. Each biopsy site was classified as positive or negative for cancer based on the results of each MRI sequence. Sensitivity, specificity, and receiver operating curve (ROC) area under the curve (AUC) values were calculated for multi-parametric MRI. Gleason scores for each multi-parametric MRI pattern were also evaluated. Six hundred and 5 systemic biopsy cores were analyzed in 50 patients, of whom 20 patients had 56 positive cores. MRI identified 34 of 56 positive cores. Overall, sensitivity, specificity, and ROC area values for multi-parametric MRI were 0.607, 0.727, 0.667, respectively. TRUS-MRI fusion after biopsy can be used to document the location of each biopsy site, which can then be correlated with MRI findings. Based on correlation with tracked biopsies, T2-weighted MRI and apparent diffusion coefficient maps derived from diffusion-weighted MRI are the most sensitive sequences, whereas the addition of delayed contrast enhancement MRI and three-dimensional magnetic resonance spectroscopy demonstrated higher specificity consistent with results obtained using radical prostatectomy specimens.

  17. Synthesis of Intrinsically Disordered Fluorinated Peptides for Modular Design of High-Signal 19 F MRI Agents.

    Science.gov (United States)

    Kirberger, Steven E; Maltseva, Sofia D; Manulik, Joseph C; Einstein, Samuel A; Weegman, Bradley P; Garwood, Michael; Pomerantz, William C K

    2017-06-01

    19 F MRI is valuable for in vivo imaging due to the only trace amounts of fluorine in biological systems. Because of the low sensitivity of MRI however, designing new fluorochemicals remains a significant challenge for achieving sufficient 19 F signal. Here, we describe a new class of high-signal, water-soluble fluorochemicals as 19 F MRI imaging agents. A polyamide backbone is used for tuning the proteolytic stability to avoid retention within the body, which is a limitation of current state-of-the-art perfluorochemicals. We show that unstructured peptides containing alternating N-ϵ-trifluoroacetyllysine and lysine provide a degenerate 19 F NMR signal. 19 F MRI phantom images provide sufficient contrast at micromolar concentrations, showing promise for eventual clinical applications. Finally, the degenerate high signal characteristics were retained when conjugated to a large protein, indicating potential for in vivo targeting applications, including molecular imaging and cell tracking. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Subcutaneous panniculitis-like T-cell lymphoma: MRI features and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Benjamin D.; Seeger, Leanne L.; Motamedi, Kambiz [UCLA-Santa Monica Medical Center and Orthopedic Hospital, Department of Radiological Sciences, Santa Monica, CA (United States); James, Aaron W. [UCLA-Santa Monica Medical Center and Orthopedic Hospital, Department of Pathology and Laboratory Medicine, Santa Monica, CA (United States)

    2014-09-15

    Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) represents a rare subclassification of peripheral T-cell lymphoma (PTCL). We present a case of a 21-year-old female who presented with a 1-month history of pain in the left buttock and hip, tender left inguinal lymph nodes, fevers, and night sweats. Percutaneous core needle biopsy was diagnostic for SPTCL with CD8+ cells positive for cytotoxic granules. Magnetic resonance imaging (MRI) features of SPTCL with a review of the literature are discussed. (orig.)

  19. Towards MRI-guided linear accelerator control: gating on an MRI accelerator.

    Science.gov (United States)

    Crijns, S P M; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2011-08-07

    To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator

  20. The impact of preparation and support procedures for children with sickle cell disease undergoing MRI

    International Nuclear Information System (INIS)

    Cejda, Katherine R.; Smeltzer, Matthew P.; Hansbury, Eileen N.; McCarville, Mary Elizabeth; Helton, Kathleen J.; Hankins, Jane S.

    2012-01-01

    Children with sickle cell disease (SCD) often undergo MRI studies to assess brain injury or to quantify hepatic iron. MRI requires the child to lie motionless for 30-60 min, thus sedation/anesthesia might be used to facilitate successful completion of exams, but this poses additional risks for SCD patients. To improve children's ability to cope with MRI examinations and avoid sedation, our institution established preparation and support procedures (PSP). To investigate the impact of PSP in reducing the need for sedation during MRI exams among children with SCD. Data on successful completion of MRI testing were compared among 5- to 12-year-olds who underwent brain MRI or liver R2*MRI with or without receiving PSP. Seventy-one children with SCD (median age 9.85 years, range 5.57-12.99 years) underwent a brain MRI (n = 60) or liver R2*MRI (n = 11). Children who received PSP were more likely to complete an interpretable MRI exam than those who did not 30 of 33; 91% vs. 27 of 38; 71%, unadjusted OR = 4.1 (P = 0.04) and OR = 8.5 (P < 0.01) when adjusting for age. PSP can help young children with SCD complete clinically interpretable, nonsedated MRI exams, avoiding the risks of sedation/anesthesia. (orig.)

  1. The impact of preparation and support procedures for children with sickle cell disease undergoing MRI

    Energy Technology Data Exchange (ETDEWEB)

    Cejda, Katherine R. [St. Jude Children' s Research Hospital, Child Life Program, Memphis, TN (United States); Smeltzer, Matthew P. [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); Hansbury, Eileen N. [Baylor International Hematology Center of Excellence and the Texas Children' s Center for Global Health, Houston, TX (United States); McCarville, Mary Elizabeth; Helton, Kathleen J. [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); Hankins, Jane S. [St. Jude Children' s Research Hospital, Department of Hematology, Memphis, TN (United States)

    2012-10-15

    Children with sickle cell disease (SCD) often undergo MRI studies to assess brain injury or to quantify hepatic iron. MRI requires the child to lie motionless for 30-60 min, thus sedation/anesthesia might be used to facilitate successful completion of exams, but this poses additional risks for SCD patients. To improve children's ability to cope with MRI examinations and avoid sedation, our institution established preparation and support procedures (PSP). To investigate the impact of PSP in reducing the need for sedation during MRI exams among children with SCD. Data on successful completion of MRI testing were compared among 5- to 12-year-olds who underwent brain MRI or liver R2*MRI with or without receiving PSP. Seventy-one children with SCD (median age 9.85 years, range 5.57-12.99 years) underwent a brain MRI (n = 60) or liver R2*MRI (n = 11). Children who received PSP were more likely to complete an interpretable MRI exam than those who did not 30 of 33; 91% vs. 27 of 38; 71%, unadjusted OR = 4.1 (P = 0.04) and OR = 8.5 (P < 0.01) when adjusting for age. PSP can help young children with SCD complete clinically interpretable, nonsedated MRI exams, avoiding the risks of sedation/anesthesia. (orig.)

  2. Combined diffusion-weighted, blood oxygen level-dependent, and dynamic contrast-enhanced MRI for characterization and differentiation of renal cell carcinoma.

    Science.gov (United States)

    Notohamiprodjo, Mike; Staehler, Michael; Steiner, Nicole; Schwab, Felix; Sourbron, Steven P; Michaely, Henrik J; Helck, Andreas D; Reiser, Maximilian F; Nikolaou, Konstantin

    2013-06-01

    To investigate a multiparametric magnetic resonance imaging (MRI) approach comprising diffusion-weighted imaging (DWI), blood oxygen-dependent (BOLD), and dynamic contrast-enhanced (DCE) MRI for characterization and differentiation of primary renal cell carcinoma (RCC). Fourteen patients with clear-cell carcinoma and four patients with papillary RCC were examined with DWI, BOLD MRI, and DCE MRI at 1.5T. The apparent diffusion coefficient (ADC) was calculated with a monoexponential decay. The spin-dephasing rate R2* was derived from parametric R2* maps. DCE-MRI was analyzed using a two-compartment exchange model allowing separation of perfusion (plasma flow [FP] and plasma volume [VP]), permeability (permeability surface area product [PS]), and extravascular extracellular volume (VE). Statistical analysis was performed with Wilcoxon signed-rank test, Pearson's correlation coefficient, and receiver operating characteristic curve analysis. Clear-cell RCC showed higher ADC and lower R2* compared to papillary subtypes, but differences were not significant. FP of clear-cell subtypes was significantly higher than in papillary RCC. Perfusion parameters showed moderate but significant inverse correlation with R2*. VE showed moderate inverse correlation with ADC. Fp and Vp showed best sensitivity for histological differentiation. Multiparametric MRI comprising DWI, BOLD, and DCE MRI is feasible for assessment of primary RCC. BOLD moderately correlates to DCE MRI-derived perfusion. ADC shows moderate correlation to the extracellular volume, but does not correlate to tumor oxygenation or perfusion. In this preliminary study DCE-MRI appeared superior to BOLD and DWI for histological differentiation. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  3. MRI-guided periradicular nerve root infiltration therapy in low-field (0.23-T) MRI system using optical instrument tracking

    International Nuclear Information System (INIS)

    Sequeiros, Roberto Blanco; Ojala, Risto O.; Klemola, Rauli; Jyrkinen, Lasse; Tervonen, Osmo A.; Vaara, Teuvo J.

    2002-01-01

    The purpose of this study was to evaluate the feasibility of the MRI-guided periradicular nerve root infiltration therapy. Sixty-seven nerve root infiltrations under MRI guidance were done for 61 patients suffering from lumbosacral radicular pain. Informed consent was acquired from all patients. A 0.23-T open-MRI scanner with interventional tools (Outlook Proview, Philips Medical Systems, MR Technologies, Finland) was used. A surface coil was used in all cases. Nerve root infiltration was performed with MRI-compatible 20-G needle (Chiba type MReye, Cook, Bloomington, Ind.; or Manan type, MD Tech, Florida). The evaluation of clinical outcome was achieved with 6 months of clinical follow-up and questionnaire. The effect of nerve root infiltration to the radicular pain was graded: 1=good to excellent, i.e., no pain or not disturbing pain allowing normal physical activity at 3 months from the procedure; 2=temporary, i.e., temporary relief of pain; 3=no relief of pain; and 4=worsening of pain. As an adjunct to MRI-guided positioning of the needle the correct needle localization by the nerve root was confirmed with saline injection to nerve root channel and single-shot fast spin echo (SSFSE) imaging. The MRI guidance allowed adequate needle positioning in all but 1 case (98.5%). This failure was caused by degeneration-induced changes in anatomy. Of patients, 51.5% had good to excellent effect with regard to radicular pain from the procedure, 22.7% had temporary relief, 21.2% had no effect, and in 4.5% the pain worsened. Our results show that MRI guidance is accurate and safe in performing nerve root infiltration at lumbosacral area. The results of radicular pain relief from nerve root infiltration are comparable to CT or fluoroscopy studies on the subject. (orig.)

  4. Nanomaterials and MRI molecular probe

    International Nuclear Information System (INIS)

    Inubushi, Toshiro

    2008-01-01

    This paper presents the current state and future prospect of enhancing probes in MRI which enable to image specific cells and molecules mainly from the aspect of cell trafficking. Although MRI requires such probes for specific imaging, it has an advantage that anatomical images are simultaneously available even during surgical operation without radiation exposure, differing from X-CT, -transillumination and positron emission tomography (PET). In the development of novel MRI molecular probes, the recent topic concerns the cell trafficking biology where cells related with transplantation and immunological therapy can be traced. Although superparamagnetic iron oxide (SPIO) has been used as a commercially available enhancer, this nanoparticle has problems like a difficulty to penetrate cell, cytotoxicity and others. For these, authors have developed the nanoparticle SPIO covered with silica shell, which can be chemically modified, e.g., by binding fluorescent pigments to possibly allow MR bimodal molecular imaging. For penetration of particles in cells, envelop of Sendai virus is used. PET-CT has been more popular these days; however, MRI is superior to CT for imaging soft tissues, and development of PET-MRI is actively under progress aiming the multi-modal imaging. At present, molecular probes for MRI are certainly not so many as those for PET and cooperative efforts to develop the probes are required in medical, technological and pharmaceutical fields. (R.T.)

  5. Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.

    Science.gov (United States)

    Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J

    2018-04-01

    Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.

  6. MRI/MRA evaluation of sickle cell disease of the brain

    International Nuclear Information System (INIS)

    Zimmerman, Robert A.

    2005-01-01

    Sickle cell disease is a major cause of pediatric stroke. Understanding the disease that affects the brain as infarctions, both clinically apparent and silent, requires an understanding of how the blood vessels are affected, the way in which both the brain and the blood vessels are imaged by MRI and MRA and the mechanism of injury. (orig.)

  7. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany); Hoss, Mareike [Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Wong, John Erik, E-mail: John.Wong@avt.rwth-aachen.de [Chemical Process Engineering, RWTH Aachen University, Turmstrasse 46, 52056 Aachen (Germany); DWI – Leibniz Institute for Interactive Materials Research, Forckenbeckstrasse 50, Aachen (Germany); Hieronymus, Thomas, E-mail: thomas.hieronymus@rwth-aachen.de [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany)

    2015-04-15

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3{sup +} DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  8. Radiopharmaceutical Stem Cell Tracking for Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Rosado-de-Castro

    2014-01-01

    Full Text Available Although neurological ailments continue to be some of the main causes of disease burden in the world, current therapies such as pharmacological agents have limited potential in the restoration of neural functions. Cell therapies, firstly applied to treat different hematological diseases, are now being investigated in preclinical and clinical studies for neurological illnesses. However, the potential applications and mechanisms for such treatments are still poorly comprehended and are the focus of permanent research. In this setting, noninvasive in vivo imaging allows better understanding of several aspects of stem cell therapies. Amongst the various methods available, radioisotope cell labeling has become one of the most promising since it permits tracking of cells after injection by different routes to investigate their biodistribution. A significant increase in the number of studies utilizing this method has occurred in the last years. Here, we review the different radiopharmaceuticals, imaging techniques, and findings of the preclinical and clinical reports published up to now. Moreover, we discuss the limitations and future applications of radioisotope cell labeling in the field of cell transplantation for neurological diseases.

  9. In-Vivo Imaging of Cell Migration Using Contrast Enhanced MRI and SVM Based Post-Processing.

    Science.gov (United States)

    Weis, Christian; Hess, Andreas; Budinsky, Lubos; Fabry, Ben

    2015-01-01

    The migration of cells within a living organism can be observed with magnetic resonance imaging (MRI) in combination with iron oxide nanoparticles as an intracellular contrast agent. This method, however, suffers from low sensitivity and specificty. Here, we developed a quantitative non-invasive in-vivo cell localization method using contrast enhanced multiparametric MRI and support vector machines (SVM) based post-processing. Imaging phantoms consisting of agarose with compartments containing different concentrations of cancer cells labeled with iron oxide nanoparticles were used to train and evaluate the SVM for cell localization. From the magnitude and phase data acquired with a series of T2*-weighted gradient-echo scans at different echo-times, we extracted features that are characteristic for the presence of superparamagnetic nanoparticles, in particular hyper- and hypointensities, relaxation rates, short-range phase perturbations, and perturbation dynamics. High detection quality was achieved by SVM analysis of the multiparametric feature-space. The in-vivo applicability was validated in animal studies. The SVM detected the presence of iron oxide nanoparticles in the imaging phantoms with high specificity and sensitivity with a detection limit of 30 labeled cells per mm3, corresponding to 19 μM of iron oxide. As proof-of-concept, we applied the method to follow the migration of labeled cancer cells injected in rats. The combination of iron oxide labeled cells, multiparametric MRI and a SVM based post processing provides high spatial resolution, specificity, and sensitivity, and is therefore suitable for non-invasive in-vivo cell detection and cell migration studies over prolonged time periods.

  10. A systematised MRI approach to evaluating the patellofemoral joint

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Avneesh; Subhawong, Ty K.; Carrino, John A. [Johns Hopkins Hospital, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2011-04-15

    Knee pain in young patients is a common indication for knee MRI. Many static and dynamic internal derangements of the patellofemoral joint in these patients lead to various secondary MRI findings. This article focuses on how to systematically approach, detect, and emphasize the importance of these findings in the diagnosis of patellofemoral tracking and impingement syndromes with relevant case examples. (orig.)

  11. A systematised MRI approach to evaluating the patellofemoral joint

    International Nuclear Information System (INIS)

    Chhabra, Avneesh; Subhawong, Ty K.; Carrino, John A.

    2011-01-01

    Knee pain in young patients is a common indication for knee MRI. Many static and dynamic internal derangements of the patellofemoral joint in these patients lead to various secondary MRI findings. This article focuses on how to systematically approach, detect, and emphasize the importance of these findings in the diagnosis of patellofemoral tracking and impingement syndromes with relevant case examples. (orig.)

  12. MRI studies of the hydrodynamics in a USP 4 dissolution testing cell.

    Science.gov (United States)

    Shiko, G; Gladden, L F; Sederman, A J; Connolly, P C; Butler, J M

    2011-03-01

    We present a detailed study of hydrodynamics inside the flow-through dissolution apparatus when operated according to USP recommendations. The pulsatile flow inside the flow-through cell was measured quantitatively using magnetic resonance imaging (MRI) at a spatial resolution of 234 × 234 μm(2) and slice thickness of 1 mm. We report the experimental protocols developed for in situ MRI studies and the effect that the operating conditions and tablet orientation have on the hydrodynamics inside commercial flow cells. It was found that the flow field inside the dissolution cells was, at most operating conditions, heterogeneous, rather than fully developed laminar flow, and characterised by re-circulation and backward flow. A model tablet was shown to be contacted by a wide distribution of local velocities as a function of position and orientation in the flow cell. The use of 1 mm beads acted as a distributor of the flow but did not suffice to ensure a fully developed laminar flow profile. These results emphasise the necessity to understand the influence of test conditions on dissolution behaviour in defining robust flow-through dissolution methods. Copyright © 2010 Wiley-Liss, Inc.

  13. Cre/lox-assisted non-invasive in vivo tracking of specific cell populations by positron emission tomography.

    Science.gov (United States)

    Thunemann, Martin; Schörg, Barbara F; Feil, Susanne; Lin, Yun; Voelkl, Jakob; Golla, Matthias; Vachaviolos, Angelos; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Olbrich, Marcus; Ehrlichmann, Walter; Reischl, Gerald; Griessinger, Christoph M; Langer, Harald F; Gawaz, Meinrad; Lang, Florian; Schäfers, Michael; Kneilling, Manfred; Pichler, Bernd J; Feil, Robert

    2017-09-05

    Many pathophysiological processes are associated with proliferation, migration or death of distinct cell populations. Monitoring specific cell types and their progeny in a non-invasive, longitudinal and quantitative manner is still challenging. Here we show a novel cell-tracking system that combines Cre/lox-assisted cell fate mapping with a thymidine kinase (sr39tk) reporter gene for cell detection by positron emission tomography (PET). We generate Rosa26-mT/sr39tk PET reporter mice and induce sr39tk expression in platelets, T lymphocytes or cardiomyocytes. As proof of concept, we demonstrate that our mouse model permits longitudinal PET imaging and quantification of T-cell homing during inflammation and cardiomyocyte viability after myocardial infarction. Moreover, Rosa26-mT/sr39tk mice are useful for whole-body characterization of transgenic Cre mice and to detect previously unknown Cre activity. We anticipate that the Cre-switchable PET reporter mice will be broadly applicable for non-invasive long-term tracking of selected cell populations in vivo.Non-invasive cell tracking is a powerful method to visualize cells in vivo under physiological and pathophysiological conditions. Here Thunemann et al. generate a mouse model for in vivo tracking and quantification of specific cell types by combining a PET reporter gene with Cre-dependent activation that can be exploited for any cell population for which a Cre mouse line is available.

  14. MRI mediated, non-invasive tracking of intratumoral distribution of nanocarriers in rat glioma

    Energy Technology Data Exchange (ETDEWEB)

    Karathanasis, Efstathios; Park, Jaekeun; Agarwal, Abhiruchi; Patel, Vijal; Zhao Fuqiang; Hu Xiaoping; Bellamkonda, Ravi V [Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332 (United States); Annapragada, Ananth V [School of Health Information Sciences, University of Texas Health Science Center, 7000 Fannin Street, Houston, TX 77030 (United States)], E-mail: ravi@gatech.edu

    2008-08-06

    Nanocarrier mediated therapy of gliomas has shown promise. The success of systemic nanocarrier-based chemotherapy is critically dependent on the so-called leaky vasculature to permit drug extravasation across the blood-brain barrier. Yet, the extent of vascular permeability in individual tumors varies widely, resulting in a correspondingly wide range of responses to the therapy. However, there exist no tools currently for rationally determining whether tumor blood vessels are amenable to nanocarrier mediated therapy in an individualized, patient specific manner today. To address this need for brain tumor therapy, we have developed a multifunctional 100 nm scale liposomal agent encapsulating a gadolinium-based contrast agent for contrast-enhanced magnetic resonance imaging with prolonged blood circulation. Using a 9.4 T MRI system, we were able to track the intratumoral distribution of the gadolinium-loaded nanocarrier in a rat glioma model for a period of three days due to improved magnetic properties of the contrast agent being packaged in a nanocarrier. Such a nanocarrier provides a tool for non-invasively assessing the suitability of tumors for nanocarrier mediated therapy and then optimizing the treatment protocol for each individual tumor. Additionally, the ability to image the tumor in high resolution can potentially constitute a surgical planning tool for tumor resection.

  15. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... information on the chemicals present in the body's cells, may also be performed during the MRI exam ... medically necessary. MRI may not always distinguish between cancer tissue and fluid, known as edema . MRI typically ...

  16. Gadolinium-DOTA enhanced MRI of painful osseous crises in children with sickle cell anemia

    International Nuclear Information System (INIS)

    Bonnerot, V.; Sebag, G.; Montalembert, M. de; Wioland, M.; Glorion, C.; Girot, R.; Lallemand, D.

    1994-01-01

    In order to evaluate the role of gadolinium-DOTA enhanced MRI in the management of painful osseous crises in children with sickle cell anemia (SCA), nine children with SCA underwent MRI, bone scans and ultrasonographic studies during 11 osseous crises. Imaging findings were compared with the final diagnosis: three acute osteomyelitis (AO) and 16 acute infarcts (AI). MRI could not differentiate AO from AI. The appearance of severe AI was very misleading and was similar to the usual appearance of AO, including soft tissue changes, periosteal reaction and patterns of enhancement. Gadolinium-DOTA enhanced MRI was useful for determining the anatomic site and extent of AO or AI and for distinguishing between necrotic material, fluid collection and vascularized inflammatory tissue. It can also help to guide the aspiration of intraosseous, subperiosteal and soft tissue fluid collections. (orig.)

  17. Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, Conor H. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hallacy, Timothy M. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Physics and Astronomy, Rice University, Houston, Texas (United States); Flint, David B. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas (United States); Granville, Dal A. [Department of Medical Physics, The Ottawa Hospital Cancer Centre, Ottawa, Ontario (Canada); Asaithamby, Aroumougame [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, Texas (United States); Sahoo, Narayan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Akselrod, Mark S. [Crystal Growth Division, Landauer, Inc, Stillwater, Oklahoma (United States); Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas (United States)

    2016-09-01

    Purpose: Understanding the DNA damage and repair induced by hadron therapy (HT) beams is crucial for developing novel strategies to maximize the use of HT beams to treat cancer patients. However, spatiotemporal studies of DNA damage and repair for beam energies relevant to HT have been challenging. We report a technique that enables spatiotemporal measurement of radiation-induced damage in live cells and colocalization of this damage with charged particle tracks over a broad range of clinically relevant beam energies. The technique uses novel fluorescence nuclear track detectors with fluorescence confocal laser scanning microscopy in the beam line to visualize particle track traversals within the subcellular compartments of live cells within seconds after injury. Methods and Materials: We designed and built a portable fluorescence confocal laser scanning microscope for use in the beam path, coated fluorescence nuclear track detectors with fluorescent-tagged live cells (HT1080 expressing enhanced green fluorescent protein tagged to XRCC1, a single-strand break repair protein), placed the entire assembly into a proton therapy beam line, and irradiated the cells with a fluence of ∼1 × 10{sup 6} protons/cm{sup 2}. Results: We successfully obtained confocal images of proton tracks and foci of DNA single-strand breaks immediately after irradiation. Conclusions: This technique represents an innovative method for analyzing biological responses in any HT beam line at energies and dose rates relevant to therapy. It allows precise determination of the number of tracks traversing a subcellular compartment and monitoring the cellular damage therein, and has the potential to measure the linear energy transfer of each track from therapeutic beams.

  18. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    Science.gov (United States)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  19. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Berbeco, R. [Brigham and Women’s Hospital and Dana-Farber Cancer Institute (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  20. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Low, D. [University of California Los Angeles: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  1. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Keall, P. [University of Sydney (Australia)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  2. MO-FG-BRD-04: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MR Tracking

    International Nuclear Information System (INIS)

    Low, D.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  3. MO-FG-BRD-03: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: EM Tracking

    International Nuclear Information System (INIS)

    Keall, P.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  4. MO-FG-BRD-02: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: MV Tracking

    International Nuclear Information System (INIS)

    Berbeco, R.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  5. Imaging features of colovesical fistulae on MRI.

    Science.gov (United States)

    Tang, Y Z; Booth, T C; Swallow, D; Shahabuddin, K; Thomas, M; Hanbury, D; Chang, S; King, C

    2012-10-01

    MRI is routinely used in the investigation of colovesical fistulae at our institute. Several papers have alluded to its usefulness in achieving the diagnosis; however, there is a paucity of literature on its imaging findings. Our objective was to quantify the MRI characteristics of these fistulae. We selected all cases over a 4-year period with a final clinical diagnosis of colovesical fistula which had been investigated with MRI. The MRI scans were reviewed in a consensus fashion by two consultant uroradiologists. Their MRI features were quantified. There were 40 cases of colovesical fistulae. On MRI, the fistula morphology consistently fell into three patterns. The most common pattern (71%) demonstrated an intervening abscess between the bowel wall and bladder wall. The second pattern (15%) had a visible track between the affected bowel and bladder. The third pattern (13%) was a complete loss of fat plane between the affected bladder and bowel wall. MRI correctly determined the underlying aetiology in 63% of cases. MRI is a useful imaging modality in the diagnosis of colovesical fistulae. The fistulae appear to have three characteristic morphological patterns that may aid future diagnoses of colovesical fistulae. To the authors' knowledge, this is the first publication of the MRI findings in colovesical fistulae.

  6. MRI in giant cell (temporal) arteritis; Magnetresonanztomografie der Arteriitis temporalis Horton

    Energy Technology Data Exchange (ETDEWEB)

    Bley, T.A.; Uhl, M.; Frydrychowicz, A.; Langer, M. [Uniklinik Freiburg (Germany). Roentgendiagnostik; Markl, M. [Uniklinik Freiburg (Germany). Roentgendiagnostik - Medizinische Physik

    2007-07-15

    Giant cell (temporal) arteritis is a diagnostic challenge. Blindness is a dreaded complication, especially if high-dose steroid treatment is delayed. With an optimized MR protocol, noninvasive diagnosis of giant cell arteritis is facilitated. Submillimeter in-plane resolution makes it possible to distinguish healthy segments from inflamed segments. The lumen and arterial wall can be depicted in high detail. Post-contrast high-resolution MRI visualizes the superficial cranial arteries bilaterally and simultaneously, allowing assessment of the cranial involvement pattern. In combination with MR angiography of the aortic arch and supra-aortic arteries, the extracranial involvement pattern can be demonstrated in a single comprehensive MR examination assessing the cranial, cervical and thoracic vasculature. Good diagnostic image quality can be achieved at 1.5 Tesla and at 3 Tesla. However, due to higher signal-to-noise ratios, image quality seems to be superior at 3 Tesla. Over the course of successful long-term treatment, MR signs of mural inflammation decrease significantly and eventually vanish entirely. In contrast to color-coded Duplex sonography, which is a comparatively cost-efficient imaging modality, acquisition of high-resolution MRI is almost independent of the investigator's expertise. Compared to positron emission tomography with 18F-fluoro-2-deoxy-D-glucose, which is a very sensitive whole-body screening tool for detecting extracranial involvement of large vessel vasculitis, MRI allows visualization and assessment of both the superficial cranial arteries in high detail and the extracranial large artery involvement in the same investigation. (orig.)

  7. Cerebral lesions on 7 tesla MRI in patients with sickle cell anemia

    NARCIS (Netherlands)

    van der Land, Veronica; Zwanenburg, Jaco J. M.; Fijnvandraat, Karin; Biemond, Bart J.; Hendrikse, Jeroen; Mutsaerts, Henri J. M. M.; Visser, Fredy; Wardlaw, Joanna M.; Nederveen, Aart J.; Majoie, Charles B. L. M.; Nederkoorn, Paul J.

    2015-01-01

    Patients with sickle cell anemia (SCA) are at a high risk to develop cerebral damage. Most common are silent cerebral infarctions (SCIs), visible as white matter hyperintensities (WMHs) on MRI in a patient without neurological deficits. The etiology of SCIs remains largely unclear. In addition,

  8. Gadolinium and fluorescent bi-functionally labeling and in vitro MRI of rat bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Shen Jun; Zhou Cuiping; Cheng Li'na; Duan Xiaohui; Liang Biling; Fu Yue; Bi Xiaobin; Liu Yu; Deng Yubin

    2008-01-01

    .0 μl bi-functional labeling agent was (0.1884±0.0151), (0.1878±0.0190), (0.1741±0.0160), (0.1135±0.0215), (0.1079±0.0145) and (0.0811±0.0079), respectively. The corresponding optical absorption value of unlabeled MSCs was (0.1940±0.0116). The optical absorption value of labeled cells was not affected in case of less than 30.0 μl of Gd-DTPA (q'=0.2225-0.9458, P>0.05). The apoptosis index for labeled cells and unlabeled cells were 5.08% and 3.86%, respectively. On T 1 WI, the signal intensity and T 1 relaxation time of unlabeled cells and labeled cells were 240.3±24.7 and (2457±56) ms, 336.2±20.7 and (1102±64)ms, respectively, and there were significant statistical difference (t=12.656, 17.889, P 1 WI was 5 x 10 3 . After routine passage, the gadolinium in the cells gradually decreased and could be tracked by MRI until the fifth passage. Conclusions: The gadolinium and fluorescent bi-functionally labeling rat bone marrow mesenchymal stem cell by using the transfection agent of polyethylenimine is feasible, efficient and safe. The labeled cells could be tracked in vitro on MR imaging. (authors)

  9. Automatic tracking of cells for video microscopy in patch clamp experiments.

    Science.gov (United States)

    Peixoto, Helton M; Munguba, Hermany; Cruz, Rossana M S; Guerreiro, Ana M G; Leao, Richardson N

    2014-06-20

    Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. The techniques of digital image processing used in this work are an important addition to the set of microscopy

  10. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism.

    Science.gov (United States)

    Maglica, Željka; Özdemir, Emre; McKinney, John D

    2015-02-17

    ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. New antimicrobials are urgently needed to stem the rising tide of antibiotic-resistant bacteria. All antibiotics are expected to affect bacterial energy metabolism, directly or indirectly, yet tools to assess the impact of antibiotics on the ATP content of individual bacterial cells are lacking. The

  11. Nanodiamond-enhanced MRI via in situ hyperpolarization

    Science.gov (United States)

    Waddington, David E. J.; Sarracanie, Mathieu; Zhang, Huiliang; Salameh, Najat; Glenn, David R.; Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Walsworth, Ronald L.; Reilly, David J.; Rosen, Matthew S.

    2017-04-01

    Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly biostable fluorescent markers for cellular tracking. Beyond optical techniques, however, options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we demonstrate that the Overhauser effect, a proton-electron polarization transfer technique, can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at room temperature and ultra-low magnetic field. The technique transfers spin polarization from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water solution, creating MRI contrast on-demand. We examine the conditions required for maximum enhancement as well as the ultimate sensitivity of the technique. The ability to perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination with the excellent in vivo stability of nanodiamond, raises the possibility of performing noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time.

  12. Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions--a pilot study.

    Science.gov (United States)

    Geburek, Florian; Mundle, Kathrin; Conrad, Sabine; Hellige, Maren; Walliser, Ulrich; van Schie, Hans T M; van Weeren, René; Skutella, Thomas; Stadler, Peter M

    2016-02-01

    Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of this study was to monitor the presence of intralesionally injected autologous AT-MSCs labelled with superparamagnetic iron oxide (SPIO) nanoparticles and green fluorescent protein (GFP) over a staggered period of 3 to 9 weeks with standing magnetic resonance imaging (MRI) and histology. Four adult warmblood horses received a unilateral injection of 10 × 10(6) autologous AT-MSCs into surgically created front-limb SDFT lesions. Administered AT-MSCs expressed lentivirally transduced reporter genes for GFP and were co-labelled with SPIO particles in three horses. The presence of AT-MSCs in SDFTs was evaluated by repeated examinations with standing low-field MRI in two horses and post-mortem in all horses with Prussian blue staining, fluorescence microscopy and with immunofluorescence and immunohistochemistry using anti-GFP antibodies at 3, 5, 7 and 9 weeks after treatment. AT-MSCs labelled with SPIO particles were detectable in treated SDFTs during each MRI in T2*- and T1-weighted sequences until the end of the observation period. Post-mortem examinations revealed that all treated tendons contained high numbers of SPIO- and GFP-labelled cells. Standing low-field MRI has the potential to track SPIO-labelled AT-MSCs successfully. Histology, fluorescence microscopy, immunofluorescence and immunohistochemistry are efficient tools to detect labelled AT-MSCs after intralesional injection into surgically created equine SDFT lesions. Intralesional injection of 10 × 10(6) AT-MSCs leads to the presence of high numbers of AT-MSCs in and around surgically created tendon lesions for up to 9 weeks. Integration of injected AT-MSCs into healing tendon tissue is an essential pathway after intralesional

  13. Whole-body MRI in children with Langerhans cell histiocytosis for the evaluation of the skeletal system

    International Nuclear Information System (INIS)

    Steinborn, M.; Woertler, K.; Rummeny, E.J.; Nathrath, M.; Schoeniger, M.; Hahn, H.

    2008-01-01

    Purpose: the usefulness of whole-body MRI (WB-MRI) for the detection of skeletal lesions in patients with Langerhans cell histiocytosis should be documented on the basis of case presentations. Materials and methods: in six patients with histologically proven Langerhans cell histiocytosis, 14 WB-MRI examinations were performed to evaluate the skeletal system within disease staging (6 primary, 8 follow-up examinations). The examinations were performed on a 1.5 Tesla, 32-channel whole-body scanner. The examination protocol consisted of T1-weighted and STIR sequences in coronal and sagittal orientation. For comparison, radiographs of the initial skeletal lesions and those that were additionally detected on WB-MRI were available. Results: in 4 patients no additional skeletal lesions were found on WB-MRI besides the initial lesion leading to the diagnosis of unifocal single system disease. In 2 patients WB-MRI was able to identify additional skeletal lesions. In a 5 1/2 year-old boy with the primary lesion located in the cervical spine, a second lesion was detected in the lumbar spine on the initial scan and in the skull and proximal femur during follow-up examination. In a 12 year-old girl with a primary lesion of the thoracic spine, WB-MRI diagnosed additional lesions in the pelvic bone and the tibia. In both patients the diagnosis of multifocal skeletal involvement led to chemotherapy. During follow-up examination, the healing response under therapy could be demonstrated. Comparison with conventional imaging showed that especially lesions located in the spine or the pelvis were not detectable on radiographs even when knowing the MR results. (orig.)

  14. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  15. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs

    Science.gov (United States)

    Su, Long-Jyun; Wu, Meng-Shiue; Hui, Yuen Yung; Chang, Be-Ming; Pan, Lei; Hsu, Pei-Chen; Chen, Yit-Tsong; Ho, Hong-Nerng; Huang, Yen-Hua; Ling, Thai-Yen; Hsu, Hsao-Hsun; Chang, Huan-Cheng

    2017-03-01

    Cell therapy is a promising strategy for the treatment of human diseases. While the first use of cells for therapeutic purposes can be traced to the 19th century, there has been a lack of general and reliable methods to study the biodistribution and associated pharmacokinetics of transplanted cells in various animal models for preclinical evaluation. Here, we present a new platform using albumin-conjugated fluorescent nanodiamonds (FNDs) as biocompatible and photostable labels for quantitative tracking of human placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs) in miniature pigs by magnetic modulation. With this background-free detection technique and time-gated fluorescence imaging, we have been able to precisely determine the numbers as well as positions of the transplanted FND-labeled pcMSCs in organs and tissues of the miniature pigs after intravenous administration. The method is applicable to single-cell imaging and quantitative tracking of human stem/progenitor cells in rodents and other animal models as well.

  16. Tracking the mechanical dynamics of human embryonic stem cell chromatin

    Directory of Open Access Journals (Sweden)

    Hinde Elizabeth

    2012-12-01

    Full Text Available Abstract Background A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. Results We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs are modulated spatiotemporally during differentiation into cardiomyocytes (CM. Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. Conclusions We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method.

  17. MRI Findings of Suprasellar Germ Cell Tumors in Two Dogs.

    Science.gov (United States)

    Cook, Laurie; Tensley, Michelle; Drost, Wm Tod; Koivisto, Christopher; Oglesbee, Michael

    A 4 yr old border collie presenting for mydriasis and decreased mentation and a 7 yr old Boston terrier presenting for obtundation, head tilt, and paraparesis were both evaluated using MRI. Findings in both included mass lesions of the thalamus and brainstem that were hypo- to isointense on T1-weighted images and hyperintense on T2-weighted images with regions of hypointensity, and robust contrast enhancement and displacement of adjacent structures. Postmortem histopathology findings, tumor location, and a mixed pattern of epithelial cell differentiation were consistent with germ cell tumor in both cases. Germ cell tumor of the suprasellar region is an infrequently reported neoplasm of dogs and imaging findings in this species have not been well described in the prior literature.

  18. Study of substrate topographical effects on epithelial cell behavior using etched alpha-particle tracks on PADC films

    International Nuclear Information System (INIS)

    Ng, C.K.M.; Poon, W.L.; Li, W.Y.; Cheung, T.; Cheng, S.H.; Yu, K.N.

    2008-01-01

    Micrometer-size pits on the surface of a polymer (polyallyldiglycol carbonate or PADC) substrate created by alpha-particle irradiation and subsequent chemical etching were used to study the topographical effects alone on cell behavior. Vinculin, the cell adhesion and membrane protrusion protein, was used as an indicator of cytoskeletonal reorganization on the substrate and localization of vinculin was used to demonstrate the presence of focal adhesions. In our experiments, vinculin expressed in epithelial HeLa cells cultured on PADC films with track-etch pits, but not in cells cultured on the raw or chemically etched blank films. In other words, vinculin expression was induced by the topography of track-etch pits, while etching of the substrate alone (without alpha-particle irradiation) did not cause up-regulation of vinculin protein expression. HeLa cells cultured on PADC films with track-etch pits also showed changes in cell proliferation, cell area and cell circularity, and were largely contained by the pits. In other words, the cell membrane edges tended to be in contact with the pits. By comparing the correlation between the positions of HeLa cells and the pits, and that between the positions of cells and computer-simulated pits, the tendency for membrane edges of HeLa cells to be in contact with the pits was recognized. This could be explained by inhibition of membrane protrusion at the pits. In conclusion, substrate track-etch pits were an important determinant of epithelial cell behaviors

  19. The use of cell phone network data in traffic data collection and long-haul truckshed (geographic extent) tracking.

    Science.gov (United States)

    2012-12-01

    This study analyzed the potential of cell phone positioning techniques in freight truck data collection and long-haul : truckshed (geographic extent) tracking. Freight truck identification and tracking algorithms were developed by means of : cell pho...

  20. Labyrinthitis ossificans in a child with sickle cell disease: CT and MRI findings

    International Nuclear Information System (INIS)

    Liu, Benjamin P.; Saito, Naoko; Wang, Jimmy J.; Mian, Asim Z.; Sakai, Osamu

    2009-01-01

    The association between sensorineural hearing loss and sickle cell disease has been described, and labyrinthine hemorrhage has been reported with sickle cell disease. We report the CT and MRI findings of labyrinthitis ossificans in a child with sickle cell disease who presented with sensorineural hearing loss. Labyrinthitis ossificans is associated with an infectious, inflammatory, or destructive insult to the membranous labyrinth; however, it has not been specifically described with sickle cell disease. Recognition of this condition is important because it affects both management and prognosis of this disease. (orig.)

  1. A Review of Point-Wise Motion Tracking Algorithms for Fetal Magnetic Resonance Imaging.

    Science.gov (United States)

    Chikop, Shivaprasad; Koulagi, Girish; Kumbara, Ankita; Geethanath, Sairam

    2016-01-01

    We review recent feature-based tracking algorithms as applied to fetal magnetic resonance imaging (MRI). Motion in fetal MRI is an active and challenging area of research, but the challenge can be mitigated by strategies related to patient setup, acquisition, reconstruction, and image processing. We focus on fetal motion correction through methods based on tracking algorithms for registration of slices with similar anatomy in multiple volumes. We describe five motion detection algorithms based on corner detection and region-based methods through pseudocodes, illustrating the results of their application to fetal MRI. We compare the performance of these methods on the basis of error in registration and minimum number of feature points required for registration. Harris, a corner detection method, provides similar error when compared to the other methods and has the lowest number of feature points required at that error level. We do not discuss group-wise methods here. Finally, we attempt to communicate the application of available feature extraction methods to fetal MRI.

  2. CNR considerations for rapid real-time MRI tumor tracking in radiotherapy hybrid devices: Effects of B0 field strength

    International Nuclear Information System (INIS)

    Wachowicz, K.; De Zanche, N.; Yip, E.; Volotovskyy, V.; Fallone, B. G.

    2016-01-01

    Purpose: This work examines the subject of contrast-to-noise ratio (CNR), specifically between tumor and tissue background, and its dependence on the MRI field strength, B 0 . This examination is motivated by the recent interest and developments in MRI/radiotherapy hybrids where real-time imaging can be used to guide treatment beams. The ability to distinguish a tumor from background tissue is of primary importance in this field, and this work seeks to elucidate the complex relationship between the CNR and B 0 that is too often assumed to be purely linear. Methods: Experimentally based models of B 0 -dependant relaxation for various tumor and normal tissues from the literature were used in conjunction with signal equations for MR sequences suitable for rapid real-time imaging to develop field-dependent predictions for CNR. These CNR models were developed for liver, lung, breast, glioma, and kidney tumors for spoiled gradient-echo, balanced steady-state free precession (bSSFP), and single-shot half-Fourier fast spin echo sequences. Results: Due to the pattern in which the relaxation properties of tissues are found to vary over B 0 field (specifically the T 1 time), there was always an improved CNR at lower fields compared to linear dependency. Further, in some tumor sites, the CNR at lower fields was found to be comparable to, or sometimes higher than those at higher fields (i.e., bSSFP CNR for glioma, kidney, and liver tumors). Conclusions: In terms of CNR, lower B 0 fields have been shown to perform as well or better than higher fields for some tumor sites due to superior T 1 contrast. In other sites this effect was less pronounced, reversing the CNR advantage. This complex relationship between CNR and B 0 reveals both low and high magnetic fields as viable options for tumor tracking in MRI/radiotherapy hybrids.

  3. Quantum dot labeling and tracking of cultured limbal epithelial cell transplants in-vitro

    Science.gov (United States)

    Genicio, Nuria; Paramo, Juan Gallo; Shortt, Alex J.

    2015-01-01

    PURPOSE Cultured human limbal epithelial cells (HLEC) have shown promise in the treatment of limbal stem cell deficiency but little is known about their survival, behaviour and long-term fate post transplantation. The aim of this research was to evaluate, in-vitro, quantum dot (QDot) technology as a tool for tracking transplanted HLEC. METHODS In-vitro cultured HLEC were labeled with Qdot nanocrystals. Toxicity was assessed using live-dead assays. The effect on HLEC function was assessed using colony forming efficiency assays and expression of CK3, P63alpha and ABCG2. Sheets of cultured HLEC labeled with Qdot nanocrystals were transplanted onto decellularised human corneo-scleral rims in an organ culture model and observed to investigate the behaviour of transplanted cells. RESULTS Qdot labeling had no detrimental effect on HLEC viability or function in-vitro. Proliferation resulted in a gradual reduction in Qdot signal but sufficient signal was present to allow tracking of cells through multiple generations. Cells labeled with Qdots could be reliably detected and observed using confocal microscopy for at least 2 weeks post transplantation in our organ culture model. In addition it was possible to label and observe epithelial cells in intact human corneas using the Rostock corneal module adapted for use with the Heidelberg HRA. CONCLUSIONS This work demonstrates that Qdots combined with existing clinical equipment could be used to track HLEC for up to 2 weeks post transplantation, however, our model does not permit the assessment of cell labeling beyond 2 weeks. Further characterisation in in-vivo models are required. PMID:26024089

  4. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain

    DEFF Research Database (Denmark)

    Vreys, Ruth; Vande Velde, Greetje; Krylychkina, Olga

    2010-01-01

    The adult rodent brain contains neural progenitor cells (NPCs), generated in the subventricular zone (SVZ), which migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into neurons. The aim of this study was to visualize endogenous NPC migration...... by a longitudinal MRI study and validated with histology. Here, we visualized endogenous NPC migration in the mouse brain by in vivo MRI and demonstrated accumulation of MPIO-labeled NPCs in the OB over time with ex vivo MRI. Furthermore, we investigated the influence of in situ injection of MPIOs on adult...

  5. Three-dimensional single-particle tracking in live cells: news from the third dimension

    International Nuclear Information System (INIS)

    Dupont, A; Wehnekamp, F; Katayama, Y; Lamb, D C; Gorelashvili, M; Schüller, V; Arcizet, D; Heinrich, D

    2013-01-01

    Single-particle tracking (SPT) is of growing importance in the biophysical community. It is used to investigate processes such as drug and gene delivery, viral uptake, intracellular trafficking or membrane-bound protein mobility. Traditionally, SPT is performed in two dimensions (2D) because of its technical simplicity. However, life occurs in three dimensions (3D) and many methods have been recently developed to track particles in 3D. Now, is the third dimension worth the effort? Here we investigate the differences between the 2D and 3D analyses of intracellular transport with the 3D development of a time-resolved mean square displacement (MSD) analysis introduced previously. The 3D trajectories, and the 2D projections, of fluorescent nanoparticles were obtained with an orbital tracking microscope in two different cell types: in Dictyostelium discoideum ameba and in adherent, more flattened HuH-7 human cells. As expected from the different 3D organization of both cells’ cytoskeletons, a third of the active transport was lost upon projection in the ameba whereas the identification of the active phases was barely affected in the HuH-7 cells. In both cell types, we found intracellular diffusion to be anisotropic and the diffusion coefficient values derived from the 2D analysis were therefore biased. (paper)

  6. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    International Nuclear Information System (INIS)

    Zhong, X.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  7. TU-F-BRB-00: MRI-Based Motion Management for RT

    International Nuclear Information System (INIS)

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  8. TU-F-BRB-00: MRI-Based Motion Management for RT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  9. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, X. [Siemens (Germany)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  10. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    International Nuclear Information System (INIS)

    Fahimian, B.

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  11. MO-FG-BRD-01: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management: Introduction and KV Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Fahimian, B. [Stanford University (United States)

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  12. WE-H-BRA-08: A Monte Carlo Cell Nucleus Model for Assessing Cell Survival Probability Based On Particle Track Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B [Northwestern Memorial Hospital, Chicago, IL (United States); Georgia Institute of Technology, Atlanta, GA (Georgia); Wang, C [Georgia Institute of Technology, Atlanta, GA (Georgia)

    2016-06-15

    Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities. These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell

  13. Effects of track structure and cell inactivation on the calculation of heavy ion mutation rates in mammalian cells

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Shavers, M. R.; Katz, R.

    1996-01-01

    It has long been suggested that inactivation severely effects the probability of mutation by heavy ions in mammalian cells. Heavy ions have observed cross sections of inactivation that approach and sometimes exceed the geometric size of the cell nucleus in mammalian cells. In the track structure model of Katz the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated using the dose-response of the system to gamma-rays and the radial dose of the ions and may be equal to unity at small impact parameters for some ions. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections from heavy ions in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT mutations in Chinese hamster cells and good agreement is found. The resulting calculations qualitatively show that mutation cross sections for heavy ions display minima at velocities where inactivation cross sections display maxima. Also, calculations show the high probability of mutation by relativistic heavy ions due to the radial extension of ions track from delta-rays in agreement with the microlesion concept. The effects of inactivation on mutations rates make it very unlikely that a single parameter such as LET or Z*2/beta(2) can be used to specify radiation quality for heavy ion bombardment.

  14. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds.

    Science.gov (United States)

    Wu, Tsai-Jung; Tzeng, Yan-Kai; Chang, Wei-Wei; Cheng, Chi-An; Kuo, Yung; Chien, Chin-Hsiang; Chang, Huan-Cheng; Yu, John

    2013-09-01

    Lung stem/progenitor cells are potentially useful for regenerative therapy, for example in repairing damaged or lost lung tissue in patients. Several optical imaging methods and probes have been used to track how stem cells incorporate and regenerate themselves in vivo over time. However, these approaches are limited by photobleaching, toxicity and interference from background tissue autofluorescence. Here we show that fluorescent nanodiamonds, in combination with fluorescence-activated cell sorting, fluorescence lifetime imaging microscopy and immunostaining, can identify transplanted CD45(-)CD54(+)CD157(+) lung stem/progenitor cells in vivo, and track their engraftment and regenerative capabilities with single-cell resolution. Fluorescent nanodiamond labelling did not eliminate the cells' properties of self-renewal and differentiation into type I and type II pneumocytes. Time-gated fluorescence imaging of tissue sections of naphthalene-injured mice indicates that the fluorescent nanodiamond-labelled lung stem/progenitor cells preferentially reside at terminal bronchioles of the lungs for 7 days after intravenous transplantation.

  15. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  16. An insight on advantage of hybrid sun–wind-tracking over sun-tracking PV system

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Banybayat, Meisam; Tagheie, Yaghoub; Valeh-e-Sheyda, Peyvand

    2015-01-01

    Graphical abstract: Real photograph of hybrid sun–wind-tracking system. - Highlights: • Novel hybrid sun–wind-tracking system proposed to enhance PV cell performance. • The wind tracker can cool down the PV cell as sun-tracking system work. • The hybrid tracker achieved 7.4% increase in energy gain over the sun tracker. • The overall daily output energy gain was increased by 49.83% by using this system. - Abstract: This paper introduces the design and application of a novel hybrid sun–wind-tracking system. This hybrid system employs cooling effect of wind, besides the advantages of tracking sun for enhancing power output from examined hybrid photovoltaic cell. The principal experiment focuses on comparison between dual-axes sun-tracking and hybrid sun–wind-tracking photovoltaic (PV) panels. The deductions based on the research tests confirm that the overall daily output energy gain was increased by 49.83% compared with that of a fixed system. Moreover, an overall increase of about 7.4% in the output power was found for the hybrid sun–wind-tracking over the two-axis sun tracking system.

  17. Proximal patellar tendinosis and abnormalities of patellar tracking

    International Nuclear Information System (INIS)

    Allen, G.M.; Tauro, P.G.; Ostlere, S.J.

    1999-01-01

    Objective. To assess whether an association exists between patellar tendinosis and abnormal patellar tracking. Design and patients. The MRI examinations of 630 patients (i.e. 860 knees) referred with anterior knee pain over a 4-year period were assessed in retrospect for the presence of patellar tendinosis and abnormal patellar tracking. The images of the patients with patellar tendinosis were reviewed and the location within the patellar tendon was recorded. Results. There were 44 knees with proximal patellar tendinosis. Twenty-four of these were considered to have normal patellar tracking and 20 to have abnormal patellar tracking. In the group of 816 knees without proximal patellar tendinosis, 581 were considered to have normal patellar tracking and 235 knees to have abnormal patellar tracking. When the two groups were compared there was a statistically significant difference in the ratio of patients with and without abnormal tracking. Conclusion. In patients referred with anterior knee pain or suspected abnormal patellar tracking there is a significant association between proximal patellar tendinosis and abnormal patellar tracking. (orig.)

  18. MRI findings of small cell neuroendocrime carcinoma of the uterine cervix: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Won, You Sun; Yi, Boem Ha; Lee, Hae Kyung; Lee, Min Hee; Choi, Seo Youn; Kwak, Jeong Ja [Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon (Korea, Republic of)

    2015-10-15

    Small cell neuroendocrine carcinoma of the uterine cervix is a rare primary neoplasm, accounting for less than 5% of all uterine cervical cancers. The tumor is known to have an aggressive behavior and poor prognosis. In this article, we present the MRI findings of 5 cases of pathologically-proven small cell neuroendocrine carcinoma of the uterine cervix, including diffusion-weighted images.

  19. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    Liu Min; Guo Youmin; Wu Qifei; Yang Junle; Wang Peng; Wang Sicen; Guo Xiaojuan; Qiang Yongqian; Duan Xiaoyi

    2006-01-01

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol -1 s -1 , higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  20. Evolving Identification of Blood Cells Associated with Clinically Isolated Syndrome: Importance of Time since Clinical Presentation and Diagnostic MRI.

    Science.gov (United States)

    Trend, Stephanie; Jones, Anderson P; Geldenhuys, Sian; Byrne, Scott N; Fabis-Pedrini, Marzena J; Nolan, David; Booth, David R; Carroll, William M; Lucas, Robyn M; Kermode, Allan G; Hart, Prue H

    2017-06-15

    It is not clear how the profile of immune cells in peripheral blood differs between patients with clinically isolated syndrome (CIS) and healthy controls (HC). This study aimed to identify a CIS peripheral blood signature that may provide clues for potential immunomodulatory approaches early in disease. Peripheral blood mononuclear cells (PBMCs) were collected from 18 people with CIS, 19 HC and 13 individuals with other demyelinating conditions (ODC) including multiple sclerosis (MS). Individuals with CIS separated into two groups, namely those with early (≤14 days post-diagnostic magnetic resonance imaging (MRI); n = 6) and late (≥27 days; n = 12) blood sampling. Transitional B cells were increased in the blood of CIS patients independently of when blood was taken. However, there were two time-dependent effects found in the late CIS group relative to HC, including decreased CD56bright NK cells, which correlated significantly with time since MRI, and increased CD141+ myeloid dendritic cell (mDC2) frequencies. Higher CD1c+ B cells and lower non-classical monocyte frequencies were characteristic of more recent demyelinating disease activity (ODC and early CIS). Analysing cell populations by time since symptoms (subjective) and diagnostic MRI (objective) may contribute to understanding CIS.

  1. CT, MRI, and FDG PET/CT findings of sinonasal sarcoma: Differentiation from squamous cell carcinoma

    International Nuclear Information System (INIS)

    Kim, Jin Ho; Yoon, Dae Young; Baek, Sora; Park, Min Woo; Kwon, Kee Hwan; Rho, Young Soo

    2016-01-01

    To evaluate computed tomography (CT), magnetic resonance imaging (MRI), and 18F-fluorodeoxyglucose (FDG) positron emission tomography/CT (PET/CT) findings for the differentiation of sinonasal sarcoma from squamous cell carcinoma (SCC). We retrospectively reviewed CT, MRI, and FDG PET/CT results in 20 patients with pathologically proven sinonasal sarcoma (n = 7) and SCC (n = 13). Imaging characteristics of tumors, such as the shape, size, margin, MRI signal intensity, pattern of enhancement, local tumor invasion, and maximum standardized uptake value (SUVmax) were analyzed and compared between sarcoma and SCC. The SUVmax of sarcomas (7.4 ± 2.1) was significantly lower than the SUVmax of the SCCs (14.3 ± 4.5) (p = 0.0013). However, no significant difference in the shape, size, margin, MRI signal intensity, pattern of enhancement, and local tumor invasion was observed between sarcoma and SCC. Although CT and MR imaging features are nonspecific, FDG PET/CT is useful in distinguishing between sinonasal sarcoma and SCC based on the SUVmax value

  2. CT, MRI, and FDG PET/CT findings of sinonasal sarcoma: Differentiation from squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Ho; Yoon, Dae Young; Baek, Sora; Park, Min Woo; Kwon, Kee Hwan; Rho, Young Soo [Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    To evaluate computed tomography (CT), magnetic resonance imaging (MRI), and 18F-fluorodeoxyglucose (FDG) positron emission tomography/CT (PET/CT) findings for the differentiation of sinonasal sarcoma from squamous cell carcinoma (SCC). We retrospectively reviewed CT, MRI, and FDG PET/CT results in 20 patients with pathologically proven sinonasal sarcoma (n = 7) and SCC (n = 13). Imaging characteristics of tumors, such as the shape, size, margin, MRI signal intensity, pattern of enhancement, local tumor invasion, and maximum standardized uptake value (SUVmax) were analyzed and compared between sarcoma and SCC. The SUVmax of sarcomas (7.4 ± 2.1) was significantly lower than the SUVmax of the SCCs (14.3 ± 4.5) (p = 0.0013). However, no significant difference in the shape, size, margin, MRI signal intensity, pattern of enhancement, and local tumor invasion was observed between sarcoma and SCC. Although CT and MR imaging features are nonspecific, FDG PET/CT is useful in distinguishing between sinonasal sarcoma and SCC based on the SUVmax value.

  3. In vivo tracking of neuronal-like cells by magnetic resonance in rabbit models of spinal cord injury

    Science.gov (United States)

    Zhang, Ruiping; Zhang, Kun; Li, Jianding; Liu, Qiang; Xie, Jun

    2013-01-01

    In vitro experiments have demonstrated that neuronal-like cells derived from bone marrow mesenchymal stem cells can survive, migrate, integrate and help to restore the function and behaviors of spinal cord injury models, and that they may serve as a suitable approach to treating spinal cord injury. However, it is very difficult to track transplanted cells in vivo. In this study, we injected superparamagnetic iron oxide-labeled neuronal-like cells into the subarachnoid space in a rabbit model of spinal cord injury. At 7 days after cell transplantation, a small number of dot-shaped low signal intensity shadows were observed in the spinal cord injury region, and at 14 days, the number of these shadows increased on T2-weighted imaging. Perl's Prussian blue staining detected dot-shaped low signal intensity shadows in the spinal cord injury region, indicative of superparamagnetic iron oxide nanoparticle-labeled cells. These findings suggest that transplanted neuronal-like cells derived from bone marrow mesenchymal stem cells can migrate to the spinal cord injury region and can be tracked by magnetic resonance in vivo. Magnetic resonance imaging represents an efficient noninvasive technique for visually tracking transplanted cells in vivo. PMID:25206659

  4. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease.

    Science.gov (United States)

    Case, Michelle; Zhang, Huishi; Mundahl, John; Datta, Yvonne; Nelson, Stephen; Gupta, Kalpna; He, Bin

    2017-01-01

    Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.

  5. Gadolinium-Hematoporphyrin: new potential MRI contrast agent for detection of breast cancer cell line (MCF-7

    Directory of Open Access Journals (Sweden)

    D Shahbazi Gahrouei

    2005-09-01

    Full Text Available Background: Gadolinium-porphyrins have been synthesized and are currently being investigated as magnetic resonance imaging (MRI contrast agents. This study aimed to synthesize Gd-hematoporphyrin and applicate it for in vitro detection of breast cancer cell line (MCF-7. Methods: The naturally occurring porphyrin (hematoporphyrin was inserted with gadolinium (III nitrate hexahydrate to yield Gd-H. T1 relaxation times and signal enhancement of the contrast agents were presented, and the results were compared. UV spectrophotometer measured the attachment of Gd to the cell membrane of MCF-7. Results: Most of gadolinium chloride (GdCl3 was found in the washing solution, indicate that it didn`t fixed to the breast cell membranes during incubation. Gd-DTPA showed some uptake into the MCF-7 cell membranes with incubation, however, its uptake was significantly lower than Gd-H. Conclusion: Good cell memberan uptake of Gd-porphyrin is comparable to controls, indicating selective delivery it to the breast cell line and considerable potency in diagnostic MR imaging for detection of breast cancer. Key Words: Porphyrin, Contrast agent, MRI, Hematoporphyrin, Breast cancer cell (MCF-7

  6. Multiple Convective Cell Identification and Tracking Algorithm for documenting time-height evolution of measured polarimetric radar and lightning properties

    Science.gov (United States)

    Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.

    2017-12-01

    A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.

  7. Fast and Practical Head Tracking in Brain Imaging with Time-of-Flight Camera

    DEFF Research Database (Denmark)

    Wilm, Jakob; Olesen, Oline Vinter; Jensen, Rasmus Ramsbøl

    2013-01-01

    scanners. Particularly in MRI and PET, the newest generation of TOF cameras could become a method of tracking small and large scale patient movement in a fast and user friendly way required in clinical environments. We present a novel methodology for fast tracking from TOF point clouds without the need...

  8. Guard cell zeaxanthin tracks photosynthetically active radiation and stomatal apertures in Vicia faba leaves

    International Nuclear Information System (INIS)

    Srivastava, A.; Zeiger, E.

    1995-01-01

    Zeaxanthin, antheraxanthin and violaxanthin concentrations in guard cells from sonicated abaxial epidermal peels of Vicia faba were measured from dawn to dusk, and compared with concentrations in mesophyll tissue of the same leaves. Measured changes in guard cell zeaxanthin and violaxanthin concentrations indicate that guard cells operate the xanthophyll cycle throughout the day. Mesophyll tissue had no detectable zeaxanthin at dawn, whereas guard cells had 30–50 mmol mol −1 chlorophyll a+b. On a chlorophyll basis, maximal zeaxanthin levels were 3–4 fold higher in guard cells than in mesophyll cells. Zeaxanthin concentrations tracked levels of photosynthetically active radiation (PAR) in both mesophyll and guard cells. In the mesophyll, most of the zeaxanthin changes occurred in mid-morning and mid-afternoon. In guard cells, zeaxanthin concentrations changed nearly linearly with PAR in the early morning and late afternoon, and closely tracked PAR levels throughout the day. Guard cell zeaxanthin concentrations were also closely correlated with stomatal apertures. The close relationship between zeaxanthin concentrations and PAR levels in guard cells indicates that zeaxanthin is well suited to function as a molecular photosensor in stomatal movements. (author)

  9. MRI of intracranial germ cell tumours

    International Nuclear Information System (INIS)

    Sumida, M.; Uozumi, T.; Kiya, K.; Mukada, K.; Arita, K.; Kurisu, K.; Sugiyama, K.; Onda, J.; Satoh, H.; Ikawa, F.; Migita, K.

    1995-01-01

    We reviewed MRI findings in proven intracranial germ cell tumours in 22 cases, 12 of whom received Gd-DTPA. On T1-weighted images, the signal intensity of the tumour parenchyma was moderately low in 19 cases and isointense in 3; on T2-weighted images, it was high in all cases. Regions of different intensity thought to be cysts were found in 17 (77 %): 7 of 12 patients with germinoma (58 %) and in all other cases. Of the 13 patients with pineal lesions T1-weighted sagittal images showed the aqueduct to be obstructed in 5, stenotic in 7 and normal in 1. Strong contrast enhancement was observed in all 12 cases. Of the 14 patients with suprasellar lesions, 5 were found to have an intrasellar extension, and in 3 of these, the normal pituitary gland, which could be distinguished from the tumour, was displaced anteriorly. Ten patients (45 %) had multiple lesions. (orig.)

  10. Dipy, a library for the analysis of diffusion MRI data.

    Science.gov (United States)

    Garyfallidis, Eleftherios; Brett, Matthew; Amirbekian, Bagrat; Rokem, Ariel; van der Walt, Stefan; Descoteaux, Maxime; Nimmo-Smith, Ian

    2014-01-01

    Diffusion Imaging in Python (Dipy) is a free and open source software project for the analysis of data from diffusion magnetic resonance imaging (dMRI) experiments. dMRI is an application of MRI that can be used to measure structural features of brain white matter. Many methods have been developed to use dMRI data to model the local configuration of white matter nerve fiber bundles and infer the trajectory of bundles connecting different parts of the brain. Dipy gathers implementations of many different methods in dMRI, including: diffusion signal pre-processing; reconstruction of diffusion distributions in individual voxels; fiber tractography and fiber track post-processing, analysis and visualization. Dipy aims to provide transparent implementations for all the different steps of dMRI analysis with a uniform programming interface. We have implemented classical signal reconstruction techniques, such as the diffusion tensor model and deterministic fiber tractography. In addition, cutting edge novel reconstruction techniques are implemented, such as constrained spherical deconvolution and diffusion spectrum imaging (DSI) with deconvolution, as well as methods for probabilistic tracking and original methods for tractography clustering. Many additional utility functions are provided to calculate various statistics, informative visualizations, as well as file-handling routines to assist in the development and use of novel techniques. In contrast to many other scientific software projects, Dipy is not being developed by a single research group. Rather, it is an open project that encourages contributions from any scientist/developer through GitHub and open discussions on the project mailing list. Consequently, Dipy today has an international team of contributors, spanning seven different academic institutions in five countries and three continents, which is still growing.

  11. Advective isotope transport by mixing cell and particle tracking algorithms

    International Nuclear Information System (INIS)

    Tezcan, L.; Meric, T.

    1999-01-01

    The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique

  12. Iron Administration before Stem Cell Harvest Enables MR Imaging Tracking after Transplantation

    OpenAIRE

    Khurana, Aman; Chapelin, Fanny; Beck, Graham; Lenkov, Olga D.; Donig, Jessica; Nejadnik, Hossein; Messing, Solomon; Derugin, Nikita; Chan, Ray Chun-Fai; Gaur, Amitabh; Sennino, Barbara; McDonald, Donald M.; Kempen, Paul J.; Tikhomirov, Grigory A.; Rao, Jianghong

    2013-01-01

    Transplanted mesenchymal stem cells (MSCs) could be detected and tracked with MR imaging, if the donor is treated with an intravenous injection of the Food and Drug Administration–approved iron supplement ferumoxytol prior to MSC harvesting.

  13. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Nealy, J.E.; Shinn, J.L.

    1991-02-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space

  14. Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays

    Science.gov (United States)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.

    1991-01-01

    The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.

  15. Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2012-01-01

    The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of

  16. Combined fMRI- and eye movement-based decoding of bistable plaid motion perception.

    Science.gov (United States)

    Wilbertz, Gregor; Ketkar, Madhura; Guggenmos, Matthias; Sterzer, Philipp

    2018-05-01

    The phenomenon of bistable perception, in which perception alternates spontaneously despite constant sensory stimulation, has been particularly useful in probing the neural bases of conscious perception. The study of such bistability requires access to the observer's perceptual dynamics, which is usually achieved via active report. This report, however, constitutes a confounding factor in the study of conscious perception and can also be biased in the context of certain experimental manipulations. One approach to circumvent these problems is to track perceptual alternations using signals from the eyes or the brain instead of observers' reports. Here we aimed to optimize such decoding of perceptual alternations by combining eye and brain signals. Eye-tracking and functional magnetic resonance imaging (fMRI) was performed in twenty participants while they viewed a bistable visual plaid motion stimulus and reported perceptual alternations. Multivoxel pattern analysis (MVPA) for fMRI was combined with eye-tracking in a Support vector machine to decode participants' perceptual time courses from fMRI and eye-movement signals. While both measures individually already yielded high decoding accuracies (on average 86% and 88% correct, respectively) classification based on the two measures together further improved the accuracy (91% correct). These findings show that leveraging on both fMRI and eye movement data may pave the way for optimized no-report paradigms through improved decodability of bistable motion perception and hence for a better understanding of the neural correlates of consciousness. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A proposal for combined MRI and PET/CT interpretation criteria for preoperative nodal staging in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Kim, Yoo Na; Yi, Chin A.; Lee, Kyung Soo; Lee, Ho Yun; Kim, Tae Sung; Chung, Myung Jin; Kwon, O.Jung; Chung, Man Pyo; Kim, Byung-Tae; Choi, Joon Young; Kim, Seon Woo; Han, Joungho; Shim, Young Mog

    2012-01-01

    To determine the positive reading criteria for malignant nodes when interpreting combined MRI and PET/CT images for preoperative nodal staging in non-small-cell lung cancer (NSCLC). Forty-nine patients with biopsy-proven NSCLC underwent both PET/CT and thoracic MRI [diffusion weighted imaging (DWI)]. Each nodal station was evaluated for the presence of metastasis by applying either inclusive (positive if either one read positive) or exclusive (positive if both read positive) criteria in the combined interpretation of PET/CT and MRI. Nodal stage was confirmed pathologically. The combined diagnostic accuracy of PET/CT and MRI was determined on per-nodal station and per-patient bases and compared with that of PET/CT alone. In 49 patients, 39 (19%) of 206 nodal stations harboured malignant cells. Out of 206 nodal stations, 186 (90%) had concordant readings, while the rest (10%) had discordant readings. Inclusive criteria of combined PET/CT and MRI helped increase sensitivity for detecting nodal metastasis (69%) compared with PET/CT alone (46%; P = 0.003), while specificity was not significantly decreased. Inclusive criteria in combined MRI and PET/CT readings help improve significantly the sensitivity for detecting nodal metastasis compared with PET/CT alone and may decrease unnecessary open thoracotomy. (orig.)

  18. Low-cost motility tracking system (LOCOMOTIS for time-lapse microscopy applications and cell visualisation.

    Directory of Open Access Journals (Sweden)

    Adam E Lynch

    Full Text Available Direct visualisation of cells for the purpose of studying their motility has typically required expensive microscopy equipment. However, recent advances in digital sensors mean that it is now possible to image cells for a fraction of the price of a standard microscope. Along with low-cost imaging there has also been a large increase in the availability of high quality, open-source analysis programs. In this study we describe the development and performance of an expandable cell motility system employing inexpensive, commercially available digital USB microscopes to image various cell types using time-lapse and perform tracking assays in proof-of-concept experiments. With this system we were able to measure and record three separate assays simultaneously on one personal computer using identical microscopes, and obtained tracking results comparable in quality to those from other studies that used standard, more expensive, equipment. The microscopes used in our system were capable of a maximum magnification of 413.6×. Although resolution was lower than that of a standard inverted microscope we found this difference to be indistinguishable at the magnification chosen for cell tracking experiments (206.8×. In preliminary cell culture experiments using our system, velocities (mean µm/min ± SE of 0.81 ± 0.01 (Biomphalaria glabrata hemocytes on uncoated plates, 1.17 ± 0.004 (MDA-MB-231 breast cancer cells, 1.24 ± 0.006 (SC5 mouse Sertoli cells and 2.21 ± 0.01 (B. glabrata hemocytes on Poly-L-Lysine coated plates, were measured and are consistent with previous reports. We believe that this system, coupled with open-source analysis software, demonstrates that higher throughput time-lapse imaging of cells for the purpose of studying motility can be an affordable option for all researchers.

  19. Low-cost motility tracking system (LOCOMOTIS) for time-lapse microscopy applications and cell visualisation.

    Science.gov (United States)

    Lynch, Adam E; Triajianto, Junian; Routledge, Edwin

    2014-01-01

    Direct visualisation of cells for the purpose of studying their motility has typically required expensive microscopy equipment. However, recent advances in digital sensors mean that it is now possible to image cells for a fraction of the price of a standard microscope. Along with low-cost imaging there has also been a large increase in the availability of high quality, open-source analysis programs. In this study we describe the development and performance of an expandable cell motility system employing inexpensive, commercially available digital USB microscopes to image various cell types using time-lapse and perform tracking assays in proof-of-concept experiments. With this system we were able to measure and record three separate assays simultaneously on one personal computer using identical microscopes, and obtained tracking results comparable in quality to those from other studies that used standard, more expensive, equipment. The microscopes used in our system were capable of a maximum magnification of 413.6×. Although resolution was lower than that of a standard inverted microscope we found this difference to be indistinguishable at the magnification chosen for cell tracking experiments (206.8×). In preliminary cell culture experiments using our system, velocities (mean µm/min ± SE) of 0.81 ± 0.01 (Biomphalaria glabrata hemocytes on uncoated plates), 1.17 ± 0.004 (MDA-MB-231 breast cancer cells), 1.24 ± 0.006 (SC5 mouse Sertoli cells) and 2.21 ± 0.01 (B. glabrata hemocytes on Poly-L-Lysine coated plates), were measured and are consistent with previous reports. We believe that this system, coupled with open-source analysis software, demonstrates that higher throughput time-lapse imaging of cells for the purpose of studying motility can be an affordable option for all researchers.

  20. Low-Cost Motility Tracking System (LOCOMOTIS) for Time-Lapse Microscopy Applications and Cell Visualisation

    Science.gov (United States)

    Lynch, Adam E.; Triajianto, Junian; Routledge, Edwin

    2014-01-01

    Direct visualisation of cells for the purpose of studying their motility has typically required expensive microscopy equipment. However, recent advances in digital sensors mean that it is now possible to image cells for a fraction of the price of a standard microscope. Along with low-cost imaging there has also been a large increase in the availability of high quality, open-source analysis programs. In this study we describe the development and performance of an expandable cell motility system employing inexpensive, commercially available digital USB microscopes to image various cell types using time-lapse and perform tracking assays in proof-of-concept experiments. With this system we were able to measure and record three separate assays simultaneously on one personal computer using identical microscopes, and obtained tracking results comparable in quality to those from other studies that used standard, more expensive, equipment. The microscopes used in our system were capable of a maximum magnification of 413.6×. Although resolution was lower than that of a standard inverted microscope we found this difference to be indistinguishable at the magnification chosen for cell tracking experiments (206.8×). In preliminary cell culture experiments using our system, velocities (mean µm/min ± SE) of 0.81±0.01 (Biomphalaria glabrata hemocytes on uncoated plates), 1.17±0.004 (MDA-MB-231 breast cancer cells), 1.24±0.006 (SC5 mouse Sertoli cells) and 2.21±0.01 (B. glabrata hemocytes on Poly-L-Lysine coated plates), were measured and are consistent with previous reports. We believe that this system, coupled with open-source analysis software, demonstrates that higher throughput time-lapse imaging of cells for the purpose of studying motility can be an affordable option for all researchers. PMID:25121722

  1. Intracellular lipid in papillary renal cell carcinoma (pRCC): T2 weighted (T2W) MRI and pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Schieda, Nicola; Van der Pol, Christian B.; Moosavi, Bardia; McInnes, Matthew D.F. [The Ottawa Hospital, The University of Ottawa, Department of Medical Imaging, Ottawa, Ontario (Canada); Mai, Kien T.; Flood, Trevor A. [The Ottawa Hospital, The University of Ottawa, Department of Anatomical Pathology, Ottawa, Ontario (Canada)

    2015-07-15

    To evaluate if pRCCs demonstrate intracellular lipid (i-lipid) at chemical-shift (CS) MRI, and assess T2W-MRI and pathologic characteristics. Sixty-two patients with a pRCC diagnosis underwent MRI over 11 years (IRB-approved). Two radiologists independently assessed for presence of i-lipid on CS-MRI and homogeneity on T2W-MRI. Inter-observer agreement was assessed via an intraclass correlation and results were compared using the Chi-square test. Discordant cases were reviewed to establish consensus. T2W SI-ratios (SI.tumor/SI.kidney) and CS-SI index were compared using independent t-tests and Spearman correlation. Two pathologists re-evaluated the histopathology. Nine of the 62 pRCCs (14.5 %) demonstrated i-lipid; agreement was moderate (ICC = 0.63). Pathology review depicted clear cells in four tumours and foamy histiocytes in five tumours. 25.8-35.4 % (ICC = 0.65) of tumours were homogeneous on T2W-MRI. No pRCC with i-lipid was considered homogeneous (p = 0.01-0.04). Overall, T2W SI-ratio and CS-SI index were 0.89 (±0.29) and -3.63 % (-7.27 to 11.42). pRCC with i-lipid had significantly higher T2W SI-ratio (p = 0.003). There was a correlation between the CS-SI index and T2W SI-ratio, (r = 0.44, p < 0.001). Intracellular lipid is uncommonly detected in pRCCs due to clear cell changes and foamy histiocytes. These tumours are associated with heterogeneously-increased SI in T2W-MRI. (orig.)

  2. Dipy, a library for the analysis of diffusion MRI data

    Directory of Open Access Journals (Sweden)

    Eleftherios eGaryfallidis

    2014-02-01

    Full Text Available Diffusion Imaging in Python (Dipy is a free and open source software projectfor the analysis of data from diffusion magnetic resonance imaging (dMRIexperiments. dMRI is an application of MRI that can be used to measurestructural features of brain white matter. Many methods have been developed touse dMRI data to model the local configuration of white matter nerve fiberbundles and infer the trajectory of bundles connecting different parts of thebrain.Dipy gathers implementations of many different methods in dMRI, including:diffusion signal pre-processing; reconstruction of diffusion distributions inindividual voxels; fiber tractography and fiber track post-processing, analysisand visualization. Dipy aims to provide transparent implementations forall the different steps of dMRI analysis with a uniform programming interface.We have implemented classical signal reconstruction techniques, such as thediffusion tensor model and deterministic fiber tractography. In addition,cutting edge novel reconstruction techniques are implemented, such asconstrained spherical deconvolution and diffusion spectrum imaging withdeconvolution, as well as methods for probabilistic tracking and originalmethods for tractography clustering. Many additional utility functions areprovided to calculate various statistics, informative visualizations, as wellas file-handling routines to assist in the development and use of noveltechniques.In contrast to many other scientific software projects, Dipy is not beingdeveloped by a single research group. Rather, it is an open project thatencourages contributions from any scientist/developer through GitHub and opendiscussions on the project mailing list. Consequently, Dipy today has aninternational team of contributors, spanning seven different academic institutionsin five countries and three continents, which is still growing.

  3. Perivascular epithelioid cell tumour: Dynamic CT, MRI and clinicopathological characteristics—Analysis of 32 cases and review of the literature

    International Nuclear Information System (INIS)

    Tan, Y.; Zhang, H.; Xiao, E.-H.

    2013-01-01

    Aim: To evaluate the dynamic computed tomography (CT), magnetic resonance imaging (MRI), and clinicopathological characteristics of perivascular epithelioid cell tumours (PEComas), thus improving the diagnosis of the tumour. Materials and methods: A retrospective analysis was undertaken of the dynamic CT, MRI, and clinicopathological characteristics of 32 PEComas diagnosed at histopathology during the period 1 January 2005 to 1 March 2012 at two hospitals. Results: The age of the patients ranged from 14–80 years (mean 43.3 years). There were more women in this group (19/32). Solitary tumours were identified in kidney (n = 16), liver (n = 7), gynaecological organs (n = 2), retroperitoneal soft tissue (n = 2), lung (n = 2), palate (n = 1), left groin (n = 1). One patient had multiple tumours in the liver, kidney, and retroperitoneal soft tissue. Dynamic CT (32 cases) and MRI (15 cases) demonstrated tumours that were of low density or hypointense on T1-weighted imaging (WI) and hyperintense on T2WI; some were isodense with fat (CT: 10/32; MRI: 6/15). The tumours usually had well-defined borders and were of a regular shape (CT: 26/32; MRI: 12/15). Tumour diameters ranged from 1.5–18 cm (mean 5.1 cm). Most tumours (CT: 21/32, MRI: 10/15) enhanced heterogeneously and significantly on arterial and venous phases. Tumours appeared slightly hypodense on delayed CT imaging, although some (6/32) had delayed enhancement. The expression rate of HMB-45 (human melanoma black monoclonal antibody) was 100% (32/32). Histological classification in 22 cases (22/32) was epithelioid angiomyolipoma (AML), three (3/32) were clear cell “sugar” tumours (CCSTs), two (2/32) were lymphangioleiomyomatosis (LAM), and two (2/32) were clear cell myomelanocytic tumours of the falciform ligament/ligamentum teres (CCMMT). Three tumours did not have a specific classification. Conclusion: Knowledge of dynamic CT, MRI, and clinicopathological characteristics could help improve the diagnosis of

  4. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    Science.gov (United States)

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-05-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  5. Human tumor cell proliferation evaluated using manganese-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Rod D Braun

    Full Text Available Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn(2+ [measured with manganese-enhanced MRI (MEMRI], is linked to proliferation rate in vitro.Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl(2 for one hour and then thoroughly washed. MEMRI R(1 values (longitudinal relaxation rates, which have a positive linear relationship with Mn(2+ concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn(2+-induced increases in R(1 compared to cells not exposed to Mn(2+. C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R(1 values and proliferation rate (p≤0.005, while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R(1 for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet.These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI.

  6. Diffusion, confusion and functional MRI

    International Nuclear Information System (INIS)

    Le Bihan, Denis

    2012-01-01

    Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intra-voxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This 'DfMRI' signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI. (authors)

  7. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by 19F- and diffusion-MRI

    Science.gov (United States)

    Bible, Ellen; Dell’Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter; Badylak, Stephen F.; Ahrens, Eric T.; Modo, Michel

    2012-01-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based 1H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a 19F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on 1H-MRI scans. Twenty percent of cells labeled with the 19F-agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T2- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. PMID:22244696

  8. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI.

    Science.gov (United States)

    Bible, Ellen; Dell'Acqua, Flavio; Solanky, Bhavana; Balducci, Anthony; Crapo, Peter M; Badylak, Stephen F; Ahrens, Eric T; Modo, Michel

    2012-04-01

    Transplantation of human neural stem cells (hNSCs) is emerging as a viable treatment for stroke related brain injury. However, intraparenchymal grafts do not regenerate lost tissue, but rather integrate into the host parenchyma without significantly affecting the lesion cavity. Providing a structural support for the delivered cells appears important for cell based therapeutic approaches. The non-invasive monitoring of therapeutic methods would provide valuable information regarding therapeutic strategies but remains a challenge. Labeling transplanted cells with metal-based (1)H-magnetic resonance imaging (MRI) contrast agents affects the visualization of the lesion cavity. Herein, we demonstrate that a (19)F-MRI contrast agent can adequately monitor the distribution of transplanted cells, whilst allowing an evaluation of the lesion cavity and the formation of new tissue on (1)H-MRI scans. Twenty percent of cells labeled with the (19)F agent were of host origin, potentially reflecting the re-uptake of label from dead transplanted cells. Both T(2)- and diffusion-weighted MRI scans indicated that transplantation of hNSCs suspended in a gel form of a xenogeneic extracellular matrix (ECM) bioscaffold resulted in uniformly distributed cells throughout the lesion cavity. However, diffusion MRI indicated that the injected materials did not yet establish diffusion barriers (i.e. cellular network, fiber tracts) normally found within striatal tissue. The ECM bioscaffold therefore provides an important support to hNSCs for the creation of de novo tissue and multi-nuclei MRI represents an adept method for the visualization of some aspects of this process. However, significant developments of both the transplantation paradigm, as well as regenerative imaging, are required to successfully create new tissue in the lesion cavity and to monitor this process non-invasively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. What’s New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment

    Directory of Open Access Journals (Sweden)

    Cesar Reis

    2015-05-01

    Full Text Available Traumatic brain injury (TBI, defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI, diffusion tensor imaging (DTI, positron emission tomography (PET, and high definition fiber tracking (HDFT show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.

  10. What’s New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment

    Science.gov (United States)

    Reis, Cesar; Wang, Yuechun; Akyol, Onat; Ho, Wing Mann; Applegate II, Richard; Stier, Gary; Martin, Robert; Zhang, John H.

    2015-01-01

    Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI. PMID:26016501

  11. A protocol for patients with cardiovascular implantable devices undergoing magnetic resonance imaging (MRI): should defibrillation threshold testing be performed post-(MRI).

    Science.gov (United States)

    Burke, Peter Thomas; Ghanbari, Hamid; Alexander, Patrick B; Shaw, Michael K; Daccarett, Marcos; Machado, Christian

    2010-06-01

    Magnetic resonance imaging (MRI) in patients with Cardiovascular Implantable Electronic Devices (CIED) has not been approved by the Food and Drug Administration. Recent data suggests MRI as a relative rather than absolute contraindication in CIED patients. Recently, the American Heart Association has recommended defibrillation threshold testing (DFTT) in implantable cardioverter defibrillator (ICD) patients undergoing MRI. We evaluated the feasibility and safety of a protocol for MRI in CIED patients, incorporating the new recommendations on DFTT. Consecutive patients with CIED undergoing MRI were included. The protocol consisted of continuous monitoring during imaging, device interrogation pre- and post-MRI, reprogramming of the pacemaker to an asynchronous mode in pacemaker-dependent (PMD) patients and a non-tracking/sensing mode for non-PMD patients. All tachyarrhythmia therapies were disabled. Devices were interrogated for lead impedance, battery life, pacing, and sensing thresholds. All patients with ICD underwent DFTT/defibrillator safety margin testing (DSMT) post-MRI. A total of 92 MRI's at 1.5 Tesla were performed in 38 patients. A total of 13 PMD patients, ten ICD patients, four cardiac resynchronization therapy with defibrillator (CRT-D) patients, and 11 non-PMD patients were scanned from four major manufacturers. No device circuitry damage, programming alterations, inappropriate shocks, failure to pace, or changes in sensing, pacing, or defibrillator thresholds were found on single or multiple MRI sessions. Our protocol for MRI in CIED patients appears safe, feasible, and reproducible. This is irrespective of the type of CIED, pacemaker dependancy or multiple 24-h scanning sessions. Our protocol addresses early detection of potential complications and establishes a response system for potential device-related complications. Our observation suggests that routine DFTT/DSMT post-MRI may not be necessary.

  12. Through the Looking Glass: Time-lapse Microscopy and Longitudinal Tracking of Single Cells to Study Anti-cancer Therapeutics.

    Science.gov (United States)

    Burke, Russell T; Orth, James D

    2016-05-14

    The response of single cells to anti-cancer drugs contributes significantly in determining the population response, and therefore is a major contributing factor in the overall outcome. Immunoblotting, flow cytometry and fixed cell experiments are often used to study how cells respond to anti-cancer drugs. These methods are important, but they have several shortcomings. Variability in drug responses between cancer and normal cells, and between cells of different cancer origin, and transient and rare responses are difficult to understand using population averaging assays and without being able to directly track and analyze them longitudinally. The microscope is particularly well suited to image live cells. Advancements in technology enable us to routinely image cells at a resolution that enables not only cell tracking, but also the observation of a variety of cellular responses. We describe an approach in detail that allows for the continuous time-lapse imaging of cells during the drug response for essentially as long as desired, typically up to 96 hr. Using variations of the approach, cells can be monitored for weeks. With the employment of genetically encoded fluorescent biosensors numerous processes, pathways and responses can be followed. We show examples that include tracking and quantification of cell growth and cell cycle progression, chromosome dynamics, DNA damage, and cell death. We also discuss variations of the technique and its flexibility, and highlight some common pitfalls.

  13. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.

    Science.gov (United States)

    Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang

    2015-02-24

    The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.

  14. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tryggestad, E. [Mayo Clinic (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  15. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    International Nuclear Information System (INIS)

    Tryggestad, E.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  16. Monitoring Cell Death in Regorafenib-Treated Experimental Colon Carcinomas Using Annexin-Based Optical Fluorescence Imaging Validated by Perfusion MRI.

    Directory of Open Access Journals (Sweden)

    Philipp M Kazmierczak

    Full Text Available To investigate annexin-based optical fluorescence imaging (OI for monitoring regorafenib-induced early cell death in experimental colon carcinomas in rats, validated by perfusion MRI and multiparametric immunohistochemistry.Subcutaneous human colon carcinomas (HT-29 in athymic rats (n = 16 were imaged before and after a one-week therapy with regorafenib (n = 8 or placebo (n = 8 using annexin-based OI and perfusion MRI at 3 Tesla. Optical signal-to-noise ratio (SNR and MRI tumor perfusion parameters (plasma flow PF, mL/100mL/min; plasma volume PV, % were assessed. On day 7, tumors underwent immunohistochemical analysis for tumor cell apoptosis (TUNEL, proliferation (Ki-67, and microvascular density (CD31.Apoptosis-targeted OI demonstrated a tumor-specific probe accumulation with a significant increase of tumor SNR under therapy (mean Δ +7.78±2.95, control: -0.80±2.48, p = 0.021. MRI detected a significant reduction of tumor perfusion in the therapy group (mean ΔPF -8.17±2.32 mL/100 mL/min, control -0.11±3.36 mL/100 mL/min, p = 0.036. Immunohistochemistry showed significantly more apoptosis (TUNEL; 11392±1486 vs. 2921±334, p = 0.001, significantly less proliferation (Ki-67; 1754±184 vs. 2883±323, p = 0.012, and significantly lower microvascular density (CD31; 107±10 vs. 182±22, p = 0.006 in the therapy group.Annexin-based OI allowed for the non-invasive monitoring of regorafenib-induced early cell death in experimental colon carcinomas, validated by perfusion MRI and multiparametric immunohistochemistry.

  17. The evaluation of the effect of VAB-6 combination chemotherapy by MRI for a germinal cell tumor originating in the anterior mediastinum

    International Nuclear Information System (INIS)

    Tomioka, Hiromi; Murayama, Takako; Kurasawa, Takuya; Kuze, Fumiyuki; Chihara, Kouji; Wada, Hiromi; Hitomi, Shigeki; Noma, Satoshi.

    1988-01-01

    A 22-year old man with germinal cell tumor originating in the anterior mediastinum was treated with the VAB-6 chemotherapy. Disappearance of tumor cells and degeneration to fibrous necrotic tissue was revealed by MRI performed after chemotherapy, i.e. change of T 2 weighted image of the tumor from high-intensity to iso-intensity. And this pathological change was confirmed by the histological examination of the resected specimen. MRI was considered to be very useful to evaluate the effect of chemotherapy for germinal cell tumor originating in the anterior mediastinum. (author)

  18. CNR considerations for rapid real-time MRI tumor tracking in radiotherapy hybrid devices: Effects of B{sub 0} field strength

    Energy Technology Data Exchange (ETDEWEB)

    Wachowicz, K., E-mail: keith.wachowicz@albertahealthservices.ca; De Zanche, N.; Yip, E. [Division of Medical Physics, Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Volotovskyy, V. [Cross Cancer Institute, Alberta Health Services, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2016-08-15

    Purpose: This work examines the subject of contrast-to-noise ratio (CNR), specifically between tumor and tissue background, and its dependence on the MRI field strength, B{sub 0}. This examination is motivated by the recent interest and developments in MRI/radiotherapy hybrids where real-time imaging can be used to guide treatment beams. The ability to distinguish a tumor from background tissue is of primary importance in this field, and this work seeks to elucidate the complex relationship between the CNR and B{sub 0} that is too often assumed to be purely linear. Methods: Experimentally based models of B{sub 0}-dependant relaxation for various tumor and normal tissues from the literature were used in conjunction with signal equations for MR sequences suitable for rapid real-time imaging to develop field-dependent predictions for CNR. These CNR models were developed for liver, lung, breast, glioma, and kidney tumors for spoiled gradient-echo, balanced steady-state free precession (bSSFP), and single-shot half-Fourier fast spin echo sequences. Results: Due to the pattern in which the relaxation properties of tissues are found to vary over B{sub 0} field (specifically the T{sub 1} time), there was always an improved CNR at lower fields compared to linear dependency. Further, in some tumor sites, the CNR at lower fields was found to be comparable to, or sometimes higher than those at higher fields (i.e., bSSFP CNR for glioma, kidney, and liver tumors). Conclusions: In terms of CNR, lower B{sub 0} fields have been shown to perform as well or better than higher fields for some tumor sites due to superior T{sub 1} contrast. In other sites this effect was less pronounced, reversing the CNR advantage. This complex relationship between CNR and B{sub 0} reveals both low and high magnetic fields as viable options for tumor tracking in MRI/radiotherapy hybrids.

  19. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    International Nuclear Information System (INIS)

    Ipsen, S.; Blanck, O.; Rades, D.; Oborn, B.; Bode, F.; Liney, G.; Hunold, P.; Schweikard, A.; Keall, P. J.

    2014-01-01

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  20. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S. [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia and Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Blanck, O.; Rades, D. [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Oborn, B. [Illawarra Cancer Care Centre (ICCC), Wollongong, New South Wales 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales 2500 (Australia); Bode, F. [Medical Department II, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Liney, G. [Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, New South Wales 2170 (Australia); Hunold, P. [Department of Radiology and Nuclear Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Schweikard, A. [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Keall, P. J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  1. Radiotherapy beyond cancer: target localization in real-time MRI and treatment planning for cardiac radiosurgery.

    Science.gov (United States)

    Ipsen, S; Blanck, O; Oborn, B; Bode, F; Liney, G; Hunold, P; Rades, D; Schweikard, A; Keall, P J

    2014-12-01

    Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior-inferior), 2.4 mm (anterior-posterior), and 2 mm (left-right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the ideal scenario, compromising

  2. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells.

    Science.gov (United States)

    Pallavicini, Carla; Levi, Valeria; Wetzler, Diana E; Angiolini, Juan F; Benseñor, Lorena; Despósito, Marcelo A; Bruno, Luciana

    2014-06-17

    The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells

  3. Simultaneous cell tracking and image alignment in 3D CLSM imagery of growing arabidopsis thaliana sepals

    NARCIS (Netherlands)

    Fick, R.H.J.; Fedorov, D.; Roeder, A.H.K.; Manjunath, B.S.

    2013-01-01

    In this research we propose a combined cell matching and image alignment method for tracking cells based on their nuclear locations in 3D fluorescent Confocal Laser Scanning Microscopy (CLSM) image sequences. We then apply it to study the cell division pattern in the developing sepal of the small

  4. MR-based imaging of neural stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Politi, Letterio S. [San Raffaele Scientific Institute, Neuroradiology Department, Milano (Italy)

    2007-06-15

    The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application. (orig.)

  5. MR-based imaging of neural stem cells

    International Nuclear Information System (INIS)

    Politi, Letterio S.

    2007-01-01

    The efficacy of therapies based on neural stem cells (NSC) has been demonstrated in preclinical models of several central nervous system (CNS) diseases. Before any potential human application of such promising therapies can be envisaged, there are some important issues that need to be solved. The most relevant one is the requirement for a noninvasive technique capable of monitoring NSC delivery, homing to target sites and trafficking. Knowledge of the location and temporospatial migration of either transplanted or genetically modified NSC is of the utmost importance in analyzing mechanisms of correction and cell distribution. Further, such a technique may represent a crucial step toward clinical application of NSC-based approaches in humans, for both designing successful protocols and monitoring their outcome. Among the diverse imaging approaches available for noninvasive cell tracking, such as nuclear medicine techniques, fluorescence and bioluminescence, magnetic resonance imaging (MRI) has unique advantages. Its high temporospatial resolution, high sensitivity and specificity render MRI one of the most promising imaging modalities available, since it allows dynamic visualization of migration of transplanted cells in animal models and patients during clinically useful time periods. Different cellular and molecular labeling approaches for MRI depiction of NSC are described and discussed in this review, as well as the most relevant issues to be considered in optimizing molecular imaging techniques for clinical application. (orig.)

  6. Imaging of Human Hepatic Stem Cells In Vivo

    International Nuclear Information System (INIS)

    Hsu, E.W.

    2006-01-01

    Report on progress in MRI and PET of stem cell tracking. Human hepatic stem cell imaging for both MRI and PET have been accomplished within SCID/nod mice, and succeeded in cell specificity labeling with in vitro, ex vivo, and in vivo image tracking. For MRI, stem cell labeling was accomplished by two methods: (1) in vitro labeling the stem cells just prior to in vivo transplantation, and/or (2) transplanting the stem cells into SCID/nod mice and in vivo specificity labeling the cells just prior to MRI. For labeling techniques 1 and 2, multiple image controls were utilized and include: (A) stem cells(-) and contrast label(-), (B) stem cells(+) and contrast label(-), and (C) stem cells(-) and contrast label(+) help to confirm signal noise background interference, which is a result of slight nonspecific cell labeling. Contrast labeled stem cells are directly transplanted into liver tissues, the tissues excised, and immediately MR imaged to determine cell dispersion dynamics. In this method, the contrast labeled cells appear as void foci throughout the organs. The images are imported into Metamorph imaging software and analyzed for foci radii, diameter, and to discern spheroid volumes. Then, cell numbers are extrapolated to understand ''imaged'' cell aggregate requirements using this technique. For this ex vivo method, a cell aggregate of ∼100 stem cells is required to MRI monitor signal activities. For in vivo imaging, contrast labeled human stem cells within SCID/nod mice are also confirmed as small foci voids and are evident within liver tissues. Initially, these short-term studies where accomplished by in vitro labeling stem cells, transplanting the cells, then in vivo imaging the tissues between days 3-15. Next and to avoid imaged time limitations of detaching contrast agents, the proliferative stem cells were labeled after transplantation, and before MR imaging. This was accomplished to confirm the ability to specifically label unique cell subsets after the

  7. Optimal gadolinium dose level for magnetic resonance imaging (MRI) contrast enhancement of U87-derived tumors in athymic nude rats for the assessment of photodynamic therapy

    Science.gov (United States)

    Cross, Nathan; Varghai, Davood; Flask, Chris A.; Feyes, Denise K.; Oleinick, Nancy L.; Dean, David

    2009-02-01

    This study aims to determine the effect of varying gadopentetate dimeglumine (Gd-DTPA) dose on Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) tracking of brain tumor photodynamic therapy (PDT) outcome. Methods: We injected 2.5 x 105 U87 cells (derived from human malignant glioma) into the brains of six athymic nude rats. After 9, 12, and 13 days DCE-MRI images were acquired on a 9.4 T micro-MRI scanner before and after administration of 100, 150, or 200 μL of Gd-DTPA. Results: Tumor region normalized DCE-MRI scan enhancement at peak was: 1.217 over baseline (0.018 Standard Error [SE]) at the 100 μL dose, 1.339 (0.013 SE) at the 150 μL dose, and 1.287 (0.014 SE) at the 200 μL dose. DCE-MRI peak tumor enhancement at the 150 μL dose was significantly greater than both the 100 μL dose (p DTPA dose provided the greatest T1 weighted contrast enhancement, while minimizing negative T2* effects, in DCE-MRI scans of U87-derived tumors. Maximizing Gd-DTPA enhancement in DCE-MRI scans may assist development of a clinically robust (i.e., unambiguous) technique for PDT outcome assessment.

  8. Intramyocardial strain estimation from cardiac cine MRI.

    Science.gov (United States)

    Elnakib, Ahmed; Beache, Garth M; Gimel'farb, Georgy; El-Baz, Ayman

    2015-08-01

    Functional strain is one of the important clinical indicators for the quantification of heart performance and the early detection of cardiovascular diseases, and functional strain parameters are used to aid therapeutic decisions and follow-up evaluations after cardiac surgery. A comprehensive framework for deriving functional strain parameters at the endocardium, epicardium, and mid-wall of the left ventricle (LV) from conventional cine MRI data was developed and tested. Cine data were collected using short TR-/TE-balanced steady-state free precession acquisitions on a 1.5T Siemens Espree scanner. The LV wall borders are segmented using a level set-based deformable model guided by a stochastic force derived from a second-order Markov-Gibbs random field model that accounts for the object shape and appearance features. Then, the mid-wall of the segmented LV is determined based on estimating the centerline between the endocardium and epicardium of the LV. Finally, a geometrical Laplace-based method is proposed to track corresponding points on successive myocardial contours throughout the cardiac cycle in order to characterize the strain evolutions. The method was tested using simulated phantom images with predefined point locations of the LV wall throughout the cardiac cycle. The method was tested on 30 in vivo datasets to evaluate the feasibility of the proposed framework to index functional strain parameters. The cine MRI-based model agreed with the ground truth for functional metrics to within 0.30 % for indexing the peak systolic strain change and 0.29 % (per unit time) for indexing systolic and diastolic strain rates. The method was feasible for in vivo extraction of functional strain parameters. Strain indexes of the endocardium, mid-wall, and epicardium can be derived from routine cine images using automated techniques, thereby improving the utility of cine MRI data for characterization of myocardial function. Unlike traditional texture-based tracking, the

  9. Attachment and spreadout study of 3T3 cells onto PP track etched films

    International Nuclear Information System (INIS)

    Smolko, Eduardo; Mazzei, Ruben; Tadey, Daniel; Lombardo, Daniel

    2001-01-01

    Polymer surface modifications are obtained by the application of radiation treatments and other physico-chemical methods: fission fragment (ff) irradiation and etching. The biocompatibility of the surface is then observed by cell seeding and cell adhesion experiments. Approaches to improvement of the cell adhesion are obtained by different methods: for example, in PS, cell adhesion is improved after ion implantation; in PMMA, after bombarding the polymer, the surface is reconditioned with surfactants and proteins and in PVDF, cell adhesion is assayed on nuclear tracks membranes. In this work, we obtained important cell adhesion improvements in PP films by irradiation with swift heavy ions and subsequent etching of the nuclear tracks. We use BOPP (isotactic -25 μm thickness). Irrradiations were performed with a Cf-252 californium ff source. The source has a heavy ff and a light one, with 160-200 MeV energy divided among them corresponding to ff energies between 1 and 2 MeV/amu. A chemical etching procedure consisting of a solution of sulphuric acid and chromium three oxide at 85 deg. C was used. The 3T3 NIH fibroblast cell line was used for the cell adhesion experiment. Here we report for the first time, the results of a series of experiments by varying the ff fluence and the etching time showing that attachment and spreadout of cells are very much improved in this cell line according to the number of pores and the pore size

  10. Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.

    Science.gov (United States)

    Monfaredi, R; Wilson, E; Sze, R; Sharma, K; Azizi, B; Iordachita, I; Cleary, K

    2015-08-01

    A new version of our compact and lightweight patient-mounted MRI-compatible 4 degree-of-freedom (DOF) robot for MRI-guided arthrography procedures is introduced. This robot could convert the traditional two-stage arthrography procedure (fluoroscopy-guided needle insertion followed by a diagnostic MRI scan) to a one-stage procedure, all in the MRI suite. The results of a recent accuracy study are reported. A new mounting technique is proposed and the mounting stability is investigated using optical and electromagnetic tracking on an anthropomorphic phantom. Five volunteer subjects including 2 radiologists were asked to conduct needle insertion in 4 different random positions and orientations within the robot's workspace and the displacement of the base of the robot was investigated during robot motion and needle insertion. Experimental results show that the proposed mounting method is stable and promising for clinical application.

  11. The probabilities of one- and multi-track events for modeling radiation-induced cell kill

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Uwe; Vasi, Fabiano; Besserer, Juergen [University of Zuerich, Department of Physics, Science Faculty, Zurich (Switzerland); Radiotherapy Hirslanden, Zurich (Switzerland)

    2017-08-15

    In view of the clinical importance of hypofractionated radiotherapy, track models which are based on multi-hit events are currently reinvestigated. These models are often criticized, because it is believed that the probability of multi-track hits is negligible. In this work, the probabilities for one- and multi-track events are determined for different biological targets. The obtained probabilities can be used with nano-dosimetric cluster size distributions to obtain the parameters of track models. We quantitatively determined the probabilities for one- and multi-track events for 100, 500 and 1000 keV electrons, respectively. It is assumed that the single tracks are statistically independent and follow a Poisson distribution. Three different biological targets were investigated: (1) a DNA strand (2 nm scale); (2) two adjacent chromatin fibers (60 nm); and (3) fiber loops (300 nm). It was shown that the probabilities for one- and multi-track events are increasing with energy, size of the sensitive target structure, and dose. For a 2 x 2 x 2 nm{sup 3} target, one-track events are around 10,000 times more frequent than multi-track events. If the size of the sensitive structure is increased to 100-300 nm, the probabilities for one- and multi-track events are of the same order of magnitude. It was shown that target theories can play a role for describing radiation-induced cell death if the targets are of the size of two adjacent chromatin fibers or fiber loops. The obtained probabilities can be used together with the nano-dosimetric cluster size distributions to determine model parameters for target theories. (orig.)

  12. Investigation of a calcium-responsive contrast agent in cellular model systems: feasibility for use as a smart molecular probe in functional MRI.

    Science.gov (United States)

    Angelovski, Goran; Gottschalk, Sven; Milošević, Milena; Engelmann, Jörn; Hagberg, Gisela E; Kadjane, Pascal; Andjus, Pavle; Logothetis, Nikos K

    2014-05-21

    Responsive or smart contrast agents (SCAs) represent a promising direction for development of novel functional MRI (fMRI) methods for the eventual noninvasive assessment of brain function. In particular, SCAs that respond to Ca(2+) may allow tracking neuronal activity independent of brain vasculature, thus avoiding the characteristic limitations of current fMRI techniques. Here we report an in vitro proof-of-principle study with a Ca(2+)-sensitive, Gd(3+)-based SCA in an attempt to validate its potential use as a functional in vivo marker. First, we quantified its relaxometric response in a complex 3D cell culture model. Subsequently, we examined potential changes in the functionality of primary glial cells following administration of this SCA. Monitoring intracellular Ca(2+) showed that, despite a reduction in the Ca(2+) level, transport of Ca(2+) through the plasma membrane remained unaffected, while stimulation with ATP induced Ca(2+)-transients suggested normal cellular signaling in the presence of low millimolar SCA concentrations. SCAs merely lowered the intracellular Ca(2+) level. Finally, we estimated the longitudinal relaxation times (T1) for an idealized in vivo fMRI experiment with SCA, for extracellular Ca(2+) concentration level changes expected during intense neuronal activity which takes place upon repetitive stimulation. The values we obtained indicate changes in T1 of around 1-6%, sufficient to be robustly detectable using modern MRI methods in high field scanners. Our results encourage further attempts to develop even more potent SCAs and appropriate fMRI protocols. This would result in novel methods that allow monitoring of essential physiological processes at the cellular and molecular level.

  13. Annexin V–CLIO: A Nanoparticle for Detecting Apoptosis by MRI

    Directory of Open Access Journals (Sweden)

    Eyk A. Schellenberger

    2002-04-01

    Full Text Available Annexin V, which recognizes the phosphatidylserine of apoptotic cells, was conjugated to crosslinked iron oxide (CLIO nanoparticles, a functionalized superparamagnetic preparation developed for target-specific magnetic resonance imaging (MRI. The resulting nanoparticle had an average of 2.7 annexin V proteins linked per CLIO nanoparticle through disulfide bonds. Using camptothecin to induce apoptosis, a mixture of Jurkat T cells (69% healthy and 31% apoptotic was incubated with annexin V–CLIO and was applied to magnetic columns. The result was an almost complete removal of the apoptotic cells (>99%. In a phantom MRI experiment, untreated control cells (12% apoptotic cells, 88% healthy cells and camptothecin-treated cells (65% apoptotic cells, 35% healthy cells were incubated with either annexin V–CLIO (1.0, 0.5, and 0.1 μg Fe/mL or with unlabeled CLIO. A significant signal decrease of camptothecin-treated cells relative to untreated cells was observed even at the lowest concentration tested. Unmodified CLIO failed to cause a significant signal change of apoptotic cells. Hence, annexin V–CLIO allowed the identification of cell suspensions containing apoptotic cells by MRI even at very low concentrations of magnetic substrate. Conjugation of annexin V to CLIO affords a strategy for the development of a MRI imaging probe for detecting apoptosis.

  14. Validating excised rodent lungs for functional hyperpolarized xenon-129 MRI.

    Directory of Open Access Journals (Sweden)

    David M L Lilburn

    Full Text Available Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp (129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp (129Xe. Straightforward hp (129Xe MRI protocols provide residual lung volume (RV data and permit for spatially resolved tracking of small hp (129Xe probe volumes during the inhalation cycle. Hp (129Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.

  15. MRI screening before stem cell transplantation - necessary?

    International Nuclear Information System (INIS)

    Zimmermann, U.; Mentzel, H.J.; Kaiser, W.A.; Wolf, J.; Fuchs, D.; Gruhn, B.; Zintl, F.

    2008-01-01

    Purpose: in the context of stem cell transplantation (SCT), we often observe neurological complications as a consequence of immune system suppression, conditioning therapy or prophylaxis and treatment of graft-versus-host disease. Furthermore, cerebral lesions in existence prior to transplantation can be found. The aim of this study was to evaluate the benefit of cerebral magnetic resonance imaging (MRI) prior to stem cell transplantation. Patients and method: cerebral MR examinations of 116 children and adolescents were performed before SCT. Patients ranged in age from 1.1 to 21.4 years (mean 12.6 years). All MR images were obtained by a 1.5 T System. The predefined short protocol included an axial T1-weighted SE sequence and a coronary T2-weighted TSE sequence. We evaluated existing cerebral lesions, the diameter of the ventricular system, and the paranasal sinuses. In the case of pathological findings, the short examination protocol was expanded. Results: in 5 of 116 children (4.3%) we observed prior to SCT findings requiring immediate treatment although the patients did not show any clinical symptoms (1 x aspergilloma, 1 x hemorrhage of vascular anomaly). An increased risk of bleeding caused by cavernoma or another vascular anomaly without hemorrhage also had to be taken into account. 32 of 116 patients (37.1%) showed atrophic lesions. In 42 children (36.2%), we observed affections of the paranasal sinuses. (orig.)

  16. Tracking by flow cytometry antigen-specific follicular helper T cells in wild-type animals after protein vaccination.

    Science.gov (United States)

    Chakarov, Svetoslav; Fazilleau, Nicolas

    2015-01-01

    Flow cytometry is a valuable technology used in immunology to characterize and enumerate the different cell subpopulations specific for a nonself-antigen in the context of an ongoing immune response. Among them, follicular helper T cells are the cognate regulators of B cells in secondary lymphoid tissues. Thus, tracking them is of high interest especially in the context of protein vaccination. For this purpose, transgenic antigen-receptor mouse models have been largely used. It is now clear that transgenic models are not always the best means to study the dynamics of the immune response since they can modify the response. In this chapter, we describe how to track endogenous antigen-specific follicular helper T cells by flow cytometry after protein vaccination in nonmodified wild-type animals, which ultimately provides a comprehensive way to enumerate, characterize, and isolate these particular cells in vivo.

  17. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface.

    Science.gov (United States)

    Lee, Sangmin; Yoon, Hwa In; Na, Jin Hee; Jeon, Sangmin; Lim, Seungho; Koo, Heebeom; Han, Sang-Soo; Kang, Sun-Woong; Park, Soon-Jung; Moon, Sung-Hwan; Park, Jae Hyung; Cho, Yong Woo; Kim, Byung-Soo; Kim, Sang Kyoon; Lee, Taekwan; Kim, Dongkyu; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung

    2017-09-01

    It is urgently necessary to develop reliable non-invasive stem cell imaging technology for tracking the in vivo fate of transplanted stem cells in living subjects. Herein, we developed a simple and well controlled stem cell imaging method through a combination of metabolic glycoengineering and bioorthogonal copper-free click chemistry. Firstly, the exogenous chemical receptors containing azide (-N 3 ) groups were generated on the surfaces of stem cells through metabolic glycoengineering using metabolic precursor, tetra-acetylated N-azidoacetyl-d-mannosamine(Ac 4 ManNAz). Next, bicyclo[6.1.0]nonyne-modified glycol chitosan nanoparticles (BCN-CNPs) were prepared as imageable nanoparticles to deliver different imaging agents. Cy5.5, iron oxide nanoparticles and gold nanoparticles were conjugated or encapsulated to BCN-CNPs for optical, MR and CT imaging, respectively. These imageable nanoparticles bound chemical receptors on the Ac 4 ManNAz-treated stem cell surface specifically via bioorthogonal copper-free click chemistry. Then they were rapidly taken up by the cell membrane turn-over mechanism resulting in higher endocytic capacity compared non-specific uptake of nanoparticles. During in vivo animal test, BCN-CNP-Cy5.5-labeled stem cells could be continuously tracked by non-invasive optical imaging over 15 days. Furthermore, BCN-CNP-IRON- and BCN-CNP-GOLD-labeled stem cells could be efficiently visualized using in vivo MR and CT imaging demonstrating utility of our stem cell labeling method using chemical receptors. These results conclude that our method based on metabolic glycoengineering and bioorthogonal copper-free click chemistry can stably label stem cells with diverse imageable nanoparticles representing great potential as new stem cell imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures.

    Science.gov (United States)

    Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal

    2011-01-01

    In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.

  19. CT and MRI of germ-cell tumors with metastasis or multi-located tumors

    International Nuclear Information System (INIS)

    Miyagami, Mitsusuke; Tazoe, Makoto; Tsubokawa, Takashi

    1989-01-01

    Twenty-seven cases of germ-cell tumors were examined with a CT scan in our clinic. In the 11 cases of metastasis or multi-localized tumors, the CT findings were studied in connection with the MRI findings. There were 6 cases of germ-cell tumors which had broad infiltrating tumors with multiple lesions on first admission. Their tumor sites were different from that in cases of malignant glioma, being frequently localized in the pineal and/or the suprasellar region, on the wall of the third and/or lateral ventricle, and in the region of the basal ganglia. Five of the cases of germ-cell tumors had metastasis with various patterns connected to a remote area - that is, to spinal cords, to the ventricular wall and basal cistern of the brain stem by CSF dissemination, to a lung by hematogeneous metastasis, and to the peritoneal wall or organs by a V-P shunt. The CT findings of germ-cell tumors were correlated mainly with the results of the histological diagnosis; they were found not to differ with the tumor site. The germinoma in the suprasellar region had less calcification than in the pineal region. Cysts, calcification, and an enlargement of the lateral ventricle on the tumor side were frequently seen in the germinoma of the basal ganglia. On the MRI of 5 cases of germinoma, the T 1 -weighted image revealed a slightly low or iso signal intensity, while the T 2 -weighted image showed a high signal intensity. In the case of multiple tumor lesions, some cases demonstrated different CT findings and radiosensitivities for each tumor. The possibility of a multicentric origin for the tumors is thus suggested in some cases of germ-cell tumors. (author)

  20. Single charged-particle damage to living cells: a new method based on track-etch detectors

    International Nuclear Information System (INIS)

    Durante, M.; Grossi, G.F.; Pugliese, M.; Manti, L.; Nappo, M.; Gialanella, G.

    1994-01-01

    Biological effects of ionizing radiation are usually expressed as a function of the absorbed dose. Low doses of high-LET radiation correspond to one or few particle traversals through the cell. In order to study the biological effectiveness of single charged particles, we have developed a new method based on solid state nuclear track detectors. Cells are seeded on mylar and a LR-115 film is stuck below the mylar base. After irradiation, the LR-115 film is etched and cells observed at a phase contrast microscope connected to a video camera and an image analyzer. In this way, it is possible to measure the number of traversals through the cell nucleus or cytoplasm. Coordinates of each cell on the microscope bench are saved. After incubation for about one week, cells are fixed and stained and the colonies observed at the microscope. The fate of each irradiated cell is therefore correlated to the number of traversals. We have tested this method with two different rodent embryo fibroblast cell lines, C3H 10T1/2 and V79, exposed to 3.2 MeV accelerated α-particles (LET =124 keV/μm). The studied endpoint was cell killing. Preliminary biological results suggest that few α-particle tracks in V79 hamster cells are sufficient to reduce surviving fraction. ((orig.))

  1. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    OpenAIRE

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of tra...

  2. In vivo cell tracking imaging of hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate labeled adipose derived stem cells (ADSCs) in rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lee, Yong Jin; Lee, Kyo Chul [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    Monitoring of transplanted stem cells for cardiac repair is important part in regenerative medicine. Direct cell labeling techniques using [{sup 18}F]FDG, [{sup 64}Cu]PTSM and [{sup 99m}Tc]-HMPAO have been developed for in vivo imaging. Especially, {sup 18}F-labeled derivates have been widely used for direct labeling agent. But the {sup 18}F has short half life (T{sub 1/2}={approx}2 h), thus this imaging agent has limitation of in vivo imaging. We used {sup 123}I or {sup 124}I which has relative long half life, to track the transplanted stem cells for a long-term imaging. This study is aimed to track the transplanted adipose derived stem cells (ADSCs) in rat heart using hexadecyl-4-[{sup 123,} {sup 124}I]iodobenzoate ([{sup 123,} {sup 124}I]HIB) mediated direct labeling method in vivo

  3. A preclinical murine model for the early detection of radiation-induced brain injury using magnetic resonance imaging and behavioral tests for learning and memory: with applications for the evaluation of possible stem cell imaging agents and therapies.

    Science.gov (United States)

    Ngen, Ethel J; Wang, Lee; Gandhi, Nishant; Kato, Yoshinori; Armour, Michael; Zhu, Wenlian; Wong, John; Gabrielson, Kathleen L; Artemov, Dmitri

    2016-06-01

    Stem cell therapies are being developed for radiotherapy-induced brain injuries (RIBI). Magnetic resonance imaging (MRI) offers advantages for imaging transplanted stem cells. However, most MRI cell-tracking techniques employ superparamagnetic iron oxide particles (SPIOs), which are difficult to distinguish from hemorrhage. In current preclinical RIBI models, hemorrhage occurs concurrently with other injury markers. This makes the evaluation of the recruitment of transplanted SPIO-labeled stem cells to injury sites difficult. Here, we developed a RIBI model, with early injury markers reflective of hippocampal dysfunction, which can be detected noninvasively with MRI and behavioral tests. Lesions were generated by sub-hemispheric irradiation of mouse hippocampi with single X-ray beams of 80 Gy. Lesion formation was monitored with anatomical and contrast-enhanced MRI and changes in memory and learning were assessed with fear-conditioning tests. Early injury markers were detected 2 weeks after irradiation. These included an increase in the permeability of the blood-brain barrier, demonstrated by a 92 ± 20 % contrast enhancement of the irradiated versus the non-irradiated brain hemispheres, within 15 min of the administration of an MRI contrast agent. A change in short-term memory was also detected, as demonstrated by a 40.88 ± 5.03 % decrease in the freezing time measured during the short-term memory context test at this time point, compared to that before irradiation. SPIO-labeled stem cells transplanted contralateral to the lesion migrated toward the lesion at this time point. No hemorrhage was detected up to 10 weeks after irradiation. This model can be used to evaluate SPIO-based stem cell-tracking agents, short-term.

  4. MRI versus CT for detecting cartilage invasion in patients with laryngeal and hypopharyngeal squamous cell carcinoma

    NARCIS (Netherlands)

    Wegner, Inge; Hooft, Lotty; Reitsma, Johannes B.; Pameijer, Frank A.; de Bree, Remco; Stegeman, Inge

    2016-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: To determine and compare the diagnostic accuracy of preoperative conventional MRI and conventional CT for detecting cartilage invasion in patients with laryngeal and hypopharyngeal squamous cell carcinoma, who

  5. Daily Tracking of Glioblastoma Resection Cavity, Cerebral Edema, and Tumor Volume with MRI-Guided Radiation Therapy.

    Science.gov (United States)

    Mehta, Shahil; Gajjar, Shefali R; Padgett, Kyle R; Asher, David; Stoyanova, Radka; Ford, John C; Mellon, Eric A

    2018-03-19

    Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue.

  6. In vivo imaging of stepwise vessel occlusion in cerebral photothrombosis of mice by 19F MRI.

    Directory of Open Access Journals (Sweden)

    Gesa Weise

    Full Text Available (19F magnetic resonance imaging (MRI was recently introduced as a promising technique for in vivo cell tracking. In the present study we compared (19F MRI with iron-enhanced MRI in mice with photothrombosis (PT at 7 Tesla. PT represents a model of focal cerebral ischemia exhibiting acute vessel occlusion and delayed neuroinflammation.Perfluorocarbons (PFC or superparamagnetic iron oxide particles (SPIO were injected intravenously at different time points after photothrombotic infarction. While administration of PFC directly after PT induction led to a strong (19F signal throughout the entire lesion, two hours delayed application resulted in a rim-like (19F signal at the outer edge of the lesion. These findings closely resembled the distribution of signal loss on T2-weighted MRI seen after SPIO injection reflecting intravascular accumulation of iron particles trapped in vessel thrombi as confirmed histologically. By sequential administration of two chemically shifted PFC compounds 0 and 2 hours after illumination the different spatial distribution of the (19F markers (infarct core/rim could be visualized in the same animal. When PFC were applied at day 6 the fluorine marker was only detected after long acquisition times ex vivo. SPIO-enhanced MRI showed slight signal loss in vivo which was much more prominent ex vivo indicative for neuroinflammation at this late lesion stage.Our study shows that vessel occlusion can be followed in vivo by (19F and SPIO-enhanced high-field MRI while in vivo imaging of neuroinflammation remains challenging. The timing of contrast agent application was the major determinant of the underlying processes depicted by both imaging techniques. Importantly, sequential application of different PFC compounds allowed depiction of ongoing vessel occlusion from the core to the margin of the ischemic lesions in a single MRI measurement.

  7. Making tracks

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-10-15

    In many modern tracking chambers, the sense wires, rather than being lined up uniformly, are grouped into clusters to facilitate the pattern recognition process. However, with higher energy machines providing collisions richer in secondary particles, event reconstruction becomes more complicated. A Caltech / Illinois / SLAC / Washington group developed an ingenious track finding and fitting approach for the Mark III detector used at the SPEAR electron-positron ring at SLAC (Stanford). This capitalizes on the detector's triggering, which uses programmable logic circuits operating in parallel, each 'knowing' the cell patterns for all tracks passing through a specific portion of the tracker (drift chamber)

  8. Squamous cell carcinoma originating in the parotid gland: MRI features with histopathological correlation

    International Nuclear Information System (INIS)

    Takahashi, H.; Kashiwagi, N.; Chikugo, T.; Nakanishi, K.; Tomita, Y.; Murakami, T.

    2014-01-01

    Aim: To report the magnetic resonance imaging (MRI) and corresponding histopathological features of squamous cell carcinoma (SCC) originating in the parotid gland. Materials and methods: The MRI images of seven patients with histopathologically proven SCC originating in the parotid gland were reviewed retrospectively, with an emphasis on tumour size, shape, contour definition, extraparotid infiltration, signal characteristics, and the presence of central necrosis. These were correlated with the microscopic findings of the surgical specimens. Results: The tumours ranged in size from 3.9–7 cm (mean 4.7 cm). All tumours had an ill-defined margin with extraparotid infiltration, which seemed to reflect the invasive growth of the tumour cells on histopathological examination. The solid portions of the tumours showed predominantly low to intermediate signal intensities on T2-weighted images, which seemed to reflect the high cellularity, intercellular bridges, and/or keratin pearl formation observed at histopathological examination. Five of the seven tumours had central necrosis. Conclusion: A relatively large tumour with central necrosis is a useful imaging feature of SCCs originating in the parotid gland, in addition to the well-recognized indicators of parotid malignancy, such as an ill-defined margin, extraparotid infiltration, and low to intermediate signal intensity on T2-weighted images

  9. In vitro MRI of brain development

    International Nuclear Information System (INIS)

    Rados, Marko; Judas, Milos; Kostovic, Ivica

    2006-01-01

    In this review, we demonstrate the developmental appearance, structural features, and reorganization of transient cerebral zones and structures in the human fetal brain using a correlative histological and MRI analysis. The analysis of postmortem aldehyde-fixed specimens (age range: 10 postovulatory weeks to term) revealed that, at 10 postovulatory weeks, the cerebral wall already has a trilaminar appearance and consists of: (1) a ventricular zone of high cell-packing density; (2) an intermediate zone; (3) the cortical plate (in a stage of primary consolidation) with high MRI signal intensity. The anlage of the hippocampus is present as a prominent bulging in the thin limbic telencephalon. The early fetal telencephalon impar also contains the first commissural fibers and fornix bundles in the septal area. The ganglionic eminence is clearly visible as an expanded continuation of the proliferative ventricular zone. The basal ganglia showed an initial aggregation of cells. The most massive fiber system is in the hemispheric stalk, which is in continuity with thalamocortical fibers. During the mid-fetal period (15-22 postovulatory weeks), the typical fetal lamination pattern develops and the cerebral wall consists of the following zones: (a) a marginal zone (visible on MRI exclusively in the hippocampus); (b) the cortical plate with high cell-packing density and high MRI signal intensity; (c) the subplate zone, which is the most prominent zone rich in extracellular matrix and with a very low MRI signal intensity; (d) the intermediate zone (fetal 'white matter'); (e) the subventricular zone; (f) the periventricular fiber-rich zone; (g) the ventricular zone. The ganglionic eminence is still a very prominent structure with an intense proliferative activity. During the next period (22-26 postovulatory weeks), there is the developmental peak of transient MRI features, caused by the high content of hydrophyllic extracellular matrix in the subplate zone and the accumulation

  10. Automatic tracking of red blood cells in micro channels using OpenCV

    Science.gov (United States)

    Rodrigues, Vânia; Rodrigues, Pedro J.; Pereira, Ana I.; Lima, Rui

    2013-10-01

    The present study aims to developan automatic method able to track red blood cells (RBCs) trajectories flowing through a microchannel using the Open Source Computer Vision (OpenCV). The developed method is based on optical flux calculation assisted by the maximization of the template-matching product. The experimental results show a good functional performance of this method.

  11. Quantitative pancreatic β cell MRI using manganese-enhanced Look-Locker imaging and two-site water exchange analysis.

    Science.gov (United States)

    Antkowiak, Patrick F; Vandsburger, Moriel H; Epstein, Frederick H

    2012-06-01

    Pancreatic β-cell imaging would be useful in monitoring the progression of and therapies for diabetes. The purpose of this study was to develop and evaluate quantitative β-cell MRI using manganese (Mn(2+)) labeling of β cells, T1 mapping, and a two-site water exchange model. Normal, pharmacologically-treated, and severely diabetic mice underwent injection of MnCl(2). Pancreatic water proton T1 relaxation was measured using Look-Locker MRI, and two-site water exchange analysis was used to estimate model parameters including the intracellular water proton relaxation rate constant (R1(ic)) and the intracellular fraction as indicators of β-cell function and mass, respectively. Logarithmic plots of T1 relaxation revealed two distinct proton pools relaxing with different T1s, and the two-site water exchange model fit the measured T1 relaxation data better than a monoexponential model. The intracellular R1(ic) time course revealed the kinetics of β-cell Mn(2+) labeling. Pharmacological treatments with nifedipine, tolbutamide, and diazoxide altered R1(ic), indicating that beta cell function was a determinant of Mn(2+) uptake. Intracellular fraction was significantly higher in mice with normal β cell mass than in diabetic mice (14.9% vs. 14.4%, P exchange analysis of T1 relaxation of the Mn(2+)-enhanced pancreas is a promising method for quantifying β cell volume fraction and function. Copyright © 2011 Wiley-Liss, Inc.

  12. Tracking of cell nuclei for assessment of in vitro uptake kinetics in ultrasound-mediated drug delivery using fibered confocal fluorescence microscopy.

    Science.gov (United States)

    Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens

    2014-10-01

    Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.

  13. Cerebral malaria: susceptibility weighted MRI

    Directory of Open Access Journals (Sweden)

    Vinit Baliyan

    2015-03-01

    Full Text Available Cerebral malaria is one of the fatal complications of Plasmodium falciparum infection. Pathogenesis involves cerebral microangiopathy related to microvascular plugging by infected red blood cells. Conventional imaging with MRI and CT do not reveal anything specific in case of cerebral malaria. Susceptibility weighted imaging, a recent advance in the MRI, is very sensitive to microbleeds related to microangiopathy. Histopathological studies in cerebral malaria have revealed microbleeds in brain parenchyma secondary to microangiopathy. Susceptibility weighted imaging, being exquisitely sensitive to microbleeds may provide additional information and improve the diagnostic accuracy of MRI in cerebral malaria.

  14. Intracellular bimodal nanoparticles based on quantum dots for high-field MRI at 21.1 T.

    Science.gov (United States)

    Rosenberg, Jens T; Kogot, Joshua M; Lovingood, Derek D; Strouse, Geoffrey F; Grant, Samuel C

    2010-09-01

    Multimodal, biocompatible contrast agents for high magnetic field applications represent a new class of nanomaterials with significant potential for tracking of fluorescence and MR in vitro and vivo. Optimized for high-field MR applications-including biomedical imaging at 21.1 T, the highest magnetic field available for MRI-these nanoparticles capitalize on the improved performance of chelated Dy(3+) with increasing magnetic field coupled to a noncytotoxic Indium Phosphide/Zinc Sulfide (InP/ZnS) quantum dot that provides fluorescence detection, MR responsiveness, and payload delivery. By surface modifying the quantum dot with a cell-penetrating peptide sequence coupled to an MR contrast agent, the bimodal nanomaterial functions as a self-transfecting high-field MR/optical contrast agent for nonspecific intracellular labeling. Fluorescent images confirm sequestration in perinuclear vesicles of labeled cells, with no apparent cytotoxicity. These techniques can be extended to impart cell selectivity or act as a delivery vehicle for genetic or pharmaceutical interventions. 2010 Wiley-Liss, Inc.

  15. WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Gierman, S; Schmerge, J [SLAC National Accelerator Laboratory, Palo Alto, CA (United States); Holloway, L [Ingham Institute, Sydney, NSW (Australia); Fahrig, R [Stanford University, Stanford, CA (United States)

    2015-06-15

    Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modelling (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and minimise

  16. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    International Nuclear Information System (INIS)

    Park, Kyoung-Duck; Park, Doo-Jae; Jeong, Mun-Seok; Choi, Geun-Chang; Lee, Seung-Gol; Byeon, Clare-Chisu; Choi, Soo-Bong

    2014-01-01

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  17. Cancer cell imaging by stable wet near-field scanning optical microscope with resonance tracking method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyoung-Duck [Sungkyunkwan University, Suwon (Korea, Republic of); Inha University, Incheon (Korea, Republic of); Park, Doo-Jae; Jeong, Mun-Seok [Sungkyunkwan University, Suwon (Korea, Republic of); Choi, Geun-Chang [Seoul National University, Seoul (Korea, Republic of); Lee, Seung-Gol [Inha University, Incheon (Korea, Republic of); Byeon, Clare-Chisu [Kyungpook National University, Daegu (Korea, Republic of); Choi, Soo-Bong [Incheon National University, Incheon (Korea, Republic of)

    2014-05-15

    We report on a successful topographical and optical imaging of various cancer cells in liquid and in air by using a stable wet near-field scanning optical microscope that utilizes a resonance tracking method. We observed a clear dehydration which gives rise to a decrease in the cell volume down to 51%. In addition, a micro-ball lens effect due to the round-shaped young cancer cells was observed from near-field imaging, where the refractive index of young cancer cells was deduced.

  18. Quantitative Cell Cycle Analysis Based on an Endogenous All-in-One Reporter for Cell Tracking and Classification

    Directory of Open Access Journals (Sweden)

    Thomas Zerjatke

    2017-05-01

    Full Text Available Cell cycle kinetics are crucial to cell fate decisions. Although live imaging has provided extensive insights into this relationship at the single-cell level, the limited number of fluorescent markers that can be used in a single experiment has hindered efforts to link the dynamics of individual proteins responsible for decision making directly to cell cycle progression. Here, we present fluorescently tagged endogenous proliferating cell nuclear antigen (PCNA as an all-in-one cell cycle reporter that allows simultaneous analysis of cell cycle progression, including the transition into quiescence, and the dynamics of individual fate determinants. We also provide an image analysis pipeline for automated segmentation, tracking, and classification of all cell cycle phases. Combining the all-in-one reporter with labeled endogenous cyclin D1 and p21 as prime examples of cell-cycle-regulated fate determinants, we show how cell cycle and quantitative protein dynamics can be simultaneously extracted to gain insights into G1 phase regulation and responses to perturbations.

  19. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  20. Assessing the Effectiveness of a Far-Red Fluorescent Reporter for Tracking Stem Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2017-12-01

    Full Text Available Far-red fluorescent reporter genes can be used for tracking cells non-invasively in vivo using fluorescence imaging. Here, we investigate the effectiveness of the far-red fluorescent protein, E2-Crimson (E2C, for tracking mouse embryonic cells (mESCs in vivo following subcutaneous administration into mice. Using a knock-in strategy, we introduced E2C into the Rosa26 locus of an E14-Bra-GFP mESC line, and after confirming that the E2C had no obvious effect on the phenotype of the mESCs, we injected them into mice and imaged them over nine days. The results showed that fluorescence intensity was weak, and cells could only be detected when injected at high densities. Furthermore, intensity peaked on day 4 and then started to decrease, despite the fact that tumour volume continued to increase beyond day 4. Histopathological analysis showed that although E2C fluorescence could barely be detected in vivo at day 9, analysis of frozen sections indicated that all mESCs within the tumours continued to express E2C. We hypothesise that the decrease in fluorescence intensity in vivo was probably due to the fact that the mESC tumours became more vascular with time, thus leading to increased absorbance of E2C fluorescence by haemoglobin. We conclude that the E2C reporter has limited use for tracking cells in vivo, at least when introduced as a single copy into the Rosa26 locus.

  1. Tracking Cell Surface GABAB Receptors Using an α-Bungarotoxin Tag*

    Science.gov (United States)

    Wilkins, Megan E.; Li, Xinyan; Smart, Trevor G.

    2008-01-01

    GABAB receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABAB receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABAB receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, α-bungarotoxin. By using the α-bungarotoxin binding site-tagged GABAB R1a subunit (R1aBBS), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, α-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABAB receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors. PMID:18812318

  2. Explicit tracking of uncertainty increases the power of quantitative rule-of-thumb reasoning in cell biology.

    Science.gov (United States)

    Johnston, Iain G; Rickett, Benjamin C; Jones, Nick S

    2014-12-02

    Back-of-the-envelope or rule-of-thumb calculations involving rough estimates of quantities play a central scientific role in developing intuition about the structure and behavior of physical systems, for example in so-called Fermi problems in the physical sciences. Such calculations can be used to powerfully and quantitatively reason about biological systems, particularly at the interface between physics and biology. However, substantial uncertainties are often associated with values in cell biology, and performing calculations without taking this uncertainty into account may limit the extent to which results can be interpreted for a given problem. We present a means to facilitate such calculations where uncertainties are explicitly tracked through the line of reasoning, and introduce a probabilistic calculator called CALADIS, a free web tool, designed to perform this tracking. This approach allows users to perform more statistically robust calculations in cell biology despite having uncertain values, and to identify which quantities need to be measured more precisely to make confident statements, facilitating efficient experimental design. We illustrate the use of our tool for tracking uncertainty in several example biological calculations, showing that the results yield powerful and interpretable statistics on the quantities of interest. We also demonstrate that the outcomes of calculations may differ from point estimates when uncertainty is accurately tracked. An integral link between CALADIS and the BioNumbers repository of biological quantities further facilitates the straightforward location, selection, and use of a wealth of experimental data in cell biological calculations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. MRI in tick-borne encephalitis

    International Nuclear Information System (INIS)

    Alkadhi, H.; Kollias, S.S.

    2000-01-01

    The tick-borne encephalitis (TBE) virus gives rise to epidemic encephalitis. Mild forms usually manifest as influenza-like episodes or are clinically silent. MRI is usually normal in TBE. We describe severe TBE in a patient who presented with fever and altered mental status after a tick bite and a specific antibody response to TBE. MRI revealed pronounced signal abnormalities in the basal ganglia and thalamus, without contrast enhancement. These findings coincide well with neuropathological studies of severe nerve cell degeneration with inflammatory cell infiltrates, neuronophagia and reactive astrocytosis in the deep grey matter. We review the literature and discuss the relevant differential diagnosis. (orig.)

  4. Clinical and MRI features in pediatric multiple sclerosis

    International Nuclear Information System (INIS)

    Zhao Cailei; Xie Sheng; Xiao Jiangxi; Wang Shuang

    2011-01-01

    involvement was identified in 6 cases, serving as 'railway track sign'. Conclusions: CIS in children is characterized by large confluent lesions in subcortical white matter coalescing with central white matter. MRI of relapse showed distinctive 'railway track sign'. It is important to integrate MRI and clinical features in the diagnosis of pediatric multiple sclerosis. (authors)

  5. [Interest using 3D ultrasound and MRI fusion biopsy for prostate cancer detection].

    Science.gov (United States)

    Marien, A; De Castro Abreu, A; Gill, I; Villers, A; Ukimura, O

    2017-09-01

    The strategic therapy for prostate cancer depends on histo-pronostics data, which could be upgraded by obtaining targeted biopsies (TB) with MRI (magnetic resonance imagery) fusion 3D ultrasound. To compare diagnostic yield of image fusion guided prostate biopsy using image fusion of multi-parametric MRI (mpMRI) with 3D-TRUS. Between January 2010 and April 2013, 179 consecutive patients underwent outpatient TRUS biopsy using the real-time 3D TRUS tracking system (Urostation™). These patients underwent MRI-TRUS fusion targeted biopsies (TB) with 3D volume data of the MRI elastically fused with 3D TRUS at the time of biopsy. A hundred and seventy-three patients had TBs with fusion. Mean biopsy core per patient were 11.1 (6-14) for SB and 2.4 (1-6) for TB. SBs were positive in 11% compared to 56% for TB (Pperform the higher level of MR/US fusion and should be use for active surveillance. 4. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Correlation of transcranial Doppler ultrasonography with MRI and MRA in the evaluation of sickle cell disease patients with prior stroke

    International Nuclear Information System (INIS)

    Kogutt, M.S.; Goldwag, S.S.; Gupta, K.L.; Kaneko, K.; Humbert, J.R.

    1994-01-01

    We prospectively evaluated a group of patients with sickle cell disease and a clinical history of prior stroke, comparing transcranial Doppler sonography (TCD) to both magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) to determine its efficacy for the detection of flow abnormalities associated with prior cerebral infarction. Using MRI as the standard examination, there was 94 % sensitivity and 30 % specificity, and using MRA as the standard examination, there was 91 % sensitivity and 22 % specificity. We concur with other reports that the transcranial Doppler examination is a highly sensitive study. In our group of sickle cell disease patients with prior stroke, TCD reliably detected flow abnormalities that correlated to areas of prior cerebral infarction. (orig.)

  7. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  8. Migration of iron-labeled KHYG-1 natural killer cells to subcutaneous tumors in nude mice, as detected by magnetic resonance imaging.

    Science.gov (United States)

    Mallett, Christiane L; McFadden, Catherine; Chen, Yuhua; Foster, Paula J

    2012-07-01

    A novel cell line of cytotoxic natural killer (NK) cells, KHYG-1, was examined in vivo for immunotherapy against prostate cancer. The feasibility of using magnetic resonance imaging (MRI) tracking to monitor the fate of injected NK cells following intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c.) administration was assessed. PC-3M human prostate cancer cells were injected s.c. into the flank of nude mice (day 0). KHYG-1 NK cells were labeled with an iron oxide contrast agent and injected s.c., i.v. or i.p. on day 8. Mice were imaged by MRI on days 7, 9 and 12. Tumor sections were examined with fluorescence microscopy and immunohistologic staining for NK cells. NK cells were detected in the tumors by histology after all three administration routes. NK cells and fluorescence from the iron label were co-localized. Signal loss was seen in the areas around the tumors and between the tumor lobes in the s.c. group. We are the first to label this cell line of NK cells with an iron oxide contrast agent. Accumulation of NK cells was visualized by MRI after s.c. injection but not after i.v. and i.p. injection.

  9. Dynamic kirigami structures for integrated solar tracking

    Science.gov (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  10. CT and MRI appearances and radiologic staging of pediatric renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Downey, Ryan T. [University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Dillman, Jonathan R.; Ladino-Torres, Maria F.; Strouse, Peter J. [University of Michigan Health System, Section of Pediatric Radiology, C.S. Mott Children' s Hospital, Department of Radiology, Ann Arbor, MI (United States); McHugh, Jonathan B. [University of Michigan Health System, Department of Pathology, Ann Arbor, MI (United States); Ehrlich, Peter F. [University of Michigan Health System, Department of Surgery, Section of Pediatric Surgery, Ann Arbor, MI (United States)

    2012-04-15

    Renal cell carcinoma (RCC) is an uncommon but noteworthy primary pediatric renal malignancy. There is a paucity of published data regarding the CT/MRI appearances and accuracy of pretreatment radiologic staging of this form of cancer in children. To review the various CT/MRI appearances of pediatric RCC and assess the accuracy of pretreatment radiologic staging using these imaging modalities. Institutional Departments of Pathology and Radiology records were searched from 1995 through 2010 for children (younger than 18 years of age) with RCC. Available pretreatment contrast-enhanced abdominopelvic CT and MRI examinations were reviewed by two radiologists. Pertinent imaging findings were documented by consensus, and correlation was made between radiologic and surgicopathological TNM staging. Pretreatment imaging studies from 10 RCCs in nine children (four girls and five boys; mean age 12.9 years) were reviewed. The mean size of the primary tumor was 6.2 cm (range, 1.5-12.6 cm). Ninety percent of RCCs demonstrated heterogeneous postcontrast enhancement. Fifty percent of masses had associated hemorrhage, while 40% contained internal calcification. Regarding TNM staging, N staging was correct for 10 of 10 tumors, while M staging was correct for 10 of 10 tumors. Imaging correctly staged only 4 of 10 tumors with respect to T stage. Radiologic and surgicopathological overall staging were concordant for 8 of 10 tumors. Pediatric RCCs typically present as large, heterogeneous masses, and they commonly hemorrhage and contain internal calcification. Radiologic and surgicopathological overall TNM staging are frequently concordant, although radiologic T staging is often incorrect. (orig.)

  11. Exploring Transduction Mechanisms of Protein Transduction Domains (PTDs in Living Cells Utilizing Single-Quantum Dot Tracking (SQT Technology

    Directory of Open Access Journals (Sweden)

    Yasuhiro Suzuki

    2012-01-01

    Full Text Available Specific protein domains known as protein transduction domains (PTDs can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs, we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT, to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  12. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  13. Evaluation of motion measurement using cine MRI for image guided stereotactic body radiotherapy on a new phantom platform

    Science.gov (United States)

    Cai, Jing; Wang, Ziheng; Yin, Fang-Fang

    2011-01-01

    The objective of this study is to investigate accuracy of motion tracking of cine magnetic resonance imaging (MRI) for image-guided stereotactic body radiotherapy. A phantom platform was developed in this work to fulfill the goal. The motion phantom consisted of a platform, a solid thread, a motor and a control system that can simulate motion in various modes. To validate its reproducibility, the phantom platform was setup three times and imaged with fluoroscopy using an electronic portal imaging device (EPID) for the same motion profile. After the validation test, the phantom platform was evaluated using cine MRI at 2.5 frames/second on a 1.5T GE scanner using five different artificial profiles and five patient profiles. The above profiles were again measured with EPID fluoroscopy and used as references. Discrepancies between measured profiles from cine MRI and EPID were quantified using root-mean-square (RMS) and standard deviation (SD). Pearson’s product moment correlational analysis was used to test correlation. The standard deviation for the reproducibility test was 0.28 mm. The discrepancies (RMS) between all profiles measured by cine MRI and EPID fluoroscopy ranged from 0.30 to 0.49 mm for artificial profiles and ranged from 0.75 to 0.91 mm for five patient profiles. The cine MRI sequence could precisely track phantom motion and the proposed motion phantom was feasible to evaluate cine MRI accuracy. PMID:29296304

  14. Tracking cell surface GABAB receptors using an alpha-bungarotoxin tag.

    Science.gov (United States)

    Wilkins, Megan E; Li, Xinyan; Smart, Trevor G

    2008-12-12

    GABA(B) receptors mediate slow synaptic inhibition in the central nervous system and are important for synaptic plasticity as well as being implicated in disease. Located at pre- and postsynaptic sites, GABA(B) receptors will influence cell excitability, but their effectiveness in doing so will be dependent, in part, on their trafficking to, and stability on, the cell surface membrane. To examine the dynamic behavior of GABA(B) receptors in GIRK cells and neurons, we have devised a method that is based on tagging the receptor with the binding site components for the neurotoxin, alpha-bungarotoxin. By using the alpha-bungarotoxin binding site-tagged GABA(B) R1a subunit (R1a(BBS)), co-expressed with the R2 subunit, we can track receptor mobility using the small reporter, alpha-bungarotoxin-conjugated rhodamine. In this way, the rates of internalization and membrane insertion for these receptors could be measured with fixed and live cells. The results indicate that GABA(B) receptors rapidly turnover in the cell membrane, with the rate of internalization affected by the state of receptor activation. The bungarotoxin-based method of receptor-tagging seems ideally suited to follow the dynamic regulation of other G-protein-coupled receptors.

  15. A systematic investigation of differential effects of cell culture substrates on the extent of artifacts in single-molecule tracking.

    Directory of Open Access Journals (Sweden)

    Laura C Zanetti-Domingues

    Full Text Available Single-molecule techniques are being increasingly applied to biomedical investigation, notwithstanding the numerous challenges they pose in terms of signal-to-noise ratio issues. Non-specific binding of probes to glass substrates, in particular, can produce experimental artifacts due to spurious molecules on glass, which can be particularly deleterious in live-cell tracking experiments. In order to resolve the issue of non-specific probe binding to substrates, we performed systematic testing of a range of available surface coatings, using three different proteins, and then extended our assessment to the ability of these coatings to foster cell growth and retain non-adhesive properties. Linear PEG, a passivating agent commonly used both in immobilized-molecule single-molecule techniques and in tissue engineering, is able to both successfully repel non-specific adhesion of fluorescent probes and to foster cell growth when functionalized with appropriate adhesive peptides. Linear PEG treatment results in a significant reduction of tracking artifacts in EGFR tracking with Affibody ligands on a cell line expressing EGFR-eGFP. The findings reported herein could be beneficial to a large number of experimental situations where single-molecule or single-particle precision is required.

  16. Comparison of thallium-201 SPET and CT/MRI in the detection of residual/recurrent squamous cell carcinoma of the oral cavity

    International Nuclear Information System (INIS)

    Lee, Jong-Kang; Tyan, Yeu-Sheng; Huang, Wen-Sheng

    2004-01-01

    This study was designed to compare the effectiveness of thallium-201 single-photon emission tomography (SPET) and conventional imaging, comprising computed tomography (CT) and magnetic resonance imaging (MRI), in the detection of residual/recurrent squamous cell carcinoma (SCC) of the oral cavity. Thirty-two patients with clinically suspected recurrent SCC of the oral cavity were recruited. All patients underwent 201 Tl SPET and CT or MRI within 2 weeks. The final diagnoses were based on the histology of the biopsy specimen. 201 Tl SPET and CT/MRI both accurately detected 17 of 18 residual/recurrent tumours. CT/MRI yielded eight false-positive studies, whereas 201 Tl SPET successfully excluded all tumours. The sensitivity, specificity, positive and negative predictive values and accuracy of 201 Tl SPET for the detection of recurrent oral SCC were 94%, 100%, 100%, 93% and 97%, respectively. The sensitivity, specificity, positive and negative predictive values and accuracy of CT/MRI for the detection of recurrent oral SCC were 94%, 43%, 68%, 86% and 72%, respectively. Thallium-201 SPET is more accurate than conventional imaging (CT or MRI) in differentiating residual/recurrent oral SCC from post-therapy changes. (orig.)

  17. Magnetic Resonance Tracking of Endothelial Progenitor Cells Labeled with Alkyl-Polyethylenimine 2 kDa/Superparamagnetic Iron Oxide in a Mouse Lung Carcinoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Cong Chen

    2014-11-01

    Full Text Available The potential of using endothelial progenitor cells (EPCs in novel anticancer therapy and the repair of vascular injury has been increasingly recognized. In the present study, EPCs were labeled with N-alkyl-polyethylenimine 2 kDa (PEI2k-stabilized superparamagnetic iron oxide (SPIO to facilitate magnetic resonance imaging (MRI of EPCs in a mouse lung carcinoma xenograft model. EPCs derived from human peripheral blood were labeled with alkyl-PEI2k/SPIO. The viability and activity of labeled cells were evaluated using proliferation, migration, and tubulogenesis assays. Alkyl-PEI2k/SPIO-labeled EPCs were injected intravenously (group 1 or mixed and injected together with A549 cells subcutaneously (group 2 into groups of six mice with severe combined immunodeficiency. The labeling efficiency with alkyl-PEI2k/SPIO at 7 mg Fe/mL concentration was approximately 100%. Quantitative analysis of cellular iron was 6.062 ± 0.050 pg/cell. No significant effects on EPC proliferation, migration, or tubulogenesis were seen after labeling. Seventesla micro-MRI showed the presence of schistic or linear hypointense regions at the tumor margins starting from days 7 to 8 after EPC administration. This gradually extended into the inner tumor layers in group 1. In group 2, tumor growth was accompanied by dispersion of low-signal intensity regions inside the tumor. Iron-positive cells identified by Prussian blue dye were seen at the sites identified using MRI. Human CD31-positive cells and mouse CD31-positive cells were present in both groups. Labeling EPCs with alkyl-PEI2k/SPIO allows noninvasive magnetic resonance investigation of EPC involvement in tumor neovasculature and is associated with excellent biocompatibility and MRI sensitivity.

  18. Evaluation of potential internal target volume of liver tumors using cine-MRI.

    Science.gov (United States)

    Akino, Yuichi; Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko

    2014-11-01

    Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas-Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV Potential). The concordance between ITV Potential and ITV estimated with 4DCT (ITV 4DCT) was evaluated using the Dice's similarity coefficient (DSC). The distance between blood vessel positions

  19. MO-A-BRD-08: Radiosurgery Beyond Cancer: Real-Time Target Localization and Treatment Planning for Cardiac Radiosurgery Under MRI Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S [University of Luebeck, Luebeck, SH (Germany); University of Sydney, Camperdown (Australia); Blanck, O [CyberKnife Zentrum Norddeutschland, Guestrow, MV (Germany); Oborn, B [Illawarra Cancer Care Centre, Wollongong, NSW (Australia); Bode, F [Medical Clinic II, Section for Electrophysiology, UKSH, Luebeck, SH (Germany); Liney, G [Ingham Institute for Applied Medical Research, Liverpool, NSW (United Kingdom); Keall, P [University of Sydney, Camperdown (Australia)

    2014-06-15

    Purpose: Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting >2.5M Americans and >4.5M Europeans. AF is usually treated with minimally-invasive, time consuming catheter ablation techniques. Radiosurgery of the pulmonary veins (PV) has been proposed for AF treatment, however is challenging due to the complex respiratory and cardiac motion patterns. We hypothesize that an MRI-linac could solve the difficult real-time targeting and adaptation problem. In this study we quantified target motion ranges on cardiac MRI and analyzed the dosimetric benefits of margin reduction assuming real-time MRI tracking was applied. Methods: For the motion study, four human subjects underwent real-time cardiac MRI under free breathing. The target motion on coronal and axial cine planes was analyzed using a template matching algorithm. For the planning study, an ablation line at each PV antrum was defined as target on an AF patient scheduled for catheter ablation. Various safety margins ranging from 0mm (perfect tracking) to 8mm (untracked motion) were added to the target defining the PTV. 30Gy single fraction IMRT plans were then generated. Finally, the influence of a 1T magnetic field on treatment beam delivery was calculated using the Geant4 Monte Carlo algorithm to simulate the dosimetric impact of MRI guidance. Results: The motion study showed the mean respiratory motion of the target area on MRI was 8.4mm (SI), 1.7mm (AP) and 0.3mm (LR). Cardiac motion was small (<2mm). The planning study showed that with increasing safety margins to encompass untracked motion, dose tolerances for OARs such as the esophagus and airways were exceeded by >100%. The magnetic field had little impact on the dose distribution. Conclusion: Our results indicate that real-time MRI tracking of the PVs seems feasible. Accurate image guidance for high-dose AF radiosurgery is essential since safety margins covering untracked target motion will result in unacceptable treatment plans.

  20. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    Science.gov (United States)

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  1. Magnetic resonance imaging of single co-labeled mesenchymal stromal cells after intracardial injection in mice

    International Nuclear Information System (INIS)

    Salamon, J.; Adam, G.; Peldschus, K.; Wicklein, D.; Schumacher, U.; Didie, M.; Lange, C.

    2014-01-01

    Purpose: The aim of this study was to establish co-labeling of mesenchymal stromal cells (MSC) for the detection of single MSC in-vivo by MRI and histological validation. Materials and Methods: Mouse MSC were co-labeled with fluorescent iron oxide micro-particles and carboxyfluorescein succinimidyl ester (CFSE). The cellular iron content was determined by atomic absorption spectrometry. Cell proliferation and expression of characteristic surface markers were determined by flow cytometry. The chondrogenic differentiation capacity was assessed. Different amounts of cells (n1 = 5000, n2 = 15 000, n3 = 50 000) were injected into the left heart ventricle of 12 mice. The animals underwent sequential MRI on a clinical 3.0T scanner (Intera, Philips Medical Systems, Best, The Netherlands). For histological validation cryosections were examined by fluorescent microscopy. Results: Magnetic and fluorescent labeling of MSC was established (mean cellular iron content 23.6 ± 3 pg). Flow cytometry showed similar cell proliferation and receptor expression of labeled and unlabeled MSC. Chondrogenic differentiation of labeled MSC was verified. After cell injection MRI revealed multiple signal voids in the brain and fewer signal voids in the kidneys. In the brain, an average of 4.6 ± 1.2 (n1), 9.0 ± 3.6 (n2) and 25.0 ± 1.0 (n3) signal voids were detected per MRI slice. An average of 8.7 ± 3.1 (n1), 22.0 ± 6.1 (n2) and 89.8 ± 6.5 (n3) labeled cells per corresponding stack of adjacent cryosections could be detected in the brain. Statistical correlation of the numbers of MRI signal voids in the brain and single MSC found by histology revealed a correlation coefficient of r = 0.91. Conclusion: The study demonstrates efficient magnetic and fluorescent co-labeling of MSC and their detection on a single cell level in mice by in-vivo MRI and histology. The described techniques may broaden the methods for in-vivo tracking of MSC. (orig.)

  2. Superparamagnetic iron oxides for MRI

    International Nuclear Information System (INIS)

    Weissleder, R.; Reimer, P.

    1993-01-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  3. Superparamagnetic iron oxides for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Weissleder, R [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Reimer, P [MGH-NMR Center, Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); [Inst. fuer Klinische Radiologie, Zentrale Roentgendiagnostik, Westfaelische-Wilhelms-Univ., Muenster (Germany)

    1993-06-01

    Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous administration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrystalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI. (orig.)

  4. SU-E-T-494: Influence of Proton Track-Cell Nucleus Incidence Angle On Relative Biological Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Pater, P; Backstrom, G; Enger, S; Seuntjens, J; El Naqa, I [McGill University, Montreal, Quebec (Canada); Villegas, F; Ahnesjo, A [Uppsala University, Uppsala (Sweden)

    2015-06-15

    Purpose: To explain a Monte Carlo (MC) simulation artifact whereby differences in relative biological effectiveness (RBE) in the induction of initial double strand breaks are observed as a function of the proton track incidence angles in a geometric cell nucleus model. Secondly, to offer an alternative isotropic irradiation procedure to mitigate this effect. Methods: MC tracks of 1 MeV protons were generated in an event-by-event mode. They were overlaid on a cylindrical model of a cell nucleus containing 6×109 nucleotide base pairs. The tracks incidence angle θ with respect to the cell nucleus’s axis was varied in 10 degrees intervals, each time generating one hundred fractions of ∼2 Gy. Strand breaks were scored in the modeled DNA sugar-phosphate groups and further sub-classified into single or double strand breaks (ssbs or dsbs). For each angle, an RBE for the induction of initial dsbs with reference to Co-60 was calculated. Results: Our results show significant angular dependencies of RBE, with maximum values for incidence angles parallel to the nucleus central axis. Further examination shows that the higher cross-sections for the creation of dsbs is due to the preferential alignment of tracks with geometrical sub-parts of the cell nucleus model, especially the nucleosomes containing the sugar-phosphate groups. To alleviate the impact of this simulation artifact, an average RBE was calculated with a procedure based on a weighted sampling of the angular data. Conclusion: This work demonstrates a possible numerical artifact in estimated RBE if the influence of the particle incidence angle is not correctly taken into account. A correction procedure is presented to better conform the simulations to real-life experimental conditions. We would like to acknowledge support from the Fonds de recherche du Quebec Sante (FRQS), from the CREATE Medical Physics Research Training Network grant (number 432290) of NSERC, support from NSERC under grants RGPIN 397711-11 and

  5. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  6. Polarimetric radar convective cell tracking reveals large sensitivity of cloud precipitation and electrification properties to CCN

    Science.gov (United States)

    Hu, J.; Rosenfeld, D.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E. R.; Zhang, R.

    2017-12-01

    Here we apply the cell tracking methodology, shown in our companion poster, to quantifying factors affecting the vigor and the time-height evolution of hydrometeors and electrification properties of convective cells. Benefitting from the Dual-polarimetric NEXRAD radar network, we composite more than 5000 well-tracked cells among three radars (at Houston, Lubbock and Oklahoma City), stratified by CCN, CAPE and land/sea locations. The analyzed cell properties include Z, ZDR, Kdp, and ρhv, Dm (raindrop diameter) and Nw (raindrop concentration) by the algorithm of Bringi et al. (2003). Lightning Mapping Array (LMA) data is also included in the analysis, which provides a 3D structure of lightning occurrence and RF power. The contrasting CCN conditions over marine, land, pristine and polluted areas are identified based on the satellite retrieval technique described in Rosenfeld et al. (2016). The results show that more CCN are associated with: Increased echo top height, manifesting the invigoration effect. Enhanced reflectivities, especially above the freezing level at around 4.5 km. Raindrop sizes at the initial stage increase at the expense of their concentrations, due to the smaller cloud droplets and suppressed coalescence. Larger propensity for hail. Lightning sources increase with greater CCN concentration and is likely due to the delayed warm rain process and enhanced mixed phase process under more CCN condition, when activated CCN into cloud droplets is too high (> 1000 cm-3) the glaciation is delayed too much and leave little ice at lower levels and thus decrease lightning activity. Land pristine clouds have fewer lightning sources than polluted clouds. Marine pristine clouds seldom have lightning Increased CAPE had a similar effect to the effect of added CCN. The cloud tracking and properties are obtained by a new methodology of Multi-Cell Identification and Tracking (MCIT) algorithm (Hu et al, 2017), with details about the algorithm to be found in the author

  7. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wwang21@partners.org [Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115 and Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Viswanathan, Akila N.; Damato, Antonio L.; Cormack, Robert A. [Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Chen, Yue; Tse, Zion [Department of Engineering, The University of Georgia, Athens, Georgia 30602 (United States); Pan, Li [Siemens Healthcare USA, Baltimore, Maryland 21287 (United States); Tokuda, Junichi; Schmidt, Ehud J. [Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts 02115 (United States); Seethamraju, Ravi T. [Siemens Healthcare USA, Boston, Massachusetts 02115 (United States); Dumoulin, Charles L. [Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229 (United States)

    2015-12-15

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  8. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Wang, Wei; Viswanathan, Akila N.; Damato, Antonio L.; Cormack, Robert A.; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Schmidt, Ehud J.; Seethamraju, Ravi T.; Dumoulin, Charles L.

    2015-01-01

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High

  9. Sequential changes on [sup 23]Na MRI after cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T. (Cerebrovascular Div., Dept. of Medicine, National Cardiovascular Center, Osaka (Japan)); Naritomi, H. (Cerebrovascular Div., Dept. of Medicine, National Cardiovascular Center, Osaka (Japan)); Sawada, T. (Cerebrovascular Div., Dept. of Medicine, National Cardiovascular Center, Osaka (Japan))

    1993-01-01

    [sup 23]Na MRI changes from the acute to chronic phase were investigated in seven patients with cerebral infarcts. They showed no signal increase during the first 13 h after the stroke and revealed a definite signal increase thereafter. This reached a maximum 45-82 h after stroke and became sightly less marked in the subacute and chronic phases, probably as a result of disappearance of cerebral oedema. In the early acute phase of stroke, [sup 23]Na MRI appears to fail to demonstrate Na[sup +] increases in the ischaemic area, due presumably to the invisibility on MRI of intracellular [sup 23]Na in the intact brain. The increase more than 13 h after stroke, during which ischaemic cells are likely to die, is presumably because of increased visibility of intracellular [sup 23]Na in the dead cells. [sup 23]Na MRI is apparently insensitive to early ischaemic changes, but may be useful for assessing the cell viability in the ischaemic brain. (orig.)

  10. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects

    Science.gov (United States)

    Bomati-Miguel, Oscar; Miguel-Sancho, Nuria; Abasolo, Ibane; Candiota, Ana Paula; Roca, Alejandro G.; Acosta, Milena; Schwartz, Simó; Arus, Carles; Marquina, Clara; Martinez, Gema; Santamaria, Jesus

    2014-03-01

    Polyol synthesis is a promising method to obtain directly pharmaceutical grade colloidal dispersion of superparamagnetic iron oxide nanoparticles (SPIONs). Here, we study the biocompatibility and performance as T2-MRI contrast agents (CAs) of high quality magnetic colloidal dispersions (average hydrodynamic aggregate diameter of 16-27 nm) consisting of polyol-synthesized SPIONs (5 nm in mean particle size) coated with triethylene glycol (TEG) chains (TEG-SPIONs), which were subsequently functionalized to carboxyl-terminated meso-2-3-dimercaptosuccinic acid (DMSA) coated-iron oxide nanoparticles (DMSA-SPIONs). Standard MTT assays on HeLa, U87MG, and HepG2 cells revealed that colloidal dispersions of TEG-coated iron oxide nanoparticles did not induce any loss of cell viability after 3 days incubation with dose concentrations below 50 μg Fe/ml. However, after these nanoparticles were functionalized with DMSA molecules, an increase on their cytotoxicity was observed, so that particles bearing free terminal carboxyl groups on their surface were not cytotoxic only at low concentrations (MRI studies in mice indicated that both types of coated-iron oxide nanoparticles produced higher negative T2-MRI contrast enhancement than that measured for a similar commercial T2-MRI CAs consisting in dextran-coated ultra-small iron oxide nanoparticles (Ferumoxtran-10). In conclusion, the above attributes make both types of as synthesized coated-iron oxide nanoparticles, but especially DMSA-SPIONs, promising candidates as T2-MRI CAs for nanoparticle-enhanced MRI diagnosis applications.

  11. TU-PIS-Exhibit Hall-3: Simultaneous tracking of patient and real time staff dose to optimize interventional workflow

    International Nuclear Information System (INIS)

    Boon, S.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  12. TU-PIS-Exhibit Hall-3: Simultaneous tracking of patient and real time staff dose to optimize interventional workflow

    Energy Technology Data Exchange (ETDEWEB)

    Boon, S.

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  13. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    International Nuclear Information System (INIS)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-01-01

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins

  14. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-07-25

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins.

  15. Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging.

    Science.gov (United States)

    Schäfer, R; Wiskirchen, J; Guo, K; Neumann, B; Kehlbach, R; Pintaske, J; Voth, V; Walker, T; Scheule, A M; Greiner, T O; Hermanutz-Klein, U; Claussen, C D; Northoff, H; Ziemer, G; Wendel, H P

    2007-10-01

    Mesenchymal stem cells (MSC) seem to be a promising cell source for cellular cardiomyoplasty. We recently developed a new aptamer-based specific selection of MSC to provide "ready to transplant" cells directly after isolation. We evaluated MRI tracking of newly isolated and freshly transplanted MSC in the heart using one short ex vivo selection step combining specific aptamer-based isolation and labeling of the cells. Bone marrow (BM) was collected from healthy pigs. The animals were euthanized and the heart was placed in a perfusion model. During cold ischemia, immunomagnetic isolation of MSC from the BM by MSC-specific aptamers labeled with Dynabeads was performed within 2 h. For histological identification the cells were additionally stained with PKH26. Approx. 3 x 10(6) of the freshly aptamer-isolated cells were injected into the ramus interventricularis anterior (RIVA) and 5 x 10(5) cells were injected directly into myocardial tissue after damaging the respective area by freezing (cryo-scar). 3 x 10(6) of the aptamer-isolated cells were kept for further characterization (FACS and differentiation assays). 20 h after cell transplantation, MRI of the heart using a clinical 3.0 Tesla whole body scanner (Magnetom Trio, Siemens, Germany) was performed followed by histological examinations. The average yield of sorted cells from 120 ml BM was 7 x 10(6) cells. The cells were cultured and showed MSC-like properties. MRI showed reproducible artifacts within the RIVA-perfusion area and the cryo-scar with surprisingly excellent quality. The histological examination of the biopsies showed PKH26-positive cells within the areas which were positive in the MRI in contrast to the control biopsies. Immunomagnetic separation of MSC by specific aptamers linked to magnetic particles is feasible, effective and combines a specific separation and labeling technique to a "one stop shop" strategy.

  16. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells.

    Science.gov (United States)

    Jung, Kwang Bo; Lee, Hana; Son, Ye Seul; Lee, Ji Hye; Cho, Hyun-Soo; Lee, Mi-Ok; Oh, Jung-Hwa; Lee, Jaemin; Kim, Seokho; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young

    2018-01-01

    Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5 mCherry ) and intestine-specific homeobox enhanced green fluorescence protein (ISX eGFP ). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells. © FASEB.

  17. Manganese–gold nanoparticles as an MRI positive contrast agent in mesenchymal stem cell labeling

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Jacobs, Stephanie; Liu Jimei; Hu, Tom C.-C.; Siegfired, Matthew; Serkiz, Steven M.; Hudson, Joan

    2012-01-01

    We report a straightforward approach to prepare multifunctional manganese–gold nanoparticles by attaching Mn(II) ions onto the surface of 20 nm citrate-capped gold nanoparticles. In vitro MRI measurements made in agarose gel phantoms exhibited high relaxivity (18.26 ± 1.04 mmol −1 s −1 ). Controlled incubation of the nanoparticles with mesenchymal stem cells (MSCs) was used to study cellular uptake of these particles and this process appeared to be controlled by the size of the nanoparticle aggregates in the extracellular solution. SEM images of live MSCs showed an increased concentration of particles near the cell membrane and a distribution of the size of particles within the cells. Survivability for MSCs in contact with Mn–Au NPs was greater than 97% over the 3-day period and up to the 1 mM Mn used in this study. The high relaxivity and low cell mortality are suggestive of an enhanced positive contrast agent for in vitro or in vivo applications.

  18. On the suitability of Elekta’s Agility 160 MLC for tracked radiation delivery: closed-loop machine performance

    International Nuclear Information System (INIS)

    Glitzner, M; Crijns, S P M; De Senneville, B Denis; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For motion adaptive radiotherapy, dynamic multileaf collimator tracking can be employed to reduce treatment margins by steering the beam according to the organ motion. The Elekta Agility 160 MLC has hitherto not been evaluated for its tracking suitability. Both dosimetric performance and latency are key figures and need to be assessed generically, independent of the used motion sensor. In this paper, we propose the use of harmonic functions directly fed to the MLC to determine its latency during continuous motion. Furthermore, a control variable is extracted from a camera system and fed to the MLC. Using this setup, film dosimetry and subsequent γ statistics are performed, evaluating the response when tracking (MRI)-based physiologic motion in a closed-loop. The delay attributed to the MLC itself was shown to be a minor contributor to the overall feedback chain as compared to the impact of imaging components such as MRI sequences. Delay showed a linear phase behaviour of the MLC employed in continuously dynamic applications, which enables a general MLC-characterization. Using the exemplary feedback chain, dosimetry showed a vast increase in pass rate employing γ statistics. In this early stage, the tracking performance of the Agility using the test bench yielded promising results, making the technique eligible for translation to tracking using clinical imaging modalities. (paper)

  19. Labeling Human Mesenchymal Stem Cells with Gold Nanocages for in vitro and in vivo Tracking by Two-Photon Microscopy and Photoacoustic Microscopy

    Science.gov (United States)

    Zhang, Yu Shrike; Wang, Yu; Wang, Lidai; Wang, Yucai; Cai, Xin; Zhang, Chi; Wang, Lihong V.; Xia, Younan

    2013-01-01

    Stem cell tracking is a highly important subject. Current techniques based on nanoparticle-labeling, such as magnetic resonance imaging, fluorescence microscopy, and micro-computed tomography, are plagued by limitations including relatively low sensitivity or penetration depth, involvement of ionizing irradiation, and potential cytotoxicity of the nanoparticles. Here we introduce a new class of contrast agents based on gold nanocages (AuNCs) with hollow interiors and porous walls to label human mesenchymal stem cells (hMSCs) for both in vitro and in vivo tracking using two-photon microscopy and photoacoustic microscopy. As demonstrated by the viability assay, the AuNCs showed negligible cytotoxicity under a reasonable dose, and did not alter the differentiation potential of the hMSCs into desired lineages. We were able to image the cells labeled with AuNCs in vitro for at least 28 days in culture, as well as to track the cells that homed to the tumor region in nude mice in vivo. PMID:23946820

  20. Nanohybrids with Magnetic and Persistent Luminescence Properties for Cell Labeling, Tracking, In Vivo Real-Time Imaging, and Magnetic Vectorization.

    Science.gov (United States)

    Teston, Eliott; Maldiney, Thomas; Marangon, Iris; Volatron, Jeanne; Lalatonne, Yoann; Motte, Laurence; Boisson-Vidal, Catherine; Autret, Gwennhael; Clément, Olivier; Scherman, Daniel; Gazeau, Florence; Richard, Cyrille

    2018-04-01

    Once injected into a living organism, cells diffuse or migrate around the initial injection point and become impossible to be visualized and tracked in vivo. The present work concerns the development of a new technique for therapeutic cell labeling and subsequent in vivo visualization and magnetic retention. It is hypothesized and subsequently demonstrated that nanohybrids made of persistent luminescence nanoparticles and ultrasmall superparamagnetic iron oxide nanoparticles incorporated into a silica matrix can be used as an effective nanoplatform to label therapeutic cells in a nontoxic way in order to dynamically track them in real-time in vitro and in living mice. As a proof-of-concept, it is shown that once injected, these labeled cells can be visualized and attracted in vivo using a magnet. This first step suggests that these nanohybrids represent efficient multifunctional nanoprobes for further imaging guided cell therapies development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells

    Science.gov (United States)

    McGuinness, L. P.; Yan, Y.; Stacey, A.; Simpson, D. A.; Hall, L. T.; MacLaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F.; Scholten, R. E.; Hollenberg, L. C. L.

    2011-06-01

    Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.

  2. Correlation between anatomic foot and ankle movement measured with MRI and with a motion analysis system.

    Science.gov (United States)

    Marquez-Barrientos, C; Liu, X C; Lyon, R; Tassone, C; Thometz, J; Tarima, S

    2012-07-01

    Several studies have attempted to measure how well external markers track internal bone movement using pins drilled into the foot, but this is too invasive for the pediatric population. This study investigated how well a six segment foot model (6SFM) using external markers was able to measure bone movement in the foot compared to MRI measurements. The foot was moved into different positions using a plastic foot jig and measurements were taken with both systems. The aims were to: (1) Look at the correlation between movement tracked with an Electronic Motion Tracking System (EMTS) and by measurements derived from MRI images, specifically the principal intercept angles (PIAs) which are the angles of intersection between principal axes of inertia of bone volumes. (2) To see how well external motion measured by the 6SFM could predict PIAs. Four bone pairs had their movement tracked: Tibia-Calcaneus, Calcaneus-Cuboid, Navicular-1st Metatarsal, and 1st Metatarsal-Hallux. The results showed moderate correlation between measured PIAs and those predicted at the Tibia-Calcaneus, Navicular-1st Metatarsal, and 1st Metatarsal-Hallux joints. Moderate to high correlation was found between the PIA and movement in a single anatomic plane for all four joints at several positions. The 6SFM using the EMTS allows reliable tracking of 3D rotations in the pediatric foot, except at the Calcaneus-Cuboid joint. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    Science.gov (United States)

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  4. MRI, CT and TRUS imaging of seminal vesicle metastasis

    International Nuclear Information System (INIS)

    Larsson, P.; Blomqvist, L.; Norming, U.

    1997-01-01

    We present a case of a testicular germ-cell metastasis in the seminal vesicle. Diagnostic imaging with transrectal ultrasonography (TRUS), CT, and MRI was performed. This case emphasizes the role of MRI in the evaluation of patients with pathology in the pelvic region. (orig.)

  5. Report of the Central Tracking Group

    International Nuclear Information System (INIS)

    Cassel, D.G.; Hanson, G.G.

    1986-10-01

    Issues involved in building a realistic central tracking system for a general-purpose 4π detector for the SSC are addressed. Such a central tracking system must be capable of running at the full design luminosity of 10 33 cm -2 s -1 . Momentum measurement was required in a general-purpose 4π detector. Limitations on charged particle tracking detectors at the SSC imposed by rates and radiation damage are reviewed. Cell occupancy is the dominant constraint, which led us to the conclusion that only small cells, either wires or straw tubes, are suitable for a central tracking system at the SSC. Mechanical problems involved in building a central tracking system of either wires or straw tubes were studied, and our conclusion was that it is possible to build such a large central tracking system. Of course, a great deal of research and development is required. We also considered central tracking systems made of scintillating fibers or silicon microstrips, but our conclusion was that neither is a realistic candidate given the current state of technology. We began to work on computer simulation of a realistic central tracking system. Events from interesting physics processes at the SSC will be complex and will be further complicated by hits from out-of-time bunch crossings and multiple interactions within the same bunch crossing. Detailed computer simulations are needed to demonstrate that the pattern recognition and tracking problems can be solved

  6. TU-AB-BRA-09: A Novel Method of Generating Ultrafast Volumetric Cine MRI (VC-MRI) Using Prior 4D-MRI and On-Board Phase-Skipped Encoding Acquisition for Radiotherapy Target Localization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C; Yin, F; Harris, W; Cai, J; Chang, Z; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: To develop a technique generating ultrafast on-board VC-MRI using prior 4D-MRI and on-board phase-skipped encoding k-space acquisition for real-time 3D target tracking of liver and lung radiotherapy. Methods: The end-of-expiration (EOE) volume in 4D-MRI acquired during the simulation was selected as the prior volume. 3 major respiratory deformation patterns were extracted through the principal component analysis of the deformation field maps (DFMs) generated between EOE and all other phases. The on-board VC-MRI at each instant was considered as a deformation of the prior volume, and the deformation was modeled as a linear combination of the extracted 3 major deformation patterns. To solve the weighting coefficients of the 3 major patterns, a 2D slice was extracted from VC-MRI volume to match with the 2D on-board sampling data, which was generated by 8-fold phase skipped-encoding k-space acquisition (i.e., sample 1 phase-encoding line out of every 8 lines) to achieve an ultrafast 16–24 volumes/s frame rate. The method was evaluated using XCAT digital phantom to simulate lung cancer patients. The 3D volume of end-ofinhalation (EOI) phase at the treatment day was used as ground-truth onboard VC-MRI with simulated changes in 1) breathing amplitude and 2) breathing amplitude/phase change from the simulation day. A liver cancer patient case was evaluated for in-vivo feasibility demonstration. Results: The comparison between ground truth and estimated on-board VC-MRI shows good agreements. In XCAT study with changed breathing amplitude, the volume-percent-difference(VPD) between ground-truth and estimated tumor volumes at EOI was 6.28% and the Center-of-Mass-Shift(COMS) was 0.82mm; with changed breathing amplitude and phase, the VPD was 8.50% and the COMS was 0.54mm. The study of liver patient case also demonstrated a promising in vivo feasibility of the proposed method Conclusion: Preliminary results suggest the feasibility to estimate ultrafast VC-MRI for on

  7. TU-AB-BRA-09: A Novel Method of Generating Ultrafast Volumetric Cine MRI (VC-MRI) Using Prior 4D-MRI and On-Board Phase-Skipped Encoding Acquisition for Radiotherapy Target Localization

    International Nuclear Information System (INIS)

    Wang, C; Yin, F; Harris, W; Cai, J; Chang, Z; Ren, L

    2016-01-01

    Purpose: To develop a technique generating ultrafast on-board VC-MRI using prior 4D-MRI and on-board phase-skipped encoding k-space acquisition for real-time 3D target tracking of liver and lung radiotherapy. Methods: The end-of-expiration (EOE) volume in 4D-MRI acquired during the simulation was selected as the prior volume. 3 major respiratory deformation patterns were extracted through the principal component analysis of the deformation field maps (DFMs) generated between EOE and all other phases. The on-board VC-MRI at each instant was considered as a deformation of the prior volume, and the deformation was modeled as a linear combination of the extracted 3 major deformation patterns. To solve the weighting coefficients of the 3 major patterns, a 2D slice was extracted from VC-MRI volume to match with the 2D on-board sampling data, which was generated by 8-fold phase skipped-encoding k-space acquisition (i.e., sample 1 phase-encoding line out of every 8 lines) to achieve an ultrafast 16–24 volumes/s frame rate. The method was evaluated using XCAT digital phantom to simulate lung cancer patients. The 3D volume of end-ofinhalation (EOI) phase at the treatment day was used as ground-truth onboard VC-MRI with simulated changes in 1) breathing amplitude and 2) breathing amplitude/phase change from the simulation day. A liver cancer patient case was evaluated for in-vivo feasibility demonstration. Results: The comparison between ground truth and estimated on-board VC-MRI shows good agreements. In XCAT study with changed breathing amplitude, the volume-percent-difference(VPD) between ground-truth and estimated tumor volumes at EOI was 6.28% and the Center-of-Mass-Shift(COMS) was 0.82mm; with changed breathing amplitude and phase, the VPD was 8.50% and the COMS was 0.54mm. The study of liver patient case also demonstrated a promising in vivo feasibility of the proposed method Conclusion: Preliminary results suggest the feasibility to estimate ultrafast VC-MRI for on

  8. Evaluation of potential internal target volume of liver tumors using cine-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan and Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan); Oh, Ryoong-Jin; Masai, Norihisa; Shiomi, Hiroya; Inoue, Toshihiko [Miyakojima IGRT Clinic, Miyakojima-ku, Osaka 5340021 (Japan)

    2014-11-01

    Purpose: Four-dimensional computed tomography (4DCT) is widely used for evaluating moving tumors, including lung and liver cancers. For patients with unstable respiration, however, the 4DCT may not visualize tumor motion properly. High-speed magnetic resonance imaging (MRI) sequences (cine-MRI) permit direct visualization of respiratory motion of liver tumors without considering radiation dose exposure to patients. Here, the authors demonstrated a technique for evaluating internal target volume (ITV) with consideration of respiratory variation using cine-MRI. Methods: The authors retrospectively evaluated six patients who received stereotactic body radiotherapy (SBRT) to hepatocellular carcinoma. Before acquiring planning CT, sagittal and coronal cine-MRI images were acquired for 30 s with a frame rate of 2 frames/s. The patient immobilization was conducted under the same condition as SBRT. Planning CT images were then acquired within 15 min from cine-MRI image acquisitions, followed by a 4DCT scan. To calculate tumor motion, the motion vectors between two continuous frames of cine-MRI images were calculated for each frame using the pyramidal Lucas–Kanade method. The target contour was delineated on one frame, and each vertex of the contour was shifted and copied onto the following frame using neighboring motion vectors. 3D trajectory data were generated with the centroid of the contours on sagittal and coronal images. To evaluate the accuracy of the tracking method, the motion of clearly visible blood vessel was analyzed with the motion tracking and manual detection techniques. The target volume delineated on the 50% (end-exhale) phase of 4DCT was translated with the trajectory data, and the distribution of the occupancy probability of target volume was calculated as potential ITV (ITV {sub Potential}). The concordance between ITV {sub Potential} and ITV estimated with 4DCT (ITV {sub 4DCT}) was evaluated using the Dice’s similarity coefficient (DSC). Results

  9. Gain- and Loss-Related Brain Activation Are Associated with Information Search Differences in Risky Gambles: An fMRI and Eye-Tracking Study.

    Science.gov (United States)

    Häusler, Alexander Niklas; Oroz Artigas, Sergio; Trautner, Peter; Weber, Bernd

    2016-01-01

    People differ in the way they approach and handle choices with unsure outcomes. In this study, we demonstrate that individual differences in the neural processing of gains and losses relates to attentional differences in the way individuals search for information in gambles. Fifty subjects participated in two independent experiments. Participants first completed an fMRI experiment involving financial gains and losses. Subsequently, they performed an eye-tracking experiment on binary choices between risky gambles, each displaying monetary outcomes and their respective probabilities. We find that individual differences in gain and loss processing relate to attention distribution. Individuals with a stronger reaction to gains in the ventromedial prefrontal cortex paid more attention to monetary amounts, while a stronger reaction in the ventral striatum to losses was correlated with an increased attention to probabilities. Reaction in the posterior cingulate cortex to losses was also found to correlate with an increased attention to probabilities. Our data show that individual differences in brain activity and differences in information search processes are closely linked.

  10. TU-PIS-Exhibit Hall-5: Use of the Enterprise-wide Dose Tracking Software Radimetrics In an Academic Medical System

    International Nuclear Information System (INIS)

    Goode, A.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  11. TU-PIS-Exhibit Hall-5: Use of the Enterprise-wide Dose Tracking Software Radimetrics In an Academic Medical System

    Energy Technology Data Exchange (ETDEWEB)

    Goode, A. [Bayer Healthcare (Germany)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  12. A Concentric Tube Continuum Robot with Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting

    Science.gov (United States)

    Su, Hao; Li, Gang; Rucker, D. Caleb; Webster, Robert J.; Fischer, Gregory S.

    2017-01-01

    This paper presents the design, modeling and experimental evaluation of a magnetic resonance imaging (MRI)-compatible concentric tube continuum robotic system. This system enables MRI-guided deployment of a precurved and steerable concentric tube continuum mechanism, and is suitable for clinical applications where a curved trajectory is needed. This compact 6 degree-of-freedom (DOF) robotic system is piezoelectrically-actuated, and allows simultaneous robot motion and imaging with no visually observable image artifact. The targeting accuracy is evaluated with optical tracking system and gelatin phantom under live MRI-guidance with Root Mean Square (RMS) errors of 1.94 and 2.17 mm respectively. Furthermore, we demonstrate that the robot has kinematic redundancy to reach the same target through different paths. This was evaluated in both free space and MRI-guided gelatin phantom trails, with RMS errors of 0.48 and 0.59 mm respectively. As the first of its kind, MRI-guided targeted concentric tube needle placements with ex vivo porcine liver are demonstrated with 4.64 mm RMS error through closed-loop control of the piezoelectrically-actuated robot. PMID:26983842

  13. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow.

  14. MO-FG-BRD-00: Real-Time Imaging and Tracking Techniques for Intrafractional Motion Management

    International Nuclear Information System (INIS)

    2015-01-01

    Intrafraction target motion is a prominent complicating factor in the accurate targeting of radiation within the body. Methods compensating for target motion during treatment, such as gating and dynamic tumor tracking, depend on the delineation of target location as a function of time during delivery. A variety of techniques for target localization have been explored and are under active development; these include beam-level imaging of radio-opaque fiducials, fiducial-less tracking of anatomical landmarks, tracking of electromagnetic transponders, optical imaging of correlated surrogates, and volumetric imaging within treatment delivery. The Joint Imaging and Therapy Symposium will provide an overview of the techniques for real-time imaging and tracking, with special focus on emerging modes of implementation across different modalities. In particular, the symposium will explore developments in 1) Beam-level kilovoltage X-ray imaging techniques, 2) EPID-based megavoltage X-ray tracking, 3) Dynamic tracking using electromagnetic transponders, and 4) MRI-based soft-tissue tracking during radiation delivery. Learning Objectives: Understand the fundamentals of real-time imaging and tracking techniques Learn about emerging techniques in the field of real-time tracking Distinguish between the advantages and disadvantages of different tracking modalities Understand the role of real-time tracking techniques within the clinical delivery work-flow

  15. Engineered core-shell magnetic nanoparticle for MR dual-modal tracking and safe magnetic manipulation of ependymal cells in live rodents

    Science.gov (United States)

    Peng, Yung-Kang; Lui, Cathy N. P.; Chen, Yu-Wei; Chou, Shang-Wei; Chou, Pi-Tai; Yung, Ken K. L.; Edman Tsang, S. C.

    2018-01-01

    Tagging recognition group(s) on superparamagnetic iron oxide is known to aid localisation (imaging), stimulation and separation of biological entities using magnetic resonance imaging (MRI) and magnetic agitation/separation (MAS) techniques. Despite the wide applicability of iron oxide nanoparticles in T 2-weighted MRI and MAS, the quality of the images and safe manipulation of the exceptionally delicate neural cells in a live brain are currently the key challenges. Here, we demonstrate the engineered manganese oxide clusters-iron oxide core-shell nanoparticle as an MR dual-modal contrast agent for neural stem cells (NSCs) imaging and magnetic manipulation in live rodents. As a result, using this engineered nanoparticle and associated technologies, identification, stimulation and transportation of labelled potentially multipotent NSCs from a specific location of a live brain to another by magnetic means for self-healing therapy can therefore be made possible.

  16. Diffusion-weighted MRI of the prostate

    International Nuclear Information System (INIS)

    Mueller-Lisse, U.G.; Scherr, M.K.; Mueller-Lisse, U.L.; Zamecnik, P.; Schlemmer, H.P.W.

    2011-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) can complement MRI of the prostate in the detection and localization of prostate cancer, particularly after previous negative biopsy. A total of 13 original reports and 2 reviews published in 2010 demonstrate that prostate cancer can be detected by DWI due to its increased cell density and decreased diffusiveness, either qualitatively in DWI images or quantitatively by means of the apparent diffusion coefficient (ADC). In the prostate, the ADC is influenced by the strength of diffusion weighting, localization (peripheral or transitional zone), presence of prostatitis or hemorrhage and density and differentiation of prostate cancer cells. Mean differences between healthy tissue of the peripheral zone and prostate cancer appear to be smaller for ADC than for the (choline + creatine)/citrate ratio in MR spectroscopy. Test quality parameters vary greatly between different studies but appear to be slightly better for combined MRI and DWI than for MRI of the prostate alone. Clinical validation of DWI of the prostate requires both increased technical conformity and increased numbers of patients in clinical studies. (orig.) [de

  17. Multiple objects tracking in fluorescence microscopy.

    Science.gov (United States)

    Kalaidzidis, Yannis

    2009-01-01

    Many processes in cell biology are connected to the movement of compact entities: intracellular vesicles and even single molecules. The tracking of individual objects is important for understanding cellular dynamics. Here we describe the tracking algorithms which have been developed in the non-biological fields and successfully applied to object detection and tracking in biological applications. The characteristics features of the different algorithms are compared.

  18. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Ojala, Risto; Kerimaa, Pekka; Tervonen, Osmo; Blanco-Sequeiros, Roberto [Oulu University Hospital, Department of Radiology, Oulu (Finland); Lakovaara, Martti [Oulu Deaconess Institute, Department of Surgery, Oulu (Finland); Hyvoenen, Pekka; Lehenkari, Petri [Oulu University Hospital, Department of Surgery, Oulu (Finland)

    2011-06-15

    The purpose of this study was to evaluate the feasibility of a new method for osteochondritis dissecans (OCD) treatment. Ten OCD lesions of the knee unresponsive to conservative management were treated with MRI-guided percutaneous retrograde drilling to reduce symptoms and promote ossification of the lesion. All lesions were located in distal femoral condyles. Only stable OCD lesions were included (preprocedural MRI grade I or II). Five lesions were of juvenile type and five lesions were of adult type OCD. All the patients had severe limitation of activity due to the OCD-related pain. By using a 0.23 T open MRI scanner and spinal anesthesia, percutaneous retrograde drilling of the OCD lesions was performed (3 mm cylindrical drill, one to three channels). Optical tracking and MRI imaging were used to guide instruments during the procedure. Mean postprocedural clinical follow-up time was 3 years. Eight patients had a post-procedural follow-up MRI within 1 year. All the OCD lesions were located and drilled using the 0.23 T open MRI scanner without procedural complications. All the patients had pain relief, mean visual analog score (VAS) declined from 6 to 2. Follow-up MRI showed ossification in all lesions. Eight patients could return to normal physical activity with no or minor effect on function (Hughston score 3-4). Treatment failed in two cases where the continuation of symptoms led to arthroscopy and transchondral fixation. MR-guided retrograde OCD lesion drilling is an accurate, feasible, and effective cartilage-sparing techique in OCD management. (orig.)

  19. MRI-guided percutaneous retrograde drilling of osteochondritis dissecans of the knee

    International Nuclear Information System (INIS)

    Ojala, Risto; Kerimaa, Pekka; Tervonen, Osmo; Blanco-Sequeiros, Roberto; Lakovaara, Martti; Hyvoenen, Pekka; Lehenkari, Petri

    2011-01-01

    The purpose of this study was to evaluate the feasibility of a new method for osteochondritis dissecans (OCD) treatment. Ten OCD lesions of the knee unresponsive to conservative management were treated with MRI-guided percutaneous retrograde drilling to reduce symptoms and promote ossification of the lesion. All lesions were located in distal femoral condyles. Only stable OCD lesions were included (preprocedural MRI grade I or II). Five lesions were of juvenile type and five lesions were of adult type OCD. All the patients had severe limitation of activity due to the OCD-related pain. By using a 0.23 T open MRI scanner and spinal anesthesia, percutaneous retrograde drilling of the OCD lesions was performed (3 mm cylindrical drill, one to three channels). Optical tracking and MRI imaging were used to guide instruments during the procedure. Mean postprocedural clinical follow-up time was 3 years. Eight patients had a post-procedural follow-up MRI within 1 year. All the OCD lesions were located and drilled using the 0.23 T open MRI scanner without procedural complications. All the patients had pain relief, mean visual analog score (VAS) declined from 6 to 2. Follow-up MRI showed ossification in all lesions. Eight patients could return to normal physical activity with no or minor effect on function (Hughston score 3-4). Treatment failed in two cases where the continuation of symptoms led to arthroscopy and transchondral fixation. MR-guided retrograde OCD lesion drilling is an accurate, feasible, and effective cartilage-sparing techique in OCD management. (orig.)

  20. An Algorithm to Automate Yeast Segmentation and Tracking

    Science.gov (United States)

    Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.

    2013-01-01

    Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484

  1. The Impact of the Geometrical Structure of the DNA on Parameters of the Track-Event Theory for Radiation Induced Cell Kill.

    Directory of Open Access Journals (Sweden)

    Uwe Schneider

    Full Text Available When fractionation schemes for hypofractionation and stereotactic body radiotherapy are considered, a reliable cell survival model at high dose is needed for calculating doses of similar biological effectiveness. An alternative to the LQ-model is the track-event theory which is based on the probabilities for one- and two two-track events. A one-track-event (OTE is always represented by at least two simultaneous double strand breaks. A two-track-event (TTE results in one double strand break. Therefore at least two two-track-events on the same or different chromosomes are necessary to produce an event which leads to cell sterilization. It is obvious that the probabilities of OTEs and TTEs must somehow depend on the geometrical structure of the chromatin. In terms of the track-event theory the ratio ε of the probabilities of OTEs and TTEs includes the geometrical dependence and is obtained in this work by simple Monte Carlo simulations.For this work it was assumed that the anchors of loop forming chromatin are most sensitive to radiation induced cell deaths. Therefore two adjacent tetranucleosomes representing the loop anchors were digitized. The probability ratio ε of OTEs and TTEs was factorized into a radiation quality dependent part and a geometrical part: ε = εion ∙ εgeo. εgeo was obtained for two situations, by applying Monte Carlo simulation for DNA on the tetranucleosomes itself and for linker DNA. Low energy electrons were represented by randomly distributed ionizations and high energy electrons by ionizations which were simulated on rays. εion was determined for electrons by using results from nanodosimetric measurements. The calculated ε was compared to the ε obtained from fits of the track event model to 42 sets of experimental human cell survival data.When the two tetranucleosomes are in direct contact and the hits are randomly distributed εgeo and ε are 0.12 and 0.85, respectively. When the hits are simulated on rays

  2. MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives

    Directory of Open Access Journals (Sweden)

    Domenico Aquino

    2017-01-01

    Full Text Available Pseudophenomena, that is, imaging alterations due to therapy rather than tumor evolution, have an important impact on the management of glioma patients and the results of clinical trials. RANO (response assessment in neurooncology criteria, including conventional MRI (cMRI, addressed the issues of pseudoprogression after radiotherapy and concomitant chemotherapy and pseudoresponse during antiangiogenic therapy of glioblastomas (GBM and other gliomas. The development of cancer immunotherapy forced the identification of further relevant response criteria, summarized by the iRANO working group in 2015. In spite of this, the unequivocal definition of glioma progression by cMRI remains difficult particularly in the setting of immunotherapy approaches provided by checkpoint inhibitors and dendritic cells. Advanced MRI (aMRI may in principle address this unmet clinical need. Here, we discuss the potential contribution of different aMRI techniques and their indications and pitfalls in relation to biological and imaging features of glioma and immune system interactions.

  3. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  4. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    Science.gov (United States)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  5. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector

    International Nuclear Information System (INIS)

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa

    2015-01-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080–53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. (author)

  6. Central and forward tracking collaboration

    International Nuclear Information System (INIS)

    Foster, R.; Hanson, G.; Luehring, F.; Luo, X.; Martin, B.; Ogren, H.; Rust, D.R.; Wente, E.; Adrian, B.; Alexander, D.; Ells, F.; Erdos, E.; Ford, W.T.; Johnson, D.; Lohner, M.; Rankin, P.; Schultz, G.; Newcomer, F.M.; Van Berg, R.; Williams, H.H.; Arai, Y.; Hess, D.; Kadyk, J.A.; Palounek, A.P.T.; Wise, J.; Chapman, J.W.; Dunn, A.; Edwards, M.; Hiddleston, J.W.; Payne, B.T.; Amery, C.A.; Bailey, J.M.; Dainton, J.B.; Gabathuler, E.; Maxfield, S.J.; Morton, J.M.; Muir, A.; Patel, G.D.; Sanders, P.; Raine, C.; Saxon, D.H.; Hackworth, D.T.; Swensrud, R.L.; Newfield, S.; Sadler, C.; Va'vra, J.

    1991-01-01

    The goal of this subsystem R ampersand D project is to carry out a detailed study and design of a complete wire chamber tracking system covering pseudorapidity |η| ≤ 2.5 in a solenoidal detector for the SSC. Most of our group are now part of the Solenoidal Detector Collaboration (SDC), so the work has evolved into developing a tracking system conceptual design for the SDC detector. The design discussed in this report uses straw tube drift chambers for the central tracking region. Because of the high rates in the SSC environment, a small cell design is needed for wire chambers in the central region. Straw tubes as small cells offer many advantages because the sense wire is enclosed in a continuous cathode, and the wire tension due to the sense wire only can be supported without a massive structure. The straw tubes are grouped together to form superlayers in order to provide local track segments. The superlayers are composed of modules consisting of about two hundred straw tubes enclosed in a carbon fiber composite shell. Straw tubes have been used in previous experiments for small vertex drift chambers. However, they have never before been used for a large tracking system

  7. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Fujimoto, T.; Ichikawa, H.; Akisue, T.; Fujita, I.; Kishimoto, K.; Hara, H.; Imabori, M.; Kawamitsu, H.; Sharma, P.; Brown, S.C.; Moudgil, B.M.; Fujii, M.; Yamamoto, T.; Kurosaka, M.; Fukumori, Y.

    2009-01-01

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  8. Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods.

    Science.gov (United States)

    Bucci, Monica; Mandelli, Maria Luisa; Berman, Jeffrey I; Amirbekian, Bagrat; Nguyen, Christopher; Berger, Mitchel S; Henry, Roland G

    2013-01-01

    Diffusion MRI tractography has been increasingly used to delineate white matter pathways in vivo for which the leading clinical application is presurgical mapping of eloquent regions. However, there is rare opportunity to quantify the accuracy or sensitivity of these approaches to delineate white matter fiber pathways in vivo due to the lack of a gold standard. Intraoperative electrical stimulation (IES) provides a gold standard for the location and existence of functional motor pathways that can be used to determine the accuracy and sensitivity of fiber tracking algorithms. In this study we used intraoperative stimulation from brain tumor patients as a gold standard to estimate the sensitivity and accuracy of diffusion tensor MRI (DTI) and q-ball models of diffusion with deterministic and probabilistic fiber tracking algorithms for delineation of motor pathways. We used preoperative high angular resolution diffusion MRI (HARDI) data (55 directions, b = 2000 s/mm(2)) acquired in a clinically feasible time frame from 12 patients who underwent a craniotomy for resection of a cerebral glioma. The corticospinal fiber tracts were delineated with DTI and q-ball models using deterministic and probabilistic algorithms. We used cortical and white matter IES sites as a gold standard for the presence and location of functional motor pathways. Sensitivity was defined as the true positive rate of delineating fiber pathways based on cortical IES stimulation sites. For accuracy and precision of the course of the fiber tracts, we measured the distance between the subcortical stimulation sites and the tractography result. Positive predictive rate of the delineated tracts was assessed by comparison of subcortical IES motor function (upper extremity, lower extremity, face) with the connection of the tractography pathway in the motor cortex. We obtained 21 cortical and 8 subcortical IES sites from intraoperative mapping of motor pathways. Probabilistic q-ball had the best

  9. An algorithm to automate yeast segmentation and tracking.

    Directory of Open Access Journals (Sweden)

    Andreas Doncic

    Full Text Available Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation.

  10. Observation of the CSF pulsatile flow in the aqueduct using cine MRI with presaturation bolus tracking, 3

    International Nuclear Information System (INIS)

    Nakajima, Satoshi

    1992-01-01

    The to-and-fro motion patterns of the CSF flow in the aqueduct in ten normal adults, ten patients with secondary normal-pressure hydrocephalus (NPH), and fourteen patients with idiopathic ventriculomegaly were analyzed using cine MRI with presaturation bolus tracking. The to-and-fro motion patterns of the CSF flow in the aqueduct were thus classified into four types according to their maximum velocity and the relative time duration of their flow in the rostral and caudal directions. The correlation between the clinical symptoms, the CT findings, the RI-cisternography findings, the results of the ICP monitorings, and the CSF pulsatile-flow patterns were then analyzed. In secondary NPH disclosing frequent B waves on ICP monitoring, the maximum velocity of the CSF flow in the aqueduct was over 15 mm/sec, and the duration of the CSF flow was longer in the caudal direction than in the rostral direction. Furthermore, the faster the maximum velocity of the CSF flow, the larger the ventricular size on CT and the more severe the CSF malabsorption on cisternography. In idiopathic ventriculomegaly, only two cases demonstrated the same CSF flow pattern as was shown in secondary NPH; the other cases demonstrated other CSF flow patterns, which were considered to indicate hydrocephalus ex vacuo or arrested hydrocephalus. The CSF pulsatile-flow pattern was assumed to change according to the degree of the CSF circulatory disorder, its compensatory process, and the plasticity of the brain. The investigation of the CSF pulsatile flow gives important information for the evaluation of various hydrocephalic conditions. (author)

  11. MO-B-201-03: MRI-Guided Tracking and Gating

    Energy Technology Data Exchange (ETDEWEB)

    Green, O. [Washington University School of Medicine (United States)

    2016-06-15

    The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanics of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and

  12. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    Science.gov (United States)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  13. Functional Proton MRI in Emphysematous Rats.

    Science.gov (United States)

    Bianchi, Andrea; Tibiletti, Marta; Kjørstad, Åsmund; Birk, Gerald; Schad, Lothar R; Stierstorfer, Birgit; Stiller, Detlef; Rasche, Volker

    2015-12-01

    the PPE-treated lungs, both compared to the nontreated lungs and to the baseline values. Moreover, a good agreement between MRI-measured MSE, CT, and histology data quantitatively supports the presence of ventilation deficit in emphysematous lungs.In this work, we have demonstrated the feasibility of ventilation-related maps from non-contrast-enhanced H lung MRI, which were capable of tracking changes in lung function over time in emphysematous rats.

  14. Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis.

    Science.gov (United States)

    Zhang, Wei; Peng, Peng; Kuang, Yun; Yang, Jiaxin; Cao, Dongyan; You, Yan; Shen, Keng

    2016-03-01

    Cellular exosomes are involved in many disease processes and have the potential to be used for diagnosis and treatment. In this study, we compared the characteristics of exosomes derived from human ovarian epithelial cells (HOSEPiC) and three epithelial ovarian cancer cell lines (OVCAR3, IGROV1, and ES-2) to investigate the differences between exosomes originating from normal and malignant cells. Two established colloid-chemical methodologies, electron microscopy (EM) and dynamic light scattering (DLS), and a relatively new method, nanoparticle tracking analysis (NTA), were used to measure the size and size distribution of exosomes. The concentration and epithelial cellular adhesion molecule (EpCAM) expression of exosomes were measured by NTA. Quantum dots were conjugated with anti-EpCAM to label exosomes, and the labeled exosomes were detected by NTA in fluorescent mode. The normal-cell-derived exosomes were significantly larger than those derived from malignant cells, and exosomes were successfully labeled using anti-EpCAM-conjugated quantum dots. Exosomes from different cell lines may vary in size, and exosomes might be considered as potential diagnosis biomarkers. NTA can be considered a useful, efficient, and objective method for the study of different exosomes and their unique properties in ovarian cancer.

  15. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Jin; Song, Eun Hye; Kim, Seol Hwa; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Sang Hyun [Korean Minjok Leadership Academy, Heongsung (Korea, Republic of)

    2011-01-15

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  16. MRI and clinical features of Langerhans cell histiocytosis (LCH) in the pelvis and extremities: can LCH really look like anything?

    International Nuclear Information System (INIS)

    Samet, Jonathan; Weinstein, Joanna; Fayad, Laura M.

    2016-01-01

    To assess clinical and MRI features of Langerhans cell histiocytosis in the pelvis and extremities. The MRI and clinical features of 21 pathologically proven cases of LCH involving the pelvis and extremities were studied. Multiple characteristics of the lesions were evaluated (location, size, T1/ T2/post-contrast features, perilesional bone and soft tissue signal, endosteal scalloping, periosteal reaction, soft tissue mass, pathologic fracture). Pre-biopsy radiologic diagnoses were collected from the original clinical reports. Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), temperature, and white blood cell count (WBC) were collected at the time of diagnosis when available. The locations of the LCH lesions included five humerus, four femur, five ilium, one tibia, one clavicle, and three scapula. Lesional size ranged from 1.8 to 7.1 cm, with a mean of 3.6 cm. All lesions demonstrated perilesional bone marrow edema, periosteal reaction, endosteal scalloping, and post-contrast enhancement. An associated soft tissue mass was present in 15/21 (71.4 %). Clinically, the WBC, ESR, and CRP were elevated in 2/14 (14 %), 8/12 (67 %), and 4/10 (40 %) of cases, respectively. Fever was documented in 1/15 (7 %) patients and pain was reported in 15/15 (100 %). The clinical and radiologic features of LCH in the pelvis and extremities overlap with infection and malignancy, but LCH must be considered in the differential diagnosis, as it routinely presents with aggressive MRI features, including endosteal scalloping, periosteal reaction, perilesional edema, and a soft tissue mass. Furthermore, an unknown skeletal lesion at presentation without aggressive MRI features is unlikely to represent LCH. (orig.)

  17. MRI and clinical features of Langerhans cell histiocytosis (LCH) in the pelvis and extremities: can LCH really look like anything?

    Energy Technology Data Exchange (ETDEWEB)

    Samet, Jonathan [Northwestern University Feinberg School of Medicine, Department of Medical Imaging, Ann and Robert H. Lurie Children' s Hospital of Chicago, Chicago, IL (United States); Weinstein, Joanna [Northwestern University Feinberg School of Medicine, Departments of Pediatrics, Division of Hematology/Oncology/Stem Cell Transplant, Ann and Robert H. Lurie Children' s Hospital of Chicago, Chicago, IL (United States); Fayad, Laura M. [The Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2016-05-15

    To assess clinical and MRI features of Langerhans cell histiocytosis in the pelvis and extremities. The MRI and clinical features of 21 pathologically proven cases of LCH involving the pelvis and extremities were studied. Multiple characteristics of the lesions were evaluated (location, size, T1/ T2/post-contrast features, perilesional bone and soft tissue signal, endosteal scalloping, periosteal reaction, soft tissue mass, pathologic fracture). Pre-biopsy radiologic diagnoses were collected from the original clinical reports. Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), temperature, and white blood cell count (WBC) were collected at the time of diagnosis when available. The locations of the LCH lesions included five humerus, four femur, five ilium, one tibia, one clavicle, and three scapula. Lesional size ranged from 1.8 to 7.1 cm, with a mean of 3.6 cm. All lesions demonstrated perilesional bone marrow edema, periosteal reaction, endosteal scalloping, and post-contrast enhancement. An associated soft tissue mass was present in 15/21 (71.4 %). Clinically, the WBC, ESR, and CRP were elevated in 2/14 (14 %), 8/12 (67 %), and 4/10 (40 %) of cases, respectively. Fever was documented in 1/15 (7 %) patients and pain was reported in 15/15 (100 %). The clinical and radiologic features of LCH in the pelvis and extremities overlap with infection and malignancy, but LCH must be considered in the differential diagnosis, as it routinely presents with aggressive MRI features, including endosteal scalloping, periosteal reaction, perilesional edema, and a soft tissue mass. Furthermore, an unknown skeletal lesion at presentation without aggressive MRI features is unlikely to represent LCH. (orig.)

  18. Level tracking in detailed reactor simulations

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, B.; Mahaffy, J.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-09-01

    We introduce a useful test problem for judging the performance of reactor safety codes in situations where moving two-phase mixture levels are present. The test problem tracks a two-phase liquid level as it rises and then falls back to its original position. Pure air exists above the level, and a low void air-water mixture is below the level. Conditions are subcooled and isothermal to remove complications resulting from failures of interfacial heat transfer packages to properly account for the level. Comparisons are made between the performance of current versions of CATHARE, RELAP5, TRAC-BF1, and TRAC-PF1. These system codes are based on finite-difference methods with a fixed, Eulerian staggered grid in space. When a partially filled cell with a mixture level discontinuity becomes the donor cell, the sharp changes in fluid properties across the interface results in numerical oscillations of various terms. Furthermore, the cell-to-cell convection of mass, momentum and energy are inaccurately predicted nearby a mixture level. To adequately model moving mixture levels, an efficient discontinuity tracking method for the finite-difference Eulerian approximations is described. This model had been implemented in the TRAC-BWR code for the two-phase mixture level tracking since the TRAC-BD1 Version (released April 1984). The result of the test problem run by the current version of TRAC-BF1/MOD1 with the mixture level tracking model shows some peculiar behavior of the variables such as velocities, pressures and interfacial terms. A systematic approach to improving performance of the tracking method is described. Implementing this approach in TRAC-BF1/MOD1 has shown a major improvement in the results.

  19. Pathological findings correlated with MRI in HIV infection

    International Nuclear Information System (INIS)

    Hawkins, C.P.; McLaughlin, J.E.; Kendall, B.E.; McDonald W.I.

    1993-01-01

    MRI forms an important part of the assessment of patients with HIV-related disease presenting with cerebral symptoms. Eleven formalin-fixed brains were studied at 0.5 T using T2- and T1-weighted sequences. In two cases of progressive multifocal leucoencephalopathy and one case each of toxoplasmosis and lymphoma, the extent of white matter abnormality seen on MRI corresponded broadly with that on pathological examination. In general, however, histological changes were more frequent than lesions on MRI. Cases in wich abnormalities were not seen with standard MRI included those with multiple tuberculous granulomata, multinucleate giant cells, microglial nodules, perivascular cuffing and cytomegalovirus inclusions. A common finding on MRI was punctate or patchy high signal in the basal ganglia on T2-weighted scans, seen in six cases. Corresponding histological changes included calcification of vessels with widened perivascular spaces, and mineralised neurones. (orig.)

  20. Heart MRI

    Science.gov (United States)

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  1. Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition.

    Directory of Open Access Journals (Sweden)

    Kristen N Pollizzi

    Full Text Available mTOR is a central integrator of metabolic and immunological stimuli, dictating immune cell activation, proliferation and differentiation. In this study, we demonstrate that within a clonal population of activated T cells, there exist both mTORhi and mTORlo cells exhibiting highly divergent metabolic and immunologic functions. By taking advantage of the role of mTOR activation in controlling cellular size, we demonstrate that upon antigen recognition, mTORhi CD4+ T cells are destined to become highly glycolytic effector cells. Conversely, mTORlo T cells preferentially develop into long-lived cells that express high levels of Bcl-2, CD25, and CD62L. Furthermore, mTORlo T cells have a greater propensity to differentiate into suppressive Foxp3+ T regulatory cells, and this paradigm was also observed in human CD4+ T cells. Overall, these studies provide the opportunity to track the development of effector and memory T cells from naïve precursors, as well as facilitate the interrogation of immunologic and metabolic programs that inform these fates.

  2. MRI feedback temperature control for focused ultrasound surgery

    International Nuclear Information System (INIS)

    Vanne, A; Hynynen, K

    2003-01-01

    A temperature feedback controller routine using a physical model for temperature evolution was developed for use with focused ultrasound surgery. The algorithm for the controller was a multi-input, single-output linear quadratic regulator (LQR) derived from Pennes' bioheat transfer equation. The controller was tested with simulated temperature data that had the same characteristics as those obtained with magnetic resonance imaging (MRI). The output of the controller was the appropriate power level to be used by the transducer. Tissue parameters estimated prior to the simulated treatments were used to determine the controller parameters. The controller performance was simulated in three dimensions with varying system parameters, and sufficient temperature tracking was achieved. The worst-case overshoot was 7 deg. C and the steady-state error was 5 deg. C. The simulated behaviour of the controller suggests satisfactory performance and that the controller may be useful in controlling the power output during MRI-monitored ultrasound surgery

  3. Locoregional tumour evaluation of squamous cell carcinoma in the head and neck area: a comparison between MRI, PET/CT and integrated PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Schaarschmidt, Benedikt Michael [University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Duesseldorf (Germany); University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Heusch, Philipp; Buchbender, Christian; Antoch, Gerald [University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Duesseldorf (Germany); Ruhlmann, Marcus; Ruhlmann, Verena [University Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Bergmann, Christoph [University Hospital Essen, Department of Otorhinolaryngology and Head and Neck Surgery, Essen (Germany); Schlamann, Marc [University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Hospital Giessen, Department of Neuroradiology, Marburg (Germany); Forsting, Michael; Wetter, Axel [University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2016-01-15

    To evaluate the accuracy of integrated {sup 18}F-FDG PET/MR imaging for locoregional tumour evaluation compared to {sup 18}F-FDG PET/CT and MR imaging in initial tumour and recurrence diagnosis in histopathologically confirmed head and neck squamous cell carcinoma (HNSCC). {sup 18}F-FDG PET/CT and integrated {sup 18}F-FDG PET/MR imaging were performed for initial tumour staging or recurrence diagnosis in 25 patients with HNSCC. MR, fused {sup 18}F-FDG PET/CT and fused {sup 18}F-FDG PET/MR images were analysed by two independent readers in separate sessions in random order. In initial tumour staging, T and N staging was performed while individual lesions were analysed in patients with suspected cancer recurrence. In T and N staging, histopathological results after tumour resection served as the reference standard while histopathological sampling as well as cross-sectional and clinical follow-up were accepted in cancer recurrence diagnosis. The diagnostic accuracy of each modality was calculated separately for T and N staging as well as for tumour recurrence, and compared using McNemar's test. Values of p <0.017 were considered statistically significant after Bonferroni correction. In 12 patients undergoing {sup 18}F-FDG PET/CT and {sup 18}F-FDG PET/MR for initial tumour staging, T staging was accurate in 50 % with MRI, in 59 % with PET/CT and in 75 % with PET/MR while N staging was accurate in 75 % with MRI, in 77 % with PET/CT and in 71 % with PET/MR in relation to the reference standard. No significant differences were observed in T and N staging among the three modalities (p > 0.017). In 13 patients undergoing hybrid imaging for cancer recurrence diagnosis, diagnostic accuracy was 57 % with MRI and in 72 % with {sup 18}F-FDG PET/CT and {sup 18}F-FDG PET/MR, respectively. Again, no significant differences were found among the three modalities (p > 0.017). In this initial study, no significant differences were found among {sup 18}F-FDG PET/MR, {sup 18}F

  4. MRI evaluation of frequent complications after intra-arterial transplantation of mesenchymal stem cells in rats

    Science.gov (United States)

    Namestnikova, D.; Gubskiy, I.; Gabashvili, A.; Sukhinich, K.; Melnikov, P.; Vishnevskiy, D.; Soloveva, A.; Vitushev, E.; Chekhonin, V.; Gubsky, L.; Yarygin, K.

    2017-08-01

    Intra-arterial transplantation of mesenchymal stem cells (MSCs) is an effective delivery route for treatment of ischemic brain injury. Despite significant therapeutic effects and targeted cells delivery to the brain infraction, serious adverse events such as cerebral embolism have been reported and may restrict potential clinical applications of this method. In current study, we evaluate potential complications of intra-arterial MSCs administration and determine the optimum parameters for cell transplantation. We injected SPIO-labeled human MSCs via internal carotid artery with different infusion parameters and cell dose in intact rats and in rats with the middle cerebral occlusion stroke model. Cerebrovascular complications and labeled cells were visualized in vivo using MRI. We have shown that the incidence of cerebral embolic events depends on such parameters as cell dose, infusion rate and maintenance of blood flow in the internal carotid artery (ICA). Optimal parameters were considered to be 5×105 hMSC in 1 ml of PBS by syringe pump with velocity 100 μ/min and maintenance of blood flow in the ICA. Obtained data should be considered before planning experiments in rats and, potentially, can help in planning clinical trials in stroke patients.

  5. Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene.

    Science.gov (United States)

    Casucci, Monica; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Porcellini, Simona; Stornaiuolo, Anna; Ciceri, Fabio; Traversari, Catia; Bordignon, Claudio; Bonini, Chiara; Bondanza, Attilio

    2018-01-01

    Chimeric antigen receptor (CAR)-T cell immunotherapy is at the forefront of innovative cancer therapeutics. However, lack of standardization of cellular products within the same clinical trial and lack of harmonization between different trials have hindered the clear identification of efficacy and safety determinants that should be unveiled in order to advance the field. With the aim of facilitating the isolation and in vivo tracking of CAR-T cells, we here propose the inclusion within the CAR molecule of a novel extracellular spacer based on the low-affinity nerve-growth-factor receptor (NGFR). We screened four different spacer designs using as target antigen the CD44 isoform variant 6 (CD44v6). We successfully generated NGFR-spaced CD44v6 CAR-T cells that could be efficiently enriched with clinical-grade immuno-magnetic beads without negative consequences on subsequent expansion, immuno-phenotype, in vitro antitumor reactivity, and conditional ablation when co-expressing a suicide gene. Most importantly, these cells could be tracked with anti-NGFR monoclonal antibodies in NSG mice, where they expanded, persisted, and exerted potent antitumor effects against both high leukemia and myeloma burdens. Similar results were obtained with NGFR-enriched CAR-T cells specific for CD19 or CEA, suggesting the universality of this strategy. In conclusion, we have demonstrated that the incorporation of the NGFR marker gene within the CAR sequence allows for a single molecule to simultaneously work as a therapeutic and selection/tracking gene. Looking ahead, NGFR spacer enrichment might allow good manufacturing procedures-manufacturing of standardized CAR-T cell products with high therapeutic potential, which could be harmonized in different clinical trials and used in combination with a suicide gene for future application in the allogeneic setting.

  6. Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene

    Science.gov (United States)

    Casucci, Monica; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Porcellini, Simona; Stornaiuolo, Anna; Ciceri, Fabio; Traversari, Catia; Bordignon, Claudio; Bonini, Chiara; Bondanza, Attilio

    2018-01-01

    Chimeric antigen receptor (CAR)-T cell immunotherapy is at the forefront of innovative cancer therapeutics. However, lack of standardization of cellular products within the same clinical trial and lack of harmonization between different trials have hindered the clear identification of efficacy and safety determinants that should be unveiled in order to advance the field. With the aim of facilitating the isolation and in vivo tracking of CAR-T cells, we here propose the inclusion within the CAR molecule of a novel extracellular spacer based on the low-affinity nerve-growth-factor receptor (NGFR). We screened four different spacer designs using as target antigen the CD44 isoform variant 6 (CD44v6). We successfully generated NGFR-spaced CD44v6 CAR-T cells that could be efficiently enriched with clinical-grade immuno-magnetic beads without negative consequences on subsequent expansion, immuno-phenotype, in vitro antitumor reactivity, and conditional ablation when co-expressing a suicide gene. Most importantly, these cells could be tracked with anti-NGFR monoclonal antibodies in NSG mice, where they expanded, persisted, and exerted potent antitumor effects against both high leukemia and myeloma burdens. Similar results were obtained with NGFR-enriched CAR-T cells specific for CD19 or CEA, suggesting the universality of this strategy. In conclusion, we have demonstrated that the incorporation of the NGFR marker gene within the CAR sequence allows for a single molecule to simultaneously work as a therapeutic and selection/tracking gene. Looking ahead, NGFR spacer enrichment might allow good manufacturing procedures-manufacturing of standardized CAR-T cell products with high therapeutic potential, which could be harmonized in different clinical trials and used in combination with a suicide gene for future application in the allogeneic setting. PMID:29619024

  7. Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene

    Directory of Open Access Journals (Sweden)

    Monica Casucci

    2018-03-01

    Full Text Available Chimeric antigen receptor (CAR-T cell immunotherapy is at the forefront of innovative cancer therapeutics. However, lack of standardization of cellular products within the same clinical trial and lack of harmonization between different trials have hindered the clear identification of efficacy and safety determinants that should be unveiled in order to advance the field. With the aim of facilitating the isolation and in vivo tracking of CAR-T cells, we here propose the inclusion within the CAR molecule of a novel extracellular spacer based on the low-affinity nerve-growth-factor receptor (NGFR. We screened four different spacer designs using as target antigen the CD44 isoform variant 6 (CD44v6. We successfully generated NGFR-spaced CD44v6 CAR-T cells that could be efficiently enriched with clinical-grade immuno-magnetic beads without negative consequences on subsequent expansion, immuno-phenotype, in vitro antitumor reactivity, and conditional ablation when co-expressing a suicide gene. Most importantly, these cells could be tracked with anti-NGFR monoclonal antibodies in NSG mice, where they expanded, persisted, and exerted potent antitumor effects against both high leukemia and myeloma burdens. Similar results were obtained with NGFR-enriched CAR-T cells specific for CD19 or CEA, suggesting the universality of this strategy. In conclusion, we have demonstrated that the incorporation of the NGFR marker gene within the CAR sequence allows for a single molecule to simultaneously work as a therapeutic and selection/tracking gene. Looking ahead, NGFR spacer enrichment might allow good manufacturing procedures-manufacturing of standardized CAR-T cell products with high therapeutic potential, which could be harmonized in different clinical trials and used in combination with a suicide gene for future application in the allogeneic setting.

  8. Assessment of re-distribution and efficacy of stem cell transplantation in different heart status after acute myocardial infarction by MRI: an experimental study

    International Nuclear Information System (INIS)

    Lu Minjie; Zhao Shihua; Song Peng

    2011-01-01

    area (MI) before transplantation for group 1-4 were: (6.5±2.1), (6.4±1.9), (6.5±2.5) and (6.4±2.6) cm 2 , and after transplantation for group 1-4 were: (6.4±2.3), (6.2±2.6), (6.3± 2.5) and (6.4±2.8) cm 2 . There were no statistical differences before and after transplantation in these 4 groups [P values of before and after transplantation for LVEDV, LVESV, LVEF, MI were > 0.05 (F= 0.277, 0.066, 0.066, 0.003); and > 0.05 (F=1.137, 0.182, 0.021, 0.008), respectively]. The T 2 value of the infracted myocardium in group 1 decreased more obviously than that in group 2 [(-22.3± 2.2) vs (-17.0±0.8) ms, t=-5.489, P 2 value of the spleen decreased more significantly in group 2 than that in group 1 [(-7.7±0.7) vs (-13.3±1.1) ms, t=9.055, P 2 values of the liver and kidney were no significant differences in group 1 and 2 (liver, / = -0.532, P>0.05 and kidney, t=-0.113, P>0.05). The results of RT-PCR in group 1 and 2 showed significant differences in heart [(150±62) vs (72±4) U/L, P<0.05, t=3.109], spleen [(131±1) vs (233±17) U/L, P<0.01, t=-13.286] and liver [(17±1) vs (9±5) U/L, P<0.01, t= 3.492]. Pathological examination demonstrated that the transplanted stem cells were positive for Prussian blue staining, which had a good correlation with MRI results. Conclusion: MRI can serve as a convenient and efficient imaging method to track the migration of stem cells with SPIO labeled in early stage and evaluate its early re-distribution in vivo. Injection of bone marrow mesenchymal stem cells in the arresting heart could favor retaining more cells in the myocardium. (authors)

  9. Localized Castleman's disease: CT and MRI findings

    International Nuclear Information System (INIS)

    Chen Zuhua; Yang Guangzhao

    2008-01-01

    Objective: To study the CT and MRI findings of localized Castleman's disease (LCD). Methods: The CT (n=7) and MRI (n=2) appearance of LCD (n=7) confirmed by pathology and operation were retrospectively analyzed. Results Hyaline-vascular type(n=6) and plasma cell type (n=1) were confirmed by pathology in LCD (n=7). They were located in middle mediastinum (n=2), hilum pulmonis (n=l), posterior mediastinum (n=3), retro-peritoneum (n=1). Hyaline-vascular type focuses in CT scanning were manifested as round shape soft tissue masses, with homogeneous density, integrity envelope, distinct margin, and chaperonage arborizing and spot calcification. Marked persistent enhancement was apparent on contrast CT. MRI findings of hyaline-vascular type (n=2) was slightly isointense or hyperintense on T 1 WI, homogeneous hyperintense on T 2 WI, similar enhancement with CT after contrast. Plasma cell type focus were unhomogeneous density with abnormity necrosis, media and unhomogeneous enhancement after contrast. Conclusion: Marked persistent enhancement of LCD would be helpful to diagnosis and differential diagnosis in Castleman's disease. (authors)

  10. Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, R.; Hermanutz-Klein, U.; Northoff, H. [Universitaetsklinikum Tuebingen (Germany). Inst. fuer Klinische und Experimentelle Transfusionsmedizin; Wiskirchen, J.; Kehlbach, R.; Pintaske, J. [Universitaetsklinikum Tuebingen (Germany). Abt. fuer Radiologische Diagnostik; Guo, K.; Neumann, B.; Voth, V.; Walker, T.; Scheule, A.M.; Greiner, T.O.; Ziemer, G.; Wendel, H.P. [Universitaetsklinikum Tuebingen (Germany). Abt. fuer Thorax-, Herz- und Gefaesschirurgie; Claussen, C.D. [Universitaetsklinikum Tuebingen (Germany). Radiologische Universitaetsklinik

    2007-10-15

    Purpose: Mesenchymal stem cells (MSC) seem to be a promising cell source for cellular cardiomyoplasty. We recently developed a new aptamer-based specific selection of MSC to provide ''ready to transplant'' cells directly after isolation. We evaluated MRI tracking of newly isolated and freshly transplanted MSC in the heart using one short ex vivo selection step combining specific aptamer-based isolation and labeling of the cells. Materials and Methods: Bone marrow (BM) was collected from healthy pigs. The animals were euthanized and the heart was placed in a perfusion model. During cold ischemia, immunomagnetic isolation of MSC from the BM by MSC-specific aptamers labeled with Dynabeads {sup registered} was performed within 2 h. For histological identification the cells were additionally stained with PKH26. Approx. 3 x 10{sup 6} of the freshly aptamer-isolated cells were injected into the ramus interventricularis anterior (RIVA) and 5 x 10{sup 5} cells were injected directly into myocardial tissue after damaging the respective area by freezing (cryo-scar). 3 x 10{sup 6} of the aptamer-isolated cells were kept for further characterization (FACS and differentiation assays). 20 h after cell transplantation, MRI of the heart using a clinical 3.0 Tesla whole body scanner (Magnetom Trio, Siemens, Germany) was performed followed by histological examinations. Results: The average yield of sorted cells from 120 ml BM was 7 x 10{sup 6} cells. The cells were cultured and showed MSC-like properties. MRI showed reproducible artifacts within the RIVA-perfusion area and the cryo-scar with surprisingly excellent quality. The histological examination of the biopsies showed PKH26-positive cells within the areas which were positive in the MRI in contrast to the control biopsies. Conclusion: Immunomagnetic separation of MSC by specific aptamers linked to magnetic particles is feasible, effective and combines a specific separation and labeling technique to a &apos

  11. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.

    Science.gov (United States)

    Klein, Johannes; Leupold, Stefan; Biegler, Ilona; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2012-09-01

    Time-lapse imaging in combination with fluorescence microscopy techniques enable the investigation of gene regulatory circuits and uncovered phenomena like culture heterogeneity. In this context, computational image processing for the analysis of single cell behaviour plays an increasing role in systems biology and mathematical modelling approaches. Consequently, we developed a software package with graphical user interface for the analysis of single bacterial cell behaviour. A new software called TLM-Tracker allows for the flexible and user-friendly interpretation for the segmentation, tracking and lineage analysis of microbial cells in time-lapse movies. The software package, including manual, tutorial video and examples, is available as Matlab code or executable binaries at http://www.tlmtracker.tu-bs.de.

  12. Interpolation of vector fields from human cardiac DT-MRI

    International Nuclear Information System (INIS)

    Yang, F; Zhu, Y M; Rapacchi, S; Robini, M; Croisille, P; Luo, J H

    2011-01-01

    There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.

  13. Intrasplenic masses of ``preserved`` functioning splenic tissue in sickle cell disease: correlation of imaging findings (CT, ultrasound, MRI, and nuclear scintigraphy)

    Energy Technology Data Exchange (ETDEWEB)

    Levin, T.L. [Department of Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital of New York, 3959 Broadway, BHN 3-318, New York, NY 10032 (United States); Berdon, W.E. [Department of Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital of New York, 3959 Broadway, BHN 3-318, New York, NY 10032 (United States); Haller, J.O. [Department of Radiology, SUNY Downstate Medical Center, Brooklyn, New York (United States); Ruzal-Shapiro, C. [Department of Radiology, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital of New York, 3959 Broadway, BHN 3-318, New York, NY 10032 (United States); Hurlet-Jenson, A. [Department of Pediatrics, Columbia-Presbyterian Medical Center, Babies and Children`s Hospital of New York, New York (United States)

    1996-09-01

    Purpose. We studied six patients with sickle cell disease (SSD), five homozygous for sickle cell anemia and one with sickle beta-thalassemia, in whom rounded intrasplenic masses proved to be preserved functioning splenic tissue. Materials and methods. Available images including computed tomography, ultrasonography, bone scans (Tc-99m MDP), liver spleen scans (Tc-99m sulfur colloid), and MRI were evaluated. Results. The masses were low density on CT (in an otherwise calcified spleen), hypoechoic relative to the echogenic spleen on US, and had the imaging characteristics of normal spleen on MRI. They failed to accumulate Tc-99m MDP but did demonstrate uptake of Tc-99m sulfur colloid. Conclusion. In a patient with SSD and intrasplenic masses, proper correlation of multiple imaging modalities will establish the diagnosis of functioning splenic tissue and avoid mistaken diagnosis of splenic abscess or infarction. (orig.). With 2 figs., 1 tab.

  14. Intrasplenic masses of ''preserved'' functioning splenic tissue in sickle cell disease: correlation of imaging findings (CT, ultrasound, MRI, and nuclear scintigraphy)

    International Nuclear Information System (INIS)

    Levin, T.L.; Berdon, W.E.; Haller, J.O.; Ruzal-Shapiro, C.; Hurlet-Jenson, A.

    1996-01-01

    Purpose. We studied six patients with sickle cell disease (SSD), five homozygous for sickle cell anemia and one with sickle beta-thalassemia, in whom rounded intrasplenic masses proved to be preserved functioning splenic tissue. Materials and methods. Available images including computed tomography, ultrasonography, bone scans (Tc-99m MDP), liver spleen scans (Tc-99m sulfur colloid), and MRI were evaluated. Results. The masses were low density on CT (in an otherwise calcified spleen), hypoechoic relative to the echogenic spleen on US, and had the imaging characteristics of normal spleen on MRI. They failed to accumulate Tc-99m MDP but did demonstrate uptake of Tc-99m sulfur colloid. Conclusion. In a patient with SSD and intrasplenic masses, proper correlation of multiple imaging modalities will establish the diagnosis of functioning splenic tissue and avoid mistaken diagnosis of splenic abscess or infarction. (orig.). With 2 figs., 1 tab

  15. Theranostic Niosomes for Efficient siRNA/microRNA Delivery and Activatable Near-Infrared Fluorescent Tracking of Stem Cells

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Shan, Gao; Song, Ping

    2018-01-01

    RNA interference (RNAi) mediated gene regulation in stem cells offers great potential in regenerative medicine. In this study, we developed a theranostic platform for efficient delivery of small RNAs (siRNA/miRNA) to human mesenchymal stem cells (hMSCs) to promote differentiation, and meanwhile...... OFF/ON activatable fluorescence upon cellular internalization, resulting in efficient NIR labeling and the capability to dynamically monitor stem cells in mice. In addition, iSPN/siRNA achieved simultaneous long-term cell tracking and in vivo gene silencing after implantation in mice. These results...

  16. Cellular Imaging at 1.5 T: Detecting Cells in Neuroinflammation using Active Labeling with Superparamagnetic Iron Oxide

    Directory of Open Access Journals (Sweden)

    Ayman J. Oweida

    2004-04-01

    Full Text Available The ability to visualize cell infiltration in experimental autoimmune encephalomyelitis (EAE, a well-known animal model for multiple sclerosis in humans, was investigated using a clinical 1.5-T magnetic resonance imaging (MRI scanner, a custom-built, high-strength gradient coil insert, a 3-D fast imaging employing steady-state acquisition (FIESTA imaging sequence and a superparamagnetic iron oxide (SPIO contrast agent. An “active labeling” approach was used with SPIO administered intravenously during inflammation in EAE. Our results show that small, discrete regions of signal void corresponding to iron accumulation in EAE brain can be detected using FIESTA at 1.5 T. This work provides early evidence that cellular abnormalities that are the basis of diseases can be probed using cellular MRI and supports our earlier work which indicates that tracking of iron-labeled cells will be possible using clinical MR scanners.

  17. Infrared fluorescent protein 1.4 genetic labeling tracks engrafted cardiac progenitor cells in mouse ischemic hearts.

    Directory of Open Access Journals (Sweden)

    Lijuan Chen

    Full Text Available Stem cell therapy has a potential for regenerating damaged myocardium. However, a key obstacle to cell therapy's success is the loss of engrafted cells due to apoptosis or necrosis in the ischemic myocardium. While many strategies have been developed to improve engrafted cell survival, tools to evaluate cell efficacy within the body are limited. Traditional genetic labeling tools, such as GFP-like fluorescent proteins (eGFP, DsRed, mCherry, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent these limitations, a near-infrared fluorescent mutant of the DrBphP bacteriophytochrome from Deinococcus radiodurans, IFP1.4, was developed for in vivo imaging, but it has yet to be used for in vivo stem/progenitor cell tracking. In this study, we incorporated IFP1.4 into mouse cardiac progenitor cells (CPCs by a lentiviral vector. Live IFP1.4-labeled CPCs were imaged by their near-infrared fluorescence (NIRF using an Odyssey scanner following overnight incubation with biliverdin. A significant linear correlation was observed between the amount of cells and NIRF signal intensity in in vitro studies. Lentiviral mediated IFP1.4 gene labeling is stable, and does not impact the apoptosis and cardiac differentiation of CPC. To assess efficacy of our model for engrafted cells in vivo, IFP1.4-labeled CPCs were intramyocardially injected into infarcted hearts. NIRF signals were collected at 1-day, 7-days, and 14-days post-injection using the Kodak in vivo multispectral imaging system. Strong NIRF signals from engrafted cells were imaged 1 day after injection. At 1 week after injection, 70% of the NIRF signal was lost when compared to the intensity of the day 1 signal. The data collected 2 weeks following transplantation showed an 88% decrease when compared to day 1. Our studies have shown that IFP1.4 gene labeling can be used to track the viability of transplanted cells in vivo.

  18. SU-E-J-168: Automated Pancreas Segmentation Based On Dynamic MRI

    International Nuclear Information System (INIS)

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-01-01

    Purpose: MRI guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment 2D upper abdominal dynamic MRI is developed for this purpose. Methods: 2D coronal dynamic MR images of 2 healthy volunteers were acquired with a frame rate of 5 f/second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centers of the ROIs were annotated. These center locations were propagated to the next dynamic MRI frame. 4-neighborhood region transfer growth was performed from these initial seeds for rough segmentation. To improve the results, gradient, edge and shape constraints were applied to the ROIs before final refinement using morphological operations. Results from hGReS and 3 other automated segmentation methods using edge detection, region growth and level set were compared to manual contouring. Results: For the first patient, hGReS resulted in the organ segmentation accuracy as measure by the Dices index (0.77) for the pancreas. The accuracy was slightly superior to the level set method (0.72), and both are significantly more accurate than the edge detection (0.53) and region growth methods (0.42). For the second healthy volunteer, hGReS reliably segmented the pancreatic region, achieving a Dices index of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively, comparing to manual segmentation. Motion trajectories derived from the hGReS, level set and manual segmentation methods showed high correlation to respiratory motion calculated using a lung blood vessel as the reference while the other two methods showed substantial motion tracking errors. hGReS was 10 times faster than level set. Conclusion: We have shown the feasibility of automated segmentation of the pancreas anatomy based on

  19. Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Dutoit, Julie C., E-mail: Julie.Dutoit@UGent.be; Vanderkerken, Matthias A., E-mail: Matthias.Vanderkerken@UGent.be; Verstraete, Koenraad L., E-mail: Koenraad.Verstraete@UGent.be

    2013-09-15

    Purpose: To evaluate the significance of dynamic contrast enhanced MRI (DCE-MRI) and whole body MRI (WB-MRI) in the diagnosis, prognosis and assessment of therapy for patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Materials and methods: The retrospective study includes 219 patients providing 463 WB-MRI and DCE-MRI investigations for the subgroups MGUS (n = 70), MM active disease (n = 126; this includes 70 patients with new diagnosis of MM, according to the International Staging System (ISS): 41.4% ISS stage I, 20.0% ISS stage II, 7.1% ISS stage III, 31.4% insufficient for staging; and 56 patients with ‘(re-)active disease’: 16.07% relapse, 32.14% progressive disease and 51.79% stable disease) and MM remission (n = 23; 60.87% complete remission, 17.39% very good partial remission and 21.74% partial remission). Investigations of patients with hereditary multiple exostoses (n = 5), neurofibromatosis (n = 7) and healthy persons (n = 9) were added as control subjects (n = 21). WB-MRI evaluation was done by evaluating thirteen skeletal regions, providing a ‘skeletal score’. DCE-MRI images of the spine, were analyzed with regions-of-interest and time-intensity-curves (TIC). Results: All TIC parameters can significantly differentiate between the predefined subgroups (p < 0.001). One hundred days after autologous stem cell transplantation a 75% decrease of the slope wash-in value (p < 0.001) can be seen. A cubic regression trend between ‘skeletal score’ and slope wash-in (adj.R{sup 2} = 0.412) could demonstrate a significant increase bone marrow perfusion if MM affects more than 10 skeletal regions (p < 0.001), associated with a poorer prognosis (p < 0.001). Conclusion: DCE-MRI evaluation of the spine is useful for diagnosis of MM, follow-up after stem cell transplantation and evaluation of disease activity. A combined evaluation with WB-MRI and DCE-MRI provides additional micro-vascular information on the

  20. Tracking of plus-ends reveals microtubule functional diversity in different cell types

    Science.gov (United States)

    Shaebani, M. Reza; Pasula, Aravind; Ott, Albrecht; Santen, Ludger

    2016-07-01

    Many cellular processes are tightly connected to the dynamics of microtubules (MTs). While in neuronal axons MTs mainly regulate intracellular trafficking, they participate in cytoskeleton reorganization in many other eukaryotic cells, enabling the cell to efficiently adapt to changes in the environment. We show that the functional differences of MTs in different cell types and regions is reflected in the dynamic properties of MT tips. Using plus-end tracking proteins EB1 to monitor growing MT plus-ends, we show that MT dynamics and life cycle in axons of human neurons significantly differ from that of fibroblast cells. The density of plus-ends, as well as the rescue and catastrophe frequencies increase while the growth rate decreases toward the fibroblast cell margin. This results in a rather stable filamentous network structure and maintains the connection between nucleus and membrane. In contrast, plus-ends are uniformly distributed along the axons and exhibit diverse polymerization run times and spatially homogeneous rescue and catastrophe frequencies, leading to MT segments of various lengths. The probability distributions of the excursion length of polymerization and the MT length both follow nearly exponential tails, in agreement with the analytical predictions of a two-state model of MT dynamics.

  1. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tze Min Wah

    2018-01-01

    Full Text Available Aim: To investigate if the early treatment effects of radiofrequency ablation (RFA on renal cell carcinoma (RCC can be detected with dynamic contrast enhanced (DCE-MRI and to correlate RCC perfusion with RFA treatment time. Materials and methods: 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. Results: DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm. Perfusion of the RCCs decreased significantly (p < 0.0001 from a mean of 203 (±80 mL/min/100 mL before RFA to 8.1 (±3.1 mL/min/100 mL after RFA with low intra-observer variability (r ≥ 0.99, p < 0.0001. There was an excellent correlation (r = 0.95 between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. Conclusion: DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  2. MEG and fMRI fusion for nonlinear estimation of neural and BOLD signal changes

    Directory of Open Access Journals (Sweden)

    Sergey M Plis

    2010-11-01

    Full Text Available The combined analysis of MEG/EEG and functional MRI measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the BOLD response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater SNR, that confirms the expectation arising from the nature of the experiment. The highly nonlinear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources.

  3. Hail statistic in Western Europe based on a hyrid cell-tracking algorithm combining radar signals with hailstone observations

    Science.gov (United States)

    Fluck, Elody

    2015-04-01

    Hail statistic in Western Europe based on a hybrid cell-tracking algorithm combining radar signals with hailstone observations Elody Fluck¹, Michael Kunz¹ , Peter Geissbühler², Stefan P. Ritz² With hail damage estimated over Billions of Euros for a single event (e.g., hailstorm Andreas on 27/28 July 2013), hail constitute one of the major atmospheric risks in various parts of Europe. The project HAMLET (Hail Model for Europe) in cooperation with the insurance company Tokio Millennium Re aims at estimating hail probability, hail hazard and, combined with vulnerability, hail risk for several European countries (Germany, Switzerland, France, Netherlands, Austria, Belgium and Luxembourg). Hail signals are obtained from radar reflectivity since this proxy is available with a high temporal and spatial resolution using several hail proxies, especially radar data. The focus in the first step is on Germany and France for the periods 2005- 2013 and 1999 - 2013, respectively. In the next step, the methods will be transferred and extended to other regions. A cell-tracking algorithm TRACE2D was adjusted and applied to two dimensional radar reflectivity data from different radars operated by European weather services such as German weather service (DWD) and French weather service (Météo-France). Strong convective cells are detected by considering 3 connected pixels over 45 dBZ (Reflectivity Cores RCs) in a radar scan. Afterwards, the algorithm tries to find the same RCs in the next 5 minute radar scan and, thus, track the RCs centers over time and space. Additional information about hailstone diameters provided by ESWD (European Severe Weather Database) is used to determine hail intensity of the detected hail swaths. Maximum hailstone diameters are interpolated along and close to the individual hail tracks giving an estimation of mean diameters for the detected hail swaths. Furthermore, a stochastic event set is created by randomizing the parameters obtained from the

  4. Usefulness of MRI-assisted metabolic volumetric parameters provided by simultaneous {sup 18}F-fluorocholine PET/MRI for primary prostate cancer characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-il [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Cheon, Gi Jeong [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Nuclear Medicine, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Paeng, Jin Chul [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Cho, Jeong Yeon [Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Chongno-gu, Seoul (Korea, Republic of); Kwak, Cheol [Seoul National University Hospital, Department of Urology, Seoul (Korea, Republic of); Kang, Keon Wook; Chung, June-Key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Seoul National University College of Medicine, Radiological Science Research Institute, Seoul (Korea, Republic of); Kim, Euishin Edmund [Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); University of California, Department of Radiological Sciences, Irvine, CA (United States); Lee, Dong Soo [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of)

    2015-07-15

    The aim of this study was to determine the usefulness of MRI-assisted positron emission tomography (PET) parameters provided by simultaneous {sup 18}F-fluorocholine (FCH) PET/MRI for characterization of primary prostate cancer. Thirty patients with localized prostate cancer (mean age 69.4 ± 6.7 years) confirmed by biopsy were prospectively enrolled for simultaneous PET/MRI imaging. The patients underwent {sup 18}F-FCH PET/MRI 1 week before undergoing total prostatectomy. Multiple parameters of diffusion-weighted MRI [minimum and mean apparent diffusion coefficient (ADC{sub min} and ADC{sub mean})], metabolic PET [maximum and mean standardized uptake value (SUV{sub max} and SUV{sub mean})], and metabolic volumetric PET [metabolic tumor volume (MTV) and uptake volume product (UVP)] were compared with laboratory, pathologic, and immunohistochemical (IHC) features of the prostate cancer specimen. PET parameters were divided into two categories as follows: volume of interest (VOI) of prostate by SUV cutoff 2.5 (SUV{sub max}, SUV{sub mean}, MTV{sub SUV}, and UVP{sub SUV}) and MRI-assisted VOI of prostate cancer (SUV{sub maxMRI}, SUV{sub meanMRI}, MTV{sub MRI}, and UVP{sub MRI}). The rates of prostate cancer-positive cases identified by MRI alone, {sup 18}F-FCH PET alone, and {sup 18}F-FCH PET/MRI were 83.3, 80.0, and 93.3 %, respectively. Among the multiple PET/MRI parameters, MTV{sub MRI} showed fair correlation with serum prostate-specific antigen (PSA; r = 0.442, p = 0.014) and highest correlation with tumor volume (r = 0.953, p < 0.001). UVP{sub MRI} showed highest correlation with serum PSA (r = 0.531, p = 0.003), good correlation with tumor volume (r = 0.908, p < 0.001), and it was significantly associated with Gleason score (p = 0.041). High MTV{sub MRI} and UVP{sub MRI} values were significant for perineural invasion, lymphatic invasion, extracapsular extension, seminal vesicle invasion, and positive B-cell lymphoma 2 (Bcl-2) expression (all p < 0

  5. Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies

    International Nuclear Information System (INIS)

    Weizman, Lior; Sira, Liat Ben; Joskowicz, Leo; Rubin, Daniel L.; Yeom, Kristen W.; Constantini, Shlomi; Shofty, Ben; Bashat, Dafna Ben

    2014-01-01

    Purpose: Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow growth rate and associated complex internal tumor components, such as heterogeneous enhancement, hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the volume of LGTs and the evolution of their internal components in longitudinal MRI scans. Methods: The authors' method utilizes a spatiotemporal evolution modeling of the tumor and its internal components. Tumor components gray level parameters are estimated from the follow-up scan itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively incorporates internal classification of the baseline scan in the time-series as prior data to segment and classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients, acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas and thalamic astrocytomas. For each scan, a “gold standard” was obtained manually by experienced radiologists. The method is evaluated versus the gold standard with three measures: gross total volume error, total surface distance, and reliability of tracking tumor components evolution. Results: Compared to the gold standard the authors' method exhibits a mean Dice similarity volumetric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability in tracking the evolution of the internal components, the method exhibits strong positive correlation with the gold standard. Conclusions: The authors' method provides accurate and repeatable delineation of the tumor and its internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal tumor components over time is novel and potentially will be useful to streamline and improve follow-up of brain tumors, with indolent growth and behavior

  6. Leiomyoma of the nipple diagnosed by MRI

    International Nuclear Information System (INIS)

    Cho, Hyung JI; Kim, Sung Hun; Kang, Bong Joo; Kim, Hanna; Song, Byung Joo; Lee, Ah Won

    2012-01-01

    Leiomyoma of the nipple is a rare, benign, non-epithelial tumor that is thought to arise from smooth muscle fibers in the subareolar tissue of the breast. We report an unusual case of leiomyoma of the nipple in a 32-year-old woman in whom the diagnosis was made by ultrasound-guided core needle biopsy. She came to our hospital complaining of a recently enlarged nipple with discharge and erosion in the region of the left nipple-areolar complex. This mass was evaluated by mammography, ultrasonography, and magnetic resonance imaging (MRI). To the best of our knowledge, this is the first case of a leiomyoma of the nipple examined by MRI. MRI showed an oval mass with circumscribed margins that appeared as an intermediate signal intensity on both T1- and T2-weighted images. A dynamic MRI study showed a rim-enhancing oval mass with delayed persistent enhancement. Ultrasound-guided core needle biopsy revealed spindle cell proliferation consistent with leiomyoma of the nipple

  7. 7.0 tesla MRI brain white matter atlas. 2. ed.

    International Nuclear Information System (INIS)

    Cho, Zang-Hee

    2015-01-01

    Depicts the visualization of brain white matter with the latest 7.0 T MRI and TDI techniques. Represents a useful addition to brain research and clinical settings, such as the Human Connectome Project. Contains a wealth of exquisitely detailed color images. The introduction of techniques that permit visualization of the human nervous system is one of the foremost advances in neuroscience and brain-related research. Among the most recent significant developments in this respect are ultra-high field MRI and the image post-processing technique known as track density imaging (TDI). It is these techniques (including super-resolution TDI) which represent the two major components of 7.0 Tesla MRI - Brain White Matter Atlas. This second edition of the atlas has been revised and updated to fully reflect current application of these technological advancements in order to visualize the nervous system and the brain with the finest resolution and sensitivity. Exquisitely detailed color images offer neuroscientists, neurologists, and neurosurgeons a superb resource that will be of value both for the purpose of research and for the treatment of common brain diseases such as Alzheimer's disease and multiple sclerosis.

  8. 7.0 tesla MRI brain white matter atlas. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Zang-Hee (ed.) [Gachon Univ., Incheon (Korea, Republic of). Neuroscience Research Institute

    2015-04-01

    Depicts the visualization of brain white matter with the latest 7.0 T MRI and TDI techniques. Represents a useful addition to brain research and clinical settings, such as the Human Connectome Project. Contains a wealth of exquisitely detailed color images. The introduction of techniques that permit visualization of the human nervous system is one of the foremost advances in neuroscience and brain-related research. Among the most recent significant developments in this respect are ultra-high field MRI and the image post-processing technique known as track density imaging (TDI). It is these techniques (including super-resolution TDI) which represent the two major components of 7.0 Tesla MRI - Brain White Matter Atlas. This second edition of the atlas has been revised and updated to fully reflect current application of these technological advancements in order to visualize the nervous system and the brain with the finest resolution and sensitivity. Exquisitely detailed color images offer neuroscientists, neurologists, and neurosurgeons a superb resource that will be of value both for the purpose of research and for the treatment of common brain diseases such as Alzheimer's disease and multiple sclerosis.

  9. Cerebrospinal fluid neurofilament tracks fMRI correlates of attention at the first attack of multiple sclerosis.

    Science.gov (United States)

    Tortorella, C; Direnzo, V; Taurisano, P; Romano, R; Ruggieri, M; Zoccolella, S; Mastrapasqua, M; Popolizio, T; Blasi, G; Bertolino, A; Trojano, M

    2015-04-01

    Identifying markers of cognitive dysfunction in multiple sclerosis (MS) is extremely challenging since it means supplying potential biomarkers for neuroprotective therapeutic strategies. The aim of this study is to investigate the relationship between fMRI correlates of attention performance and cerebrospinal fluid (CSF) neurofilament light chain (NFL) levels in patients with clinically isolated syndrome (CIS) suggestive of MS. Twenty-one untreated, cognitively preserved CIS patients underwent BOLD-fMRI while performing the Variable Attentional Control (VAC) task, a cognitive paradigm requiring increasing levels of attentional control processing. CSF NFL was assessed by ELISA technique. SPM8 random-effects models were used for statistical analyses of fMRI data (p<0.05 corrected). Repeated-measures ANOVA on imaging data showed an interaction between attentional control load and NFL levels in the right putamen. At the high level of attentional control demand CIS patients with "low NFL levels" showed greater activity in the putamen compared with subjects with "high NFL levels" (p=0.001). These results are independent of cognitive impairment index. Our findings suggest a relationship between CSF NFL levels and load-dependent failure of putaminal recruitment pattern during sustained attention in CIS and suggest a role of CSF NFL as a marker of subclinical abnormality of cognitive pathway recruitment in CIS. © The Author(s), 2014.

  10. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium.

    Science.gov (United States)

    Blocki, Anna; Beyer, Sebastian; Dewavrin, Jean-Yves; Goralczyk, Anna; Wang, Yingting; Peh, Priscilla; Ng, Michael; Moonshi, Shehzahdi S; Vuddagiri, Susmitha; Raghunath, Michael; Martinez, Eliana C; Bhakoo, Kishore K

    2015-06-01

    The limited efficacy of cardiac cell-based therapy is thought to be due to poor cell retention within the myocardium. Hence, there is an urgent need for biomaterials that aid in long-term cell retention. This study describes the development of injectable microcapsules for the delivery of mesenchymal stem cells (MSCs) into the infarcted cardiac wall. These microcapsules comprise of low concentrations of agarose supplemented with extracellular matrix (ECM) proteins collagen and fibrin. Dextran sulfate, a negatively charged polycarbohydrate, was added to mimic glycosaminoglycans in the ECM. Cell viability assays showed that a combination of all components is necessary to support long-term survival and proliferation of MSCs within microcapsules. Following intramyocardial transplantation, microcapsules degraded slowly in vivo and did not induce a fibrotic foreign body response. Pre-labeling of encapsulated MSCs with iron oxide nanoparticles allowed continued cell-tracking by MRI over several weeks following transplantation into infarcted myocardium. In contrast, MSCs injected as cell suspension were only detectable for two days post transplantation by MRI. Histological analysis confirmed integration of transplanted cells at the infarct site. Therefore, microcapsules proved to be suitable for stem cell delivery into the infarcted myocardium and can overcome current limitations of poor cell retention in cardiac cell-based therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair

    Energy Technology Data Exchange (ETDEWEB)

    Anna-Liisa Brownell

    2003-11-28

    Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons.

  12. Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair

    International Nuclear Information System (INIS)

    Anna-Liisa Brownell

    2003-01-01

    Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons

  13. Inorganic nanocrystals as contrast agents in MRI:synthesis, coating and introducing multifunctionality

    Science.gov (United States)

    Sanchez-Gaytan, Brenda L.; Mieszawska, Aneta J.; Fayad, Zahi A.

    2013-01-01

    Inorganic nanocrystals have myriad applications in medicine, which includes their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. For MRI, nanocrystals can produce contrast themselves, of which iron oxides have been most extensively explored, or be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used in imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. Due to these exciting applications, synthesizing and rendering these nanocrystals water-soluble and biocompatible is therefore highly desirable. We will discuss aqueous phase and organic phase methods for synthesizing inorganic nanocrystals such as gold, iron oxides and quantum dots. The pros and cons of the various methods will be highlighted. We explore various methods for making nanocrystals biocompatible, i.e. directly synthesizing nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples will be highlighted and their applications explained. These examples signify that synthesizing biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied for a wide range of applications. Therefore we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings. PMID:23303729

  14. Impact of the MLC on the MRI field distortion of a prototype MRI-linac

    International Nuclear Information System (INIS)

    Kolling, Stefan; Keall, Paul; Oborn, Brad

    2013-01-01

    Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0 T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps of the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30 cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300 μT. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200 cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20 cm 2 , to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B 0 of 0.5, 1.0, and 1.5 T, to estimate how the MLC impact changes with B 0 .Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was

  15. Ultrastructural characterization of mesenchymal stromal cells labeled with ultrasmall superparamagnetic iron-oxide nanoparticles for clinical tracking studies

    DEFF Research Database (Denmark)

    Hansen, Louise; Hansen, Alastair B; Mathiasen, Anders B

    2014-01-01

    INTRODUCTION: To evaluate survival and engraftment of mesenchymal stromal cells (MSCs) in vivo, it is necessary to track implanted cells non-invasively with a method, which does not influence cellular ultrastructure and functional characteristics. Iron-oxide particles have been applied for cell...... sequence of trans-activator of transcription (TAT) (IODEX-TAT) and evaluate the effect of labeling on ultrastructure, viability, phenotype and proliferative capacity of the cells. MATERIALS AND METHODS: MSCs were labeled with 5 and 10 μg IODEX-TAT/10(5) cells for 2, 6 and 21 hours. IODEX-TAT uptake...... and cellular ultrastructure were determined by electron microscopy. Cell viability was determined by propidium iodide staining and cell proliferation capacity by 5-bromo-2-deoxyuridine (BrdU) incorporation. Maintenance of stem cell surface markers was determined by flow cytometry. Results. IODEX-TAT labeling...

  16. Single-organelle tracking by two-photon conversion

    Science.gov (United States)

    Watanabe, Wataru; Shimada, Tomoko; Matsunaga, Sachihiro; Kurihara, Daisuke; Fukui, Kiichi; Shin-Ichi Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Isobe, Keisuke; Itoh, Kazuyoshi

    2007-03-01

    Spatial and temporal information about intracellular objects and their dynamics within a living cell are essential for dynamic analysis of such objects in cell biology. A specific intracellular object can be discriminated by photoactivatable fluorescent proteins that exhibit pronounced light-induced spectral changes. Here, we report on selective labeling and tracking of a single organelle by using two-photon conversion of a photoconvertible fluorescent protein with near-infrared femtosecond laser pulses. We performed selective labeling of a single mitochondrion in a living tobacco BY-2 cell using two-photon photoconversion of Kaede. Using this technique, we demonstrated that, in plants, the directed movement of individual mitochondria along the cytoskeletons was mediated by actin filaments, whereas microtubules were not required for the movement of mitochondria. This single-organelle labeling technique enabled us to track the dynamics of a single organelle, revealing the mechanisms involved in organelle dynamics. The technique has potential application in direct tracking of selective cellular and intracellular structures.

  17. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Ertürk, M. Arcan [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21287 and Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States); El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A., E-mail: bottoml@mri.jhu.edu [Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

    2015-03-15

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  18. Monitoring local heating around an interventional MRI antenna with RF radiometry

    Science.gov (United States)

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  19. Monitoring local heating around an interventional MRI antenna with RF radiometry

    International Nuclear Information System (INIS)

    Ertürk, M. Arcan; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.

    2015-01-01

    Purpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel’s thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A “H-factor” relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna’s sensitive region. Results: The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15–0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. Conclusions: Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or

  20. Uncovering homo-and hetero-interactions on the cell membrane using single particle tracking approaches

    International Nuclear Information System (INIS)

    Torreno-Pina, Juan A; Manzo, Carlo; Garcia-Parajo, Maria F

    2016-01-01

    The plasma membrane of eukaryotic cells is responsible for a myriad of functions that regulate cell physiology and plays a crucial role in a multitude of processes that include adhesion, migration, signaling recognition and cell–cell communication. This is accomplished by specific interactions between different membrane components such as lipids and proteins on the lipid bilayer but also through interactions with the underlying cortical actin cytoskeleton on the intracellular side and the glycocalyx matrix in close proximity to the extracellular side. Advanced biophysical techniques, including single particle tracking (SPT) have revealed that the lateral diffusion of molecular components on the plasma membrane represents a landmark manifestation of such interactions. Indeed, by studying changes in the diffusivity of individual membrane molecules, including sub-diffusion, confined diffusion and/or transient arrest of molecules in membrane compartments, it has been possible to gain insight on the nature of molecular interactions and to infer on its functional role for cell response. In this review, we will revise some exciting results where SPT has been crucial to reveal homo- and hetero-interactions on the cell membrane. (paper)

  1. [{sup 89}Zr]Oxinate{sub 4} for long-term in vivo cell tracking by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Charoenphun, Putthiporn; Meszaros, Levente K.; Chuamsaamarkkee, Krisanat; Sharif-Paghaleh, Ehsan; Ballinger, James R.; Mullen, Gregory E.D. [St Thomas' Hospital, King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Ferris, Trevor J.; Went, Michael J. [University of Kent, School of Physical Sciences, Canterbury (United Kingdom); Blower, Philip J. [St Thomas' Hospital, King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); King' s College London, Division of Chemistry, London (United Kingdom)

    2014-10-31

    {sup 111}In (typically as [{sup 111}In]oxinate{sub 3}) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an {sup 89}Zr PET tracer for cell labelling and compare it with [{sup 111}In]oxinate{sub 3} single photon emission computed tomography (SPECT). [{sup 89}Zr]Oxinate{sub 4} was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [{sup 89}Zr]oxinate{sub 4} or [{sup 111}In]oxinate{sub 3} was monitored for up to 14 days. {sup 89}Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting. Zr labelling was effective in all cell types with yields comparable with {sup 111}In labelling. Retention of {sup 89}Zr in cells in vitro after 24 h was significantly better (range 71 to >90 %) than {sup 111}In (43-52 %). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with {sup 111}In or {sup 89}Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for {sup 111}In. In liver, spleen and bone marrow at least 92 % of {sup 89}Zr remained associated with eGFP-positive cells after 7 days in vivo. [{sup 89}Zr]Oxinate{sub 4} offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types. (orig.)

  2. Operationalizing Civilian Protection in Mali: The Case for a Civilian Casualty Tracking, Analysis, and Response Cell

    Directory of Open Access Journals (Sweden)

    Marla B. Keenan

    2013-06-01

    Full Text Available This practice note details an emerging best practice of civilian harm mitigation in armed conflict: namely, the creation of civilian casualty tracking, analysis and response processes by a warring party or peace operation force. It asserts that in Iraq, Afghanistan and soon Somalia, these processes to better understand civilian harm and address consequences have positively shaped mission tactics, training, and overall operations. In both Iraq and Afghanistan, tracking and analysis has lead to a marked decrease in civilian casualties and facilitated the making of amends for any civilian losses. The paper argues that for warring parties to achieve their mission—particularly one with a protection of civilians mandate as with the United Nations Multidimensional Integrated Stabilization Mission in Mali (MINUSMA—they must fully understand the impact of their actions on the civilian population, positive or negative. For this reason, a Civilian Casualty Tracking, Analysis, and Response Cell should be created for MINUSMA to improve its ability mitigate risk to civilians as required by its Security Council mandate.

  3. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding

    Science.gov (United States)

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin–avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P<0.05). In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM−1 s−1) was observed compared to Magnevist® (4.9 mM−1 s−1; P<0.01). Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h). These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor. PMID:28765707

  4. Dynamic oxygen-enhanced MRI of cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Taha M Mehemed

    Full Text Available Oxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.

  5. Quantifying Post- Laser Ablation Prostate Therapy Changes on MRI via a Domain-Specific Biomechanical Model: Preliminary Findings.

    Directory of Open Access Journals (Sweden)

    Robert Toth

    Full Text Available Focal laser ablation destroys cancerous cells via thermal destruction of tissue by a laser. Heat is absorbed, causing thermal necrosis of the target region. It combines the aggressive benefits of radiation treatment (destroying cancer cells without the harmful side effects (due to its precise localization. MRI is typically used pre-treatment to determine the targeted area, and post-treatment to determine efficacy by detecting necrotic tissue, or tumor recurrence. However, no system exists to quantitatively evaluate the post-treatment effects on the morphology and structure via MRI. To quantify these changes, the pre- and post-treatment MR images must first be spatially aligned. The goal is to quantify (a laser-induced shape-based changes, and (b changes in MRI parameters post-treatment. The shape-based changes may be correlated with treatment efficacy, and the quantitative effects of laser treatment over time is currently poorly understood. This work attempts to model changes in gland morphology following laser treatment due to (1 patient alignment, (2 changes due to surrounding organs such as the bladder and rectum, and (3 changes due to the treatment itself. To isolate the treatment-induced shape-based changes, the changes from (1 and (2 are first modeled and removed using a finite element model (FEM. A FEM models the physical properties of tissue. The use of a physical biomechanical model is important since a stated goal of this work is to determine the physical shape-based changes to the prostate from the treatment, and therefore only physical real deformations are to be allowed. A second FEM is then used to isolate the physical, shape-based, treatment-induced changes. We applied and evaluated our model in capturing the laser induced changes to the prostate morphology on eight patients with 3.0 Tesla, T2-weighted MRI, acquired approximately six months following treatment. Our results suggest the laser treatment causes a decrease in prostate

  6. MR-guided breast biopsy and hook wire marking using a low-field (0.23 T) scanner with optical instrument tracking

    International Nuclear Information System (INIS)

    Blanco Sequeiros, Roberto; Reinikainen, Heli; Blanco Sequeiros, Andreas M.; Ojala, Risto; Paeaekkoe, Eija; Tervonen, Osmo; Vaara, Teuvo

    2007-01-01

    The purpose of this study was to evaluate the technical feasibility of MR-guided percutaneous breast biopsy (LCNB) and breast hook wire marking in a low-field (0.23 T) MRI system with optical instrument tracking. MR-guided core biopsy and/or hook wire marking was performed on 13 lesions observable at MR imaging only. Seven breast LCNBs and 10 hook wire markings were performed under MR guidance on 11 patients. The diagnosis was confirmed by excision biopsy or mastectomy in 12 lesions and with histopathological and cytological diagnosis and 12-month clinical follow-up in one lesion. All lesions seen in the high-field scanner were also successfully identified and targeted in the low-field scanner. The following procedures were typically technically successful. There were difficulties due to unsatisfactory functioning of some core biopsy guns. Detailed description of low-field MR guidance and optical tracking in breast biopsies is provided. The procedure seems accurate and safe and provides means to obtain a histological diagnosis of a breast lesion only seen with MRI. The low-field biopsy system is comparable to the high-field MRI system. MR-compatible biopsy guns need to be improved. (orig.)

  7. MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rasaneh, Samira; Rajabi, Hossein, E-mail: hrajabi@modares.ac.ir [Tarbiat Modares University, Department of Medical Physics (Iran, Islamic Republic of); Babaei, Mohammad Hossein [Nuclear Science and Technology Research Institute, Department of Radioisotope (Iran, Islamic Republic of); Akhlaghpoor, Shahram [Sina Hospital, Tehran Medical University, Noor Medical Imaging Center (Iran, Islamic Republic of)

    2011-06-15

    In this study, Trastuzumab modified Magnetic Nanoparticles (TMNs) were prepared as a new contrast agent for detecting HER2 (Human epidermal growth factor receptor-2) expression tumors by magnetic resonance imaging (MRI). TMNs were prepared based on iron oxide nanoparticles core and Trastuzumab modified dextran coating. The TMNs core and hydrodynamic size were determined by transmission electron microscopy and dynamic light scattering. TMNs stability and cytotoxicity were investigated. The ability of TMNs for HER2 detection were evaluated in breast carcinoma cell lines (SKBr3 and MCF7 cells) and tumor-bearing mice by MRI and iron uptake determination. The particles core and hydrodynamic size were 9 {+-} 2.5 and 41 {+-} 15 nm (size range: 15-87 nm), respectively. The molar antibody/nanoparticle ratio was 3.1-3.5. TMNs were non-toxic to the cells below the 30 {mu}g (Fe)/mL concentration and good stable up to 8 weeks in PBS buffer. TMNs could detect HER2 oncogenes in the cells surface with imagable contrast by MRI. The invivo study in mice bearing tumors indicated that TMNs possessed a good diagnostic ability as HER2 specific contrast agent by MRI. TMNs were demonstrated to be able to selectively accumulate in the tumor cells, with a proper signal enhancement in MRI T2 images. So, the complex may be considered for further investigations as an MRI contrast agent for detection of HER2 expression tumors in human.

  8. An analysis of particle track effects on solid mammalian tissues

    International Nuclear Information System (INIS)

    Todd, P.

    1992-01-01

    The relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV μm -1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p 3 n, per track, where n is the number of cells per track based on tissue and organ geometry, and p 3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p 3 n is high. (author)

  9. Solitary infantile choriocarcinoma of the liver: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Hoef, Marianne van der; Willi, Ulrich V.; Huisman, Thierry A.G.M. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Niggli, Felix K. [University Children' s Hospital Zurich, Department of Paediatrics, Zurich (Switzerland)

    2004-10-01

    Infantile hepatic choriocarcinoma is a rare, highly malignant germ-cell tumour believed to result from a choriocarcinoma of the placenta that spreads to the child. Most infants present with a characteristic clinical picture of anaemia, hepatomegaly and precocious puberty. Imaging findings, including conventional MRI, may be non-specific. To improve the accuracy of diagnosis, we present the imaging findings of contrast-enhanced dynamic MRI in a 4.5-month-old boy with infantile hepatic choriocarcinoma. (orig.)

  10. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

    Science.gov (United States)

    Salamon, Johannes; Hofmann, Martin; Jung, Caroline; Kaul, Michael Gerhard; Werner, Franziska; Them, Kolja; Reimer, Rudolph; Nielsen, Peter; Vom Scheidt, Annika; Adam, Gerhard; Knopp, Tobias; Ittrich, Harald

    2016-01-01

    In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI) / magnetic resonance imaging (MRI) road map approach and an MPI-guided approach using a blood pool tracer. A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4) was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography. Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide. 4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.

  11. Magnetic Particle / Magnetic Resonance Imaging: In-Vitro MPI-Guided Real Time Catheter Tracking and 4D Angioplasty Using a Road Map and Blood Pool Tracer Approach.

    Directory of Open Access Journals (Sweden)

    Johannes Salamon

    Full Text Available In-vitro evaluation of the feasibility of 4D real time tracking of endovascular devices and stenosis treatment with a magnetic particle imaging (MPI / magnetic resonance imaging (MRI road map approach and an MPI-guided approach using a blood pool tracer.A guide wire and angioplasty-catheter were labeled with a thin layer of magnetic lacquer. For real time MPI a custom made software framework was developed. A stenotic vessel phantom filled with saline or superparamagnetic iron oxide nanoparticles (MM4 was equipped with bimodal fiducial markers for co-registration in preclinical 7T MRI and MPI. In-vitro angioplasty was performed inflating the balloon with saline or MM4. MPI data were acquired using a field of view of 37.3×37.3×18.6 mm3 and a frame rate of 46 volumes/sec. Analysis of the magnetic lacquer-marks on the devices were performed with electron microscopy, atomic absorption spectrometry and micro-computed tomography.Magnetic marks allowed for MPI/MRI guidance of interventional devices. Bimodal fiducial markers enable MPI/MRI image fusion for MRI based roadmapping. MRI roadmapping and the blood pool tracer approach facilitate MPI real time monitoring of in-vitro angioplasty. Successful angioplasty was verified with MPI and MRI. Magnetic marks consist of micrometer sized ferromagnetic plates mainly composed of iron and iron oxide.4D real time MP imaging, tracking and guiding of endovascular instruments and in-vitro angioplasty is feasible. In addition to an approach that requires a blood pool tracer, MRI based roadmapping might emerge as a promising tool for radiation free 4D MPI-guided interventions.

  12. A head-mounted display system for augmented reality: Initial evaluation for interventional MRI

    International Nuclear Information System (INIS)

    Wendt, M.; Wacker, F.K.

    2003-01-01

    Purpose: To discuss the technical details of a head mounted display with an augmented reality (AR) system and to describe a first pre-clinical evaluation in interventional MRI. Method: The AR system consists of a video-see-through head mounted display (HMD), mounted with a mini video camera for tracking and a stereo pair of mini cameras that capture live images of the scene. The live video view of the phantom/patient is augmented with graphical representations of anatomical structures from MRI image data and is displayed on the HMD. The application of the AR system with interventional MRI was tested using a MRI data set of the head and a head phantom. Results: The HMD enables the user to move around and observe the scene dynamically from various viewpoints. Within a short time the natural hand-eye coordination can easily be adapted to the slightly different view. The 3D perception is based on stereo and kinetic depth cues. A circular target with a diameter of 0.5 square centimeter was hit in 19 of 20 attempts. In a first evaluation the MRI image data augmented reality scene of a head phantom allowed good planning and precise simulation of a puncture. Conclusion: The HMD in combination with AR provides a direct, intuitive guidance for interventional MR procedures. (orig.) [de

  13. The long-term fate of mesenchymal stem cells labeled with magnetic resonance imaging-visible polymersomes in cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Duan X

    2017-09-01

    Full Text Available Xiaohui Duan,1,* Liejing Lu,1,* Yong Wang,2 Fang Zhang,1 Jiaji Mao,1 Minghui Cao,1 Bingling Lin,1 Xiang Zhang,1 Xintao Shuai,2,3 Jun Shen1 1Department of Radiology, Sun Yat-Sen Memorial Hospital, 2PCFM Lab of Ministry of Education, School of Materials Science and Engineering, 3BME Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Understanding the long-term fate and potential mechanisms of mesenchymal stem cells (MSCs after transplantation is essential for improving functional benefits of stem cell-based stroke treatment. Magnetic resonance imaging (MRI is considered an attractive and clinically translatable tool for longitudinal tracking of stem cells, but certain controversies have arisen in this regard. In this study, we used SPION-loaded cationic polymersomes to label green fluorescent protein (GFP-expressing MSCs to determine whether MRI can accurately reflect survival, long-term fate, and potential mechanisms of MSCs in ischemic stroke therapy. Our results showed that MSCs could improve the functional outcome and reduce the infarct volume of stroke in the brain. In vivo MRI can verify the biodistribution and migration of grafted cells when pre-labeled with SPION-loaded polymersome. The dynamic change of low signal volume on MRI can reflect the tendency of cell survival and apoptosis, but may overestimate long-term survival owing to the presence of iron-laden macrophages around cell graft. Only a small fraction of grafted cells survived up to 8 weeks after transplantation. A minority of these surviving cells were differentiated into astrocytes, but not into neurons. MSCs might exert their therapeutic effect via secreting paracrine factors rather than directing cell replacement through differentiation into neuronal and/or glial phenotypes. Keywords: mesenchymal stem cells, magnetic resonance imaging, superparamagnetic iron oxide

  14. Differentiation of prostate cancer from normal prostate tissue in an animal model: conventional MRI and dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Gemeinhardt, O.; Prochnow, D.; Taupitz, M.; Hamm, B.; Beyersdorff, D.; Luedemann, L.; Abramjuk, C.

    2005-01-01

    Purpose: to differentiate orthotopically implanted prostate cancer from normal prostate tissue using magnetic resonance imaging (MRI) and Gd-DTPA-BMA-enhanced dynamic MRI in the rat model. Material and methods: tumors were induced in 15 rats by orthotopic implantation of G subline Dunning rat prostatic tumor cells. MRI was performed 56 to 60 days after tumor cell implantation using T1-weighted spin-echo, T2-weighted turbo SE sequences, and a 2D FLASH sequence for the contrast medium based dynamic study. The interstitial leakage volume, normalized permeability and the permeability surface area product of tumor and healthy prostate were determined quantitatively using a pharmacokinetic model. The results were confirmed by histologic examination. Results: axial T2-weighted TSE images depicted low-intensity areas suspicious for tumor in all 15 animals. The mean tumor volume was 46.5 mm3. In the dynamic study, the suspicious areas in all animals displayed faster and more pronounced signal enhancement than surrounding prostate tissue. The interstitial volume and the permeability surface area product of the tumors increased significantly by 420% (p<0.001) and 424% (p<0.001), respectively, compared to normal prostate tissue, while no significant difference was seen for normalized permeability alone. Conclusion: the results of the present study demonstrate that quantitative analysis of contrast-enhanced dynamic MRI data enables differentiation of small, slowly growing orthotopic prostate cancer from normal prostate tissue in the rat model. (orig.)

  15. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking.

    Science.gov (United States)

    Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, Lf

    2014-01-01

    Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson's disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 10(5) cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model.

  16. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking

    Science.gov (United States)

    Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, LF

    2014-01-01

    Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson’s disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 105 cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model. PMID:24531365

  17. Sensitivity of whole-body CT and MRI versus projection radiography in the detection of osteolyses in patients with monoclonal plasma cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Maya B., E-mail: m.mueller-wolf@dkfz.de [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg Germany (Germany); Department of Radiology, German Cancer Research Center (Dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Murray, Fritz, E-mail: fritz.murray@hotmail.de [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg Germany (Germany); Kilk, Kerstin, E-mail: k_fechtner@hotmail.com [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg Germany (Germany); Hillengass, Jens, E-mail: jens.hillengass@med.uni-heidelberg.de [Department of Haematology, Oncology, Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Delorme, Stefan, E-mail: s.delorme@dkfz-heidelberg.de [Department of Radiology, German Cancer Research Center (Dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Heiss, Christiane, E-mail: c.heiss@dkfz-heidelberg.de [Department of Biostatistics, German Cancer Research Center (Dkfz), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Neben, Kai, E-mail: k.neben@klinikum-mittelbaden.de [Department of Haematology, Oncology, Rheumatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Goldschmidt, Hartmut, E-mail: hartmut.goldschmidt@med.uni-heidelberg.de [Department of Haematology, Oncology, Rheumatology, University Hospital Heidelberg and National Center for Tumour Diseases, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Kauczor, Hans-Ulrich, E-mail: hu.kauczor@med.uni-heidelberg.de [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg Germany (Germany); and others

    2014-07-15

    Purpose: To compare sensitivity of whole-body Computed Tomography (wb-CT) and whole-body Magnetic Resonance Imaging (wb-MRI) with Projection Radiography (PR) regarding each method's ability to detect osteolyses in patients with monoclonal plasma cell disease. Patients and methods: The bone status of 171 patients was evaluated. All patients presented with multiple myeloma (MM) of all stages, monoclonal gammopathy of unknown significance (MGUS) or solitary plasmacytoma. Two groups were formed. Group A consisted of 52 patients (26 females, 26 males) with an average age of 62 years (range, 45–89 years) who received, both, PR and wb-CT as part of their diagnostic work-up. Group B comprised 119 patients (58 females, 61 males) averaging 57 years of age (range, 20–80 years) who received, both, PR and wb-MRI. Two experienced radiologists were blinded regarding the disease status and assessed the number and location of osteolyses in consensus. A distinction was made between axial and extra-axial lesions. Results: In group A, wb-CT revealed osteolyses in 12 patients (23%) that were not detected in PR. CT was superior in detecting lesions in patients with osteopenia and osteoporosis. Compared with PR, wb-CT was significantly more sensitive in detecting osteolyses than PR (p < 0.001). This was particularly true for axial lesions. Additionally, CT revealed clinically relevant incidental findings in 33 patients (63%). In group B, wb-MRI revealed lesions in 19 patients (16%) that were not detected in PR. All lesions detected by PR were also detected by wb-MRI and wb-CT. Wb-MRI and wb-CT are each superior to PR in detecting axial lesions. Conclusion: Wb-CT can detect 23% more focal lesions than PR, especially in the axial skeleton. Therefore, this imaging method should be preferred over PR in the diagnostic work-up and staging of patients with monoclonal plasma cell disease.

  18. Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy

    Science.gov (United States)

    Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that

  19. Arterial spin labelling MRI for detecting pseudocapsule defects and predicting renal capsule invasion in renal cell carcinoma.

    Science.gov (United States)

    Zhang, H; Wu, Y; Xue, W; Zuo, P; Oesingmann, N; Gan, Q; Huang, Z; Wu, M; Hu, F; Kuang, M; Song, B

    2017-11-01

    To evaluate prospectively the performance of combining morphological and arterial spin labelling (ASL) magnetic resonance imaging (MRI) for detecting pseudocapsule defects in renal cell carcinoma (RCC), and to predict renal capsule invasion confirmed histopathologically. Twenty consecutive patients with suspicious renal tumours underwent MRI. Renal ASL imaging was performed and renal blood flow was measured quantitatively. The diagnostic performance of T2-weighted images alone, and a combination of T2-weighted and ASL images for predicting renal capsule invasion were assessed. Twenty renal lesions were evaluated in 20 patients. All lesions were clear cell RCCs (ccRCCs) confirmed at post-surgical histopathology. Fifteen ccRCCs showed pseudocapsule defects on T2-weighted images, of which 12 cases showed existing blood flow in defect areas on perfusion images. To predict renal capsule invasion, the sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 71.4%, 86.7%, 100%, respectively, for T2-weighted images alone, and 92.3%, 100%, 100%, 87.5%, respectively, for the combination of T2-weighted and ASL images. ASL images can reflect the perfusion of pseudocapsule defects and as such, the combination of T2-weighted and ASL images produces promising diagnostic accuracy for predicting renal capsule invasion. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury.

    Science.gov (United States)

    Sundberg, Laura M; Herrera, Juan J; Narayana, Ponnada A

    2010-10-01

    Comprehensive in vivo longitudinal studies that include multi-modal magnetic resonance imaging (MRI) and a battery of behavioral assays to assess functional outcome were performed at multiple time points up to 56 days post-traumatic spinal cord injury (SCI) in rodents. The MRI studies included high-resolution structural imaging for lesion volumetry, and diffusion tensor imaging (DTI) for probing the white matter integrity. The behavioral assays included open-field locomotion, grid walking, inclined plane, computerized activity box performance, and von Frey filament tests. Additionally, end-point histology was assessed for correlation with both the MRI and behavioral data. The temporal patterns of the lesions were documented on structural MRI. DTI studies showed significant changes in white matter that is proximal to the injury epicenter and persisted to day 56. White matter in regions up to 1 cm away from the injury epicenter that appeared normal on conventional MRI also exhibited changes that were indicative of tissue damage, suggesting that DTI is a more sensitive measure of the evolving injury. Correlations between DTI and histology after SCI could not be firmly established, suggesting that injury causes complex pathological changes in multiple tissue components that affect the DTI measures. Histological evidence confirmed a significant decrease in myelin and oligodendrocyte presence 56 days post-SCI. Multiple assays to evaluate aspects of functional recovery correlated with histology and DTI measures, suggesting that damage to specific white matter tracts can be assessed and tracked longitudinally after SCI.

  1. MRI of the scrotum. Recommendations of the ESUR Scrotal and Penile Imaging Working Group

    International Nuclear Information System (INIS)

    Tsili, Athina C.; Ntorkou, Alexandra; Bertolotto, Michele; Turgut, Ahmet Tuncay; Dogra, Vikram; Freeman, Simon; Rocher, Laurence; Belfield, Jane; Studniarek, Michal; Derchi, Lorenzo E.; Oyen, Raymond; Ramchandani, Parvati; Secil, Mustafa; Richenberg, Jonathan

    2018-01-01

    The Scrotal and Penile Imaging Working Group (SPI-WG) appointed by the board of the European Society of Urogenital Radiology (ESUR) has produced recommendations for magnetic resonance imaging (MRI) of the scrotum. The SPI-WG searched for original and review articles published before September 2016 using the Pubmed and Medline databases. Keywords used were 'magnetic resonance imaging', 'testis or testicle or testicular', 'scrotum', 'intratesticular', 'paratesticular', 'extratesticular' 'diffusion-weighted', 'dynamic MRI'. Consensus was obtained among the members of the subcommittee. The expert panel proposed recommendations using Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. The recommended MRI protocol should include T1-, T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced MRI. Scrotal MRI can be clinically applied for lesion characterisation (primary), including both intratesticular and paratesticular masses, differentiation between germ-cell and non-germ-cell neoplasms (evolving), characterisation of the histological type of testicular germ cell neoplasms (TGCNs, in selected cases), local staging of TGCNs (primary), acute scrotum (in selected cases), trauma (in selected cases) and undescended testes (primary). The ESUR SPI-WG produced this consensus paper in which the existing literature on MRI of the scrotum is reviewed. The recommendations for the optimal imaging technique and clinical indications are presented. (orig.)

  2. MRI of the scrotum. Recommendations of the ESUR Scrotal and Penile Imaging Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Tsili, Athina C.; Ntorkou, Alexandra [University of Ioannina, Department of Clinical Radiology, Medical School, Ioannina (Greece); Bertolotto, Michele [Uco di Radiologia, Trieste Univ. (Italy); Turgut, Ahmet Tuncay [Ankara Training and Research Hospital, Department of Radiology, Ankara (Turkey); Dogra, Vikram [University of Rochester School of Medicine and Dentistry, Department of Imaging Sciences, Rochester, NY (United States); Freeman, Simon [Plymouth Hospitals NHS Trust, Plymouth (United Kingdom); Rocher, Laurence [Hopitaux Universitaires Paris Sud, APHP, Ecole Doctorale Biosigne, Le Kremlin Bicetre (France); Belfield, Jane [Royal Liverpool University Hospital, Liverpool (United Kingdom); Studniarek, Michal [Medical University of Gdansk, Gdansk (Poland); Derchi, Lorenzo E. [Universita di Genova, Genova (Italy); Oyen, Raymond [KU Leuven, Radiology, Leuven (Belgium); Ramchandani, Parvati [Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA (United States); Secil, Mustafa [Dokuz Eylul University Faculty of Medicine, Department of Radiology, Izmir (Turkey); Richenberg, Jonathan [Royal Sussex County Hospital Brighton and Brighton and Sussex Medical School, Brighton, Sussex (United Kingdom)

    2018-01-15

    The Scrotal and Penile Imaging Working Group (SPI-WG) appointed by the board of the European Society of Urogenital Radiology (ESUR) has produced recommendations for magnetic resonance imaging (MRI) of the scrotum. The SPI-WG searched for original and review articles published before September 2016 using the Pubmed and Medline databases. Keywords used were 'magnetic resonance imaging', 'testis or testicle or testicular', 'scrotum', 'intratesticular', 'paratesticular', 'extratesticular' 'diffusion-weighted', 'dynamic MRI'. Consensus was obtained among the members of the subcommittee. The expert panel proposed recommendations using Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. The recommended MRI protocol should include T1-, T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced MRI. Scrotal MRI can be clinically applied for lesion characterisation (primary), including both intratesticular and paratesticular masses, differentiation between germ-cell and non-germ-cell neoplasms (evolving), characterisation of the histological type of testicular germ cell neoplasms (TGCNs, in selected cases), local staging of TGCNs (primary), acute scrotum (in selected cases), trauma (in selected cases) and undescended testes (primary). The ESUR SPI-WG produced this consensus paper in which the existing literature on MRI of the scrotum is reviewed. The recommendations for the optimal imaging technique and clinical indications are presented. (orig.)

  3. MRI characteristics of midbrain tumours

    International Nuclear Information System (INIS)

    Sun, B.; Wang, C.C.; Wang, J.

    1999-01-01

    We diagnosed 60 cases of midbrain tumours by MRI between 1993 to 1997. There were 39 males and 21 females, aged 2-64 years, mean 25.6 years. We found 38 patients with true intramedullary midbrain tumours, 11 predominantly in the tectum, 20 in the tegmentum and 7 with a downward extension to the pons; there were 7 within the cerebral aqueduct. There were 22 patients with infiltrating midbrain tumours extending from adjacent structures, 11 cases each from the thalamus and pineal region. All patients received surgical treatment. Gross total resection was achieved in 42 cases, subtotal (> 75 %) resection in 18. Pathological diagnoses included 16 low-grade and 15 high-grade astrocytomas; 5 oligodendroastrocytomas; 2 ependymomas; 11 glioblastomas; and 11 pineal parenchymal or germ-cell tumours. Midbrain tumours are a heterogeneous group of neoplasms, with wide variation in clinical and MRI features, related to the site and type of tumour. MRI not only allows precise analysis of their growth pattern, but also can lead to a correct preoperative diagnosis in the majority of cases. (orig.) (orig.)

  4. MRI findings of bilateral juvenile granulosa cell tumor of the testis in a newborn presenting as intraabdominal masses

    Energy Technology Data Exchange (ETDEWEB)

    Yikilmaz, Ali [Erciyes Medical School, Department of Radiology, Gevher Nesibe Hospital, Kayseri (Turkey); Lee, Edward Y. [Children' s Hospital Boston and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2007-10-15

    Juvenile granulosa cell tumor (JGCT) of the testis is a rare benign tumor that typically presents as a relatively small (<2 cm) unilateral scrotal mass in neonates or infants. Bilateral JGCT of the testes presenting as large intraabdominal masses in the neonate is very rare. Utilizing preoperative MRI findings, we report a rare case of bilateral JGCT of the testes presenting as large multiseptated abdominal masses originating from undescended intraabdominal testes in a neonate. (orig.)

  5. Rabbit model of intervertebral disc degeneration by external compression device characterized by X-ray, MRI, histology, and cell viability

    Directory of Open Access Journals (Sweden)

    Ismail Ismail

    2006-12-01

    Full Text Available Appropriate experimental animal models, which mimic the degenerative process occurring in human intervertebral disc (IVD breakdown and can be used for new treatment studies such as tissue engineering or disc distraction are lacking. We studied the external compression device that used by Kroeber et al to create intervertebral disc degeneration in rabbit model characterized by X-ray, MRI, Histology, and Cell Viability. Ten NZW rabbit were randomly assigned to one of five groups. Intervertebral disc VL4-L5 are compressed using an external loading device, 1.9 MPa. First group rabbit are loaded for 14 days, second loaded for 28 days, thirth group are loaded for 14 days, and unloaded for 14 days, fourth group loaded for 28 days and unloaded for 28 days. The fifth group, rabbits underwent a sham operation. Additional, rabbits were used as sample for cell viability study. In disc height : sample in group one have biggest decreasing of disc height, that is 23.9 unit. In MRI assessment, the worst grade is grade 3. In histological score, the worst group is group three (58.69, and the best is group 4 (45.69. Group one have the largest dead cell, that are 403.5, and the smallest is group four (124.75. Trypan blue staining showed that group four have better viable cell (91.1 compare than group three (86.4. The study conclude disc degeneration can be created by external axial loading for 14 days in rabbit intervertebral disc. Duration of 28 days unloading gave better result for cells to recover. (Med J Indones 2006; 15:199-207  Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Keywords: Rabbit model –intervertebral disc degeneration- external compression device-X-ray, MRI, Histology, and Cell viabilty /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso

  6. Interaction vs. observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study.

    Science.gov (United States)

    Tylén, Kristian; Allen, Micah; Hunter, Bjørk K; Roepstorff, Andreas

    2012-01-01

    Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an "understanding of the other," or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye-tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g., someone offering or showing you an object) elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action). In contrast, the social-cognitive perception of someone "privately" manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants' experience, behavior, and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions.

  7. Interaction versus Observation: distinctive modes of social cognition in human brain and behavior? A combined fMRI and eye-tracking study.

    Directory of Open Access Journals (Sweden)

    Kristian eTylen

    2012-12-01

    Full Text Available Human cognition has usually been approached on the level of individual minds and brains, but social interaction is a challenging case. Is it best thought of as a self-contained individual cognitive process aiming at an ‘understanding of the other’, or should it rather be approached as an collective, inter-personal process where individual cognitive components interact on a moment-to-moment basis to form coupled dynamics? In a combined fMRI and eye tracking study we directly contrasted these models of social cognition. We found that the perception of situations affording social contingent responsiveness (e.g. someone offering or showing you an object elicited activations in regions of the right posterior temporal sulcus and yielded greater pupil dilation corresponding to a model of coupled dynamics (joint action. In contrast, the social-cognitive perception of someone ‘privately’ manipulating an object elicited activation in medial prefrontal cortex, the right inferior frontal gyrus and right inferior parietal lobus, regions normally associated with Theory of Mind and with the mirror neuron system. Our findings support a distinction in social cognition between social observation and social interaction, and demonstrate that simple ostensive cues may shift participants’ experience, behavior and brain activity between these modes. The identification of a distinct, interactive mode has implications for research on social cognition, both in everyday life and in clinical conditions.

  8. Transfection Agent Induced Nanoparticle Cell Loading

    Directory of Open Access Journals (Sweden)

    Karin Montet-Abou

    2005-07-01

    Full Text Available Loading cells with magnetic nanoparticles, and tracking their fate in vivo by high resolution MRI, is an attractive approach for enhancing the efficacy of cell-based therapies including those utilizing hematopoietic stem cells, neuroprogenitor cells, and T cells. The transfection agent (internalization agent assisted loading with the Feridex IV® nanoparticle is an attractive method of loading because of the low cost of materials, and possible low regulatory barriers for eventual clinical use. We therefore explored the interaction between Feridex IV® and three internalization agents protamine (PRO, polylysine (PLL, and lipofectamine (LFA. Feridex reacted with internalization agents to form aggregates, except when either the internalization agent or Feridex was present in large excess. When Jurkat T cells were incubated with Feridex/LFA or Feridex/PRO mixtures, and washed by centrifugation, nanoparticle aggregates co-purified with cells. With C17.2 cells large iron oxide particles adhered to the cell surface. At 30 μg/mL Feridex and 3 μg/mL LFA, internalization was largely mediated by LFA and was largely cytoplasmic. However, we found that the conditions used to label cells with Feridex and transfection agents need to be carefully selected to avoid the problems of surface adsorption and nanoparticle precipitation.

  9. MRI Primer

    International Nuclear Information System (INIS)

    Oldendorf, W.; Oldendorf, W. Jr.

    1991-01-01

    Designed for studies, radiologists, and clinicians at all levels of training, this book provides a basic introduction to the principles, physics, and instrumentation of magnetic resonance imaging. The fundamental concepts that are essential for the optimal clinical use of MRI are thoroughly explained in easily accessible terms. To facilitate the reader's comprehension, the material is presented nonmathematically, using no equations and a minimum of symbols and abbreviations. MRI Primer presents a clear account of the phenomenon of nuclear magnetic resonance and the use of gradient magnetic fields to create clinically useful images of cross-sectional slices. Close attention is given to the magnetization vector as a means of expressing nuclear behavior, the role of T 1 and T 2 weighing in imaging, the use of contrast agents, and the pulse sequences most often used in clinical practice, as well as to the relative capabilities and limitations of MRI and CT. The basic hardware components of an MRI scanner are described in detail. Sample MRI scans illustrate how MRI characterizes tissue. An appendix provides a brief introduction to quantum processes in MRI

  10. Track reconstruction in liquid hydrogen ionization chamber

    International Nuclear Information System (INIS)

    Balbekov, V.I.; Baranov, A.M.; Krasnokutski, R.N.; Perelygin, V.P.; Rasuvaev, E.A.; Shuvalov, R.S.; Zhigunov, V.P.; Lebedenko, V.N.; Stern, B.E.

    1979-01-01

    It is shown that particle track parameters can be reconstructed by the currents in the anode cells of the ionization chamber. The calculations are carried out for the chamber with 10 cm anode-cathode gap width. For simplicity a two-dimensional chamber model is used. To make the calculations simpler the charge density along the track is considered to be constant and equal to 10 4 electrons/mm. The drift velocity of electrons is assumed to be 5x10 6 cm/s. The anode is devided into cells 2 cm in width. The events in the chamber is defined with the coordinates X and Z of the event vertex, polar angles THETA of each track and track length l. The coordinates x, y and track angle THETA are reconstructed by currents with errors of up to millimetre and milliradian. The reconstruction errors are proportional to noise levels of electronics and also depend on the track geometry and argon purification. The energy resolution of the chamber is calculated for high energy electrons by means of computer program based on a Monter-Carlo method. The conclusion is made that the energy resolution depends on the gap width as a square root. Two ways to solve the track reconstruction problem are considered: 1. the initial charge density is determined by measuring the charges induced in anode strips at some discrete moments of time; 2. the evaluation of the parameters ia made by traditional minimization technique. The second method is applicable only for a not very large number of hypothesis, but it is less time consuming

  11. Implicit sequence-specific motor learning after sub-cortical stroke is associated with increased prefrontal brain activations: An fMRI study

    Science.gov (United States)

    Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.

    2010-01-01

    Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908

  12. Ultra-low field MRI food inspection system prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Satoshi, E-mail: s133413@edu.tut.ac.jp; Toyota, Hirotomo; Hatta, Junichi; Ariyoshi, Seiichiro; Tanaka, Saburo, E-mail: tanakas@ens.tut.ac.jp

    2016-11-15

    Highlights: • We have developed a ULF-MRI system using HTS-SQUID for food inspection. • We developed a compact magnetically shielded box to attenuate environmental noise. • The 2D-MR image was reconstructed from the grid processing data using 2D-FFT method. • The 2D-MR images of a disk-shaped and a multiple cell water sample were obtained. • The results showed the possibility of applying the ULF-MRI system to food inspection. - Abstract: We develop an ultra-low field (ULF) magnetic resonance imaging (MRI) system using a high-temperature superconducting quantum interference device (HTS-SQUID) for food inspection. A two-dimensional (2D)-MR image is reconstructed from the grid processing raw data using the 2D fast Fourier transform method. In a previous study, we combined an LC resonator with the ULF-MRI system to improve the detection area of the HTS-SQUID. The sensitivity was improved, but since the experiments were performed in a semi-open magnetically shielded room (MSR), external noise was a problem. In this study, we develop a compact magnetically shielded box (CMSB), which has a small open window for transfer of a pre-polarized sample. Experiments were performed in the CMSB and 2D-MR images were compared with images taken in the semi-open MSR. A clear image of a disk-shaped water sample is obtained, with an outer dimension closer to that of the real sample than in the image taken in the semi-open MSR. Furthermore, the 2D-MR image of a multiple cell water sample is clearly reconstructed. These results show the applicability of the ULF-MRI system in food inspection.

  13. Radiation damage to DNA: The importance of track structure

    International Nuclear Information System (INIS)

    Hill, M.A.

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that biological response to radiation is not always restricted to the 'hit' cell but can sometimes be induced in 'un-hit' cells near by

  14. Is there a role for dynamic swallowing MRI in the assessment of gastroesophageal reflux disease and oesophageal motility disorders?

    International Nuclear Information System (INIS)

    Kulinna-Cosentini, Christiane; Koelblinger, C.; Ba-Ssalamah, A.; Weber, M.; Kleinhansl, P.; Schima, W.; Lenglinger, J.; Riegler, M.; Cosentini, E.P.; Bischof, G.

    2012-01-01

    To evaluate the diagnostic value of dynamic MRI swallowing in patients with symptoms of Gastroesophageal Reflux Disease (GERD). Thirty-seven patients (17 m/20f) with typical signs of GERD underwent MR swallowing in the supine position at 1.5 T with a phased-array body coil. Using dynamic, gradient echo sequences (B-FFE) in the coronal, sagittal and axial planes, the bolus passages of buttermilk spiked with gadolinium chelate were tracked. MRI, pH-metry and manometry were performed within 31 days and results were compared. MRI results were concordant with pH-metry in 82% (23/28) of patients diagnosed with abnormal oesophageal acid exposure by pH-metry. Five patients demonstrated typical symptoms of GERD and had positive findings with pH monitoring, but false negative results with MRI. In four of six patients (67%), there was a correct diagnosis of oesophageal motility disorder, according to manometric criteria, on dynamic MRI. The overall accuracy of MRI diagnoses was 79% (27/34). A statistically significant difference was found between the size of hiatal hernia, grade of reflux in MRI, and abnormal acid exposure on pH-monitoring. MR fluoroscopy may be a promising radiation-free tool in assessing the functionality and morphology of the GE junction. (orig.)

  15. Is there a role for dynamic swallowing MRI in the assessment of gastroesophageal reflux disease and oesophageal motility disorders?

    Energy Technology Data Exchange (ETDEWEB)

    Kulinna-Cosentini, Christiane; Koelblinger, C.; Ba-Ssalamah, A.; Weber, M.; Kleinhansl, P. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Schima, W. [Abteilung fuer Radiologie und bildgebende Diagnostik, KH Goettlicher Heiland, Vienna (Austria); Lenglinger, J.; Riegler, M.; Cosentini, E.P. [Medical University of Vienna, Department of Surgery, Vienna (Austria); Bischof, G. [Hospital St. Josef, Department of Surgery, Vienna (Austria)

    2012-02-15

    To evaluate the diagnostic value of dynamic MRI swallowing in patients with symptoms of Gastroesophageal Reflux Disease (GERD). Thirty-seven patients (17 m/20f) with typical signs of GERD underwent MR swallowing in the supine position at 1.5 T with a phased-array body coil. Using dynamic, gradient echo sequences (B-FFE) in the coronal, sagittal and axial planes, the bolus passages of buttermilk spiked with gadolinium chelate were tracked. MRI, pH-metry and manometry were performed within 31 days and results were compared. MRI results were concordant with pH-metry in 82% (23/28) of patients diagnosed with abnormal oesophageal acid exposure by pH-metry. Five patients demonstrated typical symptoms of GERD and had positive findings with pH monitoring, but false negative results with MRI. In four of six patients (67%), there was a correct diagnosis of oesophageal motility disorder, according to manometric criteria, on dynamic MRI. The overall accuracy of MRI diagnoses was 79% (27/34). A statistically significant difference was found between the size of hiatal hernia, grade of reflux in MRI, and abnormal acid exposure on pH-monitoring. MR fluoroscopy may be a promising radiation-free tool in assessing the functionality and morphology of the GE junction. (orig.)

  16. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells.

    Science.gov (United States)

    Di Girolamo, Nick

    2015-09-01

    Lineage tracing allows the destiny of a stem cell (SC) and its progeny to be followed through time. In order to track their long-term fate, SC must be permanently marked to discern their distribution, division, displacement and differentiation. This information is essential for unravelling the mysteries that govern their replenishing activity while they remain anchored within their niche microenvironment. Modern-day lineage tracing uses inducible genetic recombination to illuminate cells within embryonic, newborn and adult tissues, and the advent of powerful high-resolution microscopy has enabled the behaviour of labelled cells to be monitored in real-time in a living organism. The simple structural organization of the mammalian cornea, including its accessibility and transparency, renders it the ideal tissue to study SC fate using lineage tracing assisted by non-invasive intravital microscopy. Despite more than a century of research devoted to understanding how this tissue is maintained and repaired, many limitations and controversies continue to plague the field, including uncertainties about the specificity of current SC markers, the number of SC within the cornea, their mode of division, their location, and importantly the signals that dictate cell migration. This communication will highlight historical discoveries as well as recent developments in the corneal SC field; more specifically how the progeny of these cells are mobilised to replenish this dynamic tissue during steady-state, disease and transplantation. Also discussed is how insights gleaned from animal studies can be used to advance our knowledge of the fundamental mechanisms that govern modelling and remodelling of the human cornea in health and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Inferring animal densities from tracking data using Markov chains.

    Science.gov (United States)

    Whitehead, Hal; Jonsen, Ian D

    2013-01-01

    The distributions and relative densities of species are keys to ecology. Large amounts of tracking data are being collected on a wide variety of animal species using several methods, especially electronic tags that record location. These tracking data are effectively used for many purposes, but generally provide biased measures of distribution, because the starts of the tracks are not randomly distributed among the locations used by the animals. We introduce a simple Markov-chain method that produces unbiased measures of relative density from tracking data. The density estimates can be over a geographical grid, and/or relative to environmental measures. The method assumes that the tracked animals are a random subset of the population in respect to how they move through the habitat cells, and that the movements of the animals among the habitat cells form a time-homogenous Markov chain. We illustrate the method using simulated data as well as real data on the movements of sperm whales. The simulations illustrate the bias introduced when the initial tracking locations are not randomly distributed, as well as the lack of bias when the Markov method is used. We believe that this method will be important in giving unbiased estimates of density from the growing corpus of animal tracking data.

  18. Inferring animal densities from tracking data using Markov chains.

    Directory of Open Access Journals (Sweden)

    Hal Whitehead

    Full Text Available The distributions and relative densities of species are keys to ecology. Large amounts of tracking data are being collected on a wide variety of animal species using several methods, especially electronic tags that record location. These tracking data are effectively used for many purposes, but generally provide biased measures of distribution, because the starts of the tracks are not randomly distributed among the locations used by the animals. We introduce a simple Markov-chain method that produces unbiased measures of relative density from tracking data. The density estimates can be over a geographical grid, and/or relative to environmental measures. The method assumes that the tracked animals are a random subset of the population in respect to how they move through the habitat cells, and that the movements of the animals among the habitat cells form a time-homogenous Markov chain. We illustrate the method using simulated data as well as real data on the movements of sperm whales. The simulations illustrate the bias introduced when the initial tracking locations are not randomly distributed, as well as the lack of bias when the Markov method is used. We believe that this method will be important in giving unbiased estimates of density from the growing corpus of animal tracking data.

  19. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin-avidin-specific binding.

    Science.gov (United States)

    Liu, Yongjun; Wu, Xiaoyun; Sun, Xiaohe; Wang, Dan; Zhong, Ying; Jiang, Dandan; Wang, Tianqi; Yu, Dexin; Zhang, Na

    2017-01-01

    Developing magnetic resonance imaging (MRI) contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR)-targeted poly (l-lysine) (PLL)-diethylene triamine pentacetate acid (DTPA)-gadolinium (Gd) (VEGFR-targeted PLL-DTPA-Gd, VPDG), was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin-avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22%) in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG) (25.16%±4.71%, P contrast agent and held great potential for molecular diagnosis of tumor.

  20. Role of polarized G protein signaling in tracking pheromone gradients

    Science.gov (United States)

    McClure, Allison W.; Minakova, Maria; Dyer, Jayme M.; Zyla, Trevin R.; Elston, Timothy C.; Lew, Daniel J.

    2015-01-01

    Summary Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial, and illuminate a novel mechanism for gradient tracking. PMID:26609960

  1. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of Pc 4-sensitized photodynamic therapy of a U87-derived glioma model in the athymic nude rat

    Science.gov (United States)

    Anka, Ali; Thompson, Paul; Mott, Eric; Sharma, Rahul; Zhang, Ruozhen; Cross, Nathan; Sun, Jiayang; Flask, Chris A.; Oleinick, Nancy L.; Dean, David

    2010-02-01

    Introduction: Dynamic Contrast-Enhanced-Magnetic Resonance Imaging (DCE-MRI) may provide a means of tracking the outcome of Pc 4-sensitized photodynamic therapy (PDT) in deeply placed lesions (e.g., brain tumors). We previously determined that 150 μL of gadolinium (Gd-DTPA) produces optimal enhancement of U87-derived intracerebral tumors in an athymic nude rat glioma model. We wish to determine how consistently DCE-MRI enhancement will detect an increase in Gd-enhancement of these tumors following Pc 4-PDT. Methods: We injected 2.5 x 105 U87 cells into the brains of 6 athymic nude rats. After 7-8 days pre-Pc 4 PDT peri-tumor DCE-MRI images were acquired on a 7.0T microMRI scanner before and after administration of 150 μL Gd. DCE-MRI scans were repeated on Days 11, 12, and 13 following Pc 4-PDT (Day 8 or 9). Results: Useful DCE-MRI data were obtained for these animals before and after Pc 4- PDT. In the pre-Pc 4-PDT DCE-MRI scans an average normalized peak Gd enhancement was observed in tumor tissue that was 1.297 times greater than baseline (0.035 Standard Error [SE]). The average normalized peak Gd enhancement in the tumor tissue in the scan following PDT (Day 11) was 1.537 times greater than baseline (0.036 SE), a statistically significant increase in enhancement (p = 0.00584) over the pre-PDT level. Discussion: A 150 μL Gd dose appears to provide an unambiguous increase in signal indicating Pc 4-PDT-induced necrosis of the U87-derived tumor. Our DCEMRI protocol may allow the development of a clinically robust, unambiguous, non-invasive technique for the assessment of PDT outcome.

  2. MRI of perineural extramedullary granulocytic sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Graham, A. [Rehabilitation Medicine, Hunters Moor Neurological Rehabilitation Centre, Newcastle-Upon-Tyne (United Kingdom); Hodgson, T. [Neuroradiology Dept., Royal Hallamshire Hospital, Sheffield (United Kingdom); Jacubowski, J. [Neurosurgical Dept., Royal Hallamshire Hospital, Sheffield (United Kingdom); Norfolk, D. [Haematology Department, Leeds General Infirmary, Leeds LS1 3EX (United Kingdom); Smith, C. [Pathology Dept., Royal Hallamshire Hospital, Sheffield (United Kingdom)

    2001-06-01

    Granulocytic sarcoma is an extramedullary solid tumour consisting of myelogenous leukaemic blast cells, usually seen in acute myeloid leukaemia and less commonly in patients with chronic myeloid leukaemia or myeloproliferative disorders. Blast cells have a predilection for periosteal and perineural regions and rarely precede evidence of systemic disease. We present two patients, aleukaemic on peripheral blood counts, both at presentation and during subsequent treatment. We present the MRI features of this rare but important condition. (orig.)

  3. TAGGING, TRACKING AND LOCATING WITHOUT GPS

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Coleman, T.; Shull, D.

    2012-07-08

    The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

  4. Developing new optical imaging techniques for single particle and molecule tracking in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian

  5. Simulation of DNA Damage in Human Cells from Space Radiation Using a Physical Model of Stochastic Particle Tracks and Chromosomes

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; Hada, Megumi; George, Kerry; Wu, Honglu

    2015-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a recently developed model, in which chromosomes simulated by NASARTI (NASA Radiation Tracks Image) is combined with nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS (Relativistic Ion Tracks) in a voxelized space. The model produces the number of DSBs, as a function of dose for high-energy iron, oxygen, and carbon ions, and He ions. The combined model calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The merged computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The merged model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation.

  6. DW-MRI as a Predictive Biomarker of Radiosensitization of GBM through Targeted Inhibition of Checkpoint Kinases.

    Science.gov (United States)

    Williams, Terence M; Galbán, Stefanie; Li, Fei; Heist, Kevin A; Galbán, Craig J; Lawrence, Theodore S; Holland, Eric C; Thomae, Tami L; Chenevert, Thomas L; Rehemtulla, Alnawaz; Ross, Brian D

    2013-04-01

    The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.

  7. Convergence of lateral dynamic measurements in the plasma membrane of live cells from single particle tracking and STED-FCS

    DEFF Research Database (Denmark)

    Lagerholm, B. Christoffer; Andrade, Débora M.; Clausen, Mathias P.

    2017-01-01

    Fluorescence correlation spectroscopy (FCS) in combination with the super-resolution imaging method STED (STED-FCS), and single-particle tracking (SPT) are able to directly probe the lateral dynamics of lipids and proteins in the plasma membrane of live cells at spatial scales much below the diff...

  8. Comparison of Pyranometers and Reference Cells on Fixed and One-axis Tracking Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Michael R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vignola, Frank [University of Oregon; Peterson, Josh [University of Oregon; Mavromatakis, Fotis [Technological Educational Institute of Crete; Chiu, Chun-Yu [University of Oregon

    2017-10-12

    Photovoltaic (PV) system perfomance is monitored by a wide variety of sensors. These instruments range from secondary standard pyranometers to photodiode-based pyranometers to reference cells. Although instruments are mounted in the plane of array of the modules a wide range of results have been obtained. Some of these difference have been assumed to come from systematic uncertainties associated with the irradiance sensors. This study is an attempt to quantify these differences by comparing the output of selected thermopile-based pyranometers to photodiode-based pyranometers and reference cells on a horizontal surface, a fixed-tilt surface, and a one-axis tracking surface. This analysis focuses on clear-sky results from two sites with different climatic conditions. Several important features were observed. Photodiode-based pyranometers and reference cells produce widely different results under clear skies, especially at larger angles-of-incidence even though both instruments are based on measuring the short circuit current of solar cells. The difference is caused by the scattering of light as it passes through the glazing of the reference cell or the diffuser lens of the photodioded- base pyranometer. Both instruments are shown to have similar response to the spectral distribution of the irradiance when compared to the thermopile-based pyranometer that has a response nearly independent of the wavelength of light used by PV modules.

  9. A study of V79 cell survival after for proton and carbon ion beams as represented by the parameters of Katz' track structure model

    DEFF Research Database (Denmark)

    Grzanka, Leszek; Waligórski, M. P. R.; Bassler, Niels

    different sets of data obtained for the same cell line and different ions, measured at different laboratories, we have fitted model parameters to a set of carbon-irradiated V79 cells, published by Furusawa et al. (2), and to a set of proton-irradiated V79 cells, published by Wouters et al. (3), separately....... We found that values of model parameters best fitted to the carbon data of Furusawa et al. yielded predictions of V79 survival after proton irradiation which did not match the V79 proton data of Wouters et al. Fitting parameters to both sets combined did not improve the accuracy of model predictions...... carbon irradiation. 1. Katz, R., Track structure in radiobiology and in radiation detection. Nuclear Track Detection 2: 1-28 (1978). 2. Furusawa Y. et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne beams. Radiat Res. 2012 Jan; 177...

  10. Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells.

    Science.gov (United States)

    Chen, Yu; Yin, Qi; Ji, Xiufeng; Zhang, Shengjian; Chen, Hangrong; Zheng, Yuanyi; Sun, Yang; Qu, Haiyun; Wang, Zheng; Li, Yaping; Wang, Xia; Zhang, Kun; Zhang, Linlin; Shi, Jianlin

    2012-10-01

    Nano-biotechnology has been introduced into cancer theranostics by engineering a new generation of highly versatile hybrid mesoporous composite nanocapsules (HMCNs) for manganese-based pH-responsive dynamic T(1)-weighted magnetic resonance imaging (MRI) to efficiently respond and detect the tumor acidic microenvironment, which was further integrated with ultrasonographic function based on the intrinsic unique hollow nanostructures of HMCNs for potentially in vitro and in vivo dual-modality cancer imaging. The manganese oxide-based multifunctionalization of hollow mesoporous silica nanoparticles was achieved by an in situ redox reaction using mesopores as the nanoreactors. Due to the dissolution nature of manganese oxide nanoparticles under weak acidic conditions, the relaxation rate r(1) of manganese-based mesoporous MRI-T(1) contrast agents (CAs) could reach 8.81 mM(-1)s(-1), which is a 11-fold magnitude increase compared to the neutral condition, and is almost two times higher than commercial Gd(III)-based complex agents. This is also the highest r(1) value ever reported for manganese oxide nanoparticles-based MRI-T(1) CAs. In addition, the hollow interiors and thin mesoporous silica shells endow HMCNs with the functions of CAs for efficient in vitro and in vivo ultrasonography under both harmonic- and B-modes. Importantly, the well-defined mesopores and large hollow interiors of HMCNs could encapsulate and deliver anticancer agents (doxorubicin) intracellularly to circumvent the multidrug resistance (MDR) of cancer cells and restore the anti-proliferative effect of drugs by nanoparticle-mediated endocytosis process, intracellular drug release and P-gp inhibition/ATP depletion in cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Elastography and diffusion-weighted MRI in patients with rectal cancer

    DEFF Research Database (Denmark)

    Rafaelsen, Søren Rafael; Vagn-Hansen, Chris Aksel; Sørensen, Torben

    2015-01-01

    -weighted coefficient (ADC). The purpose of the present study was to compare quantitative elastography based on ultrasound shear wave measurements with MRI ADC. METHODS: We prospectively examined 52 patients with histopathologically proven rectal cancer. The mean age was 67 years (range 42-90 years). Males: 39, females...... a correlation between tissue elasticity and diffusion in rectal cancer.......OBJECTIVE: The current literature has described the usefulness of elastography and diffusion-weighted MRI in patients with cancer, but to the best of our knowledge so far none of them has compared the two new methods. The tumour cell density is related to the MRI-measured apparent diffusion...

  12. MRI assessment program. Consensus statement on clinical efficacy of MRI

    International Nuclear Information System (INIS)

    1998-05-01

    This consensus statement is largely based on the experience gained at the MRI units at the four hospitals which have operated scanners in the MRI program. It reflects the considered opinion of the radiologists responsible for the MRI services at those hospitals. Account has also been taken of relevant overseas data. This collection of opinion relates particularly to comparison with other imaging modalities. The specific comments will require further consideration as technical developments with MRI become available, additional experience is gained with gadolinium contrast material and additional data are obtained on the influence of MRI on patient management. MRI, at present, is used either to improve diagnostic accuracy when other tests are negative or equivocal, when there is strong clinical suspicion of disease, or to improve surgical or other management planning when the diagnosis known. In some situations (eg syringomyelia, congenital spinal disease, posterior fossa/cerebello-pontine angle tumours) it may entirely replace other tests (eg myelography, air contrast, CT) which are substantially less accurate and/or more invasive. In other situations (eg hemispheric brain tumours, lumbar disc protrusions) when other tests, such as CT, can be as accurate, MRI is not usually or initially indicated because it is currently more expensive and of limited availability. However, balanced against this is the fact that it does not expose the patient to potentially harmful ionising radiation. It is also stressed that MRI images depend on complex, widely variable and, as yet, incompletely understood parameters. There is concern that this may result in false positive diagnoses, especially where MRI is used alone as a screening test, or used as the initial test. For several reasons (availability, cost, medical and diagnostic efficacy), the specific comments on indications for MRI presented are based upon the assumption that MRI is a tertiary and complementary imaging examination

  13. MRI

    DEFF Research Database (Denmark)

    Schroeter, Aileen; Rudin, Markus; Gianolio, Eliana

    2017-01-01

    This chapter discusses principles of nuclear magnetic resonance (NMR) and MRI followed by a survey on the major classes of MRI contrast agents (CA), their modes of action, and some of the most significative applications. The two more established classes of MRI-CA are represented by paramagnetic...... been attained that markedly increase the number and typology of systems with CEST properties. Currently much attention is also devoted to hyperpolarized molecules that display a sensitivity enhancement sufficient for their direct exploitation for the formation of the MR image. A real breakthrough...

  14. Design, synthesis, and evaluation of VEGFR-targeted macromolecular MRI contrast agent based on biotin–avidin-specific binding

    Directory of Open Access Journals (Sweden)

    Liu YJ

    2017-07-01

    Full Text Available Yongjun Liu,1 Xiaoyun Wu,1 Xiaohe Sun,1 Dan Wang,1 Ying Zhong,1 Dandan Jiang,1 Tianqi Wang,1 Dexin Yu,2 Na Zhang1 1School of Pharmaceutical Science, Shandong University, 2Department of Radiology Medicine, Qilu Hospital, Jinan, People’s Republic of China Abstract: Developing magnetic resonance imaging (MRI contrast agents with high relaxivity and specificity was essential to increase MRI diagnostic sensitivity and accuracy. In this study, the MRI contrast agent, vascular endothelial growth factor receptor (VEGFR-targeted poly (l-lysine (PLL-diethylene triamine pentacetate acid (DTPA-gadolinium (Gd (VEGFR-targeted PLL-DTPA-Gd, VPDG, was designed and prepared to enhance the MRI diagnosis capacity of tumor. Biotin-PLL-DTPA-Gd was synthesized first, then, VEGFR antibody was linked to biotin-PLL-DTPA-Gd using biotin–avidin reaction. In vitro cytotoxicity study results showed that VPDG had low toxicity to MCF-7 cells and HepG2 cells at experimental concentrations. In cell uptake experiments, VPDG could significantly increase the internalization rates (61.75%±5.22% in VEGFR-positive HepG2 cells compared to PLL-DTPA-Gd (PDG (25.16%±4.71%, P<0.05. In MRI studies in vitro, significantly higher T1 relaxivity (14.184 mM-1 s-1 was observed compared to Magnevist® (4.9 mM-1 s-1; P<0.01. Furthermore, in vivo MRI study results showed that VPDG could significantly enhance the tumor signal intensity and prolong the diagnostic time (from <1 h to 2.5 h. These results indicated that macromolecular VPDG was a promising MRI contrast agent and held great potential for molecular diagnosis of tumor. Keywords: MRI, contrast agent, VEGFR, biotin–avidin reaction, relaxivity

  15. Track structure in biological models.

    Science.gov (United States)

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  16. PET/MRI in head and neck cancer: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Platzek, Ivan; Laniado, Michael [Dresden University Hospital, Department of Radiology, Dresden (Germany); Beuthien-Baumann, Bettina [Dresden University Hospital, Department of Nuclear Medicine, Dresden (Germany); Schneider, Matthias [Dresden University Hospital, Oral and Maxillofacial Surgery, Dresden (Germany); Gudziol, Volker [Dresden University Hospital, Department of Otolaryngology, Dresden (Germany); Langner, Jens; Schramm, Georg; Hoff, Joerg van den [Institute of Bioinorganic and Radiopharmaceutical Chemistry, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kotzerke, Joerg [Dresden University Hospital, Nuclear Medicine, Dresden (Germany)

    2013-01-15

    To evaluate the feasibility of PET/MRI (positron emission tomography/magnetic resonance imaging) with FDG ({sup 18}F-fluorodeoxyglucose) for initial staging of head and neck cancer. The study group comprised 20 patients (16 men, 4 women) aged between 52 and 81 years (median 64 years) with histologically proven squamous cell carcinoma of the head and neck region. The patients underwent a PET scan on a conventional scanner and a subsequent PET/MRI examination on a whole-body hybrid system. FDG was administered intravenously prior to the conventional PET scan (267-395 MBq FDG, 348 MBq on average). The maximum standardized uptake values (SUV{sub max}) of the tumour and of both cerebellar hemispheres were determined for both PET datasets. The numbers of lymph nodes with increased FDG uptake were compared between the two PET datasets. No MRI-induced artefacts where observed in the PET images. The tumour was detected by PET/MRI in 17 of the 20 patients, by PET in 16 and by MRI in 14. The PET/MRI examination yielded significantly higher SUV{sub max} than the conventional PET scanner for both the tumour (p < 0.0001) and the cerebellum (p = 0.0009). The number of lymph nodes with increased FDG uptake detected using the PET dataset from the PET/MRI system was significantly higher the number detected by the stand-alone PET system (64 vs. 39, p = 0.001). The current study demonstrated that PET/MRI of the whole head and neck region is feasible with a whole-body PET/MRI system without impairment of PET or MR image quality. (orig.)

  17. Tracking flow of leukocytes in blood for drug analysis

    Science.gov (United States)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  18. An MRI-Conditional External Cardiac Defibrillator for Resuscitation Within the MRI Scanner Bore

    Science.gov (United States)

    Schmidt, Ehud J.; Watkins, Ronald D.; Zviman, Menekhem M.; Guttman, Michael A.; Wang, Wei; Halperin, Henry A.

    2016-01-01

    Background Subjects undergoing cardiac arrest within an MRI scanner are currently removed from the bore and then from the MRI suite, prior to delivery of CPR and defibrillation, potentially increasing risk of mortality. This precludes many higher-risk (acute-ischemic, acute-stroke) patients from undergoing MRI imaging and MRI-guided intervention. An MRI-conditional cardiac defibrillator should enable scanning with defibrillation pads attached and the generator ON, enabling application of defibrillation within the MRI seconds after a cardiac event. An MRI-conditional external defibrillator may improve patient acceptance for MRI procedures. Methods and Results A commercial external defibrillator was rendered 1.5 Tesla MRI-conditional by addition of novel Radio-Frequency (RF) filters between the generator and commercial disposable surface-pads. The RF filters reduced emission into the MRI scanner, and prevented cable/surface-pad heating during imaging, while preserving all the defibrillator’s monitoring and delivery functions. Human volunteers were imaged using high Specific-Absorption-Rate sequences to validate MRI image quality (IQ) and lack of heating. Swine were electrically fibrillated (N=4) and thereafter defibrillated both outside and inside the MRI bore. MRI IQ was reduced by 0.8 or 1.6 dB, with the generator in monitoring mode and operating on battery or AC power, respectively. Commercial surface-pads did not create artifacts deeper than 6mm below the skin surface. RF heating was within FDA guidelines. Defibrillation was completely successful inside and outside the MRI bore. Conclusions A prototype MRI-conditional defibrillation system successfully defibrillated in the MRI without degrading image quality, or increasing the time needed for defibrillation. It can increase patient acceptance for MRI procedures. PMID:27729363

  19. Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic

    Directory of Open Access Journals (Sweden)

    Y. Lalatonne

    2010-01-01

    Full Text Available A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI and a therapeutic agent (bisphosphonates into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2∗ contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63 show that γFe2O3@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system.

  20. Tracking fusion of human mesenchymal stem cells after transplantation to the heart.

    Science.gov (United States)

    Freeman, Brian T; Kouris, Nicholas A; Ogle, Brenda M

    2015-06-01

    Evidence suggests that transplanted mesenchymal stem cells (MSCs) can aid recovery of damaged myocardium caused by myocardial infarction. One possible mechanism for MSC-mediated recovery is reprogramming after cell fusion between transplanted MSCs and recipient cardiac cells. We used a Cre/LoxP-based luciferase reporter system coupled to biophotonic imaging to detect fusion of transplanted human pluripotent stem cell-derived MSCs to cells of organs of living mice. Human MSCs, with transient expression of a viral fusogen, were delivered to the murine heart via a collagen patch. At 2 days and 1 week later, living mice were probed for bioluminescence indicative of cell fusion. Cell fusion was detected at the site of delivery (heart) and in distal tissues (i.e., stomach, small intestine, liver). Fusion was confirmed at the cellular scale via fluorescence in situ hybridization for human-specific and mouse-specific centromeres. Human cells in organs distal to the heart were typically located near the vasculature, suggesting MSCs and perhaps MSC fusion products have the ability to migrate via the circulatory system to distal organs and engraft with local cells. The present study reveals previously unknown migratory patterns of delivered human MSCs and associated fusion products in the healthy murine heart. The study also sets the stage for follow-on studies to determine the functional effects of cell fusion in a model of myocardial damage or disease. Mesenchymal stem cells (MSCs) are transplanted to the heart, cartilage, and other tissues to recover lost function or at least limit overactive immune responses. Analysis of tissues after MSC transplantation shows evidence of fusion between MSCs and the cells of the recipient. To date, the biologic implications of cell fusion remain unclear. A newly developed in vivo tracking system was used to identify MSC fusion products in living mice. The migratory patterns of fusion products were determined both in the target organ (i

  1. MRI-guided brachytherapy for cancer of the oesophagus

    International Nuclear Information System (INIS)

    Aydin, H.; Bachmann, G.; Lieven, H. von; Sens, M.

    1993-01-01

    A method of brachytherapy treatment planning using MRI is presented. In 13 patients with inoperable squamous cell cancer of the thoracic oesophagus an intraluminal afterloading boost with MRI assistance was performed. A new type of flexible catheter was filled with 1/100 diluted Gd-DTPA and introduced into the oesophagus before performing MRI in the sagittal, coronal and transverse planes. One sagittal or coronal picture which showed the catheter tip and the residual cancer was magnified to ''life size''. The position of the catheter was corrected if necessary and the treatment volume decided. The contrast medium was then aspirated out of the catheter and a thinner afterloading catheter pushed into the outer catheter. The patient was moved immediately to the afterloading room and received the first dose of boost irradiation. This method allows much more precise brachytherapy planning since it shows the cancer and the catheter together. It is superior to localising the cancer with a barium swallow or endoscopy because MRI visualises the whole extent of the residual cancer, which can then be covered with the necessary dose. (orig.)

  2. An automated approach for single-cell tracking in epifluorescence microscopy applied to E. coli growth analysis on microfluidics biochips

    Science.gov (United States)

    Fetita, Catalin; Kirov, Boris; Jaramillo, Alfonso; Lefevre, Christophe

    2012-03-01

    With the accumulation of knowledge for the intimate molecular mechanisms governing the processes inside the living cells in the later years, the ability to characterize the performance of elementary genetic circuits and parts at the single-cell level is becoming of crucial importance. Biological science is arriving to the point where it can develop hypothesis for the action of each molecule participating in the biochemical reactions and need proper techniques to test those hypothesis. Microfluidics is emerging as the technology that combined with high-magnification microscopy will allow for the long-term single-cell level observation of bacterial physiology. In this study we design, build and characterize the gene dynamics of genetic circuits as one of the basic parts governing programmed cell behavior. We use E. coli as model organism and grow it in microfluidics chips, which we observe with epifluorescence microscopy. One of the most invaluable segments of this technology is the consequent image processing, since it allows for the automated analysis of vast amount of single-cell observation and the fast and easy derivation of conclusions based on that data. Specifically, we are interested in promoter activity as function of time. We expect it to be oscillatory and for that we use GFP (green fluorescent protein) as a reporter in our genetic circuits. In this paper, an automated framework for single-cell tracking in phase-contrast microscopy is developed, combining 2D segmentation of cell time frames and graph-based reconstruction of their spatiotemporal evolution with fast tracking of the associated fluorescence signal. The results obtained on the investigated biological database are presented and discussed.

  3. MRI in staging of rectal carcinoma

    International Nuclear Information System (INIS)

    Gourtsoyianni, S.

    2012-01-01

    inability to differentiate between fibrosis with/without presence of tumor cells. Morphological MR imaging criteria that correspond to free of disease/involved MF have been reported, as well as criteria indicating disease being confined to the rectal wall (ypT0-T2). High resolution MR images combined with radiologists' rising level of familiarity regarding the assessment of reactive changes post CRT have increased local staging accuracy of MRI, including both T and N stage reporting. Introduction of imaging techniques such as Diffusion weighted imaging, especially when combined with morphological T2w sequences for tumor assessment response have shown promising results

  4. MRI of fibrous cortical defect and non-ossifying fibroma

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, Yoshiko; Aoki, Takatoshi; Watanabe, Hideyuki; Nakata, Hajime; Hashimoto, Hiroshi; Nakamura, Toshitaka [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    1999-02-01

    Fibrous cortical defect and non-ossifying fibroma are the benign fibrous lesions of bone commonly involving children. Their diagnosis is usually done with radiography, and MR examinations are rarely performed. We evaluated MRI findings of 11 lesions in 10 cases of fibrous cortical defect and non-ossifying fibroma. Signal intensity of the lesions was varied and large lesions (2 cm<) tended to show heterogeneous signal intensity on both T1-weighted and T2-weighted images corresponding to a mixture of components including fibrous tissue, hemosiderin and foam cells. MRI helps to delineate the extent of the involved bone and to assess the various histological components of the lesions. However, their diagnosis is basically made on the radiographic findings and the role of MRI is limited. (author)

  5. An experimental study on image findings of MRI and their pathomorphological basis in limb gunshot wound

    International Nuclear Information System (INIS)

    Leng Luqing; Gu Ming; Ke Zhenwu; Guo Qiaonan; Ma Zongli; Pan Chuanjing

    2004-01-01

    Objective: To observe the MRI findings of limb gunshot wound and investigate their pathomorphological basis through animal models. Methods: Sixteen mongrel dogs were divided into four groups randomly. The hind legs of dogs shot with handgun were undergone 0.5 T MRI scans at 5 h, 24 h, 48 h, and 72 h after wounded, respectively. The gross changes, HE staining light microscopic findings and MRI findings of wounds were observed. Results: Permanent tract was a zone of tissue defect. In the tract, blood of 5 h group's and pus of 24 h, 48 h, and 72 h groups showed T 1 WI hypointense signal and T 2 WI hyperintense signal. In contusion zone, the main pathological change was homogeneous coagulating necrosis of muscle fibers. MRI images showed irregular line, dot, or block T 1 WI isointense signal, T 2 WI hypointense signal, and no enhanced after Gd-DTPA injected in all groups. In concussion zone, the main pathological changes of 5 h group were edema, degeneration, and lysis of cells and lots of erythrocytes in the tissue interspace. Besides these, a large quantity of leucocytes and pus cells appeared, the lysis of degenerated cells near the contusion zone and the edema of such area, with passage of time, were more obviously in groups 24 h, 48 h, and 72 h. In MRI, concussion zone showed slightly hypointense T 1 WI signal, hyperintense T 2 WI, signal and T 2 WI signal got higher and the adjacent contusion zone got clearer with time pass. Concussion zone could be enhanced obviously. Conclusion: MRI can reflect the lesion of tissue in limb gunshot wound accurately during seventy-two hours after wound. The T 2 WI and contrast-enhanced T 1 WI are valuable. The special tissue-defect area, coagulating necrosis of cells, and large range injury of blood vessels and cells are the important pathomorphological basis which cause the MRI findings of gunshot wound different from normal trauma. (author)

  6. Molecular Characteristics in MRI-classified Group 1 Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    William E Haskins

    2013-07-01

    Full Text Available Glioblastoma multiforme (GBM is a clinically and pathologically heterogeneous brain tumor. Previous study of MRI-classified GBM has revealed a spatial relationship between Group 1 GBM (GBM1 and the subventricular zone (SVZ. The SVZ is an adult neural stem cell niche and is also suspected to be the origin of a subtype of brain tumor. The intimate contact between GBM1 and the SVZ raises the possibility that tumor cells in GBM1 may be most related to SVZ cells. In support of this notion, we found that neural stem cell and neuroblast markers are highly expressed in GBM1. Additionally, we identified molecular characteristics in this type of GBM that include up-regulation of metabolic enzymes, ribosomal proteins, heat shock proteins, and c-Myc oncoprotein. As GBM1 often recurs at great distances from the initial lesion, the rewiring of metabolism and ribosomal biogenesis may facilitate cancer cells’ growth and survival during tumor migration. Taken together, combined our findings and MRI-based classification of GBM1 would offer better prediction and treatment for this multifocal GBM.

  7. Virtual MRI endoscopy of the intracranial cerebrospinal fluid spaces

    International Nuclear Information System (INIS)

    Shigematsu, Y.; Korogi, Y.; Hirai, T.; Okuda, T.; Ikushima, I.; Sugahara, T.; Liang, L.; Ge, Y.; Takahashi, M.

    1998-01-01

    We used constructive interference in steady state (CISS) 3D Fourier transform (3DFT) MRI data sets to obtain three-dimensional (3D) virtual MRI endoscopic views of the intracranial cerebrospinal fluid (CSF) spaces, processing them with a commercially available perspective endoscopic algorithm. We investigated the potential of the intracranial virtual MRI endoscopy applied to visualisation of the pathology in 13 patients with surgically confirmed trigeminal neuralgia (3), hemifacial spasm (3), acoustic neuroma (3), suprasellar germinoma (1), Langerhans cell histiocytosis (1), lateral ventricle nodules (1) and pituitary dwarfism (1). All images were acquired using a 1.5-T imager employing a circular polarised head coil. The CISS-3DFT data sets were transferred to a workstation for processing with the perspective endoscopic algorithm. Postprocessing for virtual MRI endoscopy was possible for all data sets. The lesions in 12 patients, and their complex anatomical relationships with the surrounding structures, were well seen on the 3D images. A small acoustic neuroma in the internal auditory meatus was not seen using virtual endoscopy. Although virtual MRI endoscopy has limitations, it provides 3D images which cannot be acquired using any other procedure. (orig.)

  8. Virtual MRI endoscopy of the intracranial cerebrospinal fluid spaces

    Energy Technology Data Exchange (ETDEWEB)

    Shigematsu, Y.; Korogi, Y.; Hirai, T. [Kumamoto Univ. (Japan). Dept. of Radiology; Okuda, T.; Ikushima, I.; Sugahara, T.; Liang, L.; Ge, Y.; Takahashi, M.

    1998-10-01

    We used constructive interference in steady state (CISS) 3D Fourier transform (3DFT) MRI data sets to obtain three-dimensional (3D) virtual MRI endoscopic views of the intracranial cerebrospinal fluid (CSF) spaces, processing them with a commercially available perspective endoscopic algorithm. We investigated the potential of the intracranial virtual MRI endoscopy applied to visualisation of the pathology in 13 patients with surgically confirmed trigeminal neuralgia (3), hemifacial spasm (3), acoustic neuroma (3), suprasellar germinoma (1), Langerhans cell histiocytosis (1), lateral ventricle nodules (1) and pituitary dwarfism (1). All images were acquired using a 1.5-T imager employing a circular polarised head coil. The CISS-3DFT data sets were transferred to a workstation for processing with the perspective endoscopic algorithm. Postprocessing for virtual MRI endoscopy was possible for all data sets. The lesions in 12 patients, and their complex anatomical relationships with the surrounding structures, were well seen on the 3D images. A small acoustic neuroma in the internal auditory meatus was not seen using virtual endoscopy. Although virtual MRI endoscopy has limitations, it provides 3D images which cannot be acquired using any other procedure. (orig.) With 6 figs., 16 refs.

  9. An MRI Method To Map Tumor Hypoxia Using Red Blood Cells Loaded with a pO2-Responsive Gd-Agent.

    Science.gov (United States)

    Di Gregorio, Enza; Ferrauto, Giuseppe; Gianolio, Eliana; Lanzardo, Stefania; Carrera, Carla; Fedeli, Franco; Aime, Silvio

    2015-08-25

    Hypoxia is a typical hallmark of many solid tumors and often leads to therapy resistance and the development of a more aggressive cancer phenotype. Oxygen content in tissues has been evaluated using numerous different methods for several imaging modalities, but none has yet reached the required standard of spatial and temporal resolution. Magnetic Resonance Imaging (MRI) appears to be the technique of choice and several pO2-responsive probes have been designed for it over the years. In vivo translation is often hampered in Gd-relaxation agents as it is not possible to separate effects that arise from changes in local concentration from those associated with responsive properties. A novel procedure for the MRI based assessment of hypoxia is reported herein. The method relies on the combined use of Gd-DOTP- and Gd-HPDO3A-labeled red blood cells (RBCs) where the first probe acts as a vascular oxygenation-responsive agent, while the second reports the local labeled RBC concentration in a transplanted breast tumor mouse model. The MRI assessment of oxygenation state has been validated by photoacoustic imaging and ex vivo immunofluorescence. The method refines tumor staging in preclinical models and makes possible an accurate monitoring of the relationship between oxygenation and tumor growth.

  10. Preparation of fluoropolymer-based ion-track membranes. Structure of latent tracks and pretreatment effect

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Nuryanthi, Nuryanthi; Koshikawa, Hiroshi; Sawada, Shinichi; Hakoda, Teruyuki; Hasegawa, Shin; Asano, Masaharu; Maekawa, Yasunari

    2012-01-01

    High-energy heavy-ion induced damage, called latent tracks m organic polymers can sometimes be etched out chemically to give submicro- and nano-sized pores. Our focus is placed on ion-track membranes of poly(vinylidene fluoride) (PVDF), a type of fluoropolymer, which were previously considered as a matrix of polymer electrolyte fuel-cell membranes. There have been no optimized methods of preparing the PVDF-based ion-track membranes. We thus examined chemical structures of the defects created in the track, and accordingly, presented a pretreatment technique for achieving more efficient track etching. A 25 μm-thick PVDF film was bombarded with 1.1 GeV 238 U or 450 MeV 129 Xe ions. In the multi-purpose chamber, degradation processes were monitored in-situ by FT-IR spectroscopy and residual gas analysis as a function of the fluence up to 6.0 x 10 11 ions/cm 2 . The films irradiated at 8 ions/cm 2 were etched in a 9 M KOH aqueous solution at 80degC. We also performed the conductometric etching, which allows monitoring of pore evolution versus etching time by recording the electrical conductance through the membrane. At fluences above 1 x 10 10 ions/cm 2 , the film showed two new absorption bands identified as double-bond stretching vibrations of in-chain unsaturations -CH=CF- and fluorinated vinyl groups -CF 2 CH=CF 2 . These defects would result from the evolution of HF. The knowledge of the solubility in a permanganate alkaline solution and our preliminary experiment suggested the importance of oxidized tracks for the easy introduction of the etching agent. We finally found that the pretreatment with ozone could oxidize the double bonds in the tracks, thereby vigorously promoting track etching before breakthrough. (author)

  11. Robotic System for MRI-Guided Stereotactic Neurosurgery

    Science.gov (United States)

    Li, Gang; Cole, Gregory A.; Shang, Weijian; Harrington, Kevin; Camilo, Alex; Pilitsis, Julie G.; Fischer, Gregory S.

    2015-01-01

    Stereotaxy is a neurosurgical technique that can take several hours to reach a specific target, typically utilizing a mechanical frame and guided by preoperative imaging. An error in any one of the numerous steps or deviations of the target anatomy from the preoperative plan such as brain shift (up to 20 mm), may affect the targeting accuracy and thus the treatment effectiveness. Moreover, because the procedure is typically performed through a small burr hole opening in the skull that prevents tissue visualization, the intervention is basically “blind” for the operator with limited means of intraoperative confirmation that may result in reduced accuracy and safety. The presented system is intended to address the clinical needs for enhanced efficiency, accuracy, and safety of image-guided stereotactic neurosurgery for Deep Brain Stimulation (DBS) lead placement. The work describes a magnetic resonance imaging (MRI)-guided, robotically actuated stereotactic neural intervention system for deep brain stimulation procedure, which offers the potential of reducing procedure duration while improving targeting accuracy and enhancing safety. This is achieved through simultaneous robotic manipulation of the instrument and interactively updated in situ MRI guidance that enables visualization of the anatomy and interventional instrument. During simultaneous actuation and imaging, the system has demonstrated less than 15% signal-to-noise ratio (SNR) variation and less than 0.20% geometric distortion artifact without affecting the imaging usability to visualize and guide the procedure. Optical tracking and MRI phantom experiments streamline the clinical workflow of the prototype system, corroborating targeting accuracy with 3-axis root mean square error 1.38 ± 0.45 mm in tip position and 2.03 ± 0.58° in insertion angle. PMID:25376035

  12. The Microtubule Plus-End Tracking Protein CLASP2 Is Required for Hematopoiesis and Hematopoietic Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Ksenija Drabek

    2012-10-01

    Full Text Available Mammalian CLASPs are microtubule plus-end tracking proteins whose essential function as regulators of microtubule behavior has been studied mainly in cultured cells. We show here that absence of murine CLASP2 in vivo results in thrombocytopenia, progressive anemia, and pancytopenia, due to defects in megakaryopoiesis, in erythropoiesis, and in the maintenance of hematopoietic stem cell activity. Furthermore, microtubule stability and organization are affected upon attachment of Clasp2 knockout hematopoietic stem-cell-enriched populations, and these cells do not home efficiently toward their bone marrow niche. Strikingly, CLASP2-deficient hematopoietic stem cells contain severely reduced mRNA levels of c-Mpl, which encodes the thrombopoietin receptor, an essential factor for megakaryopoiesis and hematopoietic stem cell maintenance. Our data suggest that thrombopoietin signaling is impaired in Clasp2 knockout mice. We propose that the CLASP2-mediated stabilization of microtubules is required for proper attachment, homing, and maintenance of hematopoietic stem cells and that this is necessary to sustain c-Mpl transcription.

  13. Experimental bacterial meningitis in rabbit; evaluation with CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Jin; Kang, Heoung Keun; Chu, Sung Nam; Kim, Yun Hyeon; Jeong, Yong Yeon; Chung, Hyon De [Chonnam Univ. Medical School, Kwangju (Korea, Republic of)

    1996-01-01

    The purpose of this study was to evaluate the usefulness of computed tomography(CT) and magnetic resonance imaging(MRI) in experimental bacterial meningitis. CT and MR images of experimental bacterial meningitis were obtained after inoculation of 1ml suspension of 10-6/ml Staphylococcus aureus directly into the supratentorial arachnoid space of 18 New Zealand white rabbits. Each animal was studied with both pre-enhanced and post-enhanced CT and MRI at 12, 24, 48 hours and 1 week. Cerebrospinal fluid of all of 18 rabbits were sampled and cultured for bacterial growth. All of 18 rabbits had the clinical symptoms such as neck stiffness and anorexia within 24 hours after the inoculation. Cerebrospinal fluid cultures were positive for Staphylococcus aureus growth. Gd-enhanced MRI exhibited diffuse enhancement along the thickened supratentorial meninges earlier than CT. In Gd-enhanced MRI, the mean contrast enhancement along the thickened supratentorial meninges earlier than CT. In Gd-enhanced MRI, the mean contrast enhancement ratio(CER) at supratentorial meninges increased to 1.93 at 12 hours and 2.99 at 24 hours from 1.06 at 0 hour. Histologic evaluation demonstrated inflammatory cell infiltration into the meninges. MRI also identified the complications of meningitis such as ependymitis and hydrocephalus more effectively than CT. These results indicated that Fd-enhanced MRI detectred earlier the abnormal findingfs of bacterial meningitis and evaluated more effectively the complications of meningitis compared with CT. MRI was more useful than CT in evaluation of the bacterial meningitis.

  14. Experimental bacterial meningitis in rabbit; evaluation with CT and MRI

    International Nuclear Information System (INIS)

    Seo, Jeong Jin; Kang, Heoung Keun; Chu, Sung Nam; Kim, Yun Hyeon; Jeong, Yong Yeon; Chung, Hyon De

    1996-01-01

    The purpose of this study was to evaluate the usefulness of computed tomography(CT) and magnetic resonance imaging(MRI) in experimental bacterial meningitis. CT and MR images of experimental bacterial meningitis were obtained after inoculation of 1ml suspension of 10-6/ml Staphylococcus aureus directly into the supratentorial arachnoid space of 18 New Zealand white rabbits. Each animal was studied with both pre-enhanced and post-enhanced CT and MRI at 12, 24, 48 hours and 1 week. Cerebrospinal fluid of all of 18 rabbits were sampled and cultured for bacterial growth. All of 18 rabbits had the clinical symptoms such as neck stiffness and anorexia within 24 hours after the inoculation. Cerebrospinal fluid cultures were positive for Staphylococcus aureus growth. Gd-enhanced MRI exhibited diffuse enhancement along the thickened supratentorial meninges earlier than CT. In Gd-enhanced MRI, the mean contrast enhancement along the thickened supratentorial meninges earlier than CT. In Gd-enhanced MRI, the mean contrast enhancement ratio(CER) at supratentorial meninges increased to 1.93 at 12 hours and 2.99 at 24 hours from 1.06 at 0 hour. Histologic evaluation demonstrated inflammatory cell infiltration into the meninges. MRI also identified the complications of meningitis such as ependymitis and hydrocephalus more effectively than CT. These results indicated that Fd-enhanced MRI detectred earlier the abnormal findingfs of bacterial meningitis and evaluated more effectively the complications of meningitis compared with CT. MRI was more useful than CT in evaluation of the bacterial meningitis

  15. Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice

    Directory of Open Access Journals (Sweden)

    Papaioannou Virginia E

    2004-12-01

    Full Text Available Abstract Background Advances in optical imaging modalities and the continued evolution of genetically-encoded fluorescent proteins are coming together to facilitate the study of cell behavior at high resolution in living organisms. As a result, imaging using autofluorescent protein reporters is gaining popularity in mouse transgenic and targeted mutagenesis applications. Results We have used embryonic stem cell-mediated transgenesis to label cells at sub-cellular resolution in vivo, and to evaluate fusion of a human histone protein to green fluorescent protein for ubiquitous fluorescent labeling of nucleosomes in mice. To this end we have generated embryonic stem cells and a corresponding strain of mice that is viable and fertile and exhibits widespread chromatin-localized reporter expression. High levels of transgene expression are maintained in a constitutive manner. Viability and fertility of homozygous transgenic animals demonstrates that this reporter is developmentally neutral and does not interfere with mitosis or meiosis. Conclusions Using various optical imaging modalities including wide-field, spinning disc confocal, and laser scanning confocal and multiphoton excitation microscopy, we can identify cells in various stages of the cell cycle. We can identify cells in interphase, cells undergoing mitosis or cell death. We demonstrate that this histone fusion reporter allows the direct visualization of active chromatin in situ. Since this reporter segments three-dimensional space, it permits the visualization of individual cells within a population, and so facilitates tracking cell position over time. It is therefore attractive for use in multidimensional studies of in vivo cell behavior and cell fate.

  16. "Sickle Cell Anemia: Tracking down a Mutation": An Interactive Learning Laboratory That Communicates Basic Principles of Genetics and Cellular Biology

    Science.gov (United States)

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J. Michael

    2016-01-01

    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients…

  17. MRI-based N-staging in esophageal cancer

    International Nuclear Information System (INIS)

    Krupski, G.; Lorenzen, J.; Nicolas, V.; Adam, G.; Gawad, K.; Izbicki, J.R.

    2002-01-01

    Purpose: For planning the therapeutic strategies and estimating the prognosis in esophageal cancer, N-staging is very important. To date, MRI still is of minor importance as imaging modality of the mediastinum despite promising developments in the past, like ECG-gating or 'averaging' sequences, e.g. LOTA (Long-term averaging), which facilitate mediastinal and thoracic MR-imaging. In a prospective approach, the value of MRI based N-staging was examined with respect to LOTA-sequences. Material and Methods: Within from weeks prior to esophagectomy, standardized MRI of the esophagus was performed in 15 patients (10 squamous-cell-carcinomas and 5 adenocarcinomas) using a 1.5 T whole body scanner. Imaging quality was classified based on depiction of aortic wall or tracheal wall layers. Criteria for malignant infiltration were a diameter of more than 15 mm or a round appearance of a lymph node together with GD-DTPA enhancement. All data were blinded and separately read by two radiologists. The data of the study were compared with those from the pathological workup of the resected specimen. Results: MRI had a sensitivity of 100% and a specificity of 78% for lymph node metastases. Due to incomplete depiction of the celiac trunk (M1), nodal metastasis in a non-enlarged node was missed. Conclusion: With modern MRI, N-staging is almost as accurate as the gold standard endoscopic ultrasound and should particularly be used in patients not suited for an endoscopic ultrasound examination. (orig.) [de

  18. Comparison of static MRI and pseudo-dynamic MRI in temporomandibular joint disorder patients

    International Nuclear Information System (INIS)

    Lee, Jin Ho; Yun, Kyoung In; Park, In Woo; Choi, Hang Moon; Park, Moon Soo

    2006-01-01

    The purpose of this study was to elevate comparison of static MRI and pseudo-dynamic (cine) MRI in temporomandibular joint (TMJ) disorder patients. In this investigation, 33 patients with TMJ disorders were examined using both conventional static MRI and pseudo-dynamic MRI. Multiple spoiled gradient recalled acquisition in the steady state (SPGR) images were obtained when mouth opened and closed. Proton density weighted images were obtained at the closed and open mouth position in static MRI. Two oral and maxillofacial radiologists evaluated location of the articular disk, movement of condyle and bony change respectively and the posterior boundary of articular disk was obtained. No statistically significant difference was found in the observation of articular disk position, mandibular condylar movement and posterior boundary of articular disk using static MRI and pseudo-dynamic MRI (P>0.05). Statistically significant difference was noted in bony changes of condyle using static MRI and pseudo-dynamic MRI (P<0.05). This study showed that pseudo-dynamic MRI didn't make a difference in diagnosing internal derangement of TMJ in comparison with static MRI. But it was considered as an additional method to be supplemented in observing bony change

  19. Comparison of static MRI and pseudo-dynamic MRI in temporomandibular joint disorder patients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Ho; Yun, Kyoung In [Eulji Univ. School of Medicine, Seoul (Korea, Republic of); Park, In Woo; Choi, Hang Moon; Park, Moon Soo [Kangnung National Univ. College of Dentistry, Kangnung (Korea, Republic of)

    2006-12-15

    The purpose of this study was to elevate comparison of static MRI and pseudo-dynamic (cine) MRI in temporomandibular joint (TMJ) disorder patients. In this investigation, 33 patients with TMJ disorders were examined using both conventional static MRI and pseudo-dynamic MRI. Multiple spoiled gradient recalled acquisition in the steady state (SPGR) images were obtained when mouth opened and closed. Proton density weighted images were obtained at the closed and open mouth position in static MRI. Two oral and maxillofacial radiologists evaluated location of the articular disk, movement of condyle and bony change respectively and the posterior boundary of articular disk was obtained. No statistically significant difference was found in the observation of articular disk position, mandibular condylar movement and posterior boundary of articular disk using static MRI and pseudo-dynamic MRI (P>0.05). Statistically significant difference was noted in bony changes of condyle using static MRI and pseudo-dynamic MRI (P<0.05). This study showed that pseudo-dynamic MRI didn't make a difference in diagnosing internal derangement of TMJ in comparison with static MRI. But it was considered as an additional method to be supplemented in observing bony change.

  20. MRI findings in an infant with vaccine-associated paralytic poliomyelitis

    International Nuclear Information System (INIS)

    Lopes Ferraz-Filho, Jose Roberto; Santos Torres, Ulysses dos; Portela de Oliveira, Eduardo; Soares Souza, Antonio

    2010-01-01

    Although acute flaccid paralysis is a manifestation observed in several neurologic and muscular disorders, vaccine-associated paralytic poliomyelitis (VAPP) is an exceedingly rare etiology. In the clinical setting of acute flaccid paralysis, MRI is useful in differentiating between VAPP and other conditions. Additionally, MRI can assess the extent of lesions. However, reports on MRI findings in VAPP are scarce in the pediatric radiology literature. We report a Brazilian infant who developed VAPP 40 days after receiving the first dose of oral polio vaccine (OPV). MR images of the cervical and thoracic spinal cord showed lesions involving the anterior horn cell, with increased signal intensity on T2-weighted sequences. We would like to emphasize the importance of considering VAPP as a differential diagnosis in patients with acute flaccid paralysis and an MRI showing involvement of medulla oblongata or spinal cord, particularly in countries where OPV is extensively administered. (orig.)